EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Controlling a tubular low-density polyethylene reactor using model predictive control with
multiple models

Hennissen, J.J.M.

Award date:
2002

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain


https://research.tue.nl/en/studentTheses/cab177a1-8a0f-4580-a9a3-0aa102895669

Eindhoven University of Technology technische

Department of Electrical Engineering S ——

Control Systems e d
eindhoven

Controlling a Tubular Low-
Density Polyethylene Reactor
using Model Predictive
Control with Multiple Models

by J.J.M. Hennissen

Master of Science thesis
Project period: March 2002 — December 2002
Report number: 02A/07
Commissioned by: Prof. Dr. Ir. A.C.P.M. Backx

Supervisors: Dr. Ir. H.M. Falkus, IPCOS Technology BV, Boxtel

The Department of Electrical Engineering of the Eindhoven University of Technology accepts no
responsibility for the contents of M.Sc. theses or practical training reports



Preface

This is the end report of my Master Thesis at IPCOS Technology BV. The thesis is done at the Dutch
office of IPCOS in Boxtel. The main subject of this practical work is Model Predictive Control (MPC)
using multiple models applied to control a Tubular Low Density Polyethylene (LDPE) reactor. This re-
port is meant for people with basic knowledge of both conventional control theory and Model Predictive
Control theory.

Readers who want to know more about the process inside of the tubular LDPE reactor are relegated
to chapter 2. The information that can be found in that chapter is the of result of a literature search.
The literature search report can also be found in this report in appendix A. Readers who want to know
more about the identification of a model for a process, are relegated to chapter 3. Those who want to
know more about the actual controlling of the process and the usage of multiple models, are relegated
to chapter 4 and .

I would like to thank my supervisors Dr.ir. H.M. Falkus and Dr.ir. ].H.A. Ludlage for their guidance
which made it possible for me to end my thesis successfully. Also I want to thank IPCOS Technology
BV and its employees for the possibilities offered to me to do my master thesis. Last but not least, I
want to thank everyone I forgot to mention.
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Summary

Controlling a non-linear process with a model based controller is not easy. The usage of non-linear
models to control the process is difficult and sometimes even impossible (for instance, the MPC con-
troller is not able to handle non-linear models). The usage of multiple linear models is that case a
possibility to enlarge the operating range. The production of polyethylene is such a non-linear process.
There are three kinds of polyethylene: High-Density, Middle-Density and Low-Density Polyethylene.
Each kind is produced in different kind of reactors under different circumstances. In this Master
Thesis the control of the production of Low-Density Polyethylene (LDPE) in a tubular reactor comes
across.

The development of a Model Predictive Controller is done using a simulator of this extremely non-
linear process. The model described in (Gup8s) is implemented in a C++ program and the interface
of the simulator is made in Visual Basic. The interface communicates with the INCA Environment:
a commercial product of IPCOS Technology BV which is being used for the optimal control of an
industrial process.

Because of the non-linearity of the process, several operating points with accompanying work ranges
are introduced. These operating points are also called product grades, because at a certain work point
one specific product is produced. For each operating point a model is identified. First some pretesting
is done in order to learn the behaviour of the process. After pretesting, data is logged, analysed and
used in INCAModeler to identify a FIR-model. The FIR-model can be verified using independent
validation data. The identified models turn out to predict the behaviour of the process well enough to
use them to control the process.

To control the process a strategy is developed. In this strategy is stated that the outputs density and
meltindex, which determine the quality of the produced polymer, are the most important outputs to
control. Their value should be as close as possible to the ideal value. The other outputs, like the
temperature inside and outside the reactor, should always stay in a certain zone and, if possible, follow
their ideal value too. Using this strategy for the controller of product grade A gives well results. The
controller is able to make small steps at the ideals of the quality-determining outputs. Also the addition
of noise does not tremendously influence the performance of controllers. The controller is not able to
deal with periodic disturbances due to the physical delays in the process. Partly periodic disturbances
at the quality outputs of the process are compensated by the controller.

Switching between grades can be done by loading a so called cluster model. A cluster model describes a

bigger operating range and contains more than one product grades which equal each other concerning

their behaviour (i.e. their transfers have almost the same dynamics, delays and gains). The operating

range of each included grade lies in the operating Range of the cluster. It turned out that if two grades

lay close to each other, a grade model is in most cases good enough to switch to another grade in the

~ cluster. At the most, some tuning parameters of the controller should be changed to give the controller
enough freedom to reach the target grade.

When two grades lay far away from each other, switching between them can not be done with one
grade model. In some cases one cluster model is enough and in other cases more than one cluster
model is needed. Switching is done as follows: first the cluster (containing the current grade) model



is loaded. If necessary, tuning parameters will be adjusted. The controller, using the cluster model,
moves the process state to the target grade. After reaching this grade, the model and tuning parameters
belonging to that grade are loaded. It is tested that this method works. It is also demonstrated that
using one model is in some cases not enough.

It is recommended that further improvements of the simulator are done. Several dynamics of the
process should be simulated. Also solving differential equations, which describe the process, should
be improved. Further work can be done in the automatic switching of models and tuning parameters.
Developing optimal trajectories for optimal switching between product grades can also be a further
activity.
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Chapter 1

Introduction

Controlling a process with non-linear behaviour can be very difficult. When a controller uses a model
of the process, that model can be linear or non-linear. Using a non-linear model is not possible in
the current MPC software and harder to identify. Using only one linear model is in most cases not
enough. A model predictive controller is a controller which uses a model to control the process. In the
petrochemical industry MPC is more and more implemented. In other industries MPC is not applied
that much. One of the reasons for this is the non-linear behaviour of a process in the chemical industry
while a model predictive controller needs a linear model. The goal of this thesis is to research the usage
and performance profit when simply using multiple linear models to control a non-linear process. The
process used for this research is the production of Low Density Polyethylene.

Polyethylene is a raw material for plastics and is being produced for over 60 years now. It’s structure
and production is still studied with the goal to produce a better and more pure product. Roughly, there
are 3 kinds of polyethylene (PE): Low Density PolyEthylene (LDPE), Medium density PolyEthylene
(MDPE) and High Density PolyEthylene (HDPE). Especially the first and the last one are discussed a
lot in the literature. Those two kinds are also produced the most. In 1990 approximately 25 million
tonnes per year were produced; 65% of that was LDPE and the other 35% was HDPE.

In this report the production of LDPE is discussed, especially the production of LDPE ¥
under high pressure in a so called tubular (derived from the word tube) reactor. The
reactor consists of a small pipe with diameter of 5 to 10 cm. The tube itself is thicker
because of a thick cooling jacket to keep the temperature in the reactor at a certain
value. The length of the reactor can be huge: 500 till 1500 meter! Because of this
huge length, the reactor is build in a spiral form. The picture at the right shows such
a reactor.

o
s
e
P

One of the aims of this master thesis is the implementation of a simulation of the tubular LDPE reactor
in the programming language C++. Also the development of an user interface is done. The following
aim is the implementation of the simulator with an environment called INCA. The INCA environment
is a commercial product of IPCOS Technology BV and is being used for the optimal control of an
industrial process. The controller, part of this environment, is a so called Model Predictive Controller.

Model Predictive Control (MPC) is used to control the polymerisation process in the tubular reactor.
MPC has some advantages such as the possibility to introduce constraints. The fact that a temperature
may not exceed a certain value is one constraint that must be implemented. Also the assignment of
certain ranks to outputs (i.e. a specific output may be more important than some other outputs), is
possible with the INCA MPC. For optimal control, a control-strategy is developed: which outputs are
the most important to control and are there any constraints to take care of. Also the performance profit
when using multiple models, in stead of one, is researched.

11
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The structure of the report is as follows. In the second chapter the working of the tubular reactor
will be discussed. Especially the chemical reactions and some properties of the reactor are discussed.
Also a short introduction to the mathematical model (used to simulate the reactor) and the simulation
environment are discussed.

The third chapter will pay attention to identification of a model of the LDPE plant. The complete
identification procedure consist of several phases. Each phase will be explained and an example will
be given. Also an introduction to product grades is made. A product grade can best described as a set
of operating conditions and values of in- and outputs, for which a certain product is produced.

In chapter four the actual controlling of the reactor will be discussed. Not only the controller setup will
come across, but also the control strategy will be explained. Also a short explanation of MPC is given.
The main part of chapter four will be the performance of the implemented MPC controller. The per-
formance of one product grade will be discussed. Several steps on the indicators of the product quality
are made. Also the process is disturbed with noise, periodic disturbances and an extra temperature
offset.

In the fifth chapter multi-modelling will be introduced. Because of the non-linear behaviour of the
process and the fact that our controller uses a linear model, better performance can be achieved when
using more than one linear model to control the process. Subjects that will be discussed are the chosen
linear models, clustering of those models and the usage of multiple models. A strategy for switching
between different products is discussed and a switching example is given.

Finally, in the last chapter conclusions about the implementation of a MPC controller in a tubular
LDPE reactor, will be made. Also recommendations about possible improvements of the simulator,
and extensions of this demonstrator will be given.

12



Chapter 2

The Tubular LDPE Reactor

2.1 The process

The goal of a LDPE reactor is to convert monomer into polymer. The monomer converted in our
Tubular LDPE reactor is Ethylene. The chemical structure of Ethylene consist of a double electron-
connection between the two carbon-atoms of the Ethylene-molecule. One of the properties of Ethylene
is the fact that it is not excited about that double connection. In fact all molecules with a double
electron-connection are not excited about such a connection. They rather have a single connection
with other (carbon-)atoms.

A so called free-radical (i.e. very reactive molecule) likes to have a connection more. That wish follows
from the fact the molecule consist of atoms with a non-full shell. Atoms with a non-full shell want to
have a full shell and are therefore very reactive. The smaller the atoms, the less and the smaller the
shells and therefore the atom is more reactive. In our tubular reactor, that free radical initially comes
from the initiator hydrogen-peroxide (H205).

The free-radical breaks the double electron-connection in Ethylene. As a result, the Ethylene molecule
becomes a free-radical. In that way, it can react with another Ethylene molecule (i.e. break open the
double connection of that molecule) and build a longer molecule consisting of two Ethylene molecules.
This is shown in figure 2.1.

= — 4

H

Figure 2.1: Conversion of Ethylene into Polyethylene

One side of the molecule just reacted is still very reactive and can react with an another Ethylene
molecule. In this way a long chain of Ethylene molecules arises. It is also possible to add co-monomers
into the reactor. By doing this, side chains can be generated when the co-monomer has more carbon-
atoms (e.g. use Buthylene with four C-atoms as co-monomer).

The building of a chain can stop in several ways. The first method is when a reaction occurs between
the reactive part of the polymer-chain and a hydrogen-atom. The second way is when the reactive part
of the chain reacts with an Ethylene molecule which gives away it’s free-radical to another molecule

3
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which did not have a free-radical part already. The third possibility that could happen is a reaction
between two polymer-chains into a very long polymer-chain.

It can be noticed, very different kinds of chains can be found in a tubular LDPE reactor. It is very usual
that also monomer is received at the end of the reactor. In fact, only 15 to 20 percent of the monomer
fed into the reactor is converted. The composition of different chains and their lengths determine the
kind of product. The longer a chain, the lower the viscosity, the stiffer the final plastic produced with
this polyethylene. In table 2.1 the elementary reaction equations can be seen. Radicals are denoted
with a R and dead (no longer containing a free-radical part) polymer-chains are denoted with a D.

Table 2.1: Elementary polymerisation reactions

1. Initiation: I L 2R

2. Chain initiation reactions: R-+M, kn R

3. Propagation: R.+M, k, Ryu

4. Termination by combination: R:+ R, k—;c'D,,.n

5. Termination by disproportionation: R:+Ry ki Dy+ D,
6. Chain transfer to monomer: R.+M, ki D+ Ry
7. Chain transfer to solvent or chain transfer agent: R.+S kis D:+ R
8. Chain transfer to polymer (intermolecular transfer): R, + D, kyp Dz + Ry
9. Intramolecular transfer (backbitting): R. _kg__) R,

10. Scission of radicals: R, ks D, +Ry
11. Retardation by impurities (or oxygen): R;+... I,Dx

12. Decomposition of ethylene: 2C;Hy kiee 2C +2CH, + heat

CoH, kgec 2C + 2H3 + heat

R: denotes live radicals and D, denotes dead polymer-chains with length x.

Normally the formation of a chain takes a while. Therefore the pressure in the reactor is very high
(2000 till 3000 atmospheres). Besides, the reaction is strong exothermic. Due to the produced heat
the molecules move fast (i.e. they have a lot of kinetic energy). The high pressure and high temperature
cause very often collapsing of the molecules in the reactor. In this way the reaction takes place very fast.
As soon as all of the free radicals have reacted (a short while after the initiator is gone), the reaction
stops and the temperature slowly drops.

The reason for the dropping of the temperature are the external cooling jackets. These jackets take
care that the temperature in the reactor does not exceed a certain level. At 320 a 330 °C the reactor may
explode due to the high pressure, so cooling is very important. Due to the construction of the reactor
and its cooling jacket, only the mixture of monomer and polymer at the edge of the tube can be cooled.
In the centre of the tube, the mixture has the highest temperature and flows best. The mixture at the
edge is a little syrupy.

The entire reactor is divided in a number of zones. Each zone has its own function; for example a
preheating zone, reaction zone and cooling zone. In the preheating zone, the feed of monomer, co-
monomer and initiator is heated to a certain temperature. By doing this, the reaction in the reaction
zone can start earlier. In a reaction zone new monomer, co-monomer and initiator are added to the
flow. In this zone, the actual reaction takes place. After a reaction zone, another reaction zone could
be placed. In that second reaction zone fresh monomer, co-monomer and initiator can be added to the
flow. This is of influence on the reaction in that zone and the final end product. It is influenced by the
drop of the temperature caused by the feed which is colder than the flow in the zone. Also the formed

14
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chains can grow further, so the properties of the end-product can be changed very flexible. The above
explanation becomes clearer when looking at figure 2.2.

Sg [
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Figure 2.2: A possible temperature profile inside the reactor

As can be seen in the figure above, the temperature rises in the first zone due to the reaction that takes
place. When all free radicals in the zone are used, the reaction stops and the temperature stabilises.
When fresh monomer, etc, is added to the flow the temperature drops (this can be seen at approxi-
mately 230 meter). After that, the temperature rises again till all free radicals have reacted. When no
free radicals are available anymore, the temperature slowly drops due to the cooling jackets around the
reactor. In figure 2.2 this occurs at approximately 380 meter.

With simple reasoning the behaviour of the profile to changes of inputs of the reactor, can be explained.
For example, when more initiator is added in zone 1 or 2, the peak in the temperature profile will move
to the right. When the feed added to the flow has a higher temperature, the peaks of the profile will be

higher.

More information about the tubular LDPE reactor can be found in (Kipg3).

2.2 Using a Computer Model

There are many computer models of a tubular LDPE reactor introduced the past decades. There are
even more articles written about those computer models. All models have their pros and cons. Because
of different neglections and assumptions, using different models will lead to different simulation re-
sults. The used model comes from S.K. Gupta, et al. (Gup8s) and an initial version by IPCOS using
Fortran as a programming language.

