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On the Design of Digital Motor Controllers with Low Sampling Rates 

Abstract 

The design of digital DC motor controllers is considered in this report. A structured manner of 
designing motor controllers for different sampling rates is presented. The proposed design method 
allows to trade-off performance against a low sampling rate. The method involves a controller 
optimisation procedure which regards the continuous-time performance of the mixed discrete­
time/continuous-time control system. The independenee of the criteria on the sampling rate allows a 
fair comparison of controllers with different sampling rates. 
An extensive analysis of sampled-data control systems (control systems with a discrete-time 
controller and a continuous-time plant) is provided. It exposes capabilities and limitations of samplecl­
data controL Computable frequency gains are being used to study the response to arbitrary signals, 
whereas continuous-time tracking errors quantify the tracking performance with respect to 
prespecified setpoint profiles. The intuitive frequency gains are combined with an integral quadratic 
tracking error criterion in an optimisation algorithm. The proposed controller optimisation procedure 
is applied toa representative motor control case in an Océ copier. 
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Preface 

The sampling rate selection of digital controllers poses a problem. Rules of the thumb for choosing 
the sampling rate exists, but few systematic approaches are known. In designing DC motor 
controllers, often a sampling frequency is stipulated, which may or may not be based on former 
experience of an engineer. The controller is then designed using continuous-time techniques, and it is 
implemented digitally by means of an approximation technique which emulates the continuous-time 
controller. This way of designing discrete-time controllers is popular because many engineers are oot 
really acquainted with the phenomena occurring in digital control systems. 
I felt that the only way of providing a systematic approach to designing DC motor controllers with a 
low sampling rate, was to study the continuous-time behaviour of the combined discrete­
time/continuous-time control system. The continuous-time performance of such a hybrid system cao 
be objectively evaluated, independent of the sampling rate. The study of continuous-time performance 
of digital control systems is the challenging area of sampled-data controL 
At Océ-Technologies B.V. in Venlo, I have been able to combine theoretica! work with some 
practical experimentation. I experienced my period in the industrial environment at Océ as both 
instructive and pleasant. I would like to thank my 'colleagues' for the pleasant interaction. Special 
thanks goesout to Ad Damen, my supervisor at Eindhoven University of Technology, for the fruitful 
discussions, and to Peter van den Bosch, who was my supervisor during the 9 months at Océ. 

Robert Cloudt. 
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1. Project Description 

1. 1 Assignment 

Due to the low costs of digital hardware and because of flexibility reasons, the majority of (motor) 
controllers are nowadays implemented on a digital microprocessor. However, the design of motor 
controllers is usually PID based and takes place in the continuous-time domain. The continuous-time 
PID controller is converted to discrete-time by means of a transformation in order to be implemented 
on a digital microprocessor. This transformation requires high sampling rates in order to cope with 
undesired sampling effects. For the implementation of motor control software it is advantageous when 
the sampling rate is lowered (more relaxed timing). Lower sampling rates could be used when it's 
acknowledged that the controller is to be implemented on a discrete-time platform. 

The goals of the project are: 
1. Show that the sampling rate of a motor controller can be lowered by using a properly designed 

digital controller which obtains (at least) the sameperformance as the present PID controller. 
2. Derive design rules or a general metbod to select an appropriate sample rate and digital controller. 
3. In order to convince everybody of the advantages of digital controller design: apply digital 

controller design to a representative simulation model and an experimental set-up. 

1.2 Strstegy 

lt is a challenge to find out how much the sampling rate can be lowered. This challenge asks for a 
certain approach to the problem; it requires optimal control strategies. In order to find the lowest 
possible sampling rate at which some criteria are still met, one bas to be able to judge whether a 
controller is optimal (in a certain sense) fora fixed sampling rate. Furthermore, the criterion in which 
one is actually interested, is the continuous-time performance of the controlled system. Therefore the 
problem bas a hybrid nature, it involves both continuous-time and discrete-time dynamics. 
The main goal of lowering the sampling rate of a controller is an efficiency improvement in the 
controller software. lf the sampling rate is lowered, a running program is less frequently interrupted 
and less task switching ( with a significant processing overhead) occurs. This improvement allows the 
processor to run more tasks, or a cheaper, slower processor can be used. This cost reduction is 
canceled if extra hardware is necessary. Therefore the sampling rate bas to be lowered without 
necessary changes in the hardware. 
For a fair comparison, the complexity of the control algorithm bas to be comparable to the present 
PID-like motor controllers. lt would be convincing to show that a well designed low order controller 
(possibly a PID-like controller) achieves good performance while the sampling rate is reduced. 
The problem of finding a well performing controller with minimal sampling rate is an optimisation 
problem. Some insight is desired into the limitations and compromises in digital control of a 
continuous-time process, in order not 'to ask the impossible' of the optimisation routine. 
lt is believed that the effect of a relatively long sampling period on the controller performance is more 
drastic than the effect of implementation issues like quantisation, finite accuracy of computations, and 
sampling time jitter in a reai-time software environment. Therefore, in this study the focus is on the 
effect of the sampling rate. In practice, carefut implementation of the control algorithm can reduce the 
effect of the implementation issues. 
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1.3 About this report 

This report starts with an introduetion to digital control and digital controller design methods, in the 
next chapter. An extensive frequency domain analysis of mixed continuous-time/discrete-time control 
systems is presented in chapter 3. This yields some interesting insights, but the analysis is unsuited for 
numerical analysis of a sampled-data control system. Some computable frequency domain 
characteristics are presented in chapter 4. Time-domain criteria are introduced in chapter 5, in order to 
study the tracking performance with respect to tracking prespecified setpoint profiles. These time 
domain criteria and frequency domain characteristics are combined in an controller optimisation 
algorithm presented in chapter 7, but first, a treatise on modelling a DC motor drive is given in 
chapter 6. In chapter 8, the controller optimisation scheme is applied toa representative motor control 
case. Both simulations and practical experimentation are described. Conclusions and 
recommendations are provided in chapters 9 and 10. Two appendices are appended to this report. 
Appendix A is about several computations and derivations, whereas MATLAB code implementing 
these computations is given in appendix B. 
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2. Introduetion to Digital Control 

2. 1 Introduetion 
reference 

t 

Figure 2.1 Digital control set-up 

Figure 2.1 shows a typical setup for a digital control loop. A reference sequence is applied to some 
digital device, typically a microcontroller. This microcontroller produces a digital control signal 
which is converted to an analog signal by the digital to analog converter (D/ A). The analog signal 
(usually a piecewise constant voltage) is applied to the plant which represent the physical process to 
be controlled. The sensor measures the quantities of interest and the sensor signal is filtered to remove 
the undesired high frequency components. Finally, the filtered signal is digitised by the analog to 
digital (AID) converter, such that the microcontroller can use the digital signal to compute the control 
signal. 
The block diagram in figure 2.1 is converted to figure 2.2. 

Figure 2.2 Digital controlloop 

The sampling action of the AID converter is replaced with the switch in figure 2.2. The switch is 
closed at sampling instants kh, where k is an integer and h is the sampling period. The quantisation of 
the AID converter is neglected. The dasbed lines in the block diagram represent discrete-time signals, 
the solid lines represent continuous-time signals. Note that the reference signal is a continuous-time 
signal in figure 2.2. Although the reference is typically applied to the micro controller as a digital 
sequence, one actually wants the control loop to track a smooth, continuous-time reference signal 
resembling the digitised reference sequence. Therefore, the reference in the block diagram above is in 
continuous-time. K denotes the discrete-time controller. H is the hold device which transforms the 
discrete-time control signal to continuous-time, just as the D/ A converter does. The zero order hold 
(ZOH) is usually used as the hold device. lt produces a piecewise constant signal of which the signal 
level during a sampling interval corresponds to the discrete-time sample (the ZOH applies zeroth 
order extrapolation, which explains the name). P represents the continuous-time plant. The filter is 
depicted through the system F. 

( In the remaining part of this chapter, three classes of digital controller design methods are treated: 
( - continuous-time design; 

discrete-time design; 
sampled-data design. 

The continuous-time design and discrete-time design use approximations or discretisations in the 
design of a discrete-time controller. The sampled-data design metbod is a direct metbod which does 
not involve approximation. In figure 2.3 is portrayed how the three design methods relate to each 
other. 
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Figure 2.3 Digital controller design methods 

Tbe continuoos-time design metbod is tbe easiest, because well-known continuoos-time techniques 
can be used. Tbe discrete-time design metbod bas tbe potential to reduce tbe necessary sampling rate, 
but it can cause intersample oscillations. Tbe sampled-data design takes tbe continuoos-time 
performance of tbe bybrid system into account, but it is more complex. Wbile treating tbe three 
classes of controller design metbods, some typical side effects of tbe digital implementation of tbe 
controller will be elucidated. 

2.2 Continuous-tlme design 

Tbe easiest way of designing a digital controller is applying continuoos-time design. In tbis design 
procedure, a continuoos-time controller is designed for tbe continuoos-time process, and tben it is 
converted to a discrete-time controller by means of some transformation. Tbis transformation reptaces 
tbe differential equation descrihing tbe action of tbe continuoos-time controller witb a difference 
equation. Some examples of sucb transforms are: 

Backward Euler transfonn 
Tbis transform reptaces a differentiation action witb tbe difference equation: 

de(t} e(kh)- e(kh- h) --~ ---'---'--"__-~ 
dt h 

or equivalently, tbe Laptace variabies is replaced by a function of z: 

z - 1 1- z-1 

s~--=---
hz h 

(For the moment, z migbt be interpreted as the sampling time advance operator). 

Tostin transfonn 

(2.1) 

(2.2) 

Tbe Tostin transform ( or bilinear transform) is related to tbe trapezoid integration rule as 
integration 

~ u(t)= Je(t}dt (2.3) 

is replaced by: 
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u(kh + h)= u(kh)+ e(kh)+ 1(e(kh + h)- e(kh))= u(kh)+ t(e(kh + h)+ e(kh)) (2.4) 

or equivalently: 

2(z -1) 
s~ ( )" h z +1 

(2.5) 

ZOH transform 
The zero order impulse response equivalent transform (or step invariant transform) transforms a 
continuous-time system to a discrete-time system by replacing the continuous-time system with 
the same continuous-time system prepended with a sampler and appended with a zero order hold. 
See the tigure below. 

----~~~----~ 

Figure 2.4 ZOH transfarm 

The Tustin transform is quite popular because it yields a good approximation and it maps the stabie 
· part of the s-plane onto the stabie part of the z-plane. More on these kind of transforms can be found 

in [1]. 
The quality of an approximation of a differential equation by a difference equation depends on the 
step size or sampling time h. If h increases the approximation gets worse. Therefore, the sampling rate 
llh bas to be high compared to the bandwidth of the system. In textbooks on digital control one might 
find the rule of the thumb: 

Sampling rate .!. > 20 x closed loop bandwidth (in Hz). 
h 

This rule might be relaxed if the phase loss of the zero order hold is accounted for in the continuous­
time plant model. The Laptace domaio transfer function of the zero order hold is given by: 

H(s)= 1-e-sh 
s 

By replacing s by jm and computing the complex argument one can find that 

arg H (i m) = tdl 
2 

(2.6) 

(2.7) 

i.e. the zero order hold introduces a delay of half a sample time. The phase loss is identified as one of 
the major performance limitations in digital controL If this delay is included in the plant model, and 
the controller is designed for the delayed plant, the performance of the controller will generally be 
better than when the controller was designed for the undelayed plant [1]. This might give the 
opportunity to relax the sample rate constraint in the rule of the thumb. 
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2.3 Discrete-time design 

pd 

r ----~g---~0--r~·~~~~l-:-~ y 

1 L-···---·-···-··-···········-···································.1 1 
I I 

L-----------------------------------~ 

Figure 2.5 Block diagramfor discrete-time design 

Figure 2.5 shows the block diagram used in discrete-time controller design. It differs from the block 
diagram in figure 2.2. The reference and output signals are in discrete-time, the filter appears to he 
removed from the block diagram and the sampling takes place in a different position. So, designing a 
controller using the block diagram in figure 2.5 is a different problem than finding a controller using 
the block diagram in figure 2.2. 
There are however good reasoos for applying the block diagram above. The controlloop in figure 2.5. 
is completely in discrete-time. Pd is the ZOH transfoon of plant P. When the control loop is 
considered on sampling instants only, the system is a discrete-time linear time-invariant (LTI) system. 
This property allows the use of transfer functions in the .z-domain. Background information on the .z­
transform cao he found in [2]. Furthermore, the famous Shannon-Nyquist sampling theorem states 
that the original continuous-time outputsignalof the combination PF cao he reconstructed from the 
sampled signal if PF is band-limited to half the sampling frequency. In practice, however, this is oot 
the case. Moreover, the reconstruction of the continuous-time signal requires non-causal filtering 
which is physically unrealisable. A more cauti<fs ~·ce on the sampling rate bas to he used instead. 
It is wise to choose the sampling rate of at lea~t 5 ti es the required closed loop bandwidth [1), but 
the performance limitations due to the phase l~s of he zero order hold might further increase the 
necessary sampling rate. --
A drawback of the discrete-time design metbod is the toss ofjl_!~· The discrete­
time output y offers only information of the plant output at sampling times. Whether or oot 
intersample oscillation occurs, depends on the sampling rate and the discrete-time controller K. There 
are however guidelines on how to choose the controller and the corresponding closed-loop pole 
positions in the .z-plane to reduce the chance of disturbing intersample ripples (see [2)). 

t
A word on the filter F is in place. It suits a more elaborate role than filtering just any high frequency 
components. By eliminating all frequency components above half the sampling frequency, it makes 

./I sure there is ~t:~me-to-one correspondence between the continuous-time signal and the sampled signal. 
This needs further expláîtation. Suppose a sampler is sampling the continuous-time signal e(t) which 
is a sum of (complex) sinusoids of radial frequency w+nOJ

5 
(015 = 2;, the sampling frequency in 

rad/s): 

00 

e(t)= Lenej(w+nw,)t' enE c. (2.8) 
n=-

After sampling, the signal is represented by 

(2.9) 
n=-- n=-oo n=--

(e[k) is shorthand notation for e(kh)). 
This last equation exposes one of the effects of sampling. After sampling, it is impossible to 
distinguish between the fundamental component and the higher frequency components. All 
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continuous-time signals of frequency m + nms with -i < m <i , are mapped on a single discrete­

time sinusoid with frequency - i < m < ~· . 

e[k], keN is just a sequence of numbers. In signal analysis, signals have a notion of energy. Por 
signals with energy it makes sense to work with them in the frequency domain. Por this reason, the 
sampling action is modelled in the frequency domain by impulse modulation; the continuous-time 
signal is multiplied with a 'pulse train' like in tigure 2.6. The resulting signal is a series of Dirac 
pulses with energy corresponding to the samples e[k]. Applying such a signal to the zero order hold 
yields the piecewise constant output signal of the D/ A converter, as the impulse response of the ZOH 
is a unit pulse of duration h. 

iiiiiiiiii 

Figure 2.6 lmpulse modualtion 

Let ë(t) denote the resulting pulse train signal. lt can be expressed as: 

00 00 

ë(t )= e(t )· L8(t- kh)= Ie[k)5(t- kh). (2.10) 
k=O k=O 

The pulse train 1;~t- kh) is a periodic signal of period hso it can be represented by its Pourier series 
expansion: 

(2.11) 

Now, suppose e(t) is a single (complex) sinusoid with frequency - i 5 m < i : 

(2.12) 

then substituting (2.11) and (2.12) into (2.1 0) yields: 

( ) · 1 ~ · 1 ~ •( \, ë t =eoe'ra ·- L.Je'nw,r =eo- L.Je'ro+nw,,.. 
h n=- h n=-

(2.13) 

This equation shows that sampling (modelled in the frequency domain by impulse modulation) 

introduces components with frequencies m + nms, n E 71... These components are called aliasing 

components or aliases of the signal e(t)=e0ejra. As the sampling operation is linear (!), the same 

holds for a sum of sinusoids: for each frequency component, an infinite amount of aliasing 
components is introduced after digital signal processing. 
Equation 2.9 showed that after sampling, the original signal and its aliases are indistinguishable. The 
filter F bas the task to suppress all the aliasing components, such that the sampled signal corresponds 
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to the components in the frequency band - i ~ {J) < i and oot to the aliasing components. The filter 

Fis usually called an anti-aliasing filter. ldeally, it is a brick walllow pass filter with a pass band of 

i . If this is oot the case, some components of frequency {J) > i are mapped onto a discrete-time 

sinusoid of frequency {J)- n{J)s with n such that -i < {J)- n{J)s < i . This phenomena is called 

frequency folding. 

2.4 Sampled-data design 

The class of sampled-data design methods includes all the digital controller design methods which do I 
oot apply any approximations or discretisations like is done in the continuous-time design and 
discrete-time design classes. Sampled-data design methods are concemed with continuous 
performance criteria and take the hybrid nature of the mixed continuous-timeldiscrete-time system 
into account. 
The name "sampled-data" is taken from the publications in the 90' s conceming these kind of design 
methods. The nomendature is oot that clear. The sampled-data techniques considered bere are 
sametimes called direct SD or direct digital design methods, whereas in some works (mainly befare 
the 90's) the term "sampled-data" is used for discrete-time design methods. In this report, the term 
"sampled-data" is used whenever the hybrid nature of the digital control system is taken into account. 

I 
The difficulty in sampled-data design methods lies in the hybrid nature of the systems. W.hen the ~ 
behaviour of the digital controlloop in tigure 2.2 is considered in continuous-time, the closea loop 
system is linear, periodically time-varying (LPTV) with perioei h. Suppose the continuous-time 
reference signal r(t) is applied to a digital controller. The digital controller produces a piecewise 
constant signal u0(kh) (the ZOH is assumed as the hold device) which is derived from r(kh), the 
sampled version of the reference signal. Now consicter the delayed reference signal r(t - r]). The 
sampled version r(kh- r]) is generally different from r(kh) and the generated control sequence uJ..kh) 
will differ too, i.e. u" (kh) :i: u0 (kh- r]) . However, if r] = fh , the correspondence u" (kh) = u0 (kh- r]) 
holds. This means that the system is linear, periodically time-varying (LPTV), and the classical 
concept of a transfer function caooot be applied. 
The majority of the literature on sampled-data control is on optimal (in a H2 or H.., sense) samplect­
data controL Several general approaches to optimal sampled-data control have been developed: 

a 'lifting' approach which transfarms the hybrid problem into an equivalent discrete-time 
problem [3]; 
an approachbasedon polynomial methods [4]; 
a game-theoretic approach resulting in hybrid Riccati equations [5]; 
an approachbasedon frequency domaio operators [6]. 

