
 Eindhoven University of Technology

MASTER

State assignment of finite state machines for multilevel logic implementations using counters

Pernot, T.A.P.

Award date:
1989

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e693b741-89f0-4a65-8bc0-e4c67fd97d1a


EINDHOVEN UNIVERSITY OF TECHNOLOGY 
DEPARTMENT OF ELECfRICAL ENGINEERING. 

DESIGN AUTOMATION GROUP 

STATE ASSIGNMENT OF FINITEST ATE MACHINES 
FOR MULTILEVEL LOGIC IMPLEMENTATIONS 

USING COUNTERS 

T.A.P. Pernat 

Master thesis 
reporting on graduation work 

performed from 26.02.89 to 10.10.89 
by order of prof. dr. ing. J.A.G. Jess 

and supervised by dr. ir. J.F.M. Theeuwen 

The Eindhoven University of Technology is not responsible 
for the contents of training and thesis reports. 



SUMMARY 

In this paper we present a method to eneode the states of synchronous finite state 
machines (FSM). This method is targeted towards multilevel combinatorial logic and 
loadable counter implementations. We assume that an optima! state assignment is a state 
assignment which yields minimum area in the final implementation. The algorithm we 
have constructed is a combination of two other methods that minimize the surface needed 
for the resulting lay-out of a fini te state machine. 

The fust method [1] replaces a large number of state transitions by counting transitions. 
Therefore an additional output, called count, is generated by the combinatorial logic of 
the FSM, and the feedback register of the FSM is adapted to be able to perform these 
counting transitions. The state transitions, that can be replaced by counting transitions 
are gathered in a set of chains. 

The second method [2] is a state assignment algorithm that heuristically maximizes the 
number of common cubes in the encoded network so as to minimize the number of 
literals in the resulting combinatorial network after multilevel logic optimization. This 
method consists of two algorithms. The fanout-oriented algorithm attempts to maximize 
the size of the most frequently occurring common cubes in the encoded machine prior to 
optimization. The fanin-oriented algorithm attempts to maximize the number of 
occurrences of the largest common cubes in the encoded machine prior to optimization. 
The state assignment algorithms find pairs of clusters of states which, if kept minimally 
distant in the Boolean space representing the code, result in a large number of common 
sub-expressions in the Boolean network. 

We have run our program, called CHAINS, with a wide range of benchmark examples. 
CHAINS produces the best results for the largest examples. The results for the small 
examples are comparable with or worse than the results obtained using other state 
assignment programs. 



CONTENTS 

1. IN1RODUCfiON 

2. PORMAL DEFINITION OF THE PROBLEM 
2.1 Basic definitions . • 
2.2 Problem formulation 

3. THE CHAINS • • • • 
3.1 Denvation ofthe graph GcCV.Ec,W(Ec)) 
3.2 Definition of a legal are . • . . • • 
3.3 Determination of the ebains . • . . 
3.4 Free states . . . . • • . 

4. THE CLUSTERS . • . • • . 
4.1 The graph GM(V ,EM,W(EM)) • 
4.2 Determination of the clusters 

5. HOW TO COMBINE THE CLUSTERS AND CHAINS ? • 

6. ENCODING OF THE STATES 
6.1 Coding with minimum number of bits . . • • 
6.2 Assignment of the codes . . . . • • 
6.3 An exception: the free states • • . . . • • 

7. AN EXAMPLE 
7.1 The ebains 
7.2 The clusters 
7.3 State assignment • 

8. RESULTS . . • 

9. CONCLUSIONS AND RECOMMENDA TIONS 
REPERENCES • • • • • • • • • • 
APPENDIX A • . • • • . • • • . . 

- 1 -

1 

3 
3 
4 

5 
5 
5 
6 
6 

7 
7 
7 

8 

9 
9 

10 
10 

11 
11 
12 
13 

14 

17 
18 
20 



- 1 -

1. INTRODUCTION 

A finite state machine (FSM) is a sequentia! circuit, that can be defined from the 
behavioral point of view as a circuit whose output depends not only on the present inputs, 
but also on the past history of inputs, or can be defined from the constructional point of 
view as a circuit which contains at least one memory element or unit. We can represent a 
FSM schematically as shown in Fig. I. 

r------------------------------------------------, 
I 

I I 
I I 

I I 
I I 
I I 
I I 

combinatorial 
logic 

sl SM SM s1 

memory 

Figure 1. Schematic representation of a FSM. 