The model describes a tubular reactor divided in two reaction zones and one cooling zone. At the
beginning of the first and second zone (the reaction zones), fresh monomer, co-monomer (in the
simulation called solvent) and initiator are added at a certain temperature. The model consists of a
set of non-linear differential equations. These equations describe the behaviour of various molecular
species, energy and total mass in the reactor. These equations are also coupled with other equations
describing the variation of several parameters (i.e. kinetic and physical) with respect to the operating
conditions in the reactor.

Using a model of a real plant will lead to simplifications and assumptions. The ones used in this model
and its implementation are:

o Plug-flow within the reactor (i.e. no axial mixing)

o No backmixing within the reactor

I5
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o Ideal radial mixing
¢ The temperature in the cooling zone is assumed to be constant and homogeneous

e No pressure drop over the reactor

The model is implemented in Microsoft Visual Studio C++. Therefore some adjustments of the old For-
tran source code were made. Not only for implementation reasons (for instance: Fortran does not have
pointers which can make the program faster), but also because equivalent functions did not exist any-
more. For instance: for solving the differential equations a specific NAG (Numerical Algorithms Group)
routine for Fortran is used. The same NAG routines for C++ are not available anymore (in Fortran the
routines were called Do2PAF and Do2XAF, in C++ the routines were called Do2PAC and Do2XAC).
Therefore equivalent routines for C++ are used (Do2PVC and Do2PDC), which unfortunately operate
different (e.g. other arguments, etc.). Some little changes in order to improve the performance and
results of the simulation, such as the determination of peaks in the temperature profile, are done.

All differential equations (and a short description) can be found in (Gup8s) and in the source code in
the document (Heno2a) which has be written in an early stage of the thesis.

2.3 The complete Setup

What is needed when setting up a complete demonstration environment? First a simulation of the
process is needed. Also a controller to control the process is needed. There should be a communication
method between those two parts. Also other parts, such as a data-logging tool and a program to view
values of inputs and outputs, can be useful.

IPCOS Technology developed an environment with tools that fulfill these functionalities. The environ-
ment is called INCA. The main communication protocol in INCA is OPC. All used variables are stored
in a central OPC dataserver. The OPC dataserver is the core of the simulation environment.

All INCA Tools communicate with that OPC DataServer. A scheme of all used tools and the communication-
ways can be seen below in figure 2.3.

OPC dataserver

Tubular LDPE
Simulator

INCAModeler

Figure 2.3: Scheme showing communications between the used INCA tools

INCATest is one of those programs that communicates with the dataserver. It can be used to plot the
value of certain variables against time. It can also be used to log the values of one or more variables
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against time (and samplenumber). INCATest can also be used to do automatic testing. This will be
described more extensively further on in this report.

INCAEngine is the actual MPC controller which is used to control the process. In closed loop, it reads
all process values and calculates new setpoints for the Manipulated Values (MV’s) of the process. All
values used by INCAEngine can be watched in INCAView, which is actually the user interface of the
engine. Both products and its settings will be treated further on.

The last online program is the Scheduler. It schedules the modules (such as INCATest and the simula-
tor) directly connected to the OPC DataServer.

Also one off-line INCA tool is used. That off-line tool is called INCAModeler. It can be used to identify
a model out of data logged by INCATest. The program will be described more extensively further on in
this report.

The programs described in this section are very simple described. More details about these programs
and the INCA Environment can be read in the INCA Course and Manual (IPCor).

One of the main parts outside the INCA environment, is the simulator of the process to be controlled.
The complete simulation of the tubular LDPE reactor contains more than just the C++ program code.
The C++ code is compiled as Dynamic Link Library (DLL) which communicates with a program written
in Visual Basic. A screenshot of this program can be seen in figure 2.4.
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Figure 2.4: Screenshot of simulation program

The inputs of the reactor to be simulated can be obtained in two ways: the user may enter them into
the user interface, or they are read out of the OPC DataServer. The simulator-program uses the input
variables to calculate the output variables. While simulating, all variables (including input- and output-
variables) are written into the OPC DataServer. In that way they are known by other programs that
communicate with the dataserver. During the simulation the temperature profile of the reactor (as
discussed on page 15) is plotted.

In figure 2.4 several inputs and outputs can be seen. Not all inputs are used to control the process.
The feed of monomer and co-monomer (solvent) are not used to manipulate the process.

Also not all outputs are being controlled. The outputs conversion rate, heat production and molecular
weight distribution are not included in the MPC controller INCAEngine. The outputs place and tem-
perature of the peaks in the temperature profile are included in the Engine configuration, but they are
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not all used to control the process. These variables are another way to describe the quality of the pro-
duced polymer (i.e. they are correlated to the outputs meltindex and density) and sabotage the control
of the meltindex and density. The values of the temperature outputs (temperature peaks and output
temperature) are not as important as the quality-determining outputs and are relative free to move, as
long as they stay in a certain zone (for safety reasons).

More information about the simulator-program can be found in (Heno2b).
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Chapter 3

Identification

As already told in the introduction, MPC has some advantages such as the implementation possibility
of constraints. The most important part of a Model Predictive Controller is the model. When a model
is not accurate enough, it is hard to control the process well (enough). So, the model should fit on the
process behaviour. In practice, the model never fits the behaviour of the process exactly. Due to noise
and little changes of the process equipment (e.g. a valve or a pipe), the calculated model does not fit for
100%. Normally this should not be a problem. The most important parts of a model are the described
dynamics, gains and possible delays. When those parameters almost fit for all transfer functions, the
controller should be able to control the process.

How do one gets such a model, and how can be verified that the model is accurate enough? The model
can be calculated (or better: identified) by examining the outputs of a plant after excitation of one or
more input(s). One can not simply excite all inputs of a plant and expect to identify a model out of the
logged data. For instance, exciting two inputs at the same time and looking how one output changes
can not lead to a model (the change of the output can be caused by both or just a single excited input)
The complete identification procedure contains some phases, which should all be done with care. All
those phases will be discussed in the next sections of this chapter.

3.1 Pretesting

The first phase of identification is the pretesting phase; i.e. learn how the process behaves. The goal
is to determine the different dynamics (slow or fast), gains (positive or negative) and delays of each
transfer (‘:“—,:p%‘-). Also non-linearities are determined. This can be done by putting little steps at an
input and observing the behaviour of all outputs. When the steps at a certain input differ in size, the
non-linearity of the process can be determined.

The simulation of the tubular LDPE reactor is very non-linear. The gain of a transfer (including its sign)
differs dependent on the process conditions (i.e. the values at the inputs of the reactor). The dynamics
of a certain transfer also differ when too large steps are made at one (or more) input(s). When steps
are small enough, the several gains and dynamics almost stay the same. Actually, these non-linearities
are determined by pretesting and they set the size of the operating range around a certain point. That
operating point belongs to a certain set of input values.

The gains of the process simulation differ very much when exciting an input too much. Therefore
in the pretesting phase, all inputs were excited with very small steps (equal of size) after each other.
Normally it takes a while before the steady state (belonging to that set of inputs) is found. To quicken
this process, the option 'dirty mode’ is introduced in the simulation. In dirty mode, no dynamics are
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taken into account and the steady state is calculated immediately. It may be clear that this mode is only
used in the pretesting phase. In practice the process also has dynamics that must be simulated.

The changes applied to each input are done by hand. The logging of the data (both input and output
variables) is done with INCATest. This can be seen in figure 3.1.
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Figure 3.1: Data on the dataserver can be logged with INCATest

When the process is in steady state in a certain operating point, the operating range, in which the
process behaves almost linear, must be determined. One aspect of linear behaviour is a constant gain
for each transfer X2 of the process.

After logging the data, the values of the outputs can be plotted against the changed input. The derivative
of the line when doing this, is the gain of the transfer. So, when the line is almost straight, the gain is
almost constant for those values of the changed input. This becomes clearer when looking at figure 3.2.
In that figure, the temperature peak in zone 1 is plotted against the feed temperature in that zone.
Approximation of the curve by a straight line can be used to determine the steady state gain.
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Figure 3.2: Temperature peak zone 1 plotted against the temperature of the feed in zone 1

Such plots are made from all outputs when changing a single input. In the same way all inputs were
excited. Doing so for each operating point, an operating range in which the gains of the transfers
almost stay the same, can be found. Of course dynamics should be taken into account, but other tests
learned that the dynamics did not change as much as the gains did.

3.2 Several Operating Points and Areas

Because of the non-linear behaviour of the process, several operating points with accompanying ranges
have been defined. These operating points and ranges are defined in table B.1 to B.8 which can be
found in appendix B. The fact that these points were not random chosen but belong to several product-
grades, will be explained later in this report.

Per operating point pretesting is done in order to determine the range and behaviour of the process
when changing a single output. All other phases of the identification-process are done per operating
point. These phases will be described in the next subchapters.

3.3 Logging Data using Test Signals

For identification, the logged data should fulfil some conditions. First, only one input may be excited
(i-e. a step put on it) at the same time. When more than one input are excited, it is not guaranteed the
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transfers are identified correctly. Inputs should be excited independent of each other. An input should
be excited several times with several values (i.e. different step sizes should be chosen). In this way
the gain of the system can be calculated more accurately and non-linearities are determined. The last
condition is about the duration of an excitation. It should last until every output has reached steady
state. After that, a new excitation may be started. It must be noticed that in practice more than one
input is excited at the same time in order to save time. When doing tests on a real plant, the production
process is in someway disturbed which should last as short as possible. When knowledge about the
process behaviour (e.g. the size of the operating range in which the process behaves almost linear) is
available, the tests can be done faster and the production process is disturbed as short as possible.

Every input should be excited several times and an excitation should last until every output has reached
steady state. This means a complete test to identify all transfer functions in the system, can take a
while. The option automatic testing in INCATest could therefore be an option in order to save some
time. Figure 3.3 shows a screenshot of the option Automatic testing.
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Figure 3.3: The option Automatic Testing in INCATest

Automatic testing uses two files: a header and a data file. The header file contains information about
the duration of the test and for each input (MV’s and in some cases DV’s) the gain, operator and
engineering boundaries. The data file contains for each input the normalised value for that sample.
For each model thats needs to be identified, such a testsignal must be designed because the operating
point and range differ per model.
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3.4 Analysing the logged Data

After logging the data with variations due to the automatic testing, the generated file(s) should be
analysed. Possible inconsistences should be fixed. A sensor could have measured a completely wrong
value for one or more samples. Identification algorithms could have problems with outliers and the
identified model will not be as accurate as possible. Therefore outliers should be fixed.

A program like MS Excel can be used to analyse the data files. The figure below is a plot of the output
*place peak zone 2’ when changing inputs using a testsignal described before. It may be clear that the
outlier must be wrong and should be corrected. This correction is done using peak shaving. In practice
such outliers can be caused by a failing sensor. In this case, a possible explanation is wrong temporary
solution (i.e. discontinuity between the solutions) of the differential equations used to simulate the
reactor.

Place pesk zone 2

Figure 3.4: The logged data for the place of peak in zone 2 contains a outlier

After correcting outliers some parameters for the future identification should be determined. When
calculating a FIR-model, the duration of each response and the delays before the response starts, can
be used as -priori knowledge. These parameters are determined opening the logged data-files in MS
Excel, but also another program could be used to do so. The parameters (in number of samples) for
each transfer in each grade (this will be explained further on) can be found in Appendix C on page 8s.

3.5 Identify a Model using INCAModeler

As already mentioned in the previous chapter, INCAModeler is an offline tool part of the INCA environ-
ment. Its goal is to identify a model out of data by building so called cases. In a case, the inputs (called
independents) and outputs (called dependents) are selected in the wanted sequence. There are several
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kind of models that can be identified using the modeler: FIR, State-Space, output error and equation-
error models. For each kind of model certain parameters, such as number of FIR parameters (in case
of identifying a FIR model) and known delays and gains, can be filled in. More about INCAModeler
can be read in its manual (IPCor). A screenshot can be seen in figure 3.5.

1 Models

=] {2J Stepmodel
1 Al_bansters
] new_M|

Figure 3.5: Screenshot of INCAModeler

After building a case, the model can be calculated and viewed. It is decided to identify a FIR model
instead of a state-space model because of the advantage that comes along with a FIR model: known
process-knowledge can be used to identify a better model. Known parameters as gains, delays and zero-
transfers can be defined when building the case. When identifying a FIR model, the algorithm used
to identify the FIR model is Least Squares. More about this identification procedure and techniques
used in the INCAModeler can be found in (Falg4). The screenshot in figure 3.6 shows a part of the
step responses of the identified model for grade B.
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Figure 3.6: Screenshot of plotting a model in INCAModeler

The complete step responses of the identified model for grade B, can be found in Appendix D.

3.6 Verification of the identified Models

To determine how good the identified model actually is, the model needs to be validated. This can be
done by making predictions with the found model. One can use the already imported logged data of
the inputs to predict the outputs. When the model is perfect, the predicted outputs should fully fit on
the logged outputs. In practice this is never the case; there are always small deviations between the
predicted and measured output values. Also in this simulation small deviations occur. The reason for
this is the non-linearity of the process and the fact that the identified model is linear (i.e. simplification
failures appear). The screenshot in figure 3.7 shows this for the model of grade B.

26



technische universiteit eindhoven

) IPCOS

9235

-

@
gm: e o [ _f_/%" /J:LLV P N —
= o

o3 J

Ll

s 3] r
;:5 _E [t I FLrJ — o e ;J“ﬂ_\v — T r—

s U

g i

=)
oo S '7"1@

=

283

&' 3 ~—
- o3

fae
g 3

:“.E’_‘ il B —
M3

&
O

@ T T T T [ v T M T T T r L] [ T ¥ 1] 13 ' A T T

8572 84102 ansr
Time

Figure 3.7: Predicted and measured outputs using the known step data and the model of grade B for
predictions

The legend for both figure 3.7 and figure 3.9 can be found in the figure below. The values behind the
description belong to figure 3.9 at the point where the predicted variable "Temp_peak_zone2’ differs
the most from the measured value.

[Time] (83121411
—Density.Prd 1920.41
—Meltindex.Prd :1.245
—Output_temperature.Prd : 272.58
Place_peak_zonel1.Prd :164.6
—Place_peak_zone2.Prd :617.8
—Temp_peak_zone1.Prd :288.45
—Temp_peak_zone2.Prd :313.2
—Density.pv 182014
—Meltindex.py 11143
Qutput_temperature.py ;27517
—Place_peak_zonel.pv :167.9
—Place_peak_zone2.py 6205
I—Temp_peak_zonel.pv :288.45
—Temp_peak_zone2.py 2242

Figure 3.8: Legend belonging to figure 3.7 and figure 3.9. .PRD are the predicted outputs and .PV are
the measured outputs

A better judgement of the model (in this case, the model of grade B) can be made when validation data
(i.e. data which is not used to identify the model) is used. In this validation data, several inputs may
be excited at the same time since in practice this will be the case. As can be seen in figure 3.9, the
predicted outputs differ from the measured outputs, but the behaviour is mainly the same.
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Figure 3.9: Predicted and measured output using independent verification data

As can be seen, the prediction differs from the measured outputs at some places. There are peaks
which are not predicted. The reason for these peaks is a discontinuity in the (temporary) solutions of
the differential equations describing the simulation.

