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Abstract 

In High-Level Synthesis some reasonable solutions to the scheduling-problem are 
known. However, some of these schedulers (e.g. a list-scheduler) do not always offer 
satisfying results. Therefore it was desirabie to design an algorithm to overcome these 
problems. 

In this report afeasibility-(pre-)scheduler, based onfuzzy set techniques, is presented. In 
this approach, all possible start-positions of an operation are regarded as memhers of a 
fuzzy set. To each memher of these fuzzy sets an initial membership-grade is assigned. 
To be able to translate properties of the data-flow graph into membership-grades for the 
elements in the fuzzy set, fuzzy membership-functions are introduced. Then, starting 
with the initial membership-grades, in an iterative process old membership-grades are 
translated into new membership-grades. 
Given a data-flow graph with a time- and a resource-constraint, the fuzzy scheduler 
assigns toeach possible start-position of an operation a membership-grade. However, 
the operations are not fixed yet ! 

To perform the actual scheduling (i.e. fixing the operations), the results of the al­
gorithm can be used in two ways : 

• By a greedy-feasibility scheduler, which is a scheduler, specially tunedon using 
membership-grade to make a feasible schedule 

• By various other schedulers (e.g. list-schedulers, force-directed schedulers), as a 
kind of initialization 

The fuzzy (pre-)scheduler is fast and produces good results. Furthermore, the algorithm 
has shown to converge to a solution, even if the membership-grades are initialized at 
random. However some work has to be done, to make the fuzzy scheduler applicable in 
a chip-design environment. 

The chapters 1 and 2 give a short introduetion to High-Level Synthesis and the 
scheduling-problem. In chapter 3 some relevant topics of fuzzy sets are discussed. 
Chapter 4 discusses how the fuzzy set techniques are applied to the scheduling-problem. 
Mter these definitions, the actual fuzzy algorithm is presented, foliowed by an example. 
In chaper 5 the results ofthe fuzzy algorithm, applied tosome examples, are presented. 
Furthermore, the greedy-feasiblity scheduler is outlined and some recommandations for 
future work are done. Finally, chapters 6 presents the conclusions. 
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Chapter 

Introduetion 

At the Design Automation Beetion ofthe Eindhoven University ofTechnology, software 
tools are being developed for the design of integrated circuits. One of these tools is a 
Silicon Compiler, which translates a functional description forsome digital system into 
a chip layout. The silicon compiler can he splitted in three parts (see tigure 1.1): High-

Functlonal Descriptlon 

Network Structure Controller Descrlption 

Logic Synthesis 

Gate Network 

Layout Synthesis 

Chip Layout 

Figure 1.1: Silicon Compiler Overview. 

Level Synthesis, Logic Synthesis and Layout Synthesis. The High-Level Synthesis part 
transforms the functional description into a description of a networkof modules (e.g. 
multipliers, adders, etc.) and a corresponding (networkw)controller. The Logic Synthesis 
transforma these results into a network of gates. Finally, the Layout Synthesis creates 
a chip layout from the gate network. 

This report is concerned with a problem in High-Level Synthesis, called scheduling. In 
chapter 2, this problem is defined more formally. Although previous workin the design 
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2 High-Level Synthesis Scheduling Using Fuzzy Set Techniques 

automation section ofthe Eindhoven University ofTechnology already affered good so­
lutions for this problem ([Heijligers91]), they also showed to have a few short-comings. 
Therefore, it was desirabie to develop an algorithm, based on fuzzy set techniques, that 
could provide some kind of initial schedule. Eventually, by using these results, the 
above mentioned (schedule) algorithms, should overcome their short-comings and offer 
better results. 



Chapter 

High-Level Synthesis 

2.1 System Overview 

Within the high-level synthesis process, the following steps can be distincted (see 
figure 2.1). An object used to interchange information between the various steps in 

Algorithmic description 
e.g. in VHDL, Hardware C 

Module 
Generator 

Control Graph 'Hi 0 . . . I · pt1m1Zat1on 
Network Graph 1 

f 

H . Allocation 

Data Path Finite State Machine 

Figure 2.1: High-Level Synthesis system overview. 

the high-level synthesis process, is the data-flow graph. The main advantages to use a 
data-flow graph for synthesis are : 

• independency of input description languages used 

• detection of concurrency in the description 

• no use of variables, but only use of values 

Take for example, the following description: 
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4 High-Level Synthesis Scheduling Using Fuzzy Set Techniques 

process exgraph(aO,al,a2,a3,fO,fl) 
in port aO, al, a2, a3; 
out port fO, fl; 

{ 
integer xO, xl; 
integer Yli 
xO = aO + al; 
xl = a2 - a3; 
yl = xO + xl; 
fO = xO * yl; 

fl = xl + yl; 
} 

This functional description can he mapped onto the data-flow graph as shown in 
tigure 2.2. With respect to tigure 2.2, there are a number of problems to he solved : 

Figure 2.2: Data-flow graph, representing functional description. 

• Which and how many modules can he used ? 

• At what time must a node he executed? 

• On what module in the data-path will a node he executed ? 

At the Eindhoven University of Technology, in the NEAT-system the design-flow in 
High-Level Synthesis is as follows: 
A module-generator takes care of the first point. By investigating the data-flow graph 
and an associated time-constraint Tmax• the generator checks which operation-types are 
used. It then creates from a library a set of modules to he used in the synthesis-process 
(A library is a database containing a set of modules which can execute one or more 
operation types. E.g. : <ALU: -,+, * ,/,or,and>,<adder:+> ). 
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The scheduler takes care of the second point. It assigns to each node in the graph 
a cycle-step, in which an operation should start. Depending on the type of scheduler 
(see section 2.2.4), several constraints occur. For instance, the scheduler might have 
to know the num.her of modules (of a certain type) and/or the num.her of cycle-steps it 
is allowed to use. Note, the results of the scheduler and the module-selector depend 
heavily on each other. An illustration of this dependency is given in tigure 2.3. 

Time-Constraint 
Tm a x 

Data-flow Graph is scheduled; 
proceed with allocation 

Yes 

Figure 2.3: Interaction between module-selector and scheduler. 

The last point is solved by a binder. The binder assigns to each node in the graph 
a hardware module. Hence, the binder needs to know in which cycle-step nodes are 
executed, in order to be able to prevent conflicts in the module-usage. Furthermore, 
register-allocation and interconnect-generation are also performed in this phase. In 
register-allocation registers are assigned to values which have to he stored during 
one or more cycles. Interconnect-generation is performed after binding and register­
allocation, and determines the interconnection units (i.e. wires and interconnection 
units like multiplexers and demultiplexers). 

In the next section, an introduetion and somebasic definitions regarding the scheduling­
problem will be given. 

2.2 Scheduling 

In short, a scheduler assigns to each node in the data-flow graph one or more cycle 
steps, that is, during these cycles the node is executed. A scheduler is subjected to 
constraints : a precedence-constraint and depending on the type of scheduler (see sec­
tion 2.2.4), a resource- and/or a time-constraint. The precedence-constraint means that 
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a node cannot be executed earlier than its predecessors and cannot be executed later 
than its successors; this constraint is derived from the data-flow graph. 

A data-flow graph is a directed graph. The nodes of the data-flow graph represent 
operations, the edges model the transfer ofvalues (i.e. tokens) between these nodes. A 
node can be executed only, if there are values (tokens), on all its incoming edges. In the 
high-level synthesis process two other kinds of graphs are associated with the data-flow 
graph : the control-graphand the network-graph. In this report attention will be paid 
only to data-flow graphs. 

2.2.1 The Data-Flow Graph 

A data-flow graph is a directed graph, consisting of nodes and edges. This can be stated 
formally as : 
A data-flow graph is a graph G = (V, E), in which : 

• V is a finite set of nodes 

• E Ç V x V is a set of directed edges 

' 
In the graph, there exist various kinds of node types, each having its own semantics. 
There are operation nodes, input- and output nodes, constant nodes, branch- and merge 
nodes, etc. In this report only operation- and inputloutput-nodes will be used. An 
operation node represents operations like *,-,+,I, and boolean operators like and,or,<,>. 
The inputloutput-nodes are used to interface with the outside world, i.e. input-values 
are assigned to the input-nodes, output-nodes return the computed values. In the 
data-flow graph G =(V, E), the function r perfarms the mapping ofnodes onto types: 

T : V ----> Type (2.1) 

with Type the set of (node-}types. 

For each node in the graph two special sets of nodes associated to that node, can 
be defined: 

succ(vi) = {vj E V I (vi,vj) E E} (2.2) 

re presenting the set of all direct successors of a node v1 E V, and 

pred( Vj) = {vi E V I ( vi, Vj) E E} (2.3) 

representing thesetof all direct predecessors of a node Vj E V. Note, there also exist 
several kinds of edges (see [Eijndhoven91]), however we will only be concemed with 
data edges. 

2.2.2 The library 

As outlined in section 2.1, the scheduler uses a library to obtain information about 
operation-types in the data-flow graph. To be able to schedule, the scheduler needs 
to know the execution time of all the operations in the graph. For convenience it is 
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assumed that every operation has one unique module upon which it will he executed. 
Hence, every operation in the data-flow graph has a unique execution-time. This can he 
stated formally as : 
Operation mapping 
Let G = (V, E) he a data-flow graph, L be a library. 
Ç : V -+ L is a mapping from operations to modules. 

Delay 
Let G = (V, E) he a data-flow graph, L he a library. 
6 : V x L -+ 1R is a function decribing the time a module needs to execute a node. 

Example of a library 
Let L he a library: L ={<ALU:-,+,* ,/,or, and>,<adder:+,->,<1/0:get,put>} 

2.2.3 Some more defi.nitions 

Given a data-flow graph, the scheduler has to decide which node is executed at what 
time. The time is given by the interval [O .. T ma.x], where T ma.x is the moment at which 
all nodes in the graph must have been executed. The integer interval [O .. Tma.x 1] 
represents thesetof cycle-steps, involved in scheduling the graph. An example of time 
and cycle-steps is given in figure 2.4, where [0 . .4] denotes the time interval and [0 .. 3] 

0 
~ 0 ~\ 
I I 

1 
I 

I ! 

Time J 

1 I 
2 1 

Cycles 

I 21 
I 

3 
I 

I I I 

t 3~ 
Tmax= 4 

Figure 2.4: Illustration of time and cycle-steps. 

denotes the integer interval of cycle-steps. 

The use of cycles implies the use of some (central) clock, operating at a certain 
frequency, and hence the regarded system is one of a synchronous kind. Furthermore, it 
is assumed that all modules are related to this specified clock-frequency, i.e. the delay 
of the modules is specified in the num.her of cycle-steps. 
In figure 2.5, two special situations are drawn: multi-cycling and chaining. In words: 
Multi-cycling : the delay of a module is bigger than one cycle-step; the corresponding 
operations will occupy more than one cycle. 
Chaining : the delay of a module is smaller than one cycle-step; sametimes more than 
one related operations can he executed in one cycle-step. 



8 High-Level Synthesis Scheduling Using Fuzzy Set Techniques 

Tcycle 

(A) (B) 

Figure 2.5: (a) Multi-cycling (b) Chaining. 

Finally, a module used can be a pipelined module. Pipelined modules can start a 
new execution before the previous execution has finished. This means that the module 
can contain more than one data-value at the same time. However, in this report, 
pipelining is not considered. 

Thanks to the precedence-constraint, to each node two values can be assigned : 

• An ASAP (As Soon As Possible) value, representing the earliest time at which 
execution of a node can be started. 

