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Abstract 

Looking at a VLSI chip one can distinguish different kinds of recourses. There 
are arithmetic- buffer- and control units and interconnection. The arithmetic 
units can he designed in a very short time with the use of a silicon compiler like 
PIRAMID or PHIDEO. During the design of these units little attention is payed to 
the communication problems that may arise between different arithmetic units. 
To solve these problems inter processor buffers (IPBs) are used. These IPBs can 
he designed with tools like ESPA or MATCHBOX. This report focuses on the 
techniques used by the tooi MATCHBOX. 

The techniques used by MATCHBOX are presented and compared with a new 
technique called regular placement. This regular placement technique a.ims at 
reducing the area used for address generation in the IPB. This is done by assigning 
locations to samples is such a way that the address sequences become regular. 

For different kind of applications IPBs are generated with regular placement 
and the techniques from MATCHBOX. It appeared that regular placement did 
not result in a significant reduction in area costs, when the IPB was designed for 
only one application. For these IPBs the techniques and target architectures of 
MATCHBOX will cover the design space very well. But when IPBs are designed 
to handle more than one application regular placement is a good technique for 
reducing the size of this merged IPB. 
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Chapter 1 

Introduetion 

Looking at a VLSI chip different units which perfarm different tasks can be dis­
tinguished. 

butTer units I 
control units 

Figure 1.1: The different units on a VLSI chip 

The arithmetic units tagether with the buffer units make up the data path 
which is controlled by the control units. The wiring is used to conneet the different 
units together. The arithmetic units are the producers and consumers of the data. 
With the use of a silicon compiler arithmetic units can be designed in a very short 
time. For applications with a doek to sample rate ratio between 1 and 20 (high 
throughput) the silicon compiler PHIDEO [2] is used. For applications with such 
a ratio of 1000 or more (low throughput) PIRAMID [10] is used. Complex systems 
however need more than one of these arithmetic units on one chip. During the 
design of these units, PHIDEO and PIRAMID pay little or no attention to the 
communication problems that may arise between these different arithmetic units. 
To make the communication between two arithmetic units or between arithmetic 
units and out si de world possible, inter processor buffers (IPBs) are used. These 

3 



4 CHAPTER 1. INTRODUCTION 

IPBs can be designed with tools like EsPA and MATCHBOX. EsPA is used to 
design IPBs for arithmetic units which are designed.with PIRAMID. MATCHBOX 

is used for the design of IPBs which have to solve the communication problems 
between arithmetic units of PHIDEO. 

Because the arithmetic units are designed befare the IPBs are designed it is 
known in what order and on which timepoints data is produced or consumed. 
An IPB can beseen as a black box between two arithmetic units which input is 
a certain stream of data (samples) and which output is delayed version of that 
input. Where each sample can have a different delay. 

ARI1'HMETlC 

Figure 1.2: The inter processor buffer with its in and outputs 

A sample can only be produced once but can be consumed multiple times. The 
lifetime of a sample is the time between its production and its last consumption. 
During this lifetime it has to be stared in the memory of the inter processor 
buffer. 

Figure 1.3 shows an example of an architecture at the chip level. 

input 

I 
i .-----·- .. -' 

arithmetic 
WlJl 

controller 

input ---------~ 

i •- ..... -.. _ .. _____ , 

Figure 1.3: multi arithmetic unit overview 

Olllput 

As can beseen in Figure 1.3, IPBs can be needed quite aften on a chip. That 
is why it is relevant to reduce the size of these individual IPBs [3] [4] [5] [8] [9]. 
When a arithmetic unit is capable of executing different applications, a different 
IPB is necessary for each application. Therefore merging different IPBs to one 
IPB which is capable of coping with different applications is also an issue which 
needs attention. 

An inter processor buffer consists of a memory block and address generators 
(Figure 1.4). In most of the cases two address generators are needed, one for 
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the read accesses and one for write accesses. But in s.ome cases these two address 
generators can he merged together to one address gènerator which generates the 
addresses both for the read and write accesses. 

control - data out 

> 
~ 

Address address 0 
generators ~ 

t:.t:l data in 
, ... ... ~ ; , 

' " ' " ' ; ... 
; ' , ... 

" ... 

control 
counters ,...---..JL----, 

Iogîc 
STORAGE address 

UNIT 1--+----

Figure 1.4: The inter processor buffer 

The address generators consist of counters, some logic and a storage unit. 
This storage unit can he a PLA a ROM or a standard cell implementation. In 
this storage unit the information of which address has to he generated is stored. 
Several different strategies exist to store this information. One can store the 
actual addresses, the differences between consecutive addresses, or the runlength 
of rows of the same deltas and the delta size. Which way of storing the addresses, 
and what kind of storage unit is used, will he determined by the resulting size of 
the address generator. The smallest salution will he selected. 

But before the problem of address generation is under discussion we first have 
to determine a place for all the samples in the memory in such a way that no 
samples with overlapping lifetimes are stored in the same memory location. 

The research has been focused primary on MATCHBOX. All the techniques 
of MATCHBOX optimize either the memory cost or the addressing hardware cost. 
But as a result of optimizing the one, the other has unpredictable cost. These 
unpredictable cost turns out to he very high in some cases. The goal is, to find 
a technique which makes a good trade off between memory cost and addressing 
cost. An address generator will he relatively small when the addresses it has to 
generatearein some way regular. To achieve that the samples have to he placed 
in the memory in a regular way. This has to he done without to much extra 
memory cost, otherwise the costof the total IPB will he too high. 

The search for regularity in a address sequence can he done at different levels. 
For example one can try to find regularity at the bit level of the address words 
and aim to generate these bits with a counter, and try to re-use the bits of this 
counter as much as possible [6]. Or one can try to find regularity at the word 
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level and try to generate the entire address word with a counter or an other 
architecture. Both techniques are a subject of rese~ch at the Philips Nat. Lab. 
This paper will deal with the search for regularity at the word level, and with the 
consequences for memory and address generator size. 

Another goal of the research was to develop a :flexible address generator. The 
ultimate :flexible salution is a programmabie solution. In this way the behaviour 
of the inter processor buffer can be changed by changing the program. The other 
extreme in this view is the dedicated single application IPB. In between these two 
extremes lies merging the IPB for a few applications. By making it possible to 
use an inter processor buffer for multiple problems the chip area that is used by 
these buffers can decrease because of the reuse of hardware resources. All these 
different IPB have been subject of investigation. 

In chapter 2 the techniques of MATCHBOX will be discussed. In chapter 3 
the technique of regular placement will he explained and the different techniques 
which are used to increase the quality of the results are discussed. Also some 
techniques to reduce the computation time are presented here. In chapter 4 the 
applications which are use in the tests are presented. In chapter 5 the results 
of MATCHBOX and regular placement will he presented and the solutions will be 
compared. In chapter 6 the merging of different application into one IPB will 
be discussed. In chapter 7 conclusions will be drawn and some recommendations 
will be provided. 



Chapter 2 

MATCHBOX 

PHIDEO is a silicon compiler targeted at the design of high performance real time 
systems with high sampling frequencies such as HDTV. lt supports the complete 
design trajectoiy starting from a high level specification all the way down to 
layout. At a certain point in this design traject the production and consump­
tion time points of samples and their souree and destination arithmetic units are 
known. The problem is now to synthesize an architecture so that the area of 
memories, address generators and interconnection hardware is minimized. This 
task can he divided into two suh-tasks. 

1. memory allocation :::;. MEDEA. 

2. location assignment and address generation :::;. MATCHBOX. 

The first step is memory allocation. Here the decision is made which samples 
share the same memory. After this step it is exactly known how many memories 
will he used and how the memories are connected to the arithmetic units. The 
remaining problem is now to store the samples in the memories in such a way that 
the size of the IPBs is minimized. The place of the samples in the memory and 
the timepoints at which they are produced and consumed determine the sequence 
of addresses that has to he generated. The list of timepoints and addresses is 
called an address schedule. To determine an address schedule the data schedule 
is used. A data schedule is a list of read and write timepoints of the different 
samples. 

Framelength - 5 

I sample I Write timepoint I Read timepoint I 
A 0 6 
B 1 5 
c 2 9 
D 3 8 
E 4 7 

Tahle 2.1: A data schedule 

7 
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All applications whlch are used during Digital Signal Processing (DSP) have a 
repetitive nature. That means that the data schedule repeats after a certain time. 
One repetition of the data schedule is called a frame. The time one repetition 
takes is called the frame length. lt is possible that a sample is read in a later 
frame than the one in whlch it is written. Than it is said that the sample crosses 
the frame boundary. With the use of the information from the data schedule a 
lifetime diagram of the samples can be constructed. The lifetime diagram of the 
samples for one repetition derived from the data schedule in Table 2.1 is shown 
in Figure 2.1. 

Figure 2.1: Lifetime diagram for one repetition 

But the data schedule in Table 2.1 is repetitive and it also contains samples 
whlch cross the frame boundary. That means that during one frame not only 
the samples of the current frame can be alive but also samples from previous 
frames. The samples from previous frames are called delayed versions of the 
current samples. Thls is indicated with a '@1' suffix. The number in thls suffix 
indicates how many frames ago the sample started li-v-ing. Figure 2.2 shows the 
lifetimes during several frames. 

Figure 2.2: Lifetimes of the samples during several frames 

It can be seen that the pattern of lifetimes is t'be same every frame. So to 
characterise the application it is enough to know the lifetimes during one frame. 
The lifetimes during one frame can beseen in Figure 2.3. 
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Figure 2.3: Lifetimes of the samples during one frame 

This lifetime diagram is used to determine the address schedule. When two 
samples are never alive at the same time they can share the same memory lo­
cation. For the lifetime diagram that means that samples with non-overlapping 
lifetimes can share the same location. When it is tried to store two samples with 
overlapping lifetimes in the same location a lifetime clash occurs. An address 
schedule which contains lifetime clashes is called 'not valid'. From the lifetime 
diagram the minimum memory size which is necessary to store all the samples can 
he derived. The minimum memory size equals the maximum cut of alive samples 
in the life time diagram. This can he explained as follows. At the timepoint 
where the cut is maxima!, there are for example 'X' samples alive. Because all 
are alive at this timepoint they can not share the samememory location. So at 
this point in time 'X' memory locations are necessary. This lower bound of the 
memory size will he called M1owb· For the lifetime diagram from Figure 2.3 the 
maximum number of samples which are alive simultaneously is five. A maximum 
cut is indicated with the dotted line. 

In the search fora valid address schedule which is cheap in area costs PHIDEO 

evaluates three different techniques. These three techniques will he explained in 
the follo\\"Ïng sections. 

2.1 Absolute location assignment 

Absolute location assignment is an assignment of memorylocations to the sam­
ples of a data schedule in such a way that each version of a sample is written 
into the same memory location every frame. So aiter applying absolute location 
assignment every sample has its own absolute address which stays the same every 
frame. That is the reason why this technique is called absolute location assign­
ment. The location of a sample is independent of the frame. This is indicated in 
Equation 2.1 where location(s,/) represents a function which assigns alocation 
to samples during frame f L(s) represents alocation assignment function which 
only depends on s. 

location(s,f) = L(s) (2.1) 
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Problems occur when there axe samples which lifetime is longer than the 
framelength. For example samples 'C', 'D' in Figurè 2.1. In this case it is impos­
sibie to come up with a valid schedule. This is because of the restrietion that a 
sample has to be written to the same memory location every frame. U sing this 
restriction, sample C and its delayed version C@l have to be stored in the same 
location, the same yields for sample D. But sample 'C@l' and 'D@l' axe not read 
yet when 'C' and 'D' have to be stored again. A lifetime clash exists between 'C' 
and 'C@l' and between 'D' and 'D@l'. Soit is not possible to store 'C@l' and 
'C' or 'D@l' and 'D' in the same location. To solve this problem the frame length 
is expanded. By expanding the frame length the new framelength becomes an 
integer times the old framelength. The samples which axe staxting to live dur­
ing this new frame will be treated as different samples. So before expansion 'A' 
and 'A@l' where the same samples only A@l is a delayed version of A. After 
expansion they axe treated as different samples. This is indicated by changing 
the names. For sample A this is shown in Table 2.2 for an expansion of two. 

