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Hammerstein System ldentification through Support Vector Machines 
and Metbod of Splines 

Thijs Veenerna 

Abstracl-A model, or a mathematica! description of reality, 
which provides an approximatlon of a some more complex 
phenomenon, may be broadly classified as deterministic and 
probabilistic models. One of tbe model classes which is a subset 
of tbe probabillsdc models is a Hammentein system, which is 
a serlal interconnectlon of a static nonlinear mapping with a 
linear dynamic system. This paper will describe two possible 
identification techniques for determination of tbe memoryless 
static nonlineatlty foUowed by tbe estimation of the linear 
dynamic system parameten, where the lnterconnection is used 
to construct a Hammentem system. The fint part of this 
paper deals with identification and modeling of static neural 
network, which are used for the nonlinear mapping. The second 
part deals with identification of a nonlinear dynamic system, 
parameterized with the nonlinear neural network structures. 
The behavior of the different techniques will be showed in the 
last part, where a glass meltlng furnace will be modeled by 
means of identifying the fourier coefficients of a reduced order 
Proper Orthogonal Decomposed (POD) dynamic system. 

I. INTRODUCTION 

Nonlinear systems have been shown to exhibit surprising 
and complex effects that can never occur in linear systems. 
Prominent examples of these include bifurcations, chaos, 
and solitons. A system (statie or dynamic) can be seen as 
a mathematica! object in which variables of different kinds 
interact and produce observable output signals that are the 
result of controllab ie user determined settings (like statistica! 
properties of the input signa!) and non-controllab ie extemal 
input signals. A dynamic system consist of an n-dimensional 
state space !Rn where an element in the state space xo E !Rn 
at time instant t0 will follow a certain trajectory for t > to, 
which is determined by the dynamic equations together 
with the inputs. Once there is interaction with a system, 
a description is needed of how its variables relate to each 
other. In system identification, one is interested in building a 
mathematica! model of a dynamic system, based on observed 
data. 

One of the approaches to control a nonlinear dynamic 
system is to linearize the nonlinear system in a certain 
working point, and to apply a linear controller around this 
working point. This technique restricts the system to work 
in a certain local operaring range. If it is desirabie that the 
system also operates accurate enough in an other working 
point, a possible solution would be to derive multiple lin
earized models, and switch between the different models 
if the working point will change. If the time of switching 
between two operation points will not be accurate enough, 
the system may become unstable. 

In order to describe the behavior of a complete operaring 
range of the nonlinear system, nonlinear system identifica-

tion techniques have to be applied. One of the nonlinear 
model classes which will be described in this paper is the 
Hammerstein model, which consists of an interconnection 
of a static function J and a dynamic linear system H, 
which describes the dynamics of the model (see Fig. 1). 
Many techniques have been proposed for the identification 
of Hammerstem systems, which mainly differ in the way 
the static nonlinearity is parameterized and in the way the 
optimization problem is formulated. This paper contributes in 
the identification ofNL systems, where the static nonlinearity 
will have the form of a neural network, with different basis 
functions, which results in different behavior of the NL 
system. The results will be applied to the identification of a 
nonlinear model of a 2D glass fumace. 

x 
f 

V 
H 

y 

Static part Dynamic part 

Fig. 1. General Hammerstem structure 

11. LEARNING STATIC MODELS 

Consider a static MISO (Multiple Input, S,ingle Qutput) 
nonlinear mapping x -+ v, where x E X = JRd and 
v E V = R The nonlinear function J can be learned from 
a measured inputfoutput training set of examples SN = 
{(xn, vn)}~=l Ç !Rd x IR, where each deterministic input 
sample Xn is related by a probabilistic relationship, because 
generally an element of X does not determine uniquely an 
element of V, but rather a probability distribution P(x, v) 
on V, defined over the set X x V. The problem of learning 
consist in providing an estimator J : X -+ V. One way 
to solve this learning problem is to define a risk functional 
which measures the average amount of error (expected risk) 
associated with the function J and search for an estimator 
Jo that minimizes the expected risk 

I[J] = { V(v,J(x))P(x,v)dxdv 
lx,v 

where V(v, J(x)) is the so called loss function measuring 
the error between the measured output v and the estimator 
J. The best estimator (target function) Jo can be found by 
searching in a function space :F of functions X -+ V such 
that it minimizes the expected risk: 

Jo= argminl[J] 
/E:F 



Because in practice only a finite number of samples is 
available and the probability distribution P(x, v) is unknown, 
an empirical risk minimization is carried out, which consist 
ofusing the dataset SN to build a (stochastic) approximation 
of the risk, usually called the empirical risk, and is defined 
as 

If one is searching in a function space F for an estimator Jo 
based on the empirical risk, one can find a subset Femp C 
F (which is the set of interpolating functions) where the 
empirica! risk is zero: Femp = {! E Fllemp[J; N] = 0}. The 
problem now is that it is possible that Jo interpolates the 
data points, but has large variation on the non-sample points 
x =I Xi, 1 = 1, ... , N, so the empirica! risk at (xi, vi) is 
zero while Jo doesnotmatch to the relation v = J(x). This 
will become clear in Fig. 2, where the dasbed line J is the 
function that has to be identified from the input/output data 
set S4 = {(xn,vn)}!=1. The empirica! risk Iemp[Jo,4] = 0, 
but the function Jo doesnotmatch the function J. In order to 

Fig. 2. Example poor generalization 

avoid this problem, the regression technique will be extended 
with regularization. For a finite set of training samples, the 
search for the best model approximation function has to be 
constrained to an approximately "small" hypothesis space, 
which can also be thought of as a space of models or network 
architectures. If this space is too large, models can be found 
which will fit exactly the data samples, but will have a poor 
interpolation performance, so will have a poor predictive 
capability for new unseen data. Searching in a "small" space 
for the optimal function Jo can be formulated by minimizing 

1 N 

H[J] = N L V(vi, J(xi)) + -\IIJII2 

i=1 

Wh ere V ( ·, ·) is again the loss function and À ;:::: 0 a 
regularization constant. 

In this paper, the nonlinear function approximation J will 
be represented as a linear combination of weighted nonlinear 
basis functions, which can be written as a neural network 
structure: 

M 

v = J(x) = L9~l)iP(x,9~nl)) (I) 
i=1 

The basis functions iP : X x eCnl) --+ V are weighted with 
the linear parameters 9~1) E eCI), where the basis functions 

depend on the input x, and a vector of nonlinear parameters 
gathered in 9~nl) E eCnl). In order to realize a nonlinear 
mapping, the basis functions have to be nonlinear. There is 
a distinction between two different basis functions: 

• Global basis functions: Contribute to the complete 
model output range. Oiobal behavior exist if a change in 
the associated linear parameter 9~1) ofthe basis function 
formulation significantly influences the model output 
over a wide operating regime. 