Also the behaviour of the measured temperature peak in zone 2 (the bottom plot in figure 3.9) differs
very much from the predicted value. The explanation for this, is a non-linearity which occurs when a
certain input (or a combination of inputs) is excited too much. That non-linearity is not included in
the linear FIR model used for the prediction. When the value of every input stays within the operating
range, it can be concluded that excitation of more than one input at the same time makes the operating
range smaller. So, it is smart to use a smaller range when tuning the controller using this model. When
operating outside an operating range, the controller will still be able to control the process, but not as
good as possible. Because of the small operating ranges of the models and the large range needed to
reach all wanted product grades, multiple models are needed.

One last note: in this situation, the models are identified using step-responses. No noise was added
to the process simulation during the model-identification phase. Therefore simple step-responses are
enough to identify a model. However, in practice the process contains noise (i.e. measured process
data is disturbed). In that case a PRBNS test can be very useful to reduce the disturbance influence on
the test and improve the quality of the model. PBRNS testsignals have the advantage that the testing
time is shorter and amplitudes can be smaller. In that way, the production process is less disturbed.
Also the dynamics of the process can be better estimated.
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Chapter 4

Controlling the Process

4.1 Conventional Controllers

The main target of this master thesis is to control the Tubular LDPE reactor simulation. This is done
using Model Predictive Control. In the real plant, also conventional PID controllers can be found.
Figure 4.1 shows the usage of such a PID controller.

.SP PV

. APID

.LSP OP

- 100%

Figure 4.1: PID Controllers are also applied in a MPC environment

In the figure a flow (for instance: a flow of initiator) is controlled by a valve. This valve is actuated by the
output of a PID controller. Of course this PID controller needs some input in order to determine how
to actuate the valve. It gets a setpoint or reference value from an operator or a supervisory controller
such as the MPC controller INCAEngine. It also gets the real process value of the realised flow from a
sensor in the pipeline. The PID controllers are not replaced by the MPC because of the advantages they
have. The PID controllers can act very fast on changes of, for example, a valve. When the MPC must
also control these outputs, a smaller sample time is needed which could introduce numeric problems.
Another reason are unstable parts in the plant. Those parts can be stabilised by conventional PID con-
trollers. When the MPC goes offline for some reason, the process must still be stable and controllable
by an operator. Since PID controllers are already present in the plant and the advantages they have,
they are in most cases not replaced.

However, in this simulation environment, these controllers are not implemented outside the simula-
tion. The configuration of these controllers is not further discussed in this report.
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4.2 Implementation of a Model Predictive Controller

4.2.1 Basic MPC concepts

In this section some basic MPC concepts are discussed. A MPC uses a process model to predict the
behaviour of the process. Based on that prediction, a calculation is done of the future behaviour that
is as close as possible to the desired behaviour. Thus, the MPC has two main tasks: predict the future
behaviour and optimise it under defined constraints. The prediction is based on the past and future
inputs and the last measured outputs.

The optimisation procedure finds future inputs to bring the future outputs as close s possible to their
desired values. The optimisation task consists of two subtasks: static optimisation and dynamic opti-
misation. First the static optimisation is done based on equation 4.1 and equation 4.2 (assuming there
are p inputs and q outputs).

MU (Uideat (1) — Uss(1)) + - - . + (Uideat (P) — Uss(P))?} (4.1)

min{ (Yideai(1) — ¥as(1))? + . . . + (Videat (9) — vea(9))*} (4-2)

The equation must solved taking constraints and maximum steps to be made, into account. The static
optimisation is solved using a QP-solver.
The dynamic optimisation determines how the inputs and outputs move in the future and if they can
move more optimal (faster for example).

For simplicity, a MPC controller can be compared with a chess computer. A chess computer also
calculates future moves and (depending on the play level) makes the smartest (optimal) move. There
are several parameters to (fine)tune the controller. The most important parameters will come across in
the next sections.

More about Model Predictive Control can be found in (Bacg2).

4.2.2 Controller Setup

In chapter 2 could be read the tubular reactor is controlled with the MPC controller called INCAEngine.
This section will describe how the controller is implemented and (fine)tuned. The method described
is applicable for each operating point and its range, but only one is described. Operating point A (see
table B.1) is chosen without a special reason.

The tubular LDPE simulator has 11 process-inputs and 10 process-outputs. The simulator has more
inputs which can be seen as settings for the simulator. Therefore the inputs relevant for controlling
the process are called control-inputs. Also not all outputs are controlled: some outputs of the simulator
are indicators of the process simulation.

The INCAEngine knows three kinds of variables: Manipulated Variables (MV’s), Disturbance Variables
(DV’s) and Controller Variables (CV’s). Both MV’s and DV’s can be seen as inputs of the process with
the slight difference that MV’s can be manipulated by the controller (i.e. their value can be changed).
The value of a DV cannot be changed by the controller and can therefore be seen as a measured
disturbance on the process. CV’s can be seen as outputs of the process.

The MV’s of this LDPE reactor simulation are:

o Initiator Feed Zone 1
¢ Initiator Feed Zone 2

¢ Feed Temperature Zone 1
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o Feed Temperature Zone 2
o Jacket Temperature Zone 1
o Jacket Temperature Zone 2

e Jacket Temperature Zone 3
The DV’s of this LDPE reactor simulation are:

e Monomer Feed Zone 1
e Monomer Feed Zone 2
¢ Solvent (Co-monomer) Feed Zone 1

¢ Solvent (Co-monomer) Feed Zone 2
The CV’s of this LDPE reactor simulation are:

o Place Peak Zone 1
o Peak Temperature Zone 1

Place Peak Zone 2

Peak Temperature Zone 2

Output Temperature

Density Polymer

Meltindex Polymer

4.2.3 Control Strategy

The first thing to do when tuning a (MPC) controller is to decide how the controller should behave (i.e.
a control strategy must be developed). A controller can be tuned in such a way that some overshoot (or
undershoot) occurs when putting a step at an outputs ideal-value. However, there are cases in which
this overshoot is unwanted because of negative consequences for the process. A controller can be
tuned to follow a step very fast (with some overshoot) or it can be tuned to be slow but more accurate
(i.e. performance is more important). Besides performance, the robustness of the controller can be
influenced by the tuning parameters.

When the process is in a certain grade, it is decided that the controller should be very fast and accurate.
This is not as easy as it looks, because robustness and performance are always each other’s opposite.
It should be fast because the controller should be able to suppress fluctuations due to disturbances
at inputs and outputs of the process or other disturbances. Of course the controller should be as
accurate as possible; when producing a product with a certain density and meltindex, the product
should have as small as possible pollution of polymer with other specifications. Therefore a tradeoff
between robustness and performance has to be made (i.e. an optimal compromise between fast and
accurate control has to be found).

The INCAEngine is a MPC controller which can take constrains into account. As can be imagined a
variable may not exceed a certain boundary. For instance, a temperature may not exceed a certain value
because of unsafe situations that could arise. When both upper- and lower-bounds are introduced, a
certain band (or zone) around the variables setpoint is created. It could be wishful that the value of the

31



mLe technische universiteit eindhoven O Ipcos

variable never crosses a boundary and leaves that zone. Other kind of constrains are the rate of change
per variable. For example: it could be unwanted that a valve is opened (or closed) too fast.

A second nice thing of the INCAEngine is the possibility of ranking. Each ideal value (i.e. reference
value) and zone can be ranked. Each CV has an idealrank and a zonerank. MV’s only have idealranks
because it is decided internally in the controller that the zones of a MV have greatest rank. This means
a MV’s zone may never be exceeded. When choosing correct boundaries it can be prevented that the
plants operating conditions drift to unsave values.

The strategy to control the process is the following. The CV’s density and meltindex are the most
important output variables since they determine the quality of the polymer. When the temperature
inside the reactor becomes too high, the pipe could burst open. So, all temperature variables need to
stay in their zone. Also it is nice to keep the temperature of the polymer that comes out of the reactor, at
a certain constant value. The temperature profile inside the reactor determines the quality of product.
Because the quality is also determined by the variables density and meltindex, it is impossible to keep
the temperature profile unchanged. These outputs variables are too much coupled. In practice the
quality of the polymer is determined by the density and meltindex of the product. Therefore, these two
outputs are more important to control than the places and the height of the temperature peaks. This
explanation is expressed in ranking terms in table 4.1.

Table 4.1: Ranking of variables (the higher the rank, the lower the priority)

Manipulated Variables Ideal Rank Controlled Variables Ideal Rank | Zone Rank
Initiator Feed Zone 1 22 Place Peak Zone 1 30 5
Initiator Feed Zone 2 22 Peak Temperature Zone 1 25 5

Feed Temperature Zone 1 21 Place Peak Zone 2 30 5
Feed Temperature Zone 2 21 Peak Temperature Zone 2 25 5
Jacket Temperature Zone 1 20 Output Temperature 15 5
Jacket Temperature Zone 2 20 Density Polymer 10 5
Jacket Temperature Zone 3 20 Meltindex Polymer IO 5

The constrains are set up as follows. For each variable there are three kinds of boundaries: operator
boundaries, engineering boundaries and valid boundaries. The identified model used in de MPC
controller is only valid in the operating range it describes. The model may be good enough outside its
range where values are still valid, but this is certainly not guaranteed. The engineering boundaries are
therefore chosen equal with the boundaries of the operating range of the used model.

The operator boundaries are chosen safely chosen inside the engineering boundaries. The valid bound-
aries are chosen much higher (or lower in case of the lower boundary) than the engineering bound-
aries. In practice the values of these boundaries are the maximum or minimum value for which the
sensor, valve, etc. operates as it should. A simple example: a certain feed can never be less than zero!

Two important parameters of the MPC are control horizon and prediction horizon. The control horizon
is the horizon over which MV’s may be moved during the dynamic optimisation. The prediction
horizon is the horizon over which the CV’s are predicted. In figure 4.2 these two parameters are
explained in a graph.
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Figure 4.2: Graphical explanation of control and prediction horizon

There is no rule of thumb when choosing the control horizon. The larger the control horizon, the better
the performance but the more complex the optimisation problem. In this simulation using process
dynamics lead to a control horizon of 41 samples. When the control horizon is determined, the predict
horizon can be chosen by a rule of thumb: prediction horizon = control horizon + maximum number
of FIR parameters in the used model. In this case, the prediction horizon is chosen to be 120 samples.

Further tuning parameters such as maximum steps to be made per cycle, steady state weighting factors
and dynamic weighting factors can be setup in order to influence the behaviour of the controller in a
positive way. Most of these parameters are determined by trial and error. Fortunately there are some
rules of thumb. First choose the weighting factor equal for all variables. When the predicted steady
state is very important for one specific variable, the steady state weighting can be changed in such a way
that reaching the steady state of the specific variable is more important than for other variables. When
the dynamics of certain output should be improved, the dynamic weight parameter can be changed.
In INCAEngine these weights are inverse weights, so a lower number means a higher weight and thus
a higher importance.

4.3 Results of MPC Implementation

Eight grades are introduced. Per grade one model is identified and used to tune the MPC controller.
Describing the performance and results of each controller would be too much information for this
time. Therefore only one controller (of one grade) is discussed. Product grade A is chosen without
further specific reasons.

4.3.1 Step at the Density’s Ideal Value

The controller belonging to process grade A is now discussed. In our simulation grade A has a density
of 921.12 [,—’,‘1%] and a meltindex of 0.796 [15-1r]. The controller is tested when putting steps on both

10 min
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quality variables.

Figure 4.3 shows a screenshot when putting a negative step at the ideal value of the density. The ideal
value is decreased to 921 [;’:}%] . Later on the ideal value is set back to its starting value.
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Figure 4.3: Results of a step at the density’s ideal value

After the change of the density’s ideal value, it takes a while before the process value decreases and
follows the new ideal value. This is due to physical delays in the process; when a change is made at
an input (for example: more initiator is fed into the reactor), it takes a while before that change is
noticeable at the end of the reactor where the density and meltindex is determined. The same applies
to the positive step at the density’s ideal value. In figure 4.4, showing the MV ’Jacket Temperature
zone 2’, it becomes clear that the controller takes action direct after the change ideal value; it just takes
a while before this action becomes noticeable.
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Figure 4.4: Moves of the MV Jacket Temperature zone 2 when making steps at the density’s ideal value

It can be seen in figure 4.3 that the new ideal value of the density is reached in approximately 7 hours.
Based on historical knowledge it can said that in practice this is also the case. When two grades lay
close to each other (i.e. making small steps is enough), the time to switch is less than when two grades
are completely different. In the last case, the switching time could be 10 to 16 hours and in the most
worse case even more than 20 hours. In figure 4.3 the new value is reached without overshoot.

The change of density influences the values of other outputs. One of the most important outputs is
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the meltindex, since this one is also a direct indication for the product quality. Figure 4.5 shows the
change of the meltindex due to the step at the density’s ideal value.
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Figure 4.5: Change of meltindex due to a step at the density’s ideal value

As can be seen in the above figure, the meltindex decreases when a negative step at the density is
made. The reason for this is the fact that the meltindex and density are coupled. When one or more
inputs are changed in order to correct the density’s process value, it has also influence at the process
value of the meltindex. The meltindex decreases very quickly but increases back to its ideal value
again. The sharp peak in the meltindex’ value is probably caused by sudden discontinuities in the
simulation. Reaching the ideal value happens much slower because also other demands (with higher
ranks) should be satisfied (i.e. the density’s ideal value should be reached). Also other constraints, such
as the boundaries of the MV’s, limit the freedom of the controller to satisfy all demands (not occurred
in this case).

4.3.2 A noisy Density Process Value

In practice the in- and outputs of the process will probably be noisy. The simulator is able to add noise
(with a certain amplitude) to the in- and outputs of the process. That noise can be integrated so that
its pseudo random changes are not as wild as normal. Also can be chosen to filter (using a low-pass
filter) the outputs with their noise. In order to test the controllers reaction to noise, the output value
density is made noisy with pseudo random white noise. A noise amplitude of 0.02 [;’;%] on a value of

921 [,';—% is chosen. The output is filtered with a low-pass filter a-?-b2. 5

ideal of the density is made. Only now, the output is noisy. The result can be seen in figure 4.6.

