
 Eindhoven University of Technology

MASTER

High-level synthesis scheduling using fuzzy set techniques

Bierings, J.G.H.E.

Award date:
1993

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/277a1526-5075-47f4-a6f0-09bd5840438f

Eindhoven Univarsity of Technology
Department of Electrical Engineering
Design Automation Beetion (ES)

High-Level Synthesis
Scheduling

Using
Fuzzy Set Techniques

J.G.H.E. Bierings

Master Thesis

performed: September 1992 - July 1993
by order of Prof. Dr. Ing. J.A.G. Jess
supervised by Ir. M.J.M. Heijligers

The Eindhoven University ofTechnology is not responsihle for the contentsof training and thesis reports

Abstract

In High-Level Synthesis some reasonable solutions to the scheduling-problem are
known. However, some of these schedulers (e.g. a list-scheduler) do not always offer
satisfying results. Therefore it was desirabie to design an algorithm to overcome these
problems.

In this report afeasibility-(pre-)scheduler, based onfuzzy set techniques, is presented. In
this approach, all possible start-positions of an operation are regarded as memhers of a
fuzzy set. To each memher of these fuzzy sets an initial membership-grade is assigned.
To be able to translate properties of the data-flow graph into membership-grades for the
elements in the fuzzy set, fuzzy membership-functions are introduced. Then, starting
with the initial membership-grades, in an iterative process old membership-grades are
translated into new membership-grades.
Given a data-flow graph with a time- and a resource-constraint, the fuzzy scheduler
assigns toeach possible start-position of an operation a membership-grade. However,
the operations are not fixed yet !

To perform the actual scheduling (i.e. fixing the operations), the results of the al­
gorithm can be used in two ways :

• By a greedy-feasibility scheduler, which is a scheduler, specially tunedon using
membership-grade to make a feasible schedule

• By various other schedulers (e.g. list-schedulers, force-directed schedulers), as a
kind of initialization

The fuzzy (pre-)scheduler is fast and produces good results. Furthermore, the algorithm
has shown to converge to a solution, even if the membership-grades are initialized at
random. However some work has to be done, to make the fuzzy scheduler applicable in
a chip-design environment.

The chapters 1 and 2 give a short introduetion to High-Level Synthesis and the
scheduling-problem. In chapter 3 some relevant topics of fuzzy sets are discussed.
Chapter 4 discusses how the fuzzy set techniques are applied to the scheduling-problem.
Mter these definitions, the actual fuzzy algorithm is presented, foliowed by an example.
In chaper 5 the results ofthe fuzzy algorithm, applied tosome examples, are presented.
Furthermore, the greedy-feasiblity scheduler is outlined and some recommandations for
future work are done. Finally, chapters 6 presents the conclusions.

Contents

1 Introduetion 1

2 High-Level Synthesis 3
2.1 System Overview . 3
2.2 Scheduling . 5

2.2.1 The Data-Flow Graph . 6
2.2.2 The library . 6
2.2.3 Some more definitions " 7
2.2.4 Different kinds of scheduling . 8

3 Fuzzy Sets 13
3.1 Ristory . 13
3.2 A brief introduetion to Fuzzy Sets . 13

3.2.1 Introduetion . 13
3.2.2 Basic Properties . 15

4 Fuzzy Scheduling 17
4.1 Introduetion . 17
4.2 Fuzzy Sets and Feasible Scheduling . 17

4.2.1 Set-Definitions . 17
4.2.2 Distorsion . 19

4.3 The fuzzy algorithm . 22
4.3.1 Traverse Top-Down . 23
4.3.2 Traverse Bottorn-Up . 25
4.3.3 Traverse Horizontal . 27
4.3.4 An example . 28

4.4 Initialization and Convergence of the algorithm 30
4.5 Complexity ofthe algorithm . 31

5 Results 33
5.1 Introduetion . 33
5.2 An example . 33
5.3 Evaluation . 34
5.4 Greedy-feasibility scheduler . 35
5.5 Recommandations for future work . 35

I

6 Conclusions 37

Bibliography 39

A Test-graphs 41

B Schedule results 4 7

C Results greedy-feasiblity scheduler 55

D Run-time of the algorithm 57

E Convergence-results 59

F User manual 61
F.l Fuzzy data-stroeture . 61
F.2 Description ofthe functions used . 63

F.2.1 Building and Initialization of data-structures 63
F.2.2 Actual schedule-functions . 64

F.3 Running the program . 65
F .4 Overview of functions of the fuzzy algorithm 65

II

Chapter

Introduetion

At the Design Automation Beetion ofthe Eindhoven University ofTechnology, software
tools are being developed for the design of integrated circuits. One of these tools is a
Silicon Compiler, which translates a functional description forsome digital system into
a chip layout. The silicon compiler can he splitted in three parts (see tigure 1.1): High-

Functlonal Descriptlon

Network Structure Controller Descrlption

Logic Synthesis

Gate Network

Layout Synthesis

Chip Layout

Figure 1.1: Silicon Compiler Overview.

Level Synthesis, Logic Synthesis and Layout Synthesis. The High-Level Synthesis part
transforms the functional description into a description of a networkof modules (e.g.
multipliers, adders, etc.) and a corresponding (networkw)controller. The Logic Synthesis
transforma these results into a network of gates. Finally, the Layout Synthesis creates
a chip layout from the gate network.

This report is concerned with a problem in High-Level Synthesis, called scheduling. In
chapter 2, this problem is defined more formally. Although previous workin the design

1

2 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

automation section ofthe Eindhoven University ofTechnology already affered good so­
lutions for this problem ([Heijligers91]), they also showed to have a few short-comings.
Therefore, it was desirabie to develop an algorithm, based on fuzzy set techniques, that
could provide some kind of initial schedule. Eventually, by using these results, the
above mentioned (schedule) algorithms, should overcome their short-comings and offer
better results.

Chapter

High-Level Synthesis

2.1 System Overview

Within the high-level synthesis process, the following steps can be distincted (see
figure 2.1). An object used to interchange information between the various steps in

Algorithmic description
e.g. in VHDL, Hardware C

Module
Generator

Control Graph 'Hi 0 . . . I · pt1m1Zat1on
Network Graph 1

f

H . Allocation

Data Path Finite State Machine

Figure 2.1: High-Level Synthesis system overview.

the high-level synthesis process, is the data-flow graph. The main advantages to use a
data-flow graph for synthesis are :

• independency of input description languages used

• detection of concurrency in the description

• no use of variables, but only use of values

Take for example, the following description:

3

4 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

process exgraph(aO,al,a2,a3,fO,fl)
in port aO, al, a2, a3;
out port fO, fl;

{
integer xO, xl;
integer Yli
xO = aO + al;
xl = a2 - a3;
yl = xO + xl;
fO = xO * yl;

fl = xl + yl;
}

This functional description can he mapped onto the data-flow graph as shown in
tigure 2.2. With respect to tigure 2.2, there are a number of problems to he solved :

Figure 2.2: Data-flow graph, representing functional description.

• Which and how many modules can he used ?

• At what time must a node he executed?

• On what module in the data-path will a node he executed ?

At the Eindhoven University of Technology, in the NEAT-system the design-flow in
High-Level Synthesis is as follows:
A module-generator takes care of the first point. By investigating the data-flow graph
and an associated time-constraint Tmax• the generator checks which operation-types are
used. It then creates from a library a set of modules to he used in the synthesis-process
(A library is a database containing a set of modules which can execute one or more
operation types. E.g. : <ALU: -,+, * ,/,or,and>,<adder:+>).

High-Level Synthesis 5

The scheduler takes care of the second point. It assigns to each node in the graph
a cycle-step, in which an operation should start. Depending on the type of scheduler
(see section 2.2.4), several constraints occur. For instance, the scheduler might have
to know the num.her of modules (of a certain type) and/or the num.her of cycle-steps it
is allowed to use. Note, the results of the scheduler and the module-selector depend
heavily on each other. An illustration of this dependency is given in tigure 2.3.

Time-Constraint
Tm a x

Data-flow Graph is scheduled;
proceed with allocation

Yes

Figure 2.3: Interaction between module-selector and scheduler.

The last point is solved by a binder. The binder assigns to each node in the graph
a hardware module. Hence, the binder needs to know in which cycle-step nodes are
executed, in order to be able to prevent conflicts in the module-usage. Furthermore,
register-allocation and interconnect-generation are also performed in this phase. In
register-allocation registers are assigned to values which have to he stored during
one or more cycles. Interconnect-generation is performed after binding and register­
allocation, and determines the interconnection units (i.e. wires and interconnection
units like multiplexers and demultiplexers).

In the next section, an introduetion and somebasic definitions regarding the scheduling­
problem will be given.

2.2 Scheduling

In short, a scheduler assigns to each node in the data-flow graph one or more cycle
steps, that is, during these cycles the node is executed. A scheduler is subjected to
constraints : a precedence-constraint and depending on the type of scheduler (see sec­
tion 2.2.4), a resource- and/or a time-constraint. The precedence-constraint means that

6 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

a node cannot be executed earlier than its predecessors and cannot be executed later
than its successors; this constraint is derived from the data-flow graph.

A data-flow graph is a directed graph. The nodes of the data-flow graph represent
operations, the edges model the transfer ofvalues (i.e. tokens) between these nodes. A
node can be executed only, if there are values (tokens), on all its incoming edges. In the
high-level synthesis process two other kinds of graphs are associated with the data-flow
graph : the control-graphand the network-graph. In this report attention will be paid
only to data-flow graphs.

2.2.1 The Data-Flow Graph

A data-flow graph is a directed graph, consisting of nodes and edges. This can be stated
formally as :
A data-flow graph is a graph G = (V, E), in which :

• V is a finite set of nodes

• E Ç V x V is a set of directed edges

'
In the graph, there exist various kinds of node types, each having its own semantics.
There are operation nodes, input- and output nodes, constant nodes, branch- and merge
nodes, etc. In this report only operation- and inputloutput-nodes will be used. An
operation node represents operations like *,-,+,I, and boolean operators like and,or,<,>.
The inputloutput-nodes are used to interface with the outside world, i.e. input-values
are assigned to the input-nodes, output-nodes return the computed values. In the
data-flow graph G =(V, E), the function r perfarms the mapping ofnodes onto types:

T : V ----> Type (2.1)

with Type the set of (node-}types.

For each node in the graph two special sets of nodes associated to that node, can
be defined:

succ(vi) = {vj E V I (vi,vj) E E} (2.2)

re presenting the set of all direct successors of a node v1 E V, and

pred(Vj) = {vi E V I (vi, Vj) E E} (2.3)

representing thesetof all direct predecessors of a node Vj E V. Note, there also exist
several kinds of edges (see [Eijndhoven91]), however we will only be concemed with
data edges.

2.2.2 The library

As outlined in section 2.1, the scheduler uses a library to obtain information about
operation-types in the data-flow graph. To be able to schedule, the scheduler needs
to know the execution time of all the operations in the graph. For convenience it is

High-Level Synthesis 7

assumed that every operation has one unique module upon which it will he executed.
Hence, every operation in the data-flow graph has a unique execution-time. This can he
stated formally as :
Operation mapping
Let G = (V, E) he a data-flow graph, L be a library.
Ç : V -+ L is a mapping from operations to modules.

Delay
Let G = (V, E) he a data-flow graph, L he a library.
6 : V x L -+ 1R is a function decribing the time a module needs to execute a node.

Example of a library
Let L he a library: L ={<ALU:-,+,* ,/,or, and>,<adder:+,->,<1/0:get,put>}

2.2.3 Some more defi.nitions

Given a data-flow graph, the scheduler has to decide which node is executed at what
time. The time is given by the interval [O .. T ma.x], where T ma.x is the moment at which
all nodes in the graph must have been executed. The integer interval [O .. Tma.x 1]
represents thesetof cycle-steps, involved in scheduling the graph. An example of time
and cycle-steps is given in figure 2.4, where [0 . .4] denotes the time interval and [0 .. 3]

0
~ 0 ~\
I I

1
I

I !