• An ALAP (As Late As Possible) value, representing the latest time at which 
execution of a node must be finished. 

Stated formally : 
Given the data-flow graph G =(V, E), node Vi E V and time-constraint Tmax: 

asap( vi) = { 
0 if pred( v;) = 0 
maxviEpred(v;)[asap(vi) + ö(vj)] ifpred(v;) ::j:. 0 

(2.4) 

l ( ) { Tmax if succ( Vi) = 0 (2.5) 
aap v; = minviEsucc(v;)[alap(vj)- ö(vi)J if succ(v;) ::j:. 0 

Now, the pair [asap(v),alap(v)] denotes the interval in which a node v can be 
scheduled, and is called the execution-interval of node v (EI( v )). Likewise, the pair 
[asap(v),alap(v) ö(v) +IJ denotes the interval, in which the execution of a node v 
can be started and is called the start-interval of node v (SI(v)). Corresponding to 
SI(v), Cv = [asap(v),alap(v)- ö(v)] denotes the integer interval of cycle-steps of the 
start-interval of v. 

With respect to figure 2.4, the following intervalscan be distincted 
EI( vl) = [0, 2], SI( v1) = [0, 2], Cv1 = {0, 1} 
EI(v2) = [1,4], SI(v2) [1,3], C'-'2 = {1,2} 
EJ(va) = [1,4], SI(va) = [1,4], C113 = {1,2,3} 

with: ö(v1) = 6( va)= 1 cycle, and 6( v2) = 2 cycles. 

2.2.4 Different kinds of scheduling 

Rougly spoken, three kinds of scheduling can be distincted : 
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• Time-constrainted scheduling 

• Resource-constrainted scheduling 

• Feasible scheduling 

With the first one, time-constrainted scheduling, a time-constraint T max is given. This 
means, the data-flow graph must he fully executed befare this time. It is assumed that 
the scheduler has the disposal of an infinite amount of modules (of any kind). 

With the second one, resource-constrainted scheduling, a resourc-eonstraint as a limited 
amount of modules {of all types) is given, however there is no time-constraint. This 
means, that the scheduler can use as much time as it needs to make a schedule. 

The third one, feasible scheduling, in fact is a combination of time-constrainted­
and resource-constrainted-scheduling. In this case, a time-constraint, as well as a 
resource-constraint are given. The scheduler is then asked to create a feasible schedule. 

In tigure 2.6, an example of a graph is given, which is scheduled in the three ways as 
discussed above. 

Figure 2.6: Example of a data-flow graph to he scheduled. 

For the examples shown in the tigures 2.7 to 2.9, the assumption is made that the 
modules used are chosen from the library : 
L={<multiplier:*>,<adder:+>,<subtractor:-> }. 
Fortigure 2.7 this implies that given the time-constraint Tmax• the graph can he sched­
uled using 2 adders, 2 multipliers and 2 subtractors. 
Li.kewise, the resource-constraint chosen in tigure 2.8, implies the graph can he sched­
uled in 8 cycles. 
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1 

2 

3 

Tmax:S-

Figure 2.7: Time-constrainted scheduling, with Tmax = 5. 
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Figure 2.8: Resource-constrainted scheduling, with 1 adder, 1 multiplier and 1 subtrac­
tor. 
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1 

3-

4 

5 

6 

Tmax=7-

Figure 2.9: Feasible scheduling, with T max = 7 and 2 adders, 1 multiplier and 1 
subtractor. 
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Chapter 

Fuzzy Sets 

3.1 Bistory 

In 1965, Zadeh introduced the idea of fuzzy sets [Zad65]. lt was an attempt to adapt the 
concepts of fuzzy boundaries to science. Since then, scientists have had the disposal of 
a tooi to cope with formulations like a tall guy, a red apple or middle-aged people. 
Although fuzzy sets may sound a little bit "fuzzy", the opposite is true : The fuzzy-set­
theory has got a well-defined mathematica! foundation with fine properties. On top of 
that, the basic concept ofthe fuzzy-set-theory can he understood quite easily. 
Since its introduction, the fuzzy-set-theory has assumed ~normous proportions over a 
wide range of applications. Nowadays, fuzzy sets and fuzzy logic (a logic basedon fuzzy 
sets) are succesfully applied in control engineering, speech-recognition and pattern­
recognition, tomention a few. 
Furthermore it is remarkable that fuzzy-systems sneeeed in situations, where systems 
basedon the non-fuzzy.theories, like classicallogic and classical-control-theory fail. The 
other way round, non-fuzzy-systems can handle a lot of situations w herein fuzzy-systems 
would act as a car with square wheels. 

In the next section, a brief introduetion to fuzzy sets will he given, so that the 
reader gets an impression of the properties and possibilities of fuzzy sets. 

3.2 A brief introduetion to Fuzzy Sets 

8.2.1 Introduetion 

In classicallogic, all reasoning is based on two values : true or false. Problems, like the 
one below, can easily he described : 

Given the setS {x E 1N I x::;: 25}, and the function :F(x) with: 

"C'( ) - { 1 if x ::;: 25 
.r x- 0 ifx>25 

Then: :F(24) = 1, :F(25) = 1 and :F(26) = 0. 

For a lot of situations this seems to he adequate. However in trying to describe a 
set like young people, classical logic cannot provide a simple method (Or noteven a 
method at all !!), to decide whether an age of 25 is young or old. And what to say about 

13 
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someone with an age of 26, when 25 years is assumed to he the border of young and old ? 
As a consequence ofthis assumption, someone who's having hls/her 25-th birthday, will 
get old in less then a second !!! It may he obvious that this is not realistic. 

Fortunately, fuzzy sets provide a simple way to cope with this problem. As a mat­
ter of fact, getting older, in most cases, is a smooth process : a man gets a little bit older 
(or a little bit less young) every day. . 
Therefore, it's reasonable to use a function Myoun9 (x ), as defined below ( Myoung and F 
are plotted in figure 3.1): 

1 

0 

Myoung(x) = { 
1 

1 
l+{o(x-20) 

__ 
1 

F(x) 

I 
I 

if 0 ~x< 20 
if x 2: 20 (3.1) 

~--------~~--------~~--~--~~--------~~--------~-------:~ 1 2 4 Age 

Figure 3.1: Plots of F and Myoung· 

As cancanheseen from the definition of Myoung. it's a function mapping lN ~-+ [0, 1]. 
Hence M young produces : 
Myoun9 (15) = 1, Myoun9 (24) :::::: 0.71, Myoun9 (25) :::::: 0.67, Myoun9 (26) :::::: 0.63 and 
Myoung(BO) :::::: 0.14. 
The values retu.rned by Myoung correspond to our (intuitive) idea of getting older: 
An age of 15 certainly isyoung, corresponding to the value 1; on the contrary, an age of 
80 can hardly said to he young, corresponding to the value 0.14. 

The function M young is called a membership-function of the fuzzy set young. In 
the next paragraph some basic properties of fuzzy sets will he defined. 
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3.2.2 Basic Properties 

Zadeh [Zad65] defines a fuzzy set as a mapping ofthe set X onto the unit interval [0,1]. 
The following is involved. 

Let X be a set. The fuzzy set S in X is defined as : 

s =x x [0, 1] (3.2) 

with the membership-function J.ts : X - [0, 1], which associates toeach x E X a real 
number in the interval [0, 1]. 

The number J.ts( x) is called the grade of membership of x in the fuzzy set S. The 
closer the value of J.ts(x) is to 1, the greater is the memhership grade of x in S. Ob­
viously, the membership-function is a generalization of the characteristic function of 
ordinary set theory, which takes on the two values: 1 for elements belonging to the set, 
and 0 for elementsnot belonging to the setS. 

Fora set X the fuzzy setS is written as the set oftuples: 

S = {(x,ps(x))}. 

The results of equation 3.1 can now be expressed as : 
s = { ... '(15, 1 ), ... '(24, 0. 71 ), ... '(25, 0.67), ... '(26, 0.63), ... '(80, 0.14 ), ... } 

In the general case the choice of a membership-function J.ts( x) is subjective, and 
based on information available in each individual situation. 

In the construction of the theory of fuzzy sets, the foregoing is a step to the defini­
tion of operations on fuzzy sets. Note that only the most important operations on fuzzy 
sets are defined here, in partienlar those operations that are significant with respect to 
the next chapter. Below the operations are presented : 

Empty Set 
A {uzzy set S is said to be empty ( S = 0), 
i.ff for all x E X holds J.ts( x) = 0. 

Equivalence 
Two {uzzy sets A and Bare said to be equivalent (A= B), 
i.ff for all x E X holds J.tA (x) = J.tB (x). 

Complement 
The {uzzy set S is the complement of the {uzzy set S 
i.ff J.ts( x) = 1 - J.ts( x). 
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Uni on 
The union A U B of the two fuzzy sets A and B, is defined as the least fuzzy set containing 
both sets A and B. The membership-function ofthe set A u Bis defined by the expression: 

/l.AuB = max(pA(x),fLB(x)) (3.3) 

lntersection 
The intersection A n B of the two fuzzy sets A and B, is defined as the greatest fuzzy set 
that is simultaneously a subset of both of these sets. The membership-function of the set 
A n B is defined by the expression : 

/l.AnB =min (!-LA (X), !lB( X)) (3.4) 

Normalization 
Two forms of normalization can be distincted : 

• Normalization on greatest membership-grade of all elements in the set. 

• Normalization on cardinality of the fuzzy set. 

The fuzzy set Y', which is normalized on the greatest membership-grade of all elements 
of the fuzzy set Y (in X), can be expressed as 

(3.5) 

With: 
X is a set, and K = fLy(h), with Vyex[(py(y) ~ py(h)) 1\ hE X] 

The fuzzy set Y', which is normalized on the cardinality of the fuzzy set Y (in X), can be 
expressed as : 

Y' = { (a, b) l a E X 1\ b = ~Y; ~)} (3.6) 

with : l Y I= I: fLy(y) (3.7) 
yEX 

Of course far more operations can be defined, however the operations discussed above 
are suffi.cient for this report. More operations on fuzzy sets and formal proofs of the 
operations, can be found in [Klir88] and [Zad65]. 



Chapter 

Fuzzy Scheduling 

4.1 Introduetion 

In this chapter a schedule algorithm based on fuzzy set techniques will be presented. 
As discussed in chapter 2, scheduling a data-flow graph G = (V, E) is the process of 
assigning a cycle to each node, in which it should start. 
In short, the problem to be solved is : 
Given a data-flow graph G = (V, E), a time-constraint Tmax and a resource-constraint 
for the number of resources. 
Question: 
Determine for each cycle in the start-interval of a node, a membership-grade, such, that 
eventually, starting a node in the cycle with the highest membership-grade results in a 
feasible schedule. 

4.2 Fuzzy Sets and Feasible Scheduling 

In this section the fuzzy-set theory of the previous chapter will be matebed with the 
scheduling-problem as discussed in chapter 2. 

4.2.1 Set-Definitions 

With respect to the definitions of the start-interval SI and the execution-interval EI in 
section 2.2.3, two kinds of fuzzy sets can be distinguished : 

(A) Node oriented 
This kind of fuzzy set associates a membership-grade to each cycle in the start-interval 
of a node. The node-oriented fuzzy set Sv can bedefinedas: 

Sv = Cv X [0, 1] 

With : v a node of the data-flow-graph. 
Cv the set of cycles of the start-interval of v. 

