
 Eindhoven University of Technology

MASTER

Graphic toolbox for a high level design environment

van Straaten, M.J.

Award date:
1989

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/9fd90fa4-822a-46f2-a121-cef134dde605

EINDHOVEN UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRICAL ENGINEERING

DESIGN AUTOMATION SECTION

Graphic Tooibox for a High Level
Design Environment

M.J. vanStraaten

5 june 1989

Master thesis reporting on graduation work
by order of prof. dr. ing. J .A.G. J ess

and supervised by ir. L. Stok

The Eindhoven University of Technology is not responsible
for the contents of training and thesis reports

Abstract

This report describes a grapbics interfacefora schematic editor and a simu­
lator. Both these tools are already implemented in CommonLisp. Grapbics
deals with projecting pictures on a computer screen, and in the first instanee
one could think of a circuit editor. Ultimately, we aim at a high level design
tooi in which simulation of a partienlar module can directly be displayed
by highlighting all elements in a trace set.

The base forthese graphics routines is a menu handler, which opens a
control window with a main synthesis menu. There are two main menus
necessary: one for the schematic editor and one for the simulator. A fi­
nal command selection takes place in the work window with the aid of
pop-up menus, as to save space considerably. The program runs on a
Apollo/Domain workstation, although it is expected that it can run on
several other machines. The workstation's display may he either color or
monochrome. The graphics application makes use of the CommonLisp Lan­
guage X (CLX)- Interface and the X Window System as window manager.

Contents

1 Introduetion

2 Grapbics application program
2.1 Introduetion
2.2 The graphics environment ..

2.2.1 The internal datastructure .
2.2.2 Program loop

2.3 Menu handler's global usage instructions .

3 Color Grapbics
3.1 Introduetion.
3.2 Display hardware .
3.3 Colormaps
3.4 Graphic context attributes .
3.5 Graphic design considerations

3.5.1 Schematic editor graphic objects
3.5.2 Plane partition

4 HILDE - High Level Design Environment
4.1 Introduetion
4.2 Global structure of HILDE ...
4.3 Schematic editor

4.3.1 Schematic editor graphics
4.3.2 The graphics elementtable .

5 X windows Grapbics Environment
5.1 Introduetion

1

1

3
3
3
4
5
6

9
9
9

11
12
13
14
14

18
18
18
22
22
23

25
25

5.2 X Window System
5.3 Menu structures
5.4 U ser requests: Eventloops
5.5 Graphic performance results .

6 Conclusions

7 Recommendations

Bibliography

Appendix A: Glossary

Appendix B: Menu-handler structures

25
28
29
32

33

34

35

36

39

Chapter 1

Introduetion

Nowadays, the use of "Computer Aided Design"- tools (CAD) are an in­
tegral part of the design process. The Design Automation Section of the
Faculty of Electrical Engineering of the Eindhoven U niversity of Technol­
ogy develops such CAD-tools, which contribute to the design of electronic
circuits, particularly "Very Large Scale Integrated" -circuits (VLSI). There
are several research branches in the scope of VLSI-circuits, such as the
automatic- and interactive generation of VLSI-layouts, the verification and
simulation of VLSI-systems, and automatic synthesis of discrete systems.

The last ten years we find an exponential growth in the complexity of
VLSI-systems, which applies that "pen and paper" -methods are not feasible
anymore. Workstations have become an annexe to the designer, which do
not only much of the computational work but with wich designs can also
directly be displayed by means of animation. These "graphic" tools have
become more and more important and are often used in combination with
the conventional design tools. The designer should have the possibility
to redraw the symbolic circuit representation at each level in the design
hierarchy. Besides, the complete contents offunctional modules should have
to be made visible, after which a module can be editted. The schematics
entry program ESCHER (Eindhoven SCHematic Editor), developed at the
Design Automation Section, fully meets this goal. The circuit's structure
can be entered with the schematic editor, behaviours of modules are added
using the syntax of the applicative language LISP, and the circuit can be
simulated by evaluating the different modules. The simulation results are
displayed using animation. ESCHER has been implemented in C, and a

1

new program was developed which was written in CommonLisp.
This report describes the graphics environment of this program and

some of the implemented graphics routines. These routines make use of the
Xwindows window system and the CLX subroutine library. All routines
have been written in CommonLisp [STLE 85].

2

Chapter 2

Graphics application program

2.1 Introduetion

When design tools make use of graphics in any way (even if they only
open a window), they need a graphic interface for communication with the
window system that is used. A subroutine library is commonly available
which contains a set of functions that a graphic interface may use. Second, a
graphics application program must include its own internal datastructure to
store graphics objects which correspond with objects stored in the internal
datastructure of the design tooi. The following describes such a graphic
interface which will he used to interface two tools: a schematics entry
program and a simulator.

2.2 The grapbics environment

It is proposed to provide a graphics environment which is suitable for more
design tools. Therefore, it is important to develop a menu handler which
can handle different programs. This is achieved by declaring some special
variables at top level, which are shared among applications. These variables
are bound to new values whenever another initialization module is invoked.

Once all the special variables have been initialized, the designer can start
and quit an edit session at any time he wants, by mapping and unmapping
the menu-handler's windows. Whenever an edit session has been quit the
variables remain still be bound, so that a next edit session can easily he

3

started. Figure 2.1 shows the frameworkof such an environment.

Design tool

Window manager
Subroutine library

Menu
handler

Figure 2.1: Grapbics environment

2.2.1 The internal datastructure

Design tool

In this section the graphic interface for one particular tool will be discussed.
In most tools many design decisions have to be made, i.e. the designer
makes a lot of command selections developing his circuit. Although a com­
mon menu handler is available, the graphic interface for one tooi must
include its own command handler that can execute the commands, which
have been selected by the menu handler.

