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Abstract 

For many image processing tasks, hierarchical and topological methods are re­
quired. New approaches to image analysis involving the deep structure of images 
are promising, but many questions about points in scale space are still unan­
swered. In this thesis, a second order reconstruction algorithm for multiscale 
points is presented in order to extract information about these points. lt is 
tested with random points and spatially equidistant points in scale space. Us­
ing the equidistant points, an optimal distance between reconstruction points is 
measured, taking the limited machine precision into account. For this measure­
ment, the condition number of the correlation matrix is used. The algorithm is 
also tested with multiscale critica! points and multiscale top points. Two possi­
bie applications for the reconstruction from multiscale top points are discussed: 
data compression for images using reconstructions and content based image re­
trieval using coefficients of the reconstruction algorithm. The results of both 
feasibility studies are promising. 

keywords: reconstruction, scale space, deep structure, critica! points, top points, 
compression, image retrieval 
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Chapter 1 

Introduetion 

Image analysis is an important field of research these days. It is used for a wide 
variety of applications, e.g. robot vision, video steered animation, security and 
medica! imaging, to name a few. Especially in the medical field, imaging is more 
and more inspired by the human front end visual system. 

One important example is the scale space theory, in the western world intro­
duced by Koeoderink [10] and Witkin [25] in the eighties. All our observations 
are clone by integrating some physical property with a measurement device. 
This can be, for example, integration (over a spatial area) of light on a CCD 
detector element or receptive field in your eye. The size of the sensitive area of 
such "devices" is called the aperture. The size of the aperture determines the 
sharpness of the image. The need for different apertures for different tasks can 
be seen by looking at an image-mosaic (Fig 1.1). To see the larger structure, 
an other aperture is needed as to see the small images (you slightly blur the 
image for the larger structure). The human front end visual system is designed 
to extract information from multiple scales by applying sampling apertures, 
at a wide range of sizes simultaneously. In image analysis this notion of scale 
can be introduced by using a stack of images taken at a range of resolutions 
which is called a scale-space. Koeoderink introduced in 1984 the concept of deep 
structure in image analysis as the exploitation of multiple scales of the image 
simultaneously [10]. 

Another example of the exploitation of knowledge about the human visual sys­
tem in imag~ analysis is the differential structure of images. The front end visual 
system extracts derivatives in space and time to high order from the visual input 
pattem on the retina. In modern image analysis this can be clone by convolving 
the image with derivatives of a gaussian kernel, regularizing the image. In this 
differential scale space of an image, a number of interesting points can be found 
with special differential characteristics, e.g. critica! points and top points [4, 2]. 
These points will be discussed later in this thesis. An interesting work on the 
scale space theory and the human front end visual system is the monograph by 
ter Haar Romeny [6]. 

There are still many open questions about the deep structure of images, and 
critica! points in particular. One of the questions is how much information is con­
tained in these critica! points. Much research about reconstruction algorithms 
is clone to get a hold on features which contain crucial image information. For 
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Figure 1.1: Image mosaic of the Mona Lisa. 

example image reconstruction from sign information [20], reconstruction from 
zero crossings of a wavelet transfarm [19, 21] andreconstruction from zero cross­
ings in scale space [7]. Nielsen and Lillholm look at the image information of 
different features [15]. 

In this thesis, we look at the information contained in scale space top points, 
by proposing an algorithm for image reconstruction from multiscale points. lt 
is based on the work of Florack [3] and on the work of Nielsen and Lillholm 
[15]. After the theory is described in chapter 2, the algorithm is tested with 
different points in scale space, including multiscale top points, in chapter 3. 
Some possible applications of the scale space top points are discussed in chapter 
4 and 5. These include image compression and content based image retrieval. 
Of course, there are more applications possible, and new applications will arise 
from further research about the deep structure of images. 
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Chapter 2 

The reconstruction algorithm 

2.1 Definitions 

• i = 1, ... , N: en urneration index for scale space points 
• </>(x, y, t): standard Gaussian at scale t centered at the origin, thus 

1 _"2+112 
</>(x, y, t) = - e 4t 

47rt 

• f(x, y): arbitrary high resolution image 
• Î(x, y): approximation of f(x, y) 
• (flg): scalar product of f(x, y) and g(x, y), 

(flg) = J J f(x, y)g(x, y) dx dy 

2.2 Theory 

Consider the basic function </>(x, y, t). Derivatives of the basic function can be 
defined as: 

(2.1) 

Now let us define the basic function: 

(2.2) 

as a normalized Gaussian of scale ti, centeredat Xi, Yi and differentiated to the 
k-th order with respect to xVJ., ... , xvk in which we identify x1 =x and x2 = y. 
We may call (X i, yi) the spatial base point of </>i ,v1 ... vk (x, y), and (X i, Yi, ti) the 
scale space base point. 
Furthermore, define Li,v1 ... vk as the features obtained by taking the scalar prod­
uct of the original image f (x, y) with the basic function </>i,v1 ... vk (x, y): 

(2.3) 
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Li,111 ••• 1Jk is called the Gaussian blurred derivative of the image with respect 
to X111 , ••• , x11

k at point i. In this thesis, only orders 0 ~ k ~ 2 are used. 
The indices 111, ..• , lik are referred to as spatial indices. A spatial index (in 
two dimensions) can take only two possible values, interchangeably denoted as 
"x"and "y", or as "1" resp. "2" . The label i is sometimes referred to as an 
enumeration index. An enumeration index can take arbitrarily many values in 
principle, say i = 1, ... , N . 

