
 Eindhoven University of Technology

MASTER

Searching for complex functions in boolean circuit descriptions using kernel matching

Wijdeven, J.H.P.

Award date:
1993

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c898a062-0764-4ca6-8f81-f73d4b41f202

Eindhoven University of Technology
Department of Electrical Engineering
Design Automation Section (ES)

Searching for complex
functions in boolean circuit

descriptions using kernel
matching

J.H.P. Wijdeven

Master Thesis

performed: September 1992 - August 1993
by order of Prof. Dr. Ing. J.A.G. Jess

supervised by Dr. Ir. J.F.M. Theeuwen

The Eindhoven University of Technology is not responsible for the contents of training and thesis reports

Abstract

In order to decrease the size of integrated circuits, all kinds of optimisation
techniques have been developed to accomplish this. Also in the Design
Automation Section of the Department of Electrical Engineering, at the
Eindhoven University of Technology, people are working on logic optimisation.
One part of logic synthesis where optimisation can he applied is technology
mapping. Technology mapping is the mapping of a circuit description onto a cell
library. That cell library usually exists of simple standard cells. But in some
cases circuits contain complex structures that can he mapped more economical
onto a more complex cell. The complex cell uses less space than an
implementation with standard cells and in most cases the complexcellis faster.

Basically three methods could he used for finding those complex structures.
They are boolean matching, graph covering and kemel matching. When
searching for multi output structures this is very difficult to do with boolean
matching while graph covering would he very suitable for it. But the
disadvantage of graph covering is that the given circuit description has to he
converted to a representation with only, for example, two input nands and
inverters. This conversion process takes a lot of CPU time and after that the
structures have still to he found.

A whole new approach is the use of kemels to find the complex (multi output)
structures. Whit this method the functions of the structure to he found are
identified by their kernels of level 0. These kernels are then matched against
the kernels of the given circuit. The advantage of kernel matching is that the
circuit description doesn't have to he preprocessed, only the kernels have to be
computed.

The algorithm for kemel matching is integrated in the program log_decom.
Log_decom is a logic optimisation program and is developed in the Design
Automation Section of the Department of Electrical Engineering at the
Eindhoven University of Technology. The advantage of integrating the

algorithm in log_decom is that log_decom already contains a lot of tools for
handling kemels.

Although notall the results of the algorithm are mapped onto a celllibrary, to
check the gain in size of the circuit layout, for some circuits there is already a
slight gain in the amount of transistors. Especially for the results of the search
for exclusive or's and exclusive nor's. Mapping some results on a library shows
that in most cases there can be a gain in delay. In cases were the increase of
transistors is small compared to the amount of found pattems, it is possible
that there still can be a gain in area.

A disadvantage of the algorithm is that it becomes very slow for large circuits
due to the large amount of kemels.

Table of Contents

Chapter 1 Introduetion

Chapter 2 Camparing different searching
2.1 Boolean matching
2.2 Graph covering
2.3 Kernel matching

Chapter 3 The matching problem
3.1 Basic definitions
3.2 Finding equivalent kernels
3.3 Extending the searching algorithm

Chapter 4 Integrating the searching algorithm in log_decom
4.1 What is log_decom
4.2 Adapting log_decom

4.2.1 Data structures

Chapter 5 Results

Chapter 6 Future work

Chapter 7 Conclusions

Heferences

Appendix

1

3
3
4

5

9
9

11
13

17
17
19
20

23

29

31

33

35

Chapter

Introduetion

The Design Automation Beetion of the Department of Electrical Engineering at
the Eindhoven University of Technology is doing research on logic synthesis.
One step in logic synthesis is called technology mapping. In this step a circuit
description will he mapped onto a celllibrary. Until some years ago this had to
he done manually, with the assistance of computers. Because circuits were
increasing in both size and complexity, methods were designed so that this step
can he done automatically.

The cell library usually exist of only standard cells like for example AND, OR
and inverter cells. In some cases circuits contain complex structures that can he
mapped on those standard cells, but could he mapped more economical onto a
more complex cell. The advantage of such a complex cell is that it uses less
space than an implementation with standard cells. Another advantage is that
in most cases the complex cell is faster. Examples of these complex cells are
(half/full) adders, exclusive or's and multiplexers.

This report describes how these complex structures can he found in boolean
circuit descriptions with the use of kemels.

1

2

Chapter

Comparing different searching
methods

This chapter shortly describes the companson of three methods that can he
used for searching for complex functions. These three methods are boolean
matching, graph covering and kemel matching.

2.1 Boolean matching

U sing boolean or functional matching, a library gate is a candidate for
implementing a pattern of logic in the target network if both of them compute
the same logic function ([1]).