Figure 2.2 shows the datastructure for one partienlar tool. The common
menu handler is invoked after initialization has been taken place. In this
initialization module the special variables are rebound and special struc­
tures are initialized and allocated. When an edit session is started for the
second time, this menuhandleris directly invoked. The menu handler com­
municates with the particular command handler module. This command
handler invokes modules of the tool, for which the graphic interface has

4

been written with reference to the command that has been selected in the
menu handler module.

Top-level
variables Joo----; Tooi

and initialization
stuctures

Menu
handler

Tooi modules

Figure 2.2: Graphics interface datastructure

2.2.2 Program loop

An edit session can he considered as one big loop. First, windows are
opened and the main menu is dra wn. In the second phase the user has to
do a menu selection. Third, a final command selection with the aid of pop­
up menus takes place and the command is executed. In the last phase is
checked whether the program flag is set to true. If this is the case the loop

5

stops and the edit session is finished, otherwise the foregoing is repeated.
In figure 2.3 the loop is shown.

program call

end

Figure 2.3: Program loop

2.3 Menu handler's global usage instructions

It is only possible to run the program in a CommonLisp environment (Do­
main/CommonLISP) and after the necessary files have been loaded. The

6

program is called using the command:

(hilde)

The following keywords may he specified: A hostname is required to open

KEYWORDS
key default-value

:hname machine-instance
:tpage nil

the display which by default is the machine-instance of the workstation you
are currently working on. However, it is allowed to pass another hostname
with the keyword :hname to open a display on another workstation. The
keyword :tpage specifies whether a titlepage is to he opened or not.

The menu handler contains two main items: a main menu, which is
always on the screen during an edit session, and a number of pop-up menus
which appear in the work window by clicking the middle button.

The main menu is composed of small selection windows, in each of which
a command text string is written. While the user enters a selection window,
this window will highlighten. Leaving the window causes the window to re­
tain its original color. So an enter-window event is visually confirmed. A
main menu command is chosen by successively entering a command rect­
angle and cliclcing a mouse button. lf a main menu command has been
chosen by cliclcing the left button, a further command selection has to take
place in the work window with the aid of pop-up menus.

J ust like the main menu selection windows, a command selection in the
pop-up-menu is visually confirmed by a color change of the filled rectangle
and the text string. Whenever a further command selection has to take
place, this is indicated by an arrow in the selection rectangle. The final
command is chosen by releasing the middle button in a selection rectangle,
not foliowed by an arrow. lf this is not the case, a dummy command will
he generated.

Although a great deal of the design can he clone with the aid of pop­
up menus, so that typing is avoided as much as possible, an edit window
will he necessary. In this window strings can he entered in the bottomleft

7

corner, for instanee narnes of templates and instances. At the same place
warnings and error messages are shown, reported by the command handler
aftera wrong command or by the tooi that is currently used. Besides, this
window also shows what template is currently subject of the editor in the
bottomright corner. In figure 2.4 the menu screen is represented.

Main Menu -worKWmdoWl
pop-up menu

selection
--+

selection --+

selection --+

--+
f-+

selection --+ •
•

selection •
•

selection

L _j

edit line template info

Figure 2.4: Menu screen

8

Chapter 3

Color Grapbics

3.1 Introduetion

This chapter describes the display hardware of a workstation, the use of
colormaps, and attributes for color graphics. See [STEN 88] fora detailed
description of displays, screens, windows, graphic contexts, graphic op­
erations, and colormaps and colors, especially used in Xwindows. Color
graphics for Apollo workstations are described in [APOL 85].

Furthermore, considerations are discussed which lead to certain graphic
choices for the schematics entry program.

3.2 Display hardware

Most color displays today are based on the RGB- (red, green, and blue)
color model. Each illuminated pixel on the screen is actually a mixture of
the three basic colors with specified intensities. A white color appears to
the human eye when the basic colors are all mixed with maximal intensity,
and black appears when the three colors are turned off. Therein between a
wide range of colors is possible.

In the display hardware a pixel is represented by a bitvector. The num­
ber of bits of information is equal to the number of planes available, which
is also called the depth. A pizmap is referred to as a matrix of bitvectors:
the rows correspond with the pixels in the x-direction, the columns with the
pixels in the y-direction. In this way, the color display hardware can be con-

9

sidered as a three-dimensional bitarray or as a two-dimensional pixelarray.
A one-plane pixmap is also called a bitmap. In figure 3.1 an eight-plane
pixmap is represented. A display controller is applied to convert the digital
data in the display memory to video signals that can he displayed on the
monitor of your workstation.

0 I

0
1---

0
1---

0 J
0

r--

0
1---

0 I
1 Pixel value

10000000

Figure 3.1: Eight plane pixmap

10

3.3 Colormaps

The set of reetangles with bitveetors we read in the depth forms a raster.
In figure 3.1 the upperleft pixel intheraster has value 128. It is this value
that determines the actual color of the pixel. It is clear that we need a
table in which pixel values are associated with colors. Such a tableis called
a colormap, in which the pixel value numbers are used as index for color
values. As we have seen earlier, a color value consists of a RGB-triple,
also called a colorcell. The intensities of the three basic colors are usually
determined by a bitvector of eight bits: 255 stands for full saturation, and
0 for no saturation. Figure 3.2 shows an example of a colormap with 256
entries, i.e. the pixmap contains eight planes. In the colormap of figure 3.2
pixel value 0 represents the color black, and pixel value 1 represents white.
The colorcells belonging to the other entries, have been chosen arbitrarily.
Although over 16 million different colors can be obtained in the case the
intensity of the primary colors is calculated by eight bits, only 256 colors
can be displayed at the same time. When an application needs more than
256 colors, more colormaps have to be constructed. Different colormaps
can be installed and uninstalled any time an application wants.