• Local basis functions: Contribute only to a subset of 
the model output range locally. Local behavior exist if 
a change in the associated linear parameter 9~1) of the 
basis function formulation significantly influences the 
model output over a small operating regime. 

An important advantage of this kind of models, is that 
the model is linear in its weighting parameters 9f. If the 
basis functions are fully specified, the linear parameters can 
be estimated by linear optimization. An mustrating example 
will be polynomial interpolation where iP;(x) := xi-1 . If a 
data set SN = { (xi, vi)}~ 1 C lR x lR is available, one wants 
to achieve a optimal vector 9CI) = [B1 , .•. , 9 M V: such that 
IIXB(I)- VIl is minimized, where 

[ 

4>t(x(1)) ... 4>M(x(1)) l 
4>t(x(2)) ... 4> M(x(2)) 

X= . . . . . . 
4>t(;(N)) .:. 4>M(;(N)) 

(2) 

and V = [v1 v2 . . . v NV. this results in an least squares 
solution B(l) = ( XT X r 1 

XTV, which best describes the 
mapping X--+ V, so the solution is a linear combination of 
nonlinear basis functions. 

111. SUBSPACE REGRESSION IN REPRODUCING KERNEL 

HILBERT SPACE 

The benefit of learning static input/output relations be
tween two spaces X and V (function approximation) in a 
Reproducing Kemel Hilbert Space H (RKHS, which is a 
Hilbert space in which all the point evaluations are bounded 
linear functionals), is that any kind of nonlinearity can be 
learned, while avoiding to solve a nonlinear optimization 
problem. This technique makes use of least squares regres
sion models in the kemel context. The main idea is to change 
the representation of a data point into a higher dimensional 
mapping in a RKHS by means of a kemel function where 
the number of regression parameters can be controlled by 
projection of the RKHS to a lower dimensional subspace. 
Here, it is assumed that the unknown nonlinear function J 
belongs to the RKHS H that consist of functions X --+ V. 

In a reproducing kemel space H, there exist a positive 
definite kemel k: X x X--+ V: (x1,x2 ) f-+ k(x1 ,x:l), 
which provides a similarity measure between pairs of data 
points, and a dot product ( ·, ·) H such that 

l) VJ EH, Vx EX, k has the reproducing property 

(!, k(x, ·))H = J(x), for x EX (3) 

2) the inner product (·, ·)H induces a norm on J E H : 

IIJIIH := (f,f)k. 



3) H is the ciosure of the span of all k(x, ·) with :z: E X. 

Fora certain positive definite kemel function k, each sample 
x E X is mapped by a reproducing kemel map r.p : X --> 

H: x f-+ k(x, ·), which can be evaluated at x' EX to give 
r.p(x)(x'). That is, r.p(x)(x') = k(x, x') for short. Now define 
r.p : X --> H by r.p(x) = k(x, ·). So r.p denotes a mapping 
from the inputspace X to the Hilbert space H (also known 
as feature space). The kemel k denotes the inner product 
between two elements x and x': 

r.p(x)(x') = (r.p(x),r.p(x')) = (k(x,·),k(x',·)) = k(x,x'). 

For example, the Gaussian kemel k: X x X--> V is defined 
as k(x, x') = e-llx-x'IIVu, which maps to a Gaussian 
centered at point x', where one can evaluate this Gaussian 
at point x. The RKHS can now be defined by construction 
of a vector space of linear combinations of the reproducing 
positive definite kemel: 

N 

j(-) = LBik(·,xi) (4) 
i=l 

So :F consist of functions f(x) = (!, k(x, ·)), where f has 
the property that every evaluation operator and norm of any 
element in H is bounded. This makes the elements of a 
RKHS well-suited to interpolate smooth pointwise known 
functions. To find such an interpolating function f E H in 
the context of regularization, one can minimize a pointwise 
cost function V over data and monotonic smoothness func
tion g 

N 

L V(vi, f(xi)) + g(llfll) (5) 
i=l 

where V is convex in f and f has the representation 4. The 
general form includes unpenalized (low-dimensional) sub
spaces, which will differ for different regularization functions 
g. The solution of f is constrained to the subspace that is 
spanned by the mapped datapoints: 

N N 

f(x) = L Bir.p(xi)(x) = L Bik( x, Xi) (6) 
i=l i=l 

According to Mercer's theorem, which is a representation 
of a symmetrie positive-definite function on a square as a 
sum of a convergent sequence of product functions, there 
exist for each positive definite kemel an orthogonal set 
{ tf>i H= 1 with non-negative eigenvalues >.i, i = 1, ... , q such 
that one defines the following speetral decomposition: 

q 

k(x, ·) = L .>.itf>i(x)tf>i(·) 
i=l 

With help of the reproducing property, one can derive that 

f(x) = (f,k(·,x)) = \~cntf>n(·), ~ Àntf>n(-)tf>n(x)) 

q • 1 
= L entf>(x), where the mner product (t/>i, t/>j} = >.i Ói,j 

n=l 

The basis functions tf>i, i = 1, ... , q can be scaled by a 
factor A to make the orthogonal eigenveetors orthonormal. 
The mapping r.p(xi), i = 1, ... , N can now be replaced by 
designing a n x q feature matrix ~ q 

[ 

v'Al<t>l(xl} v'A2<!>2(zl) v'>:;</>q(xl) l 
~q = v'Xl~l(z2} v'A2~2(z2) .-:·. A~q(z2} 

VAl</>l(ZN) v'A2<!>2(ZN) ... A</>q(XN) 

(7) 

The goal now is to identify a function f that best matches 
the mapping X --> V by applying linear regression of the 
data set SN= {(r.p(xn), vn)}~=l by searching fora solution 

min IIV- ~qBII 
(J 

(8) 

Wh ere V = [ v1 , ... , v NV is the observed datamatrix, and 
~q the N x q feature matrix containing the q scaled basis 
veetors evaluated at X i for i = 1, ... , N, and B the unknown 
regression coefficient matrix. 

