
 Eindhoven University of Technology

MASTER

Optimization of inter processor buffers using regular location assignment.

van Bladel, F.M.A.M.

Award date:
1993

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/4965e970-fbaf-4ee1-90ec-39079899ad6b

Optimization of inter processor buffers
using regular location assignment

By : F.M.AM van Bladel

Master thesis on a project at the Philips Research Laboratorles in Eindhoven under
supervision of:

Prof. dr. ing JAG. Jess

Coach (university) ~ Dr. ir. J. van Eijndhoven
Coach (Philips) :Dr. ir. J.L van Meerbergen
Coach (Philips) :Ir. P. Lippens

The department of electrical engineering of the Eindhoven university of technology
does not accept any responsibility for the contents of student reports and master
theses.

Abstract

Looking at a VLSI chip one can distinguish different kinds of recourses. There
are arithmetic- buffer- and control units and interconnection. The arithmetic
units can he designed in a very short time with the use of a silicon compiler like
PIRAMID or PHIDEO. During the design of these units little attention is payed to
the communication problems that may arise between different arithmetic units.
To solve these problems inter processor buffers (IPBs) are used. These IPBs can
he designed with tools like ESPA or MATCHBOX. This report focuses on the
techniques used by the tooi MATCHBOX.

The techniques used by MATCHBOX are presented and compared with a new
technique called regular placement. This regular placement technique a.ims at
reducing the area used for address generation in the IPB. This is done by assigning
locations to samples is such a way that the address sequences become regular.

For different kind of applications IPBs are generated with regular placement
and the techniques from MATCHBOX. It appeared that regular placement did
not result in a significant reduction in area costs, when the IPB was designed for
only one application. For these IPBs the techniques and target architectures of
MATCHBOX will cover the design space very well. But when IPBs are designed
to handle more than one application regular placement is a good technique for
reducing the size of this merged IPB.

Contents

1 Introduetion

2 MATCHBOX
2.1 Absolute location assignment
2.2 Counter addressing
2.3 Relative location assignment .
2.4 Target architectures

2.4.1 The counter architecture
2.4.2 The address table architecture .
2.4.3 The delta table architecture ..
2.4.4 The run length delta table architecture

3 Regular placement
3.1 The salution space of regular placement .

3.1.1 Salution space exploration

4 Test applications
4.1 Matrix transposition
4.2 Zig-zag transformation
4.3 Spiralleft turning . . .
4.4 Radix 2 Fast Fourier Transformation
4.5 Radix 4 Fast Fourier Transformation

5 Resulting IPBs
5.1 Results Matchbox

5.1.1 The memory sizes
5.1.2 The address generators .
5.1.3 The total cast of the inter processor buffers

5.2 Results regular placement

6 Merging of IPBs
6.1 Results MATCHBOX and regular placement
6.2 Merging of N applications

7 Conclusions and recommendations

1

3

7
9

12
14
16
16
17
18
20

23
25
27

35
35
36
37
37
38

39
39
39
39
40
41

45
45
47

51

2

A PIF
A.l PIF description of matrix transposition
A.2 PIF desention of 8 x 8 zig.zag transfomation
A.3 PIF desrciption of 4 x 4 left turning spiral
A.4 PIF description of radix 2 FFT
A.5 PIF description of radix 4 FFT

B Regular placement program

C Matchbox memory sizes

D Matchbox address generator sizes

E Result regular placement

F archtecture merged IPB

G U nix script

CONTENTS

53
53
54
56
57
58

59

63

65

69

71

73

Chapter 1

Introduetion

Looking at a VLSI chip different units which perfarm different tasks can be dis­
tinguished.

butTer units I
control units

Figure 1.1: The different units on a VLSI chip

The arithmetic units tagether with the buffer units make up the data path
which is controlled by the control units. The wiring is used to conneet the different
units together. The arithmetic units are the producers and consumers of the data.
With the use of a silicon compiler arithmetic units can be designed in a very short
time. For applications with a doek to sample rate ratio between 1 and 20 (high
throughput) the silicon compiler PHIDEO [2] is used. For applications with such
a ratio of 1000 or more (low throughput) PIRAMID [10] is used. Complex systems
however need more than one of these arithmetic units on one chip. During the
design of these units, PHIDEO and PIRAMID pay little or no attention to the
communication problems that may arise between these different arithmetic units.
To make the communication between two arithmetic units or between arithmetic
units and out si de world possible, inter processor buffers (IPBs) are used. These

3

4 CHAPTER 1. INTRODUCTION

IPBs can be designed with tools like EsPA and MATCHBOX. EsPA is used to
design IPBs for arithmetic units which are designed.with PIRAMID. MATCHBOX

is used for the design of IPBs which have to solve the communication problems
between arithmetic units of PHIDEO.

Because the arithmetic units are designed befare the IPBs are designed it is
known in what order and on which timepoints data is produced or consumed.
An IPB can beseen as a black box between two arithmetic units which input is
a certain stream of data (samples) and which output is delayed version of that
input. Where each sample can have a different delay.

ARI1'HMETlC

Figure 1.2: The inter processor buffer with its in and outputs

A sample can only be produced once but can be consumed multiple times. The
lifetime of a sample is the time between its production and its last consumption.
During this lifetime it has to be stared in the memory of the inter processor
buffer.

Figure 1.3 shows an example of an architecture at the chip level.

input

I
i .-----·- .. -'

arithmetic
WlJl

controller

input ---------~

i •- -.. _ .. _____ ,

Figure 1.3: multi arithmetic unit overview

Olllput

As can beseen in Figure 1.3, IPBs can be needed quite aften on a chip. That
is why it is relevant to reduce the size of these individual IPBs [3] [4] [5] [8] [9].
When a arithmetic unit is capable of executing different applications, a different
IPB is necessary for each application. Therefore merging different IPBs to one
IPB which is capable of coping with different applications is also an issue which
needs attention.

An inter processor buffer consists of a memory block and address generators
(Figure 1.4). In most of the cases two address generators are needed, one for

5

the read accesses and one for write accesses. But in s.ome cases these two address
generators can he merged together to one address gènerator which generates the
addresses both for the read and write accesses.

control - data out

>
~

Address address 0
generators ~

t:.t:l data in
, ~ ; ,

' " ' " ' ; ...
; ' , ...

" ...

control
counters ,...---..JL----,

Iogîc
STORAGE address

UNIT 1--+----

Figure 1.4: The inter processor buffer

The address generators consist of counters, some logic and a storage unit.
This storage unit can he a PLA a ROM or a standard cell implementation. In
this storage unit the information of which address has to he generated is stored.
Several different strategies exist to store this information. One can store the
actual addresses, the differences between consecutive addresses, or the runlength
of rows of the same deltas and the delta size. Which way of storing the addresses,
and what kind of storage unit is used, will he determined by the resulting size of
the address generator. The smallest salution will he selected.

But before the problem of address generation is under discussion we first have
to determine a place for all the samples in the memory in such a way that no
samples with overlapping lifetimes are stored in the same memory location.

The research has been focused primary on MATCHBOX. All the techniques
of MATCHBOX optimize either the memory cost or the addressing hardware cost.
But as a result of optimizing the one, the other has unpredictable cost. These
unpredictable cost turns out to he very high in some cases. The goal is, to find
a technique which makes a good trade off between memory cost and addressing
cost. An address generator will he relatively small when the addresses it has to
generatearein some way regular. To achieve that the samples have to he placed
in the memory in a regular way. This has to he done without to much extra
memory cost, otherwise the costof the total IPB will he too high.

The search for regularity in a address sequence can he done at different levels.
For example one can try to find regularity at the bit level of the address words
and aim to generate these bits with a counter, and try to re-use the bits of this
counter as much as possible [6]. Or one can try to find regularity at the word

6 CHAPTER 1. INTRODUCTION

level and try to generate the entire address word with a counter or an other
architecture. Both techniques are a subject of rese~ch at the Philips Nat. Lab.
This paper will deal with the search for regularity at the word level, and with the
consequences for memory and address generator size.

Another goal of the research was to develop a :flexible address generator. The
ultimate :flexible salution is a programmabie solution. In this way the behaviour
of the inter processor buffer can be changed by changing the program. The other
extreme in this view is the dedicated single application IPB. In between these two
extremes lies merging the IPB for a few applications. By making it possible to
use an inter processor buffer for multiple problems the chip area that is used by
these buffers can decrease because of the reuse of hardware resources. All these
different IPB have been subject of investigation.

In chapter 2 the techniques of MATCHBOX will be discussed. In chapter 3
the technique of regular placement will he explained and the different techniques
which are used to increase the quality of the results are discussed. Also some
techniques to reduce the computation time are presented here. In chapter 4 the
applications which are use in the tests are presented. In chapter 5 the results
of MATCHBOX and regular placement will he presented and the solutions will be
compared. In chapter 6 the merging of different application into one IPB will
be discussed. In chapter 7 conclusions will be drawn and some recommendations
will be provided.

Chapter 2

MATCHBOX

PHIDEO is a silicon compiler targeted at the design of high performance real time
systems with high sampling frequencies such as HDTV. lt supports the complete
design trajectoiy starting from a high level specification all the way down to
layout. At a certain point in this design traject the production and consump­
tion time points of samples and their souree and destination arithmetic units are
known. The problem is now to synthesize an architecture so that the area of
memories, address generators and interconnection hardware is minimized. This
task can he divided into two suh-tasks.

1. memory allocation :::;. MEDEA.

2. location assignment and address generation :::;. MATCHBOX.

The first step is memory allocation. Here the decision is made which samples
share the same memory. After this step it is exactly known how many memories
will he used and how the memories are connected to the arithmetic units. The
remaining problem is now to store the samples in the memories in such a way that
the size of the IPBs is minimized. The place of the samples in the memory and
the timepoints at which they are produced and consumed determine the sequence
of addresses that has to he generated. The list of timepoints and addresses is
called an address schedule. To determine an address schedule the data schedule
is used. A data schedule is a list of read and write timepoints of the different
samples.

Framelength - 5

I sample I Write timepoint I Read timepoint I
A 0 6
B 1 5
c 2 9
D 3 8
E 4 7

Tahle 2.1: A data schedule

7

8 CHAPTER 2. MATCHBOX

All applications whlch are used during Digital Signal Processing (DSP) have a
repetitive nature. That means that the data schedule repeats after a certain time.
One repetition of the data schedule is called a frame. The time one repetition
takes is called the frame length. lt is possible that a sample is read in a later
frame than the one in whlch it is written. Than it is said that the sample crosses
the frame boundary. With the use of the information from the data schedule a
lifetime diagram of the samples can be constructed. The lifetime diagram of the
samples for one repetition derived from the data schedule in Table 2.1 is shown
in Figure 2.1.

Figure 2.1: Lifetime diagram for one repetition

But the data schedule in Table 2.1 is repetitive and it also contains samples
whlch cross the frame boundary. That means that during one frame not only
the samples of the current frame can be alive but also samples from previous
frames. The samples from previous frames are called delayed versions of the
current samples. Thls is indicated with a '@1' suffix. The number in thls suffix
indicates how many frames ago the sample started li-v-ing. Figure 2.2 shows the
lifetimes during several frames.

Figure 2.2: Lifetimes of the samples during several frames

It can be seen that the pattern of lifetimes is t'be same every frame. So to
characterise the application it is enough to know the lifetimes during one frame.
The lifetimes during one frame can beseen in Figure 2.3.

2.1. ABSOLUTE LOCATION ASSIGNMENT 9

---RI.AM:El..ENCTil!-

- '"i'"
A

E@l I!] : E

mu.C!JT

Figure 2.3: Lifetimes of the samples during one frame

This lifetime diagram is used to determine the address schedule. When two
samples are never alive at the same time they can share the same memory lo­
cation. For the lifetime diagram that means that samples with non-overlapping
lifetimes can share the same location. When it is tried to store two samples with
overlapping lifetimes in the same location a lifetime clash occurs. An address
schedule which contains lifetime clashes is called 'not valid'. From the lifetime
diagram the minimum memory size which is necessary to store all the samples can
he derived. The minimum memory size equals the maximum cut of alive samples
in the life time diagram. This can he explained as follows. At the timepoint
where the cut is maxima!, there are for example 'X' samples alive. Because all
are alive at this timepoint they can not share the samememory location. So at
this point in time 'X' memory locations are necessary. This lower bound of the
memory size will he called M1owb· For the lifetime diagram from Figure 2.3 the
maximum number of samples which are alive simultaneously is five. A maximum
cut is indicated with the dotted line.

In the search fora valid address schedule which is cheap in area costs PHIDEO

evaluates three different techniques. These three techniques will he explained in
the follo\\"Ïng sections.