Let us consider a number of scale space base points (xi, Yi, ti) with i= 1, ... , N 
in scale space. For every point i, the features Li,111 ... 11k can be calculated. Given 
this feature space, a second order reconstruction Î is proposed, as follows: 

N 

Î(x, y) = L ai</Ji(x, y) + bf</Ji,x(x, y) + bf<Pi,11 (x, y) + 
i=l 

cfx<Pi,xx(x,y) + c?</Ji,x11(x,y) + cf11</Ji,1111 (x,y) (2.4) 

which can be shortened using summation convention for the repeated spatial 
indices to: 

N 

Î(x, y) = L ai</Ji(x, y) + li/<Pi,!J(x, y) + d/P<Pi,!Jp(x, y) (2.5) 
i=l 

lt can be shown, cf.Appendix A, that the coefficients ai, bi and c? can bede­
termined such that this reconstruction is optima! in L2-sense. As a constraint 
on the reconstruction, all features in every point i= 1, ... , N of the reconstruc­
tion must be the same as those in the original image, thus in case we adopt the 
full set of second order constraints, 

( f - Î I </Ji) = 0, ( f - Î I </Ji,!J) = 0 and ( f - Î I </Ji,IJP) = 0 (2.6) 

for all i = 1, ... , N and for J.L = x, y and p =x, y, subject to the constraints: 

for all i= l...N and for J.L = x,y and p = x,y. 

If (2.5) is substituted in (2.6) using (2.7), the missing coefficients can be calcu­
lated from the following linear system of equations: 

N 

( L ai <Pi + bf </Ji,IJ + d/P </Ji,IJP I </Jj ) = Lj (2.8) 
i=l 
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N 

( L aic/>i + bf c/>i,JJ + J:P c/>i,JJp lc/>j,ll ) = Lj,11 (2.9) 
i=l 

N 

( L aic/>i + bf c/>i,JJ + J:P c/>i,JJP 14>i,ll'1 ) = Lj,1111 (2.10) 
i= l 

with J.l. =x, y, p = x , y, v =x, y and 17 =x, y, which can be rewritten as: 

N 

L at ( c/>i l c/>i) + bf ( c/>i,JJ lc/>i) + J:P ( c/>i,JJp Ie/> i ) = Lj (2.11) 
i= l 

N 

L at ( c/>i lc/>j,ll ) + bf ( c/>i,JJ lc/>j,ll ) + J:P ( c/>i,JJp lc/>j,ll ) = Lj,ll (2.12) 
i=l 

N 

L ai( c/>ilc/>i,ll'1) + bf( c/>i,JJI4>i,ll'1) + J:P( c/>i,JJP 14>i,ll'1) = Li,III'J {2.13) 
i=l 

By transferring the derivatives to one side, using partial integration, (2.11- 2.13) 
can be written as: 

N 

L at( c/>i I r/>j) + bf ( c/>i,JJ Ie/> i) + J:P ( c/>i,JJp Ie/> i ) = Lj {2.14) 
i=l 

N 

L -ai( c/>i,lllc/>i)- bf( c/>i,JJIIIc/>i) - J:P( c/>i,JJplllc/>i) = Lj,ll (2.15) 
i= l 

N 

L ai( c/>i,ll'114>i) + bf( c/>i,JJII'11 r/>i) + J:P( c/>i,JJPIIfll r/>i) = Li,llfl {2.16) 
i=l 

To simplify this we define a generalized correlation matrix as is done by Florack 
[3]: 

Definition 1 For each combination of spatial indices J.l.l , ... , J.l.k the generalized 
correlation matrix ~JJ1 , ... ,JJk is the N x N -matrix with components q,ij,JJ1 .. . JJ" = 
( c/>i,JJl .. ·JJ" Ie/> i ) , resulting in: 

q,.. - ,~" (x t)! - - t t with x.3· =x. - x3· and t.3· = t. + t3· t),JJl .. ·IJk - 'I",JJl .. ·/Jk ' x=x;;, = ;; • • • • 

With Definition 1, {2.14- 2.16) can be written in matrix farm: 
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Mixed correlation matrix M 
(» 4-x 4-y 4-xx 4-xy 4-yy 

-4-x -4-xx -4-xy -4-xxx -4-xxy -4-xyy 

-4-y -4-xy -4-yy -4-xxy -4-xyy -4-yyy 

4-xx 4-xxx 4-xxy 4-xxxx 4-xxxy 4-xxyy 

4-xy 4-xxy 4-xyy 4-xxxy 4-xxyy 4-xyyy 

4-yy 4-xyy 4-yyy 4-xxyy 4-xyyy 4-yyyy 

x 

coefficient vector feature vector 
~ 

at 

aN LN 
b"' 1 L"' 1 

b"' N L'N 
bil 

1 Lf 

bil N LY N 
cf"' Li"' 

c"'"' N L"'"' N 
c"'Y 

1 
L"'ll 

1 

"'11 L"'ll eN N 
cllll 

1 Lf11 

cllll N Lllll N 

(2.17) 

By solving (2.17), all necessary coefficients of (2.4) cao be calculated to make the 
reconstruction f. Note that the full system has 6N equations and 6N unknowns. 
lf oot all features of order 0 $ k $ 2 are needed, just remove the corresponding 
row and column in the matrix M, as well as the corresponding entries in the 
coefficient vector on the l.h.s. and the feature vector on the r.h.s. For example: 
lf only the secoud order features are used, remave row 1-3 and column 1-3 from 
M and the first 3N elements of the coefficient vector and feature vector. 

2.3 Implementation 

The algorithm described in the previous section is first implemented in Math­
ematica 4 [26]. This program is chosen as the design environment, because it 
is easy to couvert mathematica! formulas to a working Mathematica program. 
The drawback of this implementation is the speed and memory usage. A recon­
struction using 500 points takes about 15 minutes on a P4 1.7 GHz and uses 
about 1.0 GB of memory! 