Because the mapping r.p maps the input space X to a much 
higher dimensional feature space H, which is spanned up by 
the mapped data points and is in general larger compared 
to the number of data samples N, it is hard to find a 
solution for 8. In order to restriet the infinite number of 
regression coefficients, one can introduce a projection matrix 
.0 in order to project the infinite dimensional featurespace 
H to a subspace of finite dimension m. One can express 
the projection by gatbering the basis veetors { vi}~1 of the 
subspace in the columns of a q x m transformation matrix .0. 
The subspace oftransformed regressors Z = ~q.O is obtained 
by projecting the elements of the feature matrix to the new 
coordinates Zi = tf>(xi)T Vi, but this projection to a subspace 
can never be obtained due to the fact that the mapping r.p 
to a higher dimensional featurespace H is not known. This 
problem can be avoided by making use of the so called 
kemel trick, which is based on the fact that the matrix ~q is 
unknown, but is is possible to obtain the positive semidefinite 
matrix K = ~r~q· This can be obtained by decomposing 
the matrix -a = ~rA. So the columns of ~r are transformed 
by the transformation matrix A such that the original matrix 
.0 will return. By decomposing the matrix .0, one is allwed 
to write Z = ~q-D = ~q~r A = KA, and thus the model 
becomes 

Vobs = (KA)B + E = K(AB) + E 
N 

So v(k) = L Bik(xi, Xk) + e(k) 
i=l 

where E = [e1, ... , eNJT denotes the modeling error, 
Kij = k(xi, Xj )I i, j = 1, ... , N the kemel function and 
Bi, i = 1, ... N the linear parameters which identify the 
nonlinear function f. 

For example, take as Hilbert space the set of functions of 
the form f(x) = E::"=l cntf>n(x) in which the scalar product 
is defined as 



where (ePi, ePi) = t5i,ït· If k is a Gaussian radial Kemel 
~ k:XxX-+V,withk(x1,x2 )=e- " ,consideraone-

dimensional case in which x E X = [0, 21r], and c/Jn(x) = 
einx, and cn are the Fourier coefficients of the function f. 
f can be approximated by minimizing 

N 1 
min H[f] = L V(vi, f(xi)) + >.-

2
11!11 2 

/E'H. i=l 

2 oo c~ 2 
where 11!11 = Ln=l "X!" and À ;::: 0. In this way, 11!11 
limits the amplitude of en, where small amounts of 11!11 2 

contributes to limited high-frequency contents, and therefor 
do not oscillate much at inter sample points so that 11!11 2 is 
a measure of smoothness. 

IV. CONSTRUCTION MECHANISMS 

In this section, two different construction mechanisms will 
be introduced, which are able to identify a nonlinear static 
function f. The two construction mechanisms are both family 
of the Neural Network structure. 

A single Neuron k consists of a linear combination of 
p input signals ulk, ... , Upk weighted by B1k, ... , Bpk (see 

p 

Fig. 3) and a certain offset bk. such that ik = 2: BikUik + bk 
i=l 

which will be evaluated by an activation function 9k· The 
output of neuron k is hk and can be evaluated by hk = 
9k(ik). The single neurons can be connected to each other 
such that there exist different construction mechanisms. If P 
different network layers are placed in series, where a network 
layer consist of a parallel interconnection of m neurons k, 
different construction mechanisms can be derived. 

p 

ik = L: U;kBik + bk 
i=l 

Fig. 3. Single Neuron 

A static nonlinear function can be parameterized by a 
neural network, which is characterized by: 

• Neural Network structure: The pattem of connections 
between the neurons 

• the weights B;k and the offset values bk 

• activation function 9k 

In this section, two construction mechanisms will be intro
duced: 

I) Radial construction 
2) Tensor Product Construction 

which can be defined as a neural network, as illustrated in 
Fig. 4. The input x E JR.d in this construction enters the 
neurons un-weighted, where each of the m neurons have the 

sameinput x. The main difference ofthe two constructionsis 
the difference in the activation function 4? (which is the same 
for all neurons 1, ... , m), the values Ci E JR.d, i = 1, ... m, 
and b, which will become clear in the next two subsections. 
In the output layer, the activation function g is chosen as a 
throughput, so g(x) =x. 

: ....... J~~y~ .~ ... : 

Fig. 4. Radial and Tensor Product Construction 

A. Radial construction: Radial Basis Function (RBF) Net
worles 

The radial construction is utilized for radial basis function 
networks, where the input x E JR.d is centered around 
m different centers c; E IR.d, i = 1, ... , m. The radial 
construction can be transformed to a Radial Basis Function 
(RBF) Network. Hereby, the nonlinear basis function 4? (as 
in Fig. 4) will be superposed by a kemel function 

11"'-c;ll~ 
4?(x - c;) = k(x, c;) = e- " 

where u is the width of the Gaussian function. The network 
structure will be a linear combination of the m basis func
tions 4? (with different centers c;). The nonlinear function 
f : JR.d -+ IR. can now be written as 

m 

v = f(x) = L B;k(x, c;) + b (9) 
i=l 

One of the difficulties is to find the optimum number 
of neurons (m), in order to match the identified nonlinear 
function f, so one is looking for a set of center points 
c = [c1 , ... , cm] for an unknown number m. One way to 
find the unknown parameter m and the set of centers c, 
is to make use of support vector machine's (SVM), which 
is a set of related supervised leaming methods used for 
classification and regression, and belong to a family of 
generalized linear classifiers. Once again, the problem is 
to leam a functional relation between sampled input and 
output data SN = {xn,vn}~=l by minimizing H[f] = 

N 

k 2: V(vi, f(x;)) + >-11!11 2
, where 

i=l 

V( J( )) 1 J( )I { 0 iflv;-J(x;)l<< 
V;, X; = V;- X; < = lv;-/(x;)l-< otherwise 

which is called an ~:-Insensitive Loss function, also denoted 
as V,. The V< loss function is used to allow functions f that 
lie between a 2~: bound from the real function f, which is 



V 

•,",.-1---- ... , 
, • I 

---- __ ,,v':,-· ~~ . 
\,• • • r ................. 

x 

Fig. S. 2t bound 

the solid line in Fig. 5. The parameter f can be seen as the 
resolution at which one wants to look to the data, so the 
larger f, the simpler the representation will be. This problem 
can be formulated by writing the following optimization 
problem: 

min. [Ne f.(Ç; + Çi) + -
2

1
11!11 2

] 
J.e.e i=l 

f(x;) -v; ~ E+Ç;} 
v; - f(x;; ~ f + ç; i = 1, ... , N 

Ç;,Ç; ;?: 0 

s.t. 