2.1 Absolute location assignment

Absolute location assignment is an assignment of memorylocations to the sam­
ples of a data schedule in such a way that each version of a sample is written
into the same memory location every frame. So aiter applying absolute location
assignment every sample has its own absolute address which stays the same every
frame. That is the reason why this technique is called absolute location assign­
ment. The location of a sample is independent of the frame. This is indicated in
Equation 2.1 where location(s,/) represents a function which assigns alocation
to samples during frame f L(s) represents alocation assignment function which
only depends on s.

location(s,f) = L(s) (2.1)

10 CHAPTER 2. MATCHBOX

Problems occur when there axe samples which lifetime is longer than the
framelength. For example samples 'C', 'D' in Figurè 2.1. In this case it is impos­
sibie to come up with a valid schedule. This is because of the restrietion that a
sample has to be written to the same memory location every frame. U sing this
restriction, sample C and its delayed version C@l have to be stored in the same
location, the same yields for sample D. But sample 'C@l' and 'D@l' axe not read
yet when 'C' and 'D' have to be stored again. A lifetime clash exists between 'C'
and 'C@l' and between 'D' and 'D@l'. Soit is not possible to store 'C@l' and
'C' or 'D@l' and 'D' in the same location. To solve this problem the frame length
is expanded. By expanding the frame length the new framelength becomes an
integer times the old framelength. The samples which axe staxting to live dur­
ing this new frame will be treated as different samples. So before expansion 'A'
and 'A@l' where the same samples only A@l is a delayed version of A. After
expansion they axe treated as different samples. This is indicated by changing
the names. For sample A this is shown in Table 2.2 for an expansion of two.

I old sample name I new sample name I
A A'

A@l A''
A@2 A'@l
A@3 A"@l

Table 2.2: Sample names before and after expansion

The number of expansions necessary equals the number of frames in which
the longest living sample is alive. This is shown in Equation 2.2.

. longest lifetime
N umber of expanswns = f f l h l

rame engt
(2.2)

For our example from Figure 2.3 an expansion of two will be enough. The
resulting data schedule after expansion can be seen in :fig 2.4.

2.1. ABSOLUTE LOCATION ASSIGNMENT 11

-oLDFRAMELENOTH-

Figure 2.4: Frame expansion for absolute location assignment

By expanding the frame length the charaderistics of the application are not
changed. Only the constraint that the address sequence has to be repetitive after
one frame is relaxed by increasing the framelength. N ow the address sequence
only has to be repetitive after N old frames, with N the number of expansions.
With this new lifetime diagram it is possible to find a valid schedule. The problem
that samples clash with their delayed versions is solved now, because there are no
samples left which lifetime is longer than the framelength. PHIDEO uses graph
colouring techniques to solve the problem of placing the samples without life time
clashes in an as small as possible memory. The graph that has to be coloured
is called a conflict graph. In this graph the different vertices are the samples.
An edge between two vertices exists, when the two samples have overlapping life
times. When the resulting graph is an interval graph, than the left edge algorithm
will be used, which runs in O(n log n} time [7) for n samples. This will result in a
minimal number of colours thus a memory size equal to Mtowb· When the graph is
not an interval graph but a circular are graph left edge cannot be used. Colouting
a circular are graph is known to be a NP-complete problem [11]. Consequently
no polynomial time algorithm is known that solves this problem. Furthermore
Tucker [12) proved that an optimal result Mcirc, found by an exhaustive algorithm
for example can be far from the lower bound Mtowb· In [12) Tucker shows circular
are graphs for which

Mcirc = 2 X Mtowb - 1 (2.3)

From the lifetime diagram can be derived whether the confiict graph will be
an interval graph or a circular are graph. H there is a timepoint during a frame
at which no sample is alive than the resulting graph will be an interval graph and
the left edge algorithm will be used to colour the graph. In the life time diagram
of Figure 2.4 there is no timepoint on which no sample is alive so graph colouring
with beuristics is used. This leads toa placement like in Figure 2.5.

12 CHAPTER 2. MATCHBOX

Figure 2.5: absolute location assignment resulting from graph colouring

The schedule is valid now but the comple:xity of the address sequence is not
taken into account. The resulting addressing sequences can heseen in Table 2.3

Time Write
Rea;!n 11 (doek cycle) location locati

0 0 2
1 1 x
2 2 x
3 3 5
4 4 4
5 x 1
6 x 0
7 1 4
8 0 x
9 5 x

10 4 2
11 2 3
12 x 0
13 x 1

Table 2.3: Addressing sequences absolute location assignment

In Table 2.3 the address sequences for one frame are shown. These are the
only sequences which have to he generated. The address sequences during the
other frames are a repetition of these sequences. The memory needed in this case
is larger than the minimum. When the frame has to he expanded the addressing
sequences are longer than the number of samples. Also by using graph colouring
no attention is payed to how difficult it wiJl he to generate these sequences. So
although absolute location assignment aims at an as small as possible memory
the cost of the total inter processor buffer can turn out to he high because of
excessive cost of address generation.

2.2 Counter addressing

Counter addressing is a kind of absolute location assignment. So the restrietion
that the delayed versions of a sample are stored in the same memory location
every frame still holds. The difference is that the samples are not placed wîth
graph colouring techniques but in such a way that the write address sequence can

2.2. COUNTER ADDRESSING 13

be generated with a counter. Because counter addressing is based on absolute
addressing it is possible that the frame has to be e:xPanded. Aiming at a counter
solution can sometimes result in a large memory, as shown in Figure 2.6 for the
application from Figure 2.2.

Figure 2.6: absolute location assignment for counter addressing

From Table 2.4 it follows that the write addressing sequence can be generated
with a counter which is very cheap. But the read sequence is still as hard to
generate as "';th absolute location assignment.

Time Write Re ad
(doek. cyde) location location

0 0 0
1 1 x
2 2 x
3 3 7
4 4 8
5 x 1
6 x 0
7 5 4
8 6 x
9 7 x
10 8 2
11 0 3
12 x 6
13 x 5

Table 2.4: Addressing sequences counter addressing

Because the lifetime diagram consist of a two times expanded frame, the ad­
dress sequence will still be twice as long as the number of samples. For the write
address generator this is not really a problem because the counter address gen­
erator will stay quite cheap. But for the read address generator holds the same
as for the address generators following from absolute location assignment. The
addressing hardware of the inter processor buffer generated with counter address­
ing will consist of a cheap write address generator and a read address generator

14 GRAPTER 2. MATCHBOX

which has cost comparable to the one generated with absolute addressing. But
because the memory needed for this counter technique is large in a lot of cases,
the total cost of the inter processor buffer can he high due to large memory cost.

2.3 Relative location assignment

In this case a pointer technique is used. This pointer is incremented every frame.
Relative to this pointer position the location of the different samples is the same.
This means that the absolute location of a sample in the memory is dependent
on the frame. This technique is only possible if the location calculations are
executed using modulo a.rithmetic. The absolute location of a sample sin frame
fis defined as :

location(s,f) = (P(f) + R(s))modM (2.4)

In this equation P(f) stands for the base location (pointer) which is updated
every frame. R(s) stands for the relative location of the sample. This location is
relative to the base location and is independent of the frame. Mis the size of the
memory. The pointer mechanism solves the problem that samples clash with their
own delayed versions, because in everyframe the samples will he storedindifferent
absolute locations. In Figure 2. 7 the result of relative location assignment for the
application of Figure 2.3 can he seen. To illustrate the principle three frames are
shown. One can see in Figure 2. 7 that because of the changing base pointer the
samples rotate through the memory.

FRAMEN-1 FRAMEN+l

Figure 2. 7: Result of relative 1ocation assignment

An interesting property is that it can he proven that a memory size of at
most M1QWb + 1 is necessary. To see this, one has to realize that there are two
equivalent ways to look at the problem. Assuming that M memory locations are
available.

• Select one frame (e.g frame 0) and discuss the location that is assigned to
every sample.

2.3. RELATNE LOCATION ASSIGNMENT 15

• Select on location {e.g location 0) and l,ook oyer M frames to discuss the
frame at which every sample is stored.

The role of time and place in the two cases is interchanged. These two points
of view contain the same information because the base location is updated (decre­
mented) every frame. When it is determined in which frame a sample is assigned
to location zero than the location of that same sample in frame zero can he calcu­
lated. To demonstrate this the place of the samples in the memory during several
frames is shown in Figure 2.8

Figure 2.8: Result of relative location assignment for several frames

From Figure 2.8 it can he concluded that the two viewpoints are indeed iden­
tical. So it is enough to concentrate on location zero and schedule the samples in
a efficient way in this location. This can he done by using the fi.rst fit algorithm.
The first fit technique tries to place the samples as close as possible together in
memory location zero. So the minimum amount of frames (memory locations) is
needed to store the samples. To come up with a placement with the variables as
close together as possible the algorithm starts with the sample with the earliest
write timepoint (sample A) followed by the sample with a write timepoint the
dosest to the read timepoint of sample A in this case sample B and so on until all
samples are placed. More information about relative location assignment can he
found in [1]. The advantage of relative location assignment is that the memory
cost will he low, as the memory needed is at most Mtowb + 1. Also the address
sequences that have to he generated during one frame are never longer than the
number of variables as is shown in Table 2.5. The address sequences during other
frames can easily he derived from these sequences, because they are just shifted
one or more places.

Time Write Read
doek cycle location location

0 0 0
1 1 x
2 2 x
3 3 3
4 4 4
s x 1
6 x 0

Table 2.5: Addressing sequences relative location assignment for frame 0

16 CHAPTER 2. MATCHBOX

On the other hand it is possible that the address sequence is so complex and
irregular that it leads to expensive address generators. Also, extra cost (in com­
parison to absolute and counter addressing) will be introduced by the modulo
hardware. Due to this, the overall cost of the IPB with relative location assign­
ment can be higher than when using counter or absolute location assignment.

The kind of architecture which is used for address generation can also in­
fiuence the size of the address generators. Therefore the target architectures of
MATCHBOX will be discussed.

2.4 Target architectures

To generate the different address sequences MATCHBOX has certain target archi­
tectures at its disposal. These architectures are :

• counter

• address table

• delta table

• run-length delta table

Each of these architectures has its own way of storing the information which
is necessary to generate the address sequence. Only the counter architecture has
no storage, it can only generate consecutive addresses like 0,1,2,3,4,5 etc. The
address table architecture has all the actual addresses stored in its storage unit.
This storage unit is addressed with a counter. The Delta table architecture has
only the differences between the different addresses stored in its storage unit. The
actual addresses are calculated from the previous address and the delta. In the
run length delta architecture the storage unit is used to store the number of the
same consecutive deltas (the run length) and the size of the delta. The actual
addresses are again calculated from the previous addresses and the deltas. In the
following sections the different architectures will be discussed in more detail.

2.4.1 The counter architecture

The counter architecture can only be used when the samples are placed in the
memory in such a way that they can be addressed with a counter. So when the
goal is to use a counter architecture as an address generator, it should be taken
into account during the assigning oflocations to the different·samples. It is always
possible to place the samples in such a way in the memory that the write address
generator can be realized by a counter. The counter architecture is not complex
and therefore very cheap and can beseen in Figure 2.9

2.40 TARGET ARCHITECTURES

MUXA:
0 if: !enable & ! reset
1 if: enable & ! reset & !carry
2 if: reset I (carry & enable)

register

enable
reset MUXA

2 1 0

s int

Figure 209: counter architecture

A 1

The architecture shown here is a down counter 0 it counts like:

M - 1 , M - 2 , 0.... , 0 , M - 1 , M - 2 ...

17

The architecture consists of a decrementor, a block with switch logic and a reg­
ister. The quantity start point, which is equal to the memory size minus one,
is known at compile time and can thus be stored locally. So the only control
signals which have to be generated by the controller, are reset and enable. The
down counter is preset every time address zero is generated. This can be easily
implemented using the carry flag of the decrem en tor. The enable signal is used
to obtain the next address. lf the enable signal is low the register will hold.

2.4.2 The address table architecture

When the samples are placed in the memory and the address sequences show no
regularity at the word level, than MATCHBOX will choose for an address look up
table. This method also uses a counter, but the output of this counter is now used
as the entry of a table in which the addresses are stored. The hardware is shown in
Figure 2.10. The table can be implemented with a ROM but when the addresses
show some modulo two regularity, at the bit level, it may be cheaper to replace
the ROM with a PLA. Because it than possible thát the PLA can be reduced
at lot. The counter is the same as used with counter addressing. The output of
the tableis latched in a register. The hardwired signa! start point determines the
address of the first table entry. This architecture can only be used for absolute
location assignment because for relative location assignment the actual addresses

18 CHAPTER 2. MATCHBOX

wi11 be different every frame. For small examples . the address table may be a
cheap solution but when the problems become larger the address look up table
can become large and expensive. In that case the other architectures may offer a
cheaper solution.

cnable
reset

r------------------,
1 counter 1 I

I MUXA:
I 0 if: ! c:oable & ! reset
1 1 if: enable & ! reset & lcany
1 2 if: reset I (carry & c:oable) ----,

I
I
I
I
I
I

L------------------~

cnable

ADDRESS
TABLE

Figure 2.10: Address table architecture

2.4.3 The delta table architecture

MUXB:
0 if: !enable & !reset
I if: reset
2 if: cnable & !reset

start addr

Another way to generate addresses is to store only the differences between two
subsequent addresses. The advantage of this is that the word width of the largest
delta wi11 be smaller than the word width of the largest address. So the storage
unit requires a smaller word with. The number of entries in the PLA wi11 be one
less than in an address table. On the other hand the hardware that is needed to
calculate the addresses wi11 introduce extra costs.

