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Abstract 

The development of a newly designed technology mapper is discussed in this 
report. Technology mapping is part of the logic synthesis. It is the transition 
from technology independent combinatorial boolean functions to a technology 
dependent implementation. 

The technology mapper discussed here uses a library of cells which imple­
ment simple combinatorial functions. U sing the cells in a given library a cover 
of a given circuit has to be found that implements the same function. The 
mapper uses as library the more general non-complete libraries, these contain 
a set of selected cells. This technology mapper assumes that the library only 
contains single output cells. There are however already some functionalities 
built in that provide support for multiple output cells. 

During the covering a cost function is used, striving for a cover that meets 
some constraints and is optimized with respect to some objectives. These con­
straints and objectives can for example involve area, power and delay. The 
technology mapper can be used with several cost functions. This report dis­
cusses primarily the use of area as cost function. Although area is not the most 
important objective anymore, it is used here as optimization factor because it 
is a more simple cost function. 

The technology mapper consists of three modules: a subcircuit selection 
routine, a matching routine for boolean functions and a mapping and covering 
routine. The selection routine is used for searching subcircuits in the given 
circuit that can be implemented by a single library cell. This is a newly designed 
algorithm. The matching routine is used for establishing a match between a 
selected subcircuit and a library cell. It uses input signatures and symmetry 
classes to increase the efficiency of the matching. Using these matches the 
mapping routine decides depending on the cost whether it is a useful match. It 
creates a set of good matches for every signal. Also multiple output cells can 
be added to these sets. The covering routine then selects the final mapping 
from these sets. The union of all selected mappings then implements the given 
circuit. 

The technology mapper is compared with three other technology mappers. 
The results of the mapper are very good. It provides a good cover, without using 
much CPU time. Also the results of some extensions to the basic algorithm are 
discussed. The technology mapper has a modular structure and because of this 
structure, future extensions can easily be implemented. 



Contents 

1 Introduetion 

2 Problem description 

3 Circuit selection 
3.1 Circuit structure 
3.2 Circuit selection in trees . 
3.3 Circuit selection in DAGs 
3.4 Further extension ..... 

4 Camparing boolean functions 
4.1 Representation of boolean functions 
4.2 Input signatures 
4.3 Symmetrie inputs ... 
4.4 Camparing functions . 
4.5 Camparing in practice 
4.6 Other types of symmetry 

5 Mapping and covering 
5.1 Mapping of subcircuits ............. . 

5.1.1 Mapping multiple fan-out signals ... . 
5.1.2 Mapping of multiple output library cells 
5.1.3 Example of a mapping .... 

5.2 Covering the circuit . . . . . . . . . 
5.2.1 Covering the example circuit 

6 Experimental results 
6.1 Basic results .................. . 
6.2 Results for improved circuit selection routine 
6.3 U sing all library cells . . . . . . . 
6.4 U sing specialized decompositions 
6.5 U sing complete libraries ..... 

7 Conclusions 

8 Recommendations for future work 

References 

1 

3 

7 
8 
8 

11 
16 

19 
19 
20 
21 
22 
23 
23 

25 
25 
26 
27 
27 
29 
30 

33 
33 
34 
35 
35 
36 

37 

39 

41 



Chapter 1 

Intrad u ct ion 

Now the price of integrated circuits is dropping and the dimensions are di­
minishing, more and more hardware will be supplied with application specific 
integrated circuits. Therefore it is necessary to simplify the design of circuits, 
especially for large systems. This is the task of synthesis tools. U sing these 
tools the efficiency of the design teams can be increased. 

One of the steps during synthesis from a high level design specification to a 
layout is logic synthesis. During this step boolean functions are optimized and 
mapped onto hardware, resulting in a gate-level network. Technology mapping, 
which is a part of the logic synthesis process, is the step that converts com­
binatorial logic to hardware structures. The development of a newly designed 
technology mapper is discussed in this report. 

Technology mapping uses a library containing small, technology optimized 
combinatorial circuits. The objective is to create a large circuit constructed out 
of these library cells that implements a given combinatoriallogic function. This 
mapping is done under some user-supplied constraints. The result is a circuit 
that is optimized in some dimension; this can for example be area, delay or 
power. 

The library can contain bath single and multiple output cells. The methad 
presented in this report concentrates on single output cells. Multiple output 
cells are difficult to implement constructively and will therefore nat be used. 
However, a methad will be given to still use these cells in the final mapping. 

This report is organized as follows. First technology mapping is discussed in 
more detail and the corresponding subproblems are introduced. A salution for 
these subproblems is discussed in the next chapters. This is followed by results 
of the constructed technology mapper on some benchmark circuits. Finally 
some conclusions and recommendations for future work are given. 
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Chapter 2 

Problem description 

Technology mapping is the construction of a circuit of which the combinatorial 
function is given, out of a restricted number of smaller circuits. These smaller 
circuits are given in a library. The circuits in the library are parts that can 
he implemented on a chip. Here only the logic function and some technica! 
characteristics like area, power and capacity are known. The whole of the logic 
function and values is called a cell. 

The technology mapper uses the more general non-complete libraries instead 
of complete libraries. Complete libraries contain all possible combinatorial func­
tions up to a certain size, where the size is given in the number of transistors 
next to each other and the number of transistors in sequence. Non-complete 
libraries contain only a selection of several functions and are therefore more 
general, because the user can campose his own library. 

U sing the cells in the given library a cover must he found of the given 
circuit. This cover must implement the given combinatorial boolean functions. 
The costs of the implementation are calculated using the characteristics of the 
cells. The costs can he a combination of several quantities like area, power 
and delay. These costs are used as constraint and optimization objective. The 
designer can provide his own cost function, the constraints and optimization 
objective. 

In modern designs the doek speed at which the circuits have to run is 
increased continuously. Delay and power are therefore important optimization 
factors. These are however more difficult to optimize than area. Area is also 
often used as a benchmark value. Because of the better controllability of area, 
it is chosen here as the optimization value. 

To find a cover of library cells which implement the given function, sub­
circuits have to he found in the function that can he mapped to library cells. 
These library cells can then replace that subcircuit. It is possible to create a 
new decomposition of the given combinatorial function trying to get a better 
result. The routine discussed here will not make a new decomposition. This is 
considered to he the task of other synthesis steps. The advantage is that the 
mapping routine can he controlled by supplying it with another decomposition. 

The cover is a conneetion of library cells that replace the subcircuits in 
the original circuit. The borders of the cells are represented by signals in the 
original circuit. To get better results it is better to let the technology mapper 

3 
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decide the phase of the signals. Because of this additional freedom better covers 
can be found. Of course the phase of inputs and output of the circuit may nat 
be changed. For example, a multiplexer - f = aë + bc - will be covered as in 
figure 2.1(a) using a library containing ('nand', 'nor', 'inv', 'oai21', 'aoi22') if 
na phase changes are permitted. But if the phases of some signals are changed, 
then a better cover can he found as given in figure 2.l(b ). 

f 
f 

a c b 
a c b 

(a) (b) 

Figure 2.1: Cover of a multiplexer without and with phase change 

An even better salution is possible when several signals are joined in one 
larger library cell. These signals become internal signals in a library cell and can 
not be reached from outside the library cell. This will results in the following 
cover, using the library cell oai21 =(al+ a2)b. 

f 

Figure 2.2: Cover of a multiplexer, joining several signals 

Another possibility is the use of a larger library cell, namely aoi22 = 
ala2 + blb2. This salution is given in figure 2.3. However here two inputs 
of a library cell are joined. It is nat very efficient to let the technology mapper 
search for this kind of covers. lt is better to add that complete cell - 'aoi22' 
plus the joined inputs, not the output inverter to the library. Then it can 
efficiently be found. Adding these derived cells to the library can be done as a 
preprocessing step. 