Time J

1 I
2 1

Cycles

I 21
I

3
I

I I I

t 3~
Tmax= 4

Figure 2.4: Illustration of time and cycle-steps.

denotes the integer interval of cycle-steps.

The use of cycles implies the use of some (central) clock, operating at a certain
frequency, and hence the regarded system is one of a synchronous kind. Furthermore, it
is assumed that all modules are related to this specified clock-frequency, i.e. the delay
of the modules is specified in the num.her of cycle-steps.
In figure 2.5, two special situations are drawn: multi-cycling and chaining. In words:
Multi-cycling : the delay of a module is bigger than one cycle-step; the corresponding
operations will occupy more than one cycle.
Chaining : the delay of a module is smaller than one cycle-step; sametimes more than
one related operations can he executed in one cycle-step.

8 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

Tcycle

(A) (B)

Figure 2.5: (a) Multi-cycling (b) Chaining.

Finally, a module used can be a pipelined module. Pipelined modules can start a
new execution before the previous execution has finished. This means that the module
can contain more than one data-value at the same time. However, in this report,
pipelining is not considered.

Thanks to the precedence-constraint, to each node two values can be assigned :

• An ASAP (As Soon As Possible) value, representing the earliest time at which
execution of a node can be started.

• An ALAP (As Late As Possible) value, representing the latest time at which
execution of a node must be finished.

Stated formally :
Given the data-flow graph G =(V, E), node Vi E V and time-constraint Tmax:

asap(vi) = {
0 if pred(v;) = 0
maxviEpred(v;)[asap(vi) + ö(vj)] ifpred(v;) ::j:. 0

(2.4)

l () { Tmax if succ(Vi) = 0 (2.5)
aap v; = minviEsucc(v;)[alap(vj)- ö(vi)J if succ(v;) ::j:. 0

Now, the pair [asap(v),alap(v)] denotes the interval in which a node v can be
scheduled, and is called the execution-interval of node v (EI(v)). Likewise, the pair
[asap(v),alap(v) ö(v) +IJ denotes the interval, in which the execution of a node v
can be started and is called the start-interval of node v (SI(v)). Corresponding to
SI(v), Cv = [asap(v),alap(v)- ö(v)] denotes the integer interval of cycle-steps of the
start-interval of v.

With respect to figure 2.4, the following intervalscan be distincted
EI(vl) = [0, 2], SI(v1) = [0, 2], Cv1 = {0, 1}
EI(v2) = [1,4], SI(v2) [1,3], C'-'2 = {1,2}
EJ(va) = [1,4], SI(va) = [1,4], C113 = {1,2,3}

with: ö(v1) = 6(va)= 1 cycle, and 6(v2) = 2 cycles.

2.2.4 Different kinds of scheduling

Rougly spoken, three kinds of scheduling can be distincted :

High-Level Synthesis 9

• Time-constrainted scheduling

• Resource-constrainted scheduling

• Feasible scheduling

With the first one, time-constrainted scheduling, a time-constraint T max is given. This
means, the data-flow graph must he fully executed befare this time. It is assumed that
the scheduler has the disposal of an infinite amount of modules (of any kind).

With the second one, resource-constrainted scheduling, a resourc-eonstraint as a limited
amount of modules {of all types) is given, however there is no time-constraint. This
means, that the scheduler can use as much time as it needs to make a schedule.

The third one, feasible scheduling, in fact is a combination of time-constrainted­
and resource-constrainted-scheduling. In this case, a time-constraint, as well as a
resource-constraint are given. The scheduler is then asked to create a feasible schedule.

In tigure 2.6, an example of a graph is given, which is scheduled in the three ways as
discussed above.

Figure 2.6: Example of a data-flow graph to he scheduled.

For the examples shown in the tigures 2.7 to 2.9, the assumption is made that the
modules used are chosen from the library :
L={<multiplier:*>,<adder:+>,<subtractor:-> }.
Fortigure 2.7 this implies that given the time-constraint Tmax• the graph can he sched­
uled using 2 adders, 2 multipliers and 2 subtractors.
Li.kewise, the resource-constraint chosen in tigure 2.8, implies the graph can he sched­
uled in 8 cycles.

10 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

1

2

3

Tmax:S-

Figure 2.7: Time-constrainted scheduling, with Tmax = 5.

1-

1
2-

2
3--

3

4

5
6-

6
7-

7
8--

Figure 2.8: Resource-constrainted scheduling, with 1 adder, 1 multiplier and 1 subtrac­
tor.

High-Level Synthesis 11

1

3-

4

5

6

Tmax=7-

Figure 2.9: Feasible scheduling, with T max = 7 and 2 adders, 1 multiplier and 1
subtractor.

12 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

Chapter

Fuzzy Sets

3.1 Bistory

In 1965, Zadeh introduced the idea of fuzzy sets [Zad65]. lt was an attempt to adapt the
concepts of fuzzy boundaries to science. Since then, scientists have had the disposal of
a tooi to cope with formulations like a tall guy, a red apple or middle-aged people.
Although fuzzy sets may sound a little bit "fuzzy", the opposite is true : The fuzzy-set­
theory has got a well-defined mathematica! foundation with fine properties. On top of
that, the basic concept ofthe fuzzy-set-theory can he understood quite easily.
Since its introduction, the fuzzy-set-theory has assumed ~normous proportions over a
wide range of applications. Nowadays, fuzzy sets and fuzzy logic (a logic basedon fuzzy
sets) are succesfully applied in control engineering, speech-recognition and pattern­
recognition, tomention a few.
Furthermore it is remarkable that fuzzy-systems sneeeed in situations, where systems
basedon the non-fuzzy.theories, like classicallogic and classical-control-theory fail. The
other way round, non-fuzzy-systems can handle a lot of situations w herein fuzzy-systems
would act as a car with square wheels.

In the next section, a brief introduetion to fuzzy sets will he given, so that the
reader gets an impression of the properties and possibilities of fuzzy sets.

3.2 A brief introduetion to Fuzzy Sets

8.2.1 Introduetion

In classicallogic, all reasoning is based on two values : true or false. Problems, like the
one below, can easily he described :

Given the setS {x E 1N I x::;: 25}, and the function :F(x) with:

"C'() - { 1 if x ::;: 25
.r x- 0 ifx>25

Then: :F(24) = 1, :F(25) = 1 and :F(26) = 0.

For a lot of situations this seems to he adequate. However in trying to describe a
set like young people, classical logic cannot provide a simple method (Or noteven a
method at all !!), to decide whether an age of 25 is young or old. And what to say about

13

14 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

someone with an age of 26, when 25 years is assumed to he the border of young and old ?
As a consequence ofthis assumption, someone who's having hls/her 25-th birthday, will
get old in less then a second !!! It may he obvious that this is not realistic.

Fortunately, fuzzy sets provide a simple way to cope with this problem. As a mat­
ter of fact, getting older, in most cases, is a smooth process : a man gets a little bit older
(or a little bit less young) every day. .
Therefore, it's reasonable to use a function Myoun9 (x), as defined below (Myoung and F
are plotted in figure 3.1):

1

0

Myoung(x) = {
1

1
l+{o(x-20)

__
1

F(x)

I
I

if 0 ~x< 20
if x 2: 20 (3.1)

~--------~~--------~~--~--~~--------~~--------~-------:~ 1 2 4 Age

Figure 3.1: Plots of F and Myoung·

As cancanheseen from the definition of Myoung. it's a function mapping lN ~-+ [0, 1].
Hence M young produces :
Myoun9 (15) = 1, Myoun9 (24) :::::: 0.71, Myoun9 (25) :::::: 0.67, Myoun9 (26) :::::: 0.63 and
Myoung(BO) :::::: 0.14.
The values retu.rned by Myoung correspond to our (intuitive) idea of getting older:
An age of 15 certainly isyoung, corresponding to the value 1; on the contrary, an age of
80 can hardly said to he young, corresponding to the value 0.14.

The function M young is called a membership-function of the fuzzy set young. In
the next paragraph some basic properties of fuzzy sets will he defined.

Fuzzy Sets 15

3.2.2 Basic Properties

Zadeh [Zad65] defines a fuzzy set as a mapping ofthe set X onto the unit interval [0,1].
The following is involved.

Let X be a set. The fuzzy set S in X is defined as :

s =x x [0, 1] (3.2)

with the membership-function J.ts : X - [0, 1], which associates toeach x E X a real
number in the interval [0, 1].

The number J.ts(x) is called the grade of membership of x in the fuzzy set S. The
closer the value of J.ts(x) is to 1, the greater is the memhership grade of x in S. Ob­
viously, the membership-function is a generalization of the characteristic function of
ordinary set theory, which takes on the two values: 1 for elements belonging to the set,
and 0 for elementsnot belonging to the setS.

Fora set X the fuzzy setS is written as the set oftuples:

S = {(x,ps(x))}.

The results of equation 3.1 can now be expressed as :
s = { ... '(15, 1), ... '(24, 0. 71), ... '(25, 0.67), ... '(26, 0.63), ... '(80, 0.14), ... }

In the general case the choice of a membership-function J.ts(x) is subjective, and
based on information available in each individual situation.

In the construction of the theory of fuzzy sets, the foregoing is a step to the defini­
tion of operations on fuzzy sets. Note that only the most important operations on fuzzy
sets are defined here, in partienlar those operations that are significant with respect to
the next chapter. Below the operations are presented :

Empty Set
A {uzzy set S is said to be empty (S = 0),
i.ff for all x E X holds J.ts(x) = 0.

Equivalence
Two {uzzy sets A and Bare said to be equivalent (A= B),
i.ff for all x E X holds J.tA (x) = J.tB (x).

Complement
The {uzzy set S is the complement of the {uzzy set S
i.ff J.ts(x) = 1 - J.ts(x).

16 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

Uni on
The union A U B of the two fuzzy sets A and B, is defined as the least fuzzy set containing
both sets A and B. The membership-function ofthe set A u Bis defined by the expression:

/l.AuB = max(pA(x),fLB(x)) (3.3)

lntersection
The intersection A n B of the two fuzzy sets A and B, is defined as the greatest fuzzy set
that is simultaneously a subset of both of these sets. The membership-function of the set
A n B is defined by the expression :

/l.AnB =min (!-LA (X), !lB(X)) (3.4)

Normalization
Two forms of normalization can be distincted :

• Normalization on greatest membership-grade of all elements in the set.

• Normalization on cardinality of the fuzzy set.

The fuzzy set Y', which is normalized on the greatest membership-grade of all elements
of the fuzzy set Y (in X), can be expressed as

(3.5)

With:
X is a set, and K = fLy(h), with Vyex[(py(y) ~ py(h)) 1\ hE X]

The fuzzy set Y', which is normalized on the cardinality of the fuzzy set Y (in X), can be
expressed as :

Y' = { (a, b) l a E X 1\ b = ~Y; ~)} (3.6)

with : l Y I= I: fLy(y) (3.7)
yEX

Of course far more operations can be defined, however the operations discussed above
are suffi.cient for this report. More operations on fuzzy sets and formal proofs of the
operations, can be found in [Klir88] and [Zad65].

Chapter

Fuzzy Scheduling

4.1 Introduetion

In this chapter a schedule algorithm based on fuzzy set techniques will be presented.
As discussed in chapter 2, scheduling a data-flow graph G = (V, E) is the process of
assigning a cycle to each node, in which it should start.
In short, the problem to be solved is :
Given a data-flow graph G = (V, E), a time-constraint Tmax and a resource-constraint
for the number of resources.
Question:
Determine for each cycle in the start-interval of a node, a membership-grade, such, that
eventually, starting a node in the cycle with the highest membership-grade results in a
feasible schedule.

4.2 Fuzzy Sets and Feasible Scheduling

In this section the fuzzy-set theory of the previous chapter will be matebed with the
scheduling-problem as discussed in chapter 2.

4.2.1 Set-Definitions

With respect to the definitions of the start-interval SI and the execution-interval EI in
section 2.2.3, two kinds of fuzzy sets can be distinguished :

(A) Node oriented
This kind of fuzzy set associates a membership-grade to each cycle in the start-interval
of a node. The node-oriented fuzzy set Sv can bedefinedas:

Sv = Cv X [0, 1]

With : v a node of the data-flow-graph.
Cv the set of cycles of the start-interval of v.