The architecture in case no modulo hardware is necessary (absolute location
assignment) is shown in Figure 2.11.

2.4. TARGET ARCHITECTURES

mable
reset

r------------------,
counter 1 I

I
I
I
I
I

MUXA:
0 if: lenab Ie & ! reset
I if: mable & ! reset & !carry
2 if: reset I (carry & c:oable)

register

.MUXA

L------------------

mable

DELTA
TABLE

19

0 if: !eoable & !reset
1 if: reset
2 if: eoable & !reset

start addr

Figure 2.11: Delta table address generator without modulo hardware

An adder is needed to add the difference to the previous address. This result is
stored in a register. The enable signalis used to step to the next address. A reset
is given at least once to synchronize the read and write address generator. The
delta table architecture can also be used to generate the addresses which result
from relative location assignment. The architecture has to be modified slightly
for it. The differences (Di) between the subsequent addresses can be calculated
as follows:

(2.5}

In this equation fis the frame number, s, is a sample that has to written or read
at timepoint i, s,_1 is a sample that has to be written or readon timepoint i-1.
loc is a function which assigns alocation toa sample in a partienlar frame. So
loc(s,, f) and loc(si-h f} are two consecutive addresses in time. The value M
equals the memory size, this modulo memory size operation is needed to exclude
negative deltas.

By using Equation 2.3 it follows

D, = ((P(f) + R(v,))modM- (P(f) + R(v,_I))modM)modM (2.6)

20 GRAPTER 2. MATCHBOX

In Equation 2. 7 can be seen that because of the pointer mechanism Di is in­
dependent of the frame number. From equation 2.7 it also follows that modulo
hardware is needed to calculate the differences. So to calculate an address from a
delta and a previous address it will also be necessary to use a modulo operation.
This modulo architecture can beseen in fig 2.12. The cost of this modulo hard­
ware is an extra cost which can be saved by using absolute location assignment.
It depends on the problem what turns out to be cheaper, the modulo hardware
or the frame expansion.

MUXB:
o if: !eaable & !reset
1 if: enable & !reset & !carry
2 if: enable & !reset & !carry

3 if: reset

M

start address

Figure 2.12: Modulo hardware for relative location assignment

The implementation of the pointer mechanism can be done in two ways. The
first is to implement the last delta one smaller than it actually should be. In this
case it notallowed to give more than one reset. The reset is only used to synchro­
nize the read and write address generator. The other way is to change the start
address every frame. In this case every frame a reset should be given. Changing
the start address every frame will be expensive in hardware, but implementing a
smaller last delta can lead to synchronisation problems between read and write
address generator.

2.4.4 The run length delta table architecture

When the delta sequence contains a long series of constant delta's the possibility
exists to store the runlength and the delta. This can be achieved with the ar­
chitecture shown in Figure 2.13. For this architecture holds the same as for the

2.4. TARGET ARCHITECTURES 21

delta table address generator. It is shown for absolute location assignment but it
can also he used for relative location assign.ment by adding the modulo hardware.

enable

enable
reset

r------------------,
counter 1 I

MUXA: l
0 if: lenable & I reset I
1 if: enable & 1 reset & ! carry I
2 if: reset I (carry & enable) I

I
I
I
I
I

r -----------------~ I counter 2
I
I
I MUXC:
I 0 if: lenable & !~t

I if: enable &. !reset&. laadrun
I 2 if: enable &. !reset&. !loadrun
I 3 ü: reset
I
I

I
I loadrun

I
I

MUXC

l-------------------

nm.lenglhs del!& ••

TABLE

Figure 2.13: The run length delta architecture without modulo hardware

This architecture needs some explanation because its operation is not as ob­
vious as it seems. Counter two counts down the run length for every difference.
When the carry out of this counter becomes active counter one is decremented
and the next run length is loaded into counter two: Start_run is a hard wired
signal which determines the first run length. This signal is necessary because
the first run length from the table is loaded into counter two only after the first
difference has been counted down. So the first run length in the table belongs to
the second difference. This means that run length and difference are shifted one
place in the table. The carry from counter two is generated with a delay of one

22 CHAPTER 2. MATCHBOX

runlength. That is why all the run lengths in the table are one smaller than their
actual value. Further should be mentioned that this architecture has a very large
overhead of hardware. So wi11 this run length delta architecture be the smallest
and thus the cheapest solution the storage unit must be very small in comparison
to the storage units in the other architectures.

Chapter 3

Regular placement

Looking at the methods MATCHBOX uses for location assignment, one can see
that the used techniques aim at minimizing either the memory cost or the ad­
dressing cost. The counter technique which tries to minimize the addressing cost,
sometimes turns out to be very expensive in memory cost. The other techniques,
absolute location assignment and relative location assignment, which aim at small
memory costs have unpredictable address generator costs. The total costs of an
inter processor buffer can be separated into three parts, Equation 3.1.

Read Address generator cost
W rite Address generator cost

+ Memory cost
Total cost

(3.1}

Predicting the tot al costs of the inter processor buffers resulting from the dif­
ferent techniques appeared to be very hard. There are only a few things which
are predictabie and which are not problem dependent. Fot relative location as­
signment it is known that the memory cost will be close to the minimum (Mtowb

or Mtowb + 1). On the other hand the costs of the address generators can not
be estimated accurately a priori. This addressing cost is dependent on the ap­
plication for which the IPB is designed, but is also strongly iniluenced by the
unpredictable effect of the minimization of the starage unit. It is known that the
costof the address generators will be larger than the cost of counter architecture.
By using the counter technique there is chosen for minimal cost for one address
generator (the write address generator}. The memory size which is necessary for
realizing counter addressing is dependent of the application for which the IPB is
designed. But even when the application is known it is not possible to make a
good estimation of the memory size that is needed t<:> realize counter addressing.
Although only a few things are known about the design space it is still possible
to draw an address generator- memory- cost graph. This graph contains the cost
of the write address generator, on the X-axis, and the cost of the memory size,
on the Y-axis. The reason why only one address generator is taken into account
for the design space cost graph is that when one address generator is defined,

23

24 CHAPTER 3. REGULAR PLACEMENT

the other address generator will be the logica! conseguence of the defined address
generator and the application. So when there is soinething to gain in total cost
it has to be done by decreasing the cost one of the two address generators while
keeping the memory as small as possible. Minimizing both address generators is
impossible. The graph shown in Figure 3.1 is a representation of the costs of one
address generator and the required memory cost for one application.

ADDRESSING COST

Figure 3.1: Design cost space

The line which represents the cost of a counter in Figure 3.1 is slanted, this
is because a larger memory needs a larger counter to address it. By increasing
the size of the counter the area cost will also increase. The "counter ad dressing
line" also represents the absolute minimum costs for which it is possible to realize
an address generator. So on the left hand si de of this line there ex:ist no address
generator. The minimum memory line is constant in the entire solution space.
This minimum is application dependent, and can be calculated when the lifetimes
of the samples are known. Below this line there ex:ist no memory size in which it
is possible to store all the samples. The marks represent the cost of the address
generator and the memory as a result of using different kind of techniques for
memory allocation. Mark A represents the cost of a counter solution and mark B
represents the cost of a relative solution. The memory cost of relative addressing
is placed on the cost of Mlowb but in reality the memory needed with relative
location assignment can be one more than Mlowb so the cost can be a little higher.
Absolute location assignment with graph colouring can be represented by one of
the other marks somewhere in the two grey areas. The question whether absolute
location assignment is cheaper than the cheapest of one of the two extremes (in
area two in Figure 3.1) or more expensive (in area one in Figure 3.1) is impossible
to answer a priori because this is dependent on many factors, like the heuristic
of the graph colouring algorithm, the application for which the IPB has to he

3.1. THE SOLVTION SPACE OF REGVLAR PLACEMENT 25

designed and the unpredictable effect of the minimisation of the starage unit of
the address generator. In developing a technique for location assignment the
goal was to find another technique which results in a inter processor buffer with
low casts. So the cast should be somewhere in area two of Figure 3.1. On the
other hand the :flex:ibility should he kept in mind. Knowing all this it is tried to
optimize the address generator size within such limits that the memory would
nat grow too much. Minimizing the address generator casts is done by assigning
memory locations to samples in such a way that the addressing sequence will
become regular. This is called regular placement.

The architecture which is best suited to generate these regular sequences is
the run length delta architecture. For the address table and the delta table archi­
tecture, the starage pattem of the samples will nat have a predictabie in:fluence
on the size of the address generator. The number of entries in the starage unit,
in which the addresses or the deltas are stored, stays the same, so a big difference
was nat expected. In practice it appeared that the size of these address gener­
ators did d.iffer a lot between one starage pattem and the other. This was due
to the fact that with one starage pattem the starage unit can be reduced more
than with another, but the amount of reduction is unpred.ictable. On the other
hand the number of entries in the starage unit of the run length delta architecture
will decrease when the sequence becomes more regular. So the address generator
may become smaller when the address sequence becomes more regular. But the
casts of an inter processor buffer consist of more than the cast of one address
generator. The cast of the other address generator is unpred.ictable and the cast
of the memory is an uncertain factor too. The question now is, will this methad
result in a inter processor buffer which is smaller than the other techniques and
is it possible to turn the resulting IPB into a :flex:ible one. Befare answering these
questions let us first look into the methad of regular placement.

3.1 The solution space of regular placement

The definition of a regular addressing sequence is an important issue. Because
regularity can have many different farms. In the previous section it is already
mentioned that the size of the run length delta architecture will decrease when
the address schedule is more regular. That is why this architecture is used to
determine a measure for regularity. There are numerous solutions which can have
the label regular solution. Three examples of a regular salution for 25 samples
can beseen in Figure 3.2.

26 CHAPTER 3. REGULAR PLACEMENT

Figure 3.2: Several regular solutions

As can beseen in Figure 3.2 a sequence consistsof a start address foliowed by
a part with a constant delta. The number of consecutive and identical deltas plus
one is called the length of a sequence. The "plus one" is due to the delta to go to
the start address of the sequence. In the run length delta storage unit one regular
sequence wi11 result in two entries, one with run length of one, for the delta to go
to the start address of the sequence and one with a runlength equal to the number
of identical deltas. A solution with maximum regularity wi11 be the solution with
one delta to go to start address and a list of the same deltas to go to the other
addresses, like solution three in Figure 3.2. These kind of solutions usually tend
to need a large memory. To be able to reduce the memory size one can try to
find a solution with less regularity which needs a smaller memory. That is done
by allowing more shorter regular sequences. This wi11 result in solutions like one
and two in Figure 3.2. These solutions are generated by setting a maximum and
minimum allowed sequence length. But there are restrictions on these maximum
and minimum sequence lengtbs and on the delta sizes. For the sequence length its
obvious that there exist no sequence length of zero and no sequence length longer
than the number of samples. For the delta there is only a maximum, namely the
memory size. A delta larger than the memory size or a negative delta can, with
a modulo operation, always be represented by a delta in between zero and the
memory size- 1 . When we don't take the lifetime clashes into account there are
a lot of solutions possible. All combinations of sequence lengtbs and deltas are
allowed as long as Equation 3.2 holds.

#seq-1

L sequence lengthi - number of samples (3.2)
i=O

When we do take the lifetimes of the samples into account some of solutions for
which Equation 3.2 holds wi11 not be valid schedules because of lifetime clashes.

3.1. THE SOLUTION SPACE OF REGULAR PLACEMENT 27

But still a lot of possibilities remain.

3.1.1 Solution space exploration

Now it is known what the solution space looks like the next problem is to findan
efficient way to explore th.is space. The groups of sequence length delta combina­
tions wh.ich result in a valid schedule are a sub set of the solution space defined
by Equation 3.2. To find a group wh.ich belongs to th.is sub set a few parameters
can be manipulated. These parameters are:

• The memory size.

Th.is can be va.ried between Mzowf" the size needed for relative addressing,
and a maximum value on wh.ich there is no restriction. But for the maximum
memory size one has to keep in mind that the cost of the inter processor
buffer can become unacceptably high when the memory size is too large.
That is why before increasing the memory size, all possible sequence length
and delta size combinations are tested in order to find a solution wh.ich fits
in a small memory.