where f(x) = I::'=l Cn</>n(x) +band C = A. is a sealing 
constant, which can be seen as the regularization constant 
which will control the trade off between model complexity 
and model performance. Note that the penalty C is only paid 
when the absolute value of the error exceeds f. The variables 
Ç;, ç;, i = 1, ... , N are the so called slack variables, which 
become active (Ç, Ç* ;?: 0) if a sample lies outside the 2f 
bound (this explains the name Support Vector in SVM). lt 
is possible to solve this QP problem numerical, but it will 
give problems if the size N of the learning set SN grows. 
To avoid this problem, and to write the solution of optimal 
parameters in a mathematica! expression, one can change 
the cost function V to a least squares problem, such that 
V(v, f(x)) = (v - f(x)) 2 • 

Consider a regression model Vt = f(xt) +et where f : 
JR.d ----> R is an unknown real valued smooth function which 
has to be derived and e1. ... eN are uncorrelated random 
errors with E[et] = 0 and E[e~] = q~ < oo 
The following model is assumed: 

q 

!(x) = L 0;</>;(x) + b = wT rp(x) + b 
n=l 

w = [01 02 ... Oq]T 

rp(x) = [</>I(x) </>2(x) ... </>q]T 

So the input is first transformed into the feature space H, 
and by linear regression, the function f is obtained. Given 
SN, consider the cost function ( as function of w and e, 
given as: 

min ((w,e) 
w,b,e 

s.t. Vt 

N 

~wTw +i I: e~ 
t=l 

wT rp(xt) + b +et, t = 1, ... , N 

where 'Y E Rt is again the regularization constant. To 
solve the constrained optimization problem, a Lagrangian is 
constructed: 

N 

C(w, b, e; a)= ((w, e)- L at(wT rp(xt) + b +et- Vt) 
t=l 

N 

~; = 0----> w = L atrp(xt) (lOa) 
t=l 

N 
ac. - 0 ___, 
8b- Lat=O (lOb) 

t=l 
g;, = 0----> at= 'Yet, t = 1, ... , N (lOc) 

g;, = 0----> Vt = wT rp(xt) + b +et, t = 1, ... , N(lOd) 

N ow substitute equations ( 1 Oa) and (I Oe) into (I Od): 

(11) 

Wh ere 

v = [v1, ... ,vN]T E RN 

1N = [1, ... ,1]T E RN 

a= [ai.···,aN]T ERN 

D;; = k(x;, x;) = rp(x;)T rp(x; )V;,; = 1, ... , N 
Uz;-z;ll~ 

k(x;,x;)=e- " 

With k the positive definite kemel function. Ifthe solution for 
b and a is calculated, the (non)linear function f evaluated 
on a new point x• E JR.d can now be written as a linear 
combination of Lagrangian multipliers a;, i= 1, ... , N and 
an offset b E R 

N 

f(x) = Latk(x,x;) + b (12) 
i=l 

Note that the length of a, and so the complexity of the 
model f is dependent on the number of learning points N. 
The linear growing complexity becomes a big problem if 
the number of learning points becomes huge. If one takes a 
closer look to the final model structure (equation 12), it can 
be seen that the model consist of N neurons, and the centers 
are represented by the learning points x;, so if one is refer 
back to Fig. 4, observation learns that m = N and c; = x; 

for i = 1, ... , N. Due to the dependancy of the number of 
learning points N, which is defined as the model complexity, 
a reduction step is considered in section V, where a model 
reduction step is introduced which reduces the complexity 
N of the final model. 

B. Tensor Product Construction: MISO Spline interpo/ating 

Tensor Product Constructions opera te on a set of univarlate 
functions, where n; different functions are defined for each 
input dimension i, where i = 1, ... , d. The tensor product 
construction can be rewritten to a neural network structure as 
in Fig. 4, by defining for each neuron k = 1, ... , m the same 
basis function <I> : JR.d ----> R, such that the dinput dimensions 



span a Tensor product, where the linear combination of the 
m spanned Tensor products defines the nonlinear function 
f (without an offset b). The basis functions are calculated 
by forming the tensor product of univaria te functions çij, 

where each univariate function çij for j = 1, ... , ni belongs 
to input dimension i for i = 1, ... , d, is multiplied with 
each other univariate function of the other dimensions p for 
p '# i. For example, if Çi = [çï,l, çï,2, ... , çi,n;] denotes a 
set of univaria te functions for input dimension i, where çi,j : 

lR --+ JR. The set of basis functions Kd are constructed by 
the span of the univariate functions: 

Kd := Ç1 x Ç2 x ... x Çd 

where the total number of basis functions, and therefore the 
total number of neurons m in Fig. 4 becomes 

d 

m= Ti ni 
i=l 

The centers c1 (see Fig. 4), l = 1, ... , m will be calculated 
by defining for each dimension i a equidistance grid vector 
Ci E lRn;, i = 1, ... , d, where ci(j + 1) - ci(j) = ~.j = 
1, ... , (ni - 1) where the grid space Cgrid is defined by 
calculating all the combinations of elements of each of the 
i grid veetors Ci, so Cgrid E JRdxm = c1 ® ... ® cd = 
[ê1 ... , êm] E JRdxm, which denotes the tensor product ofthe 
d grid veetors Ci· Now each basis function ~ is the product 
of d univariate function ~(x - êl) = rrt=l ç(x(i) - êl(i)) 
for i= 1, ... ,d and l = 1, ... ,m, where x(i) denotes the 
ith dimension from x E JRd, and ê1(i) the ith element from 
the lth column vector from the vector space Cgrid E JRdxm. 

A tensor prOduct example is given in Fig. 6, where 

De fine 

X= [x1 X2]T E 1R2 
Xi E [-11j,i = 1,2 

lli 1 
ç(·) = e- " , a= -

2 

c1 = [-0.5 0.5jT C2 = [-0.5 0.5f 

Cgrid = [[~~gn. [~~gn. [~~~~n. [~~gnJ = [ê1ê2ê3ê4] 

The model in Fig. 4 becomes 

llz(lJ-•d'llla nzc>J-•z<•Jn' 
~(x - ê1) = e- " e- " , l = 1, 2, 3, 4 

m 

b = 0, f(x) = :E Bi~(x- êi) 
i=l 

So the nonlinear function f is a linear combination of 
the spanned tensor products of the 4 neurons: f(x) = 
'2:~ 1 Bï~(x-Cï). The basis functions ~are shown in Fig. 6. 