In chapters 3 and 4 some frequency domaio analysis is applied to sampled-data systems. In chapter 5, 
time-domaio measures are introduced which are related to sampled-data H2 optimal control problems. 
Appendix A.4 treats the lifiting approach to optimal sampled-data control from a general point of 
view. The derivations in appendices A.5 and A.6 are inspired on Ibis lifting approach1 
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3. Analysis of Sampled-data Feedback Control Systems 

3. 1 Introduetion 

ModeHing the sampling action in a digital control system by impulse modulation allows frequency 
domain analysis of sampled-data systems. In this chapter, the influence of the discrete-time controller 
on the control constraints: 

stability; 
robust stability; 
avoidanee of actuator saturation; 

and the control aims: 
disturbance rejection; 
tracking; 
sensor noise avoidance; 
and robust performance; 

is studied. Furthermore, some fundamentallimitations of sampled-data feedback are presented. The 
analysis is mainly being carried out in the Fourier domain. The frequency domain analysis technique 
is basedon ideas presented in [7]. 

3.2 Preliminsries 

Figure 3.1 Block diagram under study 

The properties of the general sampled-data system in figure 3.1 are being studied. P represents the 
continuous-time plant to be controlled. K is the discrete-time controller with sampling time h. H is the 
zero order hold and F the anti-aliasing filter. A represents the computation delay 0 ~À< h which is 
the time between the sampling instant and the output of a new control sample in the digital control 
algorithm. The signals r, u, y, d and n represent the reference signal, the control signal, the output 
signal, a disturbance and the measurement noise respectively. 
Before being able to derive the various transfers in the block diagram above, one bas to focus on the 
use of the z-transform and study the effect of sampling in the Fourier domain. Suppose a signal v(t) is 
sampled resulting in a series of Dirac pulses v(t) due to impulse modulation. The question is, how 

V(jw), the Fourier transfarm of v(t) relates to V(jw), the Fourier transfarm of v(t ). Straightforward 

application of the definition of the Fourier transfarm yields: 

(3.1) 

Expressing the putse train 1:~t- kh) in termsof its Fourier series expansion yields: 
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(3.2) 

Recognising the shift in frequency and applying the definition of the Fourier transform learns: 

v(jw)=* :tv(jw- jnw.). 
n=--oo 

(3.3) 

This important sampling formula shows how the spectrum of the sampled signal is composed of 
infinitely many shifted copies of the spectrum of the continuo us-time signal. 
Now, let's study the use of the z-transform. The definition of the z-transform of a discrete-time signal 
v[k] is: 

-v(z)= L v[k]z-k . (3.4) 
k=O 

Consider equation 3.1 again. Exploiting the sieve property of the Dirac pulses results in: 

- .. 
v(jw)= Iv(kh)e-JuMh = Iv[k]e-jcdlk =V(zt=e, .... (3.5) 

k=O k=O 

So, the z-transform of a discrete-time signal is related to the Fourier transform of the impulse 

modulated signal through the correspondence z = e1eria. This correspondence shows that z might 

indeed be interpreted as the sample time advance operator, as e1eria represents a negative delay of 
duration h in the Fourier domain. The correspondence allows an easy conversion from a difference 
equation descrihing a discrete-time system, to a transfer function in the z-domain. Suppose the 
discrete-time system K maps the discrete-time signal e[k] to the signal x[k]. In the z-domain, this 
operation can be expressed as X(z) = K(z)E(z), which corresponds to the convolution sum in discrete­
time domaio 

-x[k]= Lk[t]e[k- f] (3.6) 
t=--

where k[f] denotes the impulse response of discrete-time system K. 

Figure 3.2 Universa/ block diagramfora sampled-data system 
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The block diagram in figure 3.2 allows the calculation of every transfer of interest in figure 3.1 by a 
proper choice of the continuous-time systems G11 to G22• First, the Fourier transform of the output z 
bas to be expressed as a function of the Fourier transform of input w. 
The Fourier transform of z is: 

z(jm )= G11 (jm)w(jm )+ G12 (jm)H(jm)i(jm) (3.7) 

where X (jm) is equal to the z-transform of x with eiaJJ substituted for z. The discrete-time part of the 

figure 3.2 is recognised as a feedback loop with Kin the feedforward pathand the ZOH transform of 
G22 as (positive) feedback. Straightforward block diagram algebra relates X(z) to the z-transform of v: 

(3.8) 

G22t1 denotes the ZOH transform of Gzz. V(zt=e1""' equals the Fourier transform of the pulse train 

signal v which in turn can be expressedas (by using (3.3)): 

(3.9) 

Combing these facts eventually yields: 

(3.10) 

The transfer function in (3.8) is deliberately named RJ..z) because it is related to the control sensitivity 
function of the discretised system. Table 3.1 shows how G11 to Gzz should be chosen to calculate the 
transfers of interest in figure 3.1. 

The asymptotic response to a complex (possibly multivariable) sinusoid w(t )= w0eimot can be 

obtained through inverse Fourier transform of (3.10) where W(jm) = 2m5(m- 010 ): 

.(3.11) 

G ( . )w iWot [ 1 f. G ( . . )H( · · Li(mo-nw )t l R ( imoh \,-. ( · )w 
11 JOlo oe + h nf::., 12 JOlo - Jnm. JOlo - ]nOJ. F ' · d e fv21 JOlo o 

This equation exposes the aliasing effect: the response to a sinusoid of frequency 010 consists of 

infinitely many sinusoirlal components with frequencies 010 - nm s , n E Z, i.e. z can be written as: 

00 

z(t)= LZnei(mo+nw,)t' Zn E c (3.12) 
n=-oo 

In the forthcoming analysis the distinction is made between the transfer of the fundamental 
component and the aliasing components. The fundamental transfer reflects the desired behaviour 
(when compared with a continuous-time controller), whereas the aliasing components are undesired 
side effects of the discrete-time implementation of the controller. 
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Table 3.1 Overview of transfers 

3.3 Stability 

The stability of sampled-data system is studied in state space. This state space approach is due to [8], 
one of the earliest work on sampled-data systems. The concept of intemal stability for the sampled­
data system in figure 3.1 is defined as: The sampled-data system is intemally stabie ij for every initia/ 
controller state and every initia/ plant state, both states approach zero asymptotically when there are 
no exogenous inputs applied. The autonomous response to initial states of the sampled-data system, 
considered on sampling times only, is completely described by the discrete-time system below. 

:->0---~~-: 
I 
I 

I I 

~--------------------~ 
Figure 3.3. Autonomous discrete-time system 

P'd is the ZOH transform of FPA. lts state space representation is: 

xl'd (k + 1)= APdxPd (k)+ BPdu(k) 

y[k)=CPdxPd [k)+ DPdu[k) 

The state space representation of the discrete-time controller is given by: 

xK [k + 1)= AKxK [k)+ BK y[k) 
u[k)=CKxK [k)+ DK y[k) 

The response of the combined discrete states is governed by the equation: 

(3.13) 

(3.14) 

(3.15) 

If all the eigenvalues of the matrix in the expression above have modulus less than one, then the 
combined discrete state will converge asymptotically to zero as time passes, regardless of the initial 
states. As xp, [k) converges to zero, so does y[k] . This sample is fed back to the discrete-time 

d 

controller to generate a control sample u[k] which in turn also converges to zero as k ~ oo • The 
evolution of the combined state of the continuoos-time subsystem cao be obtained through integration 
of the continuoos-time state space equations (see [8]). The state of FP for kh St < kh + h is governed 
by the equation: 
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I 

xFP (t )= eAF"(t-kh)xFP (kh)+ JeAF"(I--r) BFPu(t}lT 
kh 

I 

JeAF"(H) BFpdT · u[k- Ü t- kh 5:. À 

kh 

kh+À I 

JeAF"(~-'~')BFpdT · u[k -1]+ JeAF"(I--r) BFpdT · u[kl t- kh >À 

kh khM 

x FP [k] is a subvector of x P.l [k] because x P.l [k] can be written as 

X [k]=(XFP[k]î 
P.l u[k -11) 

(3.16) 

by adopting the delay in the state space equations. While x P.l [k] coverges to zero, so does x FP [k] and 

so do u[k] and u[k- 1]. Equation 3.16 reveals that the continuous-time statealso converges to zero as 
time passes. This means that the sampled-data system is intemally stabie if the matrix 

(
AP.I-BP.IDKCP.i 

BKCP.i 
(3.17) 

bas stabie eigenvalues. This condusion partly justifies the study of purely discrete-time systems 
where the plant is discretised by the ZOH transform, because the internat stability of the sampled-data 
system is equivalent to the stability of the discretised system. 

3.4 Cont/nuous-time tracklng 

Tracking in purely discrete-time feedback systems is studied by applying the final value theorem in 
the z-domain. The asymptotic tracking error for the controlloop in figure 2.5 can be calculated to be: 

(3.18) 

where R(z) is the z-transform of the reference signal. In this discrete-time framework one can 
conclude that (for single input, single output (SISO) systems): 

the discrete-time system is step tracking if there is at least one discrete-time integrator mode in 
PJ..z)K(z); 
the discrete-time system is ramp tracking if there are at least two discrete-time integrator modes in 
P J..z)K(z). 

· This study however, considers only the response on sampling instants, while one is actually interested 
in the continuous-time tracking behaviour. One is forgiven to think that the result of the previous 
section implies that the steady-state error asymptotically reaches zero. This is indeed true for the 
response to an unknown initial state, but in the case of exogenous input signals, this is generally not 
thecase. -==- ~ ~ 
The continuous-time asymptotic tracking error is calculated through applying the final value theorem 

in the Fourier-domain. Using (3.11), the response of r- y to r(t) = r0ejox is characterised by: 
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Separating the fundamental and aliasing components yields: 

r(t)- y(t) = (I- ~ P(jw )A(jw )H(jw )Rd (eiaJJ )}0ei(Lf 

- ~ L P(jw- jnws )A(jw- jnW
5 
)H(jw- jnW

5 
)Rd (eiaJJ ~0ei(m-nm,~ 

n,oO 

(3.20) 

Let z = r- y. z has the structure of (3.12). The ftrst term in (3.20) relates the fundamental components 
r0 and Zo. and is a non-rationat transfer function in the classical sense. The second term in (3.20) 
relates the aliasing components Zn to r0• lt is oot a transfer function in the classical sense because the 
signals involved have unequal frequency, but for each n 

(3.21) 

contains the gain and phase information relating Zn and r0• So it makes sense to apply the ftnal value 
theorem in the Fourier domaio to (3.21). Let R(jw) be the Fourier transform of the reference signal. 

The conditions for a zero asymptotic tracking error are: 

(3.22) 

and 

The zero order hold has zero transfer for frequencies _.'!~.s-_.~0 and unity transfer for w = 0 (see 

ftgure 3.4 ), so condition 3.23 is satisfted when the ~ro order hdtd is used as a hold device. A has a 
DC gain of one, as ~ 

(3.24) 

Condition 3.22 reduces to: 

(3.25) 

For SISO systerns without an anti-aliasing ftlter, the term of interest is: 
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Figure 3.4 ZOH frequency response 

lt tums out (see also [3]) that the condition for step tracldng ( R(jw) = -J:-) is: 
jOJ 

~ 

the sampled-data system is step tracking if the sum of integrator modes in the continuoos­
time plant and the discrete-time controller is at least one; 

and the condition for ramp tracldng ( R(jw) = ~ ): 
-OJ 

the sampled-data system is ramp tracking if the continuoos-time plant contains at least one 
integrator mode and the discrete-time controller contains at least one integrator mode. 

In general, to track the signal (" with a zero asymptotic tracking error, the continuous-time plant has 

to contain m integrator modes. This is because the factors (jw)m+l due to the Fourier transform of the 

reference signal have to be compensated by m factors jw deseending from the continuous-time plant. 

The frequency response of the discrete-time controller is a function of ejoJJ and is not able to 
compensate a factor j w . 

3.5 Hybrid disturbance rejection 

The same steady state analysis as in the previous section can be applied to study the disturbance 
rejection properties of sampled-data systems. The asymptotic response to a sinusoidal disturbance 

d(t) = d0ejflX is given by: 

y(t )= (I- ~ P(jw )A(jw )H(jw )Rd (ejoJJ )F(jw )JP(jw }d0ejflX 

- .!_ L P(jw- jnw. )A(jw- jnw. )H(jw- jnw. )Rd (ej%h )F(jw)P(jw )d0ej(w-nw,)r 

h notO 

(3.27) 

The conditions for asymptotic hybrid disturbance rejection are: 
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(3.28) 

and 

'v'n :;t: 0: lim jw.!.. P(jw- jnwJA(jw- jnws)H(jw- jnw. }RAeiaJJ )F(jw }P(jw }D(jw- jnwJ= 0 
j(J}--t0 h 

(3.29) 

where D(jw} is the Fourier transform of d(t). A well known property of continuous-time feedback 

systems is that the response to a sinusoidal disturbance can be made arbitrary small, by applying a 
large feedback gain at that disturbance frequency. This is oot the case for sampled-data feedback 

systems! Assume that jK(ei%h 1~oo and P(jm0 - jnwJA(jw0 - jnwJH(jw0 - jnws):;t:O for 

some n and some w0 , then 

(3.30) 

Sampling formula 3.3 was used bere to express the ZOH transform of PA as an infinite summation in 
the frequency domain. The complex amplitude of the fundamental component in output y is: 

(3.31) 

which in general is non-zero, so in general the fundamental component of the disturbance ~: ~ n 
response of a sampled-data feedback system cannot be reduced to arbitrary magnitude by · } V 
applying a large feedback gain. However, if the disturbances are constant, the hold device is a • 
zero order hold and the discrete-time controller contains an integrator, then the disturbance is • 
completely rejected in steady state (if the DC gain of the anti-aliasing filter is one ). 

3.6 Sensor noise avoidanee 

Using the result of section 3.2, the asymptotic response to a sinusoidal measurement error cao be 
expressed as: 

y(t }= _.!._ P(jm }A(jw )H(jw }RAeiaJJ )F{iw }n0ejax 
h 

- .!._ L P(jw- jnw. }A{iw- jnwJH(iw- jnw, 1lAeiaJJ f{iw }n0ei((J}-n(J},~. 
h m•O 

(3.32) 

The measurement error induces some components in the output with frequencies w + nw., n e 71... 
The effect of measurement errors on the output increases if more feedback is applied. If 

jK(eia.toh 1 ~oo for some m
0

, then Rd (ei%h )~ Rdoo(eia.toh) and y{t}= -_LF(jm}n0ei(%-n(J},~ (full 
n 

measurement noise). 
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3.7 Actuator saturation avoidanee 

In order to avoid actuator saturation, the controller gain should oot be too high, especially at 
frequencies above the bandwidth of the actuator. The actuator signal u is influenced by the exogenous 
inputs r, d and n. The asymptotic response to sinusoirlal exogenous inputs is given by: 

u(t )= .!A(jm )H(jm )Rd (ejtd! hejca +.! LA(jm- jnmJH(jm- jnms 'y?d (ejtd! ~0ej(w-nw,)t 
h hn~ 

-.! A(jm)H(jm )Rd (ejtd! p(jm )n0ejca -.! LA(jm- jnmJH(jm- jnms 'y?d (ejtd! )F(jm )n0ej(w-nw,)t 

h h-0 

+ (I -* A(jm )H (jm )Rd (ejtd! )F(jm )P(jm ))d0ejca 

- ~ L A(jm- jnms )H(jm- jnms 'y?d (ejtd! p(jm )P(jm )d0ej(w-nw, )t 
n,.O 

(3.33) 

3.8 Robust stability 

Figure 3.5 Multiplicative plant error 

Suppose the plant in figure 3.1 is replaced by the perturbed plant in the figure above. ö. is an arbitrary 
operator with bounded Lz induced norm, where Lz represents the Lebesque space of square integrable 
functions. lt represents a multiplicative model error. The block diagram in figure 3.1 with figure 3.5 
replacing the nominal plant model cao be manipulated into a form where all exogenous inputs are 
combined in a single vectorised input m as in the figure below. 

m'--------:~1 y 

M aLG b 

Figure 3.6 Perturbation of nomina/ sampled data system 

The sampled-data system M cao be partitioned as: 

(3.34) 

Suppose Mn, M12• M21 and M22 are bounded linear operators on Lz (in fact, this is implied by the 
internat stability of M, [3]). The mapping from me L2 to ye L2 is bounded if the loopgain in the 

loop consisting of M22 and ö. is less then one (small gain theorem): 

IIM 22~11 < 1. (3.35) 
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The norm is the induced Lz. norm (although mathematically not entirely correct, this norm might be 
interprered as the maximal power gain). Applying the Schwarz inequality gives a sufficient condition 
for robust stability: 

(3.36) 

M22 is characterised by the closed loop transfer from a to b. This transfer can be calculated using the 
frameworkof section 3.2 with Gu = 0, G12 =PA, G21 = -F and G22 = -FPA. The Fourier transforms of 
a and bare related through (see (3.10)): 

(3.37) 

Suppose a(t) bas the structure: 

00 

a(t)= ~:anej(aJo-nw,~, an E (( (3.38) 
n=~ 

then the Fourier transform of a(t) is: 

00 

A(jm)=2n Lano(m-m0 +nmJ. (3.39) 
n=-oo 

Substituting (3.39) into (3.37) yields: 

Taking the inverse Fourier transform of (3.40) teams that b(t) bas the structure: 

00 

b(t )= Lbnej(aJo-nW,~ , bn E C (3.41) 
n=-oo 

and that the complex amplitudes an and bn are related through: 

(3.42) 

Note that Rd (ejWoh) is invariant under a frequency shift of nms because Rd (ejldl) is a periodic 

function of m with period ms. 
The sampled-data system leaves the structure of the signals (3.38) and (3.41) invariant. When signal 
(3.38) is sampled, the continuous-time signal consisting of a series of (possibly multivariable) 
sinusoids is mapped onto one single (possibly multivariable) discrete time sinusoid with amplitude 
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(3.43) 
n=--<110 

and frequency (1)0 - m(J)s, where m is such that -i ~ (1)0 -mms <i . It is the same digital signal 

processing which introduces the aliasing components of frequency m0 + n(J) s , n e 7L again. 