• The sequence length.

Th.is parameter can change from the number of samples, wh.ich is the max­
imum, till a minimum value below wh.ich the sequence is not called regular
any more. Th.is _minimum value is three. Th.is minimum needs some expla­
nation. As mentioned a sequence length consists of a delta to go to the start
address foliowed by a number of equal deltas. Because the delta to go to the
start address is usually not the same as the deltas of the regular sequence
the number of the same deltas in the regular sequence should at least be
two, otherwise one cannot speak of regularity. So the minimal number of
consecutive and identical deltas is two. For the sequence length we add one,
from the delta to go to the start address. So the minimal sequence length
is three.

• Delta size

Th.is parameter can change from zero, wh.ich means that two consecutive
samples are stored in the samememory location, till the memory size- 1.

• The start position.

Th.is parameter determ.ines the place where the regular sequence starts.
Th.is can be any place in the memory. therefore the maximum is the memory
size - 1 and the minimum is zero.

To findan optimal solution the parameters are changed in a particular order.
Starting with a fixed memory size, it is tried to place the samples without lifetime
clashes by changing the delta size and the sequence lengths for the different regular

28 GRAPTER 3. REGULAR PLACEMENT

sequences. When all the different possibilities of delta size and sequence lengths
are tested and none of them led to a valid address s~hedule then the memory size
is increased.

Optimizing regularity for a given memory size

Optimizing regularity is actually finding a solution with as few as possible changes
in its deltas. The optimal regular solution is of course the one with no changes
in the deltas. But that is not always possible to realize in a given memory size.
When its not possible to place all the samples in one sequence with a certain
delta there two possible ways to solve this problem. The fust one is, keep trying
to place the samples in one sequence but with another delta. The second one is
allow more regular sequences. This is done by fust placing an as long as possible
sequence. Then try to place the remaining unplaced samples in a regular way. All
theseshorter sequences are tested again for different delta sizes. An intermediated
multi sequence solution is shown in Table 3.1. In this table N stands for the total
number of samples.

Placed samples # Unplaced samples
Seq. number seq. 1 seq. 2 seq. 3

ll. ll. 1 ll.2 ll.3 N-Ll-L2-L3
. Seq. length Ll L2 L3

Table 3.1: intermediate multi- sequence solution

Sequence one is placed first and contains as many as possible samples for that
delta. When the length is larger than the minimum the sequence is accepted. The
length of the sequences is limited by the lifetime clashes. For the example from
Table 3.1, at a certain point three sequences are placed and the remaining samples
can not be placed regular without lifetime clashes, for any sequence length delta
combination. Two strategies are possible to solve this problem.

The first one is, decrease the length of sequence three and try to place the
remaining samples. When the minimum sequence length of sequence three is
reached the delta is increased. When no valid placement is !ound for any sequence
length delta combination of sequence three the sequence length of sequence two
is decreased and so until a valid placement is found. When the maximum delta
of sequence one is reached it is impossible to place the samples in a regular way
in the given memory size. Then the memory size is increased. How this scheme
works for one regular sequence is shown in Figure 3.3.

3.1. THE SOLUTION SPACE OF REGULAR PLACEMENT 29

mem. size .J

0

) oumber of samples

Figure 3.3: Search scheme: decrease sequence length fust

In reality the sequence lengths are not always of maximum length. This
is because it is possible that a certain sequence length delta combination does
not exist because of lifetime clashes. When a sequence has to be checked for
validity the samples of that sequence are placed in a imaginary memory. Than
the schedule is checked on lifetime clashes. As an example we take five samples
which have to be placed in a memory with three places, and we determine how
many place and remove operations have to be performed when all the sequence
length delta combinations have to be checked for the fust sequence. This can be
seen in Table 3.2.

test no. seq. length delta size # place operations # remove operations
1 5 0 5 0
2 4 0 0 1
3 3 0 0 1
4 5 1 5 0
5 4 1 0 1
6 3 1 0 1
7 5 2 5 0
8 4 2 0 1
9 3 2 0 1

tot al 15 6

Table 3.2: indication of number of place and remove operations

This amount of place and remove operations is used to compare tbis search
scheme with the second possible search scheme, wbich will be discussed next.

The other possible search scheme is that the sequence length is kept constant
while the delta is changed first. Tbis is also done in order to make it possible to
place the remaining samples. When no valid placement is found, all sequences
with maximum length minus one are tested for all different deltas and so on until
the minimum sequence lengths are reached or a valid placement is found. Tbis
search scheme for one regular sequence can be seen in Figure 3.4.

30 CHAPTER 3. REGULAR PLACEMENT

mcauize -1
I I I I I I - I I I I I 1-
I I I I I I'
I I I I I I
I I I I I I
I I I I I I

< I I I I I I
I I I I I I

~
I I I I I I
I I I I I I
I I I I I I Q I I I I I I
I I I 1 I I
I I I I I I
I I I I I I
I I I I I I

o- I I I I I I
J J _, J _,

-· SEQ.LENGIH l
3 a.~m~ber of samples

Figure 3A: Search scheme: change delta first

The major difference between these schemes is the computation time they
need. In the search scheme from Figure 3.4 the old sequence has to be removed
every time a new delta has to be checked. For the example with five samples and
three memory place this can be seen in Table 3.3

test no. seq. length delta si:te # place operations # remove operations
1 s 0 s 0
2 5 1 5 5
3 5 2 5 5
4 4 0 4 5
s 4 1 4 4
6 4 2 4 4
7 I 3 0 3 4
8 I 3 1 3 3
9 I 3 2 3 3

total 36 33

Table 3.3: indication of number of place and remove operations

When a sequence does not result in a valid addressing schedule, the sequence
has to be removed and a new sequence with a different delta has to be placed
again. This leads to a lot more place and remove operations than in the scheme of
Figure 3.3 as can be seen in Table 3.3. So the scheme from Figure 3.4 need much
more computation time than the one from Figure 3.3. The difference appeared
to be so big that only the search scheme from Figure 3.3 is implemented in the
program.

The maximum and minimum sequence length are not fixed numbers. They can
be varled by the user in order to find a regular solution which fits the problem.
So the maximum allowed sequence length does not have to be the number of
samples and the minimum does not have to be three. Setting the minimum to
three is even not advisable because computation times wiJl become very long.
The smaller the gap between maximum and minimum sequence length is, the
{aster the program will come up with a valid address schedule. By manipulating
these numbers the user can determine the amount of regularity in the addressing
sequence. By increasing the values, reguiacity will increase but also the needed

3.1. THE SOLUTION SPACE OF REGULAR PLACEMENT 31

memory will increase. By decreasing the va.lues, computation times will increase
and the memory needed will decrease but also the· 'amount of regularity in the
addressing sequence will decrease. It is also possible to give a minimum sequence
length which is not fixed during the execution the algorithm. The first va.lue of
the minimum is given by the user. After this it is checked how many samples are
left unplaced. For these remaining samples the maximum sequence length is set
to the number of remaining samples and the minimum is set to the half of the
number of remaining samples. So during every attempt of placing samples with
a certain delta at least half of the amount of samples must he placed before this
delta sequence length combination is accepted.

The search for sequence length and delta combinations should he rather fast
because such a search has to he done fora lot of different memory sizes. Although
the program used the fastest search scheme for determining sequence length delta
combinations, it can still he time consuming. Because of the long computation
times the third. parameter, the start position of the sequence, is kept constant.
Forthestart po-:ition the first fitting position is taken. This means that the start
address of a regular sequence is determined by the first position on which the
first sample of the sequence fits. The other measure that is taken to increase
computation times is that it is tried to minimize the number of memory sizes
which have to he tested.

Optimizing the memory size

As mentioned, the buffer sizes which have to he tested lay in between the memory
size from relative addressing, which is the absolute minimum, and infinity. Infinity
is not a realistic memory size and that is why the maximum memory size has to
he given by the user. A very rough estimate for this maximum can he derived
by checking how many frames the longest living sample is alive and multiply this
va.lue with the number of samples, or one can take the memory size that counter
addressing needs. For a certain memory size there are two possibilities. It is
possible to find a valid address schedule with a certain sequence length and delta
combination or it is not. So the solution space can graphically he represented
like in Figure 3. 5.

muimammeiDOI)'Iiz

Figure 3.5: Solution space memory size

This solution space can he tested linearly from the minimum memory size

32 CHAPTER 3. REGULAR PLACEMENT

until a fitting memory size is found. But when the di~tance between the minimum
memory size until the solution memory size is large, computation times will be
very long. One big advantage of this way of searching is that it will always result
in the smallest possible solution, as can be seen in Figure 3.6.

SOLlmON

~·:.t~+-+-+~-+--+-~
Figure 3.6: linear search through memory sizes

An other way of searching is the binary search. It starts with a maximum and
a minimum value for the memory size. It checks if the maximum fits, if not, it
stops and assumes there is no solution. Then it checks the minimum value, if it
fits, then that is the solution. In the case that the minimum doesn't fit and the
maximum does, the binary search starts. The next memory size to test follows
from Equation 3.3

new memory Slze = l ~(max. memory size - min. memory size) J (3.3)

If there exist a valid solution for this memory size, than this memory size will
become the new maximum. If there ex:ist no valid solution than this memory
size will become the new minimum. This will continue until the maximum value
equals the minimum. A draw back of this way of searching is that it will not
always ,like in Figure 3. 7, result in the smallest memory size.

aofit -
t------------, lSOUJI'ION = Smalleoi.Soiution

fit

Figure 3. 7: binary search through memory sizes resulting in a minimal
memory stze

The outcome is depending on how the function of the solution spacelook like.
When it is like in Figure 3.8 the result will not be the minimal memory size.

3.1. THE SOLUTION SPACE OF REGULAR PLACEMENT

--
Figure 3.8: Binary search through memory sizes not resulting in minimal
memory s1ze

33

From the numerous tests that have been performed it appeared that the so­
lution found with binary search didn 't differ that much from the one found with
linearly search. The search for the minimal memory should be done a.s follows:

First find an indication of the memory size with binary search, than try to
determine whether it is an absolute minimum with linear search.

An overview of all the possible settings, the syntax of the input file and the
several output files of the regular placement program can be found in appendix
B.

34 CHAPTER 3. REGULAR PLACEMENT

Chapter 4

Test applications

To he able to check whether regular placement results in smaller solutions than
other methods of placement a few test problems are selected. The selected ap­
plications are data format conversions which can occur in many different sizes.
The main characteristics of these applications are treated shortly in the following
sections.

In these sections only one size of the problems is presented in order to clarify
the read and write orders. During the actual tests a lot of different sizes are used.
The high level descriptions of the applications in Phideo Input Format (PIF) can
be seen in appendix A.

4.1 Matrix transposition

The problem of matrix transposition is defined as follows. The samples are pro­
duced row by row so the inter processor buffer has to store these samples in a
row by row order. The samples have to be consumed column by column so the
read address generator has to produce addresses which achieve this. This kind
of transformation occurs for example in video compression applications using 2D
transfarms such as the 2D discrete eosine transform. When the memory is seen
as a matrix like structure the read and write order look like in Figure 4.1 The
arrows indicate the order in which the samples, which are numbered from zero
till 25, have to be read and written.

35

36 CHAPTER 4. TEST APPLICATIONS

WRITEORDER READORDER

' -o-1-2-3-4 ::-_:, 0 I 2 3 4

c ·5-6-7-8-9=:::> ' ' ' ' ' 5 6 7 8 9

c ·10-11-12-13-14 ~ ' ' ' ' ' 10 11 12 13 14

c_t5-16-17-18-19 ::> ' ' ' ' ' 15 16 17 18 19

C:w-21-22-23-24 ' ' ' ' l
20 21 22 23 24

Figure 4.1: Matrix transposition

From the read and write order follows the earliest timepoint on which the read
action can star~) assuming that every doek cyde a read or write action occurs.
In this case that is doek cyde 16, so the skew between write and read is 16 doek
cycles. When the read action is delayed 16 doek cydes than sample 20 is written,
and in the same doek cyde read again.

4.2 Zig-zag transformation

In this section we treat the conversion of a line by line scanned input frame to
a zig - zag scanned frame. The zig - zag scanned sequence is useful in image
transmission after Huffman cod.ing [8] or after Discrete eosine transformation.
The samples are produced row by row and have to be read in a zig- zag pattern.
How the read and write orders look like can be seen in Figure 4.2.

WRITEORDER READORDER

o-1 2-3 4
/ / / /t

5 6 7 8 9
t/ / / /

10 11 12 13 14
/ / / /t

15 16 17 18 19
t/ / / /

20 21-22 23-24

Figure 4.2: Zig - zag transformation

The minimal skew for this problem is nine doek cydes, again with the as­
sumption that every doek cyde a read and write action occurs. For this kind
of transformations only square examples are used because that what is typically
needed in practice.