Using the fiexibility of the MathLink add-on, it is possible to make a C++ 
program, which exchanges data with a Mathematica program and interacts 
with the Mathematica interface. In the current implementation, we use a C++ 
Mathlink program to calculate the coefficients of the linear system. To calcu­
late the inverse of the matrix, the Intel Math Kernel Library is used, which 
is optimized for both speed and memory usage. This reduces the calculation 
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time for reconstruction from 500 points to 5-10 seconds, using about 250 MB 
of memory. 

Note that with the speed improvement, the maximum precision has decreased, 
due to the usage of double precision floats in the C++ program, instead of 
the more precise Mathematica numbers. In the next chapters the fast Mathlink 
implementation is used. 
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Chapter 3 

Image reconstruction from multiscale points 

3.1 Reconstruction from one point 

Af?. a first example for the reconstruction algorithm described in the previous 
chapter, a reconstruction is made from one point, using only L, Lx and Ly as 
features, which is shown in Figure 3.1. At any reconstruction point, the features 
of the reconstruction must, by construction, be the same as the features of the 
original. However, visually the reconstruction does not have to resembie the 
original! One expects that resemblance will be enforced if "enough" independent 
points and features are used. Note that the reconstruction is a combination of 
zero and first order derivatives of a Gaussian with scale t = 6, according to 
(2.5) . Since the y component is very strong and the x component is almost 
zero, the blob looks like a fust derivative of a Gaussian in the y direction, with 
a larger positive area, to get a correct value of L, as expected. 

3.2 Reconstruction from random points 

In this section, random points are used to make a reconstruction of two different 
images. The points are selected with random spatial location according to a 
uniform distribution, and with decreasing probability as scale increases, such 
that: 

N(r) =No e - nr (3.1) 

with No the number of points for r = 0 and n the dimension. Here r is used 
as the "natura!" scale parameter, insteadof t, with t = ~e2r. Figure 3.2 shows 
reconstructions of a part of the famous Lena image (64x64 pixels), using 400 
random points at scale r = 0.0, with different sets of features. Note the "holes" 
in the image, especially at reconstructions from points with little features. Fig­
ure 3.3 shows reconstructions of the same image, this time only using L as 
a feature, again using 400 points, but varying the maximum scale Tmaz. Here 
Tmax = 3 corresponds with u ~ 40 pixels. Note that the difference between 
the reconstructions with Tmax = 3 and Tmax = 2 is small. From Figure 3.2 and 
Figure 3.3 one can conclude that image information increases if the number of 
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• 
Figure 3.1: Reconstruction from a single point, using only L, Lx and L11 as 
features. From left to right: original image, blurred original image with t = 6, 
reconstruction using one point. Features of original image at point 1: L = 
132.308, Lx = 0.0454528 and L11 = -87.1682, features of reconstructed image 
at point 1: L = 132.308, Lx = 0.0454528 and L11 = -87.1682. Error of features 
in point 1: tl.L = 6.79 x 10-7 , tl.Lx = 6.18 x 10-11 and tl.L11 = 3.47 x 10-6 . 

features increases and that if little information is available, higher scales have 
to he used to get a visually correct reconstruction. Increasing the maximum 
scale even more does not make the reconstruction visually any better. 

Using the previous results, another image is reconstructed. This time, 800 points 
are used, again with all combinations of features. The maximum scale Tmax is 
chosen in such a way that there are no more "holes" in the reconstructed image. 
This is done by choosing a T max and visually check the reconstruction for holes. 
A high value for Tmax will reduce the risk of holes, so this is a reason to choose 
T max as high as possible. One reason to choose T max as low as possible is the 
fact that for a constant number of points, No is maximal if Tmax is minimal, 
which is important for small details in the image. The optimal Tmax will thus he 
the lowest value with no holes present in the reconstruction. Figure 3.4 shows 
the result of reconstructions from random points, where for every feature set, 
the optimal Tmax is visually determined. The original image is one slice of a MR 
brain scan {128x128 pixels). Note that in the MR image, part of the skull is 
artificially removed, for 3D visualization {ray-tracing) of the brains under the 
skull. 

Surprising is the fact that there is no clear relation between the optimal T max 

and the features used for reconstruction! However, there might he a relation 
between the amount of information contained in the used features and the 
optimal T max. 

3.3 Reconstruction from equidistant points 

As can he seen in Figure 3.2 through Figure 3.4, the visual quality of the 
reconstruction depends not only on the features used, but also on the interac­
tion between the separate blobs. Therefore, the distance between blobs plays 
an important role in the quality of the reconstruction. In this section we use 
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Figure 3.2: Reconstructions of Lena's eye (64x64 pixels) from 400 random 
points at scale T = O.O. From left to right, top to bottom: original image, recon­
structions using {L}, {L:~:,L11 }, {L,L:~:,L11 }, {Lzz,Lz11 ,L1111}, {L,Lu,Lz11,Lw}, 
{Lz, L11 , Lzz, Lz11 , L1111 } and {L, Lz, L11 , Lzz• Lz11 , L1111 } as features. 

Figure 3.3: Reconstructions of Lena's eye (64x64 pixels) from 400 random 
points using only L as feature. From left to right, top to bottom: original im­
age, reconstructions using Tma:r = 3.0, Tmaz = 2.5, Tmaz = 2.0, Tmaz = 1.5, 
Tmaz = 1.0, Tmaz = 0.5, Tmaz =O.O. 
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Figure 3.4: Reconstructions of MR brain scan {128x128 pixels) from 800 
random points. From left to right, top to bottom: original image, recon­
structions using {L,Tmax = 3.0,No = 80}, {Lx,Ly,Tmax = 3.0,No = 
80}, {L, Lx, L11 , Tmax = 2.0, No = 87}, {Lxx' Lx11 , L1111 , Tmax = 3.0, No = 
80}, {L,Lxx,Lxy,Lyy,Tmax = 1.5,No = 96}, {Lx,L11 ,Lxx,Lx11 ,L1111 ,Tmax = 
1.8,No = 89} and {L,Lx,L11 ,Lxx,Lx11 ,L1111 ,rmax = 1.1,No = 110}. 

equidistant points for the reconstruction to easily measure the influence of the 
distance between blobs for the reconstruction quality. For measurement of the 
reconstruction quality the Root Mean Square error is often used. Although it 
is proven not to he a very good measurement for the visual quality, it is still 
good enough for our purpose of quantitative reconstruction. The RMS error is 
given by: 

liJ- ÎIIL2 = {3.2) 

with Eij the pixel-wise difference between the reconstruction and original and 
M and N the dimensions of the image. 