In [2] a system is presented that uses boolean matching for technology
mapping. The logic circuit to he mapped is partioned into subject graphs
{F1, ••• ,F JJ, that are decomposed into an interconnection of two-input gates.

Define a library L which contains only the complex function searched for. So for
a complex function with m (m;:::l) outputs L is defined as {L1,. •• ,LJ where LJ is
the function belonging to output j of the complex function.

A boolean match between two boolean functions F and L can he determined
with recursive Shannon decomposition. These two functions are recursively

3

Searching for complex functions using hernel matching

cofactored generating two decomposition trees. F and L match if they have the
same logic value for all the leaves of the recursion.

For a function with n input variables, in the worst case, all permutations (n!)

and phase assignments (2n) of the input variables are considered. Therefore, up
to (n! · 2nr different Shannon decompositions have to he considered when that
function has m outputs. In case of a full adder, which has 3 input variables and
2 outputs, this comes to 2304 different possibilities.

2.2 Graph covering

Graph covering is a much used methad for technology mapping. It can he
divided into tree matching ([3], [4], [5]) and graph matching ([3]).

The basic step of graph covering is that a circuit description is converled into a
graph. Each node in that graph then represents a standard cell (like AND or
NOR). A common approach is the Nand2/Inverter representation.

In case of tree matching the next step is to partition the graph into a forest of
trees. The library elements will be represented as trees also. Then the trees
from the circuit are covered with trees from the library.

The main disadvantage of tree matching is that, for example, an XOR or a
multiplexer can't be represented by a tree (see figure 1), but only by a graph.
This also applies to most multiple output functions.

With graph matching the network graph is not partitioned. In this way
multiple output functions can be treated as one searchpattem, instead of
several searchpattems for every output. Also the XOR and multiplexer can be
handled easily, and this would make graph matching very interesting.

One disadvantage of graph matching is the number of different N and2/inverter
representations of large functions.

4

Camparing different searching methods

F F

(a) (b)

Figure I : Nand2 I Inverter representation of (a) exclusive or and (b) multiplexer

2.3 Kernel matching

Another approach to the problem is kernel matching (for the definition of a
kernel see paragraph 3.1), where each function (L) to be found is represented
by its kernels of level 0.

Using kemel matching, all the kernels of the boolean circuit description (F) are
determined. Also the kernels of L are determined. The next step is to find for
every kemel of L an equivalent kemel from F. Then one of the kernels of L is
substituted and the equivalent kernel is substituted in F. Again the kernels of
L and F are determined, equivalents are searched and one kernel is substi
tuted. This will be repeated until L has no more kemels. This metbod is
illustrated in example 2.1, in which is searched for a full adder.

Example 2.1

The boolean description of a full adder is as follows:

co : xl.x2 + xl.x3 + x2.x3;
so : xl.x2.x3 + xl.x2'.x3' + xl'.x2.x3' + xl'.x2'.x3;

Wh ere co is the carry output and so is the sum output of the adder.

5

Searching for complex functions using hernel matching

6

Now suppose that there is a simple boolean circuit description F as follows:

fl : a.b + a.c + b.c;

f2 : a.b.c + a.b'.c' + a'.b.c' + a'.b'.c;

The kernels of co are:

x2 +x3

xl +x3

xl +x2

(divide by xl)

(divide by x2)

(divide by x3)

The kernels of fl are:

b+c

a+c

a+ b

(divide by a)

(divide by b)

(divide by c)

By matching b to x2, c to x3 and a to xl it is easy to see that for every kemel of co there is
an equivalent kemel in fl. Now substitute x2+x3 by k in co and b+c by m in {1. The results
are:

co : xl.k + x2.x3;

k : x2 + x3;

fl : a.m + b.c;

m : b + c;

The kernels of co and fl are co and fl themselves. Substituting these kernels by l and n
results in:

co : l;
l : xl.k + x2.x3;

k : x2 + x3;

fl : n;

n : a.m + b.c;

m : b + c;

Finally k and m can be substituted back.

co : l;

l : xl.x2 + xl.x3 + x2.x3;

Camparing different searching methods

{1 : n;
n : a.b + a.c + b.c;

The same is done with so and {2. In this way the whole full adder is extracted from the

circuit. 0

The approach in example 2.1 may look a bit superfluous, because in just a
glance can heseen that fl contains sarnething that matches with co, and which
could he extracted in one step. But what if fl would look like this:

fl: d.e.a.b + a.e.c.d + e.fg + e.b.c.d;

Now it is a bit more difficult to see that fl 'contains' co, but the level 0 kernels
of fl are still the same as before.

The advantage of kemel matching is that the boolean description doesn't have
to be partioned first and/or converted into a two input gate representation.
Only the kernels have to he computed. U sing the kernels of a function di vides
the problem into several smaller subproblems, which can be handled easier.