I old sample name I new sample name I 
A A' 

A@l A'' 
A@2 A'@l 
A@3 A"@l 

Table 2.2: Sample names before and after expansion 

The number of expansions necessary equals the number of frames in which 
the longest living sample is alive. This is shown in Equation 2.2. 

. longest lifetime 
N umber of expanswns = f f l h l 

rame engt 
(2.2) 

For our example from Figure 2.3 an expansion of two will be enough. The 
resulting data schedule after expansion can be seen in :fig 2.4. 
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-oLDFRAMELENOTH-

Figure 2.4: Frame expansion for absolute location assignment 

By expanding the frame length the charaderistics of the application are not 
changed. Only the constraint that the address sequence has to be repetitive after 
one frame is relaxed by increasing the framelength. N ow the address sequence 
only has to be repetitive after N old frames, with N the number of expansions. 
With this new lifetime diagram it is possible to find a valid schedule. The problem 
that samples clash with their delayed versions is solved now, because there are no 
samples left which lifetime is longer than the framelength. PHIDEO uses graph 
colouring techniques to solve the problem of placing the samples without life time 
clashes in an as small as possible memory. The graph that has to be coloured 
is called a conflict graph. In this graph the different vertices are the samples. 
An edge between two vertices exists, when the two samples have overlapping life 
times. When the resulting graph is an interval graph, than the left edge algorithm 
will be used, which runs in O(n log n} time [7) for n samples. This will result in a 
minimal number of colours thus a memory size equal to Mtowb· When the graph is 
not an interval graph but a circular are graph left edge cannot be used. Colouting 
a circular are graph is known to be a NP-complete problem [11]. Consequently 
no polynomial time algorithm is known that solves this problem. Furthermore 
Tucker [12) proved that an optimal result Mcirc, found by an exhaustive algorithm 
for example can be far from the lower bound Mtowb· In [12) Tucker shows circular 
are graphs for which 

Mcirc = 2 X Mtowb - 1 (2.3) 

From the lifetime diagram can be derived whether the confiict graph will be 
an interval graph or a circular are graph. H there is a timepoint during a frame 
at which no sample is alive than the resulting graph will be an interval graph and 
the left edge algorithm will be used to colour the graph. In the life time diagram 
of Figure 2.4 there is no timepoint on which no sample is alive so graph colouring 
with beuristics is used. This leads toa placement like in Figure 2.5. 
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Figure 2.5: absolute location assignment resulting from graph colouring 

The schedule is valid now but the comple:xity of the address sequence is not 
taken into account. The resulting addressing sequences can heseen in Table 2.3 

Time Write 
Rea;!n 11 (doek cycle) location locati 

0 0 2 
1 1 x 
2 2 x 
3 3 5 
4 4 4 
5 x 1 
6 x 0 
7 1 4 
8 0 x 
9 5 x 

10 4 2 
11 2 3 
12 x 0 
13 x 1 

Table 2.3: Addressing sequences absolute location assignment 

In Table 2.3 the address sequences for one frame are shown. These are the 
only sequences which have to he generated. The address sequences during the 
other frames are a repetition of these sequences. The memory needed in this case 
is larger than the minimum. When the frame has to he expanded the addressing 
sequences are longer than the number of samples. Also by using graph colouring 
no attention is payed to how difficult it wiJl he to generate these sequences. So 
although absolute location assignment aims at an as small as possible memory 
the cost of the total inter processor buffer can turn out to he high because of 
excessive cost of address generation. 

2.2 Counter addressing 

Counter addressing is a kind of absolute location assignment. So the restrietion 
that the delayed versions of a sample are stored in the same memory location 
every frame still holds. The difference is that the samples are not placed wîth 
graph colouring techniques but in such a way that the write address sequence can 
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be generated with a counter. Because counter addressing is based on absolute 
addressing it is possible that the frame has to be e:xPanded. Aiming at a counter 
solution can sometimes result in a large memory, as shown in Figure 2.6 for the 
application from Figure 2.2. 

Figure 2.6: absolute location assignment for counter addressing 

From Table 2.4 it follows that the write addressing sequence can be generated 
with a counter which is very cheap. But the read sequence is still as hard to 
generate as "';th absolute location assignment. 

Time Write Re ad 
(doek. cyde) location location 

0 0 0 
1 1 x 
2 2 x 
3 3 7 
4 4 8 
5 x 1 
6 x 0 
7 5 4 
8 6 x 
9 7 x 
10 8 2 
11 0 3 
12 x 6 
13 x 5 

Table 2.4: Addressing sequences counter addressing 

Because the lifetime diagram consist of a two times expanded frame, the ad­
dress sequence will still be twice as long as the number of samples. For the write 
address generator this is not really a problem because the counter address gen­
erator will stay quite cheap. But for the read address generator holds the same 
as for the address generators following from absolute location assignment. The 
addressing hardware of the inter processor buffer generated with counter address­
ing will consist of a cheap write address generator and a read address generator 
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which has cost comparable to the one generated with absolute addressing. But 
because the memory needed for this counter technique is large in a lot of cases, 
the total cost of the inter processor buffer can he high due to large memory cost. 

2.3 Relative location assignment 

In this case a pointer technique is used. This pointer is incremented every frame. 
Relative to this pointer position the location of the different samples is the same. 
This means that the absolute location of a sample in the memory is dependent 
on the frame. This technique is only possible if the location calculations are 
executed using modulo a.rithmetic. The absolute location of a sample sin frame 
fis defined as : 

location(s,f) = (P(f) + R(s))modM (2.4) 

In this equation P(f) stands for the base location (pointer) which is updated 
every frame. R(s) stands for the relative location of the sample. This location is 
relative to the base location and is independent of the frame. Mis the size of the 
memory. The pointer mechanism solves the problem that samples clash with their 
own delayed versions, because in everyframe the samples will he storedindifferent 
absolute locations. In Figure 2. 7 the result of relative location assignment for the 
application of Figure 2.3 can he seen. To illustrate the principle three frames are 
shown. One can see in Figure 2. 7 that because of the changing base pointer the 
samples rotate through the memory. 

FRAMEN-1 FRAMEN+l 

Figure 2. 7: Result of relative 1ocation assignment 

An interesting property is that it can he proven that a memory size of at 
most M1QWb + 1 is necessary. To see this, one has to realize that there are two 
equivalent ways to look at the problem. Assuming that M memory locations are 
available. 

• Select one frame ( e.g frame 0) and discuss the location that is assigned to 
every sample. 
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• Select on location {e.g location 0) and l,ook oyer M frames to discuss the 
frame at which every sample is stored. 

The role of time and place in the two cases is interchanged. These two points 
of view contain the same information because the base location is updated ( decre­
mented) every frame. When it is determined in which frame a sample is assigned 
to location zero than the location of that same sample in frame zero can he calcu­
lated. To demonstrate this the place of the samples in the memory during several 
frames is shown in Figure 2.8 

Figure 2.8: Result of relative location assignment for several frames 

From Figure 2.8 it can he concluded that the two viewpoints are indeed iden­
tical. So it is enough to concentrate on location zero and schedule the samples in 
a efficient way in this location. This can he done by using the fi.rst fit algorithm. 
The first fit technique tries to place the samples as close as possible together in 
memory location zero. So the minimum amount of frames (memory locations) is 
needed to store the samples. To come up with a placement with the variables as 
close together as possible the algorithm starts with the sample with the earliest 
write timepoint (sample A) followed by the sample with a write timepoint the 
dosest to the read timepoint of sample A in this case sample B and so on until all 
samples are placed. More information about relative location assignment can he 
found in [1]. The advantage of relative location assignment is that the memory 
cost will he low, as the memory needed is at most Mtowb + 1. Also the address 
sequences that have to he generated during one frame are never longer than the 
number of variables as is shown in Table 2.5. The address sequences during other 
frames can easily he derived from these sequences, because they are just shifted 
one or more places. 

Time Write Read 
doek cycle location location 

0 0 0 
1 1 x 
2 2 x 
3 3 3 
4 4 4 
s x 1 
6 x 0 

Table 2.5: Addressing sequences relative location assignment for frame 0 
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On the other hand it is possible that the address sequence is so complex and 
irregular that it leads to expensive address generators. Also, extra cost (in com­
parison to absolute and counter addressing) will be introduced by the modulo 
hardware. Due to this, the overall cost of the IPB with relative location assign­
ment can be higher than when using counter or absolute location assignment. 

The kind of architecture which is used for address generation can also in­
fiuence the size of the address generators. Therefore the target architectures of 
MATCHBOX will be discussed. 

2.4 Target architectures 

To generate the different address sequences MATCHBOX has certain target archi­
tectures at its disposal. These architectures are : 

• counter 

• address table 

• delta table 

• run-length delta table 

Each of these architectures has its own way of storing the information which 
is necessary to generate the address sequence. Only the counter architecture has 
no storage, it can only generate consecutive addresses like 0,1,2,3,4,5 etc. The 
address table architecture has all the actual addresses stored in its storage unit. 
This storage unit is addressed with a counter. The Delta table architecture has 
only the differences between the different addresses stored in its storage unit. The 
actual addresses are calculated from the previous address and the delta. In the 
run length delta architecture the storage unit is used to store the number of the 
same consecutive deltas ( the run length) and the size of the delta. The actual 
addresses are again calculated from the previous addresses and the deltas. In the 
following sections the different architectures will be discussed in more detail. 

2.4.1 The counter architecture 

The counter architecture can only be used when the samples are placed in the 
memory in such a way that they can be addressed with a counter. So when the 
goal is to use a counter architecture as an address generator, it should be taken 
into account during the assigning oflocations to the different·samples. It is always 
possible to place the samples in such a way in the memory that the write address 
generator can be realized by a counter. The counter architecture is not complex 
and therefore very cheap and can beseen in Figure 2.9 
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MUXA: 
0 if: !enable & ! reset 
1 if: enable & ! reset & !carry 
2 if: reset I (carry & enable) 

register 

enable 
reset MUXA 

2 1 0 

s int 

Figure 209: counter architecture 

A 1 

The architecture shown here is a down counter 0 it counts like: 

M - 1 , M - 2 , 0.... , 0 , M - 1 , M - 2 ... 

17 

The architecture consists of a decrementor, a block with switch logic and a reg­
ister. The quantity start point, which is equal to the memory size minus one, 
is known at compile time and can thus be stored locally. So the only control 
signals which have to be generated by the controller, are reset and enable. The 
down counter is preset every time address zero is generated. This can be easily 
implemented using the carry flag of the decrem en tor. The enable signal is used 
to obtain the next address. lf the enable signal is low the register will hold. 

2.4.2 The address table architecture 

When the samples are placed in the memory and the address sequences show no 
regularity at the word level, than MATCHBOX will choose for an address look up 
table. This method also uses a counter, but the output of this counter is now used 
as the entry of a table in which the addresses are stored. The hardware is shown in 
Figure 2.10. The table can be implemented with a ROM but when the addresses 
show some modulo two regularity, at the bit level, it may be cheaper to replace 
the ROM with a PLA. Because it than possible thát the PLA can be reduced 
at lot. The counter is the same as used with counter addressing. The output of 
the tableis latched in a register. The hardwired signa! start point determines the 
address of the first table entry. This architecture can only be used for absolute 
location assignment because for relative location assignment the actual addresses 
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wi11 be different every frame. For small examples . the address table may be a 
cheap solution but when the problems become larger the address look up table 
can become large and expensive. In that case the other architectures may offer a 
cheaper solution. 

cnable 
reset 

r------------------, 
1 counter 1 I 

I MUXA: 
I 0 if: ! c:oable & ! reset 
1 1 if: enable & ! reset & lcany 
1 2 if: reset I (carry & c:oable) ----, 

I 
I 
I 
I 
I 
I 

L------------------~ 

cnable 

ADDRESS 
TABLE 

Figure 2.10: Address table architecture 

2.4.3 The delta table architecture 

MUXB: 
0 if: !enable & !reset 
I if: reset 
2 if: cnable & !reset 

start addr 

Another way to generate addresses is to store only the differences between two 
subsequent addresses. The advantage of this is that the word width of the largest 
delta wi11 be smaller than the word width of the largest address. So the storage 
unit requires a smaller word with. The number of entries in the PLA wi11 be one 
less than in an address table. On the other hand the hardware that is needed to 
calculate the addresses wi11 introduce extra costs. 