In the example above we have restricted ourselves to eight bitplanes,
however, there are workstations on the market nowadays which have 24 or
even 32 bitplanes. It is evident that loading a colormap in the manner we
did earlier is quite unfeasible for these high performance color displays (in
the case of 24 planes over 16 million colors would have to be allocated!). To
make the job of loading the colormap much more manageable, the available
bits per pixel are broken down into three separate colormap indices: the
first eight bits are used as index for red value, the second eight bits as index
for green value, and the third eight bits as index for blue value.

For monochrome displays a pixel value can be represented by one bit,
soa colormap has only two entries and the pixmap's depth is one. When
the pixel value is 0 the pixel on the screen is black and when the pixel value
is 1 the pixel is fully illuminated, or vice versa. It is often not possible to
determine the brightness of the pixel by mixing the primary colors with
different intensities: the pixel is either on or off.

11

3.4 Graphic context attributes

Most graphic packages take two items to perfarm graphics: One is the
drawable, a rectangular section with a regular background pattern. This
item is often referred to as a window. Second, there is the graphic contezt,
in which most information about performing graphics is stored. A graphic
context has a set of attributes, which specify operations that will have to be
performed on the drawable. For instance, the attribute which specifies that
only a certain section of the drawable will be exposed to graphic operations,
is called the clipping attribute. Similar, we have the line-style attribute,
which specifies in which manner lines are drawn {e.g. dashed or solid). How
characters are printed is determined by the font attribute. The attribute
which we will discussein more detail, is the raster operation attribute. Pixel
values belonging to graphic objects that have to be drawn, are calculated
by these raster operations. Table 3.1 gives an overview of the possible
logica! fundions that can be performed on foreground- and background
pixels to determine the new foreground in the grapbics context. Finally,
there is the plane mask attribute, which is important with respect to raster
functions. The plane mask specifies a subset of the available planes, which
are exposed to any graphics operation. All other planes than specified by
the plane mask are protected from modification. Plane mask is determined
by taking the inclusive-or of all the planes. The default is that all the
available planes are included: 2depth- 1. Formula 3.1 shows how the new
foreground is calculated from the present foreground and the background:

new_fgr = ((bgr FUNCTION fgr) AND plane_mask)

OR
(bgr AN D (NOT plane_mask)) (3.1)

The background pixels of a window or the pixels of graphic objects that
have been drawn earlier are represented by bgr. The pixels that have to
be currently drawn are represented by fgr, and the resulting foreground
pixels by new-fgr. In figure 3.3 an example of a pixel value calculation
is shown. In this example we assume a display with four planes and the
raster function is bitwise exclusive-or. Once the pixel has been calculated
as shown in figure 3.3, the value is looked up the in the colonnap and the
matching colorcell will drive the guns of the monitor to display the color
on the screen.

12

T hl 3 1 L . 1 . 1 1 a e . : ogtca opera 10ns on p1xe va ues
Code ~ogical function
boole-clr All bits are assigned zero
boole-and Perform bitwise-AND on foreground and background
boole-andcl Perform bitwise-AND on complemented foreground and background
boole-1 Foreground is assigned
boole-andc2 Perform bitwise-AND on foreground and complemented background
boole-2 Background is assigned
boole-xor Perform bitwise-exclusive-OR on foreground and background
boole-ior Perform bitwise-OR on foreground and background
boole-nor Perform bitwise-NOR on foreground and background
boole-eqv Perform bitwise-exclusive-NOR on foreground and background
boole-c1 *'mplemented foreground is assigned
boole-orcl rform bitwise-OR on complemented foreground and background
boole-c2 Complemented background is assigned
boole-orc2 Perform bitwise-OR on foreground and complemented background
boole-nand Perform bitwise-N AND on foreground and background
boole-set All bits are assigned one

3.5 Grapbic design considerations

Unless an application has special color needs, it should he tailored to run
on any type of screen. To what extent a screen can fulfill these color needs
mostly depends on the number of planes that can he used. If a screen
can not provide the possibilities you have in mind, you should adjust the
program that it is still applicable. First, the distinction between a color
and a monochrome display should he made. Besides, decisions can he made
with respect to the number of planes of a color display.

Although there are 16 different ways to calculate the foreground pix­
els as we have seen, we need only two fundions for the schematic editor:
boole-1 (copy) and boole-zor. The boole-1 constant is used as function in a
graphic context when objects are definitely to he placed with the specified
foreground color, and the boole-xor constant is used in rubberband appli­
cations. Besides, there are only a few different colors necessary, so that
only one colormap has to he constructed. This colormap is installed during

13

initialization and uninstalled on exit.

3.5.1 Schematic editor graphic objects

The colors we need for the main menu and the pop-up menus are rather
unimportant, because a menu will never be used to draw graphic objects
in it, except for the mentioned text strings. One color is needed for the
background pattern and one for the text string. Obviously, we use different
colors for main menu and pop-up menus, so four colors are needed for the
menus.

Graphic objectsin the work area, however, should be assigned priorities.
For instance, a system terminal has a higher priority than the surrounding
box of a module, so that a terminal should have a striking color which
always lays over the less striking color of the module representation. For
this reason a duplicate colorcell will have to be allocated in the colormap in
the case two different objects crosseach other. A new pixel value will result
and object priority determines with which of the two concerning colorcells
this pixel value will be associated. In table 3.2 the priorities of schematic
editor objects are indicated in decreasing order. Section 3.5.2 describes in
more detail the use of the available planes in association with the objects.