To find a good cover, the search for a cover is done exhaustively. To find 
the best library cell that can implement a signal, all possible subfunctions of 
a signa} are searched and matebed to library cells. Depending on the cost of 
each implementation, several best cells for each signal will be selected. When 
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f 

a eb 

Figure 2.3: Cover of a multiplexer, joining severallibrary inputs 

mapping a subfunction to a library circuit, one can campare them function­
ally or structurally. The use of functional comparison is preferred. Structural 
equivalence implies functional equivalence. The reverse however is nat true. 
So functional comparison increases the freedom of the mapping. The mapping 
routine discussed in this report therefore uses a functional comparison. 

It is possible to find an optimal implementation of one subcircuit. It is 
however very hard to find a guaranteed optimal cover. This is a direct con­
sequence of mutual dependency of mapped subcircuits. Because the mapping 
of a subfunction depends on the mapping of subfunctions it uses as input but 
also on the mapping of functions using this subfunction. Also it is very hard 
to decide which phase of a multiple fan-out signal has to be implemented, such 
that the overall casts of the cover are minimaL This problem is called 'global 
phase assignment'. An optimal cover can therefore nat be found in restricted 
time. But using heuristics good suboptimal solutions can be found. 

The technology mapper is ordered as follows. First subcircuits in the circuit 
are selected that can be mapped to library cells. This is clone for all signals. 
These subcircuits can than be matched to library cells. To find the best imple­
mentation for a signal all subcircuits of that signal are selected and matched to 
library cells. U sing these matches several good implementations of each signal 
can be found. This part is called mapping. The cast of an implementation 
depends on the casts of the implementations of the signals that are used as 
input of this subcircuit. The selection of subcircuits and the matching of these, 
is therefore first clone for signals at the inputs of the circuit and ended at the 
output signals. This way all cast information of preceding signals is available 
when searching for a good implementation of the current signal. Using the 
mappings of the signals a cover of the circuit is created. At the outputs the 
best implementation for that signal is available consiclering the casts of the im­
plementations of its predecessors. The cover is therefore constructed starting at 
the outputs, selecting the best mapping for these signals. The inputs of these 
mappings are then the next signals that will be covered. This can repeated 
until the inputs are reached. 

This process can be divided into several subproblems. First the selection of 
subcircuits. Second matching these subcircuits to library cells. And finally the 
mapping and covering, constructing a implementation of the circuit using the 
library cells. These steps are discussed in this order in the next chapters. 
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Chapter 3 

Circuit selection 

To find a good implementation of a signal by some library cell, subcircuits 
of that signal have to be selected. These selected subcircuits will then be 
used by the matching routine to find a library cell that implements the same 
combinatorial function as the subcircuit. Out of all these matches the best 
match will be chosen during the mapping phase. 

Because we want to find the best implementation of a signal, all subcircuits 
of that signal have to be found. To find the subcircuits, the given combinatorial 
function is constructed out of two input 'and' nocles with possibly inverters on 
the inputs and the output. The technology mapper will be used for combina­
toriallogic, therefore the circuit will nat contain any recursive structures. The 
constructed circuit can be seen as a Directed Acyclic Graph. The use of this 
two input structure can be a restriction. There are tools available that provide 
a good two input decomposition for technology mapping purposes. For this two 
input structure a simple and constructive methad to select subcircuits can be 
constructed. The usage of only one basic structure, the 'and' node, simplifies 
the selection of circuits. In the DAG that is created the subcircuits are selected. 

It is possible to use several nocles as basic structure for example: 'and', 
'or', 'exclusive or' and inverters. These can all be implemented using a 'and' 
node with implicit inverters. Only the 'xor' can nat be replaced by an 'and' 
node. However it can be constructed using three 'and' nodes. An advantage 
of using only the 'and' node is that it can always be implemented directly, in 
practice every library contains an 'and' cell and an inverter. Therefore it is 
always possible to find a cover using only 'and' nocles and invert ers. It can nat 
be guaranteed that the library contains a 'xor' node, so if the 'xor' is used as a 
node then it can nat be implemented using only one library cell and no cover 
can be found. 

It is camman practice to use inverter pairs between two nocles to indicate 
the possibility to use bath polarities of a signal. This increases the number of 
nocles in the circuit and the complexity of the selection routine, because a single 
input node is introduced next to all other two input 'and' nodes. The selection 
routine must now also provide the phase of the input signals of the subcircuit. 
Therefore it is necessary to have a tight integration of the matching and selection 
routine, otherwise circuits are selected that are known to be unmappable. We 
will nat use inverter pairs, instead implicit inverters at the inputs and outputs 
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8 CHAPTER 3. CIRCUIT SELECTION 

of the nocles are used. This leaves only one kind of node in the circuit. The 
polarization of the signals can now be generated by the matching routine which 
is better equipped for this task. 

3.1 Circuit structure 

As mentioned earlier the function that has to be mapped is decomposed in a 
structure of two input 'and' nodes. On both inputs and the output an inverter 
can be placed, these inverters are implicit. For example an 'or' is implemented 
as an 'and' node with inverters on inputs and output. The output of these 
nocles is called a signal. During this decomposition the original structure of 
the function is kept, no new shared signals are introduced. The function is 
now captured in one DAG where the nocles represent the signals and the edges 
represent the connections between the signals. 

3.2 Circuit selection in trees 

The selection routine searches for a subcircuit in the circuit. The output of the 
subcircuit is a given signal in the circuit. The inputs of the subcircuit will also 
be signals of the original circuit. The number of inputs that will be generated 
must be given. The selected circuits will be used to find library cells that can 
implement this signal. 

For one signal the circuit selection routine will generate all possible subcir­
cuits. Several subcircuits with the same number of inputs can be found. For 
example, consider the circuit given in figure 3.1. U sing the topsignalas output, 
five different subcircuits can be selected all having four inputs. This is displayed 
in figure 3.2, the encircled nocles here indicate that a signal is used as an input 
of the subcircuit. 

Because of the structure of the circuit, the selection routine is built as 
an recursive function. It is a constructive algorithm generating all possible 
subcircuits. 

Startingat the top signal in the example, four inputs are requested, see also 
the numbers in figure 3.2. It is only possible having this number of inputs if 
there are three inputs at the left and one at the right, vice versa, or two left 
and two right. 

The routine can now call itself recursively for the left and right predecessor 
requesting n - i and i inputs, where i ranges from one to three. Of course it is 
not possible to request more than one input from a signal if that signal is an 
input of the main circuit. Under the assumption that a signal has either two 
predecessors or is an input of the circuit, the selection routine for trees would 
roughly look like the following pseudo C++ code: 

int circuitSelection(Signal *s, int nr_inputs) 
{ 

if (nr_inputs == 1) 
{ 
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} 

} 

Figure 3.1: Example circuit 

if (s->isLockedAs!nput()) // a previous run selected this 
// signal as an input 

{ 

s->unLockAs!nput(); 
return no_subcircuit_found; // unsuccesfull finding 1 input 

} 

s->lockAsinput(); 
return 1; 

// signal will be used as input 
// of the subcircuit to be mapped 

if (s->is!nput()) // an input can only generate zero 
11 or one input 

return no_subcircuit_found; 

for (int i = 1; i < nr_inputs; i++) 
{ 

} 

while (leftSubcircuitisSelected(s)) // previous circuit 
11 selection at left 
11 side succeeded 

while (circuitSelection(s->rightPredecessor(), 
nr_inputs - i) == nr_inputs - i) 

return nr_inputs; 
circuitSelection(s->leftPredecessor(), i); 

Of course it is necessary to remember the counter i between successive calls, 
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Figure 3.2: All four-input subcircuits of tigure 3.1 

otherwise the same circuit is selected over and over again. 
The function is called several times for the same signa! until no more sub­

circuits can be generated. Then it can be called again for a different number 
of inputs. All possible subcircuits for several number of inputs can this way be 
generated. 