That a set of kernels can belang to different functions is of small concern. This
problem is eliminated by the substitution of the kernels (see example 2.2).

Example2.2

Given the searchpattern p:

p : a.c + b.c + b.d;

with the kernels:

a + b (divide by c)
c + d (divide by b)

And given a function {1 with the same kernels as p:

{1 : a.e + b.e + c.f + d.f;

7

Searching for complex functions using hernel matching

Th en substitute the kemel a+b by k in both p and fl, which results in the following:

p : k.c + b.d;
fl : k.e + c.f + d.f;

k :a+ b;

The only kemel of p doesn't have an equivalent kemel in {1 so the process can be stopped

bere and fl is not the function that was searched for. D

Another problem of kemel matching is that functions that don't have kernels
can't he handled. For example the half adder where the carry output is descri
bed as a.b where a and b are the inputs. How this could he solved is described
in chapter 6.

8

Chapter

The matching problem

This chapter gives a solution to the problem of searching for functions with the
use ofkemels.

3.1 Basic definitions

The basic definitions as they are presented in [6].

• A variabie is a symbol representing a coordinate in the boolean space. A
symbol is a string of characters not starting with a digit, containing no
special characters like "," "." ";" and the like.

• A variabie can have two values: "1" or "0". The complement of a variabie is
denoted by <variable>'. For instanee the complement of the variabie a is a'.

• Variables and their complements are called literals.

• A cube is the product of a set of literals, such that it contains either a
variabie or i t's complement. For instanee "a.b.c" is a cube. The "." is denoted
by "and" being equivalent to the boolean "and" operator.

• A boolean expression can he represented by a sum of cubes.
For instanee fl : a.b.c+d.e.f;

9

Searching for complex functions using hernel matching

Where "+"is denoted by "or" being equivalent to the boolean "or" operator. A
":", denoted as "is defined as", indicates the start of a boolean expression. A
";" indicates the end of a boolean expression.

• Weak di vision of a boolean expression f by a boolean expres siongis defined
as the largest set of cubes common to the result of dividing the num.erator f
by each cube of the denominator g.

For instance:
(a.b+a.c+c.d) I a = b+c

(a.b+a.c+c.d) I (b+c) = a

• If (f/ g) · g=f holds, g divided f evenly. For instance: a divides a.b+a.c evenly.

• An expression f is cube free if and only if 1 divides f evenly. For instanee
a.b+c.d is cube free but a.b+a.c is not cube free.

• A primary divisor of a boolean expression fis defined as:

{ f I c I c = cube }

In words: a primary divisor is the result of the weak division of fby a cube.

• A kemel is a cube free primary divisor.

• A kemel of level zero is a kernel which contains no other kernel.
For instance: f: a.b+a.c+b.c;

The kernels of level 0 of f are: b+c (di vide by a)

a+b (divide bye)
a+c (di vide by b)

The expression itself a.b+a.c+b.c is also a kemel but not of level 0.

• A kernel of level n is a kernel which contains at least one level n-1 kemel,
but no kernels of level n (other than itself) or greater.

10

The matching problem

3.2 Finding equivalent kernels

A given function g might occur in a function {, if for every kemel of g there is
an equivalent kemel in f. An equivalent kemel is a kemel that matches the
given kemel. To find a kemel equivalent to a kemel k, first a lookalike (see
definition 3.1) of k is searched for.

Definition 3.1 : a lookalike of a kemel k is a kemel that has the same
amount of cubes as k has. For each cube in k there exists a cube in the look
alike with the same amount of literals and the same amount of negated
literals. D

Once this lookalike is found and the amount of literals is the same as the
amount of literals in k then each literal of k will he bound to a literal of the
lookalike. If a literal of k will he bound to two different literals, then the
lookalike is notequivalenttok (see example 3.1). This binding is done per cube.

Example 3.1

Given two kernels xl'.x2'+xl.x2 and xl +x3. A lookalike of the first kemel could be a'.b'+a.b.

First cube of kern el:
xl is bound to a

x2 is bound to b

Second cube of kern el:
xl is bound to a and that matches the previous binding of xl
x2 is bound to b and that matches the previous binding of x2

A lookalike of xl+x3 could be b+c. Now xl must be bound to b or c but neither of these
possibilities matches with the previous binding of xl so b+c is a lookalike but not an

equivalent kemel. D

By binding the first literal encountered in given kemel to the first free literal
in the lookalike, all permutations of that kemel have to he checked to find all
possible matches. If for example the equivalent kemel to xl +x2+x3.x4 is
wanted, then there has to he searched with xl+x2+x3.x4, xl+x2+x4.x3,
x2+xl+x3.x4 and x2+xl+x4.x3. These permutations all have to he computed, and
when a function has more kernels, then there has to he kept track of which

11

Searching for complex functions using kernel matching

permutation of each kemel is already used. A much simpler way is to apply a
fixed binding to a group of selected literals from the searchpattem before the
search is started. To each of these literals a literal from the given network is
bound (fixed binding). Then the search is repeated with all possible combina
tions of binding these literals to those of the network. How the literals are
selectedis defined in definition 3.2.