T bl 3 2 Ob. t . T a e . . JeC pnon 1es
Priority Grapbic object

1 Terminal
2 Gate
3 Surrounding box
4 Wire
5 Symbol

3.5.2 Plane partition

In its totality we use :five colors for the schematic editor objects, four colors
for the menus, black as background pattern for the windows, and white
in rubberbanding. To de:fine these eleven colors, at least four planes are
necessary. When only one planeis available, obviously only black and white

14

can he used, but also in the case of two or three planes the display will he
considered as a monochrome display, because not all the desired colors can
he defined. Wh en eight or more plan es are a vailable special techniques can
he used to achleve overlays [REIL 88].

We distinguish three cases:

• 1 to 3 planes: only white and black are used

• 4 to 7 planes: there are enough planes to defi.ne all the desired colors,
but there are not enough planes to use overlays for important objects.

• 8 or more planes: 5 colors can he reservedindifferent planes and the
other planes are used to define the colors left.

Whenever a color is to he obtained, the colorname is associated with a
number by means of a colortable. In the first case, negative numbers are
mapped onto white and non-negative numbers onto black, otherwise the
absolute value of that number is used as pixel value. For a color display,
i.e. four or more planes, we define five color planes and a default plane
mask. In the second case, all these color planes are bound to the default
plane mask, because we can notdraw in different planes. In the third case,
the color plane variables are assigned different planes. Figure 3.4 shows
how this is done.

The color for symbols and grid is defi.ned in the default-plane, because
symbols and grid have the lowest priority and no duplicate colorcells for
this color would have to allocated. Drawing of the other schematic editor
objects and the object that is currently rubberbanded, is always done in
the plane which is associated with the object. The technique of overlays is
represented in figure 3.5. In this example we draw a surrounding box over a
terminal. However, a terminal has a higher priority than a surrounding box,
so that the terminal should not he crossed by a thick line. We draw in the
plane *surrounding-box-plane* as indicated in figure 3.4. The resulting
pixel value is 80, and this entry in the colormap should he assigned the
colorcell that resembles the terminal color. Obviously, this pixel may again
coincide with a pixel belonging to an object with a lower priority, and a new
pixel value will result which will also have to he allocated in the colormap
as duplicate terminal color. In this way all possible combinations of pixels
should have to he allocated as duplicate colorcells.

15

en try red green blue

00000000 00000000 00000000 00000000

00000001 11111111 11111111 11111111

00000010 00000000 11111111 00000000

00000011 00000000 11110000 11110000

00000100 00000000 11110000 11111111

00000101 10000000 00000000 00000000

00000110 00000000 11111111 00001111

00000111 00001111 11110000 11111111

00001000 00000000 11111111 11111111
.

10000000 11111111 00001111 00000000
.

11111111

Figure 3.2: Example of a 256-entry colormap

16

Function: boole-xor

Plane-mask: 3

background
foreground

resulting foreground

ll
0011
1010

0001

Figure 3.3: Example of a pixel value calculation

default-plane

rubberband-plane
terminal-plane =
gate-plane =
surrounding-box-plane =
wire-plane =

7

... 10000000

... 01000000

... 00100000

... 00010000

... 00001000

Figure 3.4: Plane assignment

Function: boole-1

Plane-mask: 16

l
terminal 01000000
surrounding box 00010000

terminal 01010000

copy

Figure 3.5: Example of an overlay

17

Chapter 4

HILD E - High Level Design
Environment

4.1 Introduetion

This chapter deals with the graphics datastructure for the schematic editor.
Besides, the conneetion between the graphics datastructure and the intemal
datastrodure will come up for discussion. A high level design environment
withits datastructure was set up by [FLEU 88].

4.2 Global structure of HILDE

A way to handle comple:x:ity is to make the design hierarchical. The entire
design consists of modules with interconnections and connections to the
outside world. Modules in turn may consist of interconnected submodules
and connections to the module itself. Figure 4.1 shows an example of a
hierarchical design. Circuit 1 is composed of the circuits 2, 3, and 4. Circuit
4 is composed of the circuits 5 and 6.

The advantages of hierarchical design are obvious: the designer can
fix his attention upon separate, manageable modules. Second, once the
design of a module bas been completed (structural or behavioural) it can
be added as subcircuit in a module at a higher level in the design hierarchy.
This strategy is known as bottorn-up design. On the other hand a design
environment should also support top-down design, so that a mixture of the

18

two can be used. Third, the environment should be interactive. At each
step in the design a quick check could be performed whether the design
step is correct.

3

2

(a) circuit representation (b) tree structure

Figure 4.1: Hierarcmcal design

Up till now HILD E is composed of three parts which form the basis for
a high level design environment:

1. a schematics entry programtoenter the circuit's structure;

2. an editortoenter component behaviours;

3. a simulator which evaluates component behaviours to simulate the
entire circuit;

Graphic interfaces have to be added for all of the three programs to com­
plete HILD E. These graphic interfaces must include a window rnanaging
mechanism, a library with graphic routines, a command handler, and a
graphics intemal datastructure. All these parts are described in more de­
tail below:

• windowing mechanism: A design tooi should have a mechanism
wich creates one or more windows. Thesewindows are mapped (made
visible on the screen) and unmapped whenever necessary. For in­
stance, the schematic editor needs a window in which the menu­
handler can run and in which the schematic editor objects can be

19

drawn. The behaviour editor needs a window toenter a behaviour of
a module.

• command-bandler: The extension to the menu-handler which se­
lects and executes commands of a design tooi. For instance, a designer
can enter and draw a complete circuit with the aid of the common
menu handler and the command-handler for the schematic editor.
Besides, the command-handler reports warnings and errors after a
wrong command.

• grapbic routine library: A set of functions to draw pictures, to
enter strings, or to select fonts. This is an extension to the CLX­
library.

• grapbics datastructure: Although the grapbics datastructure will
normally be included in the internal datastructure of a design tooi,
these may be considered as two seperate parts: the internal data­
structure contains the complete structure of a circuit, i.e. all compo­
nents and the relationship between these components. The grapbics
datastructure only stores information about how to draw graphic ob­
jects. There is no direct relationship between the graphic objects and
componentsin the internal datastructure to which these objects are
related.