4.3. SPIRAL LEFT TURNING 37

4.3 Spiral left turning

The left turning spiral is also a conversion used in video applications. lt is spe·
cially needed during region growing and edge detection. The sample are produced
row by row and have to he read in a spiral pattern like in Figure 4.3.

WRITEORDER READORDER

o-1-2-3-4
t
5 6-7-8-9
t t +

10 l1 12-13 14
t t ~ +

15 16-17-18 19
t +
20-21-22-23-24

Figure 4.3: Left spiral transformation

The minimal skew for this problem is 15 clock cycles, assuming a read or write
action every clock cycle. From this problem also only square examples are used.

4.4 Radix 2 Fast Fourier Transformation

The Fast Fourier Tra.p.sformation used in the tests is a rad.ix 2 constant geometry
FFT. With this geometry the butterfly outputs are not put back on the place
where they come from. That is why it is also called 'not in place'. The indexing
is kept constant from stage to stage in this way a flexible high level description for
d.ifferent sizes of FFT is easier to make (see append.ix A). The signal flow graph
is shown in Figure 4.4.

"
Jt

u
I)

M

11

u

lf

ll

11

Figure 4.4: Constant geometry, rad.ix 2, 16 points, not in place, FFT

The numbers at the inputs and outputs are the ind.ices associated with the

38 CHAPTER 4. TEST APPLICATIONS

different samples.

4.5 Radix 4 Fast Fourier Transformation

For the radix 4 FFT applies the same as for the radix 2 FFT, it is a.lso a constant
geometry FFT. The difference is that not two but four samples at the sametime
are used in the computation. The signal fiow graph is shown in Figure 4.5

Figure 4.5: radix 4, 16 points, not in place, FFT

Chapter 5

Resulting IPBs

For different sizes of the test problems presented in chapter 4, IPBs are generat ed.
The results of M.ATCHBOX using the three different techniques are compared "'ith
each other and \vith the technique of regular placement. All the areas presented
in the chapter and in the appendices are estimates based on a 1.5 pm technology.
The areas are all given in mm2

•

5.1 Results Matchbox

The results from MATCHBOX will be presentedis three parts. First the memory
sizes needed in the IPBs, for the different techniques will be discussed. Then The
chosen architecture for the address generator and the number of entries in the
storage unit, before and after minimisation will be shown. After this the overall
smallest IPB will be extracted from these results.

5.1.1 The memory sizes

As mentioned in the chapter about MATCHBOX relative addressing always comes
up with a minimal or almost minimal memory size. But in some cases absolute
addressing needs the same or only slightly more memory space. The actual mem­
ory sizes for the different techniques are shown in appendix C. From these tables
it can be seen that the size of memory needed for counter addressing is always
relatively large in comparison with the other techniques.

5.1.2 The address generators

For the address generators there are several architeçtures possible. For all the
different techniques the sizes of the different architectures are shown in appendix
D. The empty places in these tables indicate that that architecture is not relevant
or not possible for that technique. For the storage unit of the address generator a
PLA is chosen in all cases. The number of entries of these PLAs before and after
minimization is shown. lt can be seen that the difference between the PLA before

39

1,2

40 CHAPTER 5. RESULTING IPBS

and after minimisation can be rather big, especially the PLA which contains
deltas. Further can be concluded from this table, ïhat counter addressing will
always offer the smallest write address generator. Also can beseen that a.iming for
a counter on the write side barely influences the size of the address generator on
the read side. The other address generators can also he relatively small especially
the address table architecture. This is especially the case for applications with
only a few samples. In these cases the address table is not very expensive, a.nd will
the small overhead cost of the address table architecture result in a cheap address
generator. When the number of samples increases, the address table will become
more expensive because of rapidly growing cost of the address table. From the
results can he seen that in general the address table cannot he minimized as well
as the delta table.

5.1.3 The total cost of the inter processor buffers

Because of the number of techniques and the number of architectures a lot of
different inter processor buffers can be generated. From all the architectures the
smallest solution is taken and put in a graph, in order to he able to make a good
comparison. The architectures that are used in these smallest IPBs can he found
in appendix D. The graphs ca.n be seen in Figure 5.1 for matrix tra.nsposition
a.nd in Figure 5.2 for radix 2 FFT. The graphs of these two applications show the
main characteristics of the different techniques, so for the other applications no
graphs are generated. In the percentage graphs the percentage of the area used by
address generation and memory can be seen. In Figure 5.1 and Figure 5.2 the R
stands for relative location assignment the A for absolute location assignment a.nd
the C for counter addressing. These graphs show that for relative and absolute
addressing a rather big part or the area is used for address generation. With
counter addressing it is the other way around, in this case the mayor part of the
area is taken by the memory.

Matrix transposition matrix transposition
percentage overview

RAC RAC RAC RAC
~ ~ ~ I i

. ··-·

1

a o,a r tl-='l=t• a ""
"""' e

~
~

....•

~1 8
o,e

···-- -· ~ ------

a
I lf - I ' ···-

I I I i ! i

' ~ ' "'

a o,.c
0.1

0
exa an axe eu ax• au n-.x-.x• u• u• •x•

matrix alze matrix size

r;.-~-.... ··--··--···-··.•tt(A~.~-·...-.--....... _.- ... , • ·I

Figure 5.1: Results of MATCHBOX for matrix transposition

5.2. RESULTS REGULAR PLACEldENT 41

In Figure 5.1 can he seen that absolute location assignment results in the
smallest IPB, but when thematrices become bigger i:elative location assignment
will turn out to he the smallest. The latter can not he concluded from Figure 5.1,
but several from test on bigger matrices. Relative location assignment has yet
another advantage for bigger applications, it comes up much faster with a valid
schedule than absolute location assignment.

Radix 2 FFT Radix 2 FFT
percentage overview

RAC RAC RAC RAC
A

~~----------------------~=-~

a
r s
e 2
a

0

c

IZ U S2 114 14 14 til 121 121 Hl 2111 l!H

number of points

100 ..

a "'" r e so ..
a zn

1Z U U 114 14 14 124 t21 t211 Hl21182111

number of points

Figure 5.2: Results of MATCHBOX for radix 2 FFT

In Figure 5.2 it can he seen that for radix 2 FFT in most of the cases relative
location assignment results in the smallest IPB. For the 32 points FFT counter
addressing is the smallest. Also can heseen that for larger FFTs the percentage
of area used for address generation with relative addressing decreases. The same
holds for counter addressing. This is also the case for matrix transposition. The
other applications of which the address generator and memory costs are shown
in appendix D show similar results.

5.2 Results regular placement

The regular placement program offers a lot of freedom in setting the amount of
reguiacity in one of the address generators. That is why a selection of the most
promising options is made. For most of the applications it is tried to increase the
reguiacity in the write address generator, except for the radix 2 FFT and radix
4 FFT. For these application the read address generator is regulacized. This is
done because for these applications regulacizing the read address sequence re­
sulted in a incretion of amount of reguiacity in the write address generator. This
is only possible when the application doesn't read a sample more than once.
Further IPB are made with Maximum Reguiacity both for Relative (MRR) and
Absolute (MRA) location assignment. Also it is tried to decrease the amount of
memory needed in the IPB by decreasing the reguiacity in the address generator.

42 CHAPTER 5. RESULTING IPBS

This is done with the "non fixed minimum" setting of the regular placement pro­
gram. These results are called minimum memory solutions. So we have Minimum
Memory with Absolute (MMA) and Relative location assignment {MMR). The
chosen architecture, the costs of the address generators and the memory costs
can be found in appendix E. The total cost of the IPBs generated with regular
placement and the smallest IPB resulting from the techniques of MATCHBOX are
shown in the following tables.

matrix tr. MMR MRR matchb. (R) MMA MRA ma.tchb. {A}
8x8 0.94 1.01 0.73 0.74 1.04 0.72
4 x 16 0.93 0.96 0.71 0.97 1.04 0.71
4X4 0.34 0.41 0.33 0.31 0.38 0.27
8x4 0.59 0.61 0.50 0.57 0.62 0.43

Table 5.1: IPB costs for matrix transposition (mm2
)

radix 2 FFT MMR MRR matchb. (R) MMA MRA matchb. (A)
32 points 0.73 0.71 0.55 0.66 0.56 0.57
64 points 1.06 1.06 0.81 0.89 0.89 0.90
128 points 1.74 1.71 1.27 1.64 1.60 1.64
256 points 3.00 2.98 2.14 2.98 2.74 2.81

Table 5.2: IPB costs for radix 2 FFT (mm2)

spiral left MMR MRR matchb. (R) MMA MRA ma.tchb. (A)
4X4 0.35 0.43 0.33 0.34 0.38 0.29
6x6 0.62 0.69 0.51 0.61 0.70 0.49

Table 5.3: IPB costs for spiralleft turning transformation (mm2)

Zig-zag MMR MRR matchb. (R) MMA MRA matchb. (A)
8X8 0.69 0.72 0.58 0.58 0.62 0.50
6x6 0.50 0.49 0.42 0.39 0.43 0.37

Table 5.4: IPB costs for zig- zag transformation (mm2)

Radix 4 FFT MMR MRR matchb. (R) MMA MRA matchb. (A)
16 points 0.45 0.48 0.42 0.38 0.34 0.34
64 points 0.90 0.94 0.96 0.91 0.76 0.94

Table 5.5: IPB costs for radix 4 FFT (mm2)

5.2. RESULTS REGULAR PLACEMENT 43

From these tables it can be concluded that regular placement does not result
in a significant rednetion in cost for the total intêr processor buffer. This is
because aiming at a regular address sequence turns out to be rather expensive in
memory cost, compared with the techniques of MATCHBOX.

44 CHAPTER 5. RESULTING IPBS

Chapter 6

Merging of IPBs

To make a mor~ flexible IPB it is tried to merge different applications into one
IPB. The archit-ecture that could be used for this merged IPB is one with a
storage unit div:ded in different parts. Each part of this storage unit is used
for a different application. Because regular placement aims at an as optima! as
possible use of the run length delta architecture the merged IPBs with only this
architectures for the address generators are compared. A possible architecture is
shown in appendix F. In this architecture can beseen that the storage is divided
in different parts. To address these different blocks in the storage unit, the start
and end points of the blocks in the storage unit has to be stored. A control signal
makes the selection of the start and end points belonging to a certain application.
The camparator is used to determine if the end point is reached. If the end point
is reached the counter will load the start point again. For each application the
first run length has to be stored too, again the control signal determines which
first runlength is used.

6.1 Results MATCHBOX and regular place­
ment

To compare the results of MATCHBOX and regular placement the number of
entries in the run length delta storage units are compared. It is tries to make a
multi application IPB for two sorts of applications, for matrix transposition and
for radix 2 FFT. The results can beseen in the following tables.

45

46

Matrix traiU!iposition (Regular placement relative) I
memory size = 83

alg. size Write # entries Rel!.d # entries
4 x 4 2 10
8 x 4 2 18
8 x 8 6 30
4 x 16 4 18

total 14 76

Table 6.1: Matrix transposition
regular placeDUent

Matrix traiU!iposition (Absolute location assignment) I
memory size - 55

alg. size Write # entries Read # entries
4 x 4 18 27
8 x 4 39 37
8 x 8 56 67
4 x 16 74 71

total 187 202

Table 6.3: Matrix transposi­
tien absolute location asstgn­
DUent (MATCHBOX)

Radix 2 FFT (Regula:r placement relative)

memory size = 383
alg. size Write # entries Read # entries

256 points 34 2
128 points 30 2
64 points 26 2
32 points 22 2

total 112 8

Table 6.5: Radix 2 FFT regular
placeDUent

CHAPTER 6. MERGING OF IPBS

Matrix transposition (Relative loc. assignment) I
memory 11ize = 51

alg. size Write # entries Read # entries
4 x 4 13 11
8 x 4 30 37
8x8 46 40
4 x 16 64 57

tot al 153 145

Table 6.2: Matrix transposi­
tien relative location assigrunent
(MATCHBOX)

Matrix transposition (Counter addressing)

memory size- 128
alg. size Write # entries Read # entries

4 x 4 2 17
8 x 4 2 33
8 x 8 2 33
4 x 16 2 17

total 8 100

Table 6.4: Matrix transposition
counter addressing (MATCH­

BOX)

Radix 2 FFT (Relative loc. assignment)

memory size = 255
alg. size Write # entries Read # entries

256 points 9 9
128 points 8 8
64 points 7 7
32 points 6 6

total 30 30

Table 6.6: Radix 2 FFT relative
location assignDUent (MATCH­

BOX)

6.2. MERGING OF N APPLICATIONS

Radix 2 FFT (Absolute 1ocation assignment

memory size = 342
alg. size Write :# entries Read :# entries

256 points 1321 2300
128 points 600 1002
64 points 265 443
32 points 124 189

total 2310 3934

Table 6.7: Radix 2 FFT absolute
location assignment (MATCH­
BOX)

47

Radix 2 FFT (Counter addressing)

memory size - 384
alg. size Write :# entries Read :# entries

256 points 2 2049
128 points 2 898
64 points 2 386
32 points 2 161

total 8 3494

Table 6.8: Radix 2 FFT counter
addressing (MATCHBOX)

So we merge four sizes of an application into one IPB. The application with
the most samples determines the memory size. In the Tables 6.5 till 6.4 can be
seen that the techniques of PHIDEO are not capable of using the extra amount
of memory, offered by the largest application, in order to rednee the number of
entries in the storage unit for the smaller applications. Because all the techniques
of PHIDEO aim at either minimum memory or minimal addressing hardware, a
trade of between addressing cost and memory cost is not possible. Regular place­
ment can use this extra amount of memory. For the matrix transposition regular
placement needs more memory than relative and absolute location assignment.
But because of good use of the extra amount of memory it was possible to reduce
the number of entries in the run length delta storage unit. For the Radix 2 FFT
one can see that relative addressing will definitely result in the smallest solution,
it not only needs the smallest memory size it also needs the fewest entries in
the run length delta storage unit. Whether this merging with the use of regular
placement will result in a area reduction is difficult to predict. This is because
it is not known how large the overhead cost of the architecture will be and how
much the merged storage unit can be minimized. This could be something for
future research.