Defînition 3.2 : the critenons for selecting literals for fixed binding.
1) If a kemel has n cubes that contain only one literal, then mark n-1 of

these literals as fîxed. The remaining literal will he bound automatically
during the searching procedure and is marked as such.

2) If a kernel has a cube that contains m literals, then mark m-1 of these
literals as fîxed. The remaining literal will be bound automatically during
the searching procedure and is marked as such.

3) The literals for fixed binding are selected in such way that the one
remaining literal is not already marked as fixed or automatic. And if a
kemel does contain marked literals then less than n-1 or m-1 are marked
as fixed. 0

Fixed binding could also he applied on every literal of the pattem, but in this
way less literals are needed (thus saving time) to find the same matches.

The selection process will he illustrated in example 3.2.

12

Example 3.2

Given two kernels (in order of searching):

a+ b + c.d.e
e + f + c.g

First kernel two cubes of one literal, mark a as {txed, mark b as automatic.
one cube of three literals, mark c and d as {txed, mark e as automatic.

Second kemel : two cubes of one literal, e is already marked so mark f as automatic.
one cube of two literals, c is already marked so mark g as automatic.

Soa, c and d are used for fixed binding. 0

The matching problem

Applying the rules of definition 3.2 to a full adder, multiplexer or exclusive or
results in only one literal for fixed binding.

3.3 Extending the searching algorithm

Sofar only in simple examples of networks the kemels of the searchpattem can
he found. With simple is meant something like the following:

searchpattem co : a.b + a.c + b.c;
function of network : fl : d.a.b + d.a.c + d.b.c + d.e;

Each cube of the pattem to he found can he multiplied by a cube that is the
same for every cube of the pattem, but that is essential because only then the
pattem is present and can he extracted. The extra cubes (besides the ones of
the pattern, like d.e) do not contain any literals of the pattem. When they do
then the kemels of the pattem and the kernels of the function do not match
(see example 3.3).

Example 3.3

searchpattern
kemels

function of network
kemels

co : a.b + a.c + b.c;

b + c (divide by a)

a + c (divide by b)

a + b (divide by c)

fl : a.b + a.c + b.c + a.d;

b + c + d (divide by a)

a+ c (divide by b)

a + b (divide by c)

Kemel b+c+d doesn't match with kernel b+c but now it contains b+c. 0

To solve the problem described in example 3.3 the kemel b+c+d can he split in
kemels that look like the wanted kemel b+c. This would result in the kemels
b+c, b+d and c+d. To recognize this situation, definition 3.1 has to he adapted
slightly.

13

Searching for complex functions using hernel matching

Definition 3.3 : a lookalike of a kemel k is a kernel that has an amount of
cubes that is equal to or greater than the amount of cubes of k. For each
cube in k there exists a cube in the lookalike with the same amount of
literals and the same amount of negated literals. D

With that new definition, b+c+d is a lookalike of b+c and can he split into
smaller kernels which from now on will he referred to as splits. Then one of the
splits is chosen according to the fixed or previous binding of the literals. The
remaining splits may not he used as lookalikes for other kemels. The original
kemel (before splitting) can he used for splitting again. But only under the
condition that the new chosen split doesn't have any cubes in common with
earlier used splits of that kemel. This means that after a kemel is split it can't
he used in one piece as a lookalike but only in parts (see also example 3.4).

Example 3.4

Given three kernels to find:

a+b

d'.e + d.e'

d'.e + c

A lookalike of these three kernels is:

a + b + c + d'.e + d.e'

From the looka1ike both a+b and d'.e+d.e' can be used. But after one of these two is chosen,

d'.e+c can't be used. D

Another problem is the following:

The searchpattern L contains an exclusive or which has one kemel of level 0
namely a.b'+a'.b. Given a function from a circuit which contains an exclusive or:

fl : a.b' + a'.b + a.c;

Now fl also has one kemel of level 0 but that kemel is b'+c. This means that
the Xor wouldn't be found. This is easily solved by computing not only the

14

The matching problem

kernels of level 0 of the boolean network description, but also the kernels of
higher levels. In this way fl is a kemel of level 1 and can he split.