In general, an LPTV (linear periodically time-varying) system with period h = ~: leaves the set of 

signals with structure (3.38) invariant. If 1:!. is restricted to be LPTV with period h, then 1:!. maps b of 
form (3.41) toa ofform (3.38). The (squared) Lz induced norm of M22 canthen be expressed as: 

(3.44) 

by using Parseval's theorem to express the energy of a(t) and b(t). Although no explicit relation is 
obtained, it is clear that robust stability condition (3.36) imposes some constraints on the controller 

(through Rd (eiair h. 
In sampled-data Hoo control, the uncertainty 1:!. is usually assumed to be LPTV. A discussion in [9] 
shows that the use of this class of uncertainty generally yields very conservative controllers. This can 
be explained by the fact that the sampled-data control system is essentially in open loop between two 
sampling instants. The class of LPTV uncertainties allows an operator 1:!. with a very 'wild' behaviour 
in between sampling instants and a timid character on sampling times. The discrete-time controller is 
designed such that condition 3.36 is satistied for the worst-case uncertainty operator. This results in a 
conservative design, because the worst-case uncertainty operator introduces more uncertainty than 
necessary. A better uncertainty class would be the class of LTI operators, but the analysis for this 
class of uncertainty is much more complex. In [7] an analysis based on the structured singular value 
(~)is presented. [10] treats robust stability under structured LTI uncertainties, as opposed to arbitrary 
norm-bounded unstructured uncertainties considered here. 

3.9 Perfarmsnee robustness 

me§ y 

M 

"LEJ 
b 

Figure 3.7. Set-up to study robust pelformanee 

Continuing to reason in the robust control framework of the previous section, a fancy performance 
feedback block is connected to the block diagram in tigure 3.6 to study the performance robustness of 
the sampled-data system M (see tigure 3.7). Standard argumentsin robust control theory (in [11]) give 
a sufficient condition for robust performance (in a sense that the induced power gain from m to y is 
less than one for all!:!., ll!:!.ll ~ 1 ): 

(3.45) 
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where the norm is the ~ induced norm. This approach to guarantee robust performance results in an 
even more conservative controller design, because the special diagonal structure of the uncertainty: 

(3.46) 

is not taken into account. The approach of [10] can be employed to facilitate non-conservative 
designs, but it is very complicated and not yet suited for reliable computation. 
In the remaining part of this section, a sensitivity analysis is being carried out to study performance 
robustness. It yields some interesting insight into sampled-data systems. 
If the performance of the sampled-data feedback control system is measured in terms of tracking and 
disturbance rejection, then 

(3.47) 

is an important term (see (3.27) and (3.20) and realise that in a practical situation F(jw0 hei%1 = 

r0ei%1 because w0 << ~· ). Denote (3.47) by S0 (jw). This term relates the fundamental components 

of the reference signa} and the tracking error, and the fundamental components of the disturbance and 
the output. The deviation of S0 (jw) as a result of plant perturbations at frequencies w + nws, n e 7L 
is given by (ftrst order approximation for SISO systems): 

S:C' ( • ) aso (jw) s::p( . ) 
u.>o JW = ( . ) u. JW + nW5 • ap jW+nWs 

(3.48) 

The relative changes are characterised by: 

8S0 (jw) (P(jw+ jnw.) as0 (jw) J· c5P(jw+ jnws). 
S0 (jw) S0 (jw) aP(jw + jnw.) P(jw + jnw.) 

(3.49) 

Straightforward differentiation yields: 

(3.50) 

where: 

(3.51) 

From these equations it is clear that the performance of a sampled-data feedback system suspect to a 
sinusoirlal exogenous input, is dependent on the plant uncertainty on inftnitely many points in 
frequency. This in contrary to continuous-time feedback systems. 
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3.10 Limitst/ons of ssmpled-dsts feedback control 

Define the three hybrid sensitivity functions: 
- fundamental complementary sensitivity function 

(3.52) 

- fundamental sensitivity function 

(3.53) 

n1
h alias response function 

(3.54) 

The responses (3.20), (3.27), (3.32) and (3.33) can be expressed in terms of these hybrid sensitivity 
functions: 

tracking 

r(t)- y(t)=S
0
(jmhej(ll- LP(jm- jnmJRn(jm'foej(w-nw,~ (3.55) 

""0 

disturbance rejection 

y(t) = S
0 
(jm )P(jm )d

0
ej(ll - L P(jm- jnmJRn (jm )P(jm )d0ej(w-nw,~ (3.56) 

""0 

measurement error 

y(t)=-T
0
(jm)n

0
ej(ll- LP(jm- jnmJRn(jm)n0ej(w--nw,~ (3.57) 

n .. o 

actuator saturation 

""0 
(3.58) 

""0 
+p-I (jm )S0 (jm )P(jm )d

0
ej(ll - L Rn (jm )P(jm }d0ej(w-nw,~ 

""0 

Note again that r0 ej(ll = F(jm he j(ll because the bandwidth of the reference signal is generally well 

below half the sampling frequency, the cut-off frequency of the anti-aliasing filter F. By the definition 
of S0 (jm) and T0 (jm), the fundamental property 

(3.59) 
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is recovered. The control goals can be subdivided into two classes. The class of control goals that 
benefits from a ·small' (note that hybnd sensitivity functions are complex quantities) fundamental 
sensitivity can be listed as: 

tracking; 
and disturbance rejection. 

The class which benefits from a ·small' fundamental complementary sensitivity function contains the 
control goals: 

avoidanee of measurement noise; 
avoidanee of actuator saturation (due to the reference and measurement noise). 

The robust stability (with respect to multiplicative uncertainties) constraint can also be added to this 
last list. Although no explicit form was obtained, it is clear that condition 3.44 combined with (3.42) 
imposes a constraint on the fundamental complementary sensitivity function. 
Restrietion 3.59 implies that the ultimate control solution is necessarily a campromise between the 
control goals of the two classes. Moreover, it can be used to show that high performance and a high 
degree of performance robustness don't go together. Fora good performance in termsof tracking and 
disturbance rejection, it is required to have a •small' fundamental sensitivity function. A ·small' 
fundamental sensitivity function implies a relatively •targe' fundamental complementary sensitivity 
function, according to (3.59). Equation 3.50 learns that a 'large' fundamental complementary 
sensitivity results in a large sensitivity of the performance to plant perturbations. So the control goal 
performance robustness is conflicting with disturbance rejection and tracking. 
Every control aim profits from a 'small' nm alias response function, because then the effect of aliasing 
components is reduced, and the control system acts more like a continuous-time system. However, the 

transfer function of the discrete-time controller, K(zt=e'""' , is a penodic function of the frequency 

with penod OJs, and it shows an even symmetry because the impulse response of K(z) is real. This 

means that the discrete-time controller K cannot be designed to achleve independent control aims for 

the fundamental frequency range [o, i ) and the rest of the spectrum. 

A well known limitation in continuous-time SISO feedback control is the Bode sensitivity integral. lts 
discrete-time counterpart is: 

.. 
T 

JtnjsAejtil! ~dw = 0 (3.60) 
0 

where 

(3.61) 

and Pd is the ZOH transfarm of continuous-time plant P. Here it was assumed that Sd is strictly proper 
and contains no unstable poles or zeros. The Bode sensitivity integral states that the frequency band 
wherein disturbances are suppressed and the asymptotic tracking error is less than one, bas to be 
complemented by a band where disturbances are amplified. The denvation of the Bode sensitivity 
integral is based on complex function analysis. Similar analysis can be performed for the fundamental 
sensitivity function. Perhaps it is not surprising that this analysis results in a integral constraint on the 
fundamental sensitivity function. Under some conditions holds: 

00 

JinlSo (iw ~dw = 0 (3.62) 

0 

The denvation is given in [7]. 

Robert Cloudt 26 



On the Design of Digital Motor Controllers with Low Sampling Rates 

3.11 Summsry 

In this chapter, control aims were studied fora general sampled-data feedback control system. Many 
results have a direct analogue in the continuous-time case (compare with chapter 3 from [11]), but 
some peculiar phenomena have no counterpart in the continuous-time feedback case: 

In general, it is not possible to asymptotically suppress a sinusoirlal disturbance to an arbitrary 
degree by applying feedback, as is the case in continuous-time feedback control systems. 
The performance expressed in tracking and disturbance rejection abilities is sensitive to plant 
variations on an infinite amount of points in frequency. 

The ultimate digital controller bas to compromise between competing classes of control goals, and it 

has to make a well balanced trade-off between aims for the fundamental frequency range [o, i ) and 

the rest of the spectrum. The trade-offis portrayed in figure 3.8. 
The fundamental property 

(3.63) 

and the Bode integral are identified as fundamentallimitations in sampled-data feedback controL 

Tracking 
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4. Frequency Gains for Sampled-data Systems 

4. 1 Introduetion 

Although the frequency domaio analysis of the previous chapter offers nice theoretica! insights into 
the properties of sampled-data systems, it is oot suited to numerically evaluate a sampled-data control 
system in the frequency domain. This is mainly due to the intinite summation over aliasing 
components in the derivations. This chapter introduces some computable frequency gains for the 
analysis of sampled-data systems, mainly due to [12]. The various frequency gains somehow relate (a 
portion of) the input power to (a portion of) the output power of the universal sampled-data control 
system in tigure 4.1. Table 3.1 cao be used to compute the frequency gains of interest in the block 
diagram of tigure 3.1. 

Figure 4.1 Universa/ block diagramfora sampled-data system 

4.2 Discrete frequency gain (DFG) 

The tirst notion of a frequency gain is the discrete frequency gain (DFG). It is actually the frequency 
response of a purely discrete-time system. If the system in tigure 4.1 is appended with a sampler and 
prepended with a zero order hold, then the discrete-time transfer from w[k] to z[k] is given in the z­
domain by: 

Z(z)= [Gud (z)+ Gt2d (z)Rd (z)G2td (z)]w(z) (4.1) 

where 

(4.2) 

and G11d to G22d are ZOH transforms of G,, to G22. How to compute the ZOH transform of a general 

continuous-time system is explained in appendix A.2. The DFG is obtained by replacing z by ejaia 
and taking the maximum singular value (the maximum singular value represents the maximum gain of 
a MIMO system): 

DFG ZW (m )=u rmx (GuAejaia )+ G12d (ejaia )RAejaia p2ld (ejaia )). (4.3) 

For SISO systems this reduces to: 

(4.4) 
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I Note that the DFG is a periodic function of frequency with period OJ
5 

• As tbe DFG is defined using 

tbe sampled output of a sampled-data system, it doesnotaccount for tbe intersample bebaviour. 
If w[k] is restricted to: 

(4.5) 

then DFG zw (m) relates the input and output power through: 

P(z[kD [ ] 
DFGzw(m )= max ( [ ]) max P(z k ) 

w.<O p W k lwol=l 
(4.6) 

where the power of a discrete-time signal is defined as: 

P(z[k ]) = lim -
1 I llz[k f · 

N-+oo 2N k=-N 
(4.7) 

4.3 Fundamental frequency gain (FFG) 

The response of a sampled-data system toa continuous-time sinusoid w(t) = w0 ejCIX has the structure: 

(4.8) 
n=--oo 

The fundamental frequency gain (FFG) is the ratio of the amplitudes of the fundamental components: 

( ) llzoll 
FFGzw m = llwoll' 

Using (3.11), FFGzw can be expressed as: 

For SISO systems this reduces to: 

If w(t) is restricted to: 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

then the FFG can be expressed in terms of power, as the power of the fundamental component in the 
response z divided by the power intheinput signal w. 
Note that the fundamental sensitivity function and the fundamental complementary sensitivity of the 
previous chapter can be expressed as: 
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(4.13) 

(4.14) 

4.4 Performance frequency gain (PFG) & alias response power (ARP) 

In the case of the performance frequency gain (PFG) the exogenous input w is again restricted to 
(4.12), a single (possible multivariable) sinusoid. The PFG compares the total response power to the 
power of a sinusoidal exogenous input: 

PFG (w)=max P(z(t)) =maxP(z(t)) 
zw ~0 P( w(t)} Jwoi=I 

where the power of a continuous-time signal is defined as: 

T 

P(z(t )) = lim -
1 

Jllz(t ~~ 2 dt . 
T-- 2T 

-T 

~~ 
Jlt <i ~ ~ (4.15) 

(4.16) 

The PFG is a suited quantity to study the asymptotic tracking error of a samplecl-data control system 
due to a sinusoidal reference, or the asymptotic rejection of a sinusoidal disturbance, because it takes 
the aliasing components into account! The portion of the power which corresponds to the aliasing 
components in the response, is called the alias response power (ARP): 

ARPzw(w)=PFGzw(w)-FFGzw(w). ~ (4.17) 

In appendix A.3, an algorithm is presenteel to compute the PFG for an arbitrary samplecl-data system. 

4.5 Robustness frequency gain (RFG) 

The stability robustness analysis of section 3.8 learned that applying an exogenous signal of structure: 

00 

w{r )= I wnej(w+nw,~ • wn e c (4.18) 
n=~ 

to a samplecl-data system results in a response of the same structure: 

00 

z(t)= LZnej(W+naJ,~' Zn e c. (4.19) 
n=-oo 

The robustness frequency gain (RFG) is defined as: 

RFG (w) = sup P(z(t )) 
ZW ~0 P( w{t)) 

(4.20) 

where w and z are assumed to be structureel as ( 4.18) and ( 4.19). The RFG is suited to study 
robustness properties. For example, the sampled-data system in figure 3.6 is robustly stabie if for 
every frequency: 
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(4.21) 

wbere RFG00 denotes tbe RFG from input a to outputbof system M, and RFGtJ. is tbe RFG of LPTV 
operator !!... Tbe supremum of tbe RFG over frequency is equal to tbe ~ induced norm of a samplecl­
data system. Tbe RFG is a periodic function of frequency witb period ms because of tbe structure of 
tbe signals being compared ((4.18) and (4.19)), so tbe supremumjust bas tobetaken over one period. 
Tbe computation of tbe RFG for tbe general case is quite complicated [13]. lt involves a biseetion 
searcb for every frequency in a frequency grid. For systems witb G11 = 0, tbe computation simplifies, 
and a metbod is given in [14]. This assumption seems restrictive but it allows to study robustness 
against additive and multiplicative plant uncertainties. If one furtber assumes that G21 = I , tben tbe 
RFG equals tbe PFG. Tbis fact is easy to verify in tbe case of tbe example insection 3.8. First, note 
that both RFG00 and PFGoo can be expressed as: 

sup P(b(t )) 
P(a(t))=! 

(wbetber tbe supremum or the maximum bas to be used is not considered bere). 

(4.22) 

Tbe difference is in wbat kind of signal a(t) is used. For tbe PFG case, a is a single sinusoid. In tbe 
RFG case, a is a series of sinusaids as in (3.38) or (4.18). Assume tbat tbe transfer from a to b is 
SISO. Tbe power of tbe responsebis obtained by using Parseval's tbeorem in conjunction witb (3.42) 
wbere F(jm) = 1 : 

00 

P(b(t))= Llbnl2 

n=~ 

= ~IRAejM~. 

= *'Rd (eiM ~ · 

00 

LIP(jm- jnms )A(jm- jnms )H(jm- jnms ~ 2 
• 

00 

LIP(jm- jnms )A(jm- jnms )H(jm- jnms ~ 2 
• P(a(t )) 

As for botb cases tbe supremum is taken over a, P(a(t)) = 1, tbe PFG and RFG are equal. 

(4.23) 

Matbematically, tbe sampled-data Hoo control framework is very appealing, because it studies tbe 
mapping from ~ signals to ~ signals, just as in tbe continuous-time Hoo control framework. If some 
kind of loop sbaping procedure is applied in tbe sampled-data Hoo control framework, tbe frequency 
gain being sbaped is tbe RFG. However, in designing sampled-data (servo) control systems, one is 
actually interested in bow well references of a eertaio frequency can be tracked, and bow well 
disturbances of a eertaio frequency can be rejected. This makes tbe PFG tbe frequency gain of 
interest. One is not concerned witb tbe mapping of arbitrary ~ signals from tbe input to tbe output. 
This makes sampled-data H .. control unsuited for tbe design of tracking controllers. It can be used to 
study robustness issues, but it migbt turn out to be very conservative, as was pointed out in sections 
3.8 and 3.9. For continuous-time systems, tbe role of tbe FFG, PFG and RFG is fulfilled by one 
single function: tbe ordinary continuous-time frequency response. 
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4.6 Fidelity index 

Consider the stamiard sampled-data feedback control system in tigure 3.1 and assume that all the 
blocks represent SISO transfers. Let's study the frequency gains DFGyr and PFGyr· The first 
frequency gain cao be calculated from ( 4.4) and data from table 3.1 as: 

where sampling formula 3.3 was used to write the ZOH transform of PA as an infinite summation. 
PFGyr cao be calculated by observing (3.19) and applying Parseval's theorem. 

Due to the Schwarz inequality: 

.t.P(iw - jnw, 'y.(jw - jnw .)H (iw - jnw, f :S .t!P(jw - jnw, )A (i 01- jnw, )H (jw - jnw, ) ' . 

(4.26) 

From this one cao conclude that DFGyr is a lower bound on PFGyr· 
Define the fidelity index <l> d as: 

then 

- .. ·· 
(4.28) 

The fidelity index is a measure for how close the PFR and DFR are, i.e. a measure for intersample 
activity. Note tbat the ftdellty index is independent of the controUer! t, 
4.7 Exsmples 

Example 1: Intersample oscillation 

Consider the continuoos-time plant 

1 
P(s)= ( )' ss+1 

(4.29) 
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As it tums out, this plant is a very simplified model of a position controlled DC motor (see chapter 6). 
The plant is being sampled with a sampling rate of 10Hz. No anti-aliasing filter is applied. A digital 
controller is being designed using a discrete-time design method. 
The ZOH transform of the plant is given by: 

Pd (z)= 0.0048374 · (z + 0.9672) 
(z -lXz- 0.9048) 

(4.30) 

The discrete-time controller K compensates the plant zero and pole inside the unit circle. The gain is 
chosen such that the resulting closed-loop pole is placed at the origin. This kind of design is called a 
dead beat controller. The design yields: 

K(z)= 206.7265(z-0.9048). 
z +0.9672 

(4.31) 

The closed loop transfer from reference input to plant output is given by i 1
, a sample time delay. 

Figure 4.2 shows the step response of the closed loop system. Indeed, the discrete-time step signal is 
being tracked with a delay of one sampling time, but the continuous-time response shows a severe 
intersample oscillation. If one had studied the frequency gains in tigure 4.3, one would be wamed by 
the oscillatory peaks in FFGyr and P FGyr and the discrepancy between the discrete frequency gain and 
the frequency gains accounting for the intersample behaviour (FFG and PFG). 