17

(4.1)

18 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

(B) Cycle oriented
This kind of fuzzy set associates a membership-grade to each node from the set of nodes,
that can be mapped onto the same module-type and which can start in the considered
cycle. The cycle-oriented fuzzy set Me(modtype) can therefore be defined as :

Mc(modtype) = Tc(modtype) X [0, 1]

and

Tc(modtype) = {v E V I c E Cv 1\ modtype E Rv}

with : V the set of all nodes in the data-flow-graph.
Cv the set of cycles of the start-interval of v.
Rv the set of module-types where v can be mapped onto.

o--~f~8--v1 _____________ o
1 I · * t-----------.,--

1 1
2 I

SI(v21 SI(v3~

4--------~t---------~t-----
3

Figure 4.1: Node- and Cycle-oriented fuzzy sets.

(4.2)

(4.3)

Hence, in figure 4.1, the following node- and cycle-oriented fuzzy setscan be distincted
(note that the membership-grades of the nodes in these sets are chosen arbitrarily) :

Node-oriented fuzzy sets:
Sv1 = {(0, 0.5), (1, 1), (2, 0.8)}
S112 = { (2, o.2), (3, 1)}
S113 = {(2,1),(3,0.7)}

Cycle-oriented fuzzy sets :
Mo(adder) = M1(adder) = 0
M2(adder) = {(v2,0.2),(vs,1)}
Ms(adder) = {(v2, 1), (vg, 0.7)}
Mo(ALU) = {(vb0.5)}
M1(ALU) = {(vh 1)}
M2(ALU) = {(v1,0.8),(v2,0.2),(vs,l)}
Ms(ALU) = {(v2,1),(vg,0.7)}

Fuzzy Scheduling 19

Given:
(i) ó(v1) = 2, ó(v2) ó(va) = 1.
(ü) Rv1 = {ALU}, R112 Rva {ALU,adder}.

4.2.2 Distorsion

Now the fuzzy sets with respect to the scheduling-problem are defined, the term
distorsion can he introduced. Roughly spoken, distorsion is a measure for the impact a
certain node has on another node, when the first one would he started in one of the cycles
of its start-interval. Obviously, if a node would he started later, it causes distorsion
(Dl STdown) with respect to all its successors; in the same way, a node causes distorsion
(DI ST up) with respect to all its predecessors, if it would he started earlier. Remind, the
aim of scheduling is to assign toeach node a cycle, in which it is allowed to start. So,
it is obvious that if a node causes a lot of distorsion with respect to its predecessors or
successors, letting the node start in that cycle is not a fortunate decision. A node could
he started best in a cycle, in which it causes the smallest distorsion to other nodes as
possible. In figure 4.2 can he seen, that if v4 is started in cycle 1, v7 still can start in

Figure 4.2: Example of distorsion.

all c E C,17 • However if v4 would he started in cycle 3, v7 must he started in cycle 4,
because otherwise it would violate the time-constraint T map The other way around, if
v7 is started in cycle 4, this leaves to v4 the choice tostart in either cycle of Cv4 • Starting
v7 in cycle 1, forces v4 tostart in cycle 1. In general, startinga node earlier or later, will
affect the start of predecessors and successors respectively. It can he stated, that, the
greater the distorsion a node causes in either direction, the worse the decision becomes
to start the node in the regarded cycle. In fact, a situation arises as plotted in figure 4.3.
In this figure, quality denotes the quality of the decision to start a node in an arbitrary
cycle, as a function of the distorsion caused by this node, with respect to other nodes :
the closer the quality is to 1, the better the decision; the closer the quality is to 0, the
worse the decision.

20 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

1

0
-?--~ Distorsion

Figure 4.3: Distorsion-Quality plot.

Note that the situation in figure 4.2 can he stated formally as :

c+ó(v;)-1

DISTdawn(V;,c)= L L llv,(Cj)+ L DISTdawn(Vj,c+ó(vi)) (4.4)
VjEsucc(v;)

with: Cj E CVjl c E Cv; and (Vi, Vj) E E.
If succ(v) = 0 then DI ST down (v, c) = 0, for all c E Cv·
llv, (Cj) representing the membership-grade of cycle CJ in Sv

3
•

Tmax-1

L /lv;(ci) + L DISTv.p(v;,c- ó(vi)) (4.5)
v;Epred(v3) c;=c-ó(v;)+1 v; Epred(v1)

with: C; E Cv,, c E Cv, and (vi,Vj) E E.
lfpred(v) = 0then DISTv.p(v,c) = 0, forall c E Cv.
llv; (ei) representing the membership-grade of cycle c; in Sv;·

Assuming, the membership-grades of all ei E Cv,, for all v in the data-flow graph of
figure 4.2 are set to 1 initially, the distorsions DISTv.p(v,c) and DISTdawn(v,c) then
become:

DISTdawn(v1,0) = DISTv.p(v1,0) = 0,
DI STdown(v2, 1) = D / STv.p(v2, 1) = 0,
DISTdawn(vs,2) = DISTv.p(vs,2) = 0,
DISTdown(v6,3) = DISTv.p(vs,3) = 0,

DISTdown(v7,2) = 0,
DISTdown(V7,3) = 0,
DI STdown(V7,4) = 0,

DISTdown(vs,4) = DISTv.v(vs,4) = 0,
DISTdown(va, 1) = DISTv.p(vg, 1) = 0,
DISTdown(vg,2) = DISTup(va,2) = 0,
DISTdown(va,3) = DISTv.p(va,3) = 0,

DISTv.p(v4, 1) = 0,
DISTv.p(v4,2) = 0,
DI STv.p(V4, 3) = 0,

Fuzzy Scheduling 21

DISTdown(v4, 1) = 0 + DISTdown(v7,2) = 0 + 0 = 0,
DISTdown(v4,2) = (JL1.17(0) + JL1.17(1) + JLV7(2)) + DISTdown(v1,3) = (0 + 0 + 1) + 0 1,
DISTdown(v4,3) = (JLV7(0) + JLV7(1) + JLV7(2) + p117 (3)) + DISTdown(V7,4) =

(0 + 0 + 1 + 1) + 0 = 2,

DISTup(v1,4) = 0 + DISTup(v4,3) = 0 + 0 = 0,
DISTup(v7,3) = (JLv4 (4) + JLv4(3)) + DISTup(v4,2) = (0 + 1) + 0 = 1,
DI STup(v7, 2) = (JLv4 (4) + JLv4 (3) + JLv4 (2)) +DI STup(v4, 1) = (0 + 1 + 1) + 0 = 2.

The distorsion a node causes, with respect to its successors (predecessors), is equal to
the sum of the membership-grades of the cycles, in which the successors (predecessors)
(and the successors(predecessors) of the successors (predecessors)) are notallowed to
start any more. Note that, although a node has a successar and a predecessor, it does nat
necessarily cause distorsion (e.g. node v3 in figure 4.2). From this example it becomes
clear, the distorsion caused by a node, with respect to its successors and predecessors, in
the general case is :

• 0 in the best case

• (I V I -1)(Tmax- 2) in the worst case (see figure 4.4), i.e. all nodes are forced to
start in the latest cycle of their start-interval, if v1 is started in cycle 1.

Figure 4.4: Worst-case situation for distorsion.

So far, only the distorsion with respect to predecessors and successors has been
discussed, yet there exists another type of distorsion : two nodes, that can be mapped
onto the same module in the same cycle, are competitors. Evidently, if one of these
nodes is started in such a cycle, it might cause distorsion with respect to the other
node (i.e. the competitor). In figure 4.5 a situation is drawn, in which two competitors
compete for one module. Suppose, v1 would start in cycle 1. Then, if there is only one
module available to map v1 and 172 on, it becomes impossible tostart v2 in either cycle of
its start-interval. It is said that v1 distorts all start possibilities of v2. However, if v1 is
started in cycle 0 or 2, this leaves to v2 the choice, tostart in cycle 2 or 0, respectively. In
this case, v1 distorts just a fraction of all start possibilities of v2. This type of distorsion
can be stated formally as :

c+ó(v~o)-1 ()

DIST () "' "' JLvn Cn horz VJc,C = L..,; L..,;
VnEconc(vk) cn=c-6(vn)+l I Svn I

(4.6)

22 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

0--~,-=--~----~--~~---
1 0

1---H
I I I
I I I

2-----~.~---.~------~.--=-~----
3 : Sl(v1) ~ Sl(v2)~

1

2

4
El(v1) t El(v2) t 3

S{v1)=S(v2):{(0, 1),(1, 1),{2, 1)}

Figure 4.5: Example for horizontal distorsion.

with: Cn E Cvn•
conc(vk) = {v E V I (EI(v)n EI(vk) =f:. 0) 1\ (Rv n Rvk =f:. 0)}.

Now a measure for the horizontal distorsion is defined, it's necessary tolook again at
figure 4.5. Notice, that if v1 would be started in cycle 2, all start-positions of v2 would be
distorted, which is expressed by DISThorz(v1,2) = l = 1; however, starting v1 in cycle
1 or 3, doesn't affect all start-positions of v2, which is expressed by DI SThorz(v1.1) =
DISThorz(vb3) = i ~ 0.66 (Note that interchanging v1 with v2 leads to the same
results).
In the best case, the horizontal distorsion is 0; in the worst case (e.g. in figure 4.5) it
might become impossible to start a node in any cycle of its start-interval. Hence, the
greatest horizontal distorsion that can be caused by a node v, equals the number of
competitors ofthe node, i.e. I conc(v) j.

4.3 The fuzzy algorithm

In section 4.2.1, the fuzzy sets applied to scheduling were introduced. Given these
definitions, in section 4.2.2 three measures were introduced to investigate the influence
of a node, with respect to its successors, predecessors and competitors. Combining the
results of section 4.2.1 and section 4.2.2 enables us to design a schedule algorithm,
based on fuzzy set techniques.
In short, for each node v in the data-flow graph, the distorsion with respect to its
successors, predecessors and competitors could be determined. Then, if there are
defined good measures to map the computed distorsions onto the interval [0,1], toeach
cycle of a node some kind of quality-degree could be assigned (a quality-degree actually
is the same as a membership-grade). Now, to each node three quality-degrees are
associated, the worst quality-degree of each cycle of a node should be chosen (note that
a chain is as strong as its weakest link !). Remind equation 3.4, here we actually take
the fuzzy intersection of three fuzzy sets (see figure 4.6, with cycle l..n E Cv). The
expectation is that repeating these computations (i.e. iterating !) a few times, eventually
results in quality-degrees for each cycle of a node, such, that some algorithm should be

Fuzzy Scheduling 23

- .,._ Interseet

---Intersect

-.-Intersect

Figure 4.6: Quality-degrees associated toeach cycle of a node v.

ahle to make a feasihle schedule. Making a feasihle schedule is done hy fixing each node
of the data-flow graph in the cycle with the highest quality-degree, taking into account
the availahle resources. The algorithm can he split in three parts :

• Traverse Top-Down

• Traverse Bottorn-Up

• Traverse Horizontal

These three parts will he discussed one hy one in the next sections. Finally, an example
will he given, that illustrates the operation ofthe algorithm.

4.3.1 Traverse Top-Down

In this part of the algorithm for all nodes the distorsion is computed with respect to
the successors (see definition 4.4). Then to each cycle of a node, a quality-degree is
assigned. Note that the quality-degree assigned to each cycle of a node, actually is
the memhership-grade of the cycle. Reminding the quality-distorsion-plot in figure 4.3,
a memhership-function should he ohtained, that maps the caused distorsion onto the
interval [0,1]. The choice ofthe memhership-function is not arhitrary, hecause rememher
the aim is to define a function that approximates the shape of the plot in figure 4.3
(see also [Klir88]). As can he seen in figure 4.3, a distorsion equal to zero, results
in the highest quality that can he achieved. Hence, a distorsion greater than zero
always results in less quality. In other words, a small distorsion must result in a
membership-grade close to I, a big distorsion must result in a membership-grade close
to 0. The memhership-function that shows this hehaviour, is:

1
Jldown(DJSTdown(v,c))= 1 +((DJST ())k down down V, C cl

(4.7)

with: (down some damping parameter, kd E 1N.