6.2 Merging of N applications

In the search for regularity a nice salution for a IPB for matrix transposition is
found. This IPB is capable of handling all sizes of matrix transposition as long
as the memory size allows it. The memory size needed can he derived when the
matrix size is known. The deltas between the consecutive addresses can also be
calculated when the matrix size is known, so no storage unit is needed any more.

Looking at matrix transposition one can see that writing the samples in the
memory in a regular way can be done as long as the memory is large enough.
This can beseen in Figure 6.1

48 GRAPTER 6. MERGING OF IPBS

~~
Memory localion

Figure 6.1: Storage of 25 samples in 25 memory locations

In this example there are 25 samples and 25 memory locations. Writing with a
regular address sequence is now possible but reading with a fully regular address
sequence is not. A 5 differs from A 1 till A4. To solve this we just remove memory
location 24 and store sample 24 in memory location zero. This is allowed when
we assume that sample zero is read before sample 24 is written in the memory.
The storage of the samples is now like in Figure 6.2.

~~
Memory localion

Figure 6.2: Storage of 25 samples in 24 memory locations

One can see now that writing is done regularly (with one delta) and reading
is done regularly too (A 5 roodulo 24 equals A 1 till A 4). For the next frame
the samples can be written in the memory with the delta used for reading the
samples of the previous frame. The reading of the samples of this next frame can
than be done again with a delta of one. So fora square matrices it hold that:

Write(l) A= Dl
Read(l) A = Rl
Write(2) A = Rl
Read(2) A= Dl
Write(3) A = Dl
Read(3) A= Rl

These deltas can easily be calculated when the number of columns and the num­
ber of samples is known. Start with a write(l) A= Dl = 1. How Rl is calculated
can be seen in Equation 6.1.

6.2. MERGING OF N APPLICATIONS

Rl = # columns x Dl (MOD B)
with B = Number of samples - 1

49

(6.1)

The start position of the write sequence is not the same every frame. lt is
not possible to start on the same position every frame because lifetime clashes
will occur than. However a good start address can be calculated so no life time
clashes will occur. The start address is calculated with Equation 6.2.

Start address = previous start address + previous Delta (MOD B) (6.2)

For the five by five matrix transposition this results in the following deltas
and start addresses:

Ä nurnber Ä size start address
0 1 0
1 5 1
2 1 6
3 5 7
4 1 12
5 5 13
6 1 18
7 5 19
8 1 0

Table 6.9: deltas and start addresses for a 5 x 5 matrix

For non square matrices the deltas are not the same after one write and one
read but the calculation of the deltas is the same, see Equation 6.3

~2 #columns x ~ 1 (MOD B)
~3 #columns x ~ 2 (MOD B)
~4 - #columns x ~ 3 (MOD B) (6.3)
~5 - # columns x ~ 4 (MOD B)
with B = Number of samples - 1

As an example the deltas and start addrèsses for a 7 x 5 matrix transposition
are shown in Table 6.10. After how many times the delta repeat is not interesting
any more in this case because only the pervious delta and start address have to
be stored. The next delta and start address can be calculated from these values.
These deltas and start addresses are calculated with a UNIX script from which
the souree code can be found in appendix G.

50 GRAPTER 6. MERGING OF IPBS .
L\ number L\ size start address

0 1 0
1 5 1
2 25 6
3 23 31
4 13 20
5 31 33
6 19 30
7 27 15
8 33 8
9 29 7

10 9 2
11 11 11
12 21 22
13 3 9
14 15 12
15 7 27
16 1 0

Table 6.10: delta and start addresses for a 7 x 5 matrix

The IPB basedon this addressing principle will be a parameterizable IPB. By
giving the number of samples and the number of columns the addresses can be
calculated. Again will the largest application determine the memory size of the
IPB.

Chapter 7

Conclusions and
recommendations

With regular pl&,c.ement a trade off can be made between address generator cost
and memory cost. Looking at the size of the total IPBs generated with regular
placement one can conclude that regular placement does not offer a solution which
results in a smaller IPB. When we look more closely to the results it appears that
regular placement, is too expensive in memory costs. The amount of area gained
by regularizing the addressing sequences is too small to realize a smaller IPB.
Also one can see that although there is aimed at an optimal use of the run length
delta architecture, MATCHBOX not always selects this architecture to generate the
regular sequence, just because it is more expensive than the other architectures.

For merging different applications into one IPB regular placement is a good
technique. This because regular placement is capable of using the extra amount
of memory to increase the regularity in one address sequence. This will result in
less entries in the storage unit for the applications for which the used memory is
oversized.

The technique for making a paramerizable IPB for matrix transposition is a
nice solution, but it is a manual solution, and it is only applicable for matrix
transposition. So its a very dedicated solution.

Overall we can conclude that the techniques and target architecturesof MATCH­

BOX cover the designspace very well. Regular placement adds an extra utility to
these techniques. With regular placement the user can determine beforehand the
amount of regularity in one address generator. Also the possibility to use over­
sized memories for increasing the regularity in the address sequence is a possibility
offered by regular placement and not by the techniques of MATCHBOX.

Further research is needed on the merging of applications in one IPB. Es­
pecially on the estimation of the needed chip area of the merged IPB. Also an
investigation of a really programmabie IPBs is recommended. With programma­
bility we mean an architecture with a micro controller. The program of this micro
controller should be derived from the high level description of the application.

51

52 CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

Appendix A

PIF

A.l PIF description of matrix transposition
tune input() out= inbut {0.0} [1];
tune output(in) = outbut {0.0} [1];

#define XSIZE 5
#def ine YSIZE 5
#define PERIOD 1
#define GLOBAL PERIOD•XSIZE•YSIZE

{GLOBAL}

(1 : 0 .. YSIZE-1) {PERIOD*XSIZE} ::
begin

(c : 0 .. XSIZE-1) {PERIOD} .•
begin

{in} x [1] [e] = input 0 ;
end;

end;

(c : 0 .. XSIZE-1) {PERIOD•YSIZE} ::
begin

(1 : 0 •. YSIZE-1) {PERIOD} •.
begin

{out} = output(x[l] [c]);
end;

end;

Y. in = [0 ,] ;
%out= [,2•GLOBAL];

53

54 APPENDIX A. PIP

A.2 PIF descrition of 8 x 8 z~g-zag transfoma­
tion

•define P 1
"efine I 1

infunc in {1} = inbuf [1];
outfunc out {1} = outbut [1];

signal a = 8;

memory all = {1.0,1.0,0.0,0.0};

{I•P•64}
(b : 0 •• 1-1) {8} ::

(r : 0 .• 7) {S•I•P} ..
(c : 0 .. 7) {P} ::

{in} a[b][r)[c] =in() [0,0];

(b : 0

{aOO}
{aol}

{alO}
{a20}
{all}

{a02}
{a03}
{a12}
{a21}
{a30}
{a40}
{a31}
{a22}
{a13}
{a04}
{aOS}
{a14}
{a23}
{a32}
{a41}
{aSO}
{a60}
{aSl}

{a42}
{a33}
{a24}
{alS}
{a06}
{a07}
{a16}
{a25}

1-1) {64•P} ::
begin
= out(a[b) [0] [0]) [,J•P•64];
= out(a[b)[O][l]); Y. aOl- aOO = P•l;
= out(a[b][l][O]); Y. alO- aOO = P•2;
= out(a(b][2][0]); Y. a20- aOO = P•3;
= out(a[b][1)[1]); Y. all- aOO = P•4;
= out(a[b][0][2]); Y. a02- aOO = P•S;
= out(a[b][0][3]); Y. a03- aOO = P•6;
= out(a[b] [1] [2]); Y. a12 - aOO = P•7;
= out(a[b][2][1]); Y. a21- aOO = P•8;
= out(a[b][3][0]); ~ a30- aOO = P•9;
= out(a[b][4][0]); ~ a40- aOO = P•lO;
= out(a[b][3][1]); ~ a31- aOO = P•11;
= out(a[b)[2][2]); ~ a22 - aOO = P•12;
= out(a[b)[1][3]); Y. a13 - aOO = P•13;
= out(a[b][O] [4]); ~ a04- aOO = P•14;
= out(a(b][O] [5]); Y, aOS- aOO = P•lS;
= out(a[b][1][4]); Y. a14- aoo = P•16;
= out(a[b][2][3]); Y. a23 - aOO = P•17;
= out(a[b][3][2]); Y. a32- aOO = P•18;
= out (a[b] [4] [1]); Y. a41 - aOO = P•19;
= out(a[b] [S] [0]) i Y, aSO - aOO = P•20;
= out(a[b] [6][0]); Y. a60- aOO = P•21;
= out(a[b][S] [1]); Y. aS1- aOO = P•22;
= out(a[b][4] [2]); Y. a42- aOO = P•23;
= out(a[b][3][3]); Y. a33- aOO = P•24;
= out(a[b][2][4]); Y. a24- aOO = P•2S;
= out(a[b][l][S]); Y. alS- aOO = P•26;
= out(a[b][0](6]); Y. a06- aOO = P•27;
= out(a[b][0][7]); Y. a07- aOO = P•28;
= out(a[b][1](6]); Y. a16- aOO = P•29;
= out(a[b] [2](5]); Y. a25- aOO = P•30;

A.2. PIF DESGRITION OF 8 x 8 ZIG-ZAG TRANSFOMATION

{a34}
{a43}
{a52}
{a61}
{a70}
{a71}
{a62}
{aS3}
{a44}
{a36}
{a26}
{a17}
{a27}
{a36}
{a4S}
{a54}
{a63}
{a72}
{a73}
{a64}
{aSS}
{a46}
{a37}
{a47}
{a56}
{a65}
{a74}
{a75}
{a66}
{a57}
{a67}
{a76}
{a77}

= out(a[b][3] [4)); Y. a34- aOO = P*31;
= out(a[b)[4][3]); Y. a43- aOO = P*32;
= out(a[b)[5)[2]); Y. a52- aOO = P•33;
= out(a[b][6][1]); Y. a61- aOO = P•34;
= out(a[b)[7][0]); Y. a70- aOO = P•35;
= out(a[b][7)[1)); Y. a71- aOO = P•36;
= out(a[b)[6)[2)); Y. a62- .aOO = P*37;
= out(a[b)[5][3)); Y. aS3- aOO = P•38;
= out(a[b)[4)[4]); Y. a44- aOO = P•39;
= out(a[b)[3)[5]); Y. a36- aOO = P•40;
= out(a[b][2)[6]); Y. a26- aOO = P*41;
= out(a[b)[1][7]); Y. a17- aOO = P•42;
= out(a[b) [2] [7]); Y. a27 - aOO = P•43;
= out(a[b] [3] [6]); Y. a36 - aOO "' P*44;
= out(a[b][4)[5]); Y. a45- aOO = P•45;
= out(a[b][5)[4]); Y. a54- aOO"' P•46;
= out(4[b][6][3]); Y. a63- aOO = P•47;
= out(a(b][7][2]); Y. a72- aOO = P*48;
= out(a[b)[7][3]); Y. a73- aOO"' P*49;
= out(a[b][6][4]); Y. a64- aOO = P•SO;
= out(a[b] [5] [6]); Y. aSS - aOO = P•51;
= out(a[b][4][6]); Y. a46- aOO = P•S2;
= out(a[b][3][7]); Y. a37- aOO = P•S3;
= out(a[b][4][7]); Y. a47- aOO = P*54;
= out (a [b] [5] [6]); Y. a56 - aOO = P•SS;
= out(a[b][6][5]); Y. a65- aOO = P•S6;
= out(a[b][7][4]); Y. a74- aOO = P•S7;
= out(a[b][7][5]); Y. a75- aOO = P•SS;
= out(a[b][6][6]); Y. a66- aOO = P*S9;
= out(a[b][S][7]); Y. a57- aOO = P*60;
= out(a[b][6][7]); Y. a67- aOO = P*61;
= out(a[b][7][6]); Y. a76- aOO = P•62;
= out(a[b][7][7]); Y. a77- aOO = P*63;
end;