17 

(4.1) 
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(B) Cycle oriented 
This kind of fuzzy set associates a membership-grade to each node from the set of nodes, 
that can be mapped onto the same module-type and which can start in the considered 
cycle. The cycle-oriented fuzzy set Me( modtype) can therefore be defined as : 

Mc(modtype) = Tc(modtype) X [0, 1] 

and 

Tc(modtype) = {v E V I c E Cv 1\ modtype E Rv} 

with : V the set of all nodes in the data-flow-graph. 
Cv the set of cycles of the start-interval of v. 
Rv the set of module-types where v can be mapped onto. 

o--~f~8--v1 _____________ o 
1 I · * t-----------.,--

1 1 
2 I 

SI(v21 SI(v3~ 

4--------~t---------~t-----
3 

Figure 4.1: Node- and Cycle-oriented fuzzy sets. 

(4.2) 

(4.3) 

Hence, in figure 4.1, the following node- and cycle-oriented fuzzy setscan be distincted 
(note that the membership-grades of the nodes in these sets are chosen arbitrarily) : 

Node-oriented fuzzy sets: 
Sv1 = {(0, 0.5), (1, 1), (2, 0.8)} 
S112 = { (2, o.2), (3, 1)} 
S113 = {(2,1),(3,0.7)} 

Cycle-oriented fuzzy sets : 
Mo(adder) = M1(adder) = 0 
M2(adder) = {(v2,0.2),(vs,1)} 
Ms(adder) = {( v2, 1), ( vg, 0.7)} 
Mo(ALU) = {(vb0.5)} 
M1(ALU) = {( vh 1)} 
M2(ALU) = {(v1,0.8),(v2,0.2),(vs,l)} 
Ms(ALU) = {(v2,1),(vg,0.7)} 
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Given: 
(i) ó(v1) = 2, ó(v2) ó(va) = 1. 
(ü) Rv1 = {ALU}, R112 Rva {ALU,adder}. 

4.2.2 Distorsion 

Now the fuzzy sets with respect to the scheduling-problem are defined, the term 
distorsion can he introduced. Roughly spoken, distorsion is a measure for the impact a 
certain node has on another node, when the first one would he started in one of the cycles 
of its start-interval. Obviously, if a node would he started later, it causes distorsion 
(Dl STdown) with respect to all its successors; in the same way, a node causes distorsion 
(DI ST up) with respect to all its predecessors, if it would he started earlier. Remind, the 
aim of scheduling is to assign toeach node a cycle, in which it is allowed to start. So, 
it is obvious that if a node causes a lot of distorsion with respect to its predecessors or 
successors, letting the node start in that cycle is not a fortunate decision. A node could 
he started best in a cycle, in which it causes the smallest distorsion to other nodes as 
possible. In figure 4.2 can he seen, that if v4 is started in cycle 1, v7 still can start in 

Figure 4.2: Example of distorsion. 

all c E C,17 • However if v4 would he started in cycle 3, v7 must he started in cycle 4, 
because otherwise it would violate the time-constraint T map The other way around, if 
v7 is started in cycle 4, this leaves to v4 the choice tostart in either cycle of Cv4 • Starting 
v7 in cycle 1, forces v4 tostart in cycle 1. In general, startinga node earlier or later, will 
affect the start of predecessors and successors respectively. It can he stated, that, the 
greater the distorsion a node causes in either direction, the worse the decision becomes 
to start the node in the regarded cycle. In fact, a situation arises as plotted in figure 4.3. 
In this figure, quality denotes the quality of the decision to start a node in an arbitrary 
cycle, as a function of the distorsion caused by this node, with respect to other nodes : 
the closer the quality is to 1, the better the decision; the closer the quality is to 0, the 
worse the decision. 



20 High-Level Synthesis Scheduling Using Fuzzy Set Techniques 

1 

0 
-?----------------------------------------------------------~ Distorsion 

Figure 4.3: Distorsion-Quality plot. 

Note that the situation in figure 4.2 can he stated formally as : 

c+ó(v;)-1 

DISTdawn(V;,c)= L L llv,(Cj)+ L DISTdawn(Vj,c+ó(vi)) (4.4) 
VjEsucc(v;) 

with: Cj E CVjl c E Cv; and ( Vi, Vj) E E. 
If succ( v) = 0 then DI ST down ( v, c) = 0, for all c E Cv· 
llv, ( Cj) representing the membership-grade of cycle CJ in Sv

3
• 

Tmax-1 

L /lv;(ci) + L DISTv.p(v;,c- ó(vi)) (4.5) 
v;Epred(v3 ) c;=c-ó(v; )+1 v; Epred( v1 ) 

with: C; E Cv,, c E Cv, and (vi,Vj) E E. 
lfpred(v) = 0then DISTv.p(v,c) = 0, forall c E Cv. 
llv; (ei) representing the membership-grade of cycle c; in Sv;· 

Assuming, the membership-grades of all ei E Cv,, for all v in the data-flow graph of 
figure 4.2 are set to 1 initially, the distorsions DISTv.p(v,c) and DISTdawn(v,c) then 
become: 

DISTdawn(v1,0) = DISTv.p(v1,0) = 0, 
DI STdown( v2, 1) = D / STv.p( v2, 1) = 0, 
DISTdawn(vs,2) = DISTv.p(vs,2) = 0, 
DISTdown(v6,3) = DISTv.p(vs,3) = 0, 

DISTdown(v7,2) = 0, 
DISTdown(V7,3) = 0, 
DI STdown( V7,4) = 0, 

DISTdown(vs,4) = DISTv.v(vs,4) = 0, 
DISTdown(va, 1) = DISTv.p(vg, 1) = 0, 
DISTdown(vg,2) = DISTup(va,2) = 0, 
DISTdown(va,3) = DISTv.p(va,3) = 0, 

DISTv.p(v4, 1) = 0, 
DISTv.p(v4,2) = 0, 
DI STv.p( V4, 3) = 0, 
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DISTdown(v4, 1) = 0 + DISTdown(v7,2) = 0 + 0 = 0, 
DISTdown(v4,2) = (JL1.17(0) + JL1.17(1) + JLV7(2)) + DISTdown(v1,3) = (0 + 0 + 1) + 0 1, 
DISTdown(v4,3) = (JLV7(0) + JLV7(1) + JLV7(2) + p117 (3)) + DISTdown(V7,4) = 

(0 + 0 + 1 + 1) + 0 = 2, 

DISTup(v1,4) = 0 + DISTup(v4,3) = 0 + 0 = 0, 
DISTup(v7,3) = (JLv4 (4) + JLv4(3)) + DISTup(v4,2) = (0 + 1) + 0 = 1, 
DI STup( v7, 2) = (JLv4 (4) + JLv4 (3) + JLv4 (2)) +DI STup( v4, 1) = (0 + 1 + 1) + 0 = 2. 

The distorsion a node causes, with respect to its successors (predecessors), is equal to 
the sum of the membership-grades of the cycles, in which the successors (predecessors) 
(and the successors(predecessors) of the successors (predecessors)) are notallowed to 
start any more. Note that, although a node has a successar and a predecessor, it does nat 
necessarily cause distorsion (e.g. node v3 in figure 4.2). From this example it becomes 
clear, the distorsion caused by a node, with respect to its successors and predecessors, in 
the general case is : 

• 0 in the best case 

• (I V I -1)(Tmax- 2) in the worst case (see figure 4.4), i.e. all nodes are forced to 
start in the latest cycle of their start-interval, if v1 is started in cycle 1. 

Figure 4.4: Worst-case situation for distorsion. 

So far, only the distorsion with respect to predecessors and successors has been 
discussed, yet there exists another type of distorsion : two nodes, that can be mapped 
onto the same module in the same cycle, are competitors. Evidently, if one of these 
nodes is started in such a cycle, it might cause distorsion with respect to the other 
node (i.e. the competitor). In figure 4.5 a situation is drawn, in which two competitors 
compete for one module. Suppose, v1 would start in cycle 1. Then, if there is only one 
module available to map v1 and 172 on, it becomes impossible tostart v2 in either cycle of 
its start-interval. It is said that v1 distorts all start possibilities of v2. However, if v1 is 
started in cycle 0 or 2, this leaves to v2 the choice, tostart in cycle 2 or 0, respectively. In 
this case, v1 distorts just a fraction of all start possibilities of v2. This type of distorsion 
can be stated formally as : 

c+ó(v~o)-1 ( ) 

DIST ( ) "' "' JLvn Cn horz VJc,C = L..,; L..,; 
VnEconc(vk) cn=c-6(vn)+l I Svn I 

(4.6) 
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0--~,-=--~----~--~~---
1 0 
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I I I 

2-----~.~---.~------~.--=-~----
3 : Sl(v1) ~ Sl(v2)~ 
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2 

4 
El(v1) t El(v2) t 3 

S{v1 )=S(v2):{(0, 1 ),(1, 1 ),{2, 1)} 

Figure 4.5: Example for horizontal distorsion. 

with: Cn E Cvn• 
conc(vk) = {v E V I (EI(v)n EI(vk) =f:. 0) 1\ (Rv n Rvk =f:. 0)}. 

Now a measure for the horizontal distorsion is defined, it's necessary tolook again at 
figure 4.5. Notice, that if v1 would be started in cycle 2, all start-positions of v2 would be 
distorted, which is expressed by DISThorz(v1,2) = l = 1; however, starting v1 in cycle 
1 or 3, doesn't affect all start-positions of v2, which is expressed by DI SThorz( v1.1) = 
DISThorz(vb3) = i ~ 0.66 (Note that interchanging v1 with v2 leads to the same 
results). 
In the best case, the horizontal distorsion is 0; in the worst case (e.g. in figure 4.5) it 
might become impossible to start a node in any cycle of its start-interval. Hence, the 
greatest horizontal distorsion that can be caused by a node v, equals the number of 
competitors ofthe node, i.e. I conc(v) j. 

4.3 The fuzzy algorithm 

In section 4.2.1, the fuzzy sets applied to scheduling were introduced. Given these 
definitions, in section 4.2.2 three measures were introduced to investigate the influence 
of a node, with respect to its successors, predecessors and competitors. Combining the 
results of section 4.2.1 and section 4.2.2 enables us to design a schedule algorithm, 
based on fuzzy set techniques. 
In short, for each node v in the data-flow graph, the distorsion with respect to its 
successors, predecessors and competitors could be determined. Then, if there are 
defined good measures to map the computed distorsions onto the interval [0,1], toeach 
cycle of a node some kind of quality-degree could be assigned (a quality-degree actually 
is the same as a membership-grade). Now, to each node three quality-degrees are 
associated, the worst quality-degree of each cycle of a node should be chosen (note that 
a chain is as strong as its weakest link !). Remind equation 3.4, here we actually take 
the fuzzy intersection of three fuzzy sets (see figure 4.6, with cycle l..n E Cv). The 
expectation is that repeating these computations (i.e. iterating !) a few times, eventually 
results in quality-degrees for each cycle of a node, such, that some algorithm should be 
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---Intersect 
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Figure 4.6: Quality-degrees associated toeach cycle of a node v. 

ahle to make a feasihle schedule. Making a feasihle schedule is done hy fixing each node 
of the data-flow graph in the cycle with the highest quality-degree, taking into account 
the availahle resources. The algorithm can he split in three parts : 

• Traverse Top-Down 

• Traverse Bottorn-Up 

• Traverse Horizontal 

These three parts will he discussed one hy one in the next sections. Finally, an example 
will he given, that illustrates the operation ofthe algorithm. 