The parameter (down is used to control the memhership-grade for the greatest distorsion
present in the data-flow graph, with respect to the highest memhership-grade (i.e. 1).
E.g. if the maximum distorsion DI STdown = 10 and given kd = 1, then choosing (down =
0.9 results in J1down(10) = 0.1 (note that Jldown(O) = 1 !). In the final implementation

24 High.Level Synthesis Scheduling Using Fuzzy Set Techniques

of the algorithm, the user can define (down by aso called Top-Down-Damping-Factor
(TDDF). This factor represents the fraction of 1, the membership-grade of the cycle
with the maximum distorsion DISTdown has. Hence, in the case described above,
T D D F = 10. The parameter kd is used to control the smoothness of the membership­
function. The higher kd, the steeper the function close to 0 becomes. For kd -+ oo, the

1

G)
'tf
11
b
I c.

.cl
lil -
....
Ql

1 a

0

0 1 DIST_down

Figure 4.7: P,down for kd-+ oo.

situation as shown in figure 4. 7 arises; the result is the membership-function for the set
S = {x E IR I x :::; 1}. Hence, the setS is a crisp set!! Finally, the values of (down and kd
are chosen em pirical and can be set by the user.
Putting all things together, the following pseudo-code can be generated for the traverse
top-down-procedure :

type node = record
gradeNew: 0 .. 1;
gradeHorz: 0 .. 1;
gradeDown: 0 .. 1;
gradeUp: 0 .. 1

end;

Traverse Top-Down:
v: array [I Cv IJ ofnode;
FORALL(v)

{
FORALL(c E Cv)

{
v.gradeDown[c] := /-tdown (DI ST down(v, c));

}
}

Fuzzy Scheduling 25

In the actual implementation, the recursion present in the formulation for DI ST down
is used to implement the traverse top-down as a recursive algorithm : then each node
has to be visited only once, and on top of that, the distorsion for a node with respect to
a direct successor is the only computation that has to be done (because the distorsion
the regarded successor causes with respect to its own successors, can be stored in the
successor itself !). No te, that for simplicity, the algorithm above doesnotshow recursion
explicitly.

4.3.2 Traverse Bottom-Up

The procedure for traversing bottorn-up differs only slightly from the traverse top-down­
procedure. A node also affects its predecessors, if it would be started in a certain cycle :
the sooner a node would be started, the greater the distorsion of its predecessors would
be. A membership-function, similar to definition 4. 7 can be defined for this part :

1
Jlv.p(DI STv.p(v, c)) = 1 + (v.p(DIST~~.p(v, c))ku (4.8)

with : (up some damping parameter, kv. E JN.

Similar to definition 4.7 the parameters (up and kv. can be set by the user also (as
with (down, (up is set with the Bottom-Up-Damping-Factor (BUDF)). Generally, the
parameters k~~. and kd are chosen equal; the parameters (up and (down are chosen such,
that !ldown(DISTdownmax) = llv.p(DISTupmax), with kd = ku and DISTdownmax and
DISTupmax the maximum caused distorsions in the data-flow graph (hence, in this case
TDDF = BUDF !). This choice is not arbitrary: if the membership-grades for the
distorsions VISTdown and DISTup are compared, this comparison should be fair. E.g.
iffor a certain cycle VISTdown is halfthe maximum-VISTdown and DISTv.p is halfthe
maximum-DI STv.p also, the resulting membership-grades should be equal, otherwise,
there would be a preferenee for starting a node as soon as possible ((up » (down), or
starting a node as late as possible ((up < (down).

The pseudo-code for the traverse bottam-up-procedure then becomes :

Traverse Bottorn-Up :
v: node;
FORALL(v)

{
FOR ALL(c E C.,)
{
v.gradeUp[c] := llv.p(DIST~~.p(v,c));

}
}

Similar to the traverse top-down-algorithm, the traverse bottom-up-algorithm uses the
recursion in the definition for DI STup in the actual implementation.
After performing traverse top-down and traverse bottom-up to each cycle c E Cv two
membership-grades have been assigned. Assuming that each cycle c E Cv already had

26 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

an ancient membership-grade, the new computed grades can he compared with the
old ones. Comparing the two values, is done, by talring the fuzzy intersection (see
equation 3.4). The computation-order can he stated formally as:

with : JLk the new computed membersbip-grade, JL{k-l) the old membership-grade,
JLdown (••) and JLup(••) the computed membership-grades. Note that all computation-values
are normalized (on the greatest membership-grade in Cv, as defined in equation 3.5),
denoted by [..]N. Now the pseudo-code for the normalization and intersection becomes:

NormalizeAndCompare:

with:

v: array [I Cv IJ ofnode;
FORALL(v)

{

}

NORM(v.gradeDown);
NORM(v.gradeUp);
v.gradeNew[c] := MIN(v.gradeDown[c], v.gradeUp, v.gradeNew[c]);
NORM(v.gradeNew);

• NORM(..) a normalization-function as defined in equation 3.5

• MIN(..) the (fuzzy) intersection as defined in equation 3.4

It is necessary to normalize the membership-grades, in order to he able to make a fair
comparison (=intersection) between two values, e.g.:

Given a node v, with s~rig = {(0, 1), (1,0.8), (2,0.6)}

Suppose the results for JLdown and JLup are :
cycle 0: JLdown = 0.48 JLup = 1
cycle 1 : JLdown = 0.48 JLup = 0.9
cycle 2: JLdown = 0.6 JLup = 1

If the intersection of s~rig with the new JL's is taken, without normalization, the result
would he : s:;ew = { (0, 0.48), (1, 0.48), (2, 0.6)}. This means that cycle 2 would have
the highest membership-grade. However, if the JL'S are normalized first, the result
for the intersection becomes: s:;ew = {(0,0.8),(1,0.8),(2,0.6)}, that is, cycle 0 and 1
have a higher membership-grade than cycle 2. Note, this is what was to he achieved,
because the normalized membership-grades JLdown : cycle 0 : JLdown 0.8, cycle 1 :
JLdown = 0.8 and cycle 2 : JLdown = 1, show, that compared with s~rig, cycle 1 has an
equal membership-grade. This means that there should he no distintion, and thus it is
necesarry to normalize.

Fuzzy Scheduling 27

4.3.3 Traverse Horizontal

The third part of the fuzzy algorithm inspects the quality of the decision to start a
node in a certain cylce, with respect to all competitors of this node. In figure 4.5 an
example in which several nodes are competing fora certain module, is shown. When a
pronouncement ofthe quality ofthe decision, tostart a node in a certain cycle, must he
done, it's to he expected from the foregoing, that (see figure 4.5) for v1 cycles 1 and 3
would he prefered to cycle 2. So, the greater the distorsion, the worse the quality of the
decision, to really start a node in the given cycle. In other words : a big distorsion results
in a membership-grade close to 0, a small distorsion results in a membership-grade
close to 1. This can he expressed by the following membership-function:

with:

if D/SThorz(v,c)-(M-1) < 0
if D/SThorz{;!.c)-(M-1) > 0

M -

(4.10)

• M the number of modules mE L, where v1 and v2 can he mapped onto.

• (horz some damping parameter, kh E IN.

The parameters (horz and kh are used in the same way as the according parameters in
the functions /Ldown and /Lup· Empirie, it was found out, that choosing kh ~ 3 · kd and
(horz ~ ~ · BU DF leads to good results.

As can he seen from definition 4.10, the number of modules M is also taken into
account. Ifthe number of modules is two (with respect to figure 4.5), it doesn't matter in
which cycle the two nodes are started, because each node has the disposal of a module.
However, if there is only one module available onto which v1 and v2 can he mapped,
starting either v1 or v2 in cycle 2,leads to problems. In this case it becomes impossible
to start the remaining node, once the first node is started in cycle 2. For the traverse
horizontal-algorithm, the following pseudo-code can he generated :

TraverseHorizontal :
v : array [! Cv IJ of node;
FORALI..{v)

{
FOR ALI..{c E Cv)
{

}
}

v.gradeHorz[c] := fthorz(DI SThorz(v, c));

It's worth mentioning, that the function DISThorz within the traverse horizontal­
procedure, calculates with the values stared in gradeNew after running traverse top­
down and traverse bottom-up.

28 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

4.3.4 An example

In this section, an example is given to illustrate the operation of the fuzzy algorithm
as discussed in the previous sections. In figure 4.8 a simple data-flow-graph is shown.

Figure 4.8: Simple data-flow-graph.

With respect to figure 4.8, the following assumptions are made:

• For all v E V, the membership-grades of all elements in Sv are initially set to one.

• The time-constraint T max = 5 is given

• The resource-constraint is 1 adder

• 6(v11adder) = 6(v2,adder) = 6(va,adder) = 6(v4,adder) = 1

• (down = (up = 1; (horz = 10

Below, the results of the different steps are shown in tabular form :

Results top-down
1 cycle -T 11 o 11 1 2 1 3 1 4 1

Fuzzy Scheduling 29

Results bottorn-up
1 cycl e - 11 o 1 1 1 2 1 3 1 4 1 V! 0 0 D/STu

~--~~~~--+-_4-~-up~(=D~/~

0 DISTup
1 - ~up(DIST)

Vg DISTup
- ~up(DIST)

DISTup
~up(DIST)

Results after interirtion and normalization
I cycle - 11 o I 1 __! I 3 I 4 I I

I V! 11 ~ I ~:~ I ~:~~ I ~ I ~ I NOT~:~~:: I

I v
2

11 ~ I ~:~ I ~:~~ I ~ I ~ I NOT~:~~:: I

f vs 11 ~ I ~:~6 ~ ~·2 I ~·2 f ~ I Nor~:~::: I

I V4 ~~- ~- I 0.031 0.1 11 I Inters I
. - - 0.03 0.1 1 N ormalize

I!:j:s horizontal
cycle __. 0 2 3 4

Vl 0. 79 0.29 0.51 - - DISThorz
0.29 0.99 0.85 - uhM,(DIST)
0.29 1 0.86 - Normalize

V2 0.79 0.29 0.51 - - DISThorz
0.29 0.99 0.85 - - ~horz(DI ST)
0.29 1 0.86 - - Normalize

vs - 0.32 0.12 0.09 - DISThorz
- 0.98 0.99 I 0.99 - ~horz(DI ST)
- 0.99 1 1 - Normalize

v4 - - 0.53 0.43 0 DISThorz
- - 0.82 0.94 1 ~horz(DIST)
- - 0.82 0.94 1 Normalize

30 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

Assuming, after the last procedure (i.e. traverse horizontal and normalization), a
greedy-feasibility-scheduler is used to assign to each node the real start- and end-time,
the results presented in the last table commit with the wished schedule. Note that in
chapter 5, the characteristics of the greedy-feasibility-scheduler are outlined.

4.4 Initialization and Convergence of thè algorithm

In the example shown in section 4.3.4, the membership-grades of the elements in the
fuzzy sets are set to 1 initially. Choosing all membership-grades 1, implicates that in
a fuzzy set Cv, there is no preferenee fora certain cycle Cito a cycle Cj in this set. The
algorithm must then determine whether or not there exists a preferenee-order among
the elementsof a fuzzy set Cv.

Bearing this in mind, the question could arise what the consequences for the re­
sults would he if the membership-grades are initialized with a value different from 1.
Two cases must he distinguished :

• Initialization with the same value :in this case allelementsof a fuzzy set Cv are
initialized with the same value (different from 0 !!). Note that this case is similar
to the one outlined above (i.e. initialization with 1), because same values implicate
no preference-order. Hence, the results will not differ from the results in case of
initialization with 1.

• Random initialization : in this case the elements of a fuzzy set Cv are all initialized
with a different, random value. This means that initially there exists a certain
preferenee-order among the elements in this fuzzy set. An interesting question
is whether the algorithm will converge to the same results as with initialization
with 1, given these random values. In other words, do the results ofthe algorithm
depend on the initial values? Note, that if the algorithm could overcome a bad
initialization, it means that it could overcome also a bad choice during run-time.
As will he shown in chapter 5, the algorithm converges indeed given a random
initialization.