The combinatoriallogic is a (L+M)-input and (N+M)-output network, and the memory 
consists of M storage elements. From the behavioral point of view, we can consider the 
dotted line as a black box, which has L extemal inputs and N extemal outputs. This is 
why the state variables are also called intemal variables. 

In this paper we address the problem of encoding the states of synchronous finite state 
machines, targeted towards multilevel combinatorial logic and loadable counter 
implementations. We assume that an optimal state assignment is a state assignment 
which yields minimum area in the final implementation. 



- 2-

Most previous work in automatic FSM state assignments has been directed at the 
minimization of the number of product terms in a sum-of-products form of the 
combinatorial logic [3]-[6],[7]-[10] and hence, the results obtained are relevant for the 
cases where the combinatorial logic is implemented using programmabie logic arrays 
(PLA's). In practice, most large FSM's cannot be synthesized as a single PLA for area 
and/or performance reasons. Multilevel logic implementations are generally used for 
smaller delays or smaller areas (or both). Results using manual state assignment have 
shown that existing automatic state assignment techniques are inadequate for producing 
optima! multilevellogic implementations [11]. 

In this paper we present a strategy for finding a state assignment of a FSM which 
heuristically minimizes the area used by a multilevel implementation of the 
combinatoriallogic [2]. We also gather state transitions of the FSM in so called chains, 
to replace some state transitions by counting transitions [1]. This counting will be 
performed by a loadable counter that replaces the normal feedback register of the FSM. 

In Section 2 some basic definitions and the formal definition of the problem are given. In 
Section 3 it is described how the set of ebains is obtained, and in Section 4 it is described 
how the clusters are determined. A discussion about the length of the ebains is found in 
Section 5. Then in Section 6 the actual state assignment is described. In Section 7 we 
work out an example, and in Section 8 we show results on the benchmark examples. 
Finally in Section 9 we present the conclusions. 



- 3 -

2. PORMAL DEFINITION OF THE PROBLEM 

In this section, we prepare some terminologies and give the formal definition of the 
problem. 

2.1 Basic definitions 

Definition 1: The finite state machine (FSM) is represented by a state transition table 
T(I,S,O), where: 

1) I = {i o ,i 1, ..• , i1}, is the finite set of inputs, 
2) S = {so,s 1, ... .Sm} is the finitesetof states, and 
3) 0 = { o o ,o 1, ••. ,on} is the fini te set of outputs, of the FSM. 
4) IT(I,S,O)I is the number of transitions, described in T(I,S,O). 

Definition 2: Nb is the number of bits, used to eneode the states of S. 
log2 (m+1) S Nb S log2 (m+1) + 1. 

Definition 3: Gc(V,Ee,W(Ee)) is a state transiUon graph. V is the set of vertices 
corresponding to thesetof states S, lVI = ISI. lEe I S IT(I,S,O)I. An edge e = [si,Sj>, i:;: j 
and e in Ee, joins si to Sj if there exists at least one transition of the FSM from state Si to 
state Sj. W(Ee) is a set of labels attached toeach edge, each label containing the weight 
of the edge. This edge-weight corresponds to the number of transitions from the start 
state si to the end state Sj of the edge. Ge is a directed graph with no self-loops and no 
parallel edges. 

Definition 4: A chain eh is an ordered subset of Ee. The edges of eh forma path in the 
graph Ge. With Ie hl we denote the number of states of eh. Ie hl S m + 1. 

Definition 5: CH = {eh 0 ,eh 1, ••• ,chk}, is a set of chains. 

Definition 6: A cluster cl is a subset of S. The states contained in cl have to be coded 
minimally distant in the Boolean space representing the code. Ic/I S Nb. 

Definition 7: CL = {cl 0 ,c/ 1, ••• ,elp } , p S m, is an ordered set of clusters. The label j of 
the cluster dj corresponds to the priority that is given to this cluster. lf i < j, then the 
statesof cli have to be coded before the statesof clj. 

Now we can make use of the definitions above to come to a formal definition of the state 
assignment problem. 