As one can imagine the number of possible subcircuits increases very fast 
for increasing number of inputs. For one signa} n - 1 partitions of the inputs 
are tried, where n is the number of inputs requested of this input. If n is 
two, only one partition is possible. For every partition all subcircuits on the 
left are generated for all subcircuits on the right. So the number of generated 
subcircuits J( n) is equal to: 

f(n) = 
f(2) = 
!(1) = 

i=n-1 
I: J(i)f(n-i) 
i=l 

1 
1 

(3.1) 

For five inputs this results in 14 subcircuits. For eight inputs already 429 
subcircuits can be found. So it is important to limit the number of inputs for 
which subcircuits have to be found. 
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3.3 Circuit selection in DAGs 

This routine discussed so far will only generate all subcircuits if the circuit is 
a tree, that is the fan-out of a signal is zero - an output - or one. In general 
the circuit will he a DAG where the fan-out of a signal is larger than or equal 
to zero. If a signal is used as an internal signal for a match, then the signal can 
not he reached from outside this match. So multiple fan-out signals used as 
internal signals have to he implemented more than once. We assume that it is 
inefficient to implement a signal twice. Therefore we will nat use those signals 
as internal signals and will always loek them as input. 

f 

d 

a b 

Figure 3.3: Example of a reconvergent multiple fan-out circuit 

Consicier the circuit in figure 3.3 - the small open circles are implicit in­
verters, mostly nat drawn because they are irrelevant for the selection. This 
circuit implements an exclusive 'or' function. The signal 'c' has a fan-out of 
two. If this signalis marked as an input, then the resulting mapping would he 
sarnething like figure 3.4, even if the library contains an 'xor' cell. The use of an 
'xor' cell however would most probably result in lower casts for this mapping. 

It is important to notice that the multiple fan-out of the signal 'c' is re­
stricted. The successors are within the cone that lies with the top at signal 'f' 
and stops at the signals 'a' and 'b'. 

If instead of just locking a multiple fan-out signal as input, the number of 
locks is counted, it can easily he checked whether the fan-out is reconvergent. 
If the number of locks set is equal to the size of the fan-out, then the fan-out 
is reconvergent and the signal can he used as an internal signal. The circuit 
selection routine can now continue down from this signal requesting one more 
input - the first loek was set by another successar asking one input - than 
originally requested of this signal. 

The first loek on a multiple fan-out signal can only he set if one input is 
requested by a successor, because this signal will at the start always selected as 
an input. The next time inputs are requested of this signal by other successors, 
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d 

Figure 3.4: 'Tree'-mapping of figure 3.3 

it can only generate zero inputs, because it is already in use as input. If the 
number of in puts requested is in deed zero, then the number of locks is increased. 
If however the number of locks is now equal to the fan-out - a full loek -, 
then during this last call, more inputs can be requested because the selection 
can be continued at this signal. Outputs of the circuit can never be used as 
internal nodes. Therefore they have been given a fan-out that is one larger than 
the number of successors in the circuit, because there will always be at least 
one external connection. This way they can never have a full loek. 

U sing this set up it is possible to request zero inputs from a signal. The 
selection that finds the complete 'xor' in figure 3.3 is displayed in figures 3.5 
and 3.6. The encircled signals are used as input, the signal pointed to is the 
signal now active in the selection function. 

The selection routine for DAGs, but also for trees which inputs are used 
multiple times, is described in pseudo code down below. Signals that initially 
have to be used as inputs - inputs of the circuit and multiple fan-out signals 
- are called leaves. 

int generateCircuit(Signal *S, int nr_inputs) 
{ 

if (s->isLeaf() && !s->hasFullLock()) 
{ 

if (s->isLocked()) 
switch (node_count) 
{ 

case lock_set_and_is_input: // the previous recursion set 
11 a loek at this signal and 
11 selected it as input 

s->removeLock(); 
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Figure 3.5: Steps of selection routine selecting 2 inputs in figure 3.3, part 1 

return no_subcircuit_found; 
case empty: // first time this signal is 

11 reached in this part of the 
11 recursion 

s->addLock(); 
if (nr_inputs == 0) 
{ 

11 add loek to signal 
11 if zero inputs were requested 

node_count = s->hasFullLock() ? continue_down : 0; 
11 if the signal now has a full 
11 loekthen next time continue 
11 downwards 

return 0; 
} 

el se 
if (!s->fullLock()) 11 more than zero inputs were 

11 requested if signal now does 
/1 nothave a full loekthen 
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2 2 2 

(g) (h) (i) 

2 2 

(j) (k) 

Figure 3.6: Steps of selection routine selecting 2 inputs in figure 3.3, part 2 

} 

{ 

s->removeLock(); 

// request failed otherwise 
// continue downwarcts 

return no_subcircuit_found; 
} 

break; 
case 0: 

s->removeLock(); 

// the previous recursion locked 
11 this signal 

return no_subcircuit_found; 

el se 
{ 1/ signal is not locked 

if (nr_inputs != 1) // only one input can be requested 
return no_subcircuit_found; 

node_count = lock_set_and_is_input; // one input is requested 
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} 

} 

s->addLock(); 
return 1; 

11 so loek the signal and thereby 
/1 use select it as input 

else 
if (node_count == empty && nr_inputs == 1) 
{ 

} 

node_count = lock_set_and_is_input; // single fan-out signal 
11 and one input is requested, 

s->addLock(); 
return 1; 

11 select it as input, next time 
11 continue downwards 

if (s->fullLock()) 11 continue downwards, therefore 
// remove selection of use as 

{ 

} 

s->openLock(); 
nr_inputs++; 

11 input 

if (! (node_count >= 0)) 
{ 

// if counter has a special value 

if (node_count == lock_set_and_is_input) 
s->removeLock(); // remove input selection and 

node_count = 0; /1 start generating inputs at 
generateCircuitLeft(s, nr_inputs); // the left 

} 

while (node_count <= nr_inputs) // while not all permutations are 
11 tried 

{ 

while (leftSubcircuitlsSelected(s)) 
{ 

} 

if (generateCircuitRight(s, node_count) == node_count) 
return (s->fullLock()) ? nr_inputs - 1 : nr_inputs; 

/1 if signal has a full loekthen 
/1 the predecessor requested one 
/1 input less than now is generated 

generateCircuitLeft(s, nr_inputs- node_count); 

node_count++; // try next permutation 
if (node_count <= nr_inputs) 
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generateCircuitRight(s, nr_inputs- node_count); 
} 

if (s->fullLock()) 
s->removeLock(); 

return no_subcircuit_found; 

In this routine node_count is a counter that is kept in a separate structure. 
node_count reptaces the counter i in the selection routine for trees. A tree of 
such counters is build. This tree is used to remember the counter values which 
represent the state of previous recursion. The tree has the same form as the 
circuit's DAG at the signal that is used as root. Multiple fan-out signals have 
however se ver al counter nodes. This is necessary because every part of the recur­
sion has to remember its state. The correct counter in the tree is provided by 
the functions generateCircui tRight 0 and generateCircui tLeft 0. Next 
to providing the correct counter these functions call generateCircui t 0 again 
with the appropriate predecessor of the signal. 