4.3.1 Traverse Top-Down 

In this part of the algorithm for all nodes the distorsion is computed with respect to 
the successors (see definition 4.4). Then to each cycle of a node, a quality-degree is 
assigned. Note that the quality-degree assigned to each cycle of a node, actually is 
the memhership-grade of the cycle. Reminding the quality-distorsion-plot in figure 4.3, 
a memhership-function should he ohtained, that maps the caused distorsion onto the 
interval [0,1]. The choice ofthe memhership-function is not arhitrary, hecause rememher 
the aim is to define a function that approximates the shape of the plot in figure 4.3 
(see also [Klir88]). As can he seen in figure 4.3, a distorsion equal to zero, results 
in the highest quality that can he achieved. Hence, a distorsion greater than zero 
always results in less quality. In other words, a small distorsion must result in a 
membership-grade close to I, a big distorsion must result in a membership-grade close 
to 0. The memhership-function that shows this hehaviour, is: 

1 
Jldown(DJSTdown(v,c))= 1 +( (DJST ( ))k down down V, C cl 

(4.7) 

with: (down some damping parameter, kd E 1N. 

The parameter (down is used to control the memhership-grade for the greatest distorsion 
present in the data-flow graph, with respect to the highest memhership-grade (i.e. 1). 
E.g. if the maximum distorsion DI STdown = 10 and given kd = 1, then choosing (down = 
0.9 results in J1down(10) = 0.1 (note that Jldown(O) = 1 !). In the final implementation 
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of the algorithm, the user can define (down by aso called Top-Down-Damping-Factor 
(TDDF). This factor represents the fraction of 1, the membership-grade of the cycle 
with the maximum distorsion DISTdown has. Hence, in the case described above, 
T D D F = 10. The parameter kd is used to control the smoothness of the membership­
function. The higher kd, the steeper the function close to 0 becomes. For kd -+ oo, the 

1 

G) 
'tf 
11 .... 
b 
I c. ..... 

.cl 
lil -
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Ql 

1 a 
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0 1 DIST_down 

Figure 4.7: P,down for kd-+ oo. 

situation as shown in figure 4. 7 arises; the result is the membership-function for the set 
S = {x E IR I x :::; 1}. Hence, the setS is a crisp set!! Finally, the values of (down and kd 
are chosen em pirical and can be set by the user. 
Putting all things together, the following pseudo-code can be generated for the traverse 
top-down-procedure : 

type node = record 
gradeNew: 0 .. 1; 
gradeHorz: 0 .. 1; 
gradeDown: 0 .. 1; 
gradeUp: 0 .. 1 

end; 

Traverse Top-Down: 
v: array [I Cv IJ ofnode; 
FORALL(v) 

{ 
FORALL(c E Cv) 

{ 
v.gradeDown[c] := /-tdown (DI ST down( v, c) ); 

} 
} 
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In the actual implementation, the recursion present in the formulation for DI ST down 
is used to implement the traverse top-down as a recursive algorithm : then each node 
has to be visited only once, and on top of that, the distorsion for a node with respect to 
a direct successor is the only computation that has to be done (because the distorsion 
the regarded successor causes with respect to its own successors, can be stored in the 
successor itself !). No te, that for simplicity, the algorithm above doesnotshow recursion 
explicitly. 

4.3.2 Traverse Bottom-Up 

The procedure for traversing bottorn-up differs only slightly from the traverse top-down­
procedure. A node also affects its predecessors, if it would be started in a certain cycle : 
the sooner a node would be started, the greater the distorsion of its predecessors would 
be. A membership-function, similar to definition 4. 7 can be defined for this part : 

1 
Jlv.p(DI STv.p( v, c)) = 1 + (v.p(DIST~~.p( v, c))ku (4.8) 

with : (up some damping parameter, kv. E JN. 

Similar to definition 4.7 the parameters (up and kv. can be set by the user also (as 
with (down, (up is set with the Bottom-Up-Damping-Factor (BUDF)). Generally, the 
parameters k~~. and kd are chosen equal; the parameters (up and (down are chosen such, 
that !ldown(DISTdownmax) = llv.p(DISTupmax), with kd = ku and DISTdownmax and 
DISTupmax the maximum caused distorsions in the data-flow graph (hence, in this case 
TDDF = BUDF !). This choice is not arbitrary: if the membership-grades for the 
distorsions VISTdown and DISTup are compared, this comparison should be fair. E.g. 
iffor a certain cycle VISTdown is halfthe maximum-VISTdown and DISTv.p is halfthe 
maximum-DI STv.p also, the resulting membership-grades should be equal, otherwise, 
there would be a preferenee for starting a node as soon as possible ((up » (down), or 
starting a node as late as possible ((up < (down). 

The pseudo-code for the traverse bottam-up-procedure then becomes : 

Traverse Bottorn-Up : 
v: node; 
FORALL(v) 

{ 
FOR ALL(c E C.,) 
{ 
v.gradeUp[c] := llv.p(DIST~~.p(v,c)); 

} 
} 

Similar to the traverse top-down-algorithm, the traverse bottom-up-algorithm uses the 
recursion in the definition for DI STup in the actual implementation. 
After performing traverse top-down and traverse bottom-up to each cycle c E Cv two 
membership-grades have been assigned. Assuming that each cycle c E Cv already had 
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an ancient membership-grade, the new computed grades can he compared with the 
old ones. Comparing the two values, is done, by talring the fuzzy intersection (see 
equation 3.4). The computation-order can he stated formally as: 

with : JLk the new computed membersbip-grade, JL{k-l) the old membership-grade, 
JLdown ( •• ) and JLup( •• ) the computed membership-grades. Note that all computation-values 
are normalized (on the greatest membership-grade in Cv, as defined in equation 3.5), 
denoted by [ .. ]N. Now the pseudo-code for the normalization and intersection becomes: 

NormalizeAndCompare: 

with: 

v: array [I Cv IJ ofnode; 
FORALL(v) 

{ 

} 

NORM( v.gradeDown); 
NORM(v.gradeUp); 
v.gradeNew[c] := MIN( v.gradeDown[c], v.gradeUp, v.gradeNew[c]); 
NORM(v.gradeNew); 

• NORM(..) a normalization-function as defined in equation 3.5 

• MIN( .. ) the (fuzzy) intersection as defined in equation 3.4 

It is necessary to normalize the membership-grades, in order to he able to make a fair 
comparison (=intersection) between two values, e.g.: 

Given a node v, with s~rig = {(0, 1), (1,0.8), (2,0.6)} 

Suppose the results for JLdown and JLup are : 
cycle 0: JLdown = 0.48 JLup = 1 
cycle 1 : JLdown = 0.48 JLup = 0.9 
cycle 2: JLdown = 0.6 JLup = 1 

If the intersection of s~rig with the new JL's is taken, without normalization, the result 
would he : s:;ew = { (0, 0.48), (1, 0.48), (2, 0.6)}. This means that cycle 2 would have 
the highest membership-grade. However, if the JL'S are normalized first, the result 
for the intersection becomes: s:;ew = {(0,0.8),(1,0.8),(2,0.6)}, that is, cycle 0 and 1 
have a higher membership-grade than cycle 2. Note, this is what was to he achieved, 
because the normalized membership-grades JLdown : cycle 0 : JLdown 0.8, cycle 1 : 
JLdown = 0.8 and cycle 2 : JLdown = 1, show, that compared with s~rig, cycle 1 has an 
equal membership-grade. This means that there should he no distintion, and thus it is 
necesarry to normalize. 
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4.3.3 Traverse Horizontal 

The third part of the fuzzy algorithm inspects the quality of the decision to start a 
node in a certain cylce, with respect to all competitors of this node. In figure 4.5 an 
example in which several nodes are competing fora certain module, is shown. When a 
pronouncement ofthe quality ofthe decision, tostart a node in a certain cycle, must he 
done, it's to he expected from the foregoing, that (see figure 4.5) for v1 cycles 1 and 3 
would he prefered to cycle 2. So, the greater the distorsion, the worse the quality of the 
decision, to really start a node in the given cycle. In other words : a big distorsion results 
in a membership-grade close to 0, a small distorsion results in a membership-grade 
close to 1. This can he expressed by the following membership-function: 

with: 

if D/SThorz(v,c)-(M-1) < 0 
if D/SThorz{;!.c)-(M-1) > 0 

M -

(4.10) 

• M the number of modules mE L, where v1 and v2 can he mapped onto. 

• (horz some damping parameter, kh E IN. 

The parameters (horz and kh are used in the same way as the according parameters in 
the functions /Ldown and /Lup· Empirie, it was found out, that choosing kh ~ 3 · kd and 
(horz ~ ~ · BU DF leads to good results. 

As can he seen from definition 4.10, the number of modules M is also taken into 
account. Ifthe number of modules is two (with respect to figure 4.5), it doesn't matter in 
which cycle the two nodes are started, because each node has the disposal of a module. 
However, if there is only one module available onto which v1 and v2 can he mapped, 
starting either v1 or v2 in cycle 2,leads to problems. In this case it becomes impossible 
to start the remaining node, once the first node is started in cycle 2. For the traverse 
horizontal-algorithm, the following pseudo-code can he generated : 

TraverseHorizontal : 
v : array [! Cv IJ of node; 
FORALI..{v) 

{ 
FOR ALI..{c E Cv) 
{ 

} 
} 

v.gradeHorz[c] := fthorz( DI SThorz( v, c) ); 

It's worth mentioning, that the function DISThorz within the traverse horizontal­
procedure, calculates with the values stared in gradeNew after running traverse top­
down and traverse bottom-up. 
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4.3.4 An example 

In this section, an example is given to illustrate the operation of the fuzzy algorithm 
as discussed in the previous sections. In figure 4.8 a simple data-flow-graph is shown. 

Figure 4.8: Simple data-flow-graph. 

With respect to figure 4.8, the following assumptions are made: 

• For all v E V, the membership-grades of all elements in Sv are initially set to one. 

• The time-constraint T max = 5 is given 

• The resource-constraint is 1 adder 

• 6(v11adder) = 6(v2,adder) = 6(va,adder) = 6(v4,adder) = 1 

• (down = (up = 1; (horz = 10 

Below, the results of the different steps are shown in tabular form : 

Results top-down 
1 cycle -T 11 o 11 1 2 1 3 1 4 1 
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Results bottorn-up 
1 cycl e - 11 o 1 1 1 2 1 3 1 4 1 V! 0 0 D/STu 

~--~~~~--+-_4-~-up~(=D~/~ 

0 DISTup 
1 - ~up(DIST) 

Vg DISTup 
- ~up(DIST) 

DISTup 
~up(DIST) 

Results after interirtion and normalization 
I cycle - 11 o I 1 __! I 3 I 4 I I 

I V! 11 ~ I ~:~ I ~:~~ I ~ I ~ I NOT~:~~:: I 

I v
2 

11 ~ I ~:~ I ~:~~ I ~ I ~ I NOT~:~~:: I 

f vs 11 ~ I ~:~6 ~ ~·2 I ~·2 f ~ I Nor~:~::: I 

I V4 ~~- ~- I 0.031 0.1 11 I Inters I 
. - - 0.03 0.1 1 N ormalize 

I!:j:s horizontal 
cycle __. 0 2 3 4 

Vl 0. 79 0.29 0.51 - - DISThorz 
0.29 0.99 0.85 - uhM,(DIST) 
0.29 1 0.86 - Normalize 

V2 0.79 0.29 0.51 - - DISThorz 
0.29 0.99 0.85 - - ~horz(DI ST) 
0.29 1 0.86 - - Normalize 

vs - 0.32 0.12 0.09 - DISThorz 
- 0.98 0.99 I 0.99 - ~horz(DI ST) 
- 0.99 1 1 - Normalize 

v4 - - 0.53 0.43 0 DISThorz 
- - 0.82 0.94 1 ~horz(DIST) 
- - 0.82 0.94 1 Normalize 
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Assuming, after the last procedure (i.e. traverse horizontal and normalization), a 
greedy-feasibility-scheduler is used to assign to each node the real start- and end-time, 
the results presented in the last table commit with the wished schedule. Note that in 
chapter 5, the characteristics of the greedy-feasibility-scheduler are outlined. 