A technique which can be applied by a tensor product 
construction is Spline Interpolation. Splines are piecewise 
polynomials with pieces that are smoothly connected to
gether. The joining points of the polynomials are called 
knots, where the set of all knots will be denoted by c1. 
For a spline of degree n, each segment is a polynomial of 
degree n, which would suggest that there are needed ( n + 1) 

Fig. 6. Examplc Tensor product 

coefficients to describe each piece. However, there is an 
additional smoothness constraint that imposes the continuity 
of the spline and its derivatives up to an order of (n - 1) 
at the knots, so that there is only one degree of freedom 
per segment. Due to Schoenberg [17], these splines can be 
uniquely characterized in tenns of a B-spline expansion: 

f(x) = :EBk.Bn (x- k) (13) 
kEZ 

where x, B E lR, f : .lR --+ lR and which involves the integer 
shifts ofthe central B-spline ofdegree n denoted by ,an(x). 
The parameters of the model are the B-spline coefficients 
B, which will be derived from the sampled learning set SN, 
which is constrained that it contains the input/output relations 
(ki, vi), i= 1, ... , N. The basis function ~ = ,an(x) can be 
derived from the (n + 1)-fold convolution of a rectangular 
pulse ,aD. 

{ 

1, 
!JÜ(x) = t• 

0, 

-!<x< t 
lxl = t 

otherwise 

(n+l}limes 

Now consicter the spline interpolation problem, where the co
efficients are detennined such that the function goes through 
the data points (ki, vi), i= 1, ... , N exactly. For splines of 
degree n = 0 (piecewise constant) and n = 1 (piecewise 
linear), this is trivial matter because the B-spline coefficients 
are identical to the signal samples: Bk = Vk. For higher
degree splines, however the situation is more complex. To 
derive this type of signal processing algorithm, introduce the 
B-spline kemel b~1 , which is obtained by sampling the B
spline of degree n expanded by a factor of D.J. 

b:l
1
(k) = ,an(x/ D.1 )lx=k ._.z B:l

1
(z) = :E b:l

1
(k)z-k 

kez 

Now, given signal samples from SN, detennine coefficients 
Bk such that there is a perfect fit at the integers: 

:E Bk,(r (x- k)l = vk =(bi* B)(k) 
kEZ x=k 



Define the inverse convolution operator 

(bn)-l(k) +-+'" _1_ 
1 Bf(z) 

So the solution can be written as: 

(14) 

This means that the coefficients 8 can be found by using a 
cascade of first order causa! and anti causa! filters [ 18]. 

To bring out the conneetion between the spline interpo
lation process and the traditional approach for band-limited 
functions, it is helpful to introduce the cardinal spline basis 
function that are the spline analogs of the sine function. 
Combining (13) and (14): 

f(x) = L ((bf)- 1 * v) (k)f3n (x- k) (15) 
kEZ 

= L v(k) L(bf)-1(l)f3n(x -l- k) (16) 
kEZ IEZ 

= L v(k)çn(x- k) (17) 
kEZ 

where çn(x) = L(bf)-1 (k)pn(x - k) (18) 
kEZ 

Now define a grid space c1 E Z, where the output 
v = f(x) is dependent of the linear combination of shifted 
basis functions çn where the grid space c1 can be scaled by 
multiplication of a constant f:l.J. Note that if the grid space is 
scaled, the basis function çn has to be expended by a factor 
~ : çnU x). Equation (17) provides a spline interpolation 
fofmula iliat uses the signa! values as coefficients. The 
formula works because çn(x) has the same interpolation 
property as the sine function: it vanishes for all integers 
except at the origin, where it takes the value one. The fourier 
transform of (17) is 

Hn(w)- (sin(w/2))n+l 1 (19) 
- wj2 Bf(eiw) 

which will converge to the sine function if n --+ oo. 
Spline interpolating can be extended to MISO systems in 
the following way. Assume the mapping X --+ V, where x = 
[x1, ••• , xd]T. In stead of a one dimensional grid space c1o 
define a d-dimensional grid space C grid = c1 ® c2 ® ... ®cd, 

where each grid vector c; defines n; grid points for each 
dimension i= 1, ... , d. The one dimensional outputvis the 
linear combination of the set of m basis functions 

~(x- êl) = çn(x(1)- êz(1)) ... çn(x(d)- êz(d)) 

Cj E Cgrid E JRdxm 

so f(x) = E;:1 8;~(x- ê;) 

V. ÜRTHOGONAL LEAST SQUARES LEARNING 

ALGORITHM FOR STATIC MODELINO 

In section lil, it was derived that each static function f 
can be written as a linear combination of nonlinear kemel 
functions k(·, ·). If k is chosen as a Gaussian kemel, that 

- U z1-z2 U ~ 
is k(x1 ,x2) = e " for x1,x2 EX and u E JR+, a 
Radial Basis Function Neural Network structure will appear, 
which has been visualized in Fig. IV-A (which can be 
regarded as a special two-layer neural network which is 
linear in the parameters). In section lil, one can see that 
the order of the model grows linear with the number of 
leaming samples N. If one takes a closer look at the model 
structure, N fixed leaming points x; E X, i = 1, ... , N are 
stored, which are considered at center points. In this section, 
a reducing algorithm will be derived in order to reduce the 
complexity of the resulting nonlinear RBF, which will be 
measured as the number of neurons m (which is N if no 
reduction has been applied). Reducing the number of neurons 
from N to Na < N here consists of selecting a subset of 
center points from the leaming set x; E SN,j = 1, .. . , Na 
in such a way that v;- j(x;) is minimal for i= 1, ... , N. 

A RBF neural network can be seen as a linear regression 
model 

N 

v; = f(x;) = L 8;k(x;, e;) (20) 
i=l 

that prediets v;, j = 1, ... , N as the desired jth output 
sample. Here, 8; are the linear parameters and k(xi, c;) = 

IJz;-c; 11~ 
e- " is known as the regressor which in this case is 
chosen as a Gaussian kemel and e( t) is assumed to be uncor
related with the regressor sample k(xj, e;). In this section, 
the center points c will be chosen as the leaming points x, 
such that the vector of center points c = [x1 , .. . , x N ]. 