The impravement that this use of reconvergence provides will only imprave 
the covering results if such structures can he found in the circuit. If the circuit 
does not contain any multiple fan-out signals which reconverge in a small area 
then the covering results show no improvement. The computation time will 
increase because of the additional conditions and increased search space. 

3.4 Further extension 

The DAG selection routine is a constructive routine. Except for some special 
structures all subcircuits with a given number of inputs are recognized. An 
example of such a exceptional structure is given in figure 3. 7. The routine will 
never mark the signals 'a' and 'b' as input, but will stop at the signals 'c' and 
'd'. It will trytoselect the signals 'a' and 'b' from both successors, requesting 
one input. Both times this request will fail because two inputs are needed. To 
reach the signals 'a' and 'b' the routine would have to continue from bath 'c' 
and 'd' at the same time, behaving like a wave. 

Ta solve this problem one could first search for the input cone of a signaL 
This can easily he clone by a depth-first search algorithm. Signals with a non 
reconvergent multiple fan-out, will he selected as an input. Reconvergent fan­
out signals, like 'c' and 'd' where the DAG selection routine in figure 3.7 now 
stops, will nat hemarkedas input. The selection routine can now try to continue 
until it reaches a marked signal, stepping beyond the signals where it now stops. 

Structures like the one in figure 3. 7 however are rare. It is very unlikely 
that they will he created by the logic optimization and decomposition tools that 
provide the input circuit. The additional effort that is needed to recognize these 
structures is therefore superfluous. This extension is therefore nat implemented. 
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c d 

a b 

Figure 3.7: Not recognized 2-input DAG structure 
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Chapter 4 

Camparing boolean functions 

After the selection of a subcircuit, cells in the library have to be found that 
can implement the combinatorial function of the subcircuit. To find these cells, 
their boolean function must be compared to that of the selected circuit. 

4.1 Representation of boolean functions 

For camparing the functions, a representation of the boolean function is needed. 
The truth table of the functions is useful representation and will be used here. 
This table is stared as a bit vector. One bit vector is created for the output 
signal of the function. 

c b a ac + bc 

0 0 0 0 

0 0 1 

0 0 0 

0 

0 0 0 

1 0 0 

1 0 

1 
msb lsb 

l1l1lol1l1lololol 
Figure 4.1: Bitvector as representation of boolean functions 

A bit vector is an array of integers where every bit represents one output 
value in the truth table. For n inputs 2n bits are needed. On a computer using 
32 (25 ) bit integers this results in an array of 2n-5 integers, the minimum size 
is of course 1 integer. Most cells in a library have not more than six inputs. 
For these sizes a bit vector is very memory efficient, in only 26 - 5 = 2 integers 
the complete truth table can be stored. A bit vector of this size is also efficient 
for computing boolean operations. 

19 
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One of the operations that will he needed in chapter 4.3 is the calculation of 
the boolean difference, 8ttl, where x= (x1,x2, ... ,xn). The boolean difference 
is defined as: 

{) f( x) 
-

8
- = f(x)lx;=I ffi f(x)lx;=O 
X i 

( 4.1) 

U sing bit veetors this can be calculated using only the original truth table. 
The function f( x) lx;=O/l is called the negativejpositive cofactor. The truth 
table of a cofactor is half the size of the original table. In further calculations 
it is easier to have a table of the same size. Therefore a tableis created where 
the cofactor is still a function of x; but is independent of it, the function does 
nat change when x; changes. 

When a bit vector is shifted downwarcis over 2i-l bits then the output 
results of f( x) for x; is true are moved to x; is false. This is only correct 
if Vx;=of(x) 0. The shifting of the vector will then result in f(x)lx;=x;· 
Example: 

a, b, c: 111 110 101 100 011 010 001 000 
f(x) = ab + ac 1 1 0 0 1 0 1 0 
a 1 1 1 1 0 0 0 0 
f(x) ·a= ab 1 1 0 0 0 0 0 0 
(f(x)·a)~4 0 0 0 0 1 1 0 0 
(!(x)· a)la=a = ab 0 0 0 0 1 1 0 0 

Likewise a vector can be shifted upwards, under the restrietion that V x;=l f( x) = 
0. An upwards shift operation of f over k bits is indicated as J( x) ~ k and 
downwarcis as f(x) ~ k. 

The cofactors of f( x) can now be generated as follows: 

f(x)lx;=O = (f(x) · xi) +((!(x)· x;)~ (i- 1)) 
f(x)lx;=l = (f(x) ·x;)+ ((f(x) · xi) ~(i- 1)) 

( 4.2) 

Here x; is a truth table of the function J( x) = x; with the same bit vector 
size as f (x). Exam ple: 

a, b, c: 111 110 101 100 011 010 001 000 
f(x) = ab + ac 1 1 0 0 1 0 1 0 
f(x) ·a 1 1 0 0 0 0 0 0 
(f(x)·a)~4 0 0 0 0 1 1 0 0 
(f(x) ·a)+ ((!(x)· a)~ 4) 1 1 0 0 1 1 0 0 
f(x)la=l = b = ab + ab 1 1 0 0 1 1 0 0 

4.2 Input signatures 

The bitvector can now be used for camparing the functions of the selected 
subcircuit and that of the library cell. When matching a subcircuit to a cell 
one does nat know which input of the subcircuit corresponds to which input 
of the library cell. Because the phase of the signals may be changed, it is 
also possible that an input or output inverter is needed to make the match. 
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If all possibilities are checked this results in n! · 2n+l comparisons. For larger 
circuits this can take a long time. If the inputs can be given a signature that is 
independent of the input permutation and sign then the number of possibilities 
can he decreased. 

Several signatures have been evaluated. The methad discussed in [Kap95] 
does nat use input signatures but signatures of the complete function for all 
input permutations. Camparing functions is simplified but the signature itself 
is nat input sign independent. This all results in a large amount of data to 
specify a library function. The signature that will he used is a simple and small 
variant of the one mentioned in [Moh93]. 

The signature of an input is the minterm count of the positive and negative 
cofactor of that input, (/ f(x)/xi = 0 /,/ f(x)/x;=l /),as discussed in [Moh93]. 
The count is denoted as/ J(x) /. It is obvious that / J(x)/x;=O / + / J(x)/x;=l /= 
2 / J( x) /. Sa if the minterm count of one cofactor is known then the count of 
the other can easily be derived. That is why the signature contains only the 
minimum of bath counts for every input plus an indicator which one is used: 

signature(xi,J(x)) = 

indicator(xi, f(x)) = 

(min{/ f(x)/x;=O /,/ f(x)/x;=l /}, indicator(xi,J(x))), 

{ 
1 ij / f(x)/x;=O />/f(x)/x;=l / 
0 otherwise 

4.3 Symmetrie inputs 

( 4.3) 

For most functions several inputs can be swapped without changing the result 
of the function. Inputs are called symmetrie if: 

f(xi, ... ,xi,···,Xj, ... ,xn) = f(xl,···,Xj,···,xi, ... ,xn)· 

This will from now on be denoted as: 

If these symmetrie inputs are joined in classes then the search for input 
permutations can he reduced to the search for symmetry class permutations. 
This reduces the search space significantly. Inputs can also he anti-symmetrie, 
they can be exchanged but then they have to be inverted. 

f(xl, ... ,xi,···,Xj,···,xn) = f(xi,···,Xj, ... ,xi,···,xn)· 

Because the phase of a signal can he changed it is convenient to add anti­
symmetrie inputs to the same class. 