Step response 

0.5 

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 
Time (s) 

Figure 4.2 Step response 

In this case, the intersample oscillation is caused by the compensation of the negative real axis zero of 
the discretised plant. The controller pole in z = -0.9672 corresponds to a heavily oscillating response. 
The zero of the discretised plant makes this behaviour unobservable on sampling instants, but the 
fluctuating actuator signal bas its effect on the continuous-time response. Por this reason, it is advised 
in [2] not to compensate any negative real axis zeros, in discrete-time design. 
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Comparison of frequency gains 
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Figure 4.3 Warning for intersample asciilation 

Example 2: Disturbance rejection 

An integrator plant is compensated by the discrete-time controller 

K(z)= 9.1888 · (z 2 
-1.239z + 0.5468) 

z 2 + 0.6442z + 0.9995 
(4.32) 

with sampling rate 10 Hz, in order to suppress a sinusoidal disturbance of 3 Hz. The frequency 

response K(ejllil) is shown in tigure 4.4. A large feedbackgainis applied at 3 Hz in order to suppress 

the disturbance. 
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Figure 4.4 Frequency response of compensator 

The sampled-data system was simulated. Figure 4.5 shows the asymptotic response to a sinusoidal 
disturbance of 3 Hz with amplitude one. Clearly, the disturbance is attenuated, but the effect of 
aliasing components is apparent. 
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Asymptotlc response 
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Figure 4.5 Asymptotic response to sinusoidal disturbance 

Comparison of frequency gains 
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Figure 4.6 Comparison offrequency gains 

It is revealing to study the frequency gains in the figure above. The shape of PFGyd is quite different 
from DFGyd· As was pointed out in section 3.5, a sinusoirlal disturbance can not be attenuated to an 
arbitrary degree by applying a large feedbackgainat that frequency. However, there is a small notch 
in the FFGyd and PFGyd about 3 Hz, but it is small compared to the notch in the DFG and at a slightly 
different frequency! The high frequency content in the asymptotic response is explained by the 
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significant value of the ARP in the frequency range around 3 Hz. Further, it is striking that there are 
no notches in PFGyd at frequencies 13Hz, 23Hz, ... , but PFGyd shows an overall decay of 20 dB per 
decade. This is due tothefactor P(jm) in both terms of (3.56). This is a nice property, because it 

assures the rejection of high frequency disturbances for every plant, as all physical plants are 
essentially low pass. 
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5 Time Domain Criteria for Sampled-data Systems 

5. 1 /ntegral quadratic criteria 

The performance frequency gain derived in the previous section is a suited criterion to study the 
asymptotic tracking performance and disturbance rejection properties of a sampled-data control 
system. Regarding the tracking behaviour, one is often not really interested in the asymptotic 
behaviour, but one wants to know how well the control system can track a certain setpoint profile 
(especially in motion control systems). If the tracking performance is insufficient, the closed-loop 
bandwidth can be increased. However, the tracking performance is dependent on the whole shape of a 
frequency response and not merely on the bandwidth, a point where the response crosses a certain 
level. Some kind of time domain criterion is better suited. An often encountered time domain criterion 
is an integral quadratic criterion. It bas nice computational properties. 
For purely discrete-time systems, the cumulative quadratic error on samplinginstantsis expressed as: 

00 

11 = L (y(kh)- r(kh))2 (5.1) 
k=O 

where y is the plant output and r the reference signal. This criterion is related to the discrete H2 norm 
of a discrete-time system. The H2 norm describes the energy of the impulse response of a system. 
Criterion 5.1 equals the discrete H2 norm of the system in figure 5.1, where the response of R toa 
Kronecker delta pulse represents the reference signal r. 

o[k) ----~IR1--~o------- -------- ----:--~ 
L.:J --t- I 

I I 
I I :---G<E--EJ<E- _J 

Figure 5.1 Set-up for discrete H2 norm 

The discrete-time controller K which minimises criterion 5.1 is given by the solution to the discrete H2 

optimal control problem (see [3]). This solution involves the computation of the solution to two 
algebraic Ricatti equations. It can be regarded as the deterministic counterpart of linear quadratic 
Gaussian (LQG) controL The order of the optimallinear controller is equal to the order of Pd and R 
combined. 
For example,let Pd be the ZOH transform of 

1 
P(s) = ...,(lO_s_+---.:1 X..,-25-s-+--.1) (5.2) 

with sampling time h = 1. The optimal discrete-time controller which minimises criterion 5.1 fora 
step response (R(z)=~ ), achieves the response which is plottedas the red curve in figure 5.2. The 

optimal controller shows dead beat behaviour and a severe intersample oscillation. The step response 
of the system with the optimal controller minimising 

00 

12 = j(y(t)-r(t))ldt (5.3) 
0 
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for a step reference, is plotted as the blue curve. This controller achieves a better response because it 
minimises the actual criterion of interest: the continuous-time integral quadratic traclcing error. This 
criterion is equal to the energy of the response of the system in tigure 5.3 to a Dirac delta pulse. The 

Step responses 
1.5 ,--------.-----.,.-----.---,---.---.,.---,--------,------.---,--

0.5 
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(\ (\ 

3 

discrete-time optimal 
- sampled-data optimal 

4 5 6 
Time (s) 

7 8 9 10 

Figure 5.2 Step responses for optima/ discrete and simple sampled-data Hz controllers 

amount of energy characterises the 'simple' H2 measure of the sampled-data system in tigure 5.3. The 
nomendature is adopted from [3]. 

) 

Figure 5.3 Setup for simple sampled-data Hz measure 

Although the simple H2 measure is an interesting criterion, the computation requires that the Dirac 
delta pulse is applied at t = 0. As the mixed continuous-time/discrete-time system is periodically time­
varying, the responses to a signal r(t - TJ) differ for TJ e [0, h). A natural extension of an integral 

quadratic criterion to linear periodically time-varying (LPTV) systerns with period h is: 

(5.4) 

This criterion averages the continuous-time integral quadratic traclcing error over the period h. It is 
equal to the generalised H2 measure, or the average energy of the response to 8(t- TJ), TJ E [0, h). 
A second example shows the difference between the two sampled-data H2 measures. Consider the set­
up in tigure 5.4. A discrete-time controller with sampling time h = 1 is designed such that the output y 
mimics a triangular input r as closely as possible. The reference signal starts at a time during the tirst 
sampling interval (see tigure 5.5). The optimal solution for criterion (5.4) shows a better response 
than the optimal solution for criterion (5.3), because the latter solution assumes the start of the 
reference signal to be synchronised to the sampling action. In the computations, the triangular 
reference profile was approximated by the impulse response of system with a rational transfer 
function. 
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Figure 5.4 Control setup 
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Figure 5.5 Optima/ responsestoa triangular input 

The examples in this section were taken from [3]. They arealso included in the DirectSD tooibox for 
MATLAB [19]. This tooibox is dedicated to optimal H2 and H~ control using polynomial methods 
[4]. Examples of solutions using the lifting approach are included for comparison. In the lifting 
approach, the sampled-data optimal control problem is transformed to a norm-equivalent discrete-time 
optimal control problem. The model structures considered in this tooibox are too restrictive to be 
usefull for motor controller design. Own MATLAB tools have been developed, which are devoted to 
the computation of integral quadratic tracking errors for discrete-time motor controllers. 
In chapter 7, two kinds of integral quadratic tracking error criteria for a fixed structure motor 
controller are considered. One criterion is used for calculating the continuous-time integral quadratic 
tracking error with respecttoa setpoint profile obtained trough discrete-time integration (synchronous 
case). The second criterion computes the average continuous-time integral quadratic tracking error as 
result from applying an arbitrary continuous-time setpoint profile (asynchronous case). This latter 
case allows an independent design of the setpoint profiles, as opposed to the synchronous case where 
the profiles are dependent on the sampling time. The derivations in appendix A.5 and A.6 are based 
on the lifting approach to optimal sampled-data controL 
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5.2 Discussion 

H2 optimal sampled-data control offers a nice framework for designing controllers which are optimal 
with respect to some integral quadratic criterion. The lifting solution presented in [3] allows to 
transform the sampled-data problem to a norm-equivalent discrete-time problem. The well known 
solution to this problem is given in terms of the solutions to two algebraic Ricatti equations. The order 
of this optimallinear controller, however, equals the order of the plant P and the reference generator R 
combined. Typically, the system R is of high order due to the rational approximation. The high order 
controllers might be reduced using model reduction techniques, but this indirect approach sacrifices 
the optimality of the controller. In chapter 7 the direct approach is being applied: optimisation of a 
fixed structure controller with respect to an integral quadratic criterion. 
The integral quadratic criteria presenled in section 5.1 only involve the continuous-time tracking 
error. Optimal controller designs forthese kind of criteria might be too optimistic because no errors 
were taken into account. The H2 control framework allows the ioclusion of stochastic components like 
white measurement noise (LQG control!) in the problem definition. The criterion becomes a mixed 
deterrninistic/stochastic criterion, like: 

.. 
J = Je 2 (t }dt + pE{e2 

}. (5.5) 
0 

For sampled-data systems however, there are some problems with the interpretation of this kind of 
criteria. For example: what is the stochastic interpretation of the generalised H2 norm of a sampled­
data system? In [16] the interpretation as an asymptotic average of the varianee is motivated. A 
second problem is, how to choose the sealing parameter p. There is no single sensible explanation on 
how to choose this sealing [ 17]. 
In [18] the existence of an optimal samplingrateis investigated, when the criterion is extended with a 
term descrihing the cost of sampling. An iterative algorithm is presenled which cao be used to 
compute the optimal sampling rate. The exogenous input signal, however, is restricted toa discrete­
time sequence. The integral quadratic criterion cao further be extended with a term weighing the 
actuator signal, to prevent actuator saturation. 
The main problem in the practical application of these kind of extended cost functions is the weighing 
of the deterrninistic and stochastic components, the relative importance of the actuator signal aod 
potentially, the costof sampling. A practical design process would consist of iteratively adjusting the 
relative weights until a satisfactionary controller design is obtained. The relative weights have to be 
considered, because one cao hardly judge if the controller is doing aoy good on the basis of the 
absolute values of the components in the cost function. In chapter 7, the explainability of the 
frequency gains is combined with the suitability of the continuous-time integral quadratic error 
criterion to optimisation, in a controller optimisation procedure. 
The continuous-time integral quadratic tracking error criterion is also a suited criterion to optimise the 
feedforward part of a controller. The H2 optimal solution allows the (offline) computation of an 
optimal feedforward signal. If the setpoint profiles are constant (repetitive), this signal cao be stored 
in the micro controller memory. If the desired setpoint profile is constant and known in advaoce, one 
might even try to boost the performance by allowing a non-causal feedforward signal (preview 
control) [31]. Examples of sampled-data preview control are included in the DirectSD toolbox. The 
repetitive nature of the setpoint profiles allows the incorporation of an iterative learning or repititve 
control scheme. Such a scheme cao be interpreled in the sampled-data framework too [34]. 
The sampled-data H2 control design framework offers an elegant computational solution aod 
opportunities to combine several control aims in one criterion. However, the application aod 
interpretation of combined deterrninistic/stochastic criteria for hybrid continuous-time/discrete-time 
systems needs further research. 
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6. Modelling a DC Motor Drive 

6. 1 Introduetion 

For small servo drive applications, a permanent magnet DC (PMDC) motor is frequently used, 
because of its control ease. In this kind of motor, the stator flux is produced by permanent magnets. 
To keep the motor turning, the current directions in the rotor have to be changed during a revolution 
(commutation). This is done through a commutator structure with carbon brushes. The main 
disadvantage of a PMDC motor is the wear of the brushes and the need to reptace them. 
Usually, a switch-mode servo amplifier is used to supply the DC motor, because of its energy 
efficiency. Position feedback is applied by an optical eneader disk, because it is cheap and it offers a 
convenient interface to the digital control hardware. 
The goal of this chapter is to show how to obtain a (linear) model of a DC motor drive application, 
and to discuss some typical parts and phenomena occurring in these kind of drives. 

6.2 DC motor 

Consider the single current conducting rotor winding in a magnetic field in the figure below. A torque 
is produced according to Ampère's law and the winding starts turning. Once the winding is in vertical 
position, the current sign has to be changed. This is done by a commutator structure like the one in 
figure 6.2. The rotor currents are transferred from the stationary frame to the rotor through brushes. 
The capper segments on the commutator are each connected to one end of a rotor winding. The 
commutator is placed on the rotor shaft, so as the rotor turns, the commutator switches the rotor 
currents in the right direction and the rotor will turn continuously. 

F 

F 

B 
Figure 6.1 Winding in magneticfield 

Figure 6.2 Commutator struture 

The torque acting on the winding in figure 6.1 is given by: 
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(6.1) 

where r is the radius of the rotor winding, l is the rotor length and Om the angle between the normal of 
the plane of the winding and the magnetic field lines. Due to the current commutation, the torque 
during one revolution is: 

(6.2) 

When a winding rotates through the stator field it experiences a varying flux which generales a 
voltage across the ends of the winding. This voltage is called the back electro-motive force (back 
EMF). It can be calculated using Faraday's law: 

déP 
e=--. 

dt 
(6.3) 

A single rotating winding in a uniform magnetic field like the one in tigure 6.1 experiences a flux 

éP = 2Bfrcos0m. (6.4) 

The induced voltage is obtained as: 

dc'f) 2 o • 0 dOm 2 o • 0 e=--= B.c.rsm ·--= B~rw sm 
dt mdt m m 

(6.5) 

where wm is the angular speed of the rotor winding. Because of commutation the polarity is changed 

every half a revolution and the voltage across the brushes is given by: 

(6.2) and (6.6) are approximated by: 

Tem =krl 

E = keWm. 

(6.6) 

(6.7) 

(6.8) 

ke and kr are dependent on the construction of the motor. They are numerically equal, which can be 
concluded from equating the electrical power and the mechanica! power in steady state. Practical DC 
motors have multiple poles. The approximations get better as more commutations occur during one 
revolution. However, ripples in the torque, current and back EMF remain. 
(6.7) and (6.8) describe the idealised DC motor in the equivalent circuit in tigure 6.3. R models the 
resistance of the leads, the brushes and the rotor windings. L corresponds to the inductance of the 
rotor windings. 
Motor parameters may vary heavily under manufacturing tolerances and temperature changes. 
Especially the temperature effects are large. For ferrite motors, the torque constant decreases with 2% 
per 10 K temperature drop. The electrical resistance increases with temperature; 4% per 10 K. 
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Figure 6.3 Equivalent circuit of a DC motor 

6.3 Transmission & losd 

All the inertia of the drive is transformed onto the motorshaft by using the energy conservation law. 
In this way, the inertia of the rotor, pulleys, gears and load are incorporated in one total inertia (J). 
This allows a simpte electromechanical model for the drive systern, see tigure 6.4. B represents the 
total physical damping coefficient. 

I 
R L 

+ 
J 

V 

Figure 6.4 Model of motor plus load 
B 

The transfer from input voltage to angular speed in the tigure above can be expressed in the Laptace 
domaio as: 

(t)m (s) kT 

V(s) =(Js+bXLs+R)+kEkr 
(6.9) 

This transfer function is expressed in termsof the physical parameters of the drive system. A second 
often encountered transfer function bas the form: 

mm(s) 1 

v(s) = kE(s-rm +1Xs-re +1). 
'(6.10) 

Here, -rm and -re are experimental parameters of the drive system. The electrical time constant -re 
corresponds to the time it takes the current to reach 63% of the end value after a voltage step is 
applied, assuming a constant rotor speed. It is simply the time constant of the LR combination in 
tigure 6.4: 

(6.11) 

Usually -re << 1' m, so the electrical time constant can be neglected resulting in l(t) = V(t)IR. In this 
case, the differential equation goveming the drive system can be expressed as: 
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A voltage step of magnitude ll. V results in a velocity response: 

k --

( 

I J wm(t)= D~ 1-e '""' ll.V 

where 

J Tm=-. 
D 

If the physical damping coefficient B is small, then 

D = kTkE 
R 

and (6.13) reduces to: 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

D is an artificial damping coefficient (the unit is also Nm-s/rad). In some datasheets D is called the 
zero souree impedance constant and B is called the infinite souree impedance constant. 
If the angular position of the motor is of interest, an integrator bas to be added to the transfer, likeis 
done in the block diagram below. The block diagram also shows where the disturbing torques (Td) are 
coupled in. If the electrical time constant is neglected, the disturbing torque bas the same effect as a 
voltage error: 

(6.17) 

T_d 

V theta_m 

Figure 6.5 Block diagramfor motor plus load 

The model derived in this section is a basic general model for a DC motor drive system. Some 
extensions may be necessary to model particular dynamics of the load. There might be for example 
flexibilities in the transmission (flexible drive belt) or the load, which introduce some marginally 
damped modes whose frequency might vary due to wear. Eccentricity of pulleys may cause a 
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sinusoirlal disturbing torque and position error of the same frequency as the angular speed of the 
eccentric axle. Load variations contribute to the disturbing torques too. lf the servo drive changes 
direction, non-linear effects due to Coulomb friction are encountered. This effect cao fairly easy be 
compensated through applying a direction dependent feedforward voltage. 

6.4 Servo amplifier 

A high performance DC motor servo drive application requires four quadrant operation of the motor 
and the servo amplifier. Four quadrant operation means that the motor cao drive and (actively) break 
in both directions. lt requires that the servo amplifier cao generate positive and negative voltages 
regardless of the current direction. The full-bridge DC-DC converter in tigure 6.6 supports four 
quadrant operation. 

+ 
Vd 

oe motor r--------------------------1 
I 1 

~--~~:~~~() 
I 
I 

'--------------------------~ 

Figure 6.6 Full-bridge DC-DC converter 

The output voltage of the full-bridge DC-DC converter is generaled through pulse width modolation 
(PWM). The average output voltage of the full-bridge DC-DC converter depends on the duty ratio of 
the switching devices (it is assumed that the switchlog devices (typically MOSFETs) act like ideal 
switches). Thls manoer of generating a variabie voltage is much more efficient than a linear power 
supply where the semiconductor devices are operated intheir linear operating region (where they act 
like controlled current sources). The full-bridge DC-DC converter in tigure 6.6 cao generale voltages 
between - vd and vd. 
Ideally, there is a linear relation between the control signal and the (average) outputsignalof a servo 
amplifier. lf the switchlog devices in each leg of the full-bridge DC-DC converter are oot 
simultaneously in the off state, the output voltage does only depend on the duty cycles of the switches 
in the two legs. lf this condition does oot hold, then the output voltage of the full-bridge DC-DC 
converter is dependent on the current sign which determines which of the anti-parallel diodes is 
conducting. Thls introduces an undesired non-linearity. More on these switching topologies cao be 
found in [20]. 
Usually the switchlog frequency in the converter is well above the bandwidth of the DC motor, such 
that the motor reacts as if the average output voltage of the full-bridge DC-DC converter was applied. 
Typically, the switchlog frequency is chosen above 20 kHz, such that no induced torque ripple results 
in an audible noise. Although the switchlog character of the servo amplifier generally bas no effect on 
the dynamics of the DC motor drive, the quantisation of the control signal to the servo amplifier cao 
have an effect. 
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6.4 Optica/ eneader 

1 
LED Eneader Photo 

Di se Detectors 

Figure 6. 7 Principle of operation of position eneader 

The principle of operation of an optical position encoder is depicted in tigure 6. 7. The light emitted by 
the light emitting diode (LED) is interrupted by the bars on the spinning encoder disc. The signals 
fonn the photo detectors are in quadrature (see tigure 6.8). This allows determination of the direction. 
If the phase of channel A leads channel the phase of channel B then the direction is clockwise, if the 
channel A lags channel B then the direction is counter clockwise. Moreover, because the signals of the 
two channels are in quadrature, the resolution of the position measurement is enhanced to 4 times the 
number of encoder wheel slits per revolution. 