The architecture in case no modulo hardware is necessary (absolute location 
assignment) is shown in Figure 2.11. 
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mable 
reset 

r------------------, 
counter 1 I 

I 
I 
I 
I 
I 

MUXA: 
0 if: lenab Ie & ! reset 
I if: mable & ! reset & !carry 
2 if: reset I (carry & c:oable) 

register 

.MUXA 

L------------------

mable 

DELTA 
TABLE 
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0 if: !eoable & !reset 
1 if: reset 
2 if: eoable & !reset 

start addr 

Figure 2.11: Delta table address generator without modulo hardware 

An adder is needed to add the difference to the previous address. This result is 
stored in a register. The enable signalis used to step to the next address. A reset 
is given at least once to synchronize the read and write address generator. The 
delta table architecture can also be used to generate the addresses which result 
from relative location assignment. The architecture has to be modified slightly 
for it. The differences (Di) between the subsequent addresses can be calculated 
as follows: 

(2.5} 

In this equation fis the frame number, s, is a sample that has to written or read 
at timepoint i, s,_1 is a sample that has to be written or readon timepoint i-1. 
loc is a function which assigns alocation toa sample in a partienlar frame. So 
loc(s,, f) and loc(si-h f} are two consecutive addresses in time. The value M 
equals the memory size, this modulo memory size operation is needed to exclude 
negative deltas. 

By using Equation 2.3 it follows 

D, = ((P(f) + R(v,))modM- (P(f) + R(v,_I))modM)modM (2.6) 
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In Equation 2. 7 can be seen that because of the pointer mechanism Di is in­
dependent of the frame number. From equation 2.7 it also follows that modulo 
hardware is needed to calculate the differences. So to calculate an address from a 
delta and a previous address it will also be necessary to use a modulo operation. 
This modulo architecture can beseen in fig 2.12. The cost of this modulo hard­
ware is an extra cost which can be saved by using absolute location assignment. 
It depends on the problem what turns out to be cheaper, the modulo hardware 
or the frame expansion. 

MUXB: 
o if: !eaable & !reset 
1 if: enable & !reset & !carry 
2 if: enable & !reset & !carry 

3 if: reset 

M 

start address 

Figure 2.12: Modulo hardware for relative location assignment 

The implementation of the pointer mechanism can be done in two ways. The 
first is to implement the last delta one smaller than it actually should be. In this 
case it notallowed to give more than one reset. The reset is only used to synchro­
nize the read and write address generator. The other way is to change the start 
address every frame. In this case every frame a reset should be given. Changing 
the start address every frame will be expensive in hardware, but implementing a 
smaller last delta can lead to synchronisation problems between read and write 
address generator. 

2.4.4 The run length delta table architecture 

When the delta sequence contains a long series of constant delta's the possibility 
exists to store the runlength and the delta. This can be achieved with the ar­
chitecture shown in Figure 2.13. For this architecture holds the same as for the 
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delta table address generator. It is shown for absolute location assignment but it 
can also he used for relative location assign.ment by adding the modulo hardware. 

enable 

enable 
reset 

r------------------, 
counter 1 I 

MUXA: l 
0 if: lenable & I reset I 
1 if: enable & 1 reset & ! carry I 
2 if: reset I (carry & enable) I 

I 
I 
I 
I 
I 

r -----------------~ I counter 2 
I 
I 
I MUXC: 
I 0 if: lenable & !~t 

I if: enable &. !reset&. laadrun 
I 2 if: enable &. !reset&. !loadrun 
I 3 ü: reset 
I 
I 

I 
I loadrun 

I 
I 

MUXC 

l-------------------

nm.lenglhs del!& •• 

TABLE 

Figure 2.13: The run length delta architecture without modulo hardware 

This architecture needs some explanation because its operation is not as ob­
vious as it seems. Counter two counts down the run length for every difference. 
When the carry out of this counter becomes active counter one is decremented 
and the next run length is loaded into counter two: Start_run is a hard wired 
signal which determines the first run length. This signal is necessary because 
the first run length from the table is loaded into counter two only after the first 
difference has been counted down. So the first run length in the table belongs to 
the second difference. This means that run length and difference are shifted one 
place in the table. The carry from counter two is generated with a delay of one 
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runlength. That is why all the run lengths in the table are one smaller than their 
actual value. Further should be mentioned that this architecture has a very large 
overhead of hardware. So wi11 this run length delta architecture be the smallest 
and thus the cheapest solution the storage unit must be very small in comparison 
to the storage units in the other architectures. 



Chapter 3 

Regular placement 

Looking at the methods MATCHBOX uses for location assignment, one can see 
that the used techniques aim at minimizing either the memory cost or the ad­
dressing cost. The counter technique which tries to minimize the addressing cost, 
sometimes turns out to be very expensive in memory cost. The other techniques, 
absolute location assignment and relative location assignment, which aim at small 
memory costs have unpredictable address generator costs. The total costs of an 
inter processor buffer can be separated into three parts, Equation 3.1. 

Read Address generator cost 
W rite Address generator cost 

+ Memory cost 
Total cost 

(3.1} 

Predicting the tot al costs of the inter processor buffers resulting from the dif­
ferent techniques appeared to be very hard. There are only a few things which 
are predictabie and which are not problem dependent. Fot relative location as­
signment it is known that the memory cost will be close to the minimum ( Mtowb 

or Mtowb + 1). On the other hand the costs of the address generators can not 
be estimated accurately a priori. This addressing cost is dependent on the ap­
plication for which the IPB is designed, but is also strongly iniluenced by the 
unpredictable effect of the minimization of the starage unit. It is known that the 
costof the address generators will be larger than the cost of counter architecture. 
By using the counter technique there is chosen for minimal cost for one address 
generator (the write address generator}. The memory size which is necessary for 
realizing counter addressing is dependent of the application for which the IPB is 
designed. But even when the application is known it is not possible to make a 
good estimation of the memory size that is needed t<:> realize counter addressing. 
Although only a few things are known about the design space it is still possible 
to draw an address generator- memory- cost graph. This graph contains the cost 
of the write address generator, on the X-axis, and the cost of the memory size, 
on the Y-axis. The reason why only one address generator is taken into account 
for the design space cost graph is that when one address generator is defined, 

23 
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the other address generator will be the logica! conseguence of the defined address 
generator and the application. So when there is soinething to gain in total cost 
it has to be done by decreasing the cost one of the two address generators while 
keeping the memory as small as possible. Minimizing both address generators is 
impossible. The graph shown in Figure 3.1 is a representation of the costs of one 
address generator and the required memory cost for one application. 

ADDRESSING COST 

Figure 3.1: Design cost space 

The line which represents the cost of a counter in Figure 3.1 is slanted, this 
is because a larger memory needs a larger counter to address it. By increasing 
the size of the counter the area cost will also increase. The "counter ad dressing 
line" also represents the absolute minimum costs for which it is possible to realize 
an address generator. So on the left hand si de of this line there ex:ist no address 
generator. The minimum memory line is constant in the entire solution space. 
This minimum is application dependent, and can be calculated when the lifetimes 
of the samples are known. Below this line there ex:ist no memory size in which it 
is possible to store all the samples. The marks represent the cost of the address 
generator and the memory as a result of using different kind of techniques for 
memory allocation. Mark A represents the cost of a counter solution and mark B 
represents the cost of a relative solution. The memory cost of relative addressing 
is placed on the cost of Mlowb but in reality the memory needed with relative 
location assignment can be one more than Mlowb so the cost can be a little higher. 
Absolute location assignment with graph colouring can be represented by one of 
the other marks somewhere in the two grey areas. The question whether absolute 
location assignment is cheaper than the cheapest of one of the two extremes (in 
area two in Figure 3.1) or more expensive (in area one in Figure 3.1) is impossible 
to answer a priori because this is dependent on many factors, like the heuristic 
of the graph colouring algorithm, the application for which the IPB has to he 
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designed and the unpredictable effect of the minimisation of the starage unit of 
the address generator. In developing a technique for location assignment the 
goal was to find another technique which results in a inter processor buffer with 
low casts. So the cast should be somewhere in area two of Figure 3.1. On the 
other hand the :flex:ibility should he kept in mind. Knowing all this it is tried to 
optimize the address generator size within such limits that the memory would 
nat grow too much. Minimizing the address generator casts is done by assigning 
memory locations to samples in such a way that the addressing sequence will 
become regular. This is called regular placement. 

The architecture which is best suited to generate these regular sequences is 
the run length delta architecture. For the address table and the delta table archi­
tecture, the starage pattem of the samples will nat have a predictabie in:fluence 
on the size of the address generator. The number of entries in the starage unit, 
in which the addresses or the deltas are stored, stays the same, so a big difference 
was nat expected. In practice it appeared that the size of these address gener­
ators did d.iffer a lot between one starage pattem and the other. This was due 
to the fact that with one starage pattem the starage unit can be reduced more 
than with another, but the amount of reduction is unpred.ictable. On the other 
hand the number of entries in the starage unit of the run length delta architecture 
will decrease when the sequence becomes more regular. So the address generator 
may become smaller when the address sequence becomes more regular. But the 
casts of an inter processor buffer consist of more than the cast of one address 
generator. The cast of the other address generator is unpred.ictable and the cast 
of the memory is an uncertain factor too. The question now is, will this methad 
result in a inter processor buffer which is smaller than the other techniques and 
is it possible to turn the resulting IPB into a :flex:ible one. Befare answering these 
questions let us first look into the methad of regular placement. 

3.1 The solution space of regular placement 

The definition of a regular addressing sequence is an important issue. Because 
regularity can have many different farms. In the previous section it is already 
mentioned that the size of the run length delta architecture will decrease when 
the address schedule is more regular. That is why this architecture is used to 
determine a measure for regularity. There are numerous solutions which can have 
the label regular solution. Three examples of a regular salution for 25 samples 
can beseen in Figure 3.2. 
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Figure 3.2: Several regular solutions 

As can beseen in Figure 3.2 a sequence consistsof a start address foliowed by 
a part with a constant delta. The number of consecutive and identical deltas plus 
one is called the length of a sequence. The "plus one" is due to the delta to go to 
the start address of the sequence. In the run length delta storage unit one regular 
sequence wi11 result in two entries, one with run length of one, for the delta to go 
to the start address of the sequence and one with a runlength equal to the number 
of identical deltas. A solution with maximum regularity wi11 be the solution with 
one delta to go to start address and a list of the same deltas to go to the other 
addresses, like solution three in Figure 3.2. These kind of solutions usually tend 
to need a large memory. To be able to reduce the memory size one can try to 
find a solution with less regularity which needs a smaller memory. That is done 
by allowing more shorter regular sequences. This wi11 result in solutions like one 
and two in Figure 3.2. These solutions are generated by setting a maximum and 
minimum allowed sequence length. But there are restrictions on these maximum 
and minimum sequence lengtbs and on the delta sizes. For the sequence length its 
obvious that there exist no sequence length of zero and no sequence length longer 
than the number of samples. For the delta there is only a maximum, namely the 
memory size. A delta larger than the memory size or a negative delta can, with 
a modulo operation, always be represented by a delta in between zero and the 
memory size- 1 . When we don't take the lifetime clashes into account there are 
a lot of solutions possible. All combinations of sequence lengtbs and deltas are 
allowed as long as Equation 3.2 holds. 

#seq-1 

L sequence lengthi - number of samples (3.2) 
i=O 

When we do take the lifetimes of the samples into account some of solutions for 
which Equation 3.2 holds wi11 not be valid schedules because of lifetime clashes. 
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But still a lot of possibilities remain. 

3.1.1 Solution space exploration 

Now it is known what the solution space looks like the next problem is to findan 
efficient way to explore th.is space. The groups of sequence length delta combina­
tions wh.ich result in a valid schedule are a sub set of the solution space defined 
by Equation 3.2. To find a group wh.ich belongs to th.is sub set a few parameters 
can be manipulated. These parameters are: 

• The memory size. 

Th.is can be va.ried between Mzowf" the size needed for relative addressing, 
and a maximum value on wh.ich there is no restriction. But for the maximum 
memory size one has to keep in mind that the cost of the inter processor 
buffer can become unacceptably high when the memory size is too large. 
That is why before increasing the memory size, all possible sequence length 
and delta size combinations are tested in order to find a solution wh.ich fits 
in a small memory. 

• The sequence length. 