In practice the highest kernel level is about 6 or 7.

To speed up the search fora function that has more than one kernel of level 0,
the divisor(s) of the kemel can he used. How these divisors are used is given in
given in definition 3.4.

Definition 3.4 : using divisors.
1) If a kemel has no divisors then it doesn't matter what divisors the

lookalike has.
2) If a kemel does have divisors then the lookalike must have at least the

same amount of divisors.
3) cl is a cube of literals that are divisors of the current kemel of the func

tion searched for but not of the other, already found, kernels of that
function.
c2 is a cube of literals that are divisors of the lookalike but not of the
other, already found, equivalent kemels.

If the amount of literals in cl is the same as the amount of literals in c2,

then the lookalike is a candidate for an equivalent kemel. 0

Using the divisors in this way results in a simple checking algorithm without
the need for binding the divisors. Because when a lookalike has more divisors
than the given kernel then these divisors could he bound in different ways.

In example 3.5 the use of divisors is illustrated.

Example 3.5

Given the carry output of a full adder as the function to search for :

co: xl.x2 + xl.x3 + x2.x3;

Kernels: x2 + x3
xl + x3
xl + x2

(divide by xl)

(divide by x2)

(divide by x3)

15

Searching for complex functions using kernel matching

Given a function f1 :

f2 : a.b.d + a.c.d + b.c.d;

Kernels : b + c
a +c

a+b

(divide by a.d)

(divide by b.d)

(divide by c.d)

Suppose b+c is a1ready found as an equivalent kemel of x2+x3 and a+c is considered as a
lookalike of x1 +x3. Then cl (as mentioned in definition 3.4) contains x2 and c2 contains b

(the only literal that is in b.d but not in a.d). The amount of literals in cl is equal to the

amount of literals in c2 so a+c is a lookalike. 0

Although this way of using the divisors does not guarantee that the right
kernels will be found, the increase of speed can be enormous. For example for
the benchmark Rd53 (see chapter 5) which contains one full adder. Without the
use of divisors it took 7.5 CPU minutes to find it. With the divisors it took only
11 CPU seconds.

16

Chapter

Integrating the searching
algorithm in log_decom

This chapter describes the program log_decom and the changes that are made
to it.

4.1 What is log_decom

Log_decom is a program that can optimise a set of logic expressions. This
optimisation willlead to a so called multi level implementation of the specified
combinational logic.

The basic operation performed by log_decom is searching for common
subexpressions in the set of expressions. If a certain subexpression appears a
number of times then it could he beneficia! to realise that subexpression only
once, and to use the result on the different places in the expressions. This will
lead to three main effects:

1. An extra logic level will he added to the circuit.

2. The number of transistors in the final circuit will he smaller, which will
result in a smaller used area of the final layout.

17

Searching for complex functions using hernel matching

3. The expressions will become less complex. This will increase the probabil
ity that the expressionscan be mapped straight onto library cells.

The four basic operations log_decom uses for the optimisation process are:

18

simplification : this is the first step in the process and must be executed
before any other operation is executed. Simplification is applied on every
expression separately and writes every expression as a minimal sum of pri
mary cubes. Minimal means here that it's impossible to leave out a cube.
Generally the number of literals in the set of expressions will decrease. But
in some cases the number of literals can even increase.

Distillation : During the distillation process there is searched for equal
kemels. This process consist of three steps:

1. Of every expression all kernels of level 0 are computed.
2. All kernels are compared with each other and a list of equal kernels is

made.
3. From this list of equal kernels a number of times the most favourable

kemel is determined and is realised as a separate expression. Every
where this kernel appears the new created (internal) variabie is substi
tuted. The number of times this process is repeated depends on the
user who can adjust this. The next consideration is important here:

By substituting a kemel it can happen that a number of other kernels
will cease to exist. Therefor the list of (equal) kernels won't be 100%
correct any more and a next equal kernel could be a wrong one.
Because computing all kernels of an expression costs a lot of CPU time
it isn't feasible to determine all kernels again aftera substitution.

Condensation : The condensation is similar to the distillation process.
However now is not searched for equal kernels but for equal cubes. Like the
distillation process it consist of a number of steps:

1. All cubes of all expressions will be compared to each other and a list of
equal cubes is made.

Integrating the searching algorithm in log decom

2. From this list of equal cubes a number of times the most favourable
cube is determined and is realised as a separate expression. Every
where this cube appears the new created (intemal) variabie is substi
tuted. The number of times this process is repeated depends on the
user who can adjust this. Therefor the same consideration as with
distillation applies for condensation.

Collapsing : It can occur that during the distillation and condensation
process substitutions have found place that aren't very meaningful later.
Log_decom can collapse in many different ways certain variables.