- 4-

2.2 Problem formulation 

The state assignment problem consists of assigning a string of bits (code) to each of the 
statesof S, so that no two states have an equivalent code. Furthennore the codes have to 
obey the chains of CH and the clusters of CL: 

1) The chains of CH will be implemented as counting chains. This implies that 
the codes of an ordered set of states of a chain, also have to fonn an ordered set, 
according to the counting method that will be used. 

2) The states of a cluster cl have to be coded minimally distant in the Boolean 
space representing the code. This means that the corresponding codes must have a 
minimum Hamming distance. 



- 5 -

3. THECHAINS 

One way of mininrizing the surface of the lay-out of a synchronous finite state machine, 
is replacing state transitions by counting transitions [1]. Therefore an additional output is 
introduced. lf this output, called count, is "1 ", the new state is obtained from the oldstate 
by a counting transition. These counting transitions are gathered in the set CH. How 
these ebains are derived is explained below. 

3.1 Derivation ofthe graph Gc(V,Ec,W(Ec)) 

Before we can start with the actual denvation of the chains, we have to transform the 
state transition table STI, which we have stored in an array (see APPENDIX A), into a 
directed graph Ge. Todetermine thesetof edges, Ec, we proceed as follows. 

The state transition table is read line by line, ignoring the inputs and outputs. Every state 
transition (old state ~ new state) is checked with the already gathered edges. lf there 
exists an edge corresponding to this transition, the edge weight of this edge is 
incremented by one. Else if there is no edge corresponding to this transition, a new edge, 
with an edge weight of one, is generated. Also, if the old state is equal to the new state of 
a state transition, this transition is skipped in the graph. 

This leads to a directed graph Gc(V .Ec.W(Ec )), with no self-loops and no parallel 
edges, as defined in definition 3. 

3 2 Definition of a /ega/ are 

When ebains are being built, the number of edges of Ec that can be used for further 
"chain-building" decreases. This is the result of two phenomena. The first and most logic 
one is that an edge that is placed in a chain can not be used again. The second one is the 
result of the increasing number of i/leg al edges. 

Definition 8: A state is said to be eontained if it is in the ordered set of a chain eh and is 
not the startor end state of this chain eh. Thesetof contained statesis defined as follows: 

CONT = {silsi is contained in one ofthe chains} 

Definition 9: An edge is called illegal if: 
1) the startor end state of the edge is in the set CONT, 
2) the start state of the edge is equal to the start state of one of the chains, 
3) the end state of the edge is equal to the end state of one of the chains, 
4) the start state of the edge is equal to the end state of a chain eh i and the end 
state of the edge is equal to the start state of this chain ehi. 

Definition 10: An edge is called legal if it is not illegal. 



- 6-

3.3 Determination ofthe chains 

The edges of the graph Ge are sorted on increasing edge weight [12]. Then the edges are 
connected into chains, beginning with the edges of the highest weight. Each edge is 
treated as follows. 

We begin by checking whether the edge is legal or illegal. lf the edge is illegal, it is 
skipped and the next edge is looked at. lf the edge is legal, a possible conneetion to one 
of the chains is searched. lf no suitable chain can be found to conneet the edge, a new 
chain is added to the existing set of chains. This new chain is formed by the edge that 
was under consideration. Else if a chain is found to conneet the edge, this chain is 
extended with this edge. Before we now look to the next edge, it is checked whether this 
extended chain can be connected to one of the other chains or not. lf this conneetion is 
made or if no conneetion was possible, we willlook to the next edge. 

When all chains are determined, the state transition table is extended with an additional 
output, called count. The count output is set to one if the corresponding transition in the 
STT can be replaced by a counting transition. For all the remaining transitions the count 
output is set to zero. 

3.4 Pree states 

If the set CH of chains with Ie hl > 1 is determined, it is possible that CH doesn 't cover 
the whole set of states, S. States that are not member of CH, are called free states. 
Because these states also have to be encoded, the set of chains is extended with a set of 
dummy chains. Such a dummy chain consists of a free state as start state and "-1" as end 
state of the chain. 



- 7-

4. THE CLUSTERS 

The basic idea behind the clusters is to maximize the number and size of common cubes 
in the encoded network so as to minimize the number of literals in the resulting 
combinatoriallogic network after multilevel optimization [2]. 