Th.is parameter can change from the number of samples, wh.ich is the max­
imum, till a minimum value below wh.ich the sequence is not called regular 
any more. Th.is _minimum value is three. Th.is minimum needs some expla­
nation. As mentioned a sequence length consists of a delta to go to the start 
address foliowed by a number of equal deltas. Because the delta to go to the 
start address is usually not the same as the deltas of the regular sequence 
the number of the same deltas in the regular sequence should at least be 
two, otherwise one cannot speak of regularity. So the minimal number of 
consecutive and identical deltas is two. For the sequence length we add one, 
from the delta to go to the start address. So the minimal sequence length 
is three. 

• Delta size 

Th.is parameter can change from zero, wh.ich means that two consecutive 
samples are stored in the samememory location, till the memory size- 1. 

• The start position. 

Th.is parameter determ.ines the place where the regular sequence starts. 
Th.is can be any place in the memory. therefore the maximum is the memory 
size - 1 and the minimum is zero. 

To findan optimal solution the parameters are changed in a particular order. 
Starting with a fixed memory size, it is tried to place the samples without lifetime 
clashes by changing the delta size and the sequence lengths for the different regular 
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sequences. When all the different possibilities of delta size and sequence lengths 
are tested and none of them led to a valid address s~hedule then the memory size 
is increased. 

Optimizing regularity for a given memory size 

Optimizing regularity is actually finding a solution with as few as possible changes 
in its deltas. The optimal regular solution is of course the one with no changes 
in the deltas. But that is not always possible to realize in a given memory size. 
When its not possible to place all the samples in one sequence with a certain 
delta there two possible ways to solve this problem. The fust one is, keep trying 
to place the samples in one sequence but with another delta. The second one is 
allow more regular sequences. This is done by fust placing an as long as possible 
sequence. Then try to place the remaining unplaced samples in a regular way. All 
theseshorter sequences are tested again for different delta sizes. An intermediated 
multi sequence solution is shown in Table 3.1. In this table N stands for the total 
number of samples. 

Placed samples # Unplaced samples 
Seq. number seq. 1 seq. 2 seq. 3 

ll. ll. 1 ll.2 ll.3 N-Ll-L2-L3 
. Seq. length Ll L2 L3 

Table 3.1: intermediate multi- sequence solution 

Sequence one is placed first and contains as many as possible samples for that 
delta. When the length is larger than the minimum the sequence is accepted. The 
length of the sequences is limited by the lifetime clashes. For the example from 
Table 3.1, at a certain point three sequences are placed and the remaining samples 
can not be placed regular without lifetime clashes, for any sequence length delta 
combination. Two strategies are possible to solve this problem. 

The first one is, decrease the length of sequence three and try to place the 
remaining samples. When the minimum sequence length of sequence three is 
reached the delta is increased. When no valid placement is !ound for any sequence 
length delta combination of sequence three the sequence length of sequence two 
is decreased and so until a valid placement is found. When the maximum delta 
of sequence one is reached it is impossible to place the samples in a regular way 
in the given memory size. Then the memory size is increased. How this scheme 
works for one regular sequence is shown in Figure 3.3. 



3.1. THE SOLUTION SPACE OF REGULAR PLACEMENT 29 

mem. size .J 

0 

) oumber of samples 

Figure 3.3: Search scheme: decrease sequence length fust 

In reality the sequence lengths are not always of maximum length. This 
is because it is possible that a certain sequence length delta combination does 
not exist because of lifetime clashes. When a sequence has to be checked for 
validity the samples of that sequence are placed in a imaginary memory. Than 
the schedule is checked on lifetime clashes. As an example we take five samples 
which have to be placed in a memory with three places, and we determine how 
many place and remove operations have to be performed when all the sequence 
length delta combinations have to be checked for the fust sequence. This can be 
seen in Table 3.2. 

test no. seq. length delta size # place operations # remove operations 
1 5 0 5 0 
2 4 0 0 1 
3 3 0 0 1 
4 5 1 5 0 
5 4 1 0 1 
6 3 1 0 1 
7 5 2 5 0 
8 4 2 0 1 
9 3 2 0 1 

tot al 15 6 

Table 3.2: indication of number of place and remove operations 

This amount of place and remove operations is used to compare tbis search 
scheme with the second possible search scheme, wbich will be discussed next. 

The other possible search scheme is that the sequence length is kept constant 
while the delta is changed first. Tbis is also done in order to make it possible to 
place the remaining samples. When no valid placement is found, all sequences 
with maximum length minus one are tested for all different deltas and so on until 
the minimum sequence lengths are reached or a valid placement is found. Tbis 
search scheme for one regular sequence can be seen in Figure 3.4. 
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Figure 3A: Search scheme: change delta first 

The major difference between these schemes is the computation time they 
need. In the search scheme from Figure 3.4 the old sequence has to be removed 
every time a new delta has to be checked. For the example with five samples and 
three memory place this can be seen in Table 3.3 

test no. seq. length delta si:te # place operations # remove operations 
1 s 0 s 0 
2 5 1 5 5 
3 5 2 5 5 
4 4 0 4 5 
s 4 1 4 4 
6 4 2 4 4 
7 I 3 0 3 4 
8 I 3 1 3 3 
9 I 3 2 3 3 

total 36 33 

Table 3.3: indication of number of place and remove operations 

When a sequence does not result in a valid addressing schedule, the sequence 
has to be removed and a new sequence with a different delta has to be placed 
again. This leads to a lot more place and remove operations than in the scheme of 
Figure 3.3 as can be seen in Table 3.3. So the scheme from Figure 3.4 need much 
more computation time than the one from Figure 3.3. The difference appeared 
to be so big that only the search scheme from Figure 3.3 is implemented in the 
program. 

The maximum and minimum sequence length are not fixed numbers. They can 
be varled by the user in order to find a regular solution which fits the problem. 
So the maximum allowed sequence length does not have to be the number of 
samples and the minimum does not have to be three. Setting the minimum to 
three is even not advisable because computation times wiJl become very long. 
The smaller the gap between maximum and minimum sequence length is, the 
{aster the program will come up with a valid address schedule. By manipulating 
these numbers the user can determine the amount of regularity in the addressing 
sequence. By increasing the values, reguiacity will increase but also the needed 
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memory will increase. By decreasing the va.lues, computation times will increase 
and the memory needed will decrease but also the· 'amount of regularity in the 
addressing sequence will decrease. It is also possible to give a minimum sequence 
length which is not fixed during the execution the algorithm. The first va.lue of 
the minimum is given by the user. After this it is checked how many samples are 
left unplaced. For these remaining samples the maximum sequence length is set 
to the number of remaining samples and the minimum is set to the half of the 
number of remaining samples. So during every attempt of placing samples with 
a certain delta at least half of the amount of samples must he placed before this 
delta sequence length combination is accepted. 

The search for sequence length and delta combinations should he rather fast 
because such a search has to he done fora lot of different memory sizes. Although 
the program used the fastest search scheme for determining sequence length delta 
combinations, it can still he time consuming. Because of the long computation 
times the third. parameter, the start position of the sequence, is kept constant. 
Forthestart po-:ition the first fitting position is taken. This means that the start 
address of a regular sequence is determined by the first position on which the 
first sample of the sequence fits. The other measure that is taken to increase 
computation times is that it is tried to minimize the number of memory sizes 
which have to he tested. 

Optimizing the memory size 

As mentioned, the buffer sizes which have to he tested lay in between the memory 
size from relative addressing, which is the absolute minimum, and infinity. Infinity 
is not a realistic memory size and that is why the maximum memory size has to 
he given by the user. A very rough estimate for this maximum can he derived 
by checking how many frames the longest living sample is alive and multiply this 
va.lue with the number of samples, or one can take the memory size that counter 
addressing needs. For a certain memory size there are two possibilities. It is 
possible to find a valid address schedule with a certain sequence length and delta 
combination or it is not. So the solution space can graphically he represented 
like in Figure 3. 5. 

muimammeiDOI)'Iiz 

Figure 3.5: Solution space memory size 

This solution space can he tested linearly from the minimum memory size 
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until a fitting memory size is found. But when the di~tance between the minimum 
memory size until the solution memory size is large, computation times will be 
very long. One big advantage of this way of searching is that it will always result 
in the smallest possible solution, as can be seen in Figure 3.6. 

SOLlmON 

~·:.t~+-+-+~-+--+-~ 
Figure 3.6: linear search through memory sizes 

An other way of searching is the binary search. It starts with a maximum and 
a minimum value for the memory size. It checks if the maximum fits, if not, it 
stops and assumes there is no solution. Then it checks the minimum value, if it 
fits, then that is the solution. In the case that the minimum doesn't fit and the 
maximum does, the binary search starts. The next memory size to test follows 
from Equation 3.3 

new memory Slze = l ~(max. memory size - min. memory size) J (3.3) 

If there exist a valid solution for this memory size, than this memory size will 
become the new maximum. If there ex:ist no valid solution than this memory 
size will become the new minimum. This will continue until the maximum value 
equals the minimum. A draw back of this way of searching is that it will not 
always ,like in Figure 3. 7, result in the smallest memory size. 

aofit -
t------------, lSOUJI'ION = Smalleoi.Soiution 

fit 

Figure 3. 7: binary search through memory sizes resulting in a minimal 
memory stze 

The outcome is depending on how the function of the solution spacelook like. 
When it is like in Figure 3.8 the result will not be the minimal memory size. 
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--
Figure 3.8: Binary search through memory sizes not resulting in minimal 
memory s1ze 
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From the numerous tests that have been performed it appeared that the so­
lution found with binary search didn 't differ that much from the one found with 
linearly search. The search for the minimal memory should be done a.s follows: 

First find an indication of the memory size with binary search, than try to 
determine whether it is an absolute minimum with linear search. 

An overview of all the possible settings, the syntax of the input file and the 
several output files of the regular placement program can be found in appendix 
B. 
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Chapter 4 

Test applications 

To he able to check whether regular placement results in smaller solutions than 
other methods of placement a few test problems are selected. The selected ap­
plications are data format conversions which can occur in many different sizes. 
The main characteristics of these applications are treated shortly in the following 
sections. 

In these sections only one size of the problems is presented in order to clarify 
the read and write orders. During the actual tests a lot of different sizes are used. 
The high level descriptions of the applications in Phideo Input Format (PIF) can 
be seen in appendix A. 

4.1 Matrix transposition 

The problem of matrix transposition is defined as follows. The samples are pro­
duced row by row so the inter processor buffer has to store these samples in a 
row by row order. The samples have to be consumed column by column so the 
read address generator has to produce addresses which achieve this. This kind 
of transformation occurs for example in video compression applications using 2D 
transfarms such as the 2D discrete eosine transform. When the memory is seen 
as a matrix like structure the read and write order look like in Figure 4.1 The 
arrows indicate the order in which the samples, which are numbered from zero 
till 25, have to be read and written. 

35 
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WRITEORDER READORDER 

' -o-1-2-3-4 ::-_:, 0 I 2 3 4 

c ·5-6-7-8-9=:::> ' ' ' ' ' 5 6 7 8 9 

c ·10-11-12-13-14 ~ ' ' ' ' ' 10 11 12 13 14 

c_t5-16-17-18-19 ::> ' ' ' ' ' 15 16 17 18 19 

C:w-21-22-23-24 ' ' ' ' l 
20 21 22 23 24 

Figure 4.1: Matrix transposition 

From the read and write order follows the earliest timepoint on which the read 
action can star~) assuming that every doek cyde a read or write action occurs. 
In this case that is doek cyde 16, so the skew between write and read is 16 doek 
cycles. When the read action is delayed 16 doek cydes than sample 20 is written, 
and in the same doek cyde read again. 

4.2 Zig-zag transformation 

In this section we treat the conversion of a line by line scanned input frame to 
a zig - zag scanned frame. The zig - zag scanned sequence is useful in image 
transmission after Huffman cod.ing [8] or after Discrete eosine transformation. 
The samples are produced row by row and have to be read in a zig- zag pattern. 
How the read and write orders look like can be seen in Figure 4.2. 

WRITEORDER READORDER 

o-1 2-3 4 
/ / / /t 

5 6 7 8 9 
t/ / / / 

10 11 12 13 14 
/ / / /t 

15 16 17 18 19 
t/ / / / 

20 21-22 23-24 

Figure 4.2: Zig - zag transformation 

The minimal skew for this problem is nine doek cydes, again with the as­
sumption that every doek cyde a read and write action occurs. For this kind 
of transformations only square examples are used because that what is typically 
needed in practice. 
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4.3 Spiral left turning 

The left turning spiral is also a conversion used in video applications. lt is spe· 
cially needed during region growing and edge detection. The sample are produced 
row by row and have to he read in a spiral pattern like in Figure 4.3. 