Y. a = all;

55

56 APPENDIX A. PIF

A.3 PIF desrciption of 4 x 4 left turning spiral
func input() out= inbuf {0.0} [1];
func output(in) = outbuf {0.0} [1];

#define XSIZE 4
#define YSIZE 4
#define PERIOD 1
#define GLOBAL PERIOD•XSIZE•YSIZE

{GLOBAL}

{in}

{out_1}
{out_2}

{out_3}

{out_4}

{out_5}

{out_6}

{out_7}

{out_S}

(1 : 0 .. YSIZE-1) {PERIOD•XSIZE} ::
begin

end;

=
=

(c : 0 .. XSIZE-1) {PERIOD} ..
begin

x[l] [c] =input();
end;

output(x[2] [2]);
output (x [2] [1]) ;

%out_2 -out_1 = 1;
= output (x [1] [1]) ;
%out_3 -out_1 = 2;
= output(x[1][2]);
%out_4 -out_1 = 3;
= output(x[1][3]);
%out_5 -out_1 = 4;
= output(x[2][3]);
%out_6 -out_1 = 5;
= output (x [3] [3]);
%out_7 -out_1 = 6;
= output(x[3][2]);
%out_8 -out_1 = 7;

{out_9} = output(x[3][1]);
%out_9 -out_1 = 8;

{out_10} = output(x[3][0]);
%out_10 -out_1 = 9;

{out_11} = output(x[2][0]);
%out_11 -out_1 = 10;

{out_12} = output(x[1][0]);
%out_12 -out_1 = 11;

{out_13} = output(x[O][O]);
%out_13 -out_1 = 12;

{out_14} = output(x[0][1]);
%out_14 -out_1 = 13;

{out_15} = output(x[0][2]);
%out_15 -out_1 = 14;

{out_16} = output (x [0] [3]);
%out_16 -out_1 = 15;

% in = [0 ,] ;
% out_1 = [,2•GLOBAL];

A.4. PIF DESCRIPTION OF RADIX 2 FFT

A.4 PIF description of radix ~ FFT
#de1ine P 1
#define I 256
#define STAGES 8

func input() out: {P} inbuf {0.0} [1];
func output(in) = {P} outbuf {0.0} [1];
func add(in1,in2) out= {P} alu {1.0} [1];
func sub(in1,in2) out= {P} alu {1.0} [1];

signal x = 8;

memory mem = {1.0,1.0,0.0,0.0};

{(STAGES+l)*fi*P}

(i : 0 1-1) U•P} ::
begin

{in} x[O] [i] = input() [0,];
end;

(s: 1 .. STAGES) {I•P} ::
begin

(i : 0 .. 1/2-1) {2•P} ::
begin

{sl} x[s] [2•i] = add(x[s-l][i],x[s-l][i+<fi/2>]);
{s2} x[s](2*i+1] = sub(x[s-1](i],x(s-1](i+<l/2>]);

end;
end;

(i : 0 .. fi-1) {l*P} ::
begin

{out} = output(x[STAGES][i]) [,2•STAGES*fi*P];
end;

Y. sl - in >= I•P;
Y. s2 - in >= I•P;
Y. out- s2 >= STAGES•I•P-1;
Y. out - s1 >= STAGES•I•P-1;
Y. s2 - s1 = P;

Y. in -> out = mem;
Y. out <- in = mem;

57

58 APPENDIX A. PIF

A.5 PIF description of radix _4 FFT
tdefine P 1
#define I 64
tdefine STAGES 3

func input(} out = {P} inbuf {0.0} [1];
func output(in} = {P} outbuf {0.0} [1];
tune butterfly (11,12{1},13{2},14{3}) o1{12},o2{13},o3{14},o4{15} = alu

s1gnal x = 8;

{(2*STAGES+2)*B*P+8}

(i : 0 •• 1-1) {P} ::
{in} x[O] [1] = input() [0,];

{s}

(s : 1 .. STAGES} {2*1*P} ..
begin

end;

(i : 0 .. 114-1) {S•P} ..
begin

end;

x[s][4•i], I• outl•l
x[s][4•i+1], I* out2•1
x[s][4•i+2], I• out3•1
x[s][4•i+3] = I• out4•1
butterfly(

x[s-1] [i], I• in1•1
x[s-1][i+<ll2>], I• in2•1
x[s-1][i+<ll4>], I• in3•1
x[s-1] [i+<3•(114)>] I• in4•1
) ;

(i : 0 .. B-1} {P} ::
begin

{out} = output(x[STAGES][i]} [,4•STAGES*I*P];
end;

Y. s - in >= I*P;
% out - s >= 2•STAGES*I*P+8;

{1.0} [1];

Appendix B

Regular placement program

The regular placement program is called by :

rp [life time file]

The life time file syntax is like:

<framelength>
<sample name> <write timepoint> <read timepoint>
<sample name> <write timepoint> <read timepoint>

When the program is exucuted several questions are asked. Which options are
set by which answers will be explaned next.

rp [lifetime file]

calculate minimal memory size 1 (1 = yes I 0. = no)

By answering yes here the Mlowb and some other values which play no futher role
in the program will be calculated, M 1owb is nessecary w hen binairy search through
the memory is whished.

59

60 APPENDIX B. REGULAR PLACEMENT PROGRAM

relative (1) or absolute (0) add ? (011)

Here the choice is made between relative or absolute location assignment. When
absolute location assignment is selected the program determines whether it is
nessecary to expand the frame. If expansion is needed the program has to be
started again with the expanded data schedule which is generated by the program.
This expanded data schedule can be found in the file [life time file].exp. For
relative location assignment expansion is never needed.

regularize on read side? (1= yes I 0 = no)

Ifyes is selected here the program will try to regularize the read address generator.

linear or binary search through mem sizes ? (0 = bin I 1 = lin)

lineair or binairy search selection.

give start size memory
give max seq length :
min seq length fixed ? (0= no I 1 = yes)
give min seq length :
lin seq derc. (1) or single step(O) (110) ?

With these questions the user can determine the amount of regularity in the
address sequence and the amount of memory sizes that is checked. By setting the
non fixed option for the minimum sequence length every regular sequence will be
at least half of the number of non placed samples. With this option the minimum
sequence length should be half of number of samples and the maximun should
be equal to the number of samples. With last option "lin seq derc. or single
step" one can choose between shortening the placed sequence one at a time or in
one step to the minimum sequence length. The single step option increases the
compution speed.

During the execution of the program the placing and removing of the samples
in the memory can be shown on a grapical display.

This files generated by the regular placement program are: XXX stand for
the name of the life time file.

• XXX.exp: contains the expanded life time file.

• XXX.opt : contains the results of regular placement.

• XXX.plar: contains the PLA filling for the run lenth delta storage unit for
the read address generator.

• XXX.plaw : contains the PLA filling for the run lenth delta storage unit
for the write address generator.

61

• XXX..mbox.read : contains the data schedule with addresses resulting from
regularizing the read address generator. ·

• XXX..mbox.write: contains the data schedule with addresses resulting from
regularizing the write address generator.

The "..mbox" files are the input file for MATCHBOX. In that way an estimate
of the IPB area cost can be made. To call MATCHBOX just type matchbox -hg
[XXX..mbox.read) or matchbox -hg [XXX..mbox. write)

62 APPENDIX B. REGULAR PLACEMENT PROGRA.M

Appendix C

• Matchbox memory stzes

In this appendix the memory sizes needed in the IPBs for the different techniques
of PHIDEO are pTesented. The meaning of the abbreviations used in the different
tables:

relative = relative location assignment
absolute = absolute location assignment
counter = counter addressing
#memory loc. = Number of memory locations
memory size = Size of the memory with '#memory loc.' locations in mm2

application tech.n.ique # memory loc. memory size
matrix relative 51 0.33
8 x 8 absolute 55 0.36

counter 128 0.81
matrix relative 23 0.16
8 x 4 absolute 25 0.17

counter 64 0.42
matrix rela.tive 47 0.31
4 x 16 absolute 53 0.35

counter 128 0.81
matrix rela.tive 11 0.09
4 x 4 absolute 12 0.09

counter 32 0.22

application tech.n.ique #memory loc. memory size
Radix 2 FFT relative 31 0.21

32 points absolute 43 0.29
counter 48 0.32

Radix 2 FFT relative 63 0.41
64 points absolute 84 0.54

counter 94 0.60
Radix 2 FFT relative 127 0.81

128 points absolute 169 1.07
counter 205 1.29

Radix 2 FFT relative 255 1.60
256 points absolute 342 2.14

counter 384 2.40

63

64 APPENDIX C. MATCHBOX MEMORY SIZES

applica.tion techn.ique # memory loc. memory size
Radix 4 FFT rela.tive 16 0.12

16 point absolute 17 0.12
counter 23 0.16

Radix 4 FFT ve 64 0.42
64 point absolute 107 0.48

counter 174 0.68

application techn.ique # memory loc. memory size
zig- z.a.g rela.tive 16 0.12
6X6 absolute 18 0.13

counter 36 0.24
zig-zag rela.tive 29 0.20

8 x 8 absolute 33 0.22
counter 64 0.42

applica.tion techn.ique # memory loc. memory size
spiral left relative 24 0.17

6)(6 absolute 28 0.19
counter 72 0.46

spiral left relative 12 0.09
4 x 4 absolute 13 0.10

counter 32 0.22

Appendix D

Matchbox address generator
• SIZeS

In this appendix the results of MATCHBOX are shown. The meaning of the dif­
ferent abbrevitions used in the different tables:

T = U sed Technique
R = Relative location assignment
A = Absolute location assignment
C = GJunter addressing
Co = GJunter architecture
AT = Address Table architecture
DT = Delta Table architeture
DTM = Delta Table architeture with Modulo hardware
RDT = Run length Delta Table architecture
RDTM = Run Length Delta Table architecture with Modulo hardware
bm = Number of entries in the run length delta PLA before minimasation
am = Number of entries in the run length delta PLA afther minimasation
S = Size of the address generator in mm2

Writ~ &ddresa l'eneat.or sizes.
&Pl>L T AT DT~DM MT

RDTM
bm am s bm am am S~ S bm am

ma.trix 1:(. <10 0.20 46 3!>
8)(8 A l:l8 109 0.19 I:Z8 n o::zr '06 0!)

tn&UlX R 29 0.1 ao 28
8)(f A llf u O.l~ 84 . ., 10 :.14 o. 39 21

c
mans x R 64 49 0.20 64 ó2
f)(16 A 128 94 0.18 128 66 0.19 n -n ~ H lló

'-
matrut R I I 16 11 0.12 13 11
')(4 A "" :l:l 0.09 .,, 18 0.11 2 16 O.H 18 13

-T

65

s
o .••

1).26

0.17
-0.:.<

0.20
0.28

0.13
0.16

Co
s

1},1}

0.06

u.O

0.05

66 APPENDIX D. MATCHBOX ADDRESS GENERATOR SIZES

Rea.d a.ddreu f'tmea.tor sJzn
appl. AT D' D'cM lUJT lUJTM <.:

bm am ::; bm &m s l>m &m sq::: &m s l>m am s s .. " .. m 64 ·~
0.20 40 116 0.22

8 x 8 1 z• 103 0.1• l23 66 0.111 611 u.<! " D!O u.<6
128 127 0.20 128 7 0.16 llll 1 , .. , 0.<2

Dl&tri~ 32 30 0.17 30 29 0.18

11 X 4 M u 0.13 64 28 o.u (0 llll 0.16 ll :lil 0.19 ... "" u.H ... " u.H u 8 0.16 llll 8 0.19
m&1TIX 1<. 64 52 0.20 57 62 0.22
•)(16 A u .. 9(0.11! ne 6lt u.18

~9
2

!!"··~
1 61 0.26

<.: ue 12< 0.20 na 0.16 17 0.1 1 11
matr1x R 0.12 11 10 o.u
4)(4 A ll:l n 0.0\1 32 20 o. I ;us 0.12 ~· "" .1<>

ç ... ' lil 0. ... D u ..• 6 o. 13 [7 6 0.1

'!_rue &d~_!ess 1en~ator stzea
appl. A D' D':M lUJT lUJTM

bm am s bm &m s bm am bm ""' s bm &m s
R&. 2 R 192 3! 6 6 0.1

~ FFT ~. 192 1 4 0,23 111< 11.• 0.23 ~~ 109 0.25 12t

~ 32 p. c
R&. 2 R H8 43
FFT A H8 406 O.H 448 2: 1 I u.lll> 26 236 0.41 266 ~9

lH p.
R&. 2
FFT

128 p.
R" 2
FFT

256 p.