4.4 Initialization and Convergence of thè algorithm 

In the example shown in section 4.3.4, the membership-grades of the elements in the 
fuzzy sets are set to 1 initially. Choosing all membership-grades 1, implicates that in 
a fuzzy set Cv, there is no preferenee fora certain cycle Cito a cycle Cj in this set. The 
algorithm must then determine whether or not there exists a preferenee-order among 
the elementsof a fuzzy set Cv. 

Bearing this in mind, the question could arise what the consequences for the re­
sults would he if the membership-grades are initialized with a value different from 1. 
Two cases must he distinguished : 

• Initialization with the same value :in this case allelementsof a fuzzy set Cv are 
initialized with the same value (different from 0 !!). Note that this case is similar 
to the one outlined above (i.e. initialization with 1), because same values implicate 
no preference-order. Hence, the results will not differ from the results in case of 
initialization with 1. 

• Random initialization : in this case the elements of a fuzzy set Cv are all initialized 
with a different, random value. This means that initially there exists a certain 
preferenee-order among the elements in this fuzzy set. An interesting question 
is whether the algorithm will converge to the same results as with initialization 
with 1, given these random values. In other words, do the results ofthe algorithm 
depend on the initial values? Note, that if the algorithm could overcome a bad 
initialization, it means that it could overcome also a bad choice during run-time. 
As will he shown in chapter 5, the algorithm converges indeed given a random 
initialization. 
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4.5 Complexity ofthe algorithm 

In this section a denvation ofthe complexity ofthe algorithm is presented. Note that the 
top-down- and bottam-up-traversals are implemented as depth-first-search-algorithms. 
Moreover, all nodes in the data-flow-graph are linked, that is, there exists a link 
between two nodes if they are concurrents in a certain cycle (see definition 4.6). The 
concurrent-nodes are linked in a doubly-linked chain. 
The complexity ofthe fuzzy algorithm can he derived now as follows: 
The complexity of a depth-first-search-algorithm is equal to I V I+ I E j. On top ofthat, 
for each node being visited, at most I V I -1 direct successor-nodes must he visited, 
and each direct successor-node can he shifted up or down at most T max 1 cycles (so 
for the distorsion, at most Tmax- 1 computations must he made) . All together, for 
the depth-first-search-procedures this results in (note that T max is the time-constraint 
given): 

I V I ·(I V I -1) · Tmax + I E I (4.11) 

For the horizontal-traversal, at worst a chain of length I V I must he inspected (i.e. all 
nodes are linked in one and the same link). In the implementation of the horizontal­
traversal, the chain is inspected from head to tail and vice versa. In formula, this looks 
lik.e : 

2·1 V I·Tmax (4.12) 

Combining (4.11) and (4.12), and noting that (4.11) must he counted twice (traverse 
top-down and bottom-up), the total complexity for one iteration becomes: 

(4.13) 

And thus the order of the algorithm becomes : 

(4.14) 

However, some conditions can he relaxed a little bit. For instance, it's not unrealistic to 
assume that in a data-flow-graph on average each node has at most two outgoing and 
two incoming edges. This assumption also implicates that each node on average, has at 
most two direct successors or predecessors. Hence, in equation 4.11 the factor (I V I -1) 
can he substituted by 2. Now the complexity ofthe fuzzy algorithm becomes: 

4· I V I ·Tmax+ IE I (4.15) 

and the order of the algorithm becomes : 

0(1 V I·Tmax) (4.16) 
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Chapter 

Results 

5.1 Introduetion 

This chapter dicusses the results of the fuzzy algorith.m. Note that in appendix A 
some test-graphs are depicted and that appendix B contains the actual results of the 
algorith.m applied to the corresponding graphs in appendix A. Furthermore, appendix D 
shows for each graph of appendix B the CPU-time used as a function of the number of 
iterations and appendix E shows the results of the algorithm if the membership-grades 
are initialized randomly. For illustration, insection 5.2 an example is presented, to 
show the problems an ordinary list-scheduler might encounter due to its greed, and how 
the fuzzy algorith.m has solved these problems. Finally, in sèction 5.3, a short evaluation 
of the results as depicted in appendix A and B is given. 

5.2 An example 

In figure 5.1, the data-flow graph to he scheduled is shown. It is assumed that Tmax = 7, 
and that the following resources are available : 1 multiplier, 2 adders and 1 subtractor. 
The resources are selected from the library : 
L = { < multiplier:* >, < adder:+ >, < subtractor: - > }. 
Furthermore, ó( +) = ó(-) = 1 cycle, and ó( *) = 2 cycles. Given these constraints, it 
becomes clear that only one multiplication at a time can he executed. The computed asap­
alap-values for the graph, result in the following start-intervals: SI( v4 ) = SI( v5 ) = (2, 5]. 
For the subtractions also, only one at a time can he executed (the corresponding start­
intervals are: SI(vs) = SI(v1 ) = [4, 7]). 

Scheduling the given example with some kind of greedy scheduler (e.g. a list-scheduler), 
could possibly result in a non-feasible schedule : due to its greedy kind, these schedulers 
would make bad decisions at crucial moments. For instance, in this example, a bad 
choice for the placement of a multiplier, results in a non-feasible schedule : if node v4 

or node v5 is started in cycle 3, due to the constraints it won't he possible anymore, to 
make a feasible schedule. So, to obtain a feasible schedule, node v4 or v5 must he started 
in cycle 2, forcing the remaining node to he started in cycle 4. 

However, once again, a bad choice of the placement of the multipliers can result 
in a non-feasible schedule : starting node v5 in cycle 2, and thus starting node v4 in 
cycle 4, forces both nocles v6 and V7 tostart in cycle 6. Hence, this results in a non-feasible 
schedule, because there is only one subtractor available to execute v6 and v7• 

33 
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Figure 5.1: Data-flow graph fuzex6 to he scheduled. 

All together, this means that eventually only the choice to start v4 in cycle 2 and vs in 
cycle 4, can result in a feasible schedule. This choice then also fixes node v7 in cycle 6, 
and leaves the choice to node v6 to start in cycle 4 or 5. 

From the discussion above, it is to he expected, that for each node v, the cycle 
wherein the node must start (to achleve a feasible schedule), will have the highest 
membership-grade of the set Cv. The results of the fuzzy algorithm (presented in 
appendix B) correspond tothese expectations, that is, the cycle in which an operation 
should start has the highest membership-grade. 

5.3 Evaluation 

Evaluating the results presented in appendix B, the following remarks can he made : 

• Using the computation-schemes of equation 4.9 and tigure 4.6, good results can 
he achieved with only a small number of iterations (2 to 10 iterations), however, 
increasing the number of iterations (e.g. 100 iterations) doesnotalter (or improve) 
the results significantly 

• The algorithm is fast : given the fuzex6-graph of appendix A, the algorithm needs 
0.01 seconds CPU-time for 2 iterations, while increasing the number of iterations 
to 100 results in 0.4 seconds CPU-time. Finally, 200 iterations for this graph take 
0.82 seconds CPU-time. As can he seen also from the other tables in appendix D, 
the CPU-time needed increases linear with the number ofiterations 

• The results presented in appendix E show that if the membership-grades are 
initialized at random, the algorithm still produces good results. However, the 
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initialized membership-grades in a fuzzy set must he of the same order. As can 
he seen from the second test in appendix E, initializing some membership-grades 
withafactor 10 smaller (or bigger) may eventually lead to the wrong results. In 
this case the nodes v6 and 117 have changed positions, that is, vs is assigned the 
highest membership-grade in a cycle where it should definitely not he started !!! 
N ote the same holds for node v7 • As outlined in section 4.4, the algorithm converges 
indeed. This implicates that if in a certain iteration-step an unfortunate decision 
is made, the algorithm will he able to overcome this choice in later iteration-steps, 
thus trying to achleve the best solution 

• The (user-defined) parameters of the algorithm affect the schedule-results, i.e. 
different membership-grades for the cycles are computed. Therefore (although it 
hasn't showed yet) it could he possible that choosing the wrong parameters results 
in less meaningful (and hence less useful) membership-grades of the cycles of a 
node. As a rule ofthumb, choosing BUDF = TDDF, (horz ~ ~ · BUDF, kd ku 
and kh ~ 3 · kd, give the best results. 

5.4 Greedy-feasibility scheduler 

The results as presented in appendix B, only indicate the qnality of the decision to start 
a node in a certain cycle. However, the nodes are not fi.xed yet ! Therefore, an other 
algorithm must perfarm this actual scheduling (i.e. fixing nodesin cycles); this can he 
done by various types of schedulers (e.g. list-schedulers, force-directed schedulers). A 
scheduler, offering good results in combination with the results of the fuzzy algorithm, 
is a greedy-feasibility scheduler. This scheduler traverses top-down, and fixes a node in 
a cycle, when : 

• All its predecessors are executed 

• For the regarcled cycle, the node has the highest membership-grade with respect 
to all its competitors 

• There is at least one module available that can execute the node 

Mter fixing a node in a cycle, the membership-grades for all successors (and the 
successors of these successors, etc.) must he updated !! In appendix C, the results ofthis 
scheduler applied to the results of appendix B are presented. 

5.5 Recommandations for future work 

In this . section the short-comings of the fuzzy algorithm are discussed, and some 
recommandations for future work are done. 
In short, the short-comings are : 

• The algorithm cannot handle non-feasibility in an unambigous way. That means, 
that a greedy-feasibility scheduler as discussed in section 5.4, can only make 
a schedule if the data-flow graph is feasible. Otherwise, the greedy-feasibility 
scheduler would terminate, resulting in no schedule. In this case it's not clear, 
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whether the scheduler made a mistake or that the graph is non-feasible (due to 
the time- and resource-constraints given). 

• A bad choice ofthe parameters (down, (up, (horz may result in results that are not 
useful, or when they are used, would lead to an non-feasible schedule. However, it 
is not easy to determine the values forthese parameters, that would offer the best 
result. So far, the parameters are estimated on an empirica! basis. Therefore it 
would be desirabie to search for characteristics of data-flow graphs, where values 
of the parameters could be derived from. 

• The algorithm is iterative, so it is to be expected that the solution approaches 
a feasible (and thus correct) schedule, as the number of iterations increases. 
Unfortunately, the algorithm is not yet provided with a tooi to measure the quality 
of the schedule, at any moment. This means, that using just a few iterations 
could possibly result in a bad schedule, whereas a few more iterations would have 
resulted in a much better schedule. Possibly genetic algorithms can be useful to 
determine the quality of the solution. Another possiblity could be the introduetion 
of the fuzzy entropy (FE) fora membership-grade mof an element [Klir88] : 

FE(m) = -m ·log(m)- (1- m) ·log(!- m) 

Actually, the goal of the fuzzy algorithm is to assign a membership-grade to 
each c E Cv of a node v. In the best case, a membership-grade 0 is assigned 
toa cycle, if a node is not allowed to be executed (or executing) in that cycle, a 
membership-grade 1 is assigned toa cycle ifthe node is allowed to be executed (or 
executing) in that cycle. In this case I:cec" F E(J.tv( c)) = 0, because for any c E Cv 
for each v E V,J.tv(c) = 0 or J.tv(c) = 1. So, the closer FE(m) is to 0, the closer the 
membership-grades are to 0 or 1, and thus the better the schedule. 