The RMS error is caused by the lack of completeness of the feature set and 
by the error made due to the limited precision of the system. Especially the 
calculation of the inverse of the matrix in (2.17) can introduce errors due to 
limited machine precision. In our case, we use the Intel Math Kernel Library 
to calculate the inverse, which has the following properties: 

Deftnition 2 Fora Matrix A with dimensions n x n the norm IIAIIoo is defined 
by: 

n 

IIAIIoo =mruq L laijl 
j=l 
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Data perturbations. lf x is the exact salution of Ax = b, and x + 8x is the 
exact salution of a perturbated problem (A+ 8A)x = (b + ób), then 

llóxll llóAII llóbll -1 
llxll :-::; Koo(A)( W + libil ), whereKoo(A) = IIAIIoo IIA lloo (3.3) 

The amplification factor K00 (A) is called the condition number of matrix A. 
Note that the norm 11.11 is the standard quadratic norm, while IIAIIoo is as in 
Definition 2. 

Rounding errors. lf E is the machine precision, and c( n) is a modest function 
of the matrix order n, then 

llóxll 
llxll :-::; c(n) Koo(A) E (3.4) 

So if the condition number is very large, the error in the inverse due to rounding 
errors is also very large. In practice, c(n) = O(n). 

Now let us consider areconstruction from a number of points at a fixed scale 
r, with t = !e2r, which are equally distributed over the spatial domain. The 
points lie on a grid with distance D. Note that if D decreases, the number of 
points N increases. Figure 3.5 shows the RMS error and the condition number 
K versus the distance D for different scales for the full feature set with order 
k :-::; 2. The original image is a white rectangle in a black background. Same 
results of the reconstruction using different D can heseen in Figure 3.6. Note 
that the optimal fit yields D ~ 0.90' with 0' = .;2t, in agreement with the 
expected linear sealing behavior. 

The same measurement of the RMS error versus the distance D is done for 
the MR image of the brain, forsome highervalues of r. Figure 3.7 shows the 
results, and some of the reconstructions. Note the odd result for D = 4.8, 
where the error is much higher than for D = 4.4, probably due to some special 
interaction between two pixels, such as very high derivative values in opposite 
directions, which causes the condition number to explode. More research about 
this problem is needed. Note that again the optima! D ~ 0.90' with 0' = .;2t, 
except for highervalues of 0', where it is closer toD~ 0.80'. 

The remarkable thing about the RMS graphs in Figure 3.5 and Figure 3.7 is 
the asymptotic behavior towards D ---+ 0. This indicates a numerical problem 
due to increasing mutual dependendes of features. This is in agreement with 
the fact that if less features are taken into account, for example if only Lxx, Lxy 
and Lyy or if only L is taken as a feature, the same results are found, but 
the curves are shifted to the left. Less features at a fixed distance D, means 
less pixel interaction, so the condition number will he lower. Condusion is that 
points too close tagether will give problems due to machine limitations. 
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Figure 3.5: Root Mean Square error and Condition number "' versus pixel dis­
tanee D of image block.tif, using L, Lx, Ly, Lxx, Lxy and Lyy as features. Scale 
parameter T is used instead of t ( t = ! e2,.) 
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Figure 3.6: Reconstructions of block.tif, using L, Lx, L11 , Lxx. Lx11 and L1111 as 
features. Points are equidistant at fixed scale 'T = 0.5. From left to right: original, 
reconstructions with distance D=6, 5, 4, 3, 2.8, 2.6, 2.4. 

3.4 Reconstruction from multiscale critical points 

The equidistant points of the previous section are suitable for a good recon­
struction, but can contain much redundant information. According to Nielsen 
and Lillholm [15], there are points in scale space which contain more image in­
formation than others, for example edge points and blobs. They also look which 
features are best suited for different points. 

In this section, an experiment1 is done with reconstructions from multiscale 
top points as described by Florack et al. [3]. The approach is the same as 
the reconstructions by Nielsen and Lillholm [15], but with different points and 
features. First we define (spatial} critica! points and top points: 

Deftnition 3 spatial critical points are points where the spatial gradient is 
zero. For 2D images these points are maxima, minima or saddles. 

Deftnition 4 top points are critical points where the Hessian degenerates ( det 
H=O). For generic 2D images, these points are annibilations or creations of 
saddles witb maxima or minima. 

where the Hessian of a 2D image f is given by: 

(3.5} 

1. Note that due to time limitations, it is only a fust try to reoonstruct images from top 
points and much further research is needed to get a proper overview of the possibilities and 
limitations. 

15 



1.25 

0.94 

0.625 

0.31 

RMS error 

<p ~ s < p ss s 1sssssssss~ 
ir-=2.) 

I 
r-= .5 

r-= .0 

l l 
\ \ \ ~ x~ ~ 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

D (in pixels) 
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Figure 3.8: Simple example top points. Left: original image, right: 3D view of 
critica! paths and top points. 