&ppl.

Ra. 4
FFT
16 p,
Ra. 4
FFT
64 p.

It... 4
FFT
16 p.

~" 4
FFT
6(p.

L

K 1024 67 0.28 8 8 0.23
A 1un ""· ·'" IU:l4 = .1>6 !>\JU u u "·"" !>UU _!.4U u.'la
L

~ 2304 73 o.u 9 9 0.27
A 2304 2061).18 2304 LltOl 1.1' 132: llll 1.31 1321 L 10 1.43
c

Write addteu ~:e.ne.a.•or sizes
T AT DT

~DTM~
RDT l .lL M c

bm am l) om am

u.~~ :r: s m
am s

ffi{~
s s ... 0.17

A • ll .. 0.13 •e 33 31 U.l 0.20
(.; v.u~

R 256 ~u 0.28 193 94 0.30
_ A, Zl:>6 _ ~u .I. ~"" H>l _U.~6 189 }~; V.3ol "'~

,.,. v.~,

(.; o.o.

•e H 0.13 48 20 O.U ~6 20 0.16 a3 }U 0.19
R 256 103 0.26 2:06 103 0.26

(;. 266 162 0.28 :.1.!>6 16 0,19 1"0 "" U.<. 1113 O.l3

c
s

0.06

o.o·

0.08

u.u.

67

WrJte a.ddreu &eneator 11~ei
&ppl. .. ·~ AT DTM H.D1 >TM

bm &m s bm &m s bm am s bm &m s bm &m s s
zi& ·za& R 36 32 0.16 36 32 0.16

6 x 6 A 36 32 0.12 36 23 .14 22 ;<U 0.16 21 1 0.19
c 0.06

Zi« · B&« R 64 &8 0.19 62 60 0.19
8 x 8 A 64 6 0.14 64 36 .16 as a2 0.19 34 •2 u.23

0.06

Rea.d a.ddreaa cenea~or size:J
&ppl. A D' D' M IUJT RD':M c

bm am s bm am s bm &m s bm &m -~ bm am s s
•i«- Z&« R 36 33 u.a as 3; u.1ó

6 x 6 A 36 32 0.12 36 30 0.14 32 zv 0.14 30 :15 0.18
c 36 3ó 0.13 36 22 0.16 zo 16 0.16 18 16 0.20

zig · za& R 64 &8 0.19 62 69 0.19
8)(8 A 64 61 0.14 64 &2 0.16 48 43 0.1 4 42 0.21

'- 64 63 0.14 64 38 0.16 26 zO 0.16 26 20 .zo

Write a.ddress &:eneator aizes
appl. A UT u· M .IUJT .IUJ'l'M c

bm am s bm am ~ bm am ~ bm am s bm am s s
Spiral l•fl R 36 31 0.1 3:1 30 0.1

6 x 6 A 16 6< O.lb ,. _1. U.l6 10 1. U. lV 10 1. u.u
c o.u

Spnal l•fl _K 16 13 0.12 16 13 0.12
4 x 4 A 32 28 0.10 32 18 0.11 20 16 0.14 20 16 0.16

O.Oó

Rea.d address 1ene-ator aize:s
appl T AT DT DTM RDT RDTM c

bm am s bm am ~ bm am s bm am s bm am s s
Spiral left K "" " u. "" •• 0.18

6 x 6 A 72 6' O.lb 16 64 u. b6 bU u.: b6 bl u.-.u
\.- ,. 72 46 0.19 Zó •o U.Le •o •o 0.22

Spnal left R 16 12 0.12 16 12 0.12
4)(4 A 32 21 u.uv •• Zb u.1 20 ... U.lll 26 ... u. lb

c 32 31 0.1 32 13 0.12 l ll 0.13 I' U.l

68 APPENDIX D. MATCHBOX ADDRESS GENERATOR SIZES

Appendix E

Result regular placement

In this appendix the results of regular placement are shown. The meaning of the
different abbrevitions used in the different tables:

MMR = Minimal memory Memory with Relative location assignment
MRR = Maximal Regularity with Relative location assignment
MMA = Minimal memory Memory with Absolute location assignment
MRA = Maximal Regularity with Absolute location assignment
Co = Counter archtecture
AT = Address Table architecture
DT = Delta Table architeture
DTM = Delta Table architeture with Modulo hardware
RDT = Run length Delta Table architecture
RDTM = Run length Delta Table architecture with Modulo hardware

matrix transposition
si ze Teclu1. write add. read add. memory

arch. si ze arch. si ze :#loc. si ze
4x4 MMR DT~ 0.12 DTM 0.12 13 0.10
4x4 MRR RDT 0.13 DTM 0.14 19 0.14
4X4 MMA AT 0.10 AT 0.10 15 0.11
4X4 MRA Co 0.05 AT 0.11 32 0.22
8x4 MMR RDTM 0.15 DTM 0.17 43 0.29
8X4 MRR DTM 0.17 DTM 0.18 35 0.24
8X4 MMA AT 0.14 AT 0.14 43 0.29
8x4 MRA Co 0.06 DT 0.14 64 0.42
8x8 MMR DTM 0.20 DTM 0.21 83 0.53
8X8 MRR RDTM 0.18 DTM 0.20 99 0.63
8x8 MMA DT 0.16 _DT

Fi
63 0.41

8x8 MRA Co 0.07 DT 128 0.81
4 x 16 MMR DTM 0.21 lJTM 78 0.50
4 x 16 MRR RDTM 0.18 DTM 0.20. 91 0.58
4 x 16 MMA DT 0.17 DT 0.19 95 0.61
4 x 16 MRA Co 0.07 DT 0.16 128 0.81

69

70 APPENDIX E. RESULT REGULAR PLACEMEI'lT

Radix 2 FFT
si ze Teclu1. write add. read add. memory

~Ou
areh.

fr
#loc. si ze

32 points MMR 0.21 DTM 47 0.31
32 points MRR 0.21 RUTM 0.19 47 0.31
32 points MMA 0.18 RDT 0.17 47 0.31
32 points MRA ROT 0.18 Co 0.06 48 0.32
64 points MMR ROTM 0.24 ROTM 0.21 ±=95 0.61
64 points MRR RDTM 0.24 ROTM 0.21 95 0.61
64 points MMA ROT 0.21 Co 0.07 95 0.61
64 points MRA ROT 0.21 Co 0.07 95 0.61

128 points MMR DTM 0.27 RDTM 0.27 191 1.20
128 points MRR RDTM 0.27 RDTM 0.24 191 1.20
128 points MMA RUT 0.23 RUT 0.21 191 w.:1 128 points MRA ROT 0.23 Co 0.08 205
256 pomts MMR ROTM 0.21 RDTM 0.30 383 2.39
256 points MRR RDTM 0.18 RDTM 0.28 383 2.39
256 points MMA RDT 0.17 Co 0.08 384 2.40
256 points MRA ROT 0.07 Co 0.08 384 2.40

Spiralleft turning
si ze Teclm. write add. read add.

arch. si ze
4X4 MMR OTM 0.14
4X4 MRR DTM 0.14
4X4 MMA AT 0.11
4X4 MRA Co AT 0.19
6x6 MMR DTM TM 0.18
6x6 MRR ROTM 0.16 RDTM 0.17
6x6 MMA OT 0.16 AT 0.16
6X6 MRA Co 0.07 AT 0.17

Zig - zag transformation
si ze Teclm. write add. read add. memory

~
arch.

~
si ze

8x8 MMR DTM 0.30
8X8 MRR DTM 0.36
8X8 MMA AT 0.14 AT 0.14 46 0.30
8X8 MRA Co 0.06 AT 0.14 64 0.42
6x6 MMR DTM 0.17 DTM 0.17 23 0.16
6X6 MRR ROTM 0.15 RDTM 0.17 25 0.17
6x6 MMA AT 0.12 AT 0.12 21 0.15
6x6 MRA Co 0.06 AT 0.13 36 0.24

Radix 4 FFT
si ze Teclm. write add. read add. memory

1 arch. si ze ar eh. si ze #loc. si ze
16 points MMR DTM 0.17 OTM 0.16 17 0.12
16 points MRR OTM 0.17 ROTM 0.1.5 23 0.16
16 points MMA AT 0.13 RDT 0.13 17 0.12
16 points MRA AT 0.13 Co 0.05 23 0.16
64 points MMR OTM 0.25 DTM 0.23

87* 64 points MRR DTM 0.23 ROTM 0.21 105 50
64 points MMA ROT 0.24 87
64 points MRA DT 0.19 Co 0.07 105 1 o.5o

Appendix F

archtecture merged IPB

r----------1 counter I

IMIJXA·
fOif"""'*.lll­
llif-.t.ll-.licorry
llif•-1(....-y.t.-)

I r======9
I

-----------------, counter2

MUXC·
Od·~.t.b­

ld•....W..llr_.t._
ld•....W..lb_ .. _

MUXC

I ·-l

I
I
I
I
I
I
I
I

t __________________ J

Algorilhm4

Algoridlm3

Algorilhm 2

Figure F.l: Architecture for multi algorithm IPB

71

72 APPENDIX F. ARCHTECTURE MERGED IPB

Appendix G

Unix script

This script determines the consecutive delta and start addresses for matrix trans­
position.

#!/bin/ksh
r=O
c=O
case $# in

2) r=$1
c=$2

' ,
•) echo "Usage: calcrep <rovs> <cols>"

exit; ;
esac

p=O
i=O
d=1
s=O
((m=(r*c)-1))
vhile (((s != m) I I (i == 0)))

do
echo "d 11 $i" = "$d "st add ="$s
((s=s+d))

done

if ((s > m))

then
((s = s - m))

fi
((k=(d•c)/m))
((d=(d•c)-(k*m)))
((i=i+1))

echo "d"$i" = "$d

73

74 APPENDIX G. UNIX SCRIPT

Bibliography

[1] van Meerbergen, J.L. et al, Relative Location Assignment for repetive Sched­
ules. in : Proc. European Conference on Design Automation (EDAC) Paris,
Februa.ry 1993. p. 403-407.

[2] Lippens, P.E.R. et al., PHIDEO: A Silicon Compiler For High speed Al­
gorithms, iri: Proc. European Conference on Design Automation (EDAC),
Amsterdam,Februa.ry 1991. p. 436-441.

[3] Chien-In Henry Chen and G.E. Sobelman, Singleport/Multiport Memory
Synthesis in Data Path Design, in : Proc. of the ISCAS, New Orleans, May
1990. p. 1110-13.

[4] Balakrishnan M. et al., Allocation of Multiport Memories in Data Path Syn­
thesis. IEEE Trans. on CAD, VoL 7, No. 4 April1987. p. 536-40.

[5] Tseng, C.J. and D.P. Siewiorek, Automated Synthesis of Data paths in dig­
ital systems. IEEE trans. CAD, Vol. CAD-5, No. 3, July 1986. p. 379-395.

[6] Grant, D.M. and P.B. Denyer, Address Generation for Array AccesBasedon
Modulus m Counters, in: Proc. European Conference on Design Automation
(EDAC), Amsterdam, Februa.ry 1991. p. 118-122.

[7] Kurdahi, F.J. and Pa.rker A.C., REAL : A program for register allocation,
in : Proceedings of the 24th Design Automation Conference, July 1987. p.
210-215.

[8] Pa.rhi, K.K., Video data format convertors Using Minimum Number of Reg­
isters. IEEE Transactions on Circuits .and systems for Video Technologie,
Vol. 2, no. 2, June 1992. p. 255-267.

[9] Stok 1., Transfer free Register allocation in Cyclic Data Flow Graphs, in :
Proceedings European Conference on Design Automation, Brussels, Febru­
a.ry 1992. p. 181-185.

[10] Woudsma R., et al., PIRAMID: An architecture driven silicon compiler for
complex DSP applications, in : Proceedings IEEE International symposium
on circuits and systems, 1990. p. 2696-2700.

75

76 BIBLIOGRAPHY

[11] Garey M.R., et al., The complexity of coloring circular arcs and chords,
SIAM journal on algebraic and discrete methods (1), 1980, p. 216-227.

[12] Tucker A., Coloring a family of circular arcs, SIAM journal on applied math­
ernaties (29), 1975, p. 1-24.