The same step as before at the
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Figure 4.6: Results of a step at the density’s ideal value with added noise

In practice all outputs will be a little bit noisy. Making only one output (the density is this case) noisy
is not realistic, but is done to show the effect of noise at outputs in little steps. As can be seen, the
controller is well able to reach the new ideal value. Again, approximately 7 hours are needed to do
so. The output disturbances at the density value are fed back to the controller. It seems the controller
is (almost) insensitive for these disturbances: the settling time stays the same as before and no extra
overshoot occurs.
Again also other CV’s are influenced by the negative step at the product density. The screenshot
below (figure 4.7) shows the meltindex during the change of density. When comparing figure 4.7 with
figure 4.5, one can conclude the noise at the value of the density has almost no influence on change of
the meltindex. Only a few small deviations are visible but the time, needed to correct the value of the
meltindex, is the same as in figure 4.5.
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Figure 4.7: Change of meltindex due to a step at the density’s ideal value with noise

4.3.3 More Noise at the Process

In most cases not only a step at the density of the product, but also a step on the meltindex must be
made in order to achieve the wanted product quality. As one can imagine both outputs could be a

little bit noisy at the same time. This situation is simulated with a noise amplitude of o.02 [%‘75] at
the output density and a noise amplitude of 0.001 [174-] at the output meltindex. Both outputs are

filtered with a low-pass filter ;22
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Figure 4.8 shows the behaviour of the output density when a step down (from 921.1226 to 921 [;—'f‘%])

and back is made. As can be seen, the controller is almost invincible for the added noise and brings
the process value of the density to the new ideal value.
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Figure 4.8: Change of density due to a step at both the density’s and meltindex’s ideal value, both with

noise

Figure 4.9 shows the behaviour of the meltindex of the produced product. Both the change due to
the step at the meltindex ideal value and the change due to the step at the density’s ideal value, can
be seen in this figure. After some delay, the value of the meltindex first decreases while the value
should increase. This seeming wrong behaviour is due to the density’s value which is changing at
that moment (compare figure 4.9 with 4.8). Again, the new ideal value of the density is reached in
approximately 7 hours. The new value of the meltindex is reached in approximately 8 hours.
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Figure 4.9: Change of meltindex due to a step at both the density’s and meltindex’s ideal value, both
with noise

Of course not only the outputs can be noisy. Disturbances at the inputs and states of the process are
also possible. Table 4.2 shows the amplitudes of the noise per input and output. For simplicity reasons
there is no noise added to states of the process.
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Table 4.2: Amplitude of the added noise at the inputs and outputs of the process

Input Noise Amplitude Output Noise Amplitude
Initiator Feed Zone 1 0.00I Place Peak Zone 1 o
Initiator Feed Zone 2 0.0l Peak Temperature Zone 1 0.01I
Feed Temperature Zone 1 oI Place Peak Zone 2 o
Feed Temperature Zone 2 o.I Peak Temperature Zone 2 0.0l
Jacket Temperature Zone 1 o.I Output Temperature o.01
Jacket Temperature Zone 2 o.I Density Polymer 0.02
Jacket Temperature Zone 3 o.I Meltindex Polymer o.001

A step is made at the density’s ideal value with noise (which can be seen in table 4.2) at the inputs and
outputs of the process. Figure 4.10 shows the response of the density when a step at the density’s ideal

is made with noisy circumstances.
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Figure 4.10: Change of density due to a step at both the density’s ideal value, with noise on all inputs

and outputs

From figure 4.10 it becomes clear the noise at the output is larger than before. Thus the noise at the
inputs has influence on the outputs, as expected of course. It is more difficult to reach the new ideal
value when a step is made. Also keeping the process value as close as possible at the ideal value, is
more difficult. There is some undershoot which is not as clear as before due to the added noise. The
settling time is now approximately 13 hours. Keeping the value of the meltindex ideal value is even
more difficult. Not only this variable changes due to the step at the density’s ideal value, also the noise
at inputs and outputs make the process value oscillate round the ideal value. Figure 4.11 shows this

meltindex behaviour.

38




mLe technische universiteit eindhoven O IPCOS

|W[E
o
S
o
]
=
é ] N
e R A e
g P M(L
= S( v\"l I1|,|
~— N
= [Time] :1012/216:28 L
=3 —History :0.79756
Ideal Value :0.79613
gj [—Future with Control ~ : 0.79709
~— — Future without Control : 0.79709
o ™1 T " T ' ' T " [FutureldealValue :0.79613 T T g i T T E:
18:00 0:00 500 12:00 18:00 0:00
10711172 Time 10/1372
Figure 4.11: Change of meltindex due to a step at both the density’s ideal value, with noise on all inputs
and outputs
Another thing thats becomes clear in figure 4.11 are the delays in the process. At the beginning of the
trend, there is noise added to the inputs (see figure 4.12), but it takes a while before that noise influence
is noticeable at the end of the reactor. Therefore in the first part of figure 4.11 only the added output
noise can be seen. After the delay time the input noise is also noticeable.
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Figure 4.12: Noise is added to the input Jacket Temperature Zone 1

4.3.4 Slow Periodic Disturbances

Fast fluctuations such as pseudo random white noise are very difficult for a MPC controller to suppress.
However, suppressing slow fluctuations should not be problem. This case is researched by adding a
slow periodic signal to the outputs of the process. It is decided to disturb the quality outputs density
and meltindex with a sinus and noise. The sinus has a period of 24 hours (i.e. the disturbance differs

during a day of production). The amplitude of the sinus is o.o1 [;";‘&] for the output density and

0.00I |15+ for the output meltindex. The added noise has the same amplitude as the periodic

disturbance, but is filtered with a low-pass filter 22

First the situation where the controller is switched off (open loop) is researched. Figure 4.13 shows the
density and figure 4.14 shows the meltindex for 24 hours.
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Figure 4.13: Open loop density disturbed with periodic signal and noise

The periodic disturbance can be seen very clearly. The value of the density ranges from 921.1108 to

921.1344 [ﬁ%] . The value of the meltindex ranges from 0.7950 t0 0.7973 [15%= ]
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Figure 4.14: Open loop meltindex disturbed with periodic signal and noise
When closing the loop, the controller should be able to suppress at least the slow disturbance. Fig-
ure 4.15 shows the density and figure 4.16 shows the meltindex for 24 hours.
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Figure 4.15: Closed loop density disturbed with periodic signal and noise

Again, the periodic disturbance can be seen very clearly. The periodic disturbance is not gone, but its
period time and amplitude has changed. The change in amplitude is very small and can only be seen
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when zooming in. The value of the density now ranges from 921.1126 to 921.1314 [;’f‘%] . The value of
the meltindex now ranges from 0.7952 to 07970 [7&=].
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Figure 4.16: Closed loop meltindex disturbed with periodic signal and noise

It was expected that the controller would suppress the slow periodic disturbance. The reason for not
doing this (or actually just a little bit) are the delays. To resists against the change of density and
meltindex, several inputs (especially the feed and jacket temperatures) should be changed. Unfortu-
nately these changes take a while before they are noticeable at the end of the reactor. In figure 4.17
can be seen that the controller changes the input "Jackettemp_zoner’ immediately after the distortion
at the quality outputs is noticed by the controller. 4
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Figure 4.17: In closed loop inputs such as ’Jackettemp_zoner’ are actuated directly to correct the quality
outputs

When the process did not have (physical) delays, the disturbance would be suppressed. This can be
seen in figure 4.18. This figure shows the values of the density and the meltindex directly at the process
outputs. It also shows the disturbed density and meltindex which are fed back into the controller (i.e.
the periodic disturbance is added on the way from the process outputs to the controller inputs).
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Figure 4.18: Density and meltindex directly at the process outputs (blue) and before entering the con-
troller (red)

When there would be no delay, the blue trend in figure 4.18 would be shifted backwards in time and
the slow periodic disturbance would be completely or almost completely suppressed.

Another way to make sure the controller can suppress this periodic disturbance, is to define this distur-
bance as a measured disturbance. If one knows the periodic disturbance is due to temperature changes
during a day, the disturbance is approximately known and could be implemented as knowledge of the
controller.

To prove the controller is able to suppress a disturbance, another partly periodic disturbance is added
to the process outputs density and meltindex. The disturbance consists of a quarter of the just added
sinusoidal disturbance and stays the same after the quarter of the period time. The amplitude of the
sinus and the noise is the same as before. Figure 4.19 shows density when the controller is switched
off (open loop). Figure 4.20 shows the meltindex.
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Figure 4.19: Open loop density with partly periodic disturbance and noise
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Figure 4.20: Open loop meltindex with partly periodic disturbance and noise

As can be seen, the meltindex and density have for 6 hours (a quarter of 24 hours) a sinusoidal be-
haviour and after that the values stay the same. Since the controller is switched off, the ideal value can
not be reached again.

Figure 4.21 shows the product density with the same disturbance but now in closed loop. It can be
seen that the density’s value decreases after 4 hours back to the ideal value. This is due to the controller
which changes the setpoints of the inputs of the process.
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Figure 4.21: Closed loop density with partly periodic disturbance and noise

Not only the density is controlled, also the value of the meltindex is brought back to the ideal value, as
can be seen in figure 4.22. After the start of the disturbance, it takes approximately 7 hours before the
ideal value is reached again.
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Figure 4.22: Closed loop meltindex with partly periodic disturbance and noise
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In order to bring back the quality outputs to their ideal value, the controller changes the setpoints of
several inputs. Figure 4.23 shows the change of the jacket temperature in zone 1.
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Figure 4.23: The input jacket temperature zone 1 is changed in order to correct the quality outputs

4.3.5 An Offset in Output Temperature

Also a little offset in temperature of the produced product is made. This output disturbance can occur
in the summer where at noon the outside temperature is much higher than at night. This higher
outside temperature influences the process in several ways (for instance the jacket temperatures of
each zone). However for simplicity reasons only the influence at the output temperature is tested.
The controller should be able to compensate the changes of the density and meltindex of the produced
product due to this extra offset in output temperature. A value of 2 degrees Celsius is added to the

output temperature (see figure 4.24). The controller is able to compensate this disturbance within a
few hours (see figure 4.25).
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Figure 4.24: Change of output temperature due to an offset at the output temperature
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Figure 4.25: Change of density due to an offset at the output temperature

The first figure shows the extra offset at the output temperature. It also shows that this offset becomes
smaller as time runs. It becomes smaller due to the controller which tries to reach the ideal value
of the output temperature. The ideal value is reached again within 2 till 3 hours (in spite off some
undershoot).

Unfortunately also other output values change due to this offset. One of those outputs is the density.
In the second figure the change of the density can be seen. It takes a while (approximately 14 hours)
before the old ideal value is reached again. To improve the performance for this extremely unusual
case, the tuning strategy should be changed. Giving the output temperature a higher rank (i.e. lower
priority in reaching the ideal value) will give the controller more freedom to (if necessary) correct the
quality outputs.

4.3.6 Choosing a wrong Model

As the name already assumes, the performance of Model Predictive Control is very dependent of the
used model. When the behaviour of the used model does not accurately describes the real process,
controlling the process is difficult or even impossible. For example: when the sign of a certain transfer
(between an input and an output of the process) is different in the model than in practice, the closed
loop system could be instable.

To show how important the model actually is, the model for grade A is replaced with the model for
grade G. These models differ a lot; their transfers have other delays, other dynamics and in most cases
other gains. In figure 4.26 two transfers of both models can be seen.
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Figure 4.26: Two transfers of the different models A and G

The same step is made as in the first part of figure 4.3 in section 4.3.1 This step can also bee seen in
figure 4.27. Figure 4.28 shows the response of the density.
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Figure 4.27: Change of density using the correct model A to control the process

46



technische universiteit eindhoven o lpcos

o FEFEEE
§"_ [Time] : 8/29/2 0:58
=3 (—History :920.9993
= Ideal Value :1921.0000
=7 Future with Control  : 820.9992
@ 3 I—Future without Control : 320.9992
Zw0 3 [—Future Ideal Value  :921.0000
7
S|
oo 3
23
]
P
g
o T l T I T | T I T ' T l T | T
18:00 0:00 6:00 12:00 18:00 0:00 6:00
812112 Time 912002

Figure 4.28: Change of density using wrong model in the controller

Figure 4.29 shows the response of the meltindex. The process value oscillates and deviates from the
ideal value. After a while the ideal value is almost reached again.
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Figure 4.29: Change of meltindex due to step at density using wrong model in the controller

The oscillation of the outputs is due to oscillation at several inputs. Figure 4.30 shows the input
"Jackettemp_zone3” which is oscillating too. The reason for this oscillating are wrong gains in the
model used to control the process (the gains in the model are too small with the effect that the controller
actuates the inputs too much).
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When the model is bad and there is no possibility to log new data in order to identify a new model, one
could try to improve the performance of the controller by changing the tuning parameters. Figure 4.31
shows the same step as in figure 4.28. The controller using a wrong model is now better tuned: the
ideal weightings are changed. It is clear that the performance has increased, but is still not as good as

possible (compare this figure with figure 4.27).
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Figure 4.31: Change of density using wrong model in the controller (a little bit tuned)

Note that not only the model is important. Using a good model with bad tuning parameters will also

lead to bad performance of the MPC controller.

4.3.7 Conclusion

In this chapter the controller setup, strategy and achieved performance is discussed. With a good
strategy the product quality of polymer can be controlled well. Not only the right tuning parameters
are necessary, also a good model which fits well on the process is essential. This is made clear in

section 4.3.6.

In practice noise or other disturbances are present at inputs, outputs and states. In this chapter the
behaviour of the outputs responsible for the product quality is tested with noise on it. Also noise is
added to the inputs of the process. In the first case the performance of the controller is good enough.
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In the second case, the performance is still reasonable; some overshoot occurs and the settling time is
a little bit larger. It is shown that periodic disturbances can not completely be suppressed. The reason
for this are the physical delays of the process. When only a part of the periodic disturbance is added to
the process, the controller is able to correct the quality determining outputs to their ideal values.

In this chapter only the performance of the controller for product grade A is discussed. The perfor-
mance check of the controllers of all other grades can be done equally and is therefore further not

discussed in this report.

49



Chapter 5

Multi-Modelling

It may already be clear that the simulation of the tubular LDPE reactor is very non-linear. When iden-
tifying a linear model, little model mismatches are made automatically. An identified linear model is
therefore valid for a limited operating range (see section 3.2 for more information). When a larger
operating range is needed, because of the production of polymer with several product qualities and
corresponding operating ranges, more than one linear model or a non-linear model is needed. How-
ever, the INCAEngine is not able yet to handle non-linear models. Therefore several linear models will
be used to describe a larger range.

In this chapter, the clustering of several linear models, the implementation of multi-modelling and the
switching between product grades will be treated.

5.1 Clustering the Grades

A first idea to simplify the problem is to cluster several grades. This has the advantage that the number
of models necessary to switch between grades, can be reduced. For example: when two grades lay far
apart, the two models for those grades are not enough to switch between the two grades (i.e the two
working areas do not overlap). Therefore one or more intermediate models between two grade-models,
concerning the behaviour, are needed. When for all combinations of two grade-models one or more
extra models should be defined, the number of models increases quickly.
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Figure 5.1: Example of how grades could be clustered and how operating ranges lap each other

In practice the management of a factory for which models should be made, will not accept when many
models should be identified. The identification process takes a lot of time in which the process is in
someway disturbed (e.g. making little steps at the inputs, directly interferes the produced polymer). So
it is desirable to use as little as possible models to control the complete process with all its products and
qualities. Therefore the grade-models are being clustered based on their transfers. Figure 5.1 shows
an example of a clustering procedure. Note that this example is chosen completely random and has no
connection to the introduced grades in this report.
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Figure 5.2: Based on the step responses of each transfer, several grades are put in a cluster. Blue =
grade A, red = grade D and green = grade E

In figure 5.2 three step responses of models of different product grades are shown. From this figure
can be concluded that grade D and E can possibly be put in a cluster: the dynamics and gains of
the showed step responses equal very much. Grade A differs too much (different delays, different
dynamics and different gain) from the other two grades and therefore it is most likely that it can not be
put in the same cluster. Of course not only the transfers from input ’Jacket temperature zone 2’ to the
three outputs output temperature, density and meltindex should be watched. All different transfers
must be considered when building a cluster.