Fuzzy Scheduling 31

4.5 Complexity ofthe algorithm

In this section a denvation ofthe complexity ofthe algorithm is presented. Note that the
top-down- and bottam-up-traversals are implemented as depth-first-search-algorithms.
Moreover, all nodes in the data-flow-graph are linked, that is, there exists a link
between two nodes if they are concurrents in a certain cycle (see definition 4.6). The
concurrent-nodes are linked in a doubly-linked chain.
The complexity ofthe fuzzy algorithm can he derived now as follows:
The complexity of a depth-first-search-algorithm is equal to I V I+ I E j. On top ofthat,
for each node being visited, at most I V I -1 direct successor-nodes must he visited,
and each direct successor-node can he shifted up or down at most T max 1 cycles (so
for the distorsion, at most Tmax- 1 computations must he made) . All together, for
the depth-first-search-procedures this results in (note that T max is the time-constraint
given):

I V I ·(I V I -1) · Tmax + I E I (4.11)

For the horizontal-traversal, at worst a chain of length I V I must he inspected (i.e. all
nodes are linked in one and the same link). In the implementation of the horizontal­
traversal, the chain is inspected from head to tail and vice versa. In formula, this looks
lik.e :

2·1 V I·Tmax (4.12)

Combining (4.11) and (4.12), and noting that (4.11) must he counted twice (traverse
top-down and bottom-up), the total complexity for one iteration becomes:

(4.13)

And thus the order of the algorithm becomes :

(4.14)

However, some conditions can he relaxed a little bit. For instance, it's not unrealistic to
assume that in a data-flow-graph on average each node has at most two outgoing and
two incoming edges. This assumption also implicates that each node on average, has at
most two direct successors or predecessors. Hence, in equation 4.11 the factor (I V I -1)
can he substituted by 2. Now the complexity ofthe fuzzy algorithm becomes:

4· I V I ·Tmax+ IE I (4.15)

and the order of the algorithm becomes :

0(1 V I·Tmax) (4.16)

32 High.Level Synthesis Scheduling Using Fuzzy Set Techniques

Chapter

Results

5.1 Introduetion

This chapter dicusses the results of the fuzzy algorith.m. Note that in appendix A
some test-graphs are depicted and that appendix B contains the actual results of the
algorith.m applied to the corresponding graphs in appendix A. Furthermore, appendix D
shows for each graph of appendix B the CPU-time used as a function of the number of
iterations and appendix E shows the results of the algorithm if the membership-grades
are initialized randomly. For illustration, insection 5.2 an example is presented, to
show the problems an ordinary list-scheduler might encounter due to its greed, and how
the fuzzy algorith.m has solved these problems. Finally, in sèction 5.3, a short evaluation
of the results as depicted in appendix A and B is given.

5.2 An example

In figure 5.1, the data-flow graph to he scheduled is shown. It is assumed that Tmax = 7,
and that the following resources are available : 1 multiplier, 2 adders and 1 subtractor.
The resources are selected from the library :
L = { < multiplier:* >, < adder:+ >, < subtractor: - > }.
Furthermore, ó(+) = ó(-) = 1 cycle, and ó(*) = 2 cycles. Given these constraints, it
becomes clear that only one multiplication at a time can he executed. The computed asap­
alap-values for the graph, result in the following start-intervals: SI(v4) = SI(v5) = (2, 5].
For the subtractions also, only one at a time can he executed (the corresponding start­
intervals are: SI(vs) = SI(v1) = [4, 7]).

Scheduling the given example with some kind of greedy scheduler (e.g. a list-scheduler),
could possibly result in a non-feasible schedule : due to its greedy kind, these schedulers
would make bad decisions at crucial moments. For instance, in this example, a bad
choice for the placement of a multiplier, results in a non-feasible schedule : if node v4

or node v5 is started in cycle 3, due to the constraints it won't he possible anymore, to
make a feasible schedule. So, to obtain a feasible schedule, node v4 or v5 must he started
in cycle 2, forcing the remaining node to he started in cycle 4.

However, once again, a bad choice of the placement of the multipliers can result
in a non-feasible schedule : starting node v5 in cycle 2, and thus starting node v4 in
cycle 4, forces both nocles v6 and V7 tostart in cycle 6. Hence, this results in a non-feasible
schedule, because there is only one subtractor available to execute v6 and v7•

33

34 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

Figure 5.1: Data-flow graph fuzex6 to he scheduled.

All together, this means that eventually only the choice to start v4 in cycle 2 and vs in
cycle 4, can result in a feasible schedule. This choice then also fixes node v7 in cycle 6,
and leaves the choice to node v6 to start in cycle 4 or 5.

From the discussion above, it is to he expected, that for each node v, the cycle
wherein the node must start (to achleve a feasible schedule), will have the highest
membership-grade of the set Cv. The results of the fuzzy algorithm (presented in
appendix B) correspond tothese expectations, that is, the cycle in which an operation
should start has the highest membership-grade.

5.3 Evaluation

Evaluating the results presented in appendix B, the following remarks can he made :

• Using the computation-schemes of equation 4.9 and tigure 4.6, good results can
he achieved with only a small number of iterations (2 to 10 iterations), however,
increasing the number of iterations (e.g. 100 iterations) doesnotalter (or improve)
the results significantly

• The algorithm is fast : given the fuzex6-graph of appendix A, the algorithm needs
0.01 seconds CPU-time for 2 iterations, while increasing the number of iterations
to 100 results in 0.4 seconds CPU-time. Finally, 200 iterations for this graph take
0.82 seconds CPU-time. As can he seen also from the other tables in appendix D,
the CPU-time needed increases linear with the number ofiterations

• The results presented in appendix E show that if the membership-grades are
initialized at random, the algorithm still produces good results. However, the

Results 35

initialized membership-grades in a fuzzy set must he of the same order. As can
he seen from the second test in appendix E, initializing some membership-grades
withafactor 10 smaller (or bigger) may eventually lead to the wrong results. In
this case the nodes v6 and 117 have changed positions, that is, vs is assigned the
highest membership-grade in a cycle where it should definitely not he started !!!
N ote the same holds for node v7 • As outlined in section 4.4, the algorithm converges
indeed. This implicates that if in a certain iteration-step an unfortunate decision
is made, the algorithm will he able to overcome this choice in later iteration-steps,
thus trying to achleve the best solution

• The (user-defined) parameters of the algorithm affect the schedule-results, i.e.
different membership-grades for the cycles are computed. Therefore (although it
hasn't showed yet) it could he possible that choosing the wrong parameters results
in less meaningful (and hence less useful) membership-grades of the cycles of a
node. As a rule ofthumb, choosing BUDF = TDDF, (horz ~ ~ · BUDF, kd ku
and kh ~ 3 · kd, give the best results.

5.4 Greedy-feasibility scheduler

The results as presented in appendix B, only indicate the qnality of the decision to start
a node in a certain cycle. However, the nodes are not fi.xed yet ! Therefore, an other
algorithm must perfarm this actual scheduling (i.e. fixing nodesin cycles); this can he
done by various types of schedulers (e.g. list-schedulers, force-directed schedulers). A
scheduler, offering good results in combination with the results of the fuzzy algorithm,
is a greedy-feasibility scheduler. This scheduler traverses top-down, and fixes a node in
a cycle, when :

• All its predecessors are executed

• For the regarcled cycle, the node has the highest membership-grade with respect
to all its competitors

• There is at least one module available that can execute the node

Mter fixing a node in a cycle, the membership-grades for all successors (and the
successors of these successors, etc.) must he updated !! In appendix C, the results ofthis
scheduler applied to the results of appendix B are presented.

5.5 Recommandations for future work

In this . section the short-comings of the fuzzy algorithm are discussed, and some
recommandations for future work are done.
In short, the short-comings are :

• The algorithm cannot handle non-feasibility in an unambigous way. That means,
that a greedy-feasibility scheduler as discussed in section 5.4, can only make
a schedule if the data-flow graph is feasible. Otherwise, the greedy-feasibility
scheduler would terminate, resulting in no schedule. In this case it's not clear,

36 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

whether the scheduler made a mistake or that the graph is non-feasible (due to
the time- and resource-constraints given).

• A bad choice ofthe parameters (down, (up, (horz may result in results that are not
useful, or when they are used, would lead to an non-feasible schedule. However, it
is not easy to determine the values forthese parameters, that would offer the best
result. So far, the parameters are estimated on an empirica! basis. Therefore it
would be desirabie to search for characteristics of data-flow graphs, where values
of the parameters could be derived from.

• The algorithm is iterative, so it is to be expected that the solution approaches
a feasible (and thus correct) schedule, as the number of iterations increases.
Unfortunately, the algorithm is not yet provided with a tooi to measure the quality
of the schedule, at any moment. This means, that using just a few iterations
could possibly result in a bad schedule, whereas a few more iterations would have
resulted in a much better schedule. Possibly genetic algorithms can be useful to
determine the quality of the solution. Another possiblity could be the introduetion
of the fuzzy entropy (FE) fora membership-grade mof an element [Klir88] :

FE(m) = -m ·log(m)- (1- m) ·log(!- m)

Actually, the goal of the fuzzy algorithm is to assign a membership-grade to
each c E Cv of a node v. In the best case, a membership-grade 0 is assigned
toa cycle, if a node is not allowed to be executed (or executing) in that cycle, a
membership-grade 1 is assigned toa cycle ifthe node is allowed to be executed (or
executing) in that cycle. In this case I:cec" F E(J.tv(c)) = 0, because for any c E Cv
for each v E V,J.tv(c) = 0 or J.tv(c) = 1. So, the closer FE(m) is to 0, the closer the
membership-grades are to 0 or 1, and thus the better the schedule.

A possibility to move the membership-grades to 0 or 1, could be the introdue­
tion of a trigger-function as discussed in [Zad68]. In short, this function pulls all
membership-grades below a certain "threshold" to 0, and all membership-grades
above this "threshold" to 1. The threshold-value depends on the membership­
grades of all the elementsof a fuzzy set.

• The algorithm cannot handle complex data-flow graphs : graphs containing
pipelined operations and operations that can be mapped on different types of
modules are not allowed. Therefore the algorithm must be extended with features
to be able to handle these constructs, in order to be useful as a real design-tooi.

Chapter

Conclusions

This report is concemed with the following problem :
Given a data-flow graph, a time constraint and a resource constraint, find a feasible
schedule. In chapter 4, an heuristic schedule-algorithm, based on fuzzy set techniques
has been discussed.

The advantages of this algorithm are :

• The algorithm offers good solutions and has proved to be able to handle situations
wherein other schedulers (e.g. an ordinary list-scheduler) would probably fail.

• The algorithm is fast : on average the algorithm is linear with the number of nodes
(in the data-flow graph) and the time-constraint.

• The results of the algorithm can be used by other schedulers, for instanee as
initialization.

• The algorithm converges to a solution, indepent from the initial membership­
grades.

A disadvantage of the algorithm is that the produced results of the algorithm strongly
depend on the choice of some parameters

Finally, working out the recommandations discussed in section 5.5, will almost cer­
tainly overcome the short-comings of the fuzzy algorithm.