Equation (20) can be written in matrix notation for j = 
1, .. . ,N: Voba = K8+E, where 

Voba [v1,v2, ... ,vNf (21) 

K [k1 , ... ,kN] 
8 [81. ... ,8N]T (22) 

k; [k(xb x;), k(x2, x;) . .. , k(xN, Xi)]T, i= 1, ... , N 

E [e1 , .. . , eN]T: modeling error where e; = v; - v; 

So the center points are chosen in such a way that 
they correspond to the N different inputvalues x,, so that 
each column k; of K corresponds to a Gaussian shaped 
curve centeredat x;, and evaluated totheN different input 
samples Xj· The regressor columns of K forma set oflinear 
independent basis vectors, and the Least Squares solution 
is 8 = (KT K)-1 KTV oba· Each regressor vector k; will 
contribute to the total output energy Vo~a V 0 b8 , but due to 
the fact that there is a certain correlation between the N 
different regression vectors, it is not clear how an individual 
regressor vector ki contributes to the total amount of energy. 
This can be solved by decompose the matrix K = WA, 
where Wis a N x N matrix with orthogonal colurnn's w;, 
such that WTW = H, where H is diagonal with elements 



h; = wf w;, i= 1, ... , N, and A has the following structure: 

[ 

1 a1~ a1s ... a1N l 
0 1 a~s ... a2N 

A= : : ·. : : 
·~· • .. : ~ a(Nii)N 

(23) 

The matrix A is chosen in such a way that it applies 
a transformation to the orthogonal set of basis functions 
in W in order to reeover the original regression matrix 
K. The space spanned by the N veetors w; is now the 
same as the space spanned by the N different Gaussian 
centered around x; which are evaluated on the learning input 
samples, and thus equation (21) can be written as Vobs = 
W g + E where the Least squares solution will be given by 
g = (WTw)- 1WTVobs or g; = (wfw;)- 1wTVobs,i = 
1, ... ,N. 

Once the matrix K has been made orthogonal, the reduc
tion step now involves selecting a subset from the N or
thogonal regressors, which are the columns of the regression 
matrix W. So one is looking for N 8 < N significant centers 
(regressors) out of a set of N different regression veetors 
which 

This can be done by the so-called forward selection. First, 
each single regressor k; out of all N possible ones is selected 
and the performance with each of these regressors k; is 
evaluated by optimizing the associated parameters g;. Then, 
the regressor that approximated the output Vobs best, i.e. 
the most significant one, is selected. This regressor and its 
associated parameter (center point x;) will be denoted as k1 

and g1• Second, the part of the output Vobs not explained by 
k1 can be calculated as V1 = Vobs - kûh. Next, each of 
the remaining N- 1 regressors is evaluated for explaining 
V1 , again by optimizing the associated parameters. Th is 
procedure can be repeated until N 8 regressors have been 
selected. 

The first significant regressor can be selected due to the 
fact that w; and w; are orthogonal for i i= j, and the total 
energy of the output V can be written as 

N 

Vo~s Vobs = L g~wT w; + ET E (24) 
i=l 

Now one is searching for the direction (regressor) that adds 
the most amount of energy to the output. This can be done 
by searching for the largest value ofthe error reduction ratio, 

~ T 
which is defined as: [err]; = vg;Tw,v.. w, for i = 1, ... , N. 

b oba 

The regression selection procedure is summarized as fol-
lows: 

I) At the first step, for 1 :::; i :::; N, compute 

w~i) = k; (25) 

g~i) = ( ( w~i)) T w~i)) -l ( w~i)) T Vobs (26) 

[err]~i) = (g~i)f (w~i)t W~i)(V0~8 Vobs)- 1 (27) 

Find [err]~ii) = max{[err]~i), 1 :::; i :::; N} 
i 1 now correspond to the index number of the N 

different center points, that adds the most amount of 
energy to the output V for one of the N directions. 
Select the first regressor w1 = w~1 = k; 1 

2) At the kth step, where k ~ 2, for 1 :::; i :::; N, i i= 
i1, ... ,i i= ik-1, compute 

a)2 = (wJ w;) -l wJk;, 1:::; i:::; k 
k-1 

(i) """' (i) wk = k; - L.,; a ik w; 
j=l 

9ki) = ( ( Wki)) T Wki)) -l ( Wki)) Vobs 

[err]ki) = (Yki)f ( Wki)t Wki) (Vo~s Vobs) -l 

Find 

[err]kik) = max{[err]ki), 1 :::; i:::; N, i i= i1, ... , i i= ik-d 
k-1 

I (ik) k """' h ik 1 < . < k se eet wk = ik - L.,; a;kw;, w ere aik• _ J _ 
j=l 

3) The procedure is terminated at the N 8 th step, when the 
total amount of energy crosses a certain energy level 
p: 

N. 
1 - 'L:!err]; :::; p, 0 :::; p:::; 1 (28) 

j=l 

which can be considered as searching fora number N 8 

regressors, such that the total energy that is not added 
to the system reach a certain energy level p 

Vl. HAMMERSTErN SYSTEM IDENTIFICATION 

In this section, a nonlinear Hammerstem identification 
metbod will be derived by parameterizations oftwo nonlinear 
neural network structures, which will represent the nonlinear 
function f, as shown in Fig. I. The dynamics will consist of 
a linear ARX model, which can be described by 

A(q)y(t) = B(q)v(t) + e(t) where y(t), e(t) E JR.rY, v(t) E Rd 

qiy(t) = y(t- i) denotes the shift operator and 
na nb 

A(q) =I+ LAiq-i,B(q) = LB;q-i 
i=l i=l 

Barx = [Al · · · Ana B1 • • • Bnb]T 
<Parx = [-y(t- 1) ... y(t- na) v(t- 1) ... v(t- nbW 

y(tJBarx) = r/>~rxBarx 

The two different neural networks that will be superposed 
into the nonlinear mapping f will be: 

I) Method of splines: which was described in section IV
B 

2) RBF: which has been described in section IV-A 

A. Identi.fication with method of splines 

According to section IV-B, the mapping X --+ V can 
be evaluated by a linear combination of nonlinear basis 



functions: 
m 

linear ARX model. This can be done by define a dynamic 
cost function, wbicb involves an ARX model. 

f(x) = L: (}i~( x- êi) = es~s(x) (29) Given an ARX model 
i=l 

wbere ~s(x) = [~1(x- ê1) ... , ~m(x- êm)JT and es= 
[fh, ... ,Om]. If one wants to model a mapping X --+ V, 
wbere V = IRd (so it bas the same dimension astheinput X), 
the model structure (29) must be placed d times in parallel, 
that ~s(x) E IRm and es E IRdxm. 

For the linear model, assume an ARX MIMO model: 
y(tiOarz) = <Prr.,(t)Barz and substitute with (29): 

A(q)y(t) = B(q)v(t) + e(t) = 
A(q)y(t) + B(q)8s~s(t) + e(t) = (30) 

A(q)y(t) + Ë(q)~s(t) + e(t) 

Tbe main empbasis bere is that different nonlinear systems 
can now be represented using a set of coefficient matrices 
Ë = B(q)8s and knot veetors ~s wbicb bas a very 
attractive appeal because all the nonlinearity is embedded in 
the transformation from the actual inputs x(t) into the virtual 
inputs v(t). This parameterized structure is very beneficia! 
to both numerical simulations and control design. With the 
transformation V= 8s~s, the identification problem USing 
the Hammerstem model can be formulated using the output y 
and transformed input ~s: A(q)y(t) = Ë(q)~s(t)+e(t), So 
the nonlinearity, wbicb is bidden in Ë = [Ë1. ... , Ënb]T, can 
be found by linear opt_!mizatio!!, wbere the unique solution 

êarz = [Alo ... , Ana, Ê1, . .:.., Ênb] can be found by the least 
square optimization. Once Ê is obtained, Ê can be calculated 
by an SVD. 