WRITEORDER READORDER 

o-1-2-3-4 
t 
5 6-7-8-9 
t t + 

10 l1 12-13 14 
t t ~ + 

15 16-17-18 19 
t + 
20-21-22-23-24 

Figure 4.3: Left spiral transformation 

The minimal skew for this problem is 15 clock cycles, assuming a read or write 
action every clock cycle. From this problem also only square examples are used. 

4.4 Radix 2 Fast Fourier Transformation 

The Fast Fourier Tra.p.sformation used in the tests is a rad.ix 2 constant geometry 
FFT. With this geometry the butterfly outputs are not put back on the place 
where they come from. That is why it is also called 'not in place'. The indexing 
is kept constant from stage to stage in this way a flexible high level description for 
d.ifferent sizes of FFT is easier to make (see append.ix A). The signal flow graph 
is shown in Figure 4.4. 
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Figure 4.4: Constant geometry, rad.ix 2, 16 points, not in place, FFT 

The numbers at the inputs and outputs are the ind.ices associated with the 
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different samples. 

4.5 Radix 4 Fast Fourier Transformation 

For the radix 4 FFT applies the same as for the radix 2 FFT, it is a.lso a constant 
geometry FFT. The difference is that not two but four samples at the sametime 
are used in the computation. The signal fiow graph is shown in Figure 4.5 

Figure 4.5: radix 4, 16 points, not in place, FFT 



Chapter 5 

Resulting IPBs 

For different sizes of the test problems presented in chapter 4, IPBs are generat ed. 
The results of M.ATCHBOX using the three different techniques are compared "'ith 
each other and \vith the technique of regular placement. All the areas presented 
in the chapter and in the appendices are estimates based on a 1.5 pm technology. 
The areas are all given in mm2

• 

5.1 Results Matchbox 

The results from MATCHBOX will be presentedis three parts. First the memory 
sizes needed in the IPBs, for the different techniques will be discussed. Then The 
chosen architecture for the address generator and the number of entries in the 
storage unit, before and after minimisation will be shown. After this the overall 
smallest IPB will be extracted from these results. 

5.1.1 The memory sizes 

As mentioned in the chapter about MATCHBOX relative addressing always comes 
up with a minimal or almost minimal memory size. But in some cases absolute 
addressing needs the same or only slightly more memory space. The actual mem­
ory sizes for the different techniques are shown in appendix C. From these tables 
it can be seen that the size of memory needed for counter addressing is always 
relatively large in comparison with the other techniques. 

5.1.2 The address generators 

For the address generators there are several architeçtures possible. For all the 
different techniques the sizes of the different architectures are shown in appendix 
D. The empty places in these tables indicate that that architecture is not relevant 
or not possible for that technique. For the storage unit of the address generator a 
PLA is chosen in all cases. The number of entries of these PLAs before and after 
minimization is shown. lt can be seen that the difference between the PLA before 
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and after minimisation can be rather big, especially the PLA which contains 
deltas. Further can be concluded from this table, ïhat counter addressing will 
always offer the smallest write address generator. Also can beseen that a.iming for 
a counter on the write side barely influences the size of the address generator on 
the read side. The other address generators can also he relatively small especially 
the address table architecture. This is especially the case for applications with 
only a few samples. In these cases the address table is not very expensive, a.nd will 
the small overhead cost of the address table architecture result in a cheap address 
generator. When the number of samples increases, the address table will become 
more expensive because of rapidly growing cost of the address table. From the 
results can he seen that in general the address table cannot he minimized as well 
as the delta table. 

5.1.3 The total cost of the inter processor buffers 

Because of the number of techniques and the number of architectures a lot of 
different inter processor buffers can be generated. From all the architectures the 
smallest solution is taken and put in a graph, in order to he able to make a good 
comparison. The architectures that are used in these smallest IPBs can he found 
in appendix D. The graphs ca.n be seen in Figure 5.1 for matrix tra.nsposition 
a.nd in Figure 5.2 for radix 2 FFT. The graphs of these two applications show the 
main characteristics of the different techniques, so for the other applications no 
graphs are generated. In the percentage graphs the percentage of the area used by 
address generation and memory can be seen. In Figure 5.1 and Figure 5.2 the R 
stands for relative location assignment the A for absolute location assignment a.nd 
the C for counter addressing. These graphs show that for relative and absolute 
addressing a rather big part or the area is used for address generation. With 
counter addressing it is the other way around, in this case the mayor part of the 
area is taken by the memory. 

Matrix transposition matrix transposition 
percentage overview 
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Figure 5.1: Results of MATCHBOX for matrix transposition 
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In Figure 5.1 can he seen that absolute location assignment results in the 
smallest IPB, but when thematrices become bigger i:elative location assignment 
will turn out to he the smallest. The latter can not he concluded from Figure 5.1, 
but several from test on bigger matrices. Relative location assignment has yet 
another advantage for bigger applications, it comes up much faster with a valid 
schedule than absolute location assignment. 

Radix 2 FFT Radix 2 FFT 
percentage overview 
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Figure 5.2: Results of MATCHBOX for radix 2 FFT 

In Figure 5.2 it can he seen that for radix 2 FFT in most of the cases relative 
location assignment results in the smallest IPB. For the 32 points FFT counter 
addressing is the smallest. Also can heseen that for larger FFTs the percentage 
of area used for address generation with relative addressing decreases. The same 
holds for counter addressing. This is also the case for matrix transposition. The 
other applications of which the address generator and memory costs are shown 
in appendix D show similar results. 

5.2 Results regular placement 

The regular placement program offers a lot of freedom in setting the amount of 
reguiacity in one of the address generators. That is why a selection of the most 
promising options is made. For most of the applications it is tried to increase the 
reguiacity in the write address generator, except for the radix 2 FFT and radix 
4 FFT. For these application the read address generator is regulacized. This is 
done because for these applications regulacizing the read address sequence re­
sulted in a incretion of amount of reguiacity in the write address generator. This 
is only possible when the application doesn't read a sample more than once. 
Further IPB are made with Maximum Reguiacity both for Relative (MRR) and 
Absolute (MRA) location assignment. Also it is tried to decrease the amount of 
memory needed in the IPB by decreasing the reguiacity in the address generator. 
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This is done with the "non fixed minimum" setting of the regular placement pro­
gram. These results are called minimum memory solutions. So we have Minimum 
Memory with Absolute (MMA) and Relative location assignment {MMR). The 
chosen architecture, the costs of the address generators and the memory costs 
can be found in appendix E. The total cost of the IPBs generated with regular 
placement and the smallest IPB resulting from the techniques of MATCHBOX are 
shown in the following tables. 

matrix tr. MMR MRR matchb. (R) MMA MRA ma.tchb. {A} 
8x8 0.94 1.01 0.73 0.74 1.04 0.72 
4 x 16 0.93 0.96 0.71 0.97 1.04 0.71 
4X4 0.34 0.41 0.33 0.31 0.38 0.27 
8x4 0.59 0.61 0.50 0.57 0.62 0.43 

Table 5.1: IPB costs for matrix transposition (mm2
) 

radix 2 FFT MMR MRR matchb. (R) MMA MRA matchb. (A) 
32 points 0.73 0.71 0.55 0.66 0.56 0.57 
64 points 1.06 1.06 0.81 0.89 0.89 0.90 
128 points 1.74 1.71 1.27 1.64 1.60 1.64 
256 points 3.00 2.98 2.14 2.98 2.74 2.81 

Table 5.2: IPB costs for radix 2 FFT (mm2) 

spiral left MMR MRR matchb. (R) MMA MRA ma.tchb. (A) 
4X4 0.35 0.43 0.33 0.34 0.38 0.29 
6x6 0.62 0.69 0.51 0.61 0.70 0.49 

Table 5.3: IPB costs for spiralleft turning transformation (mm2 ) 

Zig-zag MMR MRR matchb. (R) MMA MRA matchb. (A) 
8X8 0.69 0.72 0.58 0.58 0.62 0.50 
6x6 0.50 0.49 0.42 0.39 0.43 0.37 

Table 5.4: IPB costs for zig- zag transformation (mm2 ) 

Radix 4 FFT MMR MRR matchb. (R) MMA MRA matchb. (A) 
16 points 0.45 0.48 0.42 0.38 0.34 0.34 
64 points 0.90 0.94 0.96 0.91 0.76 0.94 

Table 5.5: IPB costs for radix 4 FFT (mm2) 
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From these tables it can be concluded that regular placement does not result 
in a significant rednetion in cost for the total intêr processor buffer. This is 
because aiming at a regular address sequence turns out to be rather expensive in 
memory cost, compared with the techniques of MATCHBOX. 
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Chapter 6 

Merging of IPBs 

To make a mor~ flexible IPB it is tried to merge different applications into one 
IPB. The archit-ecture that could be used for this merged IPB is one with a 
storage unit div:ded in different parts. Each part of this storage unit is used 
for a different application. Because regular placement aims at an as optima! as 
possible use of the run length delta architecture the merged IPBs with only this 
architectures for the address generators are compared. A possible architecture is 
shown in appendix F. In this architecture can beseen that the storage is divided 
in different parts. To address these different blocks in the storage unit, the start 
and end points of the blocks in the storage unit has to be stored. A control signal 
makes the selection of the start and end points belonging to a certain application. 
The camparator is used to determine if the end point is reached. If the end point 
is reached the counter will load the start point again. For each application the 
first run length has to be stored too, again the control signal determines which 
first runlength is used. 

6.1 Results MATCHBOX and regular place­
ment 

To compare the results of MATCHBOX and regular placement the number of 
entries in the run length delta storage units are compared. It is tries to make a 
multi application IPB for two sorts of applications, for matrix transposition and 
for radix 2 FFT. The results can beseen in the following tables. 
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Matrix traiU!iposition (Regular placement relative) I 
memory size = 83 

alg. size Write # entries Rel!.d # entries 
4 x 4 2 10 
8 x 4 2 18 
8 x 8 6 30 
4 x 16 4 18 

total 14 76 

Table 6.1: Matrix transposition 
regular placeDUent 

Matrix traiU!iposition (Absolute location assignment) I 
memory size - 55 

alg. size Write # entries Read # entries 
4 x 4 18 27 
8 x 4 39 37 
8 x 8 56 67 
4 x 16 74 71 

total 187 202 

Table 6.3: Matrix transposi­
tien absolute location asstgn­
DUent (MATCHBOX) 

Radix 2 FFT (Regula:r placement relative) 

memory size = 383 
alg. size Write # entries Read # entries 

256 points 34 2 
128 points 30 2 
64 points 26 2 
32 points 22 2 

total 112 8 

Table 6.5: Radix 2 FFT regular 
placeDUent 

CHAPTER 6. MERGING OF IPBS 

Matrix transposition (Relative loc. assignment) I 
memory 11ize = 51 

alg. size Write # entries Read # entries 
4 x 4 13 11 
8 x 4 30 37 
8x8 46 40 
4 x 16 64 57 

tot al 153 145 

Table 6.2: Matrix transposi­
tien relative location assigrunent 
(MATCHBOX) 

Matrix transposition (Counter addressing) 

memory size- 128 
alg. size Write # entries Read # entries 

4 x 4 2 17 
8 x 4 2 33 
8 x 8 2 33 
4 x 16 2 17 

total 8 100 

Table 6.4: Matrix transposition 
counter addressing (MATCH­

BOX) 

Radix 2 FFT (Relative loc. assignment) 

memory size = 255 
alg. size Write # entries Read # entries 

256 points 9 9 
128 points 8 8 
64 points 7 7 
32 points 6 6 

total 30 30 

Table 6.6: Radix 2 FFT relative 
location assignDUent (MATCH­

BOX) 
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Radix 2 FFT (Absolute 1ocation assignment 

memory size = 342 
alg. size Write :# entries Read :# entries 

256 points 1321 2300 
128 points 600 1002 
64 points 265 443 
32 points 124 189 

total 2310 3934 

Table 6.7: Radix 2 FFT absolute 
location assignment (MATCH­
BOX) 
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Radix 2 FFT (Counter addressing) 

memory size - 384 
alg. size Write :# entries Read :# entries 

256 points 2 2049 
128 points 2 898 
64 points 2 386 
32 points 2 161 

total 8 3494 

Table 6.8: Radix 2 FFT counter 
addressing (MATCHBOX) 

So we merge four sizes of an application into one IPB. The application with 
the most samples determines the memory size. In the Tables 6.5 till 6.4 can be 
seen that the techniques of PHIDEO are not capable of using the extra amount 
of memory, offered by the largest application, in order to rednee the number of 
entries in the storage unit for the smaller applications. Because all the techniques 
of PHIDEO aim at either minimum memory or minimal addressing hardware, a 
trade of between addressing cost and memory cost is not possible. Regular place­
ment can use this extra amount of memory. For the matrix transposition regular 
placement needs more memory than relative and absolute location assignment. 
But because of good use of the extra amount of memory it was possible to reduce 
the number of entries in the run length delta storage unit. For the Radix 2 FFT 
one can see that relative addressing will definitely result in the smallest solution, 
it not only needs the smallest memory size it also needs the fewest entries in 
the run length delta storage unit. Whether this merging with the use of regular 
placement will result in a area reduction is difficult to predict. This is because 
it is not known how large the overhead cost of the architecture will be and how 
much the merged storage unit can be minimized. This could be something for 
future research. 