\.._______,/ \.._______,/ \....___ 
B --J/ \.._______,/ \__ 

Figure 6.8 Quadrafure signals 

The pulses generated by the position encoder are counted on a microprocessor. The counter value 
represents the position of the eneader shaft. lt is clear that in this way the position can only be 
represented by a number of discrete values. This introduces a measurement error. This quantisation 
error can be modelled as a white measurement noise with varianee q2/12, where q is the quantisation 
interval [1]. Another souree of error is introduced when theencoder shaft or disc is eccentric. This 
causes a sinusoirlal disturbance with a frequency equal to the angular speed of the encoder shaft. 
Note that there is no possibility to include an anti-aliasing filter in the feedback path. The only way to 
include the filter would be to imptement a kind of mechanical filter on encoder shaft, as the measured 
quantity has to be filtered before it is sampled. The sampling takes place when the counter value is 
read. The counter value is directly dependent on the encoder position. No filtering action is being 
applied. 
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7. Motor Controller Synthesis through Optimisation 

7. 1 Introduetion 

Tbe frequency gains of cbapter 4 and tbe integral quadratic criteria in cbapter 5 can be used as criteria 
for controller optimisation. Tbe definition of tbis optimisation problem requires tbe cbaracterisation 
of: 

a parameterisation of tbe controller; 
a criterion for optimisation; 
and a series of constraints wbicb tbe optimal solution bas to satisfy. 

Tbe motor controller structure and parameterisation will be treated in section 7.3. A discussion on 
possible criteria and constraints is presented in section 7 .4. 
Tbe ultimate goal is to find a controller whicb achieves a certain level of performance and robustness, 
and bas minimal sampling rate. Tbe performance generally degrades if the samplingrateis lowered. 
So finding that minimal samplingrateis essentially a multi-objective optimisation problem. However, 
if tbe robustness and performance goals are imposed as constraints, an optimal sampling rate can be 
searcbed for. 
Tbe sampling rate can be included in tbe parameter vector to facilitate minimisation of the sampling 
rate. Tbis brings about some technical problems in the optimisation process, wbicb are discussed in 
section 7.5. lf tbe samplingrateis lowered, one bas to reconsider tbe way in wbicb setpoint profiles 
are generated, as tbis bas very important design implications (see section 7.2). Tbe cboice on tbe 
traclcing performance criterion is also affected by tbe way setpoint profiles are generated. 
This cbapter concludes witb tbe denvation of a general design metbod for discrete-time motor 
controllers. 

7.2 Reference generation 

Wben expressing tbe traclcing performance of a sampled-data control system, one is generally 
interested in bow well some smootb, continuous-time reference signal can be tracked. However, as 
was pointed out in section 2.1, tbis reference signal is applied to tbe digital controller as a digital 
sequence. Somebow, tbe continuous-time reference signal bas to be translated to a discrete-time 
signal. Two metbods will be distinguisbed bere, wbicb will be called tbe synchronous case and tbe 
asynchronous case. 
An often encountered reference signal in motion control systems is tbe second order position profile 
[22]. Tbis kind of profile bas a piecewise constant acceleration profile like in figure 7 .1. Tbe velocity 
profile is obtained by integrating tbe acceleration profile once, tbe second order position profile is 
obtained by integrating twice. lf this integration is carried inside a digital device synchronised witb 
tbe sampling rate, tbe block diagram ougbt to look like figure 7 .2. Tbe two discrete-time transfer 

functions are ZOH discretisations (step invariant discretisations) of 1/ s and 1/ s2 
, wbere h is tbe 

sampling time. Note tbat 

h h h2 (z+1) --·--* -~--!.. 
z-1 z-1 2(z-1)2 

(7.1) 

i.e. applying tbe forward Euler integration rule two times to tbe acceleration profile will not yield a 
position profile that is equal to tbe continuous-time profile on sampling times (see also [22]). 
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Figure 7.1 Second order position profile 
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Figure 7.2 Jntegration block diagram 

If the error due to the fmite accuracy of the number representation inside the digital device is 
neglected, then the discrete-time profiles are equal to the continuous-time profiles on sampling times, 
if the acceleration is constant between two sampling instants. Let' s call this case the synchronous 
case. 
In the asynchronous case, the acceleration profile is still piecewise constant, but it is not synchronised 
to the sampling rate. It is easy to see that the block diagram in figure 7.2 is not applicable, by 
consirlering an extreme example where the acceleration is zero on every sampling time, but is nonzero 
between two sampling times. A correct way of calculating the reference position for time t = kh is, to 
fill in the current time instant t in the equations of motion: 

x(t} = t a(t y 2 + v(t y + x0 

v(t}=a(ty+v0 
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This computation cao be carried out off-line. The calculated profiles then have to be stored in the 
microcontroller memory. lf the current time t is available in the digital controller subroutine, the 
calculation cao be carried out online. 
The synchronous implementation of profile generation through discrete-time integration may be 
favourable, because it is straightforward. Besides, if the sampling frequency is high (relative to the 
bandwidth ofthe profiles), the error between the profiles generated by the block diagram in tigure 7.2 
and an arbitrary desired continuous-time profiles is small. Allowing the profdes to be asynchronous 
with the sampling ra te is beneficial because it makes the design of the reference profdes and the 
choice on the sampling rate independent. This is the preferred situation for paperpath design at Océ. 
1t allows the independent design of sheet transport profiles and the digital controller. 

7.3 Controller structure & psrsmeterisstion 

In industry, the majority of motor controllers seems to be PID based. There is noneedfora complex 
controller structure, as a well tuned PID-like controller achieves a sufficient level of performance. 
Velocity and acceleration feedforward is often added to the feedback controller in order to boost the 
tracking performance with respect to tracking second order position profiles [22]. Many engineers are 
familiar with this kind of control structure. It would be convincing to show that a well tuned controller 
with this structure cao achleve a good level of performance while the sampling time is lowered. Ergo, 
the strategy is to optimise a fixed structure controller, with a low sampling rate, while maintaining a 
eertaio level of performance. 
One of the design constraints is to achieve nominal stability. The stability of a controlled system does 
only depend on the feedback controller and is independent of the feedforward components (provided 
that these are stabie themselves). By a clever parameterisation, one cao assure that every feedback 
controller considered in the optimisation procedure stabilises a nominal plant. 
Consider a second order model for a position controlled DC motor: 

om (s) 1 

V(s) = kEs(sTm +1)" 
(7.3) 

Let G(z) be the ZOH transform of (7.3). It bas the structure: 

( ) k(z- a) 
Gz=( X )" z-1 z-b 

(7.4) 

The discrete-time feedback controller should contain an integrator mode, in order to track a linearly 
increasing position reference signal (see section 3.4). For the moment, the remaining part of the 
controller is left free, resulting in the structure: 

( ) R(z) 
Kz= (X )" S z z-1 

The loopgain of the feedback loop is: 

L(z)= G(z)K(z)= k(z- a) . R(z) = P(z). R(z). 
(z-1)2 (z-b) S(z) Q(z) S(z) 

The characteristic equation of the closed-loop transfer is: 

1 + L(z)= 0 ~ C(z)= Q(z)s(z)+ P(z)R(z)=O. 
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The roots of this characteristic equation are the closed-loop poles. The equation: 

C(z)= Q(z)s(z)+ P(z)R(z) (7.8) 

is called a Diophantine equation. It bas a unique solution in terms of R(z) and S(z) if 

deg(C(z))= max(deg(Q(z))+ deg(S(z)~ deg(P(z))+ deg(R(z))). (7.9) 

This follows from equating the coefficients of the powers of z for both sides of the Diophantine 
equation. For the case with the secoud order motor modeland the controller structure in (7.5), it tums 
out that the Diophantine equation bas a unique solution if deg(R(z)) = 2 and deg(S(z)) = 1. This 
controller structure corresponds to the biproper structure of a discretised PID controller with a roll-off 
pole to filtersome high frequency components (see section 8.3) 
Discrete-time controllers which stabilise nominal plant (7.3) are now parameterised by four stabie 
closed loop poles, the roots of C(z) (remember from section 3.3 that a discrete-time controller 
stabilises a continuous-time plant if the discrete-time controller stabilises the ZOH transform of the 
continuous-time plant). As the characteristic equation bas four roots, three cases of possible pole 
configurations have to be considered. They are enumerated in table 7.1. The table shows how the 
characteristic equation can be constructed from four parameters 81 , ... , 8 4 e [-1,1], such that every 
possible stabie closed-loop pole contiguration is covered. 
Once the characteristic equation C(z) is known, the controller can be determined as a function of the 
parameters, through solving the Diophantine equation. This is done by equating the coefficients of the 

powersof z of both sides of the Diophantine equation. Let R(z)= r2z2 + r1 z + r0 , S(z)= s1z + s0 and 

C(z)= c4 z4 + ... + c1z
1 + c0 , then equating the coefficients of the powersof z yields thesetof linear 

equations: 

c0 = -kar0 - bs0 

c1 = kr0 - kafj + (2b + 1)s0 - bs1 

c2 =kr1 -kar2 -(b+2)s0 +(2b+1)s1 

c3 =kr2 +s0 -(b+2)s1 

(7.10) 

This set of five equations in five unknowns bas a unique solution. The general solution to a 
Diophantine equation is the solution to matrix equation 7 .11. 

Table 7.1 Possible pole parameterisations 

two complex pole pairs 
(81 ~0 and 83 ~0) 

one complex pole pair, two real poles 
(81 ~0 and 83 <0, or 81 <0 and 83 ~0) 

four real poles 
(81 <Oand 83 <0) 
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Po 0 0 qo 0 0 'o Co 

Po 0 qo 0 cl 

Pnp 0 qnq 0 r,., 
= (7.11) 

0 Pnp Po 0 qnq qo so 
0 0 

Pnp qnq sns CIIC 

Here np, nq, nr, ns and nc respectively denote the degrees of the polynomials P(z), Q(z), R(z), S(z) and 
C(z), and the matrix entries denote the appropriate coefficients of the polynomials. 
This result allows the parameterisation of stabilising controllers for arbitrary nominal plants (for 
example, a velocity controlled DC motor). If the Diophantine equation bas no unique solution, extra 
controller poles can be added to ensure that (7.9) holds.These controller poles can be parameterised 
in a similar way as was done in table 7.1. The acceleration and velocity feedforward constants arealso 
included in the parameter vector. For the position controlled DC motor, this results in a 
parameter vector with 6 entries: 4 parameters characterising the feedback controller and 2 
parameters for the velocity and acceleration reedforward constants. 
Note that the controller for the position controlled DC motor is biproper. In many academie examples 
this is not allowed, because in a practical implementation there is a computation delay between 
sampling and the output of a new control sample. This computation delay is neglected in the 
parameterisation, but it is taken into account in the computation of the frequency gains and the 
integral quadratic tracking criteria. lt is possible to use the ZOH transform of the delayed plant in the 
parameterisation of the controller, but it would require different degrees for the polynomials R(z) and 
S(z), which would spoil the correspondence between the parameterised controller and the present PID­
like controller. 

7.4 Criteria & constrsints 

In the optimisation of motor controllers, both the frequency gains and the integral quadratic criteria 
will be used. The frequency gains have a clear interpretation, therefore they will be imposed as 
constraints. The integral quadratic tracking errors are suited criteria to quantify the performance with 
respect to tracking a second order position profile. However, it is usually impossible to give an 
upperbound on this integral quadratic criterion, because its numerical value lacks interpretation. The 
integral quadratic tracking error will be the optimisation criterion. 
lt is important to recognise that, in order to be able to execute a fair minimisation of the sampling rate, 
the constraints should be independent of the sampling rate! If a controller satisfies the constraints, a 
trade-off bas to be made between a low sampling rate and a good tracking performance expressed as 
an integral quadratic tracking error. Which integral quadratic tracking error criterion bas to be used 
depends on how the reference signals are generated. For a fair comparison between controllers of a 
different sampling rate, the asynchronous case should be considered. However, if one is willing to 
imptement synchronous setpoint generation, the performance of a controller might be increased if the 
optimisation criterion is the synchronous one, instead of the asynchronous one (this fact is being 
motivated by example 12.4.2 in [3]). 
In the remaining part of this section is illustrated how the control goals of chapter 3 can be 
incorporated in the optimisation criteria and constraints. 

(Robust) stability 
All the controllers inhibit some degree of nominal stability due to the parameterisation in section 
7.3 (the computation delay is neglected in the parameterisation). One could use the approach of 
section 4.5 to ensure robust stability, but this will yield a too conservative design. A pragmatic 
approach is taken instead: the sampled-data control system is called robustly stabie if the discrete-
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time feedback controller stabilises every plant in a plant set. The plant set represents the plant 
uncertainty, and it should contain the 'worst-<:ase' plant deviation. The phrase "worst-<:ase" is 
quoted because in practice it may be hard to judge whether a set of physical plant parameters 
represents a worst-<:ase (in what sense should a eertaio plant template be 'worst-<:ase', anyway?). 
The problem of selecting plant templates which constitute the plant set is left to the expertise of 
the (control) engineer. lt is expected that this pragmatic approach will yield controllers which 
show the desired degree of robustness. 
If one really insists, one can constrain the gain and phase margin of the combination P J...z)K(z), 
where P J...z) is the ZOH transform of the plant including the computation delay. Lower bounds on 
the gain and phase margins are available as 'good practice' margins. 

Tracldng 
Two types of tracking performances are distinguished: 

the performance with respect to tracking arbitrary reference signals; 
and the performance with respect to tracking fixed position profiles. 

An upper bound on the PFG of the transfer from reference signal to tracking error (PFGer) can be 
used to enforce a eertaio level of tracking performance for the frrst class of reference signals, just 
as is done in continuoos-time loopshaping. The PFGer is computed fora grid of frequencies. The 
constraint for tracking the unknown reference signal is violated if for at least one plant template in 
the plant set, and at least one frequency in the grid, the PFGer exceeds the upper bound. 
An integral quadratic tracking error is a suited criterion to express the performance with respect to 
tracking a eertaio position profile. In appendices A.5 and A.6 is shown how integral quadratic 
tracking error criteria are computed for motor controllers with acceleration and velocity 
feedforward, tracking a second order position profile. Both the synchronous case and the 
asynchronous case are considered. In the synchronous case, the acceleration profile corresponds 
to the impulse response of a discrete-time system. In the asynchronous case, the acceleration 
profile is approximated by an impulse response of a continuoos-time rational transfer function. 
The interpretation of the generalised H2 measure (see section 5.1) in the asynchronous case is the 
average integral quadratic tracking error. The average is taken over the sampling time, the period 
of the periodically time-varying sampled-data control system. Usually, one is actually interested 
in the worst-<:ase tracking performance, i.e. the response to a setpoint profile with a time shift 
TJE [O,h) for which the integral quadratic tracking error is worst. This worst-<:ase criterion lacks 

the computational benefits which the average integral quadratic tracking error possesses. 
In section 5.2 it was already pointed out that the controller design achieving the lowest possible 
integral quadratic tracking error might be a too optimistic design, as disturbances and model 
errors are not taken into account. Some level of robust performance is pursued through optimising 
the worst-<:ase tracking performance with respect to the plant templates in the plant set. lt is 
advised to include some frequency domaio constraint even if the performance with respect 
to unknown reference signals is oot of interest. In this way, resonances and an excessive 
bandwidth (poor rejection of high frequency messurement noise) which might appear in the 
optimal solution, are restricted. 

Disturbance rejection 
The PFG from disturbance input to plant output (PFGyd) is the frequency gain of interest when 
disturbance rejection is considered. Note, that PFGyd and PFGer differ a factor P(jw) (compare 

(3.55) and (3.56)). This means that a constraint on PFGyd can be translated to a constraint on 
PFGer· So, the frequency gain PFGer is used to express both tracking constraints and disturbance 
rejection constraints. 
One might be tempted to impose an upper bound on PFGer such that the controller bas a broad 
tracking band and excellent disturbance rejection properties. A controller optimisation problem 
with these constraints will probably turn out to be unfeasible, because the Bode sensitivity 
integral cannot be satisfied within these tight constraints. Care bas to be taken, that enough 
room is left for the Bode sensitivity integral constraint. 
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Sensor noise avoidanee 
In order to decrease the effect of measurement noise, the controller bandwidth bas to be 
decreased. lt is possible to achieve this by constraining FFGyn• DFGyn or PFGyno but if one of 
these frequency gains is constrained in conjunction with PFGero there is a fair chance that the 
fundamental property 

(7.12) 

is violated. The fundamental sensitivity function is given a high pass character by the upper bound 
on PFGer· (7.12) generally ensures the low pass character of the fundamental complementary 
sensitivity function and it implicitly restriet the bandwidth of the controller. 
lt cao be shown that PFGyn is a periodic function of the frequency, DFGyn is a lower bound on 
PFGyn and that DFGyn ""PFGyn for systerns with a low fidelity index. So if one decides to put a 

low pass upper bound on DFGyn or PFGyno the upper bound should bedefinedon the fundamental 

frequency range ~. i ) only, and oot on the whole frequency axis, otherwise the optimisation 

problem will definitely be unfeasible! 

A voidance of actuator saturation 
A sensible way of avoiding actuator saturation as effect of a reference signal is to constrain 
FFGur· FFGur is the ratio of the amplitude of the fundamental component in the actuator signal, to 
the amplitude of a sinusoidal reference signal. Generally, the bandwidth of the reference signalis 
low compared with the sampling frequency. This roughly means that the contribution of aliasing 
components to the actuator signal is low, which makes the FFG the appropriate frequency gain. 
However, the FFG describes only the amplitude ratios. If the reference signal is decomposed as a 
series of sinewaves, the FFG describes the amplitude gain of each of the frequency components, 
but it does oot contain any phase information. The chance exists that the phases of the sinewaves 
are such that, in some point in time, all the sinewaves are at its maximum, resulting in a large 
peak in the actuator signal. This observation makes it hardtodefine an upper bound on FFG (and 
for the same reason, the other frequency gains) a priori. The constraint accounting for the 
avoidanee of actuator saturation cao be adjusted iteratively, after simulation or measurements 
have shown that actuator saturation occurs. Of course, one could find out if actuator saturation 
occurs, through running a simulation for every set of controller parameters occuring in the 
optimisation problem, but this will probably be too time consuming. 
If one decides to use an upper bound on FFGu" one bas to makesure that fundamentallimitation 
(7.12) cao hold. Actuator saturation due to the feedforward voltage cao be prevented through 
defining upper and lower bounds on the acceleration and velocity feedforward constants. 