Up till now only a graphic interface for the schematic editor has been
realized, so that graphic interfaces for the behavioural descriptions and the
simulator remain to be developed in the future. These three graphic in­
terfaces and the common menu-handler together form the overall grapbics
datastructure of RILDE. Figure 4.2 gives an overview of the global struc­
ture of BILDE. It consists of the three design tools in each of which a
command-handler is incorporated. Besides, they make use of the common
menu-handler to call routines in the internal datastructure and graphic
routines. Veetors refer to routine calls in the direction they point to and
double lines refer to data flow in both directions. Routine calls and data
flow are associated with numbers in this figure and are described below.

1. Routines to create new objects in the internal structure, and to read
or update existing objects. A restore routine is also included: a file is
read from disc and this data is used to load the internal datastructure.

20

external
internal

data-
d atabase structure

~ ~
2

~ 1 --
2

~ 1 --
2

schematic r-editor

behaviour
editor

interactive
simulator -

1sp-env1ronmen

Xwindows
window
manager

5 3i
graphic

s- routines

CLX
r----" subroutine

library

7 41 ~1

graphics
datastruct ure

Figure 4.2: Global structure of RILDE

2. Save routine to write a file on disc. Data in the internal datastructure
is converted to a file in text format.

3. Routines to map or unmap windows on the screen.

4. Graphic routines to store data in- and to restore data from the graph­
ics datastructure. The restore routine is especially used to redraw
pictures quickly.

5. The schematic editor invokes graphic routines to draw pictures in a
window on the screen. These pictures are related to objects in the

21

internal datastructure.

6. The behaviour editor may invoke a routine to map an edit window to
enter behaviours of components.

7. The interactive simulator invokes grapbic routines to draw highlighted
nets in a circuit or to display simwation results

8. Network data.

9. Behavioural descriptions.

10. Simwation data.

11. Grapbics data.

4.3 Schematic editor

A schematic editor is a tooi to define the circuit's structure. As already
mentioned the circuit is entered hierarchically. A basic unit in the schematic
editor datastructure is called a template. Templates are composed of an
outer box with connections to the outside world, the representation, and
of the contents. The contents of a template contains the submodules, in­
stances, and the nets distributed among the instances. Instances contain
the behaviours which are evaluated during simwation of a template.

4.3.1 Schematic editor graphics

RILDE supports bottorn-up design, so that a template can be incorporated
as an instanee in a template at a higher level. The template's grapbics
consists of instances, represented by boxes with name strings inthem and
instanee terminals, nets, and system terminals. Combinationallogic is han­
dled as follows: gates are considered as templates to which behaviours are
added during initialization. When a gate is added to the circuit, the gate
is incorporated as instanee in the current template, and the gate's conven­
tional picture is drawnon the screen. Furthermore, the designer bas a lot of
freedom to place symbols anywhere in a template: lines, rectangles, circles,
arcs, and text-strings in different fonts. Figure 4.3 shows an example of

22

a circuit consisting of two instances. The instanee "C-element" has been
derived from the template C-element. When the template "C3-element"
is restored (loaded from a file), the template C-element is also automati­
cally restored. All restored templates are held in a template-list, so that a
designer can easily change from one template to another.

4.3.2 The graphics elementtable

The elementtableis a table containing grapbics information of all the ob­
jects of a particular template. Whenever the current template is changed,
this table is cleared and the objects from the new template are entered.
Grapbics information about an object is stored in a structure. The struc­
ture picture is described below. An object ofthe type picture is created after

I picture I default-value I type

id "" simple-string
"" simple-string name

funcall nil procedure
arglist nil list
position nil STRUCT..coord
anglel 0 angle
angle2 0 angle
radius 0 integer
font nil STRUCT _font

a schematic editor object has been created in the internal datastructure to
which the graphic object is related, and after the object has definitely been
placed in the work window, so that all information can be record ed. All
graphic objects are assigned a unique identifier and a name. The slots an­
gle1 and angle2 especially refer to arcs, the slot radius to circles, and the
slot font to text-strings.

The information stored in the picture structure is especially useful to
redraw the contentsof a template: all entries in the elementtable are passed
through, and with the funcall- and arglist slots a function is called and
executed which draws the object that belongs to an entry.

23

Za ABC+ (A+B+C)Za

A -
C-element 4

~ .. -B
C-element - Za c

Figure 4.3: Template's grapbics

24

Chapter 5

X windows Graphics
Environment

5.1 Introduetion

This chapter provides more global information about the X Window Sys­
tem, instead of discussing more detailed features at the same time. This
information especially refers to the CLX CommonLisp interface of MIT
[STEN 88}, however, there will be a great assemblance between the C and
the CommonLisp release. Most of the terros used in this report are common
to all window systems. However, there may be terros which are unique to
Xwindows. Therefore, it may be helpful to refer to the glossary, which is
taken up in Appendix A.

Second, implementation details will be discussed using the CLX library
fundions. The main menu and pop-up menu structures are fully described,
and the CommonLisp implementation ofthe event-ease-loop in which events
are dispatched.

5.2 X Window System

To achleve a graphic interface, typical library fundions are necessary or
at least very helpful. These fundions are taken from the CLX subroutine
library and are used to interface with the window system.

First of all, a display is required. A display can be considered as the

25

physical monitor, keyboard, mouse, and hardware of your workstation. A
display is either color or monochrome (black and white) and contains one
or more screens. When a screen is available, you can open an arbitrary
number of windows. Besides, you can retrieve important screen information
which is necessary to write your program correctly and, above all, machine
independently.