4.1 The graph GM(V,EM,W(EM)) 

Definition 11: The state graph GM(V,EM,W(EM)) is an undirected complete graph. V is 
the set of vertices corresponding to the set of states S, lVI = IS I. EM is a complete set of 
edges. W(EM) represents the gains that can be achieved by coding the states joined by the 
corresponding are as close as possible. 

There ara deterrnined two graphs of the type GM from the SIT (see APPENDIX A), 
using the algorithms presented in [2]. A critical part of this approach is the generation of 
W(EM ). We have two algorithms: one assigns the weights to the edges by taking into 
consideration the old states and outputs of the SIT, and henceforth is called 
fanout -oriented. The second algorithm assigns weights to the edges by taking into 
consideration the inputs and new states of the SIT and is henceforth called 
fanin-oriented. So there will be determined two graphs of the type GM; one using the 
fanout-oriented algorithm and one using the fanin-oriented algorithm. 

The fanout-oriented algorithm attempts to maximize the size of the most frequently 
occurring common cubes in the encoded machine prior to optimization. The fanin
oriented algorithm attempts to maximize the number of occurrences of the largest 
common cubes in the encoded machine prior to optimization. 

42 Determination ofthe clusters 

Although in the actual program two sets of clusters are deterrnined, one with the fanout
oriented graph and one with the fanin-oriented graph, we will explain how, in genera!, 
thesetof clusters is deterrnined from a graph GM. 

The algorithm proceeds as follows. Clusters of states with the cardinality of the cluster 
nogreater than Nb+l and consisting of edges of maximum weight are identified in GM. 
Given GM, the identification of these clusters is as follows. 

A state s; element of GM, with the maximum sum of weights of any Nb connected edges 
is identified. The Nb states, y 1, Y2· ... , YNb which correspond to the Nb edges from s; are 
placed in the cluster c/o, together with s;. It is the intention to eneode all the statesof the 
cluster as close as possible to this "maximum" state s;. After this, si and all the edges 
connected tos; are deleted from GM and the determination of the clusters c/ 1, c/2, etc is 
repeated till all the nodes are placed in some cluster. 



- 8-

5. HOW TO COMBINE THE CLUSTERS AND CHAINS ? 

The algorithm we have constructed is a combination of two methods [1] and [2], that 
minimize the surface neerled for the lay-out of a FSM. The first metbod is used to 
determine the set of chains, CH, and the second metbod is used to determine the ordered 
set of clusters, CL. Now it is the question how we can combine these two methods to 
come to a satisfactory new program. 

We can take the set CH as starting point and adapt the set CL. This results in a set of 
clusters of chains. In case of a binary counter we can place two ebains of a chain -cluster 
next to each other so the states of these two ebains will get a code with the same most 
significant bits. As can be seen easily, when the ebains of CH are long, the condition of 
the clusters of CL can not be met satisfactory. Therefore we have chosen for an other 
approach of this problem. 

We start by determining ebains of states with a maximal cardinality lchl = 2, so 
consisring of only one edge of Ec. If Ie hl = 1, the single state of this chain is a free state. 
When state Si of a chain, is assigned a code, the other state, Sj,forming the "chain
partner" of Si will immediately get a code according to counting sequence. Because the 
ebains have a maximal length of two, the condition of coding states of a cluster cl 
minimally distant in the Boolean space, can now be met much more satisfactory. 

Now it is the intention to form clusters of states, which have as few as possible intemal 
chain connections, or indeed have no intemal chain connections as shown in Fig.2. 

Figure 2. Ideal set of ebains and clusters. 

This means that there may only be chain connections between two states of a different 
cluster. The ideal situation shown in Fig.2. (chains are represented by arrows) can almost 
never be obtained, because the determination of the clusters is a rather rigid process. 
However, we can still infiuence this process. By deleting the chain transitions from the 
state transition table, and using the resulting STT for the determination of the clusters, we 
are able to get more satisfactory clusters, with respect to the chains. 