7.5 Optimisstlon slgorithm 

Ideally, a controller optimisation procedure would yield a single controller which bas minimal 
sampling time and exhibits a eertaio level of performance. However, the performance level generally 
decreases if the sampling rate is lowered, making the optimisation problem multi-objective. There is 
no single optimal solution toa multi-objective optimisation problem, as every solution is necessarily a 
compromise between two or more criteria. One cao try to find a set of solutions for which an 
improvement on one of the criteria implies a deterioration of the others. The complete set of these 
solutions is called the Pareto set or the Pareto front. For the optimisation problem considered bere, the 
Pareto front may look like tigure 7.3. Note that the Pareto front cao be constructed through computing 
an optimal controller for every single sampling rate. 
A different way of generating the Pareto front is through the use of a genetic algorithm (GA). A 
genetic algorithm is an optimisation algorithm which is inspired on the natural concept of evolution 
and the principle of 'survival of the fittest'. The genetic algorithm works with a population of 
individuals, each representing a controller. The individuals are assigned a fitness value which depends 
on the performance of the controller. The fittest individuals are selected for reproduction. 

Robert Cloudt 53 



On the Design of Digital Motor Controllers with Low Sampling Rates 

Sampling time 

Figure 7.3 Pareto front 

Reproduetion occurs through applying a crossover on genes at a random position (see tigure 7.4). A 
gene is a bit string representing an individual. The bit string is a binary representation of the 
parameter vector. Once every while, a mutation occurs where one of the bits changes value (see tigure 
7.4). Through breeding the fittest individuals, it is tried to achleve fitness impravement over 
subsequent generations. 

Crossover 

11o1o1o1 1oo11o 
11000011 110101 

11010101 110101 
11000011 100110 

Mutation 

1101010100110 -. 11010 00100110 

Figure 7.4 Crossover & mulation 

In order to approximate the Pareto front, diversity with respect to the sampling rate has to be 
maintained. This is done through a technique called fitness sharing [23]: if some individuals' sampling 
rates are close, their fitness is scaled down with an amount proportional to the amount of individuals 
with a sampling rate that is close. 
The genetic algorithm is adapted to deal with constraints expressing robust stability and robust 
performance. The pop u lation is divided into three classes; a class of nomina) stabie controllers (NS), a 
class of robustly stabie controllers (RS) and a class of controllers which achieve robust performance 
(and are robustly stable) (RP). Every controller is nominally stabie because of the parameterisation 
presented in section 7.3. Once a controller stabilises every plant in the plant set, it is promoted to the 
RS class. The robustly stabie controllers which satisfy a performance constraint (typically an upper 
bound on PFGer) for every plant template in the plant set, are part ofthe RP class. 
The population is ranked. Every individual in the RP class has a higher rank than an individual in the 
RS class, which in turn has a higher rank than every individual in the NS class. The NS class is sorted 
according to the maximum modulus of the eigenvalues, the individual with the lowest modulus gets 
the highest rank. The RS class is sorted according to the performance constraint violation, the 
individual with the lowest constraint violation eams highest rank. The RP class is sorted according to 
a performance criterion (typically, an integral quadratic tracking error criterion). The individuals are 
assigned a fitness value according to a ranking function with a parameter called the selective pressure 
[24]. The selecti ve pressure de termines the ratio of the probability that the best in di vidual is chosen to 
reproduce, to the probability that an average individual is selected. lt sets the balance between 
ex ploration and exploitation of the search space. 
Although the introduetion of the class system seems a sensible way to introduce some constraints, it 
turns out to be unsuited for the determination of the Pareto front. Experiments have pointed out that 
(depending on the constraints) only a couple of individuals reach the RP class, and they are likely to 
take over the whole population. The selective pressure can be reduced in order to try to overcome this 
problem, but then elitism has to be introduced to save the fittest individual of ~ach generation, as this 
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individual bas a fair change not to be selected for reproduction. Unfortunately, some experiments 
have pointed out that this adjustment isn't very fruitfut either. 
The problem seems to be the formation of lethals, unfit offspring. As the motor is open-loop stable, it 
is easy to find a stabilising controller with a low sampling rate, because in between sampling the 
system is essentially in open-loop. lt tums out that almast any controller parameterised as in section 
7.3 and ha ving a low sampling rate, is robustly stabilising. Por higher sampling frequencies it seems 
harder to find robustly stabilising controllers. The opposite is true for robust performance. Generally, 
controllers with a low sampling rate show a lower level of performance. So, if an individual 
representing a controller with a low sampling rate is crossbreeded with another individual, then the 
offspring is unlikely to exhibit robust performance. On the other hand, if a controller with a high 
sampling rate is selected for reproduction, there is a fair chance that the offspring won't be robustly 
stabilising. Once an individual reaches the RP class, and crossing this individual produces lethals, 
inbreeding occurs: a small group of individuals takes over the whole population. This problem might 
be overcome through the introduetion of a mating selection scheme, or some other advanced genetic 
operations from [23] and [27]. 

Instead of generating the whole Pareto front at once, a different approach is being applied in which a 
controller is optimised for a fixed sampling rate. The approach is a state-of-the-art non-linear 
programming technique called sequentia! quadratic programming (SQP). Although the genetic 
algorithm can be used for optimising a controller with a fixed sampling rate, the sequentia! quadratic 
programming technique generally beats the genetic algorithm on convergence speed and consistency. 
The sequentia! quadratic programming technique is based on analytica! results rather than an analogue 
to a natura! phenomena. The main idea bebind sequentia! quadratic programming algorithm is 
explained in the steps below. 
1. The non-linear optimisation problem with non-linear constraints is being transformed to a simpter 

well-posed problem (using the concept of Langrange multipliers). 
2. This simpter well-posed problem is implicitly assumed to be a quadratic problem. A search 

direction is obtained through a quadratic programming subproblem. This subproblem is being 
derived from the quadratic approximation of the well posed simpler problem of the first step. 

3. A one-dimensional line-search is executed, finding the maximum impravement in the search 
direction, respecting the constraints. 

4. The quadratic approximation of the simpter well-posed problem is updated using curvature 
information obtained in the previous steps. The next iteration proceeds with the direction finding 
subproblem in step 2. 

The quadratic subproblem is typical for sequentia! quadratic programming. The salution to the 
quadratic direction finding subproblem gives an optima! search direction. Moreover, an accurate 
initia! guess for the one-dimensional search can be given, because the problem was assumed to be 
quadratic. 
An introduetion to sequentia! quadratic programming and other numerical optimisation techniques can 
be found in [28]. The function fmincon in MATLABs Optimization Tooibox offers an 
implementation of sequentia! quadratic programming. Implementation detailscan be found in [29]. 

7.6 A general motor controller design methad 

In this section a general motor controller design metbod is presented. It is an optimisation process 
which includes an intuitive frequency gain as a performance constraint, and a trade-off between the 
sampling rate and a time-domain integral quadratic tracking error criterion. Robustness is enforced by 
using a set of plant templates. 
The design methods comprises the steps: 
1. Define a nomina! plant which is being used to parameterise nomina! stabilising controllers, 

according to section 7.3. 
2. Define a set of plant templates. They should represent all possible plant perturbations and model 

uncertainties. 
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3. Define a grid of frequencies which is dense enough to capture all the important behaviour in the 
frequency region of interest. 

4. Define a frequency domaio performance constraint, which is independent of the sampling 
frequency. Usually it suffices to use an upper bound on PFGer for every frequency in the grid. 

5. Introduce an auxiliary performance criterion which is traded off with the sampling frequency. 
This cao be the average integral quadratic tracking error criterion (asynchronous case), if a fair 
comparison for different sampling rates is desired. The tracking error is computed with respect to 
tracking some setpoint profile. 

6. Choose an initial sampling frequency. 
7. Optimise a controller with the current sampling rate, such that: 

the controller stabilises every plant in the plant set; 
the controller satisfies the frequency domaio performance constraint for every plant template 
in the plant set, and for every frequency in the frequency grid; 
the auxiliary performance criterion is optimal for the current sampling rate and the worst-case 
plant template. 

8. Evaluate the controller. This cao be done through computing some frequency gains, simulation, or 
any other metbod for controller validation. 

9. If the performance is satisfactionary, repeat from step 7 with a lower sampling rate. Otherwise, 
choose a higher sampling rate and proceed with step 7. 

This is the outline of the design procedure. Some iterative adjustment of the frequency domaio 
performance constraint may be necessary if the optimisation problem turns out to be infeasible. 
For convergence to the minimal sampling rate, it is necessary that the constrained optimal auxiliary 
performance criterion is a monotonously decreasing function of the sampling rate. The existence of an 
optimal sampling rate in a context ofLQG control was studied in [18]. It was shown that an LQG-like 
cost function augmented with a term representing the cost of sampling is oot a convex function of the 
sampling frequency if pathological sampling (the definition is given in [3]) occurs. This is for 
example the case, if a sinewave of 1 Hz is being sampled with a sampling rate of 1 Hz. The sampled 
signal is then a series of samples with an equal magnitude. The oscillatory mode becomes 
unobservable. Although a different problem than in [ 18] is being considered bere, it is oot expected 
that the design procedure leads to optimal sampling rates. It is hard to believe that the imposed 
constraints make the optimisation problem any easier. 
In spite of searching for the optimal sampling rate, the design procedure cao be used to optimise a 
couple of controllers for different sampling rates, and then select the controller which achieves a 
sufficient level of performance and bas the lowest sampling rate. Note however, that the design 
procedure gives a structured approach to the search fora suited sampling rate, as the constraints and 
criteria are independent of the sampling rate, and they take the continuous-time behaviour into 
account. 
A similar approach was suggested in [30], but the authors use different constraints and the PFG is 
being approximated with the DFG in the optimisation. Furthermore, they don't use any time-domaio 
criteria, like an integral quadratic tracking error criterion. The authors mention about the minimisation 
of a cost function invalving the PFG as a perfarmace criterion: "Note that the minimization is non­
convex and ill-conditioned ... " 
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8. A Motor Control Case 

8.1 The esse 

The case regards the control of a motor in the paperpathof an Océ copier/printer. The motor being 
considered is the last one in the paperpath, before the sheet enters the transfuse where the toner image 
is transferred onto the sheet. A high degree of registration accuracy is required. This imposes some 
tight control requirements on the motor controller. 

MM 

Figure 8.1 Control case 

The relevant part of the paperpath is depicted in the tigure above. The motor to be controlled is motor 
5 (M5). lt drives the last pinch (PS) before the transfuse (TF) and preheater belt 2 (PH2) which warms 
up the paper before entering the transfuse. When the teading edge of an A4 sheet triggers the optical 
sensor (084), the trailing edge is still in the frrst preheater (PH1) which is drivenat a constant speed 
by the main motor (MM). The image at the transfuse belt is travelling at an approximately constant 
speed. 
Nominally, a sheet triggering the optical sensor is too late with respect to image position on the 
transfuse. That is, a small distance has to be catched up while the sheet is in pinch 5 and the second 
preheater. However, when a sheet enters pinch 5, the trailing edge of the previous sheet is still in the 
second preheater. While the previous sheet is still in the preheater, motor 5 is not allowed to 
accelerate. In fact, motor 5 is then controlled by an open loop velocity controller, allowing the 
previous sheet to pass the transfuse smoothly. The transfuse runs at a slightly higher speed than PH2. 
The open loop controllimits the pulling forces on the sheet. 
After the previous sheet has left the second preheater (roughly 200 ms after 084 is triggered), a 
correction proftie is applied to a position controlled motor 5, in order to catch up with the image on 
the transfuse. The necessary correction proftie is calculated from the time a sheet triggers 084 and the 
position of the image on the transfuse. The worst-case correction profile is depicted in tigure 8.2. The 
maximal sheet velocity is 488 mm/s, which is 20% higher than the nominal process speed at 403 
mmls. The duration of the correction profile is 200 ms at maximum, which corresponds to 80 mm of 
sheet transport. These bounds on veloeities and profile duration have been chosen such that a sheet 
stays long enough in the preheater. The maximal acceleration and deceleration are 5 m/s2 and 15 m/s2 

respectively. These bounds are related to the power budget, mechanica] forces and the lifetime of 
drive components. The maximum position correction is equal to the shaded area in tigure 8.2. 
15 mm of paper transport(== 30 ms) has beenreservedas a settling time after the downward slope of 
the correction profile. After 30 ms the position error has to be within ± 50 J.1m, which is the error 
budget for the controller. Durlog this last 30 ms before the sheet enters the transfuse, the controller 
has to track the toner image position variations. This image position signal is derived from the 
velocity of the transfuse (which is approximately constant). The bandwidth of the image position 
variadons have been estimated to be 30 Hz. The significant components tie in the range from 0.5 to 5 
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Hz and have an amplitude of maximal 300 J.lm. These signals have to be tracked with an accuracy of 
50 J.lm. 

488 mm/s 

403 mm/s 

084 1+---------++--------~~ Fuse 
80 ms 80 ms 30 ms 

Figure 8.2 Worst case correction profile 

Besides tracking reference signals, the controller should suppress disturbances. The main souree of 
disturbing torques is identified as the eccentricity of the main pulley (see tigure 8.3). The eccentricity 
introduces a sinusoirlal disturbing torque with an estimated frequency of 4.5 Hz and an amplitude of 
11·1 0-4 N m. The eccentricity also introduces a sinusoirlal position error for pinch 5. This error cannot 
be reduced by a feedback controller, as the position eneader disc is mounted on the motor shaft. 
Therefore, this error is not subtracted from the error budget of the controller. Other sourees of 
disturbances are the interaction of the paper and the stick/slip of the preheater belt. These disturbances 
are assumed to be of minor effect because of the relatively high transmission ratio (1:5) from the 
pinch to the motor shaft. 

The control requirements can be summarised as: 
After tracking the worst-case correction profile, the tracking error should be settled in a band of± 
50 J.lm within 30 ms. 
The controller should be able to track components of amplitude 300 J.lm in the range 0.5 to 5 Hz 
with an accuracy of 50 J.lm. 
The controller bas to suppress a sinusoirlal disturbing torque with amplitude 11·10-4 Nm and 
frequency 4.5 Hz. 

Figure 8.3 Motor 5 driving the main pulley 
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8.2 Simu/ation model 

A model for the motor 5 drive application that was already available at Océ bas been adapted for the 
purpose of controller simulation. The Simulink (MA TLABs simulation tool) model is shown in tigure 
8.4. The block modeHing the motor and load is depicted in tigure 8.5. 

__ .... 
Y"'- I'IJ 

Acoekwetlon. Speed, Po.ftlon 

Speed Profile 

Term inator 

L-----------------~CJ 
Uotor Vol tage (V] 

r---------------~CJ 

Figure 8.4 Simulink model 

The model accounts for: 
third order dynamics ofthe motor plus load (electrical poleis modelled); 
temperature changes; 
a disturbance torque due to eccentricity of the rnain pulley; 
quantisation of the position measurement due to the optical encoder disc; 
quantisation and saturation of the actuator voltage; 
and a computation delay (in control algorithm). 

PoaiUon Error (m) 

Some phenomena which are not modelled are: the switching behaviour of the servo amplifier and the 
interaction of other pinches when the sheet is at two pinches at once. Two signals are available for 
simulation: the worst-case position profile and a signal representing the image position variations. 
This last signal is generated through filtering a random signal with a 4th order Butterworth filter with 
cut-off frequency 5 Hz. The position signals are in meters paper transport and the actuator signal is in 
Volts. The model parameters are enumerated in table 8.1. The parameter dependenee on temperature 
is obtained through linear interpolation between the parameters for cold and hot conditions. The 
transmission ratio defines the ratio between the paper displacement in meters and the angular 
movement of the motor shaft in radians 

Table 8.1 Model parameters 
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BackEMF 

Figure 8.5 Simulink model for motor plus load 

8.3 Evalustion of the present controller using the simu/ation model 

The present position controller for motor 5 is a discrete-time equivalent of a PID controller. lts control 
action is described by the expression: 

(8.1) 

where u is the actuator signal, e the deviation of the controlled value from the setpoint and h the 
sampling time. It corresponds to the z-domain transfer: 

U(z)_K K hz K z-1 --)- p+ ~--+ D--
E~ z-1 ~ 

(8.2) 

which is the backward Euler transfarm (see section 2.2) of the continuous-time PID controller 
transfer: 

(8.3) 

The output of the discrete-time PID controller is smoothed according to: 

u filured [k] =_a_ u filtered [k -1] + -
1
- u[k]. 

a+l a+l 
(8.4) 

This filtering action bas to prevent the overamplification of high frequency (measurement) noise due 
to the derivative action. a is selected to be e·''\ yielding a pole at a quarter ofthe sampling frequency, 
which for this PID controller is 1 kHz. The PID controller parameters are given in the table below. 
Again, the position quantity is the sheet displacement in meters. 

Table 8.2 PID controller parameters 
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Using the information form tables 8.1 and 8.2, the nominal plant model (at 20 °C) and the discrete­
time controller transfer function are obtained. 