The graphics application opens the computer display by calling the
open-display function. This function requires the machine hostname as
argument and returns the display structure. One of the slots of display
is default-screen, which is normally used as single screen for the graphics
interface (it is assumed that only one screen is available). The application
can ask forsome screen properties with the screen slots width, height, and
root-depth (number of bitplanes). Besides, it can open the root window
and create the default-colormap. Both these slots are structures too. In
figure 5.1 a simplified display environment is shown. The root window is

display

screen screen

Figure 5.1: Display environment

at the top of the window hierarchy. This window covers the whole display
screen, but is invisible because it can not be mapped. The direct children
of the root-window are called top-level windows. Top-level windows can
have children, and these children in turn may have their own children. In
this way, applications can create an arbitrary deep window tree on the dis-

26

play screen. In the case a display provides multiple screens, such a window
tree can be created on each screen. X windows creates a window struc­
ture when the create-window function is invoked, and this window can
be mapped. Figure 5.2 shows the hierarchical window tree. All windows

top-level
window

root-window

top-level
window

Figure 5.2: Window tree

top-level
window

are associated with a gcontezt-structure which specifies particular grapbics
attributes, such as foreground color, linestyle, linewidth, font, and raster
operation function. From here on, all kinds of drawing functions can be
used to draw pictures or text.

The Xwindows default colormap is a table for wich 71 color entries
are defined in the color database, and therefore 71 different colors can
be obtained for a color display. Colors are stored in this table by means
of a colorcell, which is a triple of three basic colors. At the same time
this color is assigned a pixel value which is used as colormap entry. It is
important to note that there is no direct relationship between pixel values
and actual colors, so it is not desirabie to use this colormap in a graphics
application program in which pixel values are determined by specific logic
raster operations (e.g. logical exclusive-or). Read-write colormaps, in which
entries can be fixed and even be changed whenever an application wants to,
are filled with colorcells by the function store-color. This functions needs
the colormap, the colorname string or color structure, and the pixel value

27

as argument. The alloe-color function, which takes the colormap and
colorname string as argument, makes an entry in the (read-only) colormap
and returns the color structure with a rgb-triple that resembles the specified
color, and the pixel value. This color can be used as background pattern
in a particular window or as foreground in a particular grapbics object or
text string. Fora monochrome display, the X server determines whether a
specified color is mapped onto white or black.

The X server informs clients of events. Event structures are generated
with reference to user input actions, e.g. pressing a key or moving the
mouse. These event-types are sent completely asynchronously to the display
event queue. A second kind of events will he generated due to mappingor
resizing windows, or when a colormap is installed. These events may be
considered as side effects of user requests.

In applications it is often convenient to use events as conditional tests in
a loop. For instance, with reference toa button press a clause of commands
must he executed. One or more event-types are often considered as being
tests to quit the eventloop, for instanee a button-press. So it is important
to consider which event-types have to be handled in an application. An
enelosure of event-types which the server will send to your application, is
called an eventmask. Eventmasks may be created by calling the make­
event-mask function which accepts a set of keywords as argument and
returns an integer number, formed by taking the inclusive-or of all mask
flags. However, the window eventmask mayalso he set by a list of keywords.
It is important at this point that an application is prepared to handleevents
of all the types that are specified in the eventmask. In the case an event­
type occurs in the eventmask, while it has no function in an eventloop, it
must he ignored in a certain way. In this way it is prevented that theevent
queue will overflow with event structures.

5.3 Menu structures

Xwindows is provided with two drawable structures, window and pizmap,
in which pictures or text can be drawn. The eventmask, however, is not
defined for pixmaps, and therefore we must include the mouse motion event­
type for this structure in the work window's eventmask. The mouse mo­
tion event has the disadvantage that a lot of events will he generated in the

28

eventloop when the mouse is moved. On the other handwindowshave to he
mapped, which is assumed to take a lot of time. An advantage of windows
is that a window background can he specified and a gcontext foreground,
so better looking pictures are possible. Pixmaps do nothave a background,
and only with the gcontext foreground one color can he specified. This
foreground has to be changed, when drawing text in a filled rectangle to
make the text string visible. Pop-up menus serve for further command
selection, so they do not need to be visible all the time. Allocation of
many pop-up menus requires much off-screen memory which, dependent
on implementation, is limited. This is an important reason why we make
use of a simplier structure. Furthermore, a great many commands must
be handled in a schematics entry program. To reserve a selection window
for each command, would require too much space and probably cover the
whole screen. The use of pop-up menus, which appear and disappear on
the screen to the designer's wish, saves a lot of work space. For this reason
windows are used for selections in the main menu, and pop-up menus are
formed by selection rectangles.

To store the underlying work area one pixmap has to be allocated for
one pop-up menu, to which a part of the work-window can be copied. No
pixmap has been allocated for the pop-up menu itself, so that the amount of
necessary off-screen memory is kept within bounds. Pop-up menus consist
of reetangles and text-strings, and are drawn in the work window at the
moment the designer asks for it.

A structure is used for the main menu. The w-menu structure contains
slots as menu-window, sel-window (vector of small windows), ge (graphics
context), width, height, sel-width, sel-height, etc. A structure is also used
for the pop-up menus. The p-menu structure contains slots such as pixmap,
ge, x, y, width, height, etc. For each pop-up menu an object is created of
the type p-menu. These two structures are represented in more detail in
Appendix B.

5.4 User requests: Eventloops

The following describes the CommonLisp implementation of user requests
with respect to reported events. Two kinds of eventloops often occur in the
schematic editor and have been generalized:

29

• button-press loop: A button-press is used as conditional test to
execute a certain command.

• rubberband loop: The shape of an object is kept up-to-date while
moving the mouse, for instanee lines, rectangles, and arcs.