-9-

6. ENCODING OF THE STATES 

6.1 Coding with minimum number of bits 

The encoding that is realized is based on the use of a binary counter. This binary counter 
generates strings of bits which have a least significant bit that is altemately equal to "0" 
or "1 ". Now it is the intention to assign codes to the states s; and Sj of a chain eh in such a 
manner, that the start state of eh, s;, is assigned a code with a least significant bit of "0", 
and the end state of eh, Sj, is assigned the succeeding code with least significant bit of 
"1 ". Doing this results in three advantages. The fust advantage is, that the codes of the 
states of a chain always have the minimum Hamming distance of one bit. The second 
advantage is that we are able to eneode all the states of the FSM with a minimum number 
of bits. This will be explained below. 

Code table (Nb= 3) 

fa uit good 
code mark mark 
000 USED USED 
OOI USED USED 
OIO FREE FREE 
011 USED FREE 
100 USED USED 
101 FREE USED 
110 USED FREE 
111 USED FREE 

T ABLE 1. Marking of the code table. 

Every chain demands two successive codes of the code table (= the sequence of all codes 
of Nb bits generated by the binary counter). lf the condition mentioned above is not 
satisfied, it is possible that the code table on a certain moment will look like pictured in 
the column fault of Table 1. A sequense of two used codes, one free code, two used 
codes, etc. Because a chain demands two successive codes, all the "gaps" of one free 
code can never be assigned. In the worst case this will result in 33% of the codes that can 
not be used. However when we meet with the condition, there will always be two 
successive free codes between the used codes, as can be seen in the column good of the 
table. 

The third advantage is that we don't have to use a whole loadable counter to replace the 
feedback register of the FSM. It suffices to adapt the feedback register. This adaptation 
consists of inverting the least significant bit of the register, when the count signal is equal 
to "1". The other bits remain unchanged. 



- 10-

62 Assignment of the codes 

Now that we have gathered the boundary conditions for the state assignment, we can start 
with the actual encoding of the states. 

The code table is loaded with the sequence of codes of Nb bits. Every code is marked 
FREE, and each state is marked UNCODED. Then starting with cluster cl 0 (see 
definition 7) the algorithm proceeds as follows. 

lf Sj, the maximum state of clj, is UNCODED, the chain corresponding to state si is 
traced. lf si is the start state of the chain, si is assigned a FREE code with a least 
significant bit equal to "0", and the corresponding end state of this chain is assigned the 
succeeding code, which will beFREE also, according to the previous paragraph. lf si is 
the end state of the chain, si is assigned a FREE code with a least significant bit equal to 
"1 ", and the corresponding start state is assigned the preceding code. After si and bis 
"chain-partner" are coded or if they were already coded before, we can proceed with 
coding the other statesof cluster cl i. Theencoding of these states takes place a in similar 
way, with as only acception that a code is searched which bas a minimum Hamming 
distance to the maximum state si. Whenever a code is assigned, the corresponding place 
in the code table is marked USED. lf all states of cluster clj are coded, cluster clj+l is 
treated the same way. 

6.3 An exception: the free states 

Before a state is assigned a code, it is also checked wether this state is a free state. The 
chain corresponding to the state is traeed and if the "end state" is equal to "-1", this state 
is a free state. For a free state of clj the encoding takes place in a slight different way. 
The code table is traeed for a FREE code ( with minimum Hamming distance from si) 
and if a FREE code is found, it is assigned to this free state. So there is no tracing of a 
FREE code with a specific least significant bit. In some cases this will result in a 
necessary extra code bit. 

Because all the states of the real ebains (lchl = 2) are coded two by two, a code 
assignment to a free state (lchl = 1) will always result in a gap in the code table. lf the 
free state is assigned a code with a least significant bit equal to "0", the succeeding code 
can never be used to eneode one of the states of a real chain. Likewise, if the free state is 
assigned a code with a least significant bit equal to "1 ", the preceding code can never be 
used to eneode one of the states of a chain. This forces us to expand the number of bits 
with an additional code bit, if: 

2 * (no_of_chains + no_of_free_states) > no_of_codes; 

no_of_chains = number of ebains with Ie hl = 2, 
no_of_free_states = number of free states, 
no_of_codes = number of different codes with Nb bits. 



- 11-

7. AN EXAMPLE 

In this section we will show how the program proceeds step by step. We take as input 
the SIT of table 2. 