37

38 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

Bibliography

[Denyer90] A New Approach To Pipeline Optimisation
Denyer P.B., Malion D.J.
EDAC 1990, pp.83-88

[Eijndhoven91] The ASCIS data flow graph: semantics and textual format
Eijndhoven J.T.J. van, Jong G.C. and Stok L.
EUT report 91-E-251, April1991

[Feli90] Goal-oriented control ofVLSI-Design processes basedon fuzzy sets
Felix R. '
Proc. of the 20th International Symposium on Multiple-V alued Logic,
Charlotte, North Carolina, May 1990, pp.386-393

[Feli91] Goal-oriented high-level synthesis basedon a fuzzy decision theory
Felix R., Powswig J.
Clear Applications of Fuzzy Logic, IEEE Symposium, Delft University of Technol­
ogy (The Netherlands), 17 October, 1991, pp.130-139

[Gusev75] Fuzzy Sets theory and applications
Gusev L.A. and Smirnova I.M.
Automation and Remote Control (USA), Vol.34 (May 1973), No.5,pp.739-755

[Heijligers91] Time constrainted scheduling for high-level synthesis
Heijligers M.J.M.
Eindhoven University of Technology, May 1991, Master Thesis

[Klir88] Fuzzy Sets, Uncertainty and lnfor:m.ation
Klir G.J. and Folger T.A.
New Jersey, Prentice-Hall, 1988

[Mowch91] Bottom Up Synthesis basedon fuzzy schedules
Ly, T.A. and Mowchenko, J.T.
Proc. of the 28th ACMIIEEE Design Automation Conference, June,
1991, pp.674-679

[Negoi81] Fuzzy Systems
Negoita C.V.
Kent, Abacus Press, 1981

39

40 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

[Paulin89] Scheduling and Binding algorithm.s for high-level synthesis
Paulin P.G.
Proc. ofthe 26th ACMIIEEE Design Automation Conference,January,1989, pp.1-6

[Prad79] Using fuzzy set theory in a scheduling problem: a casestudy
Prade, H
Fuzzy Sets and Systems, Vol. 1 (1979), No. 2, pp.129-149

[Zad65] Fuzzy Sets
Zadeh L.A.
Information and Control (USA), Vol.S (1965), No.S, pp.338-353

[Zad68J Communication : Fuzzy Algorithm.s
Zadeh L.A.
Information and Control (USA), Vol.12 (1968), No.2, pp.94-102

Appendix

Test-graphs

Figure A.l: Fuzex6-graph.

41

42 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

fdct

Figure A.2: Fdct-graph from [Denyer90].

Test-graphs 43

fuz ex 4

Figure A.3: Fuzex4-graph.

44 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

wdelf3

Figure A.4: Wdelf3-graph.

Test-graphs 45

wdelf

Figure A.5: Wdelf2-graph. Note the wdelf2-graph is a slight moclification of the
wdelf3-graph : the nodes N-23, N-24 and N-43 are removed from the wdelf3-graph.

46 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

Appendix

Schedule results

In this appendix the results ofthe fuzzy algorithm are presented; the according data-flow
graphs are shown in appendix A. In the tables, an entry denotes the membership-grade
m for the regarded cycle c E Cv of node v.

Results fuzex6-graph :
Library L { < multiplier:* >,<adder:+ >, < subtractor:- > }.
Resources : 1 multiplier, 2 adders, 1 subtractor.
Delay of operations : ti(adder) = ti(subtractor) 1, ti(multiplier) = 2.
Time-constraint: Tmax = 7.

Number ofiterations = 2
BU DF = T DDF = 10, (norz ku = 2, kh = 6.

I Cycle -+ 11 0 11 l 2
Vl(+) 1.00 0.31 0.10 0 0

=i
0

v2(+) 1.00 0.31 0.10 0 0 0
vg(+) 0 1.00 0.62 0.22 0 0
v4(*) 0 0 1.00 0.04 0.42 0 0
vs(*) 0 0 0.15 0.02 1.00 0 0
VB(-) 0 0 0 0 1.00 0.74 0.17
v7(-) 0 0 0 0 0.45 0.10 1.00

Total run-time : 0.01

I Number of iterations = 4
I BUDF = TDDF = 10, (horz = 100, kd = ku = 2, kh 6.

Cycle-+ 0 1 2 3 4 5 6

VI(+) 1.00 0.31 0.10 0 0 0 0
v2(+) 1.00 0.31 0.10 0 0 0 0
vg(+) 0 1.00 0.65 0.23 0 0 0
v4(*) 0 0 1.00 0.01 0.01 0 0
vs(*) 0 0 0.01 0.01 1.00 0 0
vB(-) 0 0 0 0 0.91 1.00 0.05
V7(-) 0 0 0 0 0.27 0.10 1.00 . Total run-ttme : 0.01

47

48 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

Number of iterations = 4
BUDF = TDDF 2000, (horz = 1000, kd = ku = 2, kh = 6.

Cycle 3 6

v1(+) 0.00 0
0.00 0 0

va(+) 0.02 0.00 0
0 1.00 0.00 0
0 0.00 0.00 0

vs(-) 0 0 0 0.00
V7(-) 0 0 0 0 1.00

Total run time: 0.02

Number ofiterations = 100
BUDF = TDDF = 2000, (horz = 1000, kd = ku 2, kh = 6.

Cycle--> 0 I 1 2 3 4 5 6

VI(+) 1.00 1 o.oo 0.00 0 0 0 0
V2(+) 1.oo 1 o.oo 0.00 0 0 0 0
va(+) 0 Jl.OO 0.02 0.00 0 0 0
v4(*) 0 +Rl.OO 0.00 0.00 ,0 0
v5(*) 0 0.00 0.00 1.00 0 0
vs(-) 0 0 0 0.17 1.00 0.00
V7(-) 0 JO 0 0 0.03 0.00 1.00

Tota run time: 0.4

0
0.00 0 0
0.00 0

0 0.00 0
0 0 0.00
0 0 1.00

run time: 0.82

Schedule results

Results fdct-graph :
Library L = {<multiplier:* >,<adder: +,- > }.
Resources: 8 multipliers, 4 adders.
Delay of operations: li(adder)= 1, /i(multiplier)= 2.
Time-constraint : T max = 8.

Number of iterations = 4
BUDF = TDDF = 2000, (horz = 1000, kd ku = 2, kh 6.

I Cycle ~ 11 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7
N-17(-) 0.00 1.00 0.83 1.00 0 0 0 0

N-11ö1.00 0 0 0 0 0 0 0
N-15(1.00 0 0 0 0 0 ' 0 0
N-14(-) 0.00 1.00 0.83 1.00 0 0 0 0
N-13(+) 0.77 1.00 0.01 0.00 0 0 0 0
N-12(+) 0.77 1.00 0.01 0.00 0 0 0 0
N-11(+) 0.77 1.00 0.01 0.00 0 0 0 0 m0.77 1.00 0.01 0.00 0 0 0 0

0 0.06 1.00 1 o.o5 0.02 0 0 0
N-22(-) 0 0.06 1.00 0.05 0.02 0 0 0
N-21(+) 0 0.06 1.00 0.14 0.03 0 0 0
N-20(+) 0 0.06 1.00 0.14 0.03 0 0 0
N-19(*) 0 1.00 0 0 0 0 0 0
N-18(*) 0 1.00 0 0 0 0 0 0
N-29(*) 0 0 0.03 1.00 0.00 0.20 0 0
N-28(*) 0 0 0.03 1.00 0.00 0.20 0 0
N-27(*) 0 0 0.03 1.00 0.00 0.20 0 0
N-26(*) 0 0 0.03 1.00 0.00 0.20 0 0
N-25(*) 0 0 0.04 1.00 0.00 0.08 0 0
N-24(*) 0 0 0.04 1.00 0.00 0.08 0 0
N-31(+) 0 0 0 1.00 0 0 0 0
N-30(-) 0 0 0 1.00 0 0 0 0
N-39(-)~ 0 0 0 0 1.00 0 0 0
N-38(+) cg=cy 0 0 1.00 0 0 0
N-37(-) 0 0 1.00 0 0 0
N-36(+) 0 0 0 0 1.00 0 0 0
N-35(+) 0 0 0 0 0.01 0.53 1.00 0.16
N-34(-) Po 0 0 0 0.01 0.53 1.00 0.16
N-33(-) 0 0 0 0 0.01 0.34 1.00 0.11
N-32(+) 0 0 0 0 0.01 0.34 1.00 0.11

49

50 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

N-47(*) 0 0 1.00
N-46(*) 0 0 1.00
N-45(*) 0 0 1.00
N-44(*) 0 0 1.00
N-43(*) 0 0 1.00
N-42(*)
N-41(*)
N-40(*) 1.00
N-51(-) 0
N-50(-) 0
N-49(+) 0
N-48(+) 0 0 0 0 0

Total run time : 0.02

Results fuzex4-graph :
Library L {<multiplier:* >,<adder:+,- > }.
Resources : 1 multiplier, 2 adders.
Delay of operations : 6 (adder) = 1, 6 (mul tiplier) = 2.
Time-constraint : T max = 6.

Number of iterations = 4

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 1.00
0 1.00
0 1.00
0 1.00

BU DF = T DDF = 2000, (horz = 1000, kd = ku = 2, kh = 6.
Cycle --->::IJ]: 1 I 2 3 4 5
N-10(+): 1.00 0.00 0 0 0 0
N-11(*): 1.00 1.00 0.00 0 0 0
N-12(-): 1.00 0.00 0.00 0 0 0
N-21(*): 0.03 0.03 i 1.00 1.00 0.00 0
N-13(+): 0 1.00 1 0.01 0 0 0
N-14(+): 0 0.39 1.00 0.25 0 0
N-15(-) : 0 0 1.00 0.64 0 0
N-17(*): 0 0 0.00 0.00 1.00 0

I N-16(+): 0 0 0 0.02 1.00 0
N-18(+): 0 0 0 0 0.00 1.00 . Total run time: 0.02

Schedule results

Results wdelf2-grapb :
Library L = {<multiplier:* >,<adder:+,- > }.
Resources: 2 multiplierst 2 adders.
Delay of operations: §(adder)= 1, §(multiplier)= 2.
Time-constraint: Tmax = 17.

Number ofiterations = 4
BU DF = T DDF = 2000, (horz = 1000, kd = ku = 2, kh = 6.

c;ycie- u l " ~ 4 !> ö 7 Ij !1 !U 11 ..E_ l<l 4 ló
N-36(+) 1.00 0 0 0 0 0 u 0 0 _0 0 0 0 0 0
N-46(+ l.OO 1.00 .. 00 0 0 0 0 u u 0 0 u u

I~ l-6 N·4U(+) 0 l.UU u u 0 u () 0 u u u u u ll
N-44 +) 0 u l.UU 0 0 u u u 0 u 0 u 0 ..':'_
N-50(+) 0 0 0 l.Ou 0 0 0 0 0 u 0 0 0 0 0 0
N-56(*) 0 0 0 1.00 0 0 u 0 0 .. ll. 0 u u u 0
N-76(*) 0 u u 0 1.00 0 0 0 u u u u u u
N-58(+) 0 0 0 u 0 0 l.UO 0 0 0 0 0 0 0 0 0
N-78(+) 0 0 u V u u l.uu u 1.1 u u 0 ~ ..':'_ ~ ~
N-62(+) 0 0 0 0 0 0 0 1.00 0 0 0 0 ~ u u u
N-82(+) 0 0 0 0 0 1.00 0 () u u u u
N-90(+) 0 0 0 0 0 0 0 0.03 !.Ut 0.29 0.02 0.01 O.Ou 0.03 0.01 0.01
N·!W(0 u u 0 u u u 0 l.uo u u u 0 u u u
N-85(*) 0 u u u 0 0 u 0 l.uo u 0 u 0 ~ ...". ...".
N-92(+) 0 0 0 0 0 0 0 0 0.02 0.09 0.03 0.02 0.00 0.46 1.00 0.03
N-87(+) 0 0 0 0 0 0 0 _0 0 0 1.00 0 0 0 0 0
N-87(+) 0 u 0 0 0 0 () ~ 0 U!O u 0 u u
N-70(+) 0 u u u u u u u u u l.UU u u

... ~ ..':'_
N-72(+) 0 0 0 u 0 0 0 0 0 0 0 0.02 0.01 1.00 0.45rr=
N-102(+) 0 0 u V u u u u u u u I.uu ~ _u ~-
N-113(- 0 0 0 0 0 0 0 u .uz U.01 !.Ut U.45
N-75(•) 0 0 0 0 0 0 0 0 0 0 0 0.00 u.OI 0.00 1.00
N-93(+) 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0
N-104(+) 0 0 0 u u 0 u u u u 0 u l.Ou u_ u _IJ_
N- !6(•) 0 0 0 0 0 u u u u ~ ...<~_.ui .vu LUt

N-97(*) 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0
N-lu~:~() u u u u u u u u u 0 u u u I.uO u u
N-99(+) 0 u u u u u u u u u u u u 0 0 l.vO
N-110(+) 0 0 0 u u u u _u

.. ~ u _u ~ ~ ~ ~
N-101(+) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N-11~(+) u u 0 0 u u u u u u u 0 u u u u . Total run time: 0.02

51

~
0
u
u
~

0
u
u
0
0
0
u
0
0

~
0.03
0
0
0
0

...!!.