A possibility to move the membership-grades to 0 or 1, could be the introdue­
tion of a trigger-function as discussed in [Zad68]. In short, this function pulls all 
membership-grades below a certain "threshold" to 0, and all membership-grades 
above this "threshold" to 1. The threshold-value depends on the membership­
grades of all the elementsof a fuzzy set. 

• The algorithm cannot handle complex data-flow graphs : graphs containing 
pipelined operations and operations that can be mapped on different types of 
modules are not allowed. Therefore the algorithm must be extended with features 
to be able to handle these constructs, in order to be useful as a real design-tooi. 



Chapter 

Conclusions 

This report is concemed with the following problem : 
Given a data-flow graph, a time constraint and a resource constraint, find a feasible 
schedule. In chapter 4, an heuristic schedule-algorithm, based on fuzzy set techniques 
has been discussed. 

The advantages of this algorithm are : 

• The algorithm offers good solutions and has proved to be able to handle situations 
wherein other schedulers (e.g. an ordinary list-scheduler) would probably fail. 

• The algorithm is fast : on average the algorithm is linear with the number of nodes 
(in the data-flow graph) and the time-constraint. 

• The results of the algorithm can be used by other schedulers, for instanee as 
initialization. 

• The algorithm converges to a solution, indepent from the initial membership­
grades. 

A disadvantage of the algorithm is that the produced results of the algorithm strongly 
depend on the choice of some parameters 

Finally, working out the recommandations discussed in section 5.5, will almost cer­
tainly overcome the short-comings of the fuzzy algorithm. 
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Appendix 

Test-graphs 

Figure A.l: Fuzex6-graph. 
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fdct 

Figure A.2: Fdct-graph from [Denyer90]. 
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fuz ex 4 

Figure A.3: Fuzex4-graph. 
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wdelf3 

Figure A.4: Wdelf3-graph. 
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wdelf 

Figure A.5: Wdelf2-graph. Note the wdelf2-graph is a slight moclification of the 
wdelf3-graph : the nodes N-23, N-24 and N-43 are removed from the wdelf3-graph. 
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Appendix 

Schedule results 

In this appendix the results ofthe fuzzy algorithm are presented; the according data-flow 
graphs are shown in appendix A. In the tables, an entry denotes the membership-grade 
m for the regarded cycle c E Cv of node v. 

Results fuzex6-graph : 
Library L { < multiplier:* >,<adder:+ >, < subtractor:- > }. 
Resources : 1 multiplier, 2 adders, 1 subtractor. 
Delay of operations : ti( adder) = ti( subtractor) 1, ti( multiplier) = 2. 
Time-constraint: Tmax = 7. 

Number ofiterations = 2 
BU DF = T DDF = 10, (norz ku = 2, kh = 6. 

I Cycle -+ 11 0 11 l 2 
Vl( +) 1.00 0.31 0.10 0 0 

=i 
0 

v2( +) 1.00 0.31 0.10 0 0 0 
vg(+) 0 1.00 0.62 0.22 0 0 
v4(*) 0 0 1.00 0.04 0.42 0 0 
vs(*) 0 0 0.15 0.02 1.00 0 0 
VB(-) 0 0 0 0 1.00 0.74 0.17 
v7(-) 0 0 0 0 0.45 0.10 1.00 

Total run-time : 0.01 

I Number of iterations = 4 
I BUDF = TDDF = 10, (horz = 100, kd = ku = 2, kh 6. 

Cycle-+ 0 1 2 3 4 5 6 

VI(+) 1.00 0.31 0.10 0 0 0 0 
v2( +) 1.00 0.31 0.10 0 0 0 0 
vg( +) 0 1.00 0.65 0.23 0 0 0 
v4( *) 0 0 1.00 0.01 0.01 0 0 
vs(*) 0 0 0.01 0.01 1.00 0 0 
vB(-) 0 0 0 0 0.91 1.00 0.05 
V7(-) 0 0 0 0 0.27 0.10 1.00 . Total run-ttme : 0.01 
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Number of iterations = 4 
BUDF = TDDF 2000, (horz = 1000, kd = ku = 2, kh = 6. 

Cycle 3 6 

v1( +) 0.00 0 
0.00 0 0 

va(+) 0.02 0.00 0 
0 1.00 0.00 0 
0 0.00 0.00 0 

vs(-) 0 0 0 0.00 
V7( -) 0 0 0 0 1.00 

Total run time: 0.02 

Number ofiterations = 100 
BUDF = TDDF = 2000, (horz = 1000, kd = ku 2, kh = 6. 

Cycle--> 0 I 1 2 3 4 5 6 

VI(+) 1.00 1 o.oo 0.00 0 0 0 0 
V2(+) 1.oo 1 o.oo 0.00 0 0 0 0 
va(+) 0 Jl.OO 0.02 0.00 0 0 0 
v4( *) 0 +Rl.OO 0.00 0.00 ,0 0 
v5(*) 0 0.00 0.00 1.00 0 0 
vs(-) 0 0 0 0.17 1.00 0.00 
V7(-) 0 JO 0 0 0.03 0.00 1.00 

Tota run time: 0.4 

0 
0.00 0 0 
0.00 0 

0 0.00 0 
0 0 0.00 
0 0 1.00 

run time: 0.82 



Schedule results 

Results fdct-graph : 
Library L = {<multiplier:* >,<adder: +,- > }. 
Resources: 8 multipliers, 4 adders. 
Delay of operations: li( adder)= 1, /i( multiplier)= 2. 
Time-constraint : T max = 8. 

Number of iterations = 4 
BUDF = TDDF = 2000, (horz = 1000, kd ku = 2, kh 6. 

I Cycle ~ 11 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 
N-17(-) 0.00 1.00 0.83 1.00 0 0 0 0 

N-11ö1.00 0 0 0 0 0 0 0 
N-15( 1.00 0 0 0 0 0 ' 0 0 
N-14(-) 0.00 1.00 0.83 1.00 0 0 0 0 
N-13(+) 0.77 1.00 0.01 0.00 0 0 0 0 
N-12(+) 0.77 1.00 0.01 0.00 0 0 0 0 
N-11(+) 0.77 1.00 0.01 0.00 0 0 0 0 m0.77 1.00 0.01 0.00 0 0 0 0 

0 0.06 1.00 1 o.o5 0.02 0 0 0 
N-22(-) 0 0.06 1.00 0.05 0.02 0 0 0 
N-21(+) 0 0.06 1.00 0.14 0.03 0 0 0 
N-20(+) 0 0.06 1.00 0.14 0.03 0 0 0 
N-19(*) 0 1.00 0 0 0 0 0 0 
N-18(*) 0 1.00 0 0 0 0 0 0 
N-29(*) 0 0 0.03 1.00 0.00 0.20 0 0 
N-28(*) 0 0 0.03 1.00 0.00 0.20 0 0 
N-27(*) 0 0 0.03 1.00 0.00 0.20 0 0 
N-26(*) 0 0 0.03 1.00 0.00 0.20 0 0 
N-25(*) 0 0 0.04 1.00 0.00 0.08 0 0 
N-24(*) 0 0 0.04 1.00 0.00 0.08 0 0 
N-31(+) 0 0 0 1.00 0 0 0 0 
N-30(-) 0 0 0 1.00 0 0 0 0 
N-39(-)~ 0 0 0 0 1.00 0 0 0 
N-38(+) cg=cy 0 0 1.00 0 0 0 
N-37(-) 0 0 1.00 0 0 0 
N-36(+) 0 0 0 0 1.00 0 0 0 
N-35(+) 0 0 0 0 0.01 0.53 1.00 0.16 
N-34(-) Po 0 0 0 0.01 0.53 1.00 0.16 
N-33(-) 0 0 0 0 0.01 0.34 1.00 0.11 
N-32(+) 0 0 0 0 0.01 0.34 1.00 0.11 
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N-47(*) 0 0 1.00 
N-46(*) 0 0 1.00 
N-45(*) 0 0 1.00 
N-44(*) 0 0 1.00 
N-43(*) 0 0 1.00 
N-42(*) 
N-41(*) 
N-40(*) 1.00 
N-51(-) 0 
N-50(-) 0 
N-49(+) 0 
N-48(+) 0 0 0 0 0 

Total run time : 0.02 

Results fuzex4-graph : 
Library L {<multiplier:* >,<adder:+,- > }. 
Resources : 1 multiplier, 2 adders. 
Delay of operations : 6 (adder) = 1, 6 (mul tiplier) = 2. 
Time-constraint : T max = 6. 

Number of iterations = 4 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 1.00 
0 1.00 
0 1.00 
0 1.00 

BU DF = T DDF = 2000, (horz = 1000, kd = ku = 2, kh = 6. 
Cycle --->::IJ]: 1 I 2 3 4 5 
N-10(+): 1.00 0.00 0 0 0 0 
N-11(*): 1.00 1.00 0.00 0 0 0 
N-12(-): 1.00 0.00 0.00 0 0 0 
N-21(*): 0.03 0.03 i 1.00 1.00 0.00 0 
N-13(+): 0 1.00 1 0.01 0 0 0 
N-14(+): 0 0.39 1.00 0.25 0 0 
N-15(-) : 0 0 1.00 0.64 0 0 
N-17(*): 0 0 0.00 0.00 1.00 0 

I N-16(+): 0 0 0 0.02 1.00 0 
N-18(+): 0 0 0 0 0.00 1.00 . Total run time: 0.02 



Schedule results 

Results wdelf2-grapb : 
Library L = {<multiplier:* >,<adder:+,- > }. 
Resources: 2 multiplierst 2 adders. 
Delay of operations: §(adder)= 1, §(multiplier)= 2. 
Time-constraint: Tmax = 17. 