6.2 Merging of N applications 

In the search for regularity a nice salution for a IPB for matrix transposition is 
found. This IPB is capable of handling all sizes of matrix transposition as long 
as the memory size allows it. The memory size needed can he derived when the 
matrix size is known. The deltas between the consecutive addresses can also be 
calculated when the matrix size is known, so no storage unit is needed any more. 

Looking at matrix transposition one can see that writing the samples in the 
memory in a regular way can be done as long as the memory is large enough. 
This can beseen in Figure 6.1 
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~~ 
Memory localion 

Figure 6.1: Storage of 25 samples in 25 memory locations 

In this example there are 25 samples and 25 memory locations. Writing with a 
regular address sequence is now possible but reading with a fully regular address 
sequence is not. A 5 differs from A 1 till A4. To solve this we just remove memory 
location 24 and store sample 24 in memory location zero. This is allowed when 
we assume that sample zero is read before sample 24 is written in the memory. 
The storage of the samples is now like in Figure 6.2. 

~~ 
Memory localion 

Figure 6.2: Storage of 25 samples in 24 memory locations 

One can see now that writing is done regularly ( with one delta) and reading 
is done regularly too (A 5 roodulo 24 equals A 1 till A 4). For the next frame 
the samples can be written in the memory with the delta used for reading the 
samples of the previous frame. The reading of the samples of this next frame can 
than be done again with a delta of one. So fora square matrices it hold that: 

Write(l) A= Dl 
Read(l) A = Rl 
Write(2) A = Rl 
Read(2) A= Dl 
Write(3) A = Dl 
Read(3) A= Rl 

These deltas can easily be calculated when the number of columns and the num­
ber of samples is known. Start with a write(l) A= Dl = 1. How Rl is calculated 
can be seen in Equation 6.1. 
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Rl = # columns x Dl (MOD B) 
with B = Number of samples - 1 
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(6.1) 

The start position of the write sequence is not the same every frame. lt is 
not possible to start on the same position every frame because lifetime clashes 
will occur than. However a good start address can be calculated so no life time 
clashes will occur. The start address is calculated with Equation 6.2. 

Start address = previous start address + previous Delta (MOD B) (6.2) 

For the five by five matrix transposition this results in the following deltas 
and start addresses: 

Ä nurnber Ä size start address 
0 1 0 
1 5 1 
2 1 6 
3 5 7 
4 1 12 
5 5 13 
6 1 18 
7 5 19 
8 1 0 

Table 6.9: deltas and start addresses for a 5 x 5 matrix 

For non square matrices the deltas are not the same after one write and one 
read but the calculation of the deltas is the same, see Equation 6.3 

~2 #columns x ~ 1 (MOD B) 
~3 #columns x ~ 2 (MOD B) 
~4 - #columns x ~ 3 (MOD B) (6.3) 
~5 - # columns x ~ 4 (MOD B) 
with B = Number of samples - 1 

As an example the deltas and start addrèsses for a 7 x 5 matrix transposition 
are shown in Table 6.10. After how many times the delta repeat is not interesting 
any more in this case because only the pervious delta and start address have to 
be stored. The next delta and start address can be calculated from these values. 
These deltas and start addresses are calculated with a UNIX script from which 
the souree code can be found in appendix G. 
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L\ number L\ size start address 

0 1 0 
1 5 1 
2 25 6 
3 23 31 
4 13 20 
5 31 33 
6 19 30 
7 27 15 
8 33 8 
9 29 7 

10 9 2 
11 11 11 
12 21 22 
13 3 9 
14 15 12 
15 7 27 
16 1 0 

Table 6.10: delta and start addresses for a 7 x 5 matrix 

The IPB basedon this addressing principle will be a parameterizable IPB. By 
giving the number of samples and the number of columns the addresses can be 
calculated. Again will the largest application determine the memory size of the 
IPB. 



Chapter 7 

Conclusions and 
recommendations 

With regular pl&,c.ement a trade off can be made between address generator cost 
and memory cost. Looking at the size of the total IPBs generated with regular 
placement one can conclude that regular placement does not offer a solution which 
results in a smaller IPB. When we look more closely to the results it appears that 
regular placement, is too expensive in memory costs. The amount of area gained 
by regularizing the addressing sequences is too small to realize a smaller IPB. 
Also one can see that although there is aimed at an optimal use of the run length 
delta architecture, MATCHBOX not always selects this architecture to generate the 
regular sequence, just because it is more expensive than the other architectures. 

For merging different applications into one IPB regular placement is a good 
technique. This because regular placement is capable of using the extra amount 
of memory to increase the regularity in one address sequence. This will result in 
less entries in the storage unit for the applications for which the used memory is 
oversized. 

The technique for making a paramerizable IPB for matrix transposition is a 
nice solution, but it is a manual solution, and it is only applicable for matrix 
transposition. So its a very dedicated solution. 

Overall we can conclude that the techniques and target architecturesof MATCH­

BOX cover the designspace very well. Regular placement adds an extra utility to 
these techniques. With regular placement the user can determine beforehand the 
amount of regularity in one address generator. Also the possibility to use over­
sized memories for increasing the regularity in the address sequence is a possibility 
offered by regular placement and not by the techniques of MATCHBOX. 

Further research is needed on the merging of applications in one IPB. Es­
pecially on the estimation of the needed chip area of the merged IPB. Also an 
investigation of a really programmabie IPBs is recommended. With programma­
bility we mean an architecture with a micro controller. The program of this micro 
controller should be derived from the high level description of the application. 
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Appendix A 

PIF 

A.l PIF description of matrix transposition 
tune input() out= inbut {0.0} [1]; 
tune output(in) = outbut {0.0} [1]; 

#define XSIZE 5 
#def ine YSIZE 5 
#define PERIOD 1 
#define GLOBAL PERIOD•XSIZE•YSIZE 

{GLOBAL} 

(1 : 0 .. YSIZE-1) {PERIOD*XSIZE} :: 
begin 

(c : 0 .. XSIZE-1) {PERIOD} .• 
begin 

{in} x [1] [e] = input 0 ; 
end; 

end; 

(c : 0 .. XSIZE-1) {PERIOD•YSIZE} :: 
begin 

(1 : 0 •. YSIZE-1) {PERIOD} •. 
begin 

{out} = output(x[l] [c]); 
end; 

end; 

Y. in = [0 ,] ; 
%out= [,2•GLOBAL]; 
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A.2 PIF descrition of 8 x 8 z~g-zag transfoma­
tion 

•define P 1 
"efine I 1 

infunc in {1} = inbuf [1]; 
outfunc out {1} = outbut [1]; 

signal a = 8; 

memory all = {1.0,1.0,0.0,0.0}; 

{I•P•64} 
(b : 0 •• 1-1) {8} :: 

(r : 0 .• 7) {S•I•P} .. 
( c : 0 .. 7) {P} :: 

{in} a[b][r)[c] =in() [0,0]; 

(b : 0 

{aOO} 
{aol} 

{alO} 
{a20} 
{all} 

{a02} 
{a03} 
{a12} 
{a21} 
{a30} 
{a40} 
{a31} 
{a22} 
{a13} 
{a04} 
{aOS} 
{a14} 
{a23} 
{a32} 
{a41} 
{aSO} 
{a60} 
{aSl} 

{a42} 
{a33} 
{a24} 
{alS} 
{a06} 
{a07} 
{a16} 
{a25} 

1-1) {64•P} :: 
begin 
= out(a[b) [0] [0]) [,J•P•64]; 
= out(a[b)[O][l]); Y. aOl- aOO = P•l; 
= out(a[b][l][O]); Y. alO- aOO = P•2; 
= out(a(b][2][0]); Y. a20- aOO = P•3; 
= out(a[b][1)[1]); Y. all- aOO = P•4; 
= out(a[b][0][2]); Y. a02- aOO = P•S; 
= out(a[b][0][3]); Y. a03- aOO = P•6; 
= out(a[b] [1] [2]); Y. a12 - aOO = P•7; 
= out(a[b][2][1]); Y. a21- aOO = P•8; 
= out(a[b][3][0]); ~ a30- aOO = P•9; 
= out(a[b][4][0]); ~ a40- aOO = P•lO; 
= out(a[b][3][1]); ~ a31- aOO = P•11; 
= out(a[b)[2][2]); ~ a22 - aOO = P•12; 
= out(a[b)[1][3]); Y. a13 - aOO = P•13; 
= out(a[b][O] [4]); ~ a04- aOO = P•14; 
= out(a(b][O] [5]); Y, aOS- aOO = P•lS; 
= out(a[b][1][4]); Y. a14- aoo = P•16; 
= out(a[b][2][3]); Y. a23 - aOO = P•17; 
= out(a[b][3][2]); Y. a32- aOO = P•18; 
= out (a[b] [4] [1]); Y. a41 - aOO = P•19; 
= out(a[b] [S] [0]) i Y, aSO - aOO = P•20; 
= out(a[b] [6][0]); Y. a60- aOO = P•21; 
= out(a[b][S] [1]); Y. aS1- aOO = P•22; 
= out(a[b][4] [2]); Y. a42- aOO = P•23; 
= out(a[b][3][3]); Y. a33- aOO = P•24; 
= out(a[b][2][4]); Y. a24- aOO = P•2S; 
= out(a[b][l][S]); Y. alS- aOO = P•26; 
= out(a[b][0](6]); Y. a06- aOO = P•27; 
= out(a[b][0][7]); Y. a07- aOO = P•28; 
= out(a[b][1](6]); Y. a16- aOO = P•29; 
= out(a[b] [2](5]); Y. a25- aOO = P•30; 
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{a34} 
{a43} 
{a52} 
{a61} 
{a70} 
{a71} 
{a62} 
{aS3} 
{a44} 
{a36} 
{a26} 
{a17} 
{a27} 
{a36} 
{a4S} 
{a54} 
{a63} 
{a72} 
{a73} 
{a64} 
{aSS} 
{a46} 
{a37} 
{a47} 
{a56} 
{a65} 
{a74} 
{a75} 
{a66} 
{a57} 
{a67} 
{a76} 
{a77} 