0
0

_u

0
u

_I)
_.'!.

1.00
l.UO

As can be seen from this table, the fuzzy algorithm can handle the conflict-situation
between the 4 multiplications, i.e. the nodes N-75, N-97, N-108 and N-116. Given the
time-constraint Tmax 17, nodes N-97 and N-108 must be started in cycle 13 because
they are on the critica! path. This implicates N-75 and N-116 must he started in cycle
15 to achleve a feasible solution.

52 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

Results wdelf3-graph :
Library L = { < multiplier:* >,<adder: + >, < subtractor: - > }.
Resources: 2 multipliers, 2 adders, 1 subtractor.
Delay of operations : 6(adder) = 1, 6(multiplier)= 2, 6(subtractor) = 1.
Time-constraint: Tmax 18.

Number ofiterations = 10
BlJ DF = T DDF = 2000, (horz = 1000, kd =kv.= 2, kh = 6. I

Cyc/e- 0 1

~tf
5 6 7 8 9 10 11 12 13 14

N-13(+) 11 1.00 1.00

~
0 0 0 0 0 u 0 0 0 0

N·lU(+ 11 l.UU u.uu u u u u u u u ~ u
N-11(+)

*
l.UU

t=H=
0 0 u u

N-12(+) 0 0 0 u u 0 0 0 0
N-14(+) u u l.OU u.ou 0 u u 0 I u I_U_ -" 0
N-:!5() u u u 0 l.UU U.Ul 0 u u u u u 0 0
N-15(*) 0 0 0 0 1.00 0.01 0 0 0 0 0 0 0 0 0
N-26(+) 0 0 0 0 0 0 1.00 0.02 0 0 0 0 0 0 0
N-16(+) 0 u 0 0 u 0 L.UU U.U! u u u u u tJ 0
N-30(+) 0 u 0 u 0 u u U.Ul l.UU U.l>Z U.Ub 0_:1)_4 ~ _'!_.U. I.UU

N-27(+) 0 0 0 0 0 0 0 1.00 0.03 0 0 0 0 0 0
N-17(+) 0 0 0 0 0 0 0].OU (],U:! u u u u u
N-31(+) 0 0 0 0 0 0 0 Jl _ll:IJ_4 __(J,_llj _0.06 o.u~ u.uu u.u. :.uu
N-28(*) 0 0 0 0 u l.OU 0.06 u • u _u u 0
N-18(*) 0 0 0 0 0 0 0 0 1.00 0.03 0 0 0 0 0
N-2~+) u u u u u u u u u u l.uu u_:~_4 __()_ __()_
N-1~+ 0 0 0 0 0 0 0 1.00 . 4 u 0
N-41(-) 0 0 0 0 0 0 0 0 0 0 0 1.00 O.t;z 0.23 0.18
N-36(+ 0 u u u u u u u u u u u.O~ l.UU u u
N-:.n + 0 u u u 0 u u 0 u u u 1.00 u.u4 _U·U"_ lJ

N·::!U(+) 0 u u u u 0 u 0 u u u u~ ~ --'!. --'!.
N-42(*) 0 0 0 0 0 0 0 0 0 0 0 0].00 0.01 0.24
N-37(+) o_ 0 0 0 0 __()_ u u.uu 1.Ul
N-32(+ 0 0 0 0 u u u u u.uu l.UU u

N-2~~ 0 0 0 0 0 0 0 0 u 0 0 1.00 0.00 0.00
N-38(u u 0 0 u 0 u 0 u =FR=f~ u.ul l.uo
N-ilil(*) u u u u u 0 u u u u _I): U~ 1.00
N-43(+ 0 0 0 u u u u 0 u .24
N-23(+) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00
N-3~+) 0 u 0 u u u u u u 0 u u u u u
N-34(+) u u 0 u u u u 0 u u u u u '-' u
N-24(+) 0 0 0 0 u 0 0 0 0 0 0 0 0 0 0
N-40(+) 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0
N-35(+) 0 0 __()_ u 0 0 0 0 __()_ 0 __()_

Total run time: 0.06

15 16
0 0
u u
u u
0 0

__()_ __()_
u
0 0
0 0

y 0
~.Ul .OU

0 0
0 0
0.1~ u.uu
0 -" 0 0
u
u
0 0

u 0

--'!. --'!.
__()_

0.29 0
u u
u u
0 0
u __()_

~ __()_
1.00 .01
1.00 O.Dl
u.OO l.Ou
u.ul l.OO
1.00 0.12
0 0.00

__()_ I.UU

Given the time- and resource-constraints, in cycle 11 the scheduler must make a choice
between the plus-operations N-20, N-36 and N-21. If operations N-20 and N-36 are
chosen to start in cycle 11, the soanest start-possibility for N-21 becomes cycle 12.
However, if the nodes N-37 and N-32 are started in cycle 12, operation N-21 is forced to
start in cycle 13. Ifin this situation N-42 is started in cycle 12, one ofthe multiplications
N-38 or N-33 can start in cycle 13. The remaining one must then start in cycle 14.
Starting N-21 in cycle 13, would make it possible for multiplication N-22 to start in
cycle 14, however in cycle 14 the two multiplicators are already occupied by N-33 and
N-38. This implicates that multiplication N-22 must start in cycle 15, however, this will
violate the time-constraint Tmax = 18, because after N-22, N-23 and N-24 have to be
executed. In this case an extra cycle is necessary to obtain a feasible schedule.
Hence a feasible salution that meets the constraints, can be obtained if in cycle 11
operations N-21, N-41 and one of the operations N-20 and N-36 are started. If N-20
is chosen, multiplications N-42 and N-22 can start in cycle 12. In the same cycle,

17
0
0
0
0
0
0
0
0
0
u
0
u
u.ou
0
0
0
0
0
u
u
0
0
0
0
0
0
0
0.00
0
u
0
0.17
1.00
1.00

Schedule results 53

operations N-32 and N-36 can he executed. Then, in cycle 14 N-33 and N-37 can he
started, together with N-43 or N-23. In cycle 15 multiplication N-38 can he started and
in the remaining cycles the remaining plus-operatorscan he started, without violating
the time-constraint.
In figure B.1, the operations mentioned ahove are shown, in the range from cycle 11
to cycle 17. Note that the fu.zzy algorithm offers a good solution : the nodes N-41

11 ----- ------ ----

11

12

14 ,_,~-+-- ,_,f}--N-3f}--,_"G ---::
15 _G ____ f:_ ___ __ _ ____ _
16 __ ,_,,__~_ -~-" + ___ ,_,.G_ "
17 ·-·u_G __ ·-~ 16

17
18

Figure B.1: Detailed view of the W delf3-graph.

and N-21 are assigned the highest memhership-grade for cycle 11, whereas nodes N-36
and N-20 are assigned the highest memhership-grade for cycle 12. It is clear that
starting N-21 and N-41 in cycle 11 will eventually produce a feasihle solution (note
the algorithm leaves the choice to start N-20 or N-36 in cycle 11 !!). It is ohvious
that these memhership-gra:des can he usefu.l for other schedulers (e.g. list-scheduler,
greedy-schedulers) as an initialization, thus enhancing their performance.

54 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

Appendix

Results greedy-feasiblity
scheduler

In this appendix, the expected results of a greedy-feasibility scheduler are presented.
In the tables, an entry equal to 1, means that the regarded node must start in that cy­
cle, an en try equal to 0 means that the node regardedis notallowed to start in that cycle.

Results fuzex6-graph :

Number of iterations = 4
BU DF = T DDF = 2000, (horz = 1000, kd = ku = 2, kh = 6.

I Cycle ___,. 11 0 I 1 I 2 j 3 I 4 I 5 I 6 I
v1(+) 1 0 0 0 0 0 0
172(+) 1 0 0 0 0 0 0
va(+) 0 1 0 0 0 0 0
v4(*) 0 0 1 0 0 0 0
175(*) 0 0 0 0 1 0 0
vs(-) 0 0 0 0 1 0 0
V7(-) 0 0 0 0 0 0 1

Results fdct-graph :

Number ofiterations = 4
BU DF = T DDF = 2000, (horz = 1000, kd = ku 2, kh = 6.

55

56 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

I Cycle -+ H 0 l1 I 2 I 3 I 4 I 5 I 6 I 7 I
N-17(·) 0 1 0 0 0 0 0 0
N-16(-) 1 0 0 0 0 0 0 0
N-15(-) 1 0 0 0 0 0 0 0
N-14(-) 0 1 0 0 0 0 0 0
N-13(+) 1 0 0 0 0 0 0 0
N-12(+) 0 1 0 0 0 0 0 0
N-11(+) 0 1 0 0 0 0 0 0
N-10(+) 1 0 0 0 0 0 0 0
N-23(-) 0 0 1 0 0 0 0 0
N-22(-) 0 0 1 0 0 0 0 0
N-21(+) 0 0 1 0 0 0 0 0
N-20(+) 0 0 1 0 0 0 0 0
N-19(*) 0 1 0 0 0 0 0 0
N-18(*) 0 1 0 0 0 0 0 0
N-29(*) 0 0 0 1 0 0 0 0
N-28(*) 0 0 0 1 0 0 0 0
N-27(*) 0 0 0 1 0 0 0 0
N-26(*) 0 0 0 1 0 0 0 0

'
N-25(*) 0 0 0 1 0 0 0 0
N-24(*) 0 0 0 1 0 0 0 0
N-31(+) 0 0 0 1 0 0 0 0
N-30(-) 0 0 0 1 0 0 0 0
N-39(-) 0 0 0 0 1 0 0 0
N-38(+) 0 0 0 0 1 0 0 0
N-37(-) 0 0 0 0 1 0 0 0
N-36(+) 0 0 0 0 1 0 0 0
N-35(+) 0 0 0 0 0 1 0 0
N-34(-) 0 0 0 0 0 1 0 0
N-33(-) 0 0 0 0 0 1 0 0
N-32(+) 0 0 0 0 0 1 0 0
N-47(*) 0 0 0 0 0 1 0 0
N-46(*) 0 0 0 0 0 1 0 0
N-45(*) 0 0 0 0 0 1 0 0
N-44(*) 0 0 0 0 0 1 0 0
N-43(*) 0 0 0 0 0 1 0 0
N-42(*) 0 0 0 0 0 1 0 0
N-41(*) 0 0 0 0 0 1 0 0
N-40(*) 0 0 0 0 0 1 0 0
N-51(-) 0 0 0 0 0 0 0 1
N-50(-) 0 0 0 0 0 0 0 1
N-49(+) 0 0 0 0 0 0 0 1
N-48(+) 0 0 0 0 0 0 0 1

Appendix

Run-tinte of the algorithnt

This appendix contains the run-time results of the algorithm applied to some of the
examples shown in appendix A.

I Number of iterations 2 4 10 100 200
I Used CPU-time (seconds) 0.01 0.02 0.05 0.40 0.82
Fuzex6-graph; Tmax = 7

Number of iterations 2 4 10 100 20U
Used CPU-time (seconds) 0.02 0.02 0.05 0.57 1.19

fdct.graph; T max = 8

Number of iterations
Used CPU-time (seconds)

Fuzex4-graph; T ma x 6

I Number of iterations 112 [4 j10 1100 200
[Used CPU-time (seconds) 11 0.02 I 0.03 I 0.06 [0.49 1
Wdelf3-graph; Tmax = 16

57

58 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

Appendix

Convergence-results

In this appendix the results for a random initialization are presented. As test-graph
example fuzex6-graph from appendix A is chosen. In the first table the initialization
values are shown, foliowed by the achieved results.