P(s) = 9126.3488 e _1 s0.10~ ·s 
s(s + 1600Xs + 93.79) 

K(z)= 52224.9994(z
2 

-1.839z + 0.8487) 
(z -1Xz- 0.4378) 

(8.5) 

(8.6) 

P defines the transfer from motor voltage to sheet displacement (in meters), K defines the transfer 
from the position error in meters to the motor voltage. 
It is instructive to study some frequency gains of the controller and plant combination befare 
simulation. Figure 8.6 shows the FFG, DFG and PFG for the transfers from the reference input to the 
plant output (8.6a), the reference input to the traclcing error (8.6b), the disturbance input to the plant 
output (8.6c) and the measurement noise to the plant output (8.6d). Figure 8.6b is used to study the 
asymptotic traclcing properties. The PFGer is approximately -37 dB at 5 Hz, which corresponds toa 
reduction of a factor 70 which is much higher than the required reduction of a factor 6 (300 J.tm image 
position variations have to be tracked with an accuracy of 50 J.tm). Figure 8.6c shows that the system 
is rather insensitive to high frequency torque disturbances. Note also, that the effect of the reference 
signal and the measurement noise on the output is the same, due to the absence of an anti-aliasing 
filter. 
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Figure 8.7 Nyquist diagramfor PID controller 

Figure 8.7 shows a part ofthe Nyquist diagram for the discrete-time PID controller. The controller has 
a phase margin of 21.8° and a gain margin of 4.85 dB. 
For the simulation of the control system, values for the velocity an acceleration feedforward constants 
are needed. In the copier, they are obtained through some kind of eaUbration procedure. For the 
simulation, they are obtained from the inverse of a simpte second order plant model: 

(8.7) 

Let x be the position of a sheet in the paperpath, and let V be the applied motor voltage. The action of 
the inverse plant can be expressed in time-domain as: 

V (t) = k E ~ m • d 
2 
x(t) + k ~ . dx(t) = k E ~ m • a(t) + k ~ . v(t) 

l dt 2 
l dt l l 

(8.8) 

where v is the sheet velocity and a is the sheet acceleration. By choosing the acceleration and velocity 
feedforward constant as: 

(8.9) 

k 
K =~==16 

V • 
(8.10) 

l 

the action of the inverse plant is being mimicked. 
Four simulations were executed: the response to the image position signal for the hot and the cold 
motor, and the response to the worst-case correction profile (the profile achieving the maximal sheet 
position correction). The tracking error for the image position variation signal is depicted in tigure 
8.8. Th<? simulation was carried out for the cold motor. The tracking error for the hot situation does 
not differ very much. Clearly the present PID-like controller is being able to track the image position 
signal with the desired accuracy, even in the presence of the disturbing torque due to the eccentricity 
of the main pulley. 
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Figure 8.8 Tracking error ofthe PID controller for the image position signa/ 

Figures 8.9 and 8.10 show the tracking error resulting from applying the worst-case correction profile 
and the sheet velocity responses. The simulation results for both the cold (blue) and the hot (red) 
motor are plotted. The actuator signal for the cold case is reflected in figure 8.11. The tracking error 
has to be within the range ± 50 J..t.m after 30 ms of the downward slope of the velocity profile ( which is 
at time t = 1.43 s for the simulation). The bounds are depicted through the green dotted lines in figure 
8.9. The present discrete-time PID controller with a sampling frequency of 1 kHz satisfies these 
demands even with the occurrence of the disturbing eccentricity torque. 
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Figure 8.9 Tracking error for worst-case correction profile 
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Figure 8. JO Sheet velocity response 
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Figure 8.11 Actuator signal 

8.4 Controller design for the simu/ation model 

A new controller with a lower sampling rate is being designed for the simulation model. This is done 
using the metbod suggested insection 7.6. 
First, a set of plant templates is defined for which the controller should demonstrate some level of 
performance and which it should stabilise. The nominal model, a second order plant model used to 
parameterise stabilising controllers, is included in the plant set. Two other plant templates are 
obtained from a plant model at 0 oe and a plant model at 100 oe. Although the thermal operating 
range for the motor is assumed to be 20 oe to 75 oe, the extra temperature deviations are used to 
enforce extra robustness against fabrication tolerances for example. 
An upper bound on the PFGer is being used as a frequency domain constraint in the optimisation 
algorithm. The shape is being determined by control demands: · 

the PFGer should be below -15 dB (a factor 6) for frequencies below 5 Hz, in order to get a 
sufticient tracking performance with respect to tracking image position variations and a sound 
amount of disturbance suppression at 4.5 Hz; 
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it should be below 6 dB in the range from 5 to 30 Hz in order not to over-amplify some minor 
components in the image position signal. 

Furthermore, it is desirabie to give an upper bound on PFGer for the frequencies above 30Hz, because 
it prevents the possible occurrence of resonant peaks originating from the H2 optimisation (remember 
the discussion insection 7.4). Because the PFGer for the discrete-time PID controller bas a maximum 
of 10 dB, this upper bound for higher frequencies is set to 10 dB. 
As a fair comparison of controllers with a different samplingrateis desired, the worst-case correction 
profile is kept the same for every sampling frequency. This means that one bas to consider the 
asynchronous case of reference generation and the average integral quadratic tracking error as 
optimisation criterion. 
The worst-case average integral quadratic tracking error is being optimised under the constraints that 
the controller should stabilise every plant in the plant set, and that the upper bound on PFGer is not 
violated for any plant template. "Worst-case" is with respect to the plant templatesin the plant set and 
the average is taken over the sampling time h. 
The tracking error is optimised with respect to tracking the downward slope of the worst-case 
correction velocity profile. The focus is on the downward slope, because the only constraint on 
correction profile tracking is on the setding time after the deceleration of the sheet. The piecewise 
constant deceleration of 15 m/s2 during 6 ms is approximated with a fourth order Padé approximation, 
in order to compute the average integral quadratic tracking error. The approximation of the 
acceleration, velocity and position profiles is depicted in tigure 8.12. The approximation error is 
negligible in the position profile, as the error is 'smeared out' due to the double integration of the 
acceleration profile. The acceleration and velocity information is being used to optimise the 
feedforward constants. Acceleration and velocity feedforward bas the potential of improving the servo 
performance over feedback control alone, even if the acceleration and velocity feedforward constants 
aren't that accurate (compared to thesecondorder inverse plant). For this reason, the approximation 
error in the acceleration and velocity profiles is admissible. 
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Figure 8.12 Profile approximation 

The optimisation is being executed for the sampling frequencies 100, 150, 200, 250 and 300 Hz, using 
the sequential quadratic programming implementation of MATLABs Optimization Toolbox. As an 

Robert Cloudt 65 



On the Design of Digital Motor Controllers with Low Sampling Rates 

initia! guess for the parameters, all closed-loop poles are placed in z = 0.5 and the feedforward is 
based on the inverse second order plant. 
In tigure 8.13, the achieved average integral quadratic error criterion is plotted against the sampling 
frequency. For Is = 100 Hz, the problem turns out to be infeasible, as no salution satisfying the 
constraints was found. The plot shows that the constrained optimal average integral quadratic traclcing 
error is oot a monotonously decreasing function of the sampling rate. 
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Figure 8.13 Constrained average inlegral quadratic tracking error vs. sampling rate 

However, one is oot really interested in the numerical value of the integral quadratic traclcing error, 
but in the settling time after the worst-case correction profile. Simulation has tumed out, that the 
settling time constraint is oot satisfied by the solutions for Is = 150 Hz and Is = 200 Hz. The controller 
salution for Is = 250 Hz is the salution with the lowest sampling rate, which satisfies the settling time 
constraint for both motor temperatures. 
The optimal salution for Is = 250 Hz is found to be: 

K(z) = 30298. 7603(z - 0.8544 Xz - 0.5359) 
(z -1Xz + 0.7282) 

Ka =0.0317 

Kv= 10.4481. 

(8.11) 

(8.12) 

(8.13) 

Figure 8.14 shows PFGer for the three plant templates and the upper bound on PFGer· Figure 8.15 
shows the traclcing error response to the image position signal, obtained through simulation, and 
tigure 8.16 shows a sheet velocity response. Four traclcing error responses of the system at 20 oe are 
depicted in tigure 8.17. One of the responses is for the case that the start of the deceleration period is 
synchronised with a sampling action, the other responses are traclcing error responses to a delayed 
setpoint profile, where the delay rJ is 1, 2 or 3 milliseconds (remember that the asynchronous case is 
considered here ). 
Although the traclcing error response to the correction profile shows a larger oversboot for the new 
controller, all the control demands are satisfied. The samplingrateis reduced withafactor four. The 
gain and phase margin of the new controller with respect to the delayed third order model at 20 oe are 
2.9 dB and 21.2°. This seems a deterioration when compared with the robustness margins for the PID 
controller. The new controller is guaranteed to stabilise the plant templates in the plant set. lf the plant 
templates truly reflect the maximal uncertainty of the motor parameters, there is no need to study the 
robustness margins. Moreover, this different approach to robustness ensures a level of robust 
performance, because the controller is optimised for the worst-case plant template. Realise that 
constraining the phase and gain margins generally does oot yield a controller which achieves robust 
performance. A different plant set would have yielded a controller with different, possibly larger, 
stability margins. 
It is interesting to regard the root locus diagram for the controller and the undelayed second order 
plant model in tigure 8.18 (the root locus metbod is oot suited for delayed plants). It shows a closed­
loop pole contiguration that was certainly oot obtained if discrete-time controller design was applied 
according to the guidelines in [2]. The negative real closed-loop eigenvalue corresponds toa heavily 
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fluctuating response, which changes sign every sampling time. This might upset the plant, and for this 
reason it is advised not to place any closed-loop poles on the negative real axis. However, in the 
design procedure presented bere, the continuous-time plant dynamics are taken into account. 
Apparently, the imposed bounds on the control system allow a closed-loop pole contiguration like in 
tigure 8.18. 
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8.5 The experimentsl set-up 

A fully functional Océ copier (see tigure 8.19a) is available for experimental purposes. The motor 5 
controller software runs as a task under the reai-time operating system VxWorks on a standardised 
Océ processor board with 110 functionality (figure 8.19c). The 110 functionality is used to generate 
PWM signals for one of the full-bridge DC-DC convertees on a standardised power electtonics board 
(figure 8.19d) driving motor 5. For experimentation purposes, the power electranies board is 
decoupled and connected to a separate processor board. This processor board is connected through a 
network conneetion with a PC running a development environment. Compiled C-code can be 
downloaded into the processor board memory after which it can be executed using the VxWorks 
cammand shell which is accessible from the PC. During an experiment, the copier is not in operation. 
The only motor being drivenis motor 5 and there arenosheets passing through the paperpath. 

Figure 8.19a Océ copier Figure 8.19b Open back end of copier 

Figure 8.19c Processor board Figure 8.219d Power electronics board 

8.6 ldentificstion of experimentsl set-up 

Some identification experiments are carried out in order to validate the simulation model. Using a 
smalt program running on the processor board, a random signal with a sampling rate of 4 kHz is 
applied to the motor during 15 seconds. The range of the motor voltage corresponds roughly to the 
range of the actuator signal in tigure 8.11. The random signal and the position data from the eneader 
disc is recorded in an array. After the experiment, the contentsof the array is being written toa file on 
the PC. The data is imported in MATLAB where the Identification Tooibox is being used to derive a 
numerical model using pem. 
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A model with the structure: 

(8.11) 

is being searched for. The model parameters are - 'f m and ~1 . The parameterised model is implicitly 

discretised through the ZOH transform with a sampling rate of 114000 s. Depending on the noise 
model, the output error or the prediction error is optimised through non-linear optimisation. In the 
case of the prediction error, a white noise souree modelling the measurement errors and unmodelled 
dynamics, affects both the output and the state of the discretised system. For the case of the output 
error, only the output is disrupted by white noise. 
The optimisation algorithm requires an initial guess for the model parameters. The data in table 8.1 
can be used to form an initial estimate based on the simulation model: 

~=1892. 
JR 

(8.12) 

(8.13) 

The model obtained forthese initial guesses is validated through comparing its (differentiated) step 
response (the red curve in tigure 8.20) with a measured voltage step response (cyan). The DC gain 
from applied motor voltage to steady state velocity shows a severe mismatch. Actually, the DC gain 
from the simulation model shows a discrepancy with the measurements too. The model minimising 
the output error gives a reliable estimate for the DC gain, but the estimate of the mechanical time 
constant is worst (according to the green curve in tigure 8.20). 
In a second try, the prediction error minimisation algorithm is equipped with initial estimates obtained 
from the voltage step response of the motor. The second model parameter can be expressed in terms 
of the DC gain llkE and the mechanical time constant (if the damping is neglected): 

With the initial guesses obtained from step response data, the model parameters converge to: 

- -
1 = -55.3364 

'fm 

kT -=1057.8. 
JR 

(8.14) 

(8.15) 

(8.16) 

The model with these parameter values tums out to give a more accurate solution for the DC gain and 
the mechanical time constant (compare the black and cyan curves in tigure 8.20). If the algorithm 
minimising the output error is equipped with the initial parameters obtained from the step response, 
then the solution converges to the one obtained with the initial values from the simulation model (see 
the green curve in tigure 8.20). When the model mismatch between the simulation model and the 
identified model is attributed toa misfit in the inertia only, this misfit is about a factor 1.5 to 1.8. 
In general, the output error is the preferred criterion for parameter estimation. It focuses on the 
evolution of the system behaviour over time, whereas the prediction error metbod puts all its effort in 
deriving models with excellent prediction capabilities. The latter approach uses the kth output sample 
to predict the next output sample at time k + 1. As a sample is usually highly dependent on the 
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previous sample, the prediction error metbod focuses on fast, high frequency phenomena. The output 
error does not focus on any particular part of tbe spectrum, which makes it the preferred metbod for a 
general parameter estimation problem. However, tbe prediction error metbod tums out to give a more 
accurate (in terms of step response resemblance) model in this particular identitication problem. For a 
thorough treatment of the differences between the output error and prediction metbod, the reader is 
referred to [33]. 
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Figure 8.20 Model validation using step responses 

Figure 8.21 shows an identitied frequency response obtained through speetral analysis of data from an 
earlier conducted closed-loop identitication experiment. The response suggests that tbere is at least 
one flexible mode apparent. It is probably introduced by tbe drive belt (see tigure 8.3). The natural 
frequencies of tbe complex zero pair and the complex pole pair descendent from the flexible mode, 
are estimated from the tigure as 63Hz and 73Hz respectively. The prediction error metbod is being 
used to estimate the damping. 

Bode plot of the plant 
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v __ ~ 
) 

Figure 8.22 Modelfor position controlled DC motor withflexible mode 

Let a position controlled DC motor with a flexible mode somewhere in the transmission, be modelled 
by the block diagram in tigure 8.22, where w" is the natoral frequency and Ç the damping ratio ofthe 

complex pole pair and where the complex zero pair is given by the roots of s2 + ~wzs + w;. The first 
transfer block is govemed by the differential equation: 

(8.17) 

The integrator mode is included in the second transfer block. This allows the conversion from transfer 
function to control canonical state space form: 

(8.18) 

Combination of (8.17) and (8.18) yields the model structore: 

--L 0 0 0 _I_ 
r,. r,.tE. 

(~)= 1 - Çw" -(1)2 0 (~)+ 0 n 

0 1 0 0 0 

0 0 1 0 0 
(8.19) 

QJ=(o Olz z m;e)+O·V . OI• ~ 
OI: OI, 

The two entties containing Ç and ~are regarded as model parameters. Tm and llkE are obtained from 

the identified second order model, and wz and w" are fixed to 27t·63 and 27t·73. 
Again the prediction error metbod is sensitive to initial guesses. However, if the initial guesses 
Ç = 0.25 and Ç = 0. 71 are supplied, the salution converges to a set of parameters which are almost 
equal to the initial guesses. This gives some confidence in the parameters, as the salution seems to be 
an (local) optimum. 
The reader interested in identification is referred to [25], [26] and [33]. 

8. 7 Controller design & implementstion tor the experimentsl set-up 

A controller is designed for the experimental set-up, along the same lines as was done for the 
simulation model. The new plant set consistsof three models: the identified second order model (the 
nominal model), the identified fourth order model accounting for the flexible mode, and a fourth order 
pertorbed model. In the pertorbed model the motor constant is decreased with 10% and the 
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mechanical time constant is increased with 20%. This perturbation corresponds roughly to a 
temperature increase of 50 °C. Further, the natural frequency of the flexible mode is increased with 10 
Hz (actually, a decrease of frequency would be more challenging for controller design), modelling the 
uncertainty in the resonance frequency ( caused by wear of the belt, for example ). The Bode diagrams 
of the plant templates are depicted in tigure 8.23. A controller with a sampling rate of 250 Hz is 
optimised for the new plant set, as was done in section 8.4. 
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Figure 8.23 Bodediagramsof plant templat es 

The controller is implemented on the processor board. The computations are executed in floating 
point arithmic. As the processor platform does not support floating point numbers in hardware, the 
floating point type bas to be emulated, which results in a relatively high computation time: 210 JlS. 
The computation delay was measured as the time between sampling and the output of a new actuator 
sample. This computation delay was accounted for in the optimisation. 
For implementation, the controller is converted to control canonical state space form. This allows an 
easy implementation of integrator antiwindop and an accurate representation of the integrator mode. If 
the controller was implemented as a difference equation, inaccuracies in the number representation 
may cause the unit eigenvalue of the integrator mode to deviate. A sample of C code imptementing 
the actual controller action is given below. It gives an impression of the implementation of the 
controller. 

I* actual controller code *I 
U= 0.4172*Xl- 1.781*X2 + 3.438*E + 3.6729*(velocity[counter] -

36.0) + 70*acceleration[counter]; 

I* actuator saturation *I 
if (U> 359.0) 
{ 

u = 359.0; 

else if (U< -359.0) 
{ 

u = -359.0; 

set_pwm(- (int) U); 

if ((U== 359.0) 11 (U== -359.0)) 
Xl = Xl; I* integrator antiwindup *I 

el se 
Xl = Xl + 0.02493*E; 
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X2 = - 0.2398*X2 + 1. 80 3 *E; 

The reference trajectory is computed offline with a resolution of 1 ms, and it is stored in memory. The 
controller' s sampling frequency is 250 Hz. This means that the setpoint profile can be shifted with 
respect to sampling instant in four steps (asynchronous case). The measured tracldng error response 
for these four cases is depicted in tigure 8.23. The measurements were taken with a sampling rate of 1 
kHz. The black curve shows the measured tracking error for the present PID controller. 
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Figure 8.23 Measured tracking error 

The bounds on the tracking error are expressed by the dotted cyan lines in tigure 8.23. In order to 
satisfy the settling time constraint, the tracking error has to be within a bound of 50 J.tm after 1.43 
seconds. The PID controller achieves this demand, and so does the new 250 Hz controller for the 
setpoint delays of 0 and 1 ms. For the other two setpoint delays the settling time constraint is violated. 
But as the tracking error responses for the PID controller and the new controller with a sampling rate 
of 250 Hz are comparable, one can say that roughly a factor 4 on sampling rate reduction can be 
achieved. The new control algorithm is notcomplexer than the discrete-time PID control algorithm 
The results in tigure 8.17 are incomparable to the results in the tigure above. This is due to the fact 
that different controllers are obtained for the simulation model and the experimental set-up, and 
different plant set are used. The tracking error responses for the discrete-time PID controller at 1 kHz 
differ in the figures 8.9 and 8.23, due to the discrepancy between the simulation model and the 
identified model, and unmodelled dynamics. 
lf one is willing to modify the setpoint profile, a controller can be optimised for the synchronous case. 
In this case, the acceleration profile has to be constant between sampling times. The worst-case 
correction profile can be approximated with a profile which bas constant acceleration during a 
sampling period of 4 ms. In this case, the 15 rnls2 deceleration period of 6 ms is approximated with a 
15 rnls2 deceleration during 4 ms foliowed by a period of 4 ms, 7.5 rnls2 deceleration. A 250 Hz 
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sampling rate controller optimised for this setpoint profile with a synchronous acceleration profile 
might achleve a tracldng error response like in tigure 8.24. 
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Figure 8.24 Tracking error response of optima/ controller for the synchronous case 
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9. Conclusion 

A systematic approach to the design of digital motor controllers is presented. The proposed design 
metbod is a controller optimisation procedure which regards the continuous-time performance of the 
hybrid, mixed discrete-time/continuous-time control system. The explainability of frequency domaio 
performance constraints is combined with the suitability of integral quadratic time-domaio constraints 
to optimisation. The sampling rate independenee of the criteria and constraints allows a fair 
comparison of controllers with different sampling rates. 
Useful insights into the capabilities and limitations of sampled-data control are obtained through 
frequency domaio analysis. Frequency gain concepts pose a useful tool for the numerical analysis of 
sampled-data control systems. 
The proposed controller design metbod is applied toa representative motor control case in an Océ 
copier. Simulation and experimental results show that a sampling rate reduction from lkHz to 250Hz 
can be accomplished while maintaining the controller complexity, provided that a reasonable accurate 
model is available. So, with little effort, a significant amount of efficiency impravement can be 
achieved. 
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1 0. Recommendations 

H2 optimal control of mixed continuous-timeldiscrete-time and mixed stochastic/deterministic 
systems offers a challenging direction for further research. If a sensible metbod for weighing the 
terms in the cost function is found, the sampled-data H2 control design framework might offer a 
useful framework for motor controller design. lt has considerable computational advantages over 
the non-linear optimisation with frequency domaio constraints. Controller reduction techniques 
can be applied to reduce the typical high order H2 optimal controller. 