All grade-models have different transfers. This can be seen in plots like the one for grade B in ap-
pendix D. The step responses differ per model. Not only the delays of a single step response are
different, also the gain and dynamics differ from model to model. Therefore the models that behave
approximately the same (i.e. have almost the same delay, dynamics and if possible gain), are put to-
gether in a cluster. The clusters definition can be seen in table 5.1. As you can see, two grades are not
clustered. Grade C differs to much from the other grades (and clusters). Grade F is not used at all
because of its very small operating range.

Table 5.1: Definition of the used clusters

Cluster | Contain grade
I Dand E
2 Band G
3 Aand H

For each cluster, a model to control the process must be identified. A cluster model is also identified
round a operating point. The operating point of a cluster is an average of the operating points of the
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grades which lay in that cluster. The operating range of the cluster is at least so large that it contains
the operating ranges of each included grade. It is wishful for the cluster model to describe even a
larger operating range. Finally, the complete work area of the process must be described with as few
models as possible (identifying extra models costs time and money). The model for a certain cluster is
identified out of data received from logging data when a testsignal is put on the simulated process. For
more information about the identification-process, see chapter 3. The operating point of a cluster is
determined averaging the values of the inputs that determine the operating point of a grade (Initiator
feeds and the feed temperature). These values for each cluster can be seen in appendix E in table E.1
till table E.3. Note that a cluster model will be less accurate than a grade model, since it describes a
larger (non-linear) operating range and in fact is a average of several grade models.

Another way to define a cluster model, is to average the grades models that are included in the cluster
model. The gain and delays can be averaged easily. However, the dynamics are more difficult to
average. It can be more accurate to identify a cluster model from scratch. In practice this will cost too
much time, but since a simulation of the process is used, this method is chosen to obtain the cluster
models.

After obtaining cluster models, the following strategy is tested. When switching to another product
grade, the cluster model containing the current grade is loaded. When also a new set of tuning param-
eters (belonging to the just loaded cluster model) is loaded, a larger operating range is created and the
controller gets more freedom to change the output values in the right direction. Note that loading a
less accurate model will lead to less accurate control. When the operating range of the model of the
new (wanted) grade is reached, the cluster model is replaced by the model belonging to that new grade.

5.2 Performance of a Cluster Model

It is already said that a cluster model will perform different than a grade model. It is even logical since
the the cluster model describes a larger operating range in a non-linear process. In this section will be
shown that the performance (e.g. settling time, overshoot or not) differs from the performance when
using a grade model. This is done based on the same step responses using different models (cluster
or grade).

5.2.1 Model Validation

First a model of a cluster is tested with validation data. As already told in chapter 3.6, an identified
model can be verified using logged data which is not used to identify a model. The independent data
of the inputs are used to predict the outputs. When comparing the logged output with the predicted
outputs, a judgement of the models performance can be made. Figure 5.3 shows the process value and
the predicted value of the outputs density and meltindex.
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Figure 5.3: Process value (.PV) and the predicted value (.PRD) of the outputs density and meltindex
using cluster model 1 to predict the outputs

The same can be done for the model of cluster 2. Figure 5.4 shows the process value and the predicted
value of the outputs density and meltindex when predicting the outputs using cluster model 2. Note
that the used verification data for cluster model 2 differs from the data used to verify cluster model 1.
It differs because each cluster model describes a different operating point and range.
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Figure 5.4: Process value (.PV) and the predicted value (.PRD) of the outputs density and meltindex
using cluster model 2 to predict the outputs

It can be seen in both figures of this subsection that the models behave well enough. Sometimes the
gain is not exactly as it should be, but the global behaviour of the models is alright.

5.2.2 Change of Ideal Value

Now the performance of a cluster model, based on its behaviour for some step responses (e.g. short
settling time, overshoot or not), will be discussed. First cluster model 1 will come across. A step at
the ideal of both the density and the meltindex of the product is made. This change of ideals is not
chosen randomly but actually is the switching from product grade E to grade D. Both grades lay in
cluster 1. The simulation is started using the model of cluster 1 to control the process. Also the tuning
parameters belonging to this cluster are loaded. After the process is brought in grade E and is in steady
state, the actual performance simulation starts.

Figure 5.5 shows the density when changing the ideal values several times. First the density’s ideal
value is increased to 920.5 ['—';%] and the meltindex value is increased to 1.3 [5Ls]. The values
of these outputs are changed at the same time because both values should be changed in order to
reach the new grade. It is also possible to change the values after each other. Unfortunately, it is not
researched yet if this is better for the performance during the switching. After reaching steady state of

the new grade, the ideal values are changed back to the values belonging to grade E. This changing of
ideals is done three times: once with cluster model 1 loaded, once with the model of grade E and once

with the model belonging to grade D.
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Figure 5.5: Performance of the models C1, E and D with the same tuning parameters after changing
the product, viewing the change of the density

From figure 5.5 it may be clear that the model of cluster 1 (C1) performs worse than the models for
grade D and E. It has the most overshoot and needs the most time when following the change of the
ideal value. The main reason for this is the fact that the cluster model is made for a larger operating
range and is therefore not as accurate as a grade model. However, the cluster model should be able to
make larger changes of ideal values than the grade models. This will be shown in subsection 5.2.3. Also
can be seen that the change of ideal value is done fastest with grade model D: it takes approximately 8
hours to reach product grade D and approximately 9 hours to go back to grade E.

Figure 5.6 shows the meltindex when changing the product grades as described above. It becomes
directly clear that model D is not as good as thought after watching the previous figure. In this case,
it is slower than the models E and Ci. Besides it has some overshoot when following the ideal value.
Model E performs best because of the less fluctuations it has compared to model C1. Note the sharp
peaks in figure below. They are probably caused by sudden discontinuities in the simulation.
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Figure 5.6: Performance of the models C1, E and D with the same tuning parameters after changing
the product, viewing the change of the meltindex

In figure 5.5 grade model D and E performed approximately the same, in figure 5.6 model E performs
better because of less fluctuations and less overshoot. Therefore it can be concluded that model E has
the best performance if only this performance check is done. However, in the next subsection another
test will be done to test the performance when making larger steps.

Now the performance of cluster model 2 will be discussed. In order to judge the performance differ-
ences between models, first a step at the density’s and meltindex ideal value is made. Figure 5.7 shows
the density of the product after changing the ideal values. Note that the change of these ideal values
is not chosen at random, but actually is a product change from grade B to G. In the first part of this
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screenshot, the model belonging to Cluster 2 (C2) is used. In the second part the model belonging to
grade G is used. In the last part, model B was loaded. In all cases, the tuning parameters of model C2
are used.
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Figure 5.7: Performance of the models Cz, G and B with the same tuning parameters after changing
the product, viewing the change of the density

As can be seen, there is almost no difference between the behaviour of model C2 and model G when
looking at the change of density. The behaviour when using model B is a little bit better: there is less
overshoot when following the step at the ideal value. However, not only the output density should be
observed when judging the performance of the models. Of equal importance is the output meltindex
since this one determines the product quality as well. Figure 5.8 shows the change of the meltindex
when changing the product from grade B to G.
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Figure 5.8: Performance of the models C2, G and B with the same tuning parameters after changing
the product, viewing the change of the meltindex

Now the model of grade B performs a worse (it is much slower) than the models G and C2. When
taking an exact look at the performance of model C2 and G, one can conclude that model C2 performs
a little bit better. When changing the ideal meltindex value from 2.8 back t0 2.2 ;5% ] some under-
shoot occurs when using model G. That undershoot does not occur when using model Cz2.

Again, the sharp peak are probably caused by sudden discontinuities in the simulation.

5.2.3 Larger Steps at Ideal Values

It is already said that a cluster model should perform better when larger steps are made since it has
been developed for that purpose. Therefore a large step at both the density and the meltindex of the
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product is done using model C1, E and D again. The simulation is started with model C1 in grade E. A
step is made to grade B (density 922 5;‘!;] and meltindex 2.2 |54 ]). Figure 5.9 shows how all used

10 min
models perform. It is directly clear that model D is not suitable, since it is slower than the others and
a product change should go as fast as possible. The fastest change of product grade is made with the
cluster model C1. In approximately 10 hours the new grade is reached, where using the other models
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Figure 5.9: Performance of the models C1, E and D with the same tuning parameters after changing
the product with a large step, viewing the change of the density

Not only the change of density is important, also the change of the meltindex must be considered.
Figure 5.10 shows that change of meltindex. Also in this case the cluster model C1 performs the best.
It has a little less overshoot than the other models and besides is much faster in reaching the ideal
value. In approximately 11 hours that new value of the meltindex is reached.
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Figure 5.10: Performance of the models Ci, E and D with the same tuning parameters after changing
the product with a large step, viewing the change of the meltindex

Overall it can be concluded that the cluster model Ci1 performs better than a grade model when large
steps have to be made.

5.3 Multi-Modelling and INCAEnNgine

Since version 2.1, the INCAEngine is capable to use multiple models to control the process. However,
there is the restriction that if initially a FIR model is used, the other models to load must also be of
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FIR type (the same for State Space models). In future releases of the Engine, this condition will be
removed and both FIR and State Space models can be loaded randomly.

When a new model is loaded, it should first be initialised. There are two kinds of initialisation possible:
cold and hot initialisation. When cold initialisation is chosen, the inputs and outputs of the model are
made equal to the current inputs and outputs of the process. The other model states are made zero.
The process is assumed to be in steady-state.

There are two ways to initialise a model hot: based on simulation and observer based. When the model
is initialised hot, based on simulation, the state of the model is simulated using historical data. Only
the input states for the new model are obtained this way. The output states are corrected in such a way
that they become equal to the most recent sample of the historian. When a FIR model is used always
this kind of hot initialisation is used.

In the observer based hot initialisation, a finite time observer estimates the best model states using
the historical data for both the inputs and the outputs of the model. The hot initialisation of the new
loaded model is done by an external program called INCAStateEstimator. The StateEstimator directly
communicates with the Engine and gives the Engine a sign when the loaded model is initialised and
the actual switching can be realised.

5.4 Switching between Product Grades

In subsection 5.2.2 already the change between two product grades is discussed. In that case, the
two grades between which was changed, lay both in the same cluster. In this section the situation is
discussed where two product grades lay far away from each other, but the operator of the plant wants
to switch between them.

5.4.1 Two complete different Grades

When switching between two completely different grades (i.e. their transfers look complete different),
it could be possible that more than one cluster model needs to be loaded. In this subsection the results
of switching between grade E and G will be discussed. The switching process will be treated in several
parts. In the next subsection a switching as fast possible will come across.

After starting the simulation in grade E with model E to control the process, the density’s value is
919.92 [i%] and the meltindex is 1.23 [15%;=]. This is exactly the ideal value at that moment. The

ideal value is on purpose equal to the process value because in this case the process is in steady state
when starting a simulation. The first thing to do is to change the ideal value of the density and the

meltindex to 920 [%‘& and 1.20 |51 ] respectively. As can be seen in figure 5.11 overshoot occurs
at the output density. Also the response of the output meltindex has some overshoot.
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Figure 5.11: Density when switching from grade E to G: reaching the exact ideal values of grade E

The sharp peak of the overshoot is probably due to sudden discontinuities in the simulation. The delay
in the beginning of the figure is a physical delay: when an input is changed, it takes a while before
the influence of this change is noticeable at the end of the reactor where the density is determined. As
already told before, the inputs of the process are being changed by the MPC controller directly after the
change of the density’s ideal value.

After the value of the density and meltindex are settled at the new ideal values, the model used to
control the process is changed. The new model loaded is the model for cluster 1. After the model is
initialised and the controller is automatically switched on again, new tuning parameters are loaded.
This is done because the tuning parameters used for grade E are not good enough. Think for example
of the boundaries for each MV and CV. After the model and tuning parameters for cluster 1 are loaded,
the ideal values of the density and meltindex are changed again. The new ideal value of the density

is 922 ;";‘5] , and the new value for the meltindex is 2.2 [;7L=]. These values are not the values
belonging to the target grade G, but it is a step in the right direction.
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Figure 5.12: Density when switching from grade E to G: reaching grade B using cluster model 1

In figure 5.12 can be seen that the new ideal value of the density is reached in 3 to 4 hours. At that
moment, the value oscillates round the ideal value. This is not bad because it is not the end ideal
value of the density (Note that normally oscillations should be prevented as good as possible). Again,
the sharp peak is caused by discontinuities in solving the differential equations of the simulation. In
figure 5.13 the meltindex can be seen as it reaches the new ideal value. Also this new ideal is reached
in 3 to 4 hours and afterwards oscillates a little bit.
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Figure 5.13: Meltindex when switching from grade E to G: reaching grade B using cluster model 1

As soon as the density is 922 |4 | and the meltindex is 2.2 [17%;;], grade B is reached. Grade B

lays in cluster 2 together with grade G. Because we finally want to reach grade G, the cluster model 2
is loaded. After the model is initialised and the controller is switched on again, the matching tuning
parameters are loaded. With the model cluster 2 to control the process, the ideal values are changed.

The density’s value should increase to 923.5 {,—f‘%] and the meltindex should increase to 2.8 [74]
to reach product grade G. Figure 5.14 shows the density during this last part of the way to grade G.
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Figure 5.14: Density when switching from grade E to G: reaching grade G using cluster model 2

It can be seen that the value of the density belonging to grade G is reached in approximately 3 hours.
Figure 5.15 shows the meltindex during the last part of reaching grade G. It takes approximately 5 to 6

hours before the right value is reached.
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Figure 5.15: Meltindex when switching from grade E to G: reaching grade G using cluster model 2

5.4.2 Fast Switching between Grades

When looking at the figures 5.14 and 5.15, it seems to take 1 day and 17 hours to reach the new product
grade. However, these figures may not be used for determining the switching time. Switching to
another model and entering new ideal values can be done much earlier and through that much faster.
The process must not necessary be in steady state before another model with accompanying tuning
parameters are loaded. This fast-switching-procedure must be done automatically. An operator could
possibly be too late to switch to another model. It can be done automatically by the usage of a switching
configuration file which contains values of for example the density and meltindex at which another
model must be loaded. Such a configuration file must contain the variables that are being used as
switching-base. A lower and an upper switching-boundary should be defined (i.e. a hysteresis should
be build in). Of course the file must contain the name of the model and belonging tuning parameters-
file to switch to.

Unfortunately the INCA environment is not able yet to load new models and tuning parameters by
itself. The fastest change of product grade (from E to G), when changing models and tuning parameters
by hand, is done in a bit more than 16 hours. This can be seen in figure 5.16 and 5.17.
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Figure 5.16: Density when switching from grade E to grade G as fast as possible with multiple models
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Figure 5.17: Meltindex when switching from grade E to grade G as fast as possible with multiple models

Of course in practice there will not only be switched from grade E to G, but also back from G to E. As
can be seen in figure 5.18 and 5.19 the time needed for this switching is approximately the same as
needed in figure 5.16 and 5.17 where the switching from E to G can be seen. In eight hours the new
ideal value for both the meltindex and the density is reached, but it takes a couple hours more to settle
these values. In approximately 15 to 16 hours, the product belonging to grade E is produced again with
almost no off-spec.
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Figure 5.18: Density when switching from grade G to grade E as fast as possible with multiple models
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5.4.3 Why Multi-Modelling?