(defun button-press-event-loop (function)
(let ((delta (grid-delta *work-grid*)))

(unwind-proteet

))

(do ((button-pressed-p nil))
(button-pressed-p "Quit event processing loop")
(event-case
(*display* :force-output-p t)
(button-press (event-window code x y)

(when (a.nd (= (window-id event-window)
(window-id *work-window*))

t)
(otherwise ()

t))))

(=code 3))
(round-delta. x delta.)
(round-delta. y delta)
(funca.ll {u netion x y)
(setq button-pressed-p t))

The above fundion in CommonLisp code is an implementation of a
button-press user-request. The application asks for a button-press event
and when such an event is present in the event queue (reported by the
server), the body of < function > will be evaluated. This fundion will
normally be a locally declared fundion (an unnamed lambda fundion or
a named fundion declared within the fiet special form). All object's coor­
dinates are rounded off a grid by the macro round-delta. The resulting x­
and y values are then passed to the body of the function. Then a boolean
flag is settot and the loop exits. Theevents of all the other types included
in the eventmask, will be handled in the otherwise-clause. This clause is
only an evaluation of t which is also the returned value of the clause. This

30

means that theevent will be removed from the queue without further con­
sequences and all other reported eventtypes than button-press are ignored
in this way.

The second request we will discuss is the rubberband eventloop. Rub­
berbanding is used very often to size graphic objects. Whenever the mouse
is moved while keeping the button pressed, the old object is removed from
the screen, the shape is reculcaluted, and the object with current shape is
drawn. A button-release event is used as test to exit the loop, and the ob­
ject is definitely placed. The body of< functionl > takes care for clearing
and drawing objects while moving the mouse. The body of< function2 >
places the object and stores information in the internal graphics datastruc­
ture.

(defun rubber-band-event-loop (functionl function2)
(let ((delta (grid-delta *work-grid*)))

(unwind-protect

))

(do ((button-released-p nil))
(button-released-p "Quit event processing loop")
(event-case
(*display* :force-output-p t)
(motion-notify (event-window x y)

(round-delta x delta)
(round-delta y delta)
(if (= (window-id event-window)

(window-id *work-window*))
(funcall functionl x y))

t)
(button-release (code)

(when (=code 3)
(funcall function2)
(setq button-released-p t))

t)
(otherwise ()

t))))

31

5.5 Graphic performance results

This section gives a brief overview of the graphic performance of the sche­
matic editor of BILDE using the Xwindows window system. Graphic per­
formance can he measured at to aspects:

• Drawing speed. Depends on the efficiency of the drawing algorithms
in the CLX-library and on the graphic processor that is used.

• Event processing. Depends on the conneetion between the X server
and the client.

The speed with which graphic objects are drawn is compared to access
times in the internal datastructure. For instance, when a wireis placed an
object is created in the internal datastructure and routines are called to
add the wire to the wire-rnap and to add one or two nodes to the node­
map. Subsequently, a routine is called to update the netlist. Oompare
the add-wire cammand to the cammand that places a line as symbol. In
this case only information has to he stared in the graphics datastructure.
The graphics operation for both commands are the same, i.e. the draw-line
routine is invoked. When no difference is observed with respect to the time
to draw both lines on the screen, it can he concluded that graphics is the
bottleneck. The judgement "very good" is related to the situation that the
access time in the internal datastrodure will he about the same as the time
to perfarm the graphics.

The speed with which events are processed and dispatched is related
to what extend the pointer on the screen can follow the mouse. When an
unpercebtible delay is observed the judgement "very good" is associated
with the speed of event processing.

The program has been tested on three different machines: color- and
monochrome Apollo workstations and on a HP machine.

Drawing speed Event processing

Apollo good Apollo moderate
monochrome monochrome
A polio co lor moderate A polio color bad

HP color very good HP color bad

32

Chapter 6

Conclusions

This report describes the frarnework of a grapbics environment. N ew design
tools can easily he incorporated in the environment, because different tools
can run on a common rnenu-handler. This menu-handler can he used by
the designer to select and execute commands of a partienlar tooi.

Special attention is paid to color grapbics of a workstation in order
to achleve optima! graphic representations of objects. A graphic interface
has been achieved for a schematic editor, so that circuits can he entered
hierarchically. Once a circuit has been designed it can he saved on disc,
and later on it can he restored and editted again.

The graphic routines make use of a window manager and a subroutine
library, which contains fundions to map windows and to perform graphics.
The Xwindows window systern which is used for the graphic interface of the
schematic editor provides for a reasonable graphic performance. This per­
formance is related to access tirnes to the internal datastructure. However,
processing and dispatching of events is intolerable slow. A great advantage
of Xwindows is that portable grapbics applications can he written. For
instance, applications can either run on color or monochrome Apollo work­
stations, but applications can even he tailored to run on workstations with
totally different screen properties.

All routines have been written in CommonLisp which seems to he a
burden for machine and network.

33

Chapter 7

Recommendations

Graphic interfaces for the behaviour editor and the interactive simulator
have to be incorporated in the environment as to complete HILDE.

Extend the command-handler of the schematic editor with a select-unselect
mechanism: selected objects can be replaced, resized, or deleted.

Define a macro command mechanism: the designer can define his own
commands which are equivalent to sequences of basic commands.

34

Bibliography

[APOL 85] Programming with DOMAlN Graphica Primitives.

[FLEU 88] J.W.G. Fleurkens, HILDE- A high level design environment
in CommonLisp. Master thesis reporting on graduation work
1988, Eindhoven.

[MILN 88] W.L. Milner, CommonLisp: a Tutorial. Hewlett-Packard Com­
pany. Prentice Hall 1988, New Jersey.

[REIL 88) T. O'Reilly, A. Nye, Color: A Chapter from O'Reilly and A.uo­
ciates Xlib Programming Manual. O'Reilly and Associates In­
corporated 1988.