Figure 3.9: Reconstruction from top points of mrbrain.tif. Left: original image, 
Center: 3D view of critica! paths and top points, Right: Reconstruction from 
top points, using all features with order k ~ 2 

Given an image, top points can he found by tracking all maxima, minima and 
saddles in scale, and finding those points where pairs of saddles annihilate with 
maxima or minimaand points where pairs of saddles and maxima or minima 
are created. Figure 3.8 shows a simple example of top points of an image. Note 
that according toLoog et al. [12], always one critica! path from a maximum or 
minimum will he left at the highest scale. More about critica! points and top 
pointscan he found in [2],[4] ,[8] and [11]. 

In our experiment, weusethese top points for image reconstruction. Again we 
use the mrbrain.tif image. Figure 3.9 shows the original image, with the 3D view 
of the critica! paths and top points. It also shows a reconstruction from all top 
points, using the full feature set with order k ~ 2. The number of top points for 
this image is 211. This seems to he insufficient, at least for the reconstruction 
order k ~ 2 actually used. Critica! points are tracked in scale from T = 0.0 to 
T = 4.0. As can heseen in figure 3.9, the reconstruction does not contain much 
detail and resembles only very coarse the original. This is partly due to the fact 
that no top pointscan he found at scales T ~ 0.0 (which is equal tot ~ ~), 
because we start tracking at that scale. 

A better reconstruction can he made if all critica! points at scale T = 0 are 
added to the top points. To prevent calculation problems, points closer than 
Dopt ( calculated from figure 3. 7) are deleted. The number of points increases 
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Figure 3.10: Reconstruction from top points and critica! points at scale T = 0 of 
mrbrain.tif. From left to right: original image, reconstructions from: top points, 
critica! points at scale T = 0, top points and critica! points at scale T = 0. All 
reconstructions use all features of order k ~ 2 

to 779 if these points are added. In figure 3.10, the result of the reconstruction 
with top points combined with critica! points at scale T = 0 is shown. 

The reconstruction using top points and critica! points at scale T = 0 looks 
reasonable, but compared to the reconstruction from equidistant points shown 
in figure 3. 7 it is not very good, also consiclering the fact that in the latter 
case only 576 points are used, whereas bere 779 points are used. Note that for 
reconstruction from cri ti cal points, features Lx and L11 are known (gradient zero) 
and therefore the total amount of information needed for the reconstruction is 
reduced. 

Probably, better results can he achieved using top points at lower scales, or 
using more information from the critica! paths, e.g. scale space saddles (points 
on the critica! paths where the laplacian is also zero). 
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Chapter 4 

Application example 1: Image compression 

A possible application of the reconstruction algorithm is data compression, due 
to the limited number of points needed for a visually good reconstruction. In 
this chapter, a quick comparison is made between different reconstructions and 
some different jpeg compressed images. Again, we used the MR-brain image 
(128 x 128 pixels). For the reconstructions we used random points, equidistant 
points and to~points with critica! points as described in chapter 3. The jpeg 
images are all made in Corel PhotoPaint 7 by applying baseline optimized jpeg 
compression to the original uncompressed image. One image is compressed with 
quality 17 (lower number means higher image quality) , one image is compressed 
with quality 65 and one image is compressed with quality 74. Figure 4.1 shows 
the results of the different methods of compression. Although it is proven that 
the RMS error is not the best way to compare compression algorithms, it is still 
widely used for this purpose. In Table 4.1, all the methods with their properties 
and RMS error are shown. 

Looking at Figure 4.1 and Table 4.1, some observations cao he made. Com­
pression using reconstructions from random points (Figure 4.1e) doesnotmake 
much sense. Due to the random distribution, it is possible to have "holes" in the 
image, which is undesirable. Reconstructions from top points and critica! points 
(Figure 4.1b) cao he used for compression, but are outperformed by jpeg (Fig­
ure 4.1f) at the same compression ratio, visually as well as regarding the RMS 
error. Reconstructions using equidistant points (Figure 4.1c and d) can he used 
better for compression, but they are still outperformed by jpeg (Figure 4.1g and 
h). The reconstructions look more blurred. Note that the different jpeg images 
do not differ much in visual quality, while the RMS error does increase as the 
compression ratio increases. 

The jpeg compression outperforma the reconstruction methods for all compres­
sion ratios, but at lower compression ratio's (e.g. 1:2.1) the visual difference 
between jpeg en reconstruction from equidistant points is not very large. For 
images with less dense information, however, the difference will he much larger, 
because reconstruction from equidistant points does not take the image struc­
ture into account (and thus large homogeneaus areas will he badly compressed). 
Note that most lossless compression algorithms can gain the same compression 
ratio (order 1:2). For high compression ratios (order of 1:5-1:10) the reconstruc­
tion from top points and critica! points is used. The difference between jpeg 
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Figure 4.1: Image compression examples. Top, from left to right: Original (128 x 
128), reconstruction from top points and critica! points, reconstruction from 
equidistant points with r = 1.0, reconstruction from equidistant points with r = 
0.5. Bottom, from left to right: Reconstruction from random points, jpeg with 
quality 74, jpeg with quality 65, jpeg with quality 17, using Corel PhotoPaint 
7. 

and reconstruction from top points and critica! points is large, but the recon­
struction from these points is not yet optimal. The advantage is that image 
structure is taken into account here, in contrast with the reconstructions from 
equidistant points. While this was only a first test of reconstructions from top 
points and critica! points, a lot of further research is needed to get optima! 
results. 

Note that the ratios for the reconstructions are all based on double precision 
ftoating point numbers ( 64 bits), while the ratios for the jpeg images are based 
on 8 bit gray values. Reconstruction can thus be used for compression of high 
precision images, while most standard compression implementations can't han­
dle these images. Many medical applications these days such as MR and CT 
use 12 bits or 14 bits gray scale images. 