When all input signatures of a function are known, the inputs are joined in 
symmetry classes. Inputs are only checked for (anti- )symmetry if the first part 
of their signatures is equal. If the indicator parts of the signatures are equal then 
the inputs can only be symmetrie, otherwise they can only be anti-symmetrie. 

Ta check for symmetry the following statement can be used: 
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((
8J(x) 8f(x)) _ ) _ ( _ ) 

8xi EB 8xj . x;. Xj = 0 = f(x )lx,xj = J(x )ixJx; . ( 4.4) 

Proof: 

fa hereis short for fa(Xt, ... Xi-b Xi+h ... , Xj-b Xj+b ... xn), the same counts for 
fb, fc and fd. If Xi and Xj are symmetrie then: 

j(Xij) 
f(Xji) 

(!(x)lx;x1 = f(x)lx;xi) 

Expanding formula 4.4 gives: 

::::: faXiXj + fbXiXj + fcXiXj + fdx;Xj 
= faXjXi + fbXjXi + fcXjXi + fdXjXi 

=? (fb =Je) 

This is equal to zero for all X i and x j if and only if: 

0 

If they are anti-symmetrie then the following counts, for which the same 
proof can be given: 

((
8f(x) 8 8f(x)) . x;. = o) = (!(x) 

8x; axj 
( 4.5) 

The symmetrie and anti-symmetrie inputs are joined in symmetry classes. 
These classes are disjunct and the union of these classes hold all inputs of the 
function. This results from the fact the symmetry is an equivalence relation. 

These symmetry classes can also be given a signature, namely the first part 
of the signature of the inputs in the class. Using this signature it can easily be 
checked whether a symmetry class in one function is equivalent to a symmetry 
class in the other function. If the classes are equivalent then they must also 
hold the same number of inputs. 

U sing these symmetry classes, the worst case number of comparisons is 
reduced to c! · 2c+1, where c is the number of symmetry classes. Mostly this 
number will not be reached because of the signatures of the classes. 

4.4 Co1nparing functions 

Using the information of the symmetry classes the functions can be compared 
fast. But before the input correspondence is searched some other data can be 
checked. 
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Only functions with the same number of inputs are compared. It is assumed 
that the matching to functions with a larger number of inputs where some inputs 
are constauts or joined is nat desired. If necessary these functions with constant 
or joined inputs can be added to the library as a preprocessing step. 

The same idea as used for the input signature can be used as a simple 
signature of the complete function. Functions can only be equal if their minterm 
count is equal. If I g(x) I= 2n_ I f(x) I then an outputinverteris needed. If 
I f(x) I= 2n- I f(x) I then a match withoutand with an output inverter should 
be tried. 

After these first checks, the symmetry classes are matched. lf the number 
of classes is nat equal or some classes can nat be matched to those of the other 
function then the functions are nat equal. Only classes with the same signature 
and number of inputs can be equal. The number of possible class permutations 
is limited by the number of classes with the same signature. Classes where the 
signature of the first input does nat define the sign of the input - the minterm 
count of the positive cofactor is equal to that of the negative cofactor - are 
tried twice, once normal and once inverted. 1f the first gives a match then the 
second does nat have to be tried. 

The inputs in the symmetry classes can be matched directly to those of the 
other function in the eauesponding class. First inputs with the same setting of 
the symmetry indicator are matched. If this is nat possible any more then the 
inputs are matched using an input inverter. This way a match with minimal 
number of input inverters is created. 

Now the functions can be checked for equivalence. If they are nat equivalent 
then another symmetry class permutation is tried or classes, where the minterm 
count of positive and negative cofactor of the inputs is equal, are inverted. This 
is continued until every possibility is tried or the functions with the found input 
permutation and negations are equivalent. 

4.5 Camparing in practice 

It seems that camparing functions is still a lot of work, but consiclering that 
most library functions have several symmetrie inputs and the number of inputs 
is limited, only a small number of symmetry classes have to be matched. For 
the MCNClibrary the average number of possible permutations and inversions 
of classes is 1.7. The average number of input permutations within a symmetry 
class is 30 and they are alllogically equivalent. Even when all possible input 
permutations are tried only 52 matches are possible. Campare this to the 
average number of permutations and inversionsof inputs without any additional 
information, which is 7517, and these are nat all equivalent. As is obvious the 
gain of using signatures and symmetry classes is significant. 

4.6 Other types of symmetry 

It must be noted that the symmetry classes used here do nat cover all cases. 
Consicier the following function: f( a, b, c, d) = ab + bc +cd+ da. One cannot ex-
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change any two variables without changing the function. But if the order of the 
variables is rotated, then the function stays the same: J( a, b, c, d) = J( d, a, b, c ). 
This can be useful information, but the functions that have this kind of sym­
metry are nat very common. None of the functions in the MCNC library show 
rotational symmetry. So the ad dition of this kind of symmetry classes does nat 
increase the efficiency, but one should keep in mind that the used symmetry 
classes do nat provide all symmetry information about a function. 



Chapter 5 

Mapping and covering 

The previous chapters discuss methods toselect subfunctions and compare them 
to library functions. All ingredients to cover a function are now available. The 
goal of mapping is to find a match between subfunctions and library cells, while 
minimizing the cost of the implementation. The union of the mapped signals 
should then create a cover of the function using severallibrary cells. 

When searching for a good mapping of a signal the costs of the mapping 
of the inputs that this mapping uses also determine the cost of this mapping. 
Because of this a cheap library cell is not always the best. An 'and' port is 
always most efficient for implementing an 'and'. If the mappingsof the inputs 
that are used, are very expensive it can be better to use another match that 
uses other inputs. As a result of this accumulation of costs the circuit has to 
be mapped from inputs to outputs. 

5.1 Mapping of subcircuits 

First an index of the signals in the circuit is constructed. The order of the index 
is defined such that the index of all predecessors of a signal is lower than the 
index of the signal itself. So inputs will be at the head of the index and outputs 
at the end. Traversing through the index from bottorn to top guarantees that 
one reaches an signal after all it predecessors. If the mapping of signals is clone 
in this order all mapping information of signals of lower level is available when 
mapping a signal. The inverse order can not be used because the cost of a 
mapping of a subfunction mainly depends on the costs of the mapping of its 
inputs. 

Every signal in the function is mapped to a set of library functions. This 
set can be divided into functions providing the positive phase and functions 
providing the negative phase of the signal. This is necessary because it is not 
known whether the successors of this signal need the positive or negative phase. 
If one only tries to optimize for area, only one mapping of both phases is needed 
because different drive capabilities or delays are not taken into account. But 
when optimizing for delay or power it can be necessary to have more mappings 
of the same phase. Each mapping is then the most cost efficient for a certain 
load on this signal. This is called 'load binning'. During the covering phase, 
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the load that the successors impose is known and a mapping can be selected 
for that load. 