[STLE 85] G.L. Steele, CommonLisp the language (reference manual).
Digital Equipment Corporation. Digital Press 1984.

[STEN 88] D. Stenger, CLX- CommonLisp Language Interface for the X
Window System. Version 11, Release 2. Texas Instruments In­
corporated 1988, Dallas.

[STOK 88] L. Stok, R. van den Born, EASY: Multiproceasor Architecture
Optimization. Proceedings of the International Workshop on
Logic and Architecture synthesis for silicon compilers, May
1988, Grenoble.

35

Appendix A: Glossary

• Ancestor: A window somewhere nested above another window in
the hierarchical window tree.

• Backing store : An off-screen starage of pixels of a window.

• Bitmap: An image that stores pixels of depth one.

• Child: A window that has another window as direct parent

• Client: A elient program connects an application program to the
window system server. Multiple clients make multiple pathsopen to
the server.

• Clipping: This is the attribute of the graphic context, which speei­
fles that only section of a drawable is exposed to graphic operations.
Clippingareascan be specified by a set of reetangles or by a pixmap.

• Colormap: This is a lookup table for colors. Pixel values are asso­
ciated with rgb-triples by this table. Depending on hardware limita­
tions, one or more colormaps may be installed at one time.

• Connection: The path between serverand elient over which requests
and events are sent.

• Cursor: Visible pointer on the screen

• Drawable: The destination of graphic operations. Mostly referred to
as a window, however, insome casesalso to as an amount of off-screen
memory (pixmap).

• Event: Clients are informed of events by the server. Events are either
asynchronously generated by input devices, or are generated as side
effects of user requests. Events are grouped into event-types and are
typically reported relative to a window.

• Event-mask: Specifies which event-types are to be sent by the server
toa client.

36

• Exposure: The event-type, which informs a elient that some or all
of the contentsof a window has been lost.

• Font: A font specifies how a character-set is printed.

• Grapbic context: lnformation for grapbics output is stored in the
graphic context, such as foreground, background, linestyle, linewidth,
clipping areas, and raster function. A graphic context is always asso­
ciated with a drawable (window).

• Inferior: A window that is nested below another window in the
window hierarchy. This is opposite to an ancestor.

• Mapped: A window is mapped when a call has been made to it, and
when it is visible on the screen.

• Monochrome: A display is said to be monochrome, when it contains
only one plane. The colomap has only two entries in this case.

• Parent: A direct child of a window has that window as parent.

• Pixel: A pixel value is a bitvector used to index a colormap to derive
an actual color that can be displayed on the screen. The number of
bits used to specify a pixel value is equal to the number of planes of
a display.

• Pixmap: A three-dimensional bitarray, or a two-dimensional pixe­
larray. Third, a pixmap can be thought of as a stack of N bitmaps,
where N represents the number of planes.

• Plane: A segment from a pixmap, which is two-dimensional bitarray
in xy-direction.

• Plane-mask: Specifies a subset of planes, which can be modified by
graphics operations.

• Pointer: The pointing device attached to the cursor, and tracked on
sereens

• Request: A single block of data, sent over from the elient to the
server.

37

• RGB-value: A triple which specify the intensities of the three basic
colors. These values are nearly always represented as 8-bit unsigned
numbers, and implemented as floating numbers between 0.0 and l.O.

• Root window: The window that is at the top of the window hierar­
chy. This window has to be created first before another window can
be mapped.

• Screen: The physical monitor of your workstation. Often imple­
mented as a structure from which information can be retrieved, such
as height, width, depth, and visual information. Besides, it contains
the root window, from which the window tree can be created.

• Server: The server provides the windowing mechanism. It handles
connections from clients, demultiplexes requests, and multipiexes in­
put back to the client.

• Sibling: All children of the same parent.

• Stacking order: The order in which windows are stacked. The
relationship between sibling windows is called the stacking order.

• Visible: A window is visible if it can actually be seen on the screen.

• Window manager: Manipulation of windows on the screen and
policy is provided by a window manager client.

• XYformat: The datafora pixmap is orginized in set of bitmaps

• Zformat: The datafora pixmap is orginized in set of pixel values.

38

Appendix B: Menu-handler structures

I w-menu I default-value I type

choice-list nil list
choice 0 card16
x < unspec > card16
y < unspec > card16
width < unspec > card16
height < unspec > card16
common-color 0 pixel
sel-color 0 pixel
window nil STRUCT _window
sel-window nil simple-vector
sel-gc nil STRUCT ...gcontext
sel-width 0 card16
sel-height 0 card16
n umb-of-choices 0 card16

----~-----------, choice-list: list containing text-strings and
command-numbers for each selection window

sel-width

1 sel-height

width

choice: number associated with the command
common-color: pixel associated with the menu color
sel-color: pixel associated with the menu color

h . ht when highlighted
eig window: the overall menu window;

not represen ted for clari t y
sel-window: vector containing all the selection windows
sel-gc: graphic context shared among the menu window
and the selection windows
numb-of-choices: number of selections

39

I p-menu I default-value I type

parent nil STRUCT _p-menu
choice-list nil list
choice nil symbol
x 0 card16
y 0 card16
width 0 card16
height 0 card16
common-color 0 pixel
sel-color 0 pixel
ge nil STRUCT _gcontext
sel-x < unspec > card16
sel-y nil simpie-vector
sel-width 0 card16
sel-height < unspec > card16
inner-width 0 card16
reet-heigh t < unspec > card16
numb-of-choices 0 card16
p1xmap nil STRUCT _pixmap

----~----------~ parent: parent of current pop-up menu
choice-list: list containing text-strings and
command-symbols for each selection rectangle

sel-width

1 sel-height

width

h . ht choice: symbol associated with the command
eig inner-width: max. text-string width

pixmap: off-screen storage of pixels which
are copied from the work window

40