ExampleSTI 
inputs old state new state outputs count 
0011 a a 00 0 

0001 b a 10 0 
0010 c b 00 0 
0011 b c 11 0 

0011 c d 01 0 

1000 c f 10 1 

0100 c f 01 1 

0100 b e 11 1 

1010 b e 00 1 

0111 d g 10 1 

1011 d g 01 1 

1100 e g 01 0 

1101 f g 11 0 
1101 g e 10 0 
1101 e f 11 0 

T ABLE 2. Example SIT 

7.1 The chains 

We fust have to construct the graph Ge according to paragraph 3.1. This results in the 
graph shown in Fig. 3. 

c 

Figure 3. The graph Ge. 

From this graph we determine the chains and dummy chains, according to paragraph 3.3 
and 3.4. In Table 3 all the chains and the single dummy chain are shown (dummy chain 
has "-1" as end state!). 



- 12-

Chains 

start state end state 

chain1 b e 

chain2 d g 

chain3 c f 

chain4 a -1 

T ABLE 3. The chains 

We use these chains to modify the STI. An extra outputsymbol, called count, is 
introduced. For every state transition that corresponds to one of the chain transitions, this 
additional output is set to 11 111

• For the other state transitions the count variabie is set to 
11
Û

11 (see fifth column of Table 2). 

7 2 The clusters 

In table 4 we have gathered all the edge weights for GM, using the fanin-oriented 
algorithm mentioned in [2]. From this representation of the total graph we derive the 
clusters, shown in table 5. 

Edge weights for fanin-oriented algorithm 

edge edge weight 

[a,b] 5 
[a,c] 10 
[a,d]· 7 
[a,f] 3 
[a,e] 3 

[a,g] 4 
[b,c] 3 
[b,d] 6 
[b,f] 0 
[b,e] 0 
[b,g] 1 
[c,d] 4 
[c,f] 1 
[c,e] 1 

[c,g] 1 
[d,f] 1 

[d,e] 1 

[d,g] 1 

[f,e] 4 

[f,g] 10 
(e,g] 7 

T ABLE 4. Edge weights for fanin-oriented algorithm 



- 13-

Clusters 

maxstate 

cluster1 a c d b 
cluster2 g f e b 

T ABLE 5. The clusters for fanin-oriented algorithm 

7.3 State assignment 

We fust check how many bits we need. 

nr_of_codes = 8. 
2 * (nr_of_chains + nr_of_free_states) = 8 = nr_of_codes. 

So we can eneode with the minimum number of bits (Nb = 3). 

We start with the cluster with the lowest label; clustert>. The state with maximum sum of 
weights is state a. Wetrace the corresponding chain, this is chain4. Chain4 is a dummy 
chain ( end state = "-1 "), so we assign state a the fust code of the code table, that is 
marked PREE, which is "000". Then we take state c and trace the chain: chain3. Statecis 
the start state of this chain, so we search in the code table for a PREE code with a least 
significant bit equal to "0" and with a minimum Hamming ditance to the code of the 
maximum state a. State c is assigned the code "0 10" and the end state of chain3 , state f, 
is assigned code "011 ". How the codetableis marked during the state assignment process 
can beseen in Table 6 (step 1,step 2,etc.) 

Code assignment 

code step 1 step 2 step 3 step4 
()()() FREE a a a a 

001 FREE FREE FREE FREE FREE 

010 FREE FREE c c c 
011 FREE FREE f f f 

100 FREE FREE FREE d d 
101 FREE FREE FREE g g 
110 FREE FREE FREE FREE b 
111 FREE FREE FREE FREE e 

T ABLE 6. Assignment of the codes, step by step 



- 14-

8. RESULTS 

The general structure of the algorithm is given in figure 3. 

detennination 
clusters fanout 

CL out 

encoding 

new STI with 
coded states 

and count signal 

STI 

determination 
of ebains 

CH 

Figure 4. General structure of the algorithm. 

detennination 
clusters fanin 

CL. m 

encoding 

new STiwith 
coded states 

and count signal 



- 15-

As can be seen in the tigure above the algorithm we have constructed produces two 
outputfiles, one fanin-oriented and one fanout-oriented. 