In the latter case it may be necessary to check several input permutations 
during the matching. Because logically equivalent inputs can have different 
capacity or delay, all possible permutations have to be tried, to find the match 
with the lowest cost. It may seem that the use of the matching optimization 
loses its value here. But consiclering section 4.5, the number of matches is still 
significantly lower than without the use of a specialized matching routine. 

To generate this set of mappings for a signal all possible subcircuits are 
selected. The number of inputs of the subcircuits ranges from two to five. 
Subcircuits with only one input can only be inverters or buffers. The inverters 
are used implicitly in the cover. Buffers are not used, because they do not 
decrease the cost when optimizing for area. Examining the MCNC test library 
one notices that most functions have five inputs or less. The only exceptions 
is a small minority of some six input cells. The chance that a match to one of 
those is found, is small. To find and match all subcircuits with six inputs there 
is also additional computation time required, because the number of subcircuits 
increases very fast for a increasing number of inputs. This can be seen clearly in 
the test results of section 6.3. Therefore the mapping is restricted to five inputs. 
This number can always be increased, but a increase in computation time should 
be expected. And the cost decrease will be less than linear compared to the 
extra time needed. 

All the subcircuits of a signa} are matched to the library functions. De­
pending on the final goal, the best or several bests matches for both positive 
and negative phase will be stored. As said before, when optimizing for area 
only one match of both phases has to be stored. When optimizing for power or 
delay it can be an advantage to have several different mappings available with 
different drive capability. When the load that the successors impose is known, 
the best mapping out of this set can be selected. 

The cost of a mapping is the cost of the library cell itself plus the costs of 
the mappings of the signals used as input. The cost of these mappings can not 
be known because the best mapping out of the set can not be chosen yet. For 
the moment the cheapest are chosen for cost calculation. 

Also the load imposed by the successors on the signal is not known so the 
cost can not be calculated exactly. An educated guess of the load is needed. 
For area optimization this does not pose any problems, because the load is not 
part of the cost function. 

Because the costs of the current mapping influences the mappings chosen 
for the successors that use this signal as input, it is important that the costs 
are representative. So no large fanlts may be introduced when calculating the 
costs that the mappings of the inputs of this mapping impose. 

5.1.1 Mapping multiple fan-out signals 

For multiple fan-out signals it is more difficult to rednee the number of fanlts 
in the cost calculation. If the successors chose a different mappings out of the 
set of this signal, then the costs of some successors will not be correct. In the 
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final cover this signal will only he implemented once, so only one mapping will 
he correct. The casts that some successors have used is therefore incorrect. 

This is an important problem while mapping. A salution is using just one 
mapping out of the set for cast calculation by successors. The selection of the 
mapping used will still have to he clone during the covering, whether just one or 
several mappings are used during the cast calculation. One can nat know what 
the influence is of a difference between final and used mapping on the mapping 
of successors. 

To correct this problem, the mapping can he clone iteratively. After the 
covering, one knows what mapping most probably will he used. To find a 
better cover the mapping can he started again. This time it can he started at 
the multiple fan-out node instead of the inputs of the circuit. N ow the mapping 
that was used in the cover should he used for cast calculation. Of course this 
iterative process increases the computation time of a cover. 

It is however possible that the mapping and covering will never stabilize. 
Therefore the iterative process should only he clone if the cast difference of the 
mappings is significantly large. The technology mapper discussed here does nat 
incorporate such an iterative process. 

5.1.2 Mapping of multiple output library cells 

Multiple output cells will nat he found because the circuit selection and match­
ing routine are nat equipped for this task. Suppose that other tools are available 
that can find these cells. Then they can he used as a preprocessing step. These 
tools can search the circuit for the use of multiple output cells. For signals 
where such a cell can he used, the cell can he added to the mapping set. Dur­
ing the covering it is then possible to choose between the single output cells 
found and the added multiple output cells. 

Clearly the mapping of a circuit is a very exhaustive search. For all signals, 
all subcircuits are generated and matched to all library cells. For all matches 
that succeeded the casts are calculated. From those the cheapest of each phase 
is chosen. This exhaustive search is very important for finding a good cover. To 
keep the routine fast it is necessary that the subcircuit selection routine and the 
matching routinedotheir work very fast. This is why a good and fast selection 
and matching routine were needed. 

5.1.3 Example of a mapping 

An example of the mapping of a circuit, optimizing for area, is given in figure 5.1. 
In the two input DAG every signal will he mapped. All possible subcircuits 

of that signal are selected. These subcircuits are then matched to library cells. 
The cheapest implementation of each phase will he added to the mapping set. 
U sing all these mappings, a cover will later he generated. The library used is 
given in table 5.1. 

Working from inputs to outputs, the mapping is started at signal 'f'. This 
signal can he mapped to an 'and' port. The inverse of 'f' can he mapped to 
an 'or' port with inverters on bath inputs. Bath will he added to the set of 
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j 

a 

Figure 5.1: Mapping an example circuit 

Name function SIZe 
inv a 1 
and2 ab 4 
and3 abc 7 
or2 a+b 7 
oai22 (a+ b)( c +d) 16 

Table 5.1: Library for mapping example 

mappings. The same can be done for the signals 'g' and 'i'. For signal 'h' 
two mappings for the positive phase are possible, an 'and2' and an 'and3' port. 
The one with the lowest cost, the 'and3' port, will be added to the set. The 
same is true for signal 'j'. The 'oai22' port is added to the set of this signal. All 
mappings found are displayed in figure 5.2 using accentuated ellipses. The costs 
and the mappings that are used, are displayed in table 5.2. The mapping set 
contains one mapping for the positive phase and one for the negative. This also 
demonstrates the use of the reconvergence checking discussed in section 3.3. 
The 'oai22' mapping of 'j' includes the multiple fan-out signal 'g'. One also 
sees that sometimes it is cheaper to use the positive phase plus an inverter if 
the negative phase is needed, as is done for 'f' at the 'or2' mapping of 'h'. 

Even in this small circuit one can see that some false decisions can be made. 
If both I and h are implemented, the mapping they chose for g is different. One 
chooses g and the other g. Because only one mapping will be implemented, 
at least one cost calculation of I and h will be incorrect. This indicates why 
it is hard to find an optimum cover. In practice however the costs of the 
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Figure 5.2: All mappings of example circuit in figure 5.1 

different mappings of the multiple fan-out signal do not differ much. This is 
also demonstrated in the example by signal 'g'. It is not possible to guarantee 
that an optimum cover will be found. But the cover found will be near the 
optimum. 

The problem in the case of area optimization, is a problem of global phase 
assignment. It can be proven that this is a NP-hard problem [Wan89] and 
can not be solved in short time. For other cost functions where input load is 
important this problem is even more difficult. 

5.2 Covering the circuit 

When all signals are mapped, a cover has to be created. If the circuit is tracked 
again, but now from outputs to inputs, the cover can easily be found. The 
mapping at the outputs is the cheapest found mapping for this signal considering 
the mappings of the predecessors. This mapping is the start of the cover. It 
uses some signals as inputs. If these signals are not inputs of the circuit itself, 
then a mapping has to be selected for these signals. This can be continued until 
all inputs of the circuit are reached and no part of the circuit is not covered. 

For this backtracking the same index can be used as during the mapping 
phase, but this time we start at the signal with the highest index and end at 
the one with the lowest. This index namely also guarantees that the index of a 
signal is lower than the index of all its successors. 

While traversing the circuit from outputs to inputs, all information of the 
successors is available, the load they impose and the phases they need. So 
the best mapping out of the set of mappings for some signal can be selected. 