Number ofiterations = 4 
BU DF = T DDF = 2000, (horz = 1000, kd = ku = 2, kh = 6. 

c;ycie- u l " ~ 4 !> ö 7 Ij !1 !U 11 ..E_ l<l 4 ló 
N-36(+) 1.00 0 0 0 0 0 u 0 0 _0 0 0 0 0 0 
N-46(+ l.OO 1.00 .. 00 0 0 0 0 u u 0 0 u u 

I~ l-6 N·4U(+) 0 l.UU u u 0 u () 0 u u u u u ll 
N-44 +) 0 u l.UU 0 0 u u u 0 u 0 u 0 ..':'_ 
N-50(+) 0 0 0 l.Ou 0 0 0 0 0 u 0 0 0 0 0 0 
N-56(*) 0 0 0 1.00 0 0 u 0 0 .. ll. 0 u u u 0 
N-76(*) 0 u u 0 1.00 0 0 0 u u u u u u 
N-58(+) 0 0 0 u 0 0 l.UO 0 0 0 0 0 0 0 0 0 
N-78(+) 0 0 u V u u l.uu u 1.1 u u 0 ~ ..':'_ ~ ~ 
N-62(+) 0 0 0 0 0 0 0 1.00 0 0 0 0 ~ u u u 
N-82(+) 0 0 0 0 0 1.00 0 () u u u u 
N-90(+) 0 0 0 0 0 0 0 0.03 !.Ut 0.29 0.02 0.01 O.Ou 0.03 0.01 0.01 
N·!W( 0 u u 0 u u u 0 l.uo u u u 0 u u u 
N-85(*) 0 u u u 0 0 u 0 l.uo u 0 u 0 ~ ...". ...". 
N-92(+) 0 0 0 0 0 0 0 0 0.02 0.09 0.03 0.02 0.00 0.46 1.00 0.03 
N-87(+) 0 0 0 0 0 0 0 _0 0 0 1.00 0 0 0 0 0 
N-87(+) 0 u 0 0 0 0 () ~ 0 U!O u 0 u u 
N-70(+) 0 u u u u u u u u u l.UU u u 

... ~ ..':'_ 
N-72(+) 0 0 0 u 0 0 0 0 0 0 0 0.02 0.01 1.00 0.45rr= 
N-102(+) 0 0 u V u u u u u u u I.uu ~ _u ~-
N-113(- 0 0 0 0 0 0 0 u .uz U.01 !.Ut U.45 
N-75(•) 0 0 0 0 0 0 0 0 0 0 0 0.00 u.OI 0.00 1.00 
N-93(+) 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 
N-104(+) 0 0 0 u u 0 u u u u 0 u l.Ou u_ u _IJ_ 
N- !6(•) 0 0 0 0 0 u u u u ~ ...<~_.ui .vu LUt 

N-97(*) 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 
N-lu~:~() u u u u u u u u u 0 u u u I.uO u u 
N-99(+) 0 u u u u u u u u u u u u 0 0 l.vO 
N-110(+) 0 0 0 u u u u _u 

.. ~ u _u ~ ~ ~ ~ 
N-101(+) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
N-11~(+) u u 0 0 u u u u u u u 0 u u u u . Total run time: 0.02 
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u 
0 
0 
0 
u 
0 
0 

~ 
0.03 
0 
0 
0 
0 

...!!. 

0 
0 

_u 

0 
u 

_I) 
_.'!. 

1.00 
l.UO 

As can be seen from this table, the fuzzy algorithm can handle the conflict-situation 
between the 4 multiplications, i.e. the nodes N-75, N-97, N-108 and N-116. Given the 
time-constraint Tmax 17, nodes N-97 and N-108 must be started in cycle 13 because 
they are on the critica! path. This implicates N-75 and N-116 must he started in cycle 
15 to achleve a feasible solution. 
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Results wdelf3-graph : 
Library L = { < multiplier:* >,<adder: + >, < subtractor: - > }. 
Resources: 2 multipliers, 2 adders, 1 subtractor. 
Delay of operations : 6( adder) = 1, 6( multiplier)= 2, 6( subtractor) = 1. 
Time-constraint: Tmax 18. 

Number ofiterations = 10 
BlJ DF = T DDF = 2000, (horz = 1000, kd =kv.= 2, kh = 6. I 
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N-26(+) 0 0 0 0 0 0 1.00 0.02 0 0 0 0 0 0 0 
N-16(+) 0 u 0 0 u 0 L.UU U.U! u u u u u tJ 0 
N-30(+) 0 u 0 u 0 u u U.Ul l.UU U.l>Z U.Ub 0_:1)_4 ~ _'!_.U. I.UU 
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N-3~+) 0 u 0 u u u u u u 0 u u u u u 
N-34(+) u u 0 u u u u 0 u u u u u '-' u 
N-24(+) 0 0 0 0 u 0 0 0 0 0 0 0 0 0 0 
N-40(+) 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 
N-35(+) 0 0 __()_ u 0 0 0 0 __()_ 0 __()_ 

Total run time: 0.06 
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Given the time- and resource-constraints, in cycle 11 the scheduler must make a choice 
between the plus-operations N-20, N-36 and N-21. If operations N-20 and N-36 are 
chosen to start in cycle 11, the soanest start-possibility for N-21 becomes cycle 12. 
However, if the nodes N-37 and N-32 are started in cycle 12, operation N-21 is forced to 
start in cycle 13. Ifin this situation N-42 is started in cycle 12, one ofthe multiplications 
N-38 or N-33 can start in cycle 13. The remaining one must then start in cycle 14. 
Starting N-21 in cycle 13, would make it possible for multiplication N-22 to start in 
cycle 14, however in cycle 14 the two multiplicators are already occupied by N-33 and 
N-38. This implicates that multiplication N-22 must start in cycle 15, however, this will 
violate the time-constraint Tmax = 18, because after N-22, N-23 and N-24 have to be 
executed. In this case an extra cycle is necessary to obtain a feasible schedule. 
Hence a feasible salution that meets the constraints, can be obtained if in cycle 11 
operations N-21, N-41 and one of the operations N-20 and N-36 are started. If N-20 
is chosen, multiplications N-42 and N-22 can start in cycle 12. In the same cycle, 
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operations N-32 and N-36 can he executed. Then, in cycle 14 N-33 and N-37 can he 
started, together with N-43 or N-23. In cycle 15 multiplication N-38 can he started and 
in the remaining cycles the remaining plus-operatorscan he started, without violating 
the time-constraint. 
In figure B.1, the operations mentioned ahove are shown, in the range from cycle 11 
to cycle 17. Note that the fu.zzy algorithm offers a good solution : the nodes N-41 

11 ----- ------ ----

11 

12 

14 ,_,~-+-- ,_,f}--N-3f}--,_"G ---:: 
15 _G ____ f:\_ ___ __ _ ____ _ 
16 __ ,_,,__~_ -~-" + ___ ,_,.G_ " 
17 ·-·u_G __ ·-~ 16 

17 
18 

Figure B.1: Detailed view of the W delf3-graph. 

and N-21 are assigned the highest memhership-grade for cycle 11, whereas nodes N-36 
and N-20 are assigned the highest memhership-grade for cycle 12. It is clear that 
starting N-21 and N-41 in cycle 11 will eventually produce a feasihle solution (note 
the algorithm leaves the choice to start N-20 or N-36 in cycle 11 !!). It is ohvious 
that these memhership-gra:des can he usefu.l for other schedulers (e.g. list-scheduler, 
greedy-schedulers) as an initialization, thus enhancing their performance. 
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Appendix 

Results greedy-feasiblity 
scheduler 

In this appendix, the expected results of a greedy-feasibility scheduler are presented. 
In the tables, an entry equal to 1, means that the regarded node must start in that cy­
cle, an en try equal to 0 means that the node regardedis notallowed to start in that cycle. 

Results fuzex6-graph : 

Number of iterations = 4 
BU DF = T DDF = 2000, (horz = 1000, kd = ku = 2, kh = 6. 

I Cycle ___,. 11 0 I 1 I 2 j 3 I 4 I 5 I 6 I 
v1(+) 1 0 0 0 0 0 0 
172( +) 1 0 0 0 0 0 0 
va(+) 0 1 0 0 0 0 0 
v4(*) 0 0 1 0 0 0 0 
175( *) 0 0 0 0 1 0 0 
vs(-) 0 0 0 0 1 0 0 
V7(-) 0 0 0 0 0 0 1 

Results fdct-graph : 

Number ofiterations = 4 
BU DF = T DDF = 2000, (horz = 1000, kd = ku 2, kh = 6. 
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I Cycle -+ H 0 l1 I 2 I 3 I 4 I 5 I 6 I 7 I 
N-17(·) 0 1 0 0 0 0 0 0 
N-16(-) 1 0 0 0 0 0 0 0 
N-15(-) 1 0 0 0 0 0 0 0 
N-14(-) 0 1 0 0 0 0 0 0 
N-13(+) 1 0 0 0 0 0 0 0 
N-12(+) 0 1 0 0 0 0 0 0 
N-11(+) 0 1 0 0 0 0 0 0 
N-10(+) 1 0 0 0 0 0 0 0 
N-23(-) 0 0 1 0 0 0 0 0 
N-22(-) 0 0 1 0 0 0 0 0 
N-21(+) 0 0 1 0 0 0 0 0 
N-20(+) 0 0 1 0 0 0 0 0 
N-19(*) 0 1 0 0 0 0 0 0 
N-18(*) 0 1 0 0 0 0 0 0 
N-29(*) 0 0 0 1 0 0 0 0 
N-28(*) 0 0 0 1 0 0 0 0 
N-27(*) 0 0 0 1 0 0 0 0 
N-26(*) 0 0 0 1 0 0 0 0 

' 
N-25(*) 0 0 0 1 0 0 0 0 
N-24(*) 0 0 0 1 0 0 0 0 
N-31(+) 0 0 0 1 0 0 0 0 
N-30(-) 0 0 0 1 0 0 0 0 
N-39(-) 0 0 0 0 1 0 0 0 
N-38(+) 0 0 0 0 1 0 0 0 
N-37(-) 0 0 0 0 1 0 0 0 
N-36(+) 0 0 0 0 1 0 0 0 
N-35(+) 0 0 0 0 0 1 0 0 
N-34(-) 0 0 0 0 0 1 0 0 
N-33(-) 0 0 0 0 0 1 0 0 
N-32(+) 0 0 0 0 0 1 0 0 
N-47(*) 0 0 0 0 0 1 0 0 
N-46(*) 0 0 0 0 0 1 0 0 
N-45(*) 0 0 0 0 0 1 0 0 
N-44(*) 0 0 0 0 0 1 0 0 
N-43(*) 0 0 0 0 0 1 0 0 
N-42(*) 0 0 0 0 0 1 0 0 
N-41(*) 0 0 0 0 0 1 0 0 
N-40(*) 0 0 0 0 0 1 0 0 
N-51(-) 0 0 0 0 0 0 0 1 
N-50(-) 0 0 0 0 0 0 0 1 
N-49(+) 0 0 0 0 0 0 0 1 
N-48(+) 0 0 0 0 0 0 0 1 



Appendix 

Run-tinte of the algorithnt 

This appendix contains the run-time results of the algorithm applied to some of the 
examples shown in appendix A. 

I Number of iterations 2 4 10 100 200 
I Used CPU-time (seconds) 0.01 0.02 0.05 0.40 0.82 
Fuzex6-graph; Tmax = 7 

Number of iterations 2 4 10 100 20U 
Used CPU-time (seconds) 0.02 0.02 0.05 0.57 1.19 

fdct.graph; T max = 8 

Number of iterations 
Used CPU-time (seconds) 

Fuzex4-graph; T ma x 6 

I Number of iterations 112 [4 j10 1100 200 
[ Used CPU-time (seconds) 11 0.02 I 0.03 I 0.06 [0.49 1 
Wdelf3-graph; Tmax = 16 
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Appendix 

Convergence-results 

In this appendix the results for a random initialization are presented. As test-graph 
example fuzex6-graph from appendix A is chosen. In the first table the initialization 
values are shown, foliowed by the achieved results. 