We have run 19 benchmark examples representing a wide range of finite automata on 
different state assignment programs as well as on our own two algorithms. The size 
staristics of the examples are given in Table 7, with the minimum possible number of bits 
for each FSM indicated under the column #ene. 

Statisties of benehmark examples 

Example #inp #out #states #ene 

bbara 4 2 10 4 

bbsse 7 7 16 4 

bbtas 2 2 6 3 
ese 7 7 16 4 

dk15x 3 5 4 2 

dk16x 2 3 27 5 

keyb 2 1 19 5 
lion 2 1 4 2 

lion9 2 1 9 4 

mark I 5 16 14 4 

me 3 5 4 2 

modulol2 1 1 11 4 

plan et 7 19 48 6 

sl 8 6 20 5 

sla 8 6 20 5 

sef 27 56 128 7 

shiftreg 1 1 8 3 
tav 4 4 4 2 

trainll 2 1 10 4 

T ABLE 7. Staristics of benchmark examples. 

The results obtained via random state assignment, using the state assignment program 
KISS, and the best result produced by either the fanout or the fanin-oriented algorithm of 
MUSTANG and our program CHAINS, are summarized in Table 8. The transistorcounts 
under RANDOM-A were obtained using a statistica! average of five different random 
state assignments (using different starting seeds) on each example. RANDOM-B was the 
best result obtained in these different runs. 

KISS typically uses a 1-3 bits more than the minimum encoding length. MUSTANG was 
run using the minimum possible bit encoding. Our program, called CHAINS, used a 
minimum number of bits for theencoding for all the examples, except for the examples 
bbsse, cse, /ion, marktand scf, for which it used one extra bit. 



- 16-

The program developed, CHAINS, produces the best results for the largest examples, as 
can be seen in the tables. The results for the small examples are comparable with or 
worse than the results obtained using the other state assignment programs. The time 
required by CHAINS for encoding these benchmarks varled between 0.1 CPU seconds 
for the small examples to 27 CPU seconds for the largest example, scf, on a HP 9000 
series 800. 

Results of other assignment methods and CHAINS 
Example RANDOM-A RANDOM-B KISS MUSTANG CHAINS 

bbara 120 91 103 81 115 
bbsse 214 190 145 144 197 
bbtas 37 26 34 32 32 
cse 405 339 264 304 323 

dk15x 122 109 91 104 95 
dk16x 553 516 411 346 405 
keyb 810 663 474 330 324 
lion 20 18 21 18 32 
lion9 61 52 37 20 68 
mark I 112 89 114 87 124 

me 40 37 43 36 25 
modulo12 43 40 49 36 44 

plan et 1063 1012 869 854 779 
sl 852 805 690 200 461 
sla 649 583 382 162 315 
scf 1674 1596 1441 1274 1158 

shiftreg 37 32 8 2 31 
tav 25 24 24 24 25 

train11 67 53 46 50 89 

T ABLE 8. Resulting transistorcounts 



- 17-

9. CONCLUSIONS AND RECOMMENDATIONS 

Although we took as a starring point an implementation of the FSM with a loadable 
binary counter as replacement for the feedback registers. it suffices to make only a small 
adjustment to the feedback register. This small adjustment consists of inverting the least 
significant bit of the register, when there is a count signa! equal to 11 111

• 

It is also easy to adapt CHAINS to assign codes with more than the minimum number of 
bits. 

As mentioned in Section 5, we have choosen for a maximum chain lenght of two. It must 
be possible to extend the program with a mechanism that links two or maybe more chains 
together, during the encoding. This 11linkingll can proceed as follows. 

During the deterrnination of the chains the number of legal edges decreases, but after all 
possible chains are formed, there will almost always remaio several legal edges. These 
remaining legal edges can beseen as links between chains. We can use these links in the 
encoding part of the program. If we are searching for a FREE code in the code table, we 
can check if there exists a FREE code for a state which satisfies an additional condition. 
To explain this we will look to the encoding as if we were encoding chains. Suppose 
there exists a link between chain 1 and chain 2. Chain 1 is encoded already. If we trace 
the table for an encoding of chain 2, we now look fust to the (two) code(s) of chain 1. If 
the code(s) next to chain 1 also satisfies the conditions stated in Section 6.2, this code 
will be assigned to chain 2. The transition corresponding to the made link, will be 
implemented as a new counting transition. 