30 CHAPTER 5. MAPPING AND COVERING 

Signal library cell mapping costs mapping set 

f 
and2 f ( ab) and2 4 

(and2, or2) 
or2 7 (a+ ïi) or2 + (inv) + (inv) = 11 
or2 g (a+ b) or2 = 7 

(or2, and2) g and2 g (a b) and2 + (inv) + (inv) = 8 

i 
and2 i (ge) and2 + (g) = 11 

(and2, or2) or2 l (9+ ë) or2 + (g) + (inv) = 17 
and2 h (fg) and2 + (!) + (g) = 15 

h and3 h (abg) and3 + (g) = 14 (and3, or2) 
or2 h (/+g) or2 + ( inv +!) + (g) = 21 
or2 j (h +i) or2 + (h) +(i)= 32 
and2 j (iii) and2 + (inv + h)+ 

(or2, oai22) J (inv+i)=33 
oai22 j ((! + e)(c + d)) oai22 + (!) 20 

Table .5.2: Mapping results for example circuit 

For area optimization only the phase information is needed. In the designed 
mapping routine only one foregoing mapping decides which phase will he im­
plemented. It is however an important consideration to first check all foregoing 
mappings for the phase they need and then decide which mapping will he im­
plemented. 

From the chosen mapping the signals in the circuit that are used as input 
can he derived. For these signals the best mapping can again he selected. This 
is continued until the inputs of the circuit are reached. 

In the process a lot of signals in the circuit are skipped. They have become 
internal signals. It may seem that the mapping of these signals was useless. 
The mapping of these signals is still necessary, because it can not he foreseen 
that these signals will he removed. These mappings are needed to find the best 
mappings for successors. Otherwise it is not possible to campare the costs of 
several mappings for one successor. 

If the exact costs of the covering are needed, they must he calculated again. 
During the mapping some guesses were needed for cost calculation. The costs 
calculated at the output signals will mostly not he correct. But now the com­
plete circuit is covered, the costs can he calculated exactly. If the costs are 
higher than what is needed then the circuit should he mapped and covered 
again. This time however one knows what choices will he done so the number 
of guesses during the mapping can he decreased. Also mappings that are now 
known to cause high casts can he removed. 

5.2.1 Covering the example circuit 

The covering process will he demonstrated on the example of section 5.1.3. The 
covering is started at the output 'j'. The positive phase is needed as it is an 
output, but the cheapest mapping for node 'j' is the negative phase plus an 
inverter. The cost of this implementation is 20 + 2 22. Using this mapping, 
the signals 'h', 'i' and 'g' are skipped. The next signal to he covered is 'f', the 
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signals 'c', 'd' and 'e' do not have to be covered because they are inputs of the 
circuit. For 'f' the positive phase is needed and can best be implemented using 
the positive phase mapping. If the costs are calculated again, one sees that the 
costs calculated during the mapping process were correct. This is because the 
covers do not use a multiple fan-out signal as input. The result of the covering 
can be seen in figure 5.3. 

a 

Figure 5.3: Cover of example circuit 
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Chapter 6 

Experimental results 

To check the results generated by the technology mapper that is designed and 
described, some tests have been performed. The results have all been checked for 
logical equivalence with the original function. The technology mapper designed 
has been given the internal name RaCE. 

The results given in this chapter use the LGSynthesis '91 benchmark cir­
cuits. The library used is the MCNC library published together with the 
benchmark circuits. These circuits were chosen because several other articles 
used them as benchmarks. RaCE is the first functional technology mapping 
routine for non-complete libraries written at EUT, so some comparison with 
other mapping routines is necessary. The results are compared to SIS 1.3 and 
l'v!ARS [Kap95]. The computations were run on a HP 9000/735/90. The cir­
cuits mapped are the same as those in [Kap95]. This wasthelatest publisbed 
artiele available at the time. 

The results will show the co vering costs of the benchmark circuits as created 
by the basic routine. Also the results of improvements like recognizing reeon­
vergent fan-out structures ( section 3.3), the use of a two input decompositions 
made for technology mapping purposes and extensive mappings - trying all 
input permutations- are given. 

6.1 Basic results 

The first results are generated using the selection algorithm for trees, so multiple 
fan-out signals will be implemented exactly once. During the matching to 
]jbrary cells only the number of inverters on the inputs to make the match 
is optimized. The first such match found is used. Every subcircuit of every 
signal is compared to every library cell. No clever hashing routine or otherwise 
is used. The computation times given for RaCE include the time for reading 
the library and circuit and the computation of the signatures for the library 
cells. The results for J11ARS are publisheel in (Kap95] and were clone on a 
SPARCStation 10. The mapping with SIS uses the mapping options: '-m 0-
f 2', SIS therefore does recognize reconvergent fan-out structures. The timings 
given are in seconds. 

The results of RaCE compared to MARS show an improvement of about 
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MARS SIS RaCE 
Circuit costs time costs time costs time 
C432 230144 20 228288 7 213440 2 
C499 379552 17 487200 11 364704 2 
C880 351248 22 379552 13 346144 2 
C1355 609696 39 748896 21 485344 2 
C1908 607376 47 638928 17 558656 4 
C3540 1247696 89 1255120 114 1256050 14 
C6288 2939904 29 3291616 305 2697700 11 
Tot al 6365616 7029600 488 5922038 37 

Table 6.1: Results of basic mapping routine compared toMARS and SIS 

7 percent. Compared to SIS the impravement is even 16 percent. It must he 
noted that RaCE only optimizes for area and does not check for load violations. 
This can however not account for a difference of 7 or 16 percent. Despite the 
exhaustive search RaCE is a factor 13 faster than SIS. The timings of 1UARS 
can not he compared because it is run on another system. 

6.2 Results for improved circuit selection routine 

Now the impravement given in section 3.3 - the recognition of reconvergent 
multiple fan-out- is used. The results ofthe basic routine denoted by RaCEare 
given as comparison. The results for the improved selection routine are given 
by RaCE*. 

RaCE RaCE* 
Circuit costs time costs time 
C432 213440 2 213440 1 
C499 364704 2 364704 3 
C880 346144 2 346144 3 
Cl355 485344 2 485344 4 
Cl908 558656 4 557728 7 
C3540 1256050 14 1252340 18 
C6288 2697700 11 2697700 11 
Tot al 5922038 37 5917400 47 

Table 6.2: Results of mapping routine using reconvergence information 

The use of this improved selection routine does not imprave the results 
considerately. Most circuits have the same costs and some are a bit better. 
This was expected because the only impravement can he found for some special 
structures. The reconvergence must he found within the limit of the number of 
inputs that the searched subcircuit must have. It does increase the computation 
time however with 27 percent. Consiclering the speed at which the circuits are 
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covered this not a very important drawback. The next tests will therefore still 
use this improved routine. For larger circuits it must he taken into consideration 
to use the other selection routine when computation speed is more important. 

6.3 Using all library cells 

The previous mappings only used library cells up to five inputs. The MCNC 
library however also contains some six input functions. To see what the increase 
in time and the decrease in cover cast will he using these cells, a batch of tests 
is run using the same benchmark circuits. The results of mapping using library 
cell with up to five inputs are given by RaCE*, the results using also the six 
input cells are given by RaCE*-6. 