When reading this, the reader could think why use multiple models, can it not be done with only
one global model and what is the performance when doing so? It is decided to use cluster model 2
to test this situation. Therefore the tuning parameters (especially the boundaries) of the CV’s should
be edited. Else the density and the meltindex are being clipped at their upper or lower boundaries.
Figure 5.20 shows the result of switching from grade E to G with only one model.
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Figure 5.20: Density when switching from grade E to grade G as fast as possible using only model C2

As can be seen in the above figure, the new ideal value of the density is not reached. Also the new ideal
value of the meltindex is not reached. The cause of this is the lack of freedom of the controller. Several
MV’s are clipped at their operator boundaries. Figure 5.21 shows the MV jacket temperature zone 2
which is clipped at its upper boundary.
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Figure 5.21: The MV jacket temperature zone 2 is clipped when switching from grade E to G with only
one model

When giving the controller more freedom by changing these MV boundaries, grade G can be reached.
However, giving a controller more freedom is in practice not always possible (think of the MV bound-
aries which cannot always be made larger and larger because of safety reasons for example). Besides,
the output density is not the only output with a steady state failure. Also the output meltindex has not
reached the new ideal value. This can be seen in figure 5.22.
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Figure 5.22: Meltindex when switching from grade E to grade G as fast as possible using only model
C2

5.4.4 Other Grade Changes

In this master thesis, only the switching (using multiple models) between product grade E and G is
discussed. Of course also other product changes are possible and a possible change strategy for it can
be developed. This will not be completely worked out in this report, but the method to do so will be
described now.

When the process is in a certain grade and is controlled by the controller belonging to that grade, one
can switch to a grade in the same cluster or to a grade in another cluster. When switching to a grade
in the same cluster, it is not always necessary to load the cluster model. The cluster model and the
models of the grades in that cluster are almost equal concerning their global behaviour. It is also not
always necessary to load (or change by hand) other tuning parameters. However, the performance of
the controller, during and after the switching, can be improved when changing tuning parameters.
Some tests need to be done in order to determine which model should be chosen and how tuning
parameters should be changed.

When switching to a grade in another cluster, it is almost impossible to do so without changing the
current model. The current model, used to control the process in the current grade, is changed to the
model belonging to the cluster that encloses the current grade. That cluster model describes a larger
operating range and when loading the belonging tuning parameters, the controller is more robust.
Now should be tried if that controller is able to bring the process to the wanted product grade. When
the wanted grade can be reached with the single cluster model, the switching strategy is found. As
soon as the wanted grade is reached, the model and tuning parameters belonging to that grade can be
loaded in order to improve the performance of the controller.

When a cluster model is not able to reach the wanted grade (in the case described in section 5.4),
more than one cluster model is needed. In that case several intermediate points should defined. Each
point once becomes the new setpoint of the controller during the changing procedure. In the case
described before, the point (density, meltindex) = (922, 2.2) is such an intermediate point. This point
is reached with the first cluster model and from thereon another intermediate point should be reached
with another cluster model and tuning parameters. Each intermediate point lays closer to the point
of the wanted product grade. Finally the wanted product grade is reached and the model and tuning
parameters belonging to that grade, can be loaded.

It is preferable to change a model (and tuning parameters) as less as possible; the less models needed,
the better. So an intermediate point should lay at far as possible (expressed in points of density, meltin-
dex) from the current grade or previous intermediate point.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

Controlling a non-linear model with a model based controller, is not very easy. A non-linear model or
several linear models are needed for the controller. In this report the control of a tubular Low-Density
Polyethylene reactor, using Model Predictive Control, is discussed. Unfortunately is was not possible
to use a real plant to design and test the controller. Therefore a simulation of a reactor in such a plant
is used. The simulator has some limitations because of the assumptions that are made. However, the
main process behaviour is described by this simulator.

Several kind of polyethylene products can be produced in the reactor. The kind of product is basically
determined with two quality parameters: density and meltindex. Both parameters are outputs of the
simulator. In this simulation eight grades (a combination of a certain product density and meltindex)
for eight different products, are introduced. Per grade a single controller is designed, tested and one
of the eight controllers is discussed in this report. The controllers perform well when little steps at the
ideal value of the density or meltindex are made. When both quality outputs change at the same time,
the performance reduces: overshoot occurs and the settling time becomes larger. In spite of the fact
that the outputs are coupled, the controller makes the outputs follow their ideal values.

When noise is added to the process outputs, the controller is not influenced by this kind of disturbance.
When also noise is added at some inputs of the process, the performance of the controller decreases.
When adding a periodic disturbance with noise, the controller is not able to suppress the periodic part
due to the physical delays in the process. When only a part of the periodic disturbance is added to the
quality-outputs, the controller is able to correct the deviated values.

Another kind of disturbance is an offset at the output temperature of the produced polymer. This
influence from outside has influence on the product quality since the controller will try to bring the
temperature back to the ideal value. After a while the process is in steady state again and the process
value of the density and meltindex equals the ideal value.

When changing from one product grade to another, one model is not always enough. When two grades
lay close to each other (i.e. the behaviour of the process in those grades is not very different), one of the
grade models is good enough to reach the other product grade. However, to reach the wanted grade,
in some cases the degree of freedom for the controller should be increased or a so called cluster model
with belonging tuning parameters should be loaded. This should be researched and tried case by case.

When two product grades lay far away from each other, it is almost impossible to reach the wanted
grade without loading one or more other models. Multi-modelling techniques are in that case very
useful. By defining intermediate points where the used model should be switched, the wanted grade
can be reached. However, if one can do with a single model and maybe different sets of tuning param-

66



mLe technische universiteit eindhoven 0 IPC os

eters, this would be preferable since identifying a model takes some time and will cost the factory a lot
of money.

6.2 Recommendations

¢ A simulator with some extra’s could be developed. Influences from outside the reactor could be
taken into account. For instance: in summer at noon it is warmer than in the evening and that
temperature swing has some influence at the process.
Also the fact that some kind of backward mixing takes place, can be simulated. In this simula-
tion the chemicals flow in one direction and it is assumed that mixing takes place only in that
direction. In practice, mixing will take place in more directions; backward is one of them.
In the current simulation, the jacket of a zone has a constant temperature over the whole zone.
Some kind of first order change of jacket temperature is more realistic.
As could be read in the report, sometimes sharp peaks occur in several trends. These peaks
are probably caused by discontinuities while solving the differential equations of the simulation.
Status-signals of the equations solvation can be useful to prevent those discontinuities and sharp
peaks.

¢ Changing a model by hand needs some experience of an operator. The automatic change to
another model is preferable. This could take place in two ways: by a configuration file written by
an engineer or by automatic recognition that the current model is no longer good enough.

e When changing from a certain product grade to another product grade, an optimal trajectory can
be followed. Such a trajectory can be optimal because of as little as possible off-spec product
while switching between two products, or by optimal operating conditions. Optimal trajectories
could be developed and being loaded in INCAEngine when switching to another product.

67



Bibliography

[Bacg2] Backx, A.C.P.M. and A.].W. van den Boom, Model Predictive Control (Toegepaste Systeemanalyse
dictaat). Technical University of Eindhoven, 1992.

[Falg4) Falkus, H.M., Parametric uncertainty in system identification. Technical University of Eind-
hoven, 1994 (dissertation).

[Gup85] Gupta, S.K. and A. Kumar, M.V.G. Krishnamurthy, “Simulation of tubular low-density polyethy-
lene reactors". Polymer Engineering and Science, Volume 25, 1985, Issue 1, page 37 - 47.

[Henoza] Hennissen, J.].M., Analysis Fortran code Tubular LDPE reactor. Boxtel: IPCOS Technology
BV, 2002.

[Heno2b] Hennissen, ].].M., Handleiding simulator Tubular LDPE reactor. Boxtel: [IPCOS Technology
BV, 2002.

[IPCo1] IPCOS Technology BV, User Manual, Release 2.1, Boxtel: IPCOS Technology BV, 2001.

[Kipg4] Kiparissides, C. and G. Verros, A. Pertsinidis, I. Goossens On-ine parameter estimation n
a high-pressure low-density polyethylene tubular reactor.Process Systems Engineering, AIChE
Journal, Volume 42, 1996, Issue 2, page 440 - 454.

[Kipg3] Kiparissides, C. and G. Verros, ].F. MacGregor, Mathematical modeling, optimization, and qual-
ity control of high-pressure ethylene polymerization reactors. Journal of Macromolecular science-
reviews in macromolecular chemistry and physics, Volume 33, 1993, Issue 4, page 437 - 527.

68



Appendix A

Literature Search Report

This appendix contains the literature search report written by me in order to end the Documentary
Information Course (5]o53) successfully.

I. Assignment Description

1.1 Formulation of the problem

IPCOS Technology provides model predictive control technology with its INCA software package and
engineering services for the process industry, with the emphasis on the glass and chemical industry.
Within the ongoing research projects for the polymer industry, IPCOS is developing a rigorous non-
linear simulator for the free radical tubular LDPE (Low Density Polyethylene) process to show the
advantages and benefits of multi-model and trajectory control with INCA. For the tubular process an
initial simulation model in Fortran sourcecode is available.

The master thesis consists of the following phases:

¢ Implementing the tubular simulation model in C++ using the Fortran code as a basis. The
conversion is required to optimize simulation speed and to benefit of already existing C++ com-
munication and numerical libraries.

¢ Developing a control strategy with INCA around a fixed operating condition of the tubular pro-
cess. Using a single linear model for control of the non-linear tubular simulation will resultin a
trade-off between robustness and accurancy.

¢ To increase the control performance several linear models will be needed to operate the non-
linear tubular process over a broad working range. A strategy to switch between linear models
depending on the operating conditions must be developed.

¢ Main benefits can be achieved in practice when switching between operating conditions is real-
ized via optimal trajectories. These trajectories can be calculated by optimizing a process cost
function. Combining trajectory control which typically covers a broad working range and using
time variant models in the model predictive controller should realize optimal process control.

1.2 Nature and scope of the literature search
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In my master thesis the scope of the literature search will be to find out how to model a free radical
tubular LDPE process. This search needs to be done in order to understand the main literature search
better and in order to find out if the model IPCOS already has (used in the seventies) is still valid and
useful nowadays.

However, the main part is to find (several) way(s) to control a LDPE process using Model Predictive
Control (MPC) techniques. For instance: which input(s) are more sensitive to the process than others
and how controlling should lead to the optimal output of the plant.

2. Concept Index of the Graduation Report

In this chapter the concept index of the master thesis report (which will be written in the near future)
can be found. Only the (temporary) main parts of the index are listed below (of course the thesis will
also contain a preface, a summary and so on).

e Implementation of the simulation model

o Control strategy for the tubular process

e Increasing control performance due to several models

¢ Introducing trajectories for controlling the tubular reactor

3. List of search Terms

For the literature search the search terms listed below were used. These search terms are all in English,
because they all are names of techniques or applications, which are difficult to translate in Dutch and
are not often used in Dutch.

English Dutch
1.  Tubular
2.  (Free) Radical
3.  Polyethylene  Polyethyleen
4. LDPE
5.  Reactor Reaktor
6. Plant
7. Control Regel(techniek)
8. Model Model
9. Predictive Voorspellend
10. Trajectory

It must be noted that some search terms are (almost) the same, such as number 3 and 4. Unfortunately
the usage of these terms can lead to different search results and therefore both terms are used in my
literature search. Also some search terms (model, predictive, control) could be packed together, but
are used alone to generate more search results (hopefully!).

4. Literature Sources

4.1 Used sources
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Table A.1: Used sources and their searched period

Soure name Source medium Searched period

Library Catalog TU/e Online (VubisWEB) All data available
INSPEC Online (INSPEC via WebSPIRS) | 1985 — april 2002

IEE Library Online (IEEE Xplore) 1988 - april 2002

EI Compendex Online (via Elsevier ScienceDirect) | 1967 - april 2002

The reason for using these sources is the following:

o for Vubis(Web): this source medium contains references to all literature available at the TU/e,
both physical and electronical.

e for INSPEC and IEEE Xplore: these source media are both intended to be used for users in
the field of electrical and information technological engineering and to cover publications on
these fields of interest. Another advantage of these sources is the fact that they cover recent
publications as well.

o for Compendex: this source medium is not only intended to be used for users in the field of elec-
trical and information technological engineering, but is also very usefull in the field of chemical
engineering where for instance a LDPE reactor is part of. Both INSPEC and (even more) Com-
pendex do cover control theory and engineering very well.

4.2 Search results

The sources mentioned in paragraph 4.1 above were used with the search terms mentioned earlier in
paragraphs 3.1 and 3.2. This gave the results listed in Table A.2.
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Table A.2: Number of found results per source and search term

Search term(s) VUBIS | INSPEC | IEEE Xplore | Compendex
1. Tubular 62 3305 285 Too many
2. Free Radical II 3111 133 Too many
3. Polyethylene 93 12429 1664 Too many
4. LDPE 2 993 369 Too many
5. Reactor 479 106031 5107 Too many
6. Plant 512 64624 9449 Too many
7. Control 5297 | 578066 138425 Too many
8. Model 2689 | 867453 116804 Too many
9. Predictive 60 18268 5315 Too many
10. Trajectory 34 22380 4805 Too many
I+3 o 37 2 210
I+5 3 462 23 1787
1+6 o 90 10 526
7+8 22 108261 36386 Too many
7.8+9 19 3651 3589 1) 3223
37,849 ° 17 2 9
4.7,8+9 o 3 o 3
7,8, 9 +10 o 160 157 137
57, 8+9 o 300 112 236
6,7,8+9 o 665 348 598
3,5,7,8,9+ 10 o 4 o I
L35738,9+I0 o o o o

It must be noted that the source Picarta is also used, with the regrettable result of 1 when searching
for "Model Predictive Control" and "Polyethylene". Also other search terms did not lead to a satisfied
result and therefore this source is not taken down in Table 1 and Table 2. I also tried to use the internet
sources Engineering Electronic Library Sweden (EELS) and Edinburgh Engineering Virtual Library
(EEVL). Unfortunately, the results of these sources couldn’t satisfy me.

Only a few books were found using these search terms. Therefore a more general search term was used
in VUBIS to find some books that contain general, but also specific information, that I was looking
for. The Dutch keyword used is "Procesregeling" (Process Control). This led to 119 search results from
which 2 were useful. The Dutch keyword "Procesindustrie" (Process Industry) led to 47 results, but
none of them were new for me or interesting enough.

4.3 Selection of search results

Table A.2 shows many search results and even in some cases too many results (especially Compendex
is willing to generate too many results). Therefore the search results need to be filtered carefully. I
did this by reading the abstracts of each found document and judged it on base of its relevance to my
scope of literature search (chapter 1.2). All found literature was written in and after 2001. The found
literature is recent enough so no extra filtering, based on year of publication, is needed.