Also note that the number of features used for reconstruction from top points 
and critica! points is 6. Because the fact that by definition the first derivatives 
are (close to) zero, we only need to transfer or store 4 features instead of 6, as 
can beseen in table 4.1. This impraves the compression ratio, while quality is 
maintained. 

Another interesting difference between jpeg compression and compression using 
top points and critica! points is the fact that the number of points, and therefore 
the compression ratio, cannot be controlled, because it depends heavily on the 
image structure. For some applications this is a drawback (e.g. real time appli­
cations with fixed bandwidth) but for other applications this is a nice property 
(e.g. automatic selection of optima! compression ratio for starage of images). 

The calculation time needed is still a major drawback. Where jpeg compression 
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takes only little time, reconstruction using 700 points with 6 features each takes 
several seconds. For larger images this can give problems for many applications. 

Note that there are a lot of different implementations of the jpeg compression 
algorithm, which will all yield different results. Running the same tests as de­
scribed here with for example Adobe Pbotoshop 5 will result in a completely 
different comparison. 

While only one image is compared, this is not a very thorough research about the 
possibilities of image compression using reconstruction from multiscale points, 
but reeall that it was merely intended as a quick feasibility study. This chapter 
shows that at this moment it does not appear feasible to use our metbod for 
image compression. Campression using equidistant points can he used but bas 
no ad.vantages over standard jpeg. Campression using reconstructions from top 
points and critica! points could he useful for some applications in the future, 
but at this point, the quality of the reconstruction is not sufficient 1. Also many 
questions are still unanswered. For example, it is not clear how the reconstruc­
tion perfarms with larger images or color images. Future research must show 
whether using reconstructions from multiscale points is really useful for image 
compression or not. 

1. It is not unlikely that reconstruction quality can be improved by taking into account 
different (notably higher order) features 

Table 4.1: Reconstruction as compression tooi 

Metbod Number of Number of Campression RMS error 
Points features Ratio 1> 

Original 16384 n/a n/a n/a 
Random points 800 6 1:3.4 19.8 
top points and 779 4 1:5.3 13.0 
critica! points 
jpeg quality set- n/a n/a 1:5.3 6.4 
ting 74 
Equidistant 576 6 1:4.7 10.8 
points T = 1.0 
jpeg quality set- n/a n/a 1:4.7 5.9 
ting 65 
Equidistant 1296 6 1:2.1 7.2 
points T = 0.5 
jpeg quality set- n/a n/a 1:2.1 1.8 
ting 17 

1) For reconstructions, the compression ratio is calculated as 1 : No. ofpoln~~3:!. ofl-turee' for 

jpeg it is calculated as 1: lmapol.., 33J"r;! (trom bëader) . Reader size determined by single pixel 
jpeg compressed image. 
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Chapter 5 

Application example 2: Content based image 
retrieval using top points 

5.1 Introduetion 

In this chapter a feasibility study is presented for using multiscale top points in a 
content based image retrieval system. The goal of such a system is to find, given 
an image, the dosest matches to that image in a large image database, looking 
at the image content. Many of such systems exist, but IBM's Query by Image 
Content (QBIC)[14] is probably the best-known one. The user has to specify 
a number of parameters prior to the searching, so much labor is still needed 
here. Some examples of more automated systems are Virage [5] and VisualSeek 
[22], which are based on texture and material structure. Co lor histogram based 
systems arealso commonly used [23, 24]. These systems, however, do oot take 
into account the spatial distribution of the features used. Some examples of 
systems which do use spatial information are systems which use segmented 
image regions [13, 1]. In the following sections, we propose a completely new 
approach, based on multiscale top points. 

5.2 Proportional Transportation Distance (PTD) 

In chapter 3 we tried to reconstruct images using multiscale top points. These 
top points could he used to describe an image. This way, we can translate 
the content based image retrieval problem to camparing "distances" between 
two sets of (top) points in a multidimensional space. For this purpose we use 
the Proportional Transport at ion Distance (PTD) for weighted point sets from 
Giannopoulos and Veltkamp [16]. First, wedefine the point sets. 

Deflnition 5 Let A = { a1, a2, ... , t1m} be a weighted point set such that 
ai = {(xi, Wi)}, i = 1, ... , m, where Xi E JRk with Wi E JR+ U {0} being its 
corresponding weight. Let also W = L::~1 Wi be the total weight of set A. 

Deflnition 6 Let B = { b1, ~, ... , bn} be a weighted point set such that 
bi= {(xj,Uj)},j = 1, ... ,n, where Xj E JRk withui E JR+ U {0} being its 
corresponding weight. Let also U = L::j=1 Uj be the total weight of set B. 
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The PTD cao then he defined as follows: 

Definition 7 Let A and B be two weighted point sets and rhj a ground distance 
between point ai and bj. Thesetof all feasible flows F = [/ij] from A toB, is 
now defined by the following constraints: 

(i) /ij ~ 0, i = 1, ... , m, j = 1, ... , m 
(ii) Ej=1 /ij = wi, i = 1, ... , m 
(1.1"1") ~m F Uj: • 1 . L...,i=1 Jij= ,J= , ... ,n 
(iv) E:1 Ej=l /ij = w 

then the PTD can be defined as: 

min ~~ ~'.'" F. ·d· · 
PT D(A, B) = Fe:F L...,,; L...,J=l J'J '3 

The PTD can he seen as the minimum amount of work needed to transform 
A into a new set A' that resembles B. In particular, we redistribute A's total 
weight from the position of its points, to the position of B's points leaving 
the old percentages of weights in B the same. For calculation of the PTD, 
we used a fast implementation of the Earth Movers Distaoce (EMD) which is 
publicly available [27, 17]. In our case, we used normalized weights, such that 
U=W=l. 