The advantage of integrating the searching algorithm in log_decom is that
log_decom already contains a lot of tools for handling literals, cubes and
kemels.

4.2 Adapting log_decom

(The original data structure of log_decom is completely left intact to ensure
compatibility with newer versions.)

Log_decom is now able to work with two files simultaneously. This was done by
doubling the global variables of log_decom. With the command 'swap' the
values of these variables are exchanged which results in swapping between the
two files. The first file is loaded as before, namely on the prompt. The second
file, or searchpattem, is read from within log_decom with the command 'read
<file>'. On this file all operations of log_decom can he applied and therefore it
can he used for other purposes also. With the command 'fp' (find pattem) the
search for the pattem is started.

19

Searching for complex functions using hernel matching

4.2.1 Data structures

The data structures added to log_decom are described below.

struct _bind_record *bind_ptr;
struct _bind_record {

literal real_literal; /* literal in searchpattem */
literal bound_literal; /* literal in network file */
bool bound;
bool temp;
int bind_stage;
int fixed;
bool automatic;
bind_ptr next;

} bind_record;

This structure is used to keep track of each literal in the searchpattem. The
record corresponds with one literal. The variabie temp is set to TRUE if the
corresponding literal of a kemel from the pattem is bound successfully. If all
literals of that kernel are bound with success then bound is set to TRUE for
those literals. If not allliterals can he bound successfully (e.g. wrong lookalike
kemel) then the literals with the temp variabie set are cleared. Bind_stage is a
number that corresponds with the number of the kemel (in searching order) in
which the literal was bound for the first time. The variables fixed and auto
matic have the same function as in definition 3.2.

20

Integrating the searching algorithm in log decom

For every kemel of the searchpattem exists a record which is defined below.

struct _kem_list_record *kl_ptr;
struct _kem_list_record {

kemel_ptr kemel;
int kemel_nr;
int expr_nr;
kemel_ptr lookalike;
hooi split;
kemel_ptr split_kemel;
int nr_of_splits;
expr_ptr lookalike_owner;
kl_ptr next;
kl_ptr prev;

} kem_list_record;

The variabie kernel corresponds with a kemel from the searchpattem. The
equivalent kemel in the network is pointed to by lookalike. If a kemel is split
then split_kernel points to that kemel.

21

22

Chapter

Results

The algorithm is tested on some benchmark circuits which are given in table 1.
Mter each circuit the amount of transistors is given according to log_decom.
These amounts are determined before any optimisation is done.

Table 1 : Original sizes of benchmarks given in amount of transistors

I I tr!s.ll I #

11 I # I Name Name trans. Name trans.

5xp1 163 F2 32 Radd 113

9sym 272 Misex1 88 Rd53 74

Alu4 1881 Misex3x 908 Rd73 229

Bw 292 Primes8 505 Rd84 419

Clip 279 Primes9 983 Sao2 198

Duke2 801 Primes10 2100 Xor5 28

Only three pattems were used for testing, namely the exclusive or (a.b'+a'.b),

the exclusive nor (a.b+a'.b') and the multiplexer (a.b+a'.c). This was done
because these structures appeared the most in the given circuits. The results of
the xor and xnor are shown in table 3 and the results of the multiplexer are
given in table 2. In table 2 only the examples containing multiplexers are
given. The whole program runs on a HP 9000/8735, a 108 MIPS machine.

23

Searching for complex functions using hernel matching

The number of, for example, xor's represents the amount of different xor's.
Each of these xor's can occur one or more times in the circuit.

(1) and (2) have the following meaning (in tables 1 to 4):

OJ After simplification, distillation, condensation and collapsing common
kernels and cubes that occur only once (applied on original circuit).

(
2
l After simplification, distillation and condensation (applied on circuit

after the search).

Table 2 : Results of searching for Multiplexers

Multiplexer

#(!) # (2) CPU #
Name trans. trans. (min) Mux

Alu4 1580 1708 4:17 8

Bw 218 229 0:00 4

Duke2 483 471 0:02 1

Misex1 72 79 0:00 1

Misex3c 729 784 0:15 14

Primes8 380 449 0:01 14

Primes9 888 924 0:26 22

Primes10 1882 2097 2:46 42

In the table 4 the results of successive searches for the exclusive or and the
exclusive nor are given. First a search for one of these is done and on the
resulting file a search for the other one is performed. After that the file is
optimised using simplification, distillation and condensation. The CPU time
neededis in the worst case the sum of the CPU times given in table 3.

Only one benchmark circuit contained a full adder. This was Rd53 and the
CPU time needed to find it was 11 seconds. The amount of transistors after the
search and optimisation was 76.