The documents found searching VUBIS as searching source seemed not good enough. Some of the
results were already found by another source (for instance INSPEC). Using the links in INSPEC led to
references in VUBIS which I didn’t find using the search engine of VUBIS. A possible explanation for
this is the fact that I searched VUBIS in English (some search terms can not be translated) and VUBIS
is not so strong at that point yet.

In the previous chapter was already mentioned that using Dutch search terms in VUBIS led to some
interesting books. The selected books were all written in English and selected on their content using
the index of the books.
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The documents found with IEEE Xplore are unfortunately not very interesting. Searching for search
term 3, 7, 8 and g gave 2 results and only one was interesting (but not very useful). The 10 search
results when searching for "Tubular" and “Plant" were all not useful.

The best (and by coincidence also the most) search results were found using INSPEC. Searching for
term 4, 7, 8 and g gave three useful results. Searching for 3, 7, 8 and g gave 17 results, but only 10 are
unique and useful.

Also good results came from searching with Compendex. The useful results were all already found by
INSPEC, so no extra literature was found using Compendex.

5. Snowball Method

The following publications were selected initially.

1. Cervantes, A, et al., Large-scale dynamic optimization of a low density polyethylene plant (6)

2. Xiao, K., et al., Control of coating properties of LDPE through melt strength measurements (42)
The reason for selecting these publications is that these publications have a recent publication date
(which means these are probably based on most of the publications in this area). Of course the selected
publications have a great relevance to the subject of the literature search. In this snowball method,

found literature with strong emphasis to the chemical reaction in the reactor, are omitted. Some of
that literature is not unimportant, so it can be found in the reference list in chapter g.

6. Citation Method

The following publications were selected initially.

1. Chen, C. H, et al., Computer model for tubular high pressure polyethylene reactors (7)

2. Donati, G, et al., Mathematical model of low density polyethylene tubular reactor (10)

3. Gupta, Santosh K, et al., Simulation of tubular low density polyethylene reactors (15)
There are two reasons for choosing these documents. The first one is the fact that these documents
(which were already found) are one of the oldest documents found. The second reason is the fact that

they describe the modelling of a tubular LDPE reactor. The citation method is a perfect way to find out
how important a particular document was and maybe still is.

In Figure 2 the results of the citation method can be found. It is clear that used literature for this
search was and is still very useful since, it is cited so often.
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7. Relation between found Literature and Final Report

In this chapter the relations between the found literature and the concept index will be made clear.
This is done by filling a matrix. The rows will be filled with the concept index and the columns will
contain the reference numbers.

Table A.3: Relation between found literature and concept index

Subject Rle|ftlelr]e|n]e]lel]s

Implementation
of the simulation

model 7 |15 (36| 1y 24 |25 |34 (42| 9 3 |32

Control strategy
the tubular process 14 | 12 4 32

30

Increasing control
performance due
to models 26 19 20

Introducing

trajectories
for controlling the
tubular reactor 27 9 38| 5

40

41

Year 76 | 85 [86 88 89 (92|92 93[93[94[95[96]|096([97]98

o0

00

8. Conclusions and Recommendations

At the end of this literature search report, some conclusions can be drawn. The first conclusion is that
the model described in literature number 7 is this referenced in today’s literature. This can easily be
seen when looking at the results of the citation method shown in Figure 2. Using that computer model
for a simulation of a tubular Low Density Polyethylene (LDPE) reactor, gives me a good feeling because
this model is still referenced today. Of some modifications are done in the past years which should be
taken into account when implementing a simulation environment.

Also many literature about the control of a tubular LDPE reactor is found. Most of this literature de-
scribes the control method and the results when other (or none) control techniques. Up till now no
document was found which described precisely how to control such a reactor (i.e. which inputs to
change when a certain change of output(s) is desired). When looking for literature describing the con-
trol of the reactor, also literature about trajectories and grade transitions (changing the circumstances
of the reactor in such a way that another wanted output is received) is found. That literature can be
very useful for me when implementing grade transitions during my thesis.

Most found literature was found using INSPEC. Most of the found publications were part of American
Institute of Chemical Engineering (AIChE) publications. Books were found using VUBIS as search
engine. From all books found, only 2 were good enough and not too general.

An author which was (and still is) very important in this kind of research is C. Kaprissides. In the
bibliography of this literature search (see chapter 9) this author is referenced 4 times with publications
of his own and once as a co-author (reference number 26). Other authors that were (and are) important
are S.A. Nield, A. Cervantes and A. Brandolin.
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Appendix B

Definition of Operating Points and
Ranges

In this chapter the definition of the operating points and belonging ranges per product grade will be
given.

Table B.1: Definition of operating point A

Inputs Lower boundary | Ideal value | Upper boundary | Unit
Initiator feed zone 1 0.095 o.1 0.12 Wl
Initiator feed zone 2 1.8 2.1 2.5 g |
Feed temperature zone 1 20 24 [ 'C
Feed temperature zone 2 112 120 123 *'C
Jacket temperature zone 1 206 210 220 *C
Jacket temperature zone 2 190 200 210 °C
Jacket temperature zone 3 150 170 190 'C
Monomer feed zone 1 33407 35407 37407 -
Monomer feed zone 2 86000 90000 94000 —
Solvent feed zone 1 353 393 433 hz:—
Solvent feed zone 2 348 388 428 Pl
Outputs
Place peak zone 1 182.5 232.6 248 meter
Temperature peak zone 1 165.3 267.6 27257 'C
Place peak zone 2 373.4 368.6 419.7 meter
Temperature peak zone 2 302.7 305.8 309.3 C
Output temperature 230.3 236.5 242.9 *C
Density polymer 919.5 92L.I 922.2 o |
Meltindex polymer 0.652 0.796 1.014 =4
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Table B.2: Definition of operating point B

Inputs Lower boundary | Ideal value | Upper boundary | Unit
Initiator feed zone 1 0.15 0.2 0.26 T
Initiator feed zone 2 2.8 3.5 4.6 hZ‘:_
Feed temperature zone 1 30 60 99 *C
Feed temperature zone 2 55 6o 65 °C
Jacket temperature zone 1 208 210 212 'C
Jacket temperature zone 2 190 200 220 °C
Jacket temperature zone 3 150 70 190 *'C
Monomer feed zone 1 33407 35407 37407 L
Monomer feed zone 2 86ooo 90000 94000 #
Solvent feed zone 1 353 393 433 T S
Solvent feed zone 2 348 388 428 £
Outputs
Place peak zone 1 122.5 167.1 200.7 meter
Temperature peak zone 1 279.7 28s5.2 291.1 C
Place peak zone 2 494.6 559.1 608.1 meter
Temperature peak zone 2 312.8 316.7 322.2 ‘C
Output temperature 254 262.4 270 C
Density polymer 920.6 921.8 923.4 S
Meltindex polymer 1.576 2.204 3.461 L]
Table B.3: Definition of operating point C
Inputs Lower boundary | Ideal value | Upper boundary | Unit
Initiator feed zone 1 0.24 0.3 0.34 i
Initiator feed zone 2 3.5 4.8 5.1 h%:_-
Feed temperature zone 1 6o 8s 105 G
Feed temperature zone 2 101 105 109 ge
Jacket temperature zone 1 208 210 212 C
Jacket temperature zone 2 190 200 210 G
Jacket temperature zone 3 150 170 190 °C
Monomer feed zone 1 33407 35407 37407 —
Monomer feed zone 2 86000 90000 94000 h;?
Solvent feed zone 1 353 393 433 e
Solvent feed zone 2 348 388 428 "“T‘“ﬁ
Outputs
Place peak zone 1 106.9 129.2 156.6 meter
Temperature peak zone 1 292.3 296.7 300 *C
Place peak zone 2 394.9 417.1 439.4 meter
Temperature peak zone 2 317.9 324.4 325.7 G
Output temperature 242.5 248.7 254.9 C
Density polymer 922.3 924.2 925.1 o
Meltindex polymer 2.371 4.004 4.524 5m_‘
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Table B.4: Definition of operating point D

Inputs Lower boundary | Ideal value | Upper boundary | Unit
Initiator feed zone 1 0.34 0.6 0.71 L
Initiator feed zone 2 1.9 2.1 2.8 o
Feed temperature zone 1 35 60 8o G
Feed temperature zone 2 55 6o 65 *C
Jacket temperature zone 1 208 210 212 e
Jacket temperature zone 2 194 200 210 i
Jacket temperature zone 3 150 170 190 °C
Monomer feed zone 1 33407 35407 37407 .
Monomer feed zone 2 86000 90000 94000 -
Solvent feed zone 1 353 393 433 —
Solvent feed zone 2 348 388 428 ﬁ'ﬂ%
Outputs
Place peak zone 1 120.7 1413 166.8 meter
Temperature peak zone 1 295.3 306.3 309.6 €
Place peak zone 2 543.1 584.3 615.9 meter
Temperature peak zone 2 303.8 305.7 3115 °C
Output temperature 254 259.9 265.9 G
Density polymer 919.6 920.5 921.9 e |
Meltindex polymer L.I50 1.318 1.892 I—';%
Table B.5: Definition of operating point E
Inputs Lower boundary | Ideal value | Upper boundary | Unit
Initiator feed zone 1 0.21 0.35 0.5 —
Initiator feed zone 2 2 2.2 3.5 7";11‘?-
Feed temperature zone 1 25 6o 8o °C
Feed temperature zone 2 51 60 70 C
Jacket temperature zone 1 207 210 213 §e
Jacket temperature zone 2 195 200 220 ¢
Jacket temperature zone 3 150 170 190 C
Monomer feed zone 1 33407 35407 37407 =
Monomer feed zone 2 86000 90000 94000 hir_-
Solvent feed zone 1 353 393 433 %
Solvent feed zone 2 348 388 428 o
Outputs
Place peak zone 1 131.4 152.9 190.3 meter
Temperature peak zone 1 286.2 295.9 302.74 *C
Place peak zone 2 514.9 588.4 614.4 meter
Temperature peak zone 2 305.1 307 316.3 *C
Output temperature 250.8 260.6 266.7 'C
Density polymer 919.3 919.9 922.4 g
Meltindex polymer 1.059 1.223 2.333 L7}
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Table B.6: Definition of operating point F

Inputs Lower boundary | Ideal value | Upper boundary | Unit
Initiator feed zone 1 0.095 o.1 0.12 S
Initiator feed zone 2 1.8 21 25 il
Feed temperature zone 1 6 12 16 °C
Feed temperature zone 2 97 100 113 *‘C
Jacket temperature zone 1 206 210 220 *'C
Jacket temperature zone 2 190 200 210 °C
Jacket temperature zone 3 150 170 190 °C
Monomer feed zone 1 33407 35407 37407 e
Monomer feed zone 2 86000 Q0000 94000 —
Solvent feed zone 1 353 393 433 hir_
Solvent feed zone 2 348 388 428 %Z
Outputs
Place peak zone 1 219.8 242.5 256.2 meter
Temperature peak zone 1 231.6 264.4 269.7 °C
Place peak zone 2 409.4 455.1 527 meter
Temperature peak zone 2 301.9 305 308.5 *C
Output temperature 2383 2443 250.3 *C
Density polymer 918.4 920.1 9211 o
Meltindex polymer 0.647 0.787 0.996 7:%
Table B.7: Definition of operating point G
Inputs Lower boundary | Ideal value | Upper boundary | Unit
Initiator feed zone 1 0.55 0.7 0.8 o
Initiator feed zone 2 3.4 3.6 4.9 . |
Feed temperature zone 1 30 60 8o G
Feed temperature zone 2 55 6o 65 *C
Jacket temperature zone 1 208 210 212 e
Jacket temperature zone 2 195 200 205 G
Jacket temperature zone 3 150 170 190 'C
Monomer feed zone 1 33407 35407 37407 —
Monomer feed zone 2 86000 Q0000 94000 %
Solvent feed zone 1 353 393 433 =
Solvent feed zone 2 348 388 428 Ealez_q
Outputs
Place peak zone 1 117.9 138.3 168.5 meter
Temperature peak zone 1 304.6 309.3 312.5 ‘C
Place peak zone 2 511.4 538.9 559.7 meter
Temperature peak zone 2 315 316.4 322.7 °C
Output temperature 256.2 262 267.9 g
Density polymer 922.4 923.5 925.2 B |
Meltindex polymer 2.392 2.797 4.511 f}%
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Table B.8: Definition of operating point H

Inputs Lower boundary | Ideal value | Upper boundary | Unit
Initiator feed zone 1 .11 0.14 0.17 Ty
Initiator feed zone 2 2.7 3 3.5 ﬁt
Feed temperature zone 1 10 22 38 °C
Feed temperature zone 2 69 84 08 *C
Jacket temperature zone 1 208 210 212 G
Jacket temperature zone 2 195 200 205 C
Jacket temperature zone 3 150 170 190 °C
Monomer feed zone 1 33407 35407 37407 ——
Monomer feed zone 2 86000 Q0000 94000 hZf:_"
Solvent feed zone 1 353 393 433 =
Solvent feed zone 2 348 388 428 —!q‘w_‘
Outputs
Place peak zone 1 203.3 222.1 236.6 meter
Temperature peak zone 1 269.2 273.7 2773 *'C
Place peak zone 2 428.4 475.6 523.9 meter
Temperature peak zone 2 310 312.1 315.2 C
Output temperature 245.6 251.4 257.3 °C
Density polymer 921.3 921.9 922.8 —l-"({z—"_—n_
Meltindex polymer 1.194 1.389 1.751 =




Appendix C

Parameters of the used Grade Models

In table C.1 the number of FIR parameters per transfer of the model for grade A can be found. In
table C.2 the delays expressed in sample numbers can be found. The ’-’ in the tables indicates that
there is no transfer simulated between that input and output.