= out(a[b][3] [4)); Y. a34- aOO = P*31; 
= out(a[b)[4][3]); Y. a43- aOO = P*32; 
= out(a[b)[5)[2]); Y. a52- aOO = P•33; 
= out(a[b][6][1]); Y. a61- aOO = P•34; 
= out(a[b)[7][0]); Y. a70- aOO = P•35; 
= out(a[b][7)[1)); Y. a71- aOO = P•36; 
= out(a[b)[6)[2)); Y. a62- .aOO = P*37; 
= out(a[b)[5][3)); Y. aS3- aOO = P•38; 
= out(a[b)[4)[4]); Y. a44- aOO = P•39; 
= out(a[b)[3)[5]); Y. a36- aOO = P•40; 
= out(a[b][2)[6]); Y. a26- aOO = P*41; 
= out(a[b)[1][7]); Y. a17- aOO = P•42; 
= out(a[b) [2] [7] ); Y. a27 - aOO = P•43; 
= out(a[b] [3] [6]); Y. a36 - aOO "' P*44; 
= out(a[b][4)[5]); Y. a45- aOO = P•45; 
= out(a[b][5)[4]); Y. a54- aOO"' P•46; 
= out(4[b][6][3]); Y. a63- aOO = P•47; 
= out(a(b][7][2]); Y. a72- aOO = P*48; 
= out(a[b)[7][3]); Y. a73- aOO"' P*49; 
= out(a[b][6][4]); Y. a64- aOO = P•SO; 
= out(a[b] [5] [6]); Y. aSS - aOO = P•51; 
= out(a[b][4][6]); Y. a46- aOO = P•S2; 
= out(a[b][3][7]); Y. a37- aOO = P•S3; 
= out(a[b][4][7]); Y. a47- aOO = P*54; 
= out (a [b] [5] [6]); Y. a56 - aOO = P•SS; 
= out(a[b][6][5]); Y. a65- aOO = P•S6; 
= out(a[b][7][4]); Y. a74- aOO = P•S7; 
= out(a[b][7][5]); Y. a75- aOO = P•SS; 
= out(a[b][6][6]); Y. a66- aOO = P*S9; 
= out(a[b][S][7]); Y. a57- aOO = P*60; 
= out(a[b][6][7]); Y. a67- aOO = P*61; 
= out(a[b][7][6]); Y. a76- aOO = P•62; 
= out(a[b][7][7]); Y. a77- aOO = P*63; 
end; 

Y. a = all; 
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A.3 PIF desrciption of 4 x 4 left turning spiral 
func input() out= inbuf {0.0} [1]; 
func output(in) = outbuf {0.0} [1]; 

#define XSIZE 4 
#define YSIZE 4 
#define PERIOD 1 
#define GLOBAL PERIOD•XSIZE•YSIZE 

{GLOBAL} 

{in} 

{out_1} 
{out_2} 

{out_3} 

{out_4} 

{out_5} 

{out_6} 

{out_7} 

{out_S} 

(1 : 0 .. YSIZE-1) {PERIOD•XSIZE} :: 
begin 

end; 

= 
= 

(c : 0 .. XSIZE-1) {PERIOD} .. 
begin 

x[l] [c] =input(); 
end; 

output(x[2] [2]); 
output (x [2] [1]) ; 

%out_2 -out_1 = 1; 
= output (x [1] [1]) ; 
%out_3 -out_1 = 2; 
= output(x[1][2]); 
%out_4 -out_1 = 3; 
= output(x[1][3]); 
%out_5 -out_1 = 4; 
= output(x[2][3]); 
%out_6 -out_1 = 5; 
= output (x [3] [3]); 
%out_7 -out_1 = 6; 
= output(x[3][2]); 
%out_8 -out_1 = 7; 

{out_9} = output(x[3][1]); 
%out_9 -out_1 = 8; 

{out_10} = output(x[3][0]); 
%out_10 -out_1 = 9; 

{out_11} = output(x[2][0]); 
%out_11 -out_1 = 10; 

{out_12} = output(x[1][0]); 
%out_12 -out_1 = 11; 

{out_13} = output(x[O][O]); 
%out_13 -out_1 = 12; 

{out_14} = output(x[0][1]); 
%out_14 -out_1 = 13; 

{out_15} = output(x[0][2]); 
%out_15 -out_1 = 14; 

{out_16} = output (x [0] [3]); 
%out_16 -out_1 = 15; 

% in = [0 ,] ; 
% out_1 = [,2•GLOBAL]; 



A.4. PIF DESCRIPTION OF RADIX 2 FFT 

A.4 PIF description of radix ~ FFT 
#de1ine P 1 
#define I 256 
#define STAGES 8 

func input() out: {P} inbuf {0.0} [1]; 
func output(in) = {P} outbuf {0.0} [1]; 
func add(in1,in2) out= {P} alu {1.0} [1]; 
func sub(in1,in2) out= {P} alu {1.0} [1]; 

signal x = 8; 

memory mem = {1.0,1.0,0.0,0.0}; 

{(STAGES+l)*fi*P} 

(i : 0 1-1 ) U•P} :: 
begin 

{in} x[O] [i] = input() [0,]; 
end; 

( s: 1 .. STAGES) {I•P} :: 
begin 

(i : 0 .. 1/2-1) {2•P} :: 
begin 

{sl} x[s] [2•i] = add(x[s-l][i],x[s-l][i+<fi/2>]); 
{s2} x[s](2*i+1] = sub(x[s-1](i],x(s-1](i+<l/2>]); 

end; 
end; 

(i : 0 .. fi-1 ) {l*P} :: 
begin 

{out} = output(x[STAGES][i]) [,2•STAGES*fi*P]; 
end; 

Y. sl - in >= I•P; 
Y. s2 - in >= I•P; 
Y. out- s2 >= STAGES•I•P-1; 
Y. out - s1 >= STAGES•I•P-1; 
Y. s2 - s1 = P; 

Y. in -> out = mem; 
Y. out <- in = mem; 
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A.5 PIF description of radix _4 FFT 
tdefine P 1 
#define I 64 
tdefine STAGES 3 

func input(} out = {P} inbuf {0.0} [1]; 
func output(in} = {P} outbuf {0.0} [1]; 
tune butterfly (11,12{1},13{2},14{3}) o1{12},o2{13},o3{14},o4{15} = alu 

s1gnal x = 8; 

{(2*STAGES+2)*B*P+8} 

(i : 0 •• 1-1) {P} :: 
{in} x[O] [1] = input() [0,]; 

{s} 

( s : 1 .. STAGES} {2*1*P} .. 
begin 

end; 

(i : 0 .. 114-1) {S•P} .. 
begin 

end; 

x[s][4•i], I• outl•l 
x[s][4•i+1], I* out2•1 
x[s][4•i+2], I• out3•1 
x[s][4•i+3] = I• out4•1 
butterfly( 

x[s-1] [i], I• in1•1 
x[s-1][i+<ll2>], I• in2•1 
x[s-1][i+<ll4>], I• in3•1 
x[s-1] [i+<3•(114)>] I• in4•1 
) ; 

(i : 0 .. B-1} {P} :: 
begin 

{out} = output(x[STAGES][i]} [,4•STAGES*I*P]; 
end; 

Y. s - in >= I*P; 
% out - s >= 2•STAGES*I*P+8; 

{1.0} [1]; 



Appendix B 

Regular placement program 

The regular placement program is called by : 

rp [life time file] 

The life time file syntax is like: 

<framelength> 
<sample name> <write timepoint> <read timepoint> 
<sample name> <write timepoint> <read timepoint> 

When the program is exucuted several questions are asked. Which options are 
set by which answers will be explaned next. 

rp [lifetime file] 

calculate minimal memory size 1 (1 = yes I 0. = no) 

By answering yes here the Mlowb and some other values which play no futher role 
in the program will be calculated, M 1owb is nessecary w hen binairy search through 
the memory is whished. 
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relative (1) or absolute (0) add ? (011) 

Here the choice is made between relative or absolute location assignment. When 
absolute location assignment is selected the program determines whether it is 
nessecary to expand the frame. If expansion is needed the program has to be 
started again with the expanded data schedule which is generated by the program. 
This expanded data schedule can be found in the file [life time file].exp. For 
relative location assignment expansion is never needed. 

regularize on read side? (1= yes I 0 = no ) 

Ifyes is selected here the program will try to regularize the read address generator. 

linear or binary search through mem sizes ? (0 = bin I 1 = lin) 

lineair or binairy search selection. 

give start size memory 
give max seq length : 
min seq length fixed ? (0= no I 1 = yes) 
give min seq length : 
lin seq derc. (1) or single step(O) (110) ? 

With these questions the user can determine the amount of regularity in the 
address sequence and the amount of memory sizes that is checked. By setting the 
non fixed option for the minimum sequence length every regular sequence will be 
at least half of the number of non placed samples. With this option the minimum 
sequence length should be half of number of samples and the maximun should 
be equal to the number of samples. With last option "lin seq derc. or single 
step" one can choose between shortening the placed sequence one at a time or in 
one step to the minimum sequence length. The single step option increases the 
compution speed. 

During the execution of the program the placing and removing of the samples 
in the memory can be shown on a grapical display. 

This files generated by the regular placement program are: XXX stand for 
the name of the life time file. 

• XXX.exp: contains the expanded life time file. 

• XXX.opt : contains the results of regular placement. 

• XXX.plar: contains the PLA filling for the run lenth delta storage unit for 
the read address generator. 

• XXX.plaw : contains the PLA filling for the run lenth delta storage unit 
for the write address generator. 
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• XXX..mbox.read : contains the data schedule with addresses resulting from 
regularizing the read address generator. · 

• XXX..mbox.write: contains the data schedule with addresses resulting from 
regularizing the write address generator. 

The "..mbox" files are the input file for MATCHBOX. In that way an estimate 
of the IPB area cost can be made. To call MATCHBOX just type matchbox -hg 
[XXX..mbox.read) or matchbox -hg [XXX..mbox. write) 
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Appendix C 

• Matchbox memory stzes 

In this appendix the memory sizes needed in the IPBs for the different techniques 
of PHIDEO are pTesented. The meaning of the abbreviations used in the different 
tables: 

relative = relative location assignment 
absolute = absolute location assignment 
counter = counter addressing 
#memory loc. = Number of memory locations 
memory size = Size of the memory with '#memory loc.' locations in mm2 

application tech.n.ique # memory loc. memory size 
matrix relative 51 0.33 
8 x 8 absolute 55 0.36 

counter 128 0.81 
matrix relative 23 0.16 
8 x 4 absolute 25 0.17 

counter 64 0.42 
matrix rela.tive 47 0.31 
4 x 16 absolute 53 0.35 

counter 128 0.81 
matrix rela.tive 11 0.09 
4 x 4 absolute 12 0.09 

counter 32 0.22 

application tech.n.ique #memory loc. memory size 
Radix 2 FFT relative 31 0.21 

32 points absolute 43 0.29 
counter 48 0.32 

Radix 2 FFT relative 63 0.41 
64 points absolute 84 0.54 

counter 94 0.60 
Radix 2 FFT relative 127 0.81 

128 points absolute 169 1.07 
counter 205 1.29 

Radix 2 FFT relative 255 1.60 
256 points absolute 342 2.14 

counter 384 2.40 
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applica.tion techn.ique # memory loc. memory size 
Radix 4 FFT rela.tive 16 0.12 

16 point absolute 17 0.12 
counter 23 0.16 

Radix 4 FFT ve 64 0.42 
64 point absolute 107 0.48 

counter 174 0.68 

application techn.ique # memory loc. memory size 
zig- z.a.g rela.tive 16 0.12 
6X6 absolute 18 0.13 

counter 36 0.24 
zig-zag rela.tive 29 0.20 

8 x 8 absolute 33 0.22 
counter 64 0.42 

applica.tion techn.ique # memory loc. memory size 
spiral left relative 24 0.17 

6 )( 6 absolute 28 0.19 
counter 72 0.46 

spiral left relative 12 0.09 
4 x 4 absolute 13 0.10 

counter 32 0.22 



Appendix D 

Matchbox address generator 
• SIZeS 

In this appendix the results of MATCHBOX are shown. The meaning of the dif­
ferent abbrevitions used in the different tables: 

T = U sed Technique 
R = Relative location assignment 
A = Absolute location assignment 
C = GJunter addressing 
Co = GJunter architecture 
AT = Address Table architecture 
DT = Delta Table architeture 
DTM = Delta Table architeture with Modulo hardware 
RDT = Run length Delta Table architecture 
RDTM = Run Length Delta Table architecture with Modulo hardware 
bm = Number of entries in the run length delta PLA before minimasation 
am = Number of entries in the run length delta PLA afther minimasation 
S = Size of the address generator in mm2 

Writ~ &ddresa l'eneat.or sizes. 
&Pl>L T AT DT~DM MT 

RDTM 
bm am s bm am am S~ S bm am 

ma.trix 1:(. <10 0.20 46 3!> 
8 )( 8 A l:l8 109 0.19 I:Z8 n o::zr '06 0!) 