24

Results

Table 3 : Results of searching for Xor's and Xnor's

I Exclusive Or ll Exclusive Nor I
#(1) # (2) CPU # # (2) CPU #

Name trans. trans. (min) Xor trans. (min) Xnor

5xp1 114 155 0:00 5 138 0:00 4

9sym 198 301 0:38 25 - - -
Alu4 1580 1584 5:17 3 1541 5:27 4

Bw 218 221 0:00 8 229 0:00 4

Clip 169 179 0:03 3 205 0:03 5

Duke2 483 484 0:05 4 448 0:04 3

F2 24 28 0:00 2 - - -

Misex1 72 84 0:00 2 75 0:00 1

Misex3c 729 754 0:17 17 708 0:18 6

Primes8 380 423 0:09 12 427 0:06 12

Primes9 888 844 0:57 19 870 0:38 17

Primes10 1882 1933 5:26 29 2001 6:29 33

Radd 64 66 0:01 4 71 0:01 3

Rd53 61 75 0:00 5 57 0:00 2

Rd73 181 176 0:14 10 164 0:12 3

Rd84 274 184 1:26 5 242 1:22 4

Sao2 161 215 0:04 10 182 0:02 6

Xor5 28 29 0:00 2 29 0:00 2

25

Searching for complex functions using hernel matching

Table 4 : Successive search for Xor and Xnor

Xor/Xnor Xnor/Xor

#(1) # (2) # # (2) #
Name trans. trans. xor/xnor trans. xnor/xor

5xp1 114 174 5/4 166 4/4

Alu4 1580 1506 3/3 1525 4/4

Bw 218 218 8/1 217 4/5

Clip 169 191 3/5 206 5/3

Duke2 483 467 4/2 496 3/4

Misex1 72 83 2/1 83 2/1

Misex3c 729 772 17/5 743 6/16

Primes8 380 434 12/9 439 12/11

Primes9 888 899 19/17 860 17/14

Radd 64 71 4/3 74 3/4

• Rd53 61 72 5/2 72 2/5

Rd73 181 177 10/3 173 3/10

Rd84 274 198 5/4 208 4/7

Sao2 161 217 10/2 206 614

Xor5 28 26 2/2 JL. 26 2/2

In the previous tables only the gain in transistors is considered. But as can be
seen only in a few cases the results are slightly better. In some cases the
results also show that the algorithm is very slow. This because of the fact that
after a successful substitution all of the kemels of the function, in which the
substitution found place, are computed again and of the way the literals are
used for fixed binding. More literals in a circuit means more computing time.

In table 5 for a some examples the circuit is mapped on a library (before and
after the search for exclusive or's).

26

Results

Table 5 : Results after technology mapping

without searching I after se arching for xor' s I
GJ # delay width # # delay width

trans. (ns) (À) trans. Xor (ns) (À)

5xp1 114 13.69 2032.8 155 5 13.44 2675.4

9sym 198 20.36 3775.8 301 25 14.44 4431.0

Alu4 1580 40.80 33747.0 1584 3 35.95 34276.2

Bw 218 15.43 3074.4 221 8 12.13 3061.8

Clip 169 13.26 2835.0 179 3 12.30 3330.6

Duke2 483 17.23 6879.6 484 4 20.31 7224.0

F2 24 5.52 554.4 28 2 4.08 512.4

Misex1 72 7.17 886.2 84 2 8.04 1507.8

Misex3c 729 23.85 12364.8 754 17 21.04 11659.2

Primes8 380 19.84 6442.8 423 12 18.13 7639.8

Primes9 888 32.17 17623.2 844 19 26.37 14422.8

Radd 64 12.07 1323.0 66 4 11.27 1453.2

Rd53 61 11.39 1764.0 75 5 7.76 1226.4

Rd73 181 22.97 5476.8 176 10 15.24 3591.0

Rd84 274 26.25 10332.0 184 5 18.79 5300.4

Sao2 161 20.80 3305.4 215 10 17.88 3809.4

Xor5 28 11.66 1024.8 29 2 8.57 655.2

In the used library all the cells have the same height, so the area is measured
by the width of the all the cells when they would he ordered after each other in
one line (À= 0.6 pm).

When looking at table 5 it shows that only in two cases (Duke2 and Misexl)
there is no gain in delay. And in five examples (Bw, F2, Misex3c, Rd53 and
Xor5) there is even a gain in area although the amount of transistors is
increased after the search. But those differences in transistors were small with
re gard to the amount of found xor's. In cases where the difference in transistors
is large and the amount of found patterns is small, it shows that this difference

27

Searching for complex functions using kernel matching

can't he made up with a gain in area. But when there is already a gain in
transistors then there is also a gain in area.