There are two major parameters with which we cao experiment. The first 
one is the ground distaoce rhj. All top points have the following properties: 
ai= {(xi,Yi,ti,Ci,Ci,z,Ci,y,Ci,zz,Ci,zy,Ci,yy)}, with Ci,pp the reconstruction 
coefficient of the feature Li,pp (see chapter 3). One possible ground distaoce 
is the Euclidian distance for only the x and y coordinates, discarding all other 
features. Another possibility is to include the reconstruction coeflicients Ci,pp of 
each point in the ground distaoce. The second tuneable parameter is the weight 
Wi for each point. We cao use equal weights for all points, but we can also use 
different weights for each point, using the reconstruction coeflicients of chapter 
3. In the next section a number of different settings for these parameters are 
used for content based image retrieval. 

5.3 Experimental results 

In the previous section we described a method to calculate a distance between 
two weighted point sets, the PTD. We cao use this PTD for content based image 
retrieval in a large database. In the experiments described in this section, we 
used a subset of the Face database from the Olivetti Research Laboratory, 
made by Sawaria and Harter [18]. The subset consists of 200 images of faces 
from 20 people (10 images each, with different deviations such as pose, glasses, 
distortion). From every image of this set, the top points and the reconstruction 
coefficients were calculated. For the content based image retrieval experiment 
we used the first image of each person as a query aod looked at the 9 images 
with the smallest PTD to this image, using different parameters. 
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Figure 5.1: Experiment 1: dïj = J(xi- Xj)2 + (Yi- Yj)2 +(ti- tj)2 and 
weights are equally distributed. Leftmost images are queries, neighboring im­
ages are dosest matches, with increasing PTD. 

5.3.1 Experiment 1 

In our first experiment the ground distance is defined as: 

dïi = J(xi - x;)2 + (Yi- Y;)2 +(ti- t;)2 

and the weights are equally distributed, thus: 

1 
Wi=­

m 
1 

Uj =­
n 

(5.1) 

(5.2) 

(5.3) 

While the ground distance is a little ad-hoc and the weights do not contain any 
information, the results are surprising. As can beseen in Figure 5.1 , the images 
in the database with the smallest PTD are mostly from the same person. For 
the full set of test results, see Appendix 2. Note that in the second row, the 
results seem to be independent of the glasses! Also note that the third row is 
one of the worst query results from the database for this experiment (in this 
case, the hair line seems to have strong features) . Somehow, the structure of 
the faces is more important than the pose of the person for the PTD algorithm. 

5.3.2 Experiment 2 

In our second experiment the ground distance is defined as in (5.1) , but the 
weights are different. Our first try was to take the mean of the absolute values 
of the reconstruction coeffi.cients ( again admittedly an ad hoc choice): 
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(5.4) 

(5.5) 

The results of this fust try can be seen in Figure 5.2. As can be seen, the 
results are absolutely not close to the results from the first experiment. lt seems 
that some points have a much too large weight. Looking at the range of the 
reconstruction coefficients, the problem becomes more clear. Sometimes the 
reconstruction coefficients can be as high as 106 , resulting in very strong points, 
where distance is not very important anymore. As a second try we take the log 
of the weights from (5.4): 

L ( _,_I c....;.;i I~+......:.,_IC~i,x~I_+~I_C,=· ,!/~' +--=-IC....;.;i:;;;_,xx:;...:.I_+_:.I_C,=· ,X;.::_!/I~+......:.,_IC..:;..:.i,y::.=yl ) 
Wi = og-

6 

L ( ICjl + ICj,xl + ICj,yl + ICj,xxl + ICj,xyl + ICi,!/!11) 
Uj = og 

6 

(5.6) 

(5.7) 

The results are shown in Figure 5.3. The results are much better now, but still 
not better than with equally distributed weights! lt is clear that one has to 
think more carefully about the way in which the incommensurable features are 
to be incorporated. 

5.3.3 Experiment 3 

For image retrieval, it is desired to be independent of translations and rotations 
of the query image. When looking at the top point structure of an image, one 
question is how much information is contained in the position of the top points. 
As a final experiment we tried a ground distance which is translation invariant, 
because the x and y coordinates are left out. We propose the ground distance 
as: 

(t·-t·)2+(0-C·)2+(0 -C· )2+(C· -C· )2 • J • J 1,11 J,ll l,f'p J,f'p (5.8) 

For all spatial indices 11, J.L, p. The weights are taken the same as in (5.6). The 
results for this experiment are shown in Figure 5.4. lt is very surprising to see 
that the results are better without the position of the top points in the ground 
distance! Still there are some queries which give problems, as can be seen in 
the fourth row of Figure 5.4. The big advantage with this ground distance is 
the invariance regarding translation. lf the reconstruction would be based on 
rotation invariant filters, e.g. absolute value of the gradient for the fust order 
and the laplacian for the second order, this approach for image retrieval would 
also be rotation invariant. Maybe also scale invariance could be obtained if t is 
left out from the ground distance. 
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of absolute reconstruction coefficients as weights. Leftmost images are queries, 
neighboring images are dosest matches, with increasing PTD. 
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Figure 5.3: Experiment 2b: ~i= J(xi- Xj)2 + (Yi- Yi)2 +(ti- ti)2 and Log 
of mean of absolute reconstruction coefficients as weights. Leftmost images are 
queries, neighboring images are dosest matches, with increasing PTD. 
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Figure 5.4: Experiment 3a: dij= J(ti- ti)2 + (Ci- Cj)2 + (Ci,v- CJ,v)2 + (Ci,pp- Cj,pp)2 
and Log of meao of absolute reconstruction coeflicients as weights. Leftroost 
images are queries, neighboring images are dosest matches, with increasing 
PTD. 