For all other grades (B till H), equivalent tables ( C.3 till C.16) can be found in this appendix.
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Table C.1: Number of FIR parameters per transfer of the model in grade A

Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed
zone 1 zone 2 zone I zZone 2 zone I zone 2 zone 3 zone 1 zone 2 zone 1 zone 2
Place peak zone 1 10 - 10 - 180 - - 10 - 5 -
Temperature peak zone 1 10 - 10 - 180 - - 10 - 5 -
Place peak zone 2 5 10 10 5 180 40 - 5 5 5 5
Temperature peak zone 2 5 10 10 5 180 40 - 5 5 5 5
Output temperature 5 [ 5 5 180 8s 50 5 5 5 5
Meltindex polymer 5 5 5 5 180 85 50 5 5 5 5
Density Polymer 5 5 5 5 180 8s 50 5 5 5 5
Table C.2: Known delays per transfer of the model in grade A
Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed
zone I zone 2 zone 1 zone 2 zone 1 zone 2 zone 3 zone 1 zone 2 zone 1 zone 2
Place peak zone 1 163 - 133 - o - - 166 - 169 -
Temperature peak zone 1 163 - 133 - 3 - - 166 - 169 -
Place peak zone 2 205 28 205 28 37 o - 205 28 205 30
Temperature peak zone 2 205 28 205 28 30 o - 205 28 205 30
Output temperature 303 128 303 128 132 48 <) 303 128 303 128
Meltindex polymer 303 128 303 128 139 48 ) 303 128 303 128
Density Polymer 303 128 303 128 136 48 3 303 128 303 128
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Table C.3: Number of FIR parameters per transfer of the model in grade B

Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed
zone 1 zone 2 zone 1 zone 2 zone 1 zone 2 zone 3 zone I zone 2 zone 1 Zone 2
Place peak zone 1 10 - 20 - 135 - - 5 - 5 -
Temperature peak zone 1 10 - 10 - 135 - - 5 . 5 -
Place peak zone 2 5 5 5 5 180 8s - 5 5 5 5 =4
Temperature peak zone 2 5 5 5 5 180 8s - 5 5 5 5 o
Output temperature 5 5 [ 5 180 8s 50 S 5 5 5 g
Meltindex polymer 5 5 5 5 180 85 50 5 5 5 5 y
Density Polymer 5 5 5 5 180 8s 50 5 5 5 5 S—
(4]
c
=
3
Table C.4: Known delays per transfer of the model in grade B T
e,
-
Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent g'
feed feed perature perature perature perature perature feed feed feed feed o
zone 1 zone 2 zone 1 zone 2 zone 1 zone 2 Zone 3 zone 1 zone 2 zone I zone 2 g
Place peak zone 1 118 - 92 - ) - - 122 - 125 - <
Temperature peak zone 1 118 - 92 - ) - - 122 - 125 - g
Place peak zone 2 243 64 240 66 69 o - 243 67 244 68
Temperature peak zone 2 243 64 240 66 69 o - 243 67 244 68
Output temperature 303 128 303 128 128 52 3 303 128 303 128
Meltindex polymer 303 128 303 128 128 52 o 303 128 303 128
Density Polymer 303 128 303 128 128 52 o 303 128 303 128
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Table C.5: Number of FIR parameters per transfer of the model in grade C

Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed
zone [ zone 2 zone I zone 2 zone 1 zone 2 zone 3 zone 1 zone 2 zone 1 zone 2
Place peak zone 1 10 - 15 - 105 - - 5 - 5 -
Temperature peak zone 1 ) - 10 - 10§ - - 5 - 5 -
Place peak zone 2 5 5 5 5 180 45 - 5 5 5 5
Temperature peak zone 2 5 5 5 5 180 45 - 5 5 5 5
Output temperature [; 5 5 5 180 85 50 [ 5 5 5
Meltindex polymer 5 5 5 5 180 8s 50 5 5 5 [
Density Polymer [; 5 5 5 180 85 50 5 5 5 5
Table C.6: Known delays per transfer of the model in grade C
Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed
zone I Zone 2 zone I zone 2 zone 1 zone 2 zone 3 zone 1 zone 2 zone [ zone 2
Place peak zone 1 95 - 81 - o - - 97 - 98 -
Temperature peak zone 1 96 - 81 - o - - 97 - 98 -
Place peak zone 2 213 37 211 36 38 o - 213 37 213 38
Temperature peak zone 2 213 37 211 36 38 o - 213 37 213 38
Output temperature 303 128 303 128 128 48 o 303 128 303 128
Meltindex polymer 303 128 303 128 128 48 o 303 128 303 128
Density Polymer 303 128 303 128 128 48 o 303 128 303 128
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Table C.7: Number of FIR parameters per transfer of the model in grade D

Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed

zone I zone 2 zone [ zone 2 zone 1 zone 2 zone 3 zone I zone 2 zone 1 zone 2

Place peak zone 1 10 - 10 - 11§ - - 5 - 5 -
Temperature peak zone 1 10 - 10 - 115 - - 5 - 5 -
Place peak zone 2 5 5 3 10 180 8s - 5 5 S 5
Temperature peak zone 2 5 5 5 10 180 8s - 5 5 5 5
Output temperature 5 5 5 5 180 85 50 5 5 5 g
Meltindex polymer 5 5 5 5 180 85 50 5 5 5 5
Density Polymer 5 5 5 5 180 85 50 5 5 5 5

Table C.8: Known delays per transfer of the model in grade D
Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed

zone 1 zone 2 zone 1 zone 2 zone I zone 2 zone 3 zone 1 zone 2 zone 1 zone 2

Place peak zone 1 104 - 9t - ° - . 105 - 106 i
Temperature peak zone 1 105 - 91 - o - - 105 - 106 -
Place peak zone 2 248 68 246 70 74 ) - 248 71 249 73
Temperature peak zone 2 248 68 246 70 74 o - 248 71 249 73
Output temperature 303 128 303 128 128 51 o 303 128 303 128
Meltindex polymer 303 128 303 128 128 5t o 303 128 303 128
Density Polymer 303 128 303 128 128 51 o 303 128 303 128
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Table C.g: Number of FIR parameters per transfer of the model in grade E

Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed
zone 1 zone 2 zone I zone 2 zone 1 zone 2 zone 3 zone 1 zone 2 zone I zone 2
Place peak zone 1 10 - 10 - 125 - - 5 - 5 -
Temperature peak zone 1 ) - 10 - 125 - - 5 - 5 -
Place peak zone 2 10 10 5 10 180 8s - 5 5 5 5
Temperature peak zone 2. 10 10 5 10 180 8s - 5 5 5 5
Output temperature 5 5 5 5 180 8s 50 5 5 5 5
Meltindex polymer 5 5 5 5 180 85 50 5 5 5 5
Density Polymer 5 5 5 5 180 85 50 5 5 5 5
Table C.10: Known delays per transfer of the model in grade E
Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed
zone I zone 2 zone I zone 2 zone 1 Zone 2 zone 3 zone 1 zone 2 zone 1 zone 2
Place peak zone 1 108 - 99 - o - - 113 - 114 -
Temperature peak zone 1 108 - 99 - o - - 113 - 114 -
Place peak zone 2 249 67 246 68 75 o - 250 72 250 74
Temperature peak zone 2 249 67 246 68 75 o - 250 72 250 74
Output temperature 303 128 303 128 128 52 o 303 128 303 128
Meltindex polymer 303 128 303 128 128 52 o 303 128 303 128
Density Polymer 303 128 303 128 128 52 [ 303 128 303 128
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Table C.1x: Number of FIR parameters per transfer of the model in grade F

Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed
zone 1 zone 2. zone 1 zone 2 zone 1 zone 2 zone 3 zone 1 zone 2 zone 1 zone 2
Place peak zone 1 10 - 10 - 180 - - 10 - 5 -
Temperature peak zone 1 10 - 10 - 180 - - 10 - 5 -
Place peak zone 2 S 10 ) 1o 180 6o - 5 5 5 5
Temperature peak zone 2 5 10 10 10 180 60 - 5 5 5 5
Output temperature 5 5 5 5 180 8s 50 5 5 5 5
Meltindex polymer 5 5 5 [ 180 8s 50 5 5 5 5
Density Polymer 5 5 5 5 180 8s 50 5 5 [ 5
Table C.12: Known delays per transfer of the model in grade F
Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed
zone 1 zone 2 zone 1 zone 2 zone 1 zZone 2 zone 3 zone I zone 2 zone 1 zone 2
Place peak zone 1 158 - 172 - o - - 160 - 165 -
Temperature peak zone I 158 - 173 - [ - 160 - 164 -
Place peak zone 2 221 43 219 36 46 o - 221 44 221 46
Temperature peak zone 2 221 43 224 36 46 o - 221 44 221 46
Output temperature 303 128 303 128 128 48 o 303 128 303 128
Meltindex polymer 303 128 303 128 128 48 o 303 128 303 128
Density Polymer 303 128 303 128 128 48 o 303 128 303 128
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Table C.13: Number of FIR parameters per transfer of the model in grade G

Initiator

Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed
zone 1 zone 2 Zone I zone 2 zone 1 zone 2 zone 3 zone 1 zone 2 zone 1 zone 2
Place peak zone I 10 - 20 - 110 - - 5 - 5 -
Temperature peak zone 1 10 - IO - 110 - - 5 - 5 -
Place peak zone 2 5 5 5 5 180 75 - 5 5 5 [
Temperature peak zone 2 [ [ [; 5 180 75 - 5 [ 5 5
Output temperature 5 5 5 5 180 8s 50 5 5 5 5
Meltindex polymer 5 5 5 5 180 8s 50 5 5 5 5
Density Polymer 5 5 5 5 180 8s 50 5 5 5 5
Table C.14: Known delays per transfer of the model in grade G
Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed
zone 1 zone 2 zone 1 zone 2 Zone I zone 2 zone 3 zone 1 zone 2 zone 1 zone 2
Place peak zone 1 102 - 9 - o - - 103 - 104 -
Temperature peak zone 1 102 - 89 - o - - 103 - 104 -
Place peak zone 2 239 59 236 61 64 ) - 239 62 239 64
Temperature peak zone 2 239 59 236 61 64 o - 239 62 239 64
Output temperature 303 128 303 128 128 48 o 303 128 303 128
Meltindex polymer 303 128 303 128 128 48 ) 303 128 303 128
Density Polymer 303 128 303 128 128 48 o 303 128 303 128
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Table C.15: Number of FIR parameters per transfer of the model in grade H

Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- | Monomer Monomer Solvent Solvent
feed feed perature perature perature perature perature feed feed feed feed
zone 1 zone 2 zone 1 zone 2 _zone1 zone 2 Zone 3 zone 1 zone 2 zone 1 zone 2
Place peak zone 1 10 - 10 . 170 - - 5 - 5 -
Temperature peak zone 1 ) - 10 - 170 - - 5 - 5 -
Place peak zone 2 5 5 5 10 180 6o - 5 5 5 5 =4
Temperature peak zone 2 5 5 5 5 180 6o - 5 5 5 5 o
Output temperature 5 5 5 5 180 85 50 5 5 5 5 g-
Meltindex polymer 5 5 5 [; 180 8s 50 5 5 5 5 &
Density Polymer 5 5 5 [; 180 85 50 5 5 5 5 g_
(4]
c
=3
(ED.
Table C.16: Known delays per transfer of the model in grade H @,
o,
-
Initiator Initiator Feed tem- | Feed tem- | Jacket tem- | Jacket tem- | Jacket tem- [ Monomer Monomer Solvent Solvent g
feed feed perature perature perature perature perature feed feed feed feed o
zone 1 zone 2 zone I zZone 2 zone 1 zone 2 zone 3 zone 1 zone 2 zone [ zone 2 g
Place peak zone 1 155 - 148 - o - - 159 - 162 - <
Temperature peak zone 1 155 - 148 - o - - 159 - 162 - g
Place peak zone 2 224 47 224 39 49 o - 224 47 224 49
Temperature peak zone 2 224 47 224 39 49 ° : 224 47 224 49
Output temperature 303 128 303 128 128 48 o 303 128 303 128
Meltindex polymer 303 128 303 128 128 48 o 303 128 303 128
Density Polymer 303 128 303 128 128 48 o 303 128 303 128
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Appendix D

Step Responses of Grade B Model

In this chapter the step response of each transfer function of the grade B model will be shown. This
will be done in 4 parts. Some cells in the matrix of plots are empty. This means there is no transfer
between that input and output. These plots can be made of all models discussed in this document.
Because of the huge size each plot needs and the fact that they do not add such relevant information
to this report, the step responses of other models are not included.

As can be seen, the most transfers have no dynamics. Some transfers with dynamics have a strange
response: one could think the number of FIR parameters used is not enough. However, using more
FIR parameters in those cases is tested and gave the same result. Those strange responses are probably
caused by shortages of the simulator.
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Figure D.1: Step response of model for grade B, part 1/4
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Figure D.3: Step response of model for grade B, part 3/4
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Figure D.4: Step response of model for grade B, part 4/4
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Appendix E
Operating Points and Areas of the used
Clusters

In this appendix, the operating point and range of each cluster can be found. For each MV the ideal
value and the boundaries are given. The ideal values of the outputs are the output values when the
simulator is initialised with the MV’s ideal values.

Table E.1: The operating point and area of cluster 1

Input Lower boundary | Ideal value | Upper boundary | unit
Initiator Feed Zone 1 0.21 0.46 0.71 e
Initiator Feed Zone 2 1.9 27 3.5 %u::
Feed Temperature Zone 1 25 6o 80 °C
Feed Temperature Zone 2 51 6o 70 °C
Jacket Temperature Zone 1 207 210 213 G
Jacket Temperature Zone 2 194 200 220 c
Jacket Temperature Zone 3 150 70 190 G
Monomer feed zone 1 33407 35407 37407 T
Monomer feed zone 2 86000 90000 94000 -
Solvent feed zone 1 353 393 433 %:—_
Solvent feed zone 2 348 388 428 P
Outputs
Place peak zone 1 125.8 146.8 183.3 meter
Temperature peak zone 1 286.1 3011 309.6 °C
Place peak zone 2 500.1 567.7 506.7 meter
Temperature peak zone 2 303.9 310.9 316.2 °C
Output temperature 252.7 261.2 267.2 C
Density polymer 919.6 921.3 922.7 |
Meltindex polymer 1.09 1.69 2.44 =
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Table E.2: The operating point and area of cluster 2

Input Lower boundary | Ideal value | Upper boundary | unit
Initiator Feed Zone 1 .15 0.47 0.8 =
Initiator Feed Zone 2 2.8 3.6 4.9 hmw_i
Feed Temperature Zone 1 30 6o 99 G
Feed Temperature Zone 2 55 60 65 ©
Jacket Temperature Zone 1 208 210 212 i
Jacket Temperature Zone 2 190 200 220 °‘C
Jacket Temperature Zone 3 150 170 190 ‘C
Monomer feed zone 1 33407 35407 37407 L
Monomer feed zone 2 8Gooo 90000 94000 ——
Solvent feed zone 1 353 393 433 e
Solvent feed zone 2 348 388 428 e |
Outputs
Place peak zone 1 105 146.4 177.6 meter
Temperature peak zone 1 2803 301.5 311.9 C
Place peak zone 2 484.1 545.3 591.6 meter
Temperature peak zone 2 311.6 316.7 323 °'C
Output temperature 254 2623 269.2 G
Density polymer 921.5 922.9 924.6 -1%'—;—?
Meltindex polymer 1.78 2.56 4.18 3
Table E.3: The operating point and area of cluster 3
Input Lower boundary | Ideal value | Upper boundary | unit
Initiator Feed Zone 1 0.095 0.13 0.17 ——
Initiator Feed Zone 2 .8 2.6 3.5 ——
Feed Temperature Zone 1 10 33 65 °C
Feed Temperature Zone 2 69 96 123 'C
Jacket Temperature Zone 1 206 210 220 °C
Jacket Temperature Zone 2 190 200 2I0 °C
Jacket Temperature Zone 3 150 170 190 °C
Monomer feed zone 1 33407 35407 37407 ——
Monomer feed zone 2 86000 90000 94000 —,qiu_
Solvent feed zone 1 353 393 433 R |
Solvent feed zone 2 348 388 428 =
Outputs
Place peak zone 1 182.5 211.8 248 meter
Temperature peak zone 1 265.3 273.6 277.3 ¢
Place peak zone 2 373.4 456.6 523.9 meter
Temperature peak zone 2 302.7 309.8 315.2 °'C
Output temperature 230.3 247.2 257.3 °C
Density polymer 919.5 921.0 922.8 e
Meltindex polymer 0.65 115 1.75 E
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