RaCE* RaCE*-6 
Circuit casts time casts time 
C432 213440 1 212976 2 
C499 364704 3 364704 7 
C880 346144 3 340112 4 
C1355 485344 4 485344 8 
C1908 557728 7 557728 15 
C3540 1252340 18 1233310 29 
C6288 2697700 11 2719970 13 
Tot al 5917400 47 5914144 78 

Table 6.3: Results of mapping routine also using 6 input cells 

The casts have nat decreased for all circuits. The time needed to cover the 
circuit is increased as expected, in some cases it even increases with a factor 
two. The impravement in the casts of the cover do nat justify this increase in 
time. The decision to use only cells up to five inputs was correct. Only in cases 
where computation time is nat a prime aspect and the casts of the cover are, it 
can he considered using alllibrary cells. 

6.4 Using specialized decompositions 

Because the technology mapper does nat make a new decomposition itself, the 
results will depend on the input circuit provided. To see what improvements 
can he reached using a special decomposition, the circuits are decomposed by an 
external routine. The decomposition is made with delay optimization during 
technology mapping in mind. The adapted circuits are then covered using 
library cells up to five inputs and reconvergence checking again. The results of 
mapping the standard circuit are given by RaCE*, the results using the adapted 
circuits are given by RaCE*-2. 

On average the results have improved about 6 percent. Although the casts 
of one circuit have nat improved. The computation time has also decreased. 



36 CHAPTER 6. EXPERIMENTAL RESULTS 

RaCE* RaCE*-2 
Circuit casts time casts time 
C432 213440 1 190704 1 
C499 364704 3 354496 3 
C880 346144 3 323872 2 
C1355 485344 4 362848 3 
C1908 557728 7 390688 2 
C3540 1252340 18 973936 13 
C6288 2697700 11 2981660 7 
Tot al 5917400 47 5578204 31 

Table 6.4: Results of mapping routine using special decomposition 

It is should therefore be taken into consideration that a special decomposition 
can imprave the results significantly. 

6.5 Using con1plete libraries 

Ta campare the designed technology mapper using complete libraries against 
a specialized mapping routine, another set of tests is run. The library used 
contains all cells that can be implemented by a maximum of three transistors 
next to each other and three transistors in sequence. This library contains 87 
cells. Ta have a correct camparisou with the other technology mapper which 
uses the number of literals as cast function, the area cast for the library cells 
was set to the number of literals in the function. 

RaCE 
Circuit literals literals 
C432 307 284 
C499 725 736 
C880 561 536 
C1355 729 773 
C1908 698 729 
C2670 1029 1072 
C3540 1858 1581 
C5315 2322 2379 
Tot al 8229 8090 

Table 6.5: Results of mapping routine using 3x3 library, cast = literal count 

Although RaCE is nat designed for complete libraries and therefore nat 
uses the additional knowledge that this provides, the results can certainly be 
compared to the specialized mapper. The cover of some circuits is nat better 
but overall the casts are 2 percent lower. 



Chapter 7 

Conclusions 

Within the limited timespace of a thesis project, a good methad for technology 
mapping has been created. It consists of three modules: a subcircuit selection 
routine, a matching routine for boolean functions and a mapping and covering 
routine. The presented selection routine generates the subcircuits which can be 
mapped to a single library cell; it is also able to handle reconvergent fan-out. 
The matching routine is based on an adapted technique discussed in [Moh93]. 
The selection and mapping routines use an exhaustive approach in order to find 
a near-optimal cover. Des pi te the exhaustive nature of the designed technology 
mapper the computation time needed to find a cover is limited. The covering 
routine does not contain any clever heuristics but still the found covers give 
good results for area. 

The routine is built using several separate modules. These modules have also 
been discussed separately. This modular structure provides the possibility for 
easy improvements in the future. One can adapt one module without changing 
other parts. This way alsoother cost functions can be used; it may be necessary 
to change the mapping or covering modules, but the selection and matching 
routines do not have to be modified. U sing mapping sets, it is possible to 
implement multiple output library cells even though they can not be selected 
and matched using the existing routines. With routines dedicated to finding 
multiple output cells in the circuit, they can still be used. 

Despite the rudimentary of the designed technology mapper, the results 
are already good. We have compared it to two other mappers for non-complete 
libraries and in all cases the covers created by our technology mapper have lower 
costs. It is also compared to a technology mapper for complete libraries and 
the overall costs of our methad are lower. Thanks to the modular structure it 
can easily be adapted in the future and is a good basisfora technology mapper 
with a lot of possibilities. 
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Chapter 8 

Recommendations for future 
work 

As this technology mapper is the first start of a functional technology mapper 
for non-complete libraries, there is still some area uncovered. For example 
the use of multiple output cells should be supported. The subcircuit selection 
routine and the matching routine cannot be used efficiently to find multiple 
output cells. The mapping and covering routine however can use these cells 
because of the mapping sets that are used. Multiple output cells can imprave 
the covering results and it is therefore important that they can be used. For 
future improvements a tool has to be designed that can find multiple output 
cells in the circuit efficiently. Also the mapping routine will have to be adapted 
a bit so that the casts of these cells is calculated correctly. Probably it is 
suflident to order the index such that the output signals of a multiple output 
cell are adjacent in the index. One can expect a problem when several cells 
overlap. But these are premature conclusions because we have nat looked at 
the implementation of these cells yet. 

As mentionedit is also possible to do some preprocessing on the used library. 
Cells that are created by adapting library cells can be added to the library. Here 
it is necessary to have a routine that makes the derived cells by joining inputs 
possibly one inverted or putting a constant signal - zero or one - at one of 
the inputs. U sing the matching routine one can check whether a cell like the 
one created, is already in the library. If there is none or the derived cell has 
some better characteristics, then the derived cell can be added to the library. 

For practical use it is important that other cast functions are implemented. 
Probably it will be necessary to use laad binning; this can easily be done using 
the already available mapping sets. For these other cast functions the selection 
and matching routines do nat have to be changed. Also the mapping and 
covering routine do nat need to be altered. Perhaps it is possible to devise a 
mapping and covering routine that is specialized in optimizing for delay. This 
is a case for future research. 

The matching routine now only provides one match between a selected sub­
circuit and a library cell. For other cast functions or better global phase assign­
ment decreasing the number of inverters used, it will be necessary to provide 
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several matches, all using an other input permutation. These other matches 
having another input permutation can he derived from the first match found. 
This opens the possibility to use a hashing routine. At one hash index alllogi­
cally equivalent library cells using input permutation and negation can he put, 
tagether with alllogically equivalent input permutations and negations of those 
library cells. For each hash entry with the same index, a conversion function of 
input permutations and negations to the first hash entry can he calculated. If a 
match can he found between a selected subcircuit and the first hash entry, then 
matches to all other entries can he calculated using the conversion functions. 
This way the number of times a match is searched is reduced. The time needed 
to find all matches between a selected subcircuit and all library cells can he 
decreased. 

For the circuits that were used for testing and are presented as in chapter 6, 
some statistics were created for the matching routine. lt was calculated that on 
average 14% of the run time was used by the matching routine. Only 1% of all 
selected subcircuits could nat he matched. The remaining subcircuits generated 
on average 21 equal bitvectors. Therefore it could he a good suggestion to use 
a cache so that a known match does nat have to he calculated again. This can 
significantly reduce the computation time used for matching. 

Finally a subject not discussed in this report is incorporating design for 
testability during technology mapping. When producing ic's, some percentage 
of them holds some faults. To find the correct working ic's, they have to he 
tested. This job can he simplified if the ie was designed for testability. With 
decreasing ic-dimensions this becomes more and more important. As a starting 
point for testability design in technology mapping the artiele [Pom94] can he 
used. 
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