Note that for all described methods, some odd results can show up. For example 
the fifth image on the third row of Figure 5.4. These results can not he explained 
at this moment and have to he further investigated. 
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Chapter 6 

Conclusions and discussion 

The goal of the research was to find out how much image information is con­
tained in multiscale points (critica! and top points in particular), by making 
a reconstruction of the original image, using only these points and some local 
jet attributes in scale space. Also a few possible applications using these recon­
structions are discussed. From the experiments described in this thesis, we can 
conclude that only a part of this goal is achieved. We found some interesting 
results, supporting the idea that some points contain much image information, 
but more research is required to fully understand the amount of information 
contained in those points. Therefore, a number of topics for new research have 
come up, which will bedescribed bere. 

Regarding the reconstruction algorithm, a few conclusions can be drawn. For 
the reconstruction, a large matrix bas to be inverted, which can introduce errors 
if points are close together. This can be seen in the condition number of the 
matrix. A pseudo-inverse algorithm can be the solution, which bas to be in­
vestigated. The experiments regarding equidistant points are only at one scale. 
Points at different scales, which are close together, sometimes lead to a high 
condition number, butsometimes they do not. The reason is still an open ques­
tion, which also bas to be investigated. Nielsen and Lillholm used in [15] an 
extra constraint to retain total image energy. The effect of this extra constraint 
must be explored. The reconstruction as described in this thesis uses only fea­
tures of order k ~ 2. The effect of using higher order derivatives as features 
is yet still unknown (But it is unlikely that orders higher than 4 are of much 
influence, since the correlation between gaussian derivatives of higher orders is 
high). The possibility to use different orders of features at different scales bas to 
be implemented and examined, at this moment only one set of features for all 
points can be used. A coarse to fine approach of the reconstruction algorithm 
should also be explored. If it exists it may solve memory problems as well as 
ill-conditioning. 

The reconstruction from random points is useful for a first test, and can be 
used to show the influence of different features and scales for the reconstruction. 
Reconstruction from equidistant points is useful for testing the possibilities and 
limitations of the algorithm. Problems due to limited machine precision can be 
pointed out clearly using equidistant points, which gives us an optima! distance 
between points. Regarding the reconstruction from top points, only a rather ad-
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hoc experiment is done due to time limitation. Our first results show that the 
top points only are not sufficient for a high quality second order reconstruction. 
One possible reason is the fact that the detection of those top points in an image 
is not yet perfect. At this moment, no top points at scale T ~ 0 are found. It 
also might be that higher order features are needed here. Using also the critica! 
points at scale T = 0 resulted in much better reconstructions. Maybe, the top 
points themselves do oot contain enough information, but the critica! paths do. 
Further research about reconstruction from top points and critica! paths must 
be done to determine the true image information contained in these points. 

The usage of reconstructions from several different multiscale points for data 
compression of images does not look very promising at this moment. Compres­
sion using reconstructions from equidistant points yields reasonable results, but 
they are outperformed by jpeg at the same compression ratio. Using reconstruc­
tions from top points and critica! points could be useful for some applications 
in the future, but the visual quality of the reconstructions is too low at this mo­
ment. An advantage could be the fixed compression ratio of this method, which 
is dependant on the image structure. Note that in this thesis, only one image is 
tested for image compression, and many questions have to be answered before 
we can actually decide whether this method is useful for image compression or 
oot. 

For content based image retrieval, an approach using the Proportional Trans­
portation Distance between sets of top points weighted with reconstruction 
coefficients looks promising. The two main parameters of the used PTD algo­
rithm have to be chosen carefully to work correctly. If a ground distance is 
chosen without any information about the spatial position of the top points, 
a system which is invariant to translation cao be achieved, with very good re­
sults. Invariance regarding translation, rotation and sealing could be obtained 
by using a different ground distance and a different reconstruction base, but 
was oot tested. 

The results in this thesis do oot answer the question about the amount of 
information contained in critica! points and top points. It rather gives an idea 
about the potential of these points and directions for further research about 
this topic. 
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Appendix A 

Derivation of the reconstruction formula 

For reconstruction we want to minimize liJ- ÎIIL2 and minimize the error in 
the features. Using Euler-Lagrange, we obtain: 

S[ÎJ !!'~I I Î 11l2 + L Ài (!- Î I <Pi} (A.l) 
i 

Using the functional derivative: 

(A.2) 

we can determine the unique solution of 6~y1 = 0: 

(A.3) 

which is the Î that minimizes the L2-norm if the coefficients Ài are calculated 
by substitution of A.3 in: 

(A.4) 

Using (A.l)-(A.3) for our second order case, with filters </>i ,111 .• • 11k, we obtain (2.5) 
for the reconstruction formula l The coefficients ai, bf and d/P can be calculated 
using (A.4) as constraints with the correct filters substituted, resulting in solving 
(2.17). 
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Appendix B 

Results of the content based image retrieval 
experiments 
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Figure B.l: Experiment 1: dij = ..j(xi- Xj)2 + (Yi- Yi? +(ti- tj)2 and 
weights are equally distributed. Leftmost images are queries, neighboring im­
ages are dosest matches, with increasing PTD. 34 
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Figure B.2: Experiment 2a: dij = J(xi- x3)2 + (Yi- YJ)2 +(ti- t3)2 and 
mean of absolute reconstruction coefficients as weights. Leftmost images are 
queries, neighboring images are dosest matches, with increasing PTD. 36 
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Figure 8.3: Experiment 2b: dij = y'(xi- Xj)2 + (Yi- Yi)2 +(ti- tj)2 and Log 
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queries, neighboring images are dosest matches, with increasing PTD. 38 
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Figure B.4: Experiment 3a: dii = J(ti- ti)2 + (Ci - Ci)2 + (Ci,v- Ci,v)2 + (Ci,I-IP- Ci.I-IP)2 
and Log of mean of absolute reconstruction coefficients as weights. Leftmost 
images are queries, neighboring images are ciosest matches, with increasiJ.iO 
PTD. 
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