È = usvT = [U1U2] [ ~d ~J] [~:~] 
ulsdvt + U2Sa.Vl 
[81 82 000 8nb]T sdvt +U2SaYl::::::: Bês 
...__,.__..,~ 

8 

So the nb matrices Ê = [Ê1 , .•• , Ênb] and the approxi
mated coefficients matrix Os, wbicb contains the nonlinear 
information, can be approxim_!lted by applying a truncation 

to the SVD of the identified Bi, i= 1, ... , nb. 
The final model now becomes 

A(q)y(t) = Ê(q)v(t) 

wbere v(t) = Bs~s(x(t)) 

B. Identi.fication with SVMs 

(31) 

(32) 

In section IV-A, a technique bas been described bow to 
identify a static nonlinear function f, by applying SVM 
tecbniques wbicb function f can be described by a linear 
combination of N kemel functions k, centered around the 
input learning points Xi· In this section, a technique [5] 
will be described bow to transform this static mapping to 
a dynamic mapping, by apply superposition of SVM into a 

na. nb 

Yt = L: aiYt-i + L: b;Vt-j + et 
i=l j-0 

wbere et is assumed to be a wbite noise sequence with 
E[et] = 0, E[e~] = 0'2 < oo. Assume a nonlinear input 
mapping f: IR--+ IR: x--+ v = f(x), write (VI-B) as 

na. nb 

Yt = L:aiYt-i + L:b;f(xt-;) +et (33) 
i=l j-0 

with f ( ·) the nonlinear mapping, wbicb will be assumed 
that it bas the following structure: 

f(x) = wT <p(x) +do (34) 

Substitute (34) in (33): 

na. nb 

Yt = L:aiYt-i + L:b;[wT </>(ut-;)+ do]+ et (35) 
i=l j-0 

To solve tbe parameters ai, bi, w and do, use the metbod 
described in paragrapb IV-A. So try to minimize 

N 

min = .!.wTw+ 1L:e~ 
w,a,b,da,e 2 2 t=r 

na. nb 

(36a) 

s.t. Yt = L: aiYt-i + L: b; [wT <p(Xt-i) +do] +et 
i=l j=O 

(36b) 

with r = max(na, nb) + 1. Tbe Lagrangian of problem 36 is 
given as: 

N 
lT 'Y"'2 .C(w,d0 ,b,e,a;a) = 2w w+ 2 ~et (37) 

t=r 

Tbe conditions for optimality can be calculated by setting 
th d · · öC 8C 8C 8C 8C 8C e envatives öw , öa; , ödo , öe, , öa, , öb; to zero. 

This problem can be solved by the following set of 
equations: 

with 



y [ 
Yr-1 Yr ... YN-1] 
Yr-~ Yr-1 ... YN-2 
. . . . . . 

Yr-n Yr+l-n "' YN-n 

y [ J
T E mN-r+l Yr Yr+l • • • YN A 

[ J
T E mN-r+l ar,····aN A 

nb 

b = :~:::>j 
j=l 

(40a) 

(40b) 

(40c) 

(40d) 

Because the bi are not known, it is impossible to solve 
this set of equations. A solution to this problem would be to 
write 

na nb 

Yt L a;Yt-i + L bi [wT cp(Xt-j) + do] + et as 
i=l j=O 
na nb 

Yt L a;Yt-i + L wJ cp(Xt-j) + d +et (41) 
i=l j=O 

A result of this is that this model belongs no longer to 
a Hammerstem structure due to the replacements of one 
single w by several Wj, j = 1, ... , nb. To avoid this 
problem, extra constraints can be added to ensure that the 
several Wj 's are collinear with each other, which means 
that the direction of all Wj 's are the same, but only the 
length is different. This is the same by applying the demand 
that the matrix[wll· .. lwnb] has a rank I. Because one 
apply a mapping from the input domain !i to a higher 
dimension by cp(·), which is in general unknown, adding 
such constraints will make the optimization problem non
convex. Therefore, remove the extra constraint and project 
the obtained model onto the Hammerstein model by a first 
rank SVD approximation. 

If the collinearity constraint is neglected, the optimization 
problem that is ultimately solved is the following: 

1 
nb 

1 
N 

min =- L:wJ Wj + ')'- L:e~ 
w;,a,d,e 2 2 

j=O t=r 
(42a) 

na nb 

s.t. Yt = L a;Yt-i + L wJ cp( Ut-i) + d +et (42b) 
i=l j=O 

N 

L wJ cp(xt) = 0 (42c) 
t=l 

with t = r, ... , N and j = 0, ... , nb (42d) 

The extra constraint 2:~1 wJ cp(ut) = 0 centers the 
nonlinear functions wjcp(·),j = O, ... ,nb around their 
average over the training set. This removes the uncertainty 
resulting from the fact that that any set of constraints can be 
added to the terms ofthe additive nonlinear function, as long 
as the sum of the constants is zero. This constraint gives a 
clear meaning of the bias parameter d: 

(43) 

The solution to the system is: 

0 ••• ' 0 l 
0 Kv (:L;"= 1 L:f'=1 K(uz.ut) )Im+l 

= [~] 
Now the identified system can be written as: 

na 

Yt = L a;Yt-i + d 
i=l 

[j] 

here u• is a new input which not belongs to the training 
setS. 

VII. RESULTS: REAL WORLD PROBLEM ON 

IDENTIFICATION OF A GLASS FURNACE 

This section deals with the identification of a real world 
process, which aims to find arelation (identification) between 
an input x(t) (amount of new glass entering the fumace, 
measured in [Tons/Day]) and the temperature T(Ç, t) as 
function of a spatial coordinate Ç in the fumace geometry 
X and time t. The physical phenomena in a glass fumace 
[4],[16], are is visualized in Fig. 7. The dynamics, like 
Temperature, Pressure and Velocity can be described by 
means of a Distributed Parameter System (DPS) which is 
a system whose states space is infinite-dimensional, and is 
usually described by partial differentlal equations. One way 
to model the time-dependant transport phenomena in fluids 
is to use Computational Fluid Dynamics (CFD) software, 
where the CFD simulates at each time step t E 1l' the physical 
quantities at a discrete point in the spatial domain X. To 
simulate the fluid dynamics, the partial differential equations 
(Navier-Stokes equations) have to be approximated through 
discretisation of the spatial domain X and then solved 
numerically at each and every time step. This simulation 
cost a lot of computation power, whereas identification of 
the physical time dependant data is diffi.cult due to the 
dependance of place. In order to avoid this problem, the 
spatial and temporal domains can be divided by means of 
a Singular Value Decomposition. 