Initialization (random-test 1): 
I Cycle - 11 0 I 1 I 2 I 3 I 4 I 5 I 6 I 

VI{+) 0.2 0.8 0.5 0 0 0 0 
v2(+) 0.5 0.7 0.3 0 0 0 0 
va(+) 0 0.1 1 0.4 0 0 0 
v4(*) 0 0 0.5 0.9 1 0 0 
vs( *) 0 0 1 0.5 0.7 0 0 
vs(-) 0 0 0 0 0.2 0.3 0.8 
V7(-) 0 0 0 0 0.5 0.8 0.3 

The result for this initialization (random-test 1): 
I Cycle- IJ 0 11 I 2 I 3 I 4 I 5 I 6 

VI(+) 1.00 0.00 0.00 0 0 0 0 
v2(+) 1.00 0.00 0.00 0 0 0 0 
va(+) 0 1.00 0.00 0.00 0 0 0 
v4(*) 0 0 1.00 0.00 0.00 0 0 
V5( *) 0 0 0.00 0.00 1.00 0 0 
v6(-) 0 0 0 0 0.18 1.00 0.00 
V7(-) 0 0 0 0 0.03 0.01 1.00 . . Number of Iterations : 4 

TDDF : 2000, BUDF : 2000, HDF : 1000 
kd : 2, ku : 2, kb : 6 
Library: {<multiplier: * >, < adder: + >, < subtractor: >} 
Resources: 1 multiplier, 2 adders, 1 subtractor. 
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Initialization (random-test 2): 
I Cycle ---> 11 0 11 l 2 I 3 I 4 I 5 l 6 

VI(+) 0.02 0.8 0.5 0 0 0 0 
V2(+) 0.05 0.7 0.3 0 0 0 0 
vs(+) 0 0.01 1 0.4 0 0 0 
v4( *) 0 0 0.05 0.4 1 0 0 
vs(*) 0 0 1 0.7 0.07 0 0 
vs(-) 0 0 0 0 0.02 0~ V7(-) 0 0 0 0 0.5 0.6 0.03 

The result for this initialization (random-test 2): 
I Cycle ---> 11 0 I 1 I 2 I 3 I 4 I 5 I 6 

VI(+) 1.00 0.00 0.00 0 0 0 0 
v2(+) 1.00 0.00 0.00 0 0 0 0 
vs( +) 0 1.00 0.00 0.00 0 0 0 
v4( *) 0 0 1.00 0.82 0.25 0 0 
vs( *) 0 0 0.01 0.01 1.00 0 0 
vs(-) 0 0 0 0 0.10 0.02 1.00 
V7( ) 0 0 0 0 0.70 l.vv v.vO . . Nu.mber of tterat10ns : 4 

TDDF : 2000, BUDF : 2000, HDF: 1000 
kd : 2, ku : 2, kh : 6 
Library: {<multiplier:*>,< adder:+ >, < subtractor: - >} 
Resources: 1 multiplier, 2 adders, 1 subtractor. 



Appendix 

User m.anual 

This appendix is concemed with the actual implementation ofthe fuzzy (pre-)scheduler. 
The algorithm can be divided in two parts : 

• Initialization and Building of the necessary data-stroctures 

• The actual (iterative) algorithm 

Before going on with the discussion of the procedures, an outline of the fuzzy data­
stroeture is given. 

F .1 Fuzzy data-structure 

In figure F.1, an overview ofthe used data-stroeture is shown. In figure F.1 (A) a graph 
to be scheduled is depicted, in figure F.1 (B) the corresponding data-stroeture is shown. 
As can beseen in figure F.1 (B), toeach node an interval I(vi) is assigned. The interval 
I( vi) = [Inf Low( vi), Inf High( Vi)] (which is an abbreviation for lnfluence) is the interval 
defined by: 

{ 
0 ifASAP(vi)-6(vi)+1 :::;0 

InjLow(vi) = ASAP(vi)- 6(vi) + 1 if ASAP(vi)- 6(vi) + 1 > 0 (F.1) 

InjHigh(vi) = ALAP(vi) (F.2) 

The influence-interval is used to link per cycle-step the competitor-nodes. For example 
the nodes v1 and v2 are competitors in cycle 0, because they can be mapped onto the 
same module in the same cycle. Therefore these nodes are linked in this cycle (see 
igure F.1 (B)). Note, a dashed line between two nodes represents a link, a NJL-symbol 
represents no link). As can be seen in figure F.1 (B), each node has no, one or two 
neighbour-nodes (i.e. a node where it is linked with). 
The borders of the influence interval are chosen with a special reason. Take for instanee 
the situation as depicted in figure F.2 (A), with the assumption that the nodes shown 
must be executed on the same module-type (it is clear that under these circumstances 
the nodes shown are competitors ). The influence intervals for each node are shown in 
figure F.2 (B). Note that ifnode v3 is started in cycle 1, this also affects the nodes v1 and 
v2, although cycle 1 ~SI( v1), SI( V2) !! In the same way, starting node v1 or V2 in cycle 3 
will also affect node vs (although cycle 3 ~ SI ( v3 ) !). Therefore the influence interval 
is introduced to be able to compute the horizontal distorsions (DI ST hor z) the regarded 
node causes, due to the size ofits start-interval and its delay. 
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Figure F.2: Example ofthe use ofinfluence-intervals. 
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To compute the vertical distorsions (i.e. DI ST up and DI ST down) the structure present in 
the NEAT-system are used. That means that for each node in the graph its predecessors 
and successors can be reached by using the variables pred-nodes and suc-nodes. 

F .2 Description of the functions used 

F.2.1 Building and Initialization of data-structures 

getBelieve()/setBelieve() 
These macro's are used to retrieve or to store the membership-grades. Note that in the 
implementation Believe is written insteadof Membership-grade !!! 

InitStartlnterval() 
input : a data-flow graph provided with ASAP-ALAP-values 
output : a data-flow graph with for each node an influence- and a start-interval created 
and initialized 
description : the function determines the size of the influence-interval and the start­
interval. When the sizes of these intervals are known, the function creates an array 
infArray with the size of the influence-interval. Likewise, the start-interval fuzArray 
is created, with the size of the start-interval. Mter creating the mentioned arrays, the 
variables in the arrays are initialized. 

CreateHorzLinks() 
input : a data-flow graph with "unlinked" elements of influence-array 
output : a data-flow graph with linked competitor-nodes, for all cycles 
description: for each cycle-step the competitor-nodes are linked with each other, such, 
that the result is a doubly linked list of competitor-nodes for each cycle step. 

SatisfiedLinkCond() 
input : two data-flow nodes and a cycle-step 
output : "1" if the nodes given are competitors, "0" if the nodes given are no competitors 
description : Given a node curr and a cycle-step, check out whether the node cand is a 
competitor of node curr in the specified cycle-step. 

Det-Ma:xAccBelDown() 
input : a data-flow graph 
output : a data-flow graph with computed maximum DI ST down 
description: this function determines the maximum DISTdown that can by caused by a 
node in the data-flow graph regarded. The computed value is used for assigning a value 
to the damping-parameters in the membership-functions (see section 4.3.1). 

Det-Ma:xAccBelUp() 
input: a data-flow graph 
output: a data-flow graph with computed maximum DI STup 
description : this function determines the maximum DI ST up that can by caused by a 
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node in the data-flow graph regarded. The computed value is used for assigning a value 
to the damping-parameters in the membership-functions (see section 4.3.2). 

F .2.2 Actual schedule-functions 

FuzzySchedule() 
input : a data-flow graph with for each cycle the competitors linked 
output : for all nodes, to each cycle of the corresponding start-interval a membership­
grade is assigned 
description : Given a data-flow graph with the data-structures as created in CreateHor­
zLinksO, the function determines the membership-grades of the cycles (for all nodes). 
This is done by iteration (see chapter 4), using the functions : TraverseTopDownO, 
TraverseBottomUpO and TraverseHorizontal(). 

TraverseTopDown() 
input : a data-flow graph 
output : a data-flow graph with computed membership-grades 
description : this function determines for each start-position of a data-flow node the 
DI ST down and uses the function M u - Down() to compute the membership-grades from 
these distorsions (see also section 4.3.1). 

TraverseBottom Up() 
input: a data-flow graph 
output : a data-flow graph with computed membership-grades 
description : this function determines for each start-position of a data-flow node the 
DI ST up and uses the function M u- Up() to compute the membership-grades from these 
distorsions (see also section 4.3.2). 

TraverseHorizontal() 
input : a data-flow graph 
output : a data-flow graph with computed membership-grades 
description : this function determines for each start-position of a data-flow node the 
DI SThorz and uses the function M u Hor z() to compute the membership-grades from 
these distorsions (see also section 4.3.3). 

NormAndCompareDown 
input : a data-flow node 
output : normalized membership-grades for the node 
description: while traversing top-down, this function takes the fuzzy intersection of all 
new computed and old values, and normalizes the result. 

NormAndCompareUp 
input: a data-flow node 
output: normalized membership-grades for the node 
description : while traversing bot tom-up, this function takes the fuzzy intersection of all 
new computed and old values, and normalizes the result. 
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NormCard() 
input : a data-flow graph 
output : a data-flow graph with normalized membership-grades for all cycles of a data­
flow node 
description: by the option "-n", the user can define the outputto he returned in normal­
ized format. The membership-grades are normalized on the cardinality of the fuzzy set 
(see equation 3.6) 

F.3 Running the program 

The program can he run by typing : gfuz <input-file> 
Typing : gfuz -h will show the possible options. 
By using the option +o, the fuzzy schedule information is written into the nodelinks. 
In these nodelinks the keywords beginning with fuz denote items of the fuzzy schedule 
results. More specific : 

• fuzbegin denotes the first cycle in which an operation may he started 

• fuzsize denotes the number of cycles of the start-interval 

• fuzarray denotes the membership-grades for each cycle in the start-interval. 

F.4 Overview offunctions ofthe fuzzy algorithm 

FuzDfGraph.* : 
============== 

void 
void 
void 
double 
double 
int 
void 
void 
void 
void 

InitStartinterval{); 
CreateHorzLinks(); 
PrintFuzzyResults{); 
Det_MaxAccBelDown(); 
Det_MaxAccBelUp{); 
SatisfiedLinkCond{FuzDfNode* current, FuzDfNode* cand,double t); 
FuzzySchedule(double MaxDown, double MaxUp); 
TraverseTopDown(int m, double d_down); 
TraverseBottomUp(int m, double d_up); 
TraverseHorizontal(); 

FuzDfNode.* : 
============= 

void 
void 
double 
double 
void 
void 

setExStart{double i) 
setExEnd(double i) 
getExStart () 
getExEnd() 
setinfLow(double i) 
setinfHigh(double i) 
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double getinfLow() 
double getinfHigh() 
int getMark(int rn) 
void setMark(int rn) 

FuzLinksPtr* fuzArray; 
int nurnExecs; 1/ = size of fuzArray. 
int nurnFuzs; /1 = nurn. of start-possibilities. 

InfLinksPtr* infArray; 
int influence; 11 = size of infArray. 
int offs; 

double 

void 
void 
void 
void 
void 
void 
void 
void 

double 
double 
double 

CardSet; 

TraverseTopDown(int rn, double d_down); 
TraverseBottornUp(int rn, double d_up); 
Det_MaxAccBelDown(int rn); 
Det_MaxAccBelUp(int rn); 
NorrnAndCornpareDown(double d_down); 
NorrnAndCornpareUp(double d_up); 
NorrnalizeArray(); 
Norrncard ( ) ; 

Mu_Down(double bel, double d_down); 
Mu_Up(double bel, double d_up); 
Mu_Horz(double bel,int Irnps); 

FuzLinks.* : 
============ 

double getBel ieve ( ) 
void setBelieve(double b) 
int getConcs () 
void setConcs(int c) 
double getAccBelDown () 
void setAccBelDown{double d) 
double getAccBel Up ( ) 
void setAccBelUp(double d) 
double getStartSucs{) 
void setStartSucs(double s) 

InfLinks.* : 
============ 

InfLinksPtr getNext() 
InfLinksPtr getPrev() 
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void 
void 
int 
void 
double 
void 
int 
void 

setNext(InfLinksPtr n) 
setPrev(InfLinksPtr p) 
get I sLinked ( ) 
setisLinked () 
getBelieve() // ieve == membership-grade ! ! 

setBelieve(double b) // Believe == membership-grade ! ! 
getConcs () 
setConcs(int c) 
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