Initialization (random-test 1):
I Cycle - 11 0 I 1 I 2 I 3 I 4 I 5 I 6 I

VI{+) 0.2 0.8 0.5 0 0 0 0
v2(+) 0.5 0.7 0.3 0 0 0 0
va(+) 0 0.1 1 0.4 0 0 0
v4(*) 0 0 0.5 0.9 1 0 0
vs(*) 0 0 1 0.5 0.7 0 0
vs(-) 0 0 0 0 0.2 0.3 0.8
V7(-) 0 0 0 0 0.5 0.8 0.3

The result for this initialization (random-test 1):
I Cycle- IJ 0 11 I 2 I 3 I 4 I 5 I 6

VI(+) 1.00 0.00 0.00 0 0 0 0
v2(+) 1.00 0.00 0.00 0 0 0 0
va(+) 0 1.00 0.00 0.00 0 0 0
v4(*) 0 0 1.00 0.00 0.00 0 0
V5(*) 0 0 0.00 0.00 1.00 0 0
v6(-) 0 0 0 0 0.18 1.00 0.00
V7(-) 0 0 0 0 0.03 0.01 1.00 . . Number of Iterations : 4

TDDF : 2000, BUDF : 2000, HDF : 1000
kd : 2, ku : 2, kb : 6
Library: {<multiplier: * >, < adder: + >, < subtractor: >}
Resources: 1 multiplier, 2 adders, 1 subtractor.

59

60 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

Initialization (random-test 2):
I Cycle ---> 11 0 11 l 2 I 3 I 4 I 5 l 6

VI(+) 0.02 0.8 0.5 0 0 0 0
V2(+) 0.05 0.7 0.3 0 0 0 0
vs(+) 0 0.01 1 0.4 0 0 0
v4(*) 0 0 0.05 0.4 1 0 0
vs(*) 0 0 1 0.7 0.07 0 0
vs(-) 0 0 0 0 0.02 0~ V7(-) 0 0 0 0 0.5 0.6 0.03

The result for this initialization (random-test 2):
I Cycle ---> 11 0 I 1 I 2 I 3 I 4 I 5 I 6

VI(+) 1.00 0.00 0.00 0 0 0 0
v2(+) 1.00 0.00 0.00 0 0 0 0
vs(+) 0 1.00 0.00 0.00 0 0 0
v4(*) 0 0 1.00 0.82 0.25 0 0
vs(*) 0 0 0.01 0.01 1.00 0 0
vs(-) 0 0 0 0 0.10 0.02 1.00
V7() 0 0 0 0 0.70 l.vv v.vO . . Nu.mber of tterat10ns : 4

TDDF : 2000, BUDF : 2000, HDF: 1000
kd : 2, ku : 2, kh : 6
Library: {<multiplier:*>,< adder:+ >, < subtractor: - >}
Resources: 1 multiplier, 2 adders, 1 subtractor.

Appendix

User m.anual

This appendix is concemed with the actual implementation ofthe fuzzy (pre-)scheduler.
The algorithm can be divided in two parts :

• Initialization and Building of the necessary data-stroctures

• The actual (iterative) algorithm

Before going on with the discussion of the procedures, an outline of the fuzzy data­
stroeture is given.

F .1 Fuzzy data-structure

In figure F.1, an overview ofthe used data-stroeture is shown. In figure F.1 (A) a graph
to be scheduled is depicted, in figure F.1 (B) the corresponding data-stroeture is shown.
As can beseen in figure F.1 (B), toeach node an interval I(vi) is assigned. The interval
I(vi) = [Inf Low(vi), Inf High(Vi)] (which is an abbreviation for lnfluence) is the interval
defined by:

{
0 ifASAP(vi)-6(vi)+1 :::;0

InjLow(vi) = ASAP(vi)- 6(vi) + 1 if ASAP(vi)- 6(vi) + 1 > 0 (F.1)

InjHigh(vi) = ALAP(vi) (F.2)

The influence-interval is used to link per cycle-step the competitor-nodes. For example
the nodes v1 and v2 are competitors in cycle 0, because they can be mapped onto the
same module in the same cycle. Therefore these nodes are linked in this cycle (see
igure F.1 (B)). Note, a dashed line between two nodes represents a link, a NJL-symbol
represents no link). As can be seen in figure F.1 (B), each node has no, one or two
neighbour-nodes (i.e. a node where it is linked with).
The borders of the influence interval are chosen with a special reason. Take for instanee
the situation as depicted in figure F.2 (A), with the assumption that the nodes shown
must be executed on the same module-type (it is clear that under these circumstances
the nodes shown are competitors). The influence intervals for each node are shown in
figure F.2 (B). Note that ifnode v3 is started in cycle 1, this also affects the nodes v1 and
v2, although cycle 1 ~SI(v1), SI(V2) !! In the same way, starting node v1 or V2 in cycle 3
will also affect node vs (although cycle 3 ~ SI (v3) !). Therefore the influence interval
is introduced to be able to compute the horizontal distorsions (DI ST hor z) the regarded
node causes, due to the size ofits start-interval and its delay.

61

62

0

v4
3---

7-

High-Level Synthesis Scheduling Using Fu:z:zy Set Techniques

l(v1} l(v2)

4
l(v3)

5

l{v6} l(v7}

(A) (B)

Figure F.l: Used data-structure in implementation.

o-

1----

4
5-

(A) (B}

Figure F.2: Example ofthe use ofinfluence-intervals.

Usermanual 63

To compute the vertical distorsions (i.e. DI ST up and DI ST down) the structure present in
the NEAT-system are used. That means that for each node in the graph its predecessors
and successors can be reached by using the variables pred-nodes and suc-nodes.

F .2 Description of the functions used

F.2.1 Building and Initialization of data-structures

getBelieve()/setBelieve()
These macro's are used to retrieve or to store the membership-grades. Note that in the
implementation Believe is written insteadof Membership-grade !!!

InitStartlnterval()
input : a data-flow graph provided with ASAP-ALAP-values
output : a data-flow graph with for each node an influence- and a start-interval created
and initialized
description : the function determines the size of the influence-interval and the start­
interval. When the sizes of these intervals are known, the function creates an array
infArray with the size of the influence-interval. Likewise, the start-interval fuzArray
is created, with the size of the start-interval. Mter creating the mentioned arrays, the
variables in the arrays are initialized.

CreateHorzLinks()
input : a data-flow graph with "unlinked" elements of influence-array
output : a data-flow graph with linked competitor-nodes, for all cycles
description: for each cycle-step the competitor-nodes are linked with each other, such,
that the result is a doubly linked list of competitor-nodes for each cycle step.

SatisfiedLinkCond()
input : two data-flow nodes and a cycle-step
output : "1" if the nodes given are competitors, "0" if the nodes given are no competitors
description : Given a node curr and a cycle-step, check out whether the node cand is a
competitor of node curr in the specified cycle-step.

Det-Ma:xAccBelDown()
input : a data-flow graph
output : a data-flow graph with computed maximum DI ST down
description: this function determines the maximum DISTdown that can by caused by a
node in the data-flow graph regarded. The computed value is used for assigning a value
to the damping-parameters in the membership-functions (see section 4.3.1).

Det-Ma:xAccBelUp()
input: a data-flow graph
output: a data-flow graph with computed maximum DI STup
description : this function determines the maximum DI ST up that can by caused by a

64 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

node in the data-flow graph regarded. The computed value is used for assigning a value
to the damping-parameters in the membership-functions (see section 4.3.2).

F .2.2 Actual schedule-functions

FuzzySchedule()
input : a data-flow graph with for each cycle the competitors linked
output : for all nodes, to each cycle of the corresponding start-interval a membership­
grade is assigned
description : Given a data-flow graph with the data-structures as created in CreateHor­
zLinksO, the function determines the membership-grades of the cycles (for all nodes).
This is done by iteration (see chapter 4), using the functions : TraverseTopDownO,
TraverseBottomUpO and TraverseHorizontal().

TraverseTopDown()
input : a data-flow graph
output : a data-flow graph with computed membership-grades
description : this function determines for each start-position of a data-flow node the
DI ST down and uses the function M u - Down() to compute the membership-grades from
these distorsions (see also section 4.3.1).

TraverseBottom Up()
input: a data-flow graph
output : a data-flow graph with computed membership-grades
description : this function determines for each start-position of a data-flow node the
DI ST up and uses the function M u- Up() to compute the membership-grades from these
distorsions (see also section 4.3.2).

TraverseHorizontal()
input : a data-flow graph
output : a data-flow graph with computed membership-grades
description : this function determines for each start-position of a data-flow node the
DI SThorz and uses the function M u Hor z() to compute the membership-grades from
these distorsions (see also section 4.3.3).

NormAndCompareDown
input : a data-flow node
output : normalized membership-grades for the node
description: while traversing top-down, this function takes the fuzzy intersection of all
new computed and old values, and normalizes the result.

NormAndCompareUp
input: a data-flow node
output: normalized membership-grades for the node
description : while traversing bot tom-up, this function takes the fuzzy intersection of all
new computed and old values, and normalizes the result.

Usermanual 65

NormCard()
input : a data-flow graph
output : a data-flow graph with normalized membership-grades for all cycles of a data­
flow node
description: by the option "-n", the user can define the outputto he returned in normal­
ized format. The membership-grades are normalized on the cardinality of the fuzzy set
(see equation 3.6)

F.3 Running the program

The program can he run by typing : gfuz <input-file>
Typing : gfuz -h will show the possible options.
By using the option +o, the fuzzy schedule information is written into the nodelinks.
In these nodelinks the keywords beginning with fuz denote items of the fuzzy schedule
results. More specific :

• fuzbegin denotes the first cycle in which an operation may he started

• fuzsize denotes the number of cycles of the start-interval

• fuzarray denotes the membership-grades for each cycle in the start-interval.

F.4 Overview offunctions ofthe fuzzy algorithm

FuzDfGraph.* :
==============

void
void
void
double
double
int
void
void
void
void

InitStartinterval{);
CreateHorzLinks();
PrintFuzzyResults{);
Det_MaxAccBelDown();
Det_MaxAccBelUp{);
SatisfiedLinkCond{FuzDfNode* current, FuzDfNode* cand,double t);
FuzzySchedule(double MaxDown, double MaxUp);
TraverseTopDown(int m, double d_down);
TraverseBottomUp(int m, double d_up);
TraverseHorizontal();

FuzDfNode.* :
=============

void
void
double
double
void
void

setExStart{double i)
setExEnd(double i)
getExStart ()
getExEnd()
setinfLow(double i)
setinfHigh(double i)

66 High-Level Synthesis Scheduling Using Fuzzy Set Techniques

double getinfLow()
double getinfHigh()
int getMark(int rn)
void setMark(int rn)

FuzLinksPtr* fuzArray;
int nurnExecs; 1/ = size of fuzArray.
int nurnFuzs; /1 = nurn. of start-possibilities.

InfLinksPtr* infArray;
int influence; 11 = size of infArray.
int offs;

double

void
void
void
void
void
void
void
void

double
double
double

CardSet;

TraverseTopDown(int rn, double d_down);
TraverseBottornUp(int rn, double d_up);
Det_MaxAccBelDown(int rn);
Det_MaxAccBelUp(int rn);
NorrnAndCornpareDown(double d_down);
NorrnAndCornpareUp(double d_up);
NorrnalizeArray();
Norrncard () ;

Mu_Down(double bel, double d_down);
Mu_Up(double bel, double d_up);
Mu_Horz(double bel,int Irnps);

FuzLinks.* :
============

double getBel ieve ()
void setBelieve(double b)
int getConcs ()
void setConcs(int c)
double getAccBelDown ()
void setAccBelDown{double d)
double getAccBel Up ()
void setAccBelUp(double d)
double getStartSucs{)
void setStartSucs(double s)

InfLinks.* :
============

InfLinksPtr getNext()
InfLinksPtr getPrev()

Usermanual

void
void
int
void
double
void
int
void

setNext(InfLinksPtr n)
setPrev(InfLinksPtr p)
get I sLinked ()
setisLinked ()
getBelieve() // ieve == membership-grade ! !

setBelieve(double b) // Believe == membership-grade ! !
getConcs ()
setConcs(int c)

67