Fig. 7. GlassFumace 



Suppose that a numerical simulation model is available, 
which calculates the temperature of the glass at discrete time 
instanee tk, where tk = k!:::.t, k E N and !:::.t the sampling 
interval, as function of L place dependent coordinates {I E 
Z c IR2 which denotes a set of grid positions. Now define 
the temperature vector T(tk) = [T({l, tk), .. . , T((L, tk)JT, 
which stores the temperature at each grid position Ç1 E X 
and store a set of these temperature veetors in a snapshot 
matrix T snap• which is a matrix of temperatures stored at 
time instances tk, for k = 1, ... , N 

( 

T({1,t1) ... T({l ,tN)) 

T!1118p = [T(tt) .. . T(tN)] = : ·.. ; (44) 
T({L,tl) ... T({L ,tN ) 

If T snap is decomposed by a Singular Value Decomposition 
(SVD), that is Tsnap = ~I: IJ!, the temperature (as in [4]) 
can be written as a linear combination of time dependent 
Fourier coefficients a(t) and place dependent basis function 
~ = [rPl ... , rPL] where rP; is the ith left singular vector of 
Tsnap: 

n 

T(t) = 2>;(t)4J; + €T(t) = ~nan(t) + ~.a•(t), 
i =l 

where an(t) = [a1(t), ... , an(t)JT 

a•(t) = [an+l(t), . .. ,aL]T 

~n = [4Jt, ... ,4Jn] 

~. = [rPn+l • · · · ,4JL] 
where fT = ~.a•(t) denotes the model reduction error 
obtained by truncation of the speetral decomposition, and 
the temperature is approximated by rn(t) = ~nan(t) 

with truncation error €T(t) = T(t) - rn(t) . The time 
dependent parameter a;(t) can be calculated by projecting 
the temperature T(t) to the ith orthonormal spatial basis 
functions 4J;, which can be archived by calculating the inner 
product of the snapshot matrix and the basis vector a; ( t) = 
(rP; , T(t)),j = 1, . . . , n. an = [a1 , ... , an]T is the vector of 
(time dependent) Fourier coefficients. 

The identification of the temperature profile in the spatial 
domain can now be obtained by learning the behavior of 
the time evaluation of the Fourier coefficients an(t) of 
the truncated model. In this paper, an identification model 
has been derived between the pullrate x [tons/day] (which 
determines the input of new fragments of broken glass 
measured in [tons/day]) and Fourier coefficients an(t), so 
one wants to derive the behavior x --+ a n for n = 3 and 
the leamingset SN = { (xt , at')}f:1 is tilled with N = 1000 
time samples. Due to MIMO identification, the n Fourier 
coefficients a n ( t) will be scaled by the first n singular values 
u~v• where 

(45) 

which result in the scaled fourier coefficients as = 
an (u~v)- 1 . The simulation process is depicted in Fig. 8. 
So the model identification strategy will be: 

1) Find aloworder basis ~n 

Fig. 8. ldentification Process 

2) Find a low order model which describes the relation 
between pullrate x and the time dependant scaled 
fourier coefficients a8(t) 

3) Validate the model by projecting the n different basis 
rPi , i = 1 ... , n to the temperature 'Î'n ( t) which is a 
linear combination of the identified fourier coefficients 
af(t), i= 1, .. . , n. 

Because the identified temperature tn is dependant of the 
n fourier coefficients a n, the first three measured fourier 
coefficients a n, n = 1, 2, 3 will be compared with the 
identified fourier coefficients an, derived with the following 
identification techniques 

• Identification with Metbod of Splines 
• Identification with SVMs 

The used input is defined as a Pseudo Random Multi-Valued 
Sequence x = [2.6 3.4] with normalized bandwidth w = 
[0 0.411'] [rad/sec]. 
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Fig. 9. Fit on Identification Data 

Two different models have been derived by MIMO Iden
tification, that is MsvM. which is a Hammerstem model 
derived with SVMs (see section VI-B), and Ms, which is 
a Hammerstein model derived with the metbod of splines 
(see section VI-A). Using MsvM and Ms, two outputs 
x --+ YSVM and x --+ ys have been simulated for two 
different input signals x. In Fig. 9, the results are plotted 
where x is the same input signa! used for identification. The 
red line denotes Ys and the blue line denotes Ysv M. These 
two graphs are compared with the green line, which is the 
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Fig. 11. Projection to Temperatule of the error 

measured signa! y = an. The same holds for Fig. 10, where 
x is a validation input signal. 

For both graphs (Fig. 9 and Fig. 10), it can be seen that 
the SVM model fits the behavior of the glass furnace best. 
In fig. ll, the identification error en(t) = an(t) - an(t) is 
projected back to the spatial domain for one time index at 
t = 240 seconds, where observation leams that the critica! 
errors lie in the melting and the throat zones. This problem 
may be improved by choosing an other spatial basis function 
~-

VUL CONCLUSIONS 

In this paper, two different Hammerstem identification 
methods have been derived, where the nonlinear mapping 
f has been replaced by a neural network with two different 
structures, which are the radial basis function construction 
and tensor product construction. The number and values of 
the parameters and exact size of the nonlinear model have 
been derived by SVMs and Method of Splines. For the static 
and dynamic SVM model, the complexity grows linear with 
the number of leaming points N, which can be reduced using 
Orthogonal Least Squares for the static model. The Method 

of splines is based on a linear combination of nonlinear basis 
functions. It can be seen that for the identification of a glass 
furnace, the SVM model fits the data best. 

IX. RECOMMENDATIONS 

The Identification techniques described in section VI-B 
and VI-A are based on linear ARX models. To improve 
the results in section VII, where a Glass furnace has been 
modeled, one can replace the ARX model by a linear state 
space model [7], which is a wider model class than ARX. 

To deal with the complexity problem of section VI-B, one 
has to solve the complexity problem, which states that the 
order of the final SVM model grows linear with the size of 
the leaming data N. lt has already been showed that it is 
possible to apply a reduction step for a static SVM model 
in section V. 
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