- 18-

REPERENCES 

[1] R.Amann, U.G. Baitinger, 
"New state assignment algorithms for finite state machines using counters and multiple
PLAJROM structures", 
IEEE ICCAD-87. 
Digest of Teehoical Papers, Santa Clara, CA, USA. 
(IEEE Comput. Soc. Press 1987), pp. 20-23. 

[2] Srinivas Devadas, Hi-Keung Ma, A. Richard Newton, A. Sangiovanni-Vincentelli, 
"MUSTANG: State Assignment of Finite State Machines Targeting Multilevel Logic 
Implementations", 
IEEE Trans. on CAD, Vol. 7, No. 12(1988) pp. 1290-1299. 

[3] D.B. Armstrong, 
"A programmed algorithm for assigning intemal codes to sequentia! machines", 
IRE Trans. Electron. Comput., vol. EC-11, pp. 466-472, Aug. 1962. 

[4] T.A. Dolotta and E.J. Mccluskey, 
"The coding of intemal statesof Sequentia! Machines", 
IEEE Trans. Electron. Comput., vol. EC-13, pp. 549-562, Oct 1964. 

[5] H.C. Tomg, 
"An algorithlgorithm for finding secondary assignments of synchronous sequentia! 
circuits", 
IEEE Trans. Computers, vol. C-17, pp.416-469, May 1968. 

[6] G.D. Micheli, A. Sangiovanni-Vincentelli, and T. Villa, 
"Computer-aided synthesis of PLA-based finite state machines", 
in Proc. Int. Conf. on Computer-aided Design, Santa Clara, CA, November 1983, 154-
156. 

[7] G.D. Micheli, R.K. Brayton, and A. Sangiovanni-Vincentelli, 
"Optimal state assignment of finite state machines", 
IEEE Trans. Computer-Aided Design, vol. CAD-4, pp. 269-285, July 1985. 



- 19-

[8] A.J. Coppola, 
"An implementation of a state assignment heuristic", 
in Proc. 23rd Design Automation Conf.,Las Vegas, NV, July 1986. 

[9] G.D. Micheli, 
"Symbolic design of combinational and sequentia! logic circuits implemented by two
level macros", 
IEEE Trans. Computer-Airled Design, vol. CAD-5, pp. 597-616, Oct. 1986. 

[10] G. Saucier, M.C. Depaulet, anrl P. Sicarrl, 
"ASYL: A rule-based system for controller synthesis", 
IEEE Trans. Computer-Airled Design, vol. CAD-6, pp. 1088-1098, Nov. 1987. 

[11] C. Tseng et al., 
"A versatile finite state machine synthesizer", 
in Proc. Int Conf. on Computer-Airled Design, Santa Clara, CA,pp.206-209, Nov. 1986. 

[12] Prof.dr.ing. J.A.G. Jess, 
"Informatica voor E-11", 
Collegedictaat No.5610 (1987),pp. 1.28-1.36. 



-20-

APPENDIX A 

READING THE STATE TRANSITION TABLE 

For reading the input we make u se of the lexical analyser LEX. The input of the program 
consistsof a file in espresso-format. 

We start by reading the constants, which are used to read the actual state transition table. 
The constants of interest are the number of inputs and outputs, the number of states and 
the number of transition rules. When these constants are known, each transition rule is 
read and stored in an array. 

A transition rule is built up out of four blocks: the inputs, the old state, the new state and 
the outputs. The inputs and outputs are copied as strings. The different state narnes are 
assigned positive integers and in a table the state name is written on a location 
corresponding to his integer representation. In the array of transition rules the integer 
representations of the old state and new state is stored. This is done, because integers are 
easier to manipulate than characterstrings. When a don 't care state (ANY) is read in a 
transition rule, all the corresponding transitions to or from the other state can be 
generated, simply by generating transitions to or from this other state to all the integer 
representations of states. Even if we don 't know all the state names, we can make 
transitions to or from them, because we know from the constants how many states there 
are. 

When the total inputfile has been read, we have an array of transition rules, consisring of 
inputs, integer representations of the old and new state, and outputs. We also have a 
table, we can u se to look up the real state name that belongs to an integer representation. 