tn&UlX R 29 0.1 ao 28 
8 )( f A llf u O.l~ 84 . ., 10 :.14 o. 39 21 

c 
mans x R 64 49 0.20 64 ó2 
f )( 16 A 128 94 0.18 128 66 0.19 n -n ~ H lló 

'-
matrut R I I 16 11 0.12 13 11 
' )( 4 A "" :l:l 0.09 .,, 18 0.11 2 16 O.H 18 13 

-T 
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s 
o .•• 

1).26 

0.17 
-0.:.< 

0.20 
0.28 

0.13 
0.16 

Co 
s 

1},1} 

0.06 

u.O 

0.05 
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Rea.d a.ddreu f'tmea.tor sJzn 
appl. AT D' D'cM lUJT lUJTM <.: 

bm am ::; bm &m s l>m &m sq::: &m s l>m am s s .. " .. m 64 ·~ 
0.20 40 116 0.22 

8 x 8 1 z• 103 0.1• l23 66 0.111 611 u.<! " D!O u.<6 
128 127 0.20 128 7 0.16 llll 1 , .. , 0.<2 

Dl&tri~ 32 30 0.17 30 29 0.18 

11 X 4 M u 0.13 64 28 o.u (0 llll 0.16 ll :lil 0.19 ... "" u.H ... " u.H u 8 0.16 llll 8 0.19 
m&1TIX 1<. 64 52 0.20 57 62 0.22 
• )( 16 A u .. 9( 0.11! ne 6lt u.18 

~9 
2 

!!"··~ 
1 61 0.26 

<.: ue 12< 0.20 na 0.16 17 0.1 1 11 .... 
matr1x R 0.12 11 10 o.u 
4 )( 4 A ll:l n 0.0\1 32 20 o. I ;us 0.12 ~· "" .1<> 

ç ... ' lil 0. ... D u ..• 6 o. 13 [7 6 0.1 

'!_rue &d~_!ess 1en~ator stzea 
appl. A D' D':M lUJT lUJTM 

bm am s bm &m s bm am bm ""' s bm &m s 
R&. 2 R 192 3! 6 6 0.1 

~ FFT ~. 192 1 4 0,23 111< 11.• 0.23 ~~ 109 0.25 12t 

~ 32 p. c 
R&. 2 R H8 43 
FFT A H8 406 O.H 448 2: 1 I u.lll> 26 236 0.41 266 ~9 

lH p. 
R&. 2 
FFT 

128 p. 
R" 2 
FFT 

256 p. 

&ppl. 

Ra. 4 
FFT 
16 p, 
Ra. 4 
FFT 
64 p. 

It... 4 
FFT 
16 p. 

~" 4 
FFT 
6( p. 

L 

K 1024 67 0.28 8 8 0.23 
A 1un ""· ·'" IU:l4 = .1>6 !>\JU u u "·"" !>UU _!.4U u.'la 
L 

~ 2304 73 o.u 9 9 0.27 
A 2304 2061 ).18 2304 LltOl 1.1' 132: llll 1.31 1321 L 10 1.43 
c 

Write addteu ~:e.ne.a.•or sizes 
T AT DT 

~DTM~ 
RDT l .lL M c 

bm am l) om am 

u.~~ :r: s m 
am s 

ffi{~ 
s s ... 0.17 

A • ll .. 0.13 •e 33 31 U.l 0.20 
(.; v.u~ 

R 256 ~u 0.28 193 94 0.30 
_ A, Zl:>6 _ ~u .I. ~"" H>l _U.~6 189 }~; V.3ol "'~ 

,.,. v.~, 

(.; o.o. 

•e H 0.13 48 20 O.U ~6 20 0.16 a3 }U 0.19 
R 256 103 0.26 2:06 103 0.26 

(;. 266 162 0.28 :.1.!>6 16 0,19 1"0 "" U.<. 1113 O.l3 

c 
s 

0.06 

o.o· 

0.08 

u.u. 
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WrJte a.ddreu &eneator 11~ei 
&ppl. .. ·~ AT DTM H.D1 >TM 

bm &m s bm &m s bm am s bm &m s bm &m s s 
zi& ·za& R 36 32 0.16 36 32 0.16 

6 x 6 A 36 32 0.12 36 23 .14 22 ;<U 0.16 21 1 0.19 
c 0.06 

Zi« · B&« R 64 &8 0.19 62 60 0.19 
8 x 8 A 64 6 0.14 64 36 .16 as a2 0.19 34 •2 u.23 

0.06 

Rea.d a.ddreaa cenea~or size:J 
&ppl. A D' D' M IUJT RD':M c 

bm am s bm am s bm &m s bm &m -~ bm am s s 
•i«- Z&« R 36 33 u.a as 3; u.1ó 

6 x 6 A 36 32 0.12 36 30 0.14 32 zv 0.14 30 :15 0.18 
c 36 3ó 0.13 36 22 0.16 zo 16 0.16 18 16 0.20 

zig · za& R 64 &8 0.19 62 69 0.19 
8 )( 8 A 64 61 0.14 64 &2 0.16 48 43 0.1 4 42 0.21 

'- 64 63 0.14 64 38 0.16 26 zO 0.16 26 20 .zo 

Write a.ddress &:eneator aizes 
appl. A UT u· M .IUJT .IUJ'l'M c 

bm am s bm am ~ bm am ~ bm am s bm am s s 
Spiral l•fl R 36 31 0.1 3:1 30 0.1 

6 x 6 A 16 6< O.lb ,. _1. U.l6 10 1. U. lV 10 1. u.u 
c o.u 

Spnal l•fl _K 16 13 0.12 16 13 0.12 
4 x 4 A 32 28 0.10 32 18 0.11 20 16 0.14 20 16 0.16 

O.Oó 

Rea.d address 1ene-ator aize:s 
appl T AT DT DTM RDT RDTM c 

bm am s bm am ~ bm am s bm am s bm am s s 
Spiral left K "" " u. "" •• 0.18 

6 x 6 A 72 6' O.lb 16 64 u. b6 bU u.: b6 bl u.-.u 
\.- ,. 72 46 0.19 Zó •o U.Le •o •o 0.22 

Spnal left R 16 12 0.12 16 12 0.12 
4 )( 4 A 32 21 u.uv •• Zb u.1 20 ... U.lll 26 ... u. lb 

c 32 31 0.1 32 13 0.12 l ll 0.13 I' U.l 
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Appendix E 

Result regular placement 

In this appendix the results of regular placement are shown. The meaning of the 
different abbrevitions used in the different tables: 

MMR = Minimal memory Memory with Relative location assignment 
MRR = Maximal Regularity with Relative location assignment 
MMA = Minimal memory Memory with Absolute location assignment 
MRA = Maximal Regularity with Absolute location assignment 
Co = Counter archtecture 
AT = Address Table architecture 
DT = Delta Table architeture 
DTM = Delta Table architeture with Modulo hardware 
RDT = Run length Delta Table architecture 
RDTM = Run length Delta Table architecture with Modulo hardware 

matrix transposition 
si ze Teclu1. write add. read add. memory 

arch. si ze arch. si ze :#loc. si ze 
4x4 MMR DT~ 0.12 DTM 0.12 13 0.10 
4x4 MRR RDT 0.13 DTM 0.14 19 0.14 
4X4 MMA AT 0.10 AT 0.10 15 0.11 
4X4 MRA Co 0.05 AT 0.11 32 0.22 
8x4 MMR RDTM 0.15 DTM 0.17 43 0.29 
8X4 MRR DTM 0.17 DTM 0.18 35 0.24 
8X4 MMA AT 0.14 AT 0.14 43 0.29 
8x4 MRA Co 0.06 DT 0.14 64 0.42 
8x8 MMR DTM 0.20 DTM 0.21 83 0.53 
8X8 MRR RDTM 0.18 DTM 0.20 99 0.63 
8x8 MMA DT 0.16 _DT 

Fi 
63 0.41 

8x8 MRA Co 0.07 DT 128 0.81 
4 x 16 MMR DTM 0.21 lJTM 78 0.50 
4 x 16 MRR RDTM 0.18 DTM 0.20. 91 0.58 
4 x 16 MMA DT 0.17 DT 0.19 95 0.61 
4 x 16 MRA Co 0.07 DT 0.16 128 0.81 
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Radix 2 FFT 
si ze Teclu1. write add. read add. memory 

~Ou 
areh. 

fr 
#loc. si ze 

32 points MMR 0.21 DTM 47 0.31 
32 points MRR 0.21 RUTM 0.19 47 0.31 
32 points MMA 0.18 RDT 0.17 47 0.31 
32 points MRA ROT 0.18 Co 0.06 48 0.32 
64 points MMR ROTM 0.24 ROTM 0.21 ±=95 0.61 
64 points MRR RDTM 0.24 ROTM 0.21 95 0.61 
64 points MMA ROT 0.21 Co 0.07 95 0.61 
64 points MRA ROT 0.21 Co 0.07 95 0.61 

128 points MMR DTM 0.27 RDTM 0.27 191 1.20 
128 points MRR RDTM 0.27 RDTM 0.24 191 1.20 
128 points MMA RUT 0.23 RUT 0.21 191 w.:1 128 points MRA ROT 0.23 Co 0.08 205 
256 pomts MMR ROTM 0.21 RDTM 0.30 383 2.39 
256 points MRR RDTM 0.18 RDTM 0.28 383 2.39 
256 points MMA RDT 0.17 Co 0.08 384 2.40 
256 points MRA ROT 0.07 Co 0.08 384 2.40 

Spiralleft turning 
si ze Teclm. write add. read add. 

arch. si ze 
4X4 MMR OTM 0.14 
4X4 MRR DTM 0.14 
4X4 MMA AT 0.11 
4X4 MRA Co AT 0.19 
6x6 MMR DTM TM 0.18 
6x6 MRR ROTM 0.16 RDTM 0.17 
6x6 MMA OT 0.16 AT 0.16 
6X6 MRA Co 0.07 AT 0.17 

Zig - zag transformation 
si ze Teclm. write add. read add. memory 

~ 
arch. 

~ 
si ze 

8x8 MMR DTM 0.30 
8X8 MRR DTM 0.36 
8X8 MMA AT 0.14 AT 0.14 46 0.30 
8X8 MRA Co 0.06 AT 0.14 64 0.42 
6x6 MMR DTM 0.17 DTM 0.17 23 0.16 
6X6 MRR ROTM 0.15 RDTM 0.17 25 0.17 
6x6 MMA AT 0.12 AT 0.12 21 0.15 
6x6 MRA Co 0.06 AT 0.13 36 0.24 

Radix 4 FFT 
si ze Teclm. write add. read add. memory 

1 arch. si ze ar eh. si ze #loc. si ze 
16 points MMR DTM 0.17 OTM 0.16 17 0.12 
16 points MRR OTM 0.17 ROTM 0.1.5 23 0.16 
16 points MMA AT 0.13 RDT 0.13 17 0.12 
16 points MRA AT 0.13 Co 0.05 23 0.16 
64 points MMR OTM 0.25 DTM 0.23 

87* 64 points MRR DTM 0.23 ROTM 0.21 105 50 
64 points MMA ROT 0.24 87 
64 points MRA DT 0.19 Co 0.07 105 1 o.5o 
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archtecture merged IPB 

r----------1 counter I 

IMIJXA· 
fOif"""'*.lll­
llif-.t.ll-.licorry 
llif•-1(....-y.t.-) 

I r======9 
I 

-----------------, counter2 

MUXC· 
Od·~.t.b­

ld•....W..llr_.t._ 
ld•....W..lb_ .. _ 

MUXC 

I ·-l 

I 
I 
I 
I 
I 
I 
I 
I 

t __________________ J 

Algorilhm4 

Algoridlm3 

Algorilhm 2 

Figure F.l: Architecture for multi algorithm IPB 
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Appendix G 

Unix script 

This script determines the consecutive delta and start addresses for matrix trans­
position. 

#!/bin/ksh 
r=O 
c=O 
case $# in 

2) r=$1 
c=$2 

' , 
•) echo "Usage: calcrep <rovs> <cols>" 

exit; ; 
esac 

p=O 
i=O 
d=1 
s=O 
((m=(r*c)-1)) 
vhile (((s != m) I I (i == 0) )) 

do 
echo "d 11 $i" = "$d "st add ="$s 
((s=s+d)) 

done 

if ((s > m)) 

then 
((s = s - m)) 

fi 
((k=(d•c)/m)) 
((d=(d•c)-(k*m))) 
((i=i+1)) 

echo "d"$i" = "$d 
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