Especially for Rd53, Rd73 and Rd84 the overall results are impressive with 30
to 49 percent gain in area and 28 to 34 percent gain in delay. This can he
explained hy the large numher of times the different xor's appear in these
circuits, compared to the amount of transistors. In Rd53 they appear 11 times,
in Rd73 45 times and in Rd84 even 125 times.

Looking at the overall results, searching for complex functions does show some
perspectives to continue with it. Most importantly when it concerns the delay
and in some cases the area of the circuit.

28

Chapter

Future work

As mentioned before in paragraph 2.3, functions that don't have kernels are a
problem. This problem can he solved because of the flexible data structure of
log_decom, the program in which the whole algorithm is integrated (see
chapter 4). If a function has no kernels then the whole function is defined as a
kemel and log_decom will treat it as a kernel. One disadvantage is that not
only the splitting of kernels has to he considered but also the splitting of cubes.
This would slow down the algorithm even more.

In paragraph 3.2 is described how and why literals for fixed binding are chosen.
When the circuit in which to find the pattern contains a lot of different literals,
this process of fixed binding can slow down the algorithm enormously. In that
case it would he better to use its more complex counterpart, namely searching
with every permutation of a kemel.

29

30

Chapter

Conclusions

Although notall the results produced were mapped onto a celllibrary, to check
the size of the layout, for some circuits there is already a slight gain in the
amount of transistors. Especially for the results of the search for exclusive or's
and exclusive nor's. And with the fact that an exclusive or is smaller than when
this function is made with standard gates (one or, two and's and two inverters)
it may be concluded that a gain in area is achieved. Mapping some results onto
a cell library shows that in almast all cases there is a gain in delay even when
the amount of transistors and area increases. This because the delay of an
exclusive or is smaller than the representation with standard cells. But this
gain can only be achieved if such an exclusive or occurs on the longest path of
the circuit.

The algorithm becomes very slow on large circuits because they have a large
amount of kernels and every kemel has to he checked. Also the algorithm will
become considerable slower when the amount of literals in the circuit increases.
This because of the way how these literals are used to find a kemel.

31

32

References

[1] Kung D.S. and R.F. Damiano, T.A. Nix, D.J. Geiger
BDDMAP: A TECHNOLOGY MAPPER BASED ON A NEW COVERING
ALGORITHM.
Proceedings of the 29th A CM/IEEE Design Automation Conference,
Anaheim CA, 8-12 june 1992.
Los Alamitos CA: IEEE, 1992.
P. 484-487.

[2] Mailhot F. and G. De Mieheli
TECHNOLOGY MAPPING USING BOOLEAN MATCHING AND DON'T
CARE SETS.
Proceedings of the European Design Automation Conference,
Hamburg, 7-10 september 1990.
Brussels: IEEE, 1990.
P. 212-216.

[3] Detjens E. and G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, A.Wang
TECHNOLOGY MAPPING IN MIS.
Proceedings of the ICCAD,
Santa Clara, 9-12 november 1987.
New York: IEEE, 1987.
P.116-119.

[4] Keutzer K.
DAGON: TECHNOLOGY BINDING AND LOCAL OPTIMIZATION BY
DAG MATCHING.
Proceedings of the 24th ACM/IEEE Design Automation Conference,
Miami Beach, 28 june - 1 july 1987.
New York: IEEE, 1987.
P. 341-347.

33

Searching for complex functions using hernel matching

[5] Crastes M. and K. Sakouti, G. Saucier
A TECHNOLOGY MAPPING METHOD BASED ON PERFECT AND
SEMI-PERFECT MATCHINGS.
Proceedings of the 28th Design Automation Conference,
San Francisco, 17-21 june 1991.
New York: IEEE, 1991.
P.93-98.

[6] Janssen, G.L.J.M. and L. Stok, G.G. de Jong, M.R.C.M. Berkelaar, J.T.J.
van Eijndhoven, J.F.M. Theeuwen

34

C.A.D.-Systemen.
1st edition. Eindhoven: Eindhoven University of Technology.
nr. 5699.

Appendix

This section is a short manual on how to use log_decom when searching for
pattems.

First there have to be two files, file.log (in which is searched) and pattern.log
(containing the searchpattem). Then log_decom is started as follows :

decom <file>

Next from within log_decom the searchpattem is read with the command:

load <pattern>

With the command 'swap' can be switched between the file and the pattern.
The search for the pattem is started with 'fp' (!ind]lattem). Finally there is a
command named 'pk' to print the kemels of all functions of the current file or
pat tem.

The first output of log_decom is the number of times a copy of the pattem is
found. The second output is the amount of different copies of the pattern (one
copy of a pattem can occur one or more times).

On both the file and the pattem all the operations of log_decom can be applied.

35