A lot of work can be done on adjusting the optimisation algorithm to the optimisation task. A 
study on the applicability of genetic algorithms to finding the set of Pareto optimal controllers is 
useful, for instance. Probably, the use of areducedorder H2 optimal controller as an initial guess 
for the non-linear optimisation algorithm, would reduce the amount of iterations necessary to 
arrive at an optimal solution. lt is also interesting to know, if a combination of sampled-data and 
discrete-time H_ optimisation techniques can be applied to shape the PFGe, of a sampled-data 
system. For well behaved systems (systems with a low fidelity index) the DFGer might be used to 
approximate the PFGer for low frequencies, and the RFGer generally approximates the PFGer for 
high frequencies [12]. These suggestions might offer directions for further research. 

Although the design metbod presented insection 7.6 offers a structured way of designing motor 
controllers with low sampling rates, the optimisation procedure may be quite cumbersome. lt 
would be advantageous for acceptation and practical application, if some design guidelines for 
motor controller design could be derived, using the presented design framework. Moreover, some 
workis still to be done on the interpretation of the optimisation results. lt is desired to relate the 
closed-loop pole placement, resulting from the optimisation process, with the upper bound on 
PFGer and the level of the integral quadratic tracking error. 

To increase the robustness of the optimisation procedure, the numerical reliability of the various 
computations have to be increased. The computation of the average integral quadratic tracking 
error suffers from numerical problems, especially if the order of the used Padé approximation is 
high. The perturbation of the integrator mode, E (see appendix A.6), has also an effect on the 
outcome. The application of multirate lifting [32] can overcome the necessity of the Padé 
approximation, which seems to cause the numerical problems. The asynchronous acceleration 
profile can be approximated to any desired degree of accuracy, with an impulse response of a 
discrete-time system with a sampling time N times higher than the sampling rate of the controller. 
Multirate lifting transforms a multirate sampled-data system to a norm-equivalent single rate 
discrete-time system. 
The computation of the DFG can be inaccurate for low frequencies, due to the computation of the 
matrix exponent in MATLAB. Similar inaccuracies are encountered when Bode diagrams of 
delayed systems are plotted. 
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Appendix A. Computations 

A. 1 Computlng integrals invalving the matrix exponentlal 

Integrals involving the matrix exponentials are often encountered in sampled-data control theory. lt 
tums out that a eertaio form of integrals involving the matrix exponential can be computed by 
calculating a matrix exponential. This lemma is used in the computation of the ZOH transform, the 
computation of the PFG and the derivations of integral quadratic measures for sampled-data controL 
The matrix exponential of a square matrix A is defined by the series: 

(A.l) 

Let A 1 and A2 be square matrices. If 

(A.2) 

then 

J;' A." r 1 =e , (A.3) 

this follows directly from the block upper triangular structure of the matrices, and 

" G1 = JeAt("- u) B
1
eAzu du . (A.4) 

0 

This follows from the fact that if (A.2) is differentiated one gets: 

(A.5) 

so 

(A.6) 

Solving this differential equation yields: 

" G1 = JeA•("- u) B
1
eÄz" du. (A.7) 

0 

In a similar way one can derive (see [15]): 

(A.8) 

Robert Cloudt 78 



On the Design of Digital Motor Controllers with Low Sampling Rates 

where 

j =1,2,3 (A.9) 

j=1,2 (A.lO) 

T TCT 

H j = JeAJ(T-u)C jeAJ+2u da + J JeAJ(T-u) B jeAJ••(u-p) B j+IeAJ•zP dpda, j = 1 (A.ll) 
0 0 0 

and 1"~0. 

A.2 Computing the ZOH transfarm 

Let continuoos-time plant P have state space matrices A, B, C and D and a delay 0 :5 À< h , where h is 
the sampling time. Let u be the input of the plant and y the output, x is the internat state of P. The 
evolution of the plant from sampling time to sampling time is obtained by integrating the continuoos­
time state space equations from kh to kh + h, where kis a positive integer. This results in (see also 
[8]): 

If the delayed input sample u(kh- h) is adopted into the new state vector: 

then the state space equations of the ZOH transform of P can be written as: 

xd [k + 1]= Adxd [k]+ Bdu[k] 

y[k]= Cdxd [k]+ Ddu[k] 

where: 

h-À. 

Bd = JeAT BdT 
0 

c, =(Ce"" JceAIA~IBdr) 
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(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 
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h--l 

Dd = JceArBdr+D. 
0 

Using the results of section A.l, the integrals can be written as matrix exponentials: 

((
A B) J(eA(h--t) OJ 

Cd=(C O)exp 
0 0

..t 
0 1 

A.3 Computing the PFG 

Parseval's theorem gives an expression for the power of a signal z(t) in the frequency domain: 

P 2(z(t)}=-1 
.. Jz"(jm}z(jm}dm 

21t --
where * denotes the conjugate transpose. Substituting general form (3.10) into (A.23) gives: 

P 2 (z(t)}= ~ jw"(jm}G;1(jm}G11 (jm)w(jm}dm 

(A.l8) 

(A.l9) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

+-1 jw"(jm}G;1(jm}G12 (jm}H(jm)Rd(e1aia ) • .!. ÏG21 (jm- jnms)w(jm- jnms}lm 
21t -oo h n=--

+ -
1 j.!. Ï W • (jm- jnms }G;1 (jm- jnms )?; (e1aia )H • (jm }G;2 (jm )G11 (jm )w(jm }dm 

21t _h n=--

+-1 j.!. "fw"(jm- jnms}G;1(jm- jnmsY?;(e1aia )H"(jm}G;2 {im)· 
21t _h n=--

G12 (jm }H(jm }Rd (e1aia ). _!_ Ï G 21 (jm- jnms )w(jm- jnms }lm 
h n=--

(A.24) 

For the PFG case, w(t) is a single (possibly multivariable) sinusoid, so: 

(A.25) 

Substitution of (A.25) into (A.24) and exploiting the sieve property of the Dirac delta pulse yields: 
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(A.26) 

By construction, A(m0 ) is a symmetrie positive definite matrix, so it bas positive singular values. Tbe 

maximum power gain is given by the square root of tbe maximum singular value: 

(A.27) 

Note tbat the term in (A.26) containing the infinite sommation describes tbe ZOH transfarm of tbe 
system in figure A.l. 

Figure A. I System for computing infinite summation 

Soppose G12 bas system matrices A, B, C and D. lts transfer function is: 

G12 (jm) = C(jmi -A )B + D. (A.28) 

Tbe adjoint system G;2 bas transfer function: 

(A.29) 

So c;2 bas system matrices -Ar. cT, -BT, DT. It is easy to derive tbat tbe series conneetion c;2GI2 bas 

state space representation: 

(A.30) 

Note tbat if G12 contains a delay, tbere exists no statespace representation for G12 as it is non-rational. 

However, tbe delay is cancelled in c;2G12 , so the state space matrices of the undelayed system G12 
can be used instead. 

Tbe ad joint of the zero order bold bas transfer function: 
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(A.31) 

Let h • (t) denote the impulse response of the conjugated hold operator. It is obtained from (A.31) 

through inverse Fourier transform. 

. ( ) {1 -h $ t $ 0 
h t = 

0 elsewhere 
(A.32) 

If the system in figure A.l is prepended with a zero order hold, then the signal y is described by the 
equations: 

for kh $ t < kh + h , k E N: 

{x(t)=ex{(c~c -~r )t-kh)}(kh)+ }•{(c~c -~r }(t-rl}T{c~D}(kh) 
y(t )= (vr C - BT ~(t )+ DT Du(kh) 

(A.33) 

where x is the intemal state of a;2G12 • v(t) is the convolution of h • (t) with y(t) which yields: 

for kh$t<kh+h, keN: 
I I 

v(t- h) = J y(o}Iu = (vr C - BT) J x( u )du + DT Du(kh) 
/eh /eh 

=(Drc -Br)jexp((c~c -~r )(a-kh)}a·x(kh) (A.34) 

+(Drc -Br)JJexJ( ~ _ 0 r){u-r)Îdmu·( ~ }(kh)+DTDu(kh) 
/eh/eh \_ C C A ') C D 

for t = kh + h this yields: 

(A.35) 

Substitution of variables gives: 

v(kh)=(Drc -Br)jex{(c~c -~T )a }u·x(kh) 

+ (DTC -BT lfjex{( C~ C _ ~T )a-T)}ma-(C~ D }(kh)+ DT Du(kh) 

(A.36) 

Now it is possible to write the infinite summation in (A.26) as a transfer function of a discrete-time 
system; 
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(A.37) 

where 

(A.38) 

(A.39) 

(A.40) 

(A.41) 

Using the results of section A.l, the statespace matrices can be computed through the computation of 
one matrix exponential: 

0 ! DT c - BT ! DT D 
............................. .~ ......... . . . 
Ol A 0 l B h 
o ! cT c -AT ! cT v 

(A.42) 
. . ····r·······················"'·········· 

0! 0 0 . 0 

This result allows the exact computation of the PFG. 

A.4 The lifting approach to optima/ samp/ed-data control 

Three steps can be distinguished in applying the lifting approach to a sampled-data optimal control 
problem. 
1. The sampled-data system is 'lifted' to a norm-equivalent infinite-dimensional time invariant 

discrete-time system. 
2. The infinite-dimensional discrete-time problem is converted to a norm-equivalent finite­

dimensional discrete-time problem. 
3. The optimal control problem is solved for the norm-equivalent finite-dimensional discrete-time 

system. 
The first two steps will be explained in this section. 

The lifting action 'chops' a L2 [0, co) signal x in parts, where each part x[k] is an element of L2 [0, h) 
and h is the sampling time. This operation is illustrated in figure A.2. The lifted signal x is the 

sequence x[k], k e ~. The 12 norm of such a lifted signal is defined as: 

I 

lXI,, = (~ jX[k ~~, •.• ) r (A.43) 

and it is equal to the ~ norm of the continuous signal; 
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Lifting 

r------., r------., r------., r------· 
I I I I I I I 
I I I I I I I 
I I I I I I I 

: : : !..-... ri u· : 

: :v• r Vj, : n lt I ft 
I I I I I I 

1 1 I 1 I 
I I I I I I 

I I I I I I I 

~-----2 ~------ ~-----2 ~-----2 
t x[o] x[I] x[2] x[3] 

Figure A.2 The lifting operation 

Besides lifting signals, the lifting operation can be applied to systems. Consider an ordinary 
continuoos-time L TI state space system. The state of this system evolves from one sampling time to 
the next according to: 

h 

x(kh + h)= eAh x(kh)+ JeA(h-T) Bu(kh +u )du 
0 

and the output y of the plant between sampling instants is described by: 

T 

y(kh +-r)= CeAT x(kh)+ JceA(T-u)Bu(kh + u)du + Du(kh +T~ 'Z'E [O,h). 
0 

(A.45) 

(A.46) 

These equations were obtained through integration of the continuoos-time state space equations, see 
also [8]. The lifted system is described by the discrete-time statespace equations: 

x[k +I]= A.x[k]+ 8û[k] 

y[k]=êx[k]+ bû[k] 
(A.47) 

where .i[k]=x(kh)e IR", û[k]e L2 [0,h) and y[k]e L2 [0,h) (the dimensions of the input and output 

signals are omitted). The operators in (A.4 7) are defined as: 

B: L2 [O,h)~ IR", 

ê: IR"~ ~(O,h), 

b: ~ [o. h) ~ ~ [o. h). 

h 

Bû[k]= JeA(h-u)Bu(kh + u)du 
0 

{êx[k]X-r)= CeAT x[k] 
T 

{Dû[k ]X-r) = J CeA(T-u) Bu(kh +u )du + Du(kh + 'Z') 

0 

(A.48) 

(A.49) 

(A.50) 

(A.51) 

with 'Z'E [O,h). Technically, (A.47) is an operator valued state space equation, which defines an 

infinite-dimensional discrete-time system, as ~ [0, h) is an infinite-dimensional Hilbert space. The 

lifted system bas the same ~ induced norm, because the h norm of the input and output signals of the 
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lifted system are equal to the ~ norms of the continuoos-time system. The lifting operation can also 
he used to derive a norm-equivalent infinite-dimensional discrete-time system for a mixed 
continuoos-time/discrete-time system or even multirate control systems. 

The second step in the lifting approach to optima! sampled-data control is a transformation from an 

infinite-dimensional problem to a finite-dimensional one. Note that operator A bas already an n­

dimensional matrix representation. Operators ÎJ and ê are infinite-dimensional operators, but they 
have fini te rank ( maximal n). As L2 [0, h) is a Rilhert space, a fairly general result allows the 

denvation of a norm-equivalent finite-dimensional operator. 
The definition of the normand inner product associated with Rilhert space L2 [0, h) are: 

h 

innerproduct (x,y)= JxT(a)y(o}la; 
0 

(A.52) 

(A.53) 

Let 'I' he an operator 'I': IR"---+ L2 [0, h). The ad joint operator is the unique operator 'I'*: L2 [0, h)--+ 

IR" satisfying ('l'x,y)=(x,'l'*y), where x e IR" and ye L2 [0,h) (also a Rilhert space with the 

Euclidian normand vector dot product as inner product). The composite operator '1'*'1' : IR"---+ IR" (see 

tigure A.3) bas an n x n matrix representation M TM . M is a norm-equivalent finite-dimensional 
operator for 'I' as: 

ll'l'xll~[o,h) =('l'x, 'I' x) =(x, 'l'*'l'x) = (x,MT Mx)=xT MT Mx=(Mx,Mx) =IIM~I2 • (A.54) 

Once an expression for the matrix M TM= '1'*'1' is obtained, a (non-unique) matrix M can he 

obtained through a Cholesky-like factorisation (if the matrix M TM bas full rank, the Cholesky 
factorisation can he used, otherwise the singular value decomposition (SVD) can he applied to obtain 
a suited factorisation). 

A duallemma exists for operators L2 [0, h)---+ IR". The operator b (A.51) imposes a difficulty hecause 
it bas infite rank. Rowever, in sampled-data H2 optimal control, the response to a delta pulse 

u(t) = u08(t) or u[k] = u08[k] is studied, where u0 E IR. In this case, the operator b can he regarded 

as an operator from IR to L2 [0, h), and the same trick can he applied to derive a norm-equivalent 

finite-dimensional matrix operator. In sampled-data H_ control, the problem with the infinite rank 

operator b is circumvented through a loop-shifting transformation which preserves norm and 
stability [21]. 

Solving the optimal control problem for the norm-equivalent finite-dimensional discrete-time system 
is the third step in the lifting approach. In section A.5 and A.6, a sampled-data H2 norm is computed 
for two kinds of digital motor control set-ups. The third step in these computations is solving a 
discrete-time Lyapunov equation (the factorisations in step 2 of the lifting approach are not necessary 
in these computations). 

Robert Cloudt 85 



On the Design of Digital Motor Controllers with Low Sampling Rates 

( 

'P. 

Figure A.3 Commutative diagram 

A.5 Computing the integral quadratic tracking error for the synchronous case 

w 

I 
I 

:_-----E}------------
Figure A.4 Block diagramfor synchronous case 

e 

The integral quadratic tracking error with respect to tracking a second order position profile is equal 
to the simple H2 measure of the sampled-data system depicted in the tigure above, where the impulse 
response of discrete-time system R represents the desired acceleration profile. The acceleration profile 
is constant between two sampling instants. The second order position profile is obtained through 
applying a continuous-time integration operation (1/s) twice. Kis a discrete-time feedback controller 
and P is a continuous-time model for a position controlled motor. A represents the computation delay 
0 ~ À. < h , where h is the sampling time. Ka and Kv are the acceleration and velocity feedforward 
constants, and H denotes the zero order hold operation. For the computation of the simple H2 measure, 
the following assumptions are made: 

the discrete-time system R is stable; 

P . . 1 d . . od P'(s) P( ) 1s stnct y proper an contams an mtegrator m e, --= s ; 
s 

K contains an integrator mode such that the sampled-data system is asymptotically ramp tracking; 
and K stabilises the loop in tigure A.4. 

The denvation of the simple H2 measure for the sampled-data system is based on the lifting approach, 
which was discussed in appendix A.4. First, the sampled-data system is lifted to a norm-equivalent 
discrete-time system. Infinite-dimensional operators are converted to norm-equivalent finite­
dimensional operators. The calculations heavily depend on the results of appendix A.l. After a norm­
equivalent finite-dimensional discrete-time system representation has been obtained, a Lyapunov 
equation is solved to compute the H2 norm of the discrete-time system, which is equal to simple H2 

measure for the sampled data system. 
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Tbe computation of a (positive detinite) solution to tbe discrete-time Lyapunov equation requires tbat 
all tbe eigenvalues of tbe A matrix involved lie witbin tbe unit circle. Integrator modes are not 
allowed, so tbe block diagram in tigure A.4 is recontigured as in tigure A.5. Eis a small negative 

perturbation and P'(s) = P(s ). Note that one integrator is shifted into tbe loop. 
s 

W ----{~J~Bt[à] V 

I I 

EJ EJ 
I I 

l---------·?---~~[J-{}; 
I 
I : ______ GJ-----------

Figure A.5 Reconfigured block diagram for synchronous case 

e 

Let (AR,BR,CR,DR) be a state-space representation of Rand denote tbe intemal state of R by xR. P' 

bas state-space description (Ar,Br,Cr,Dr) and intemal state Xr· K bas system matrices 

(AK,BK,CK,DK) and state XK. 
Tbe piecewise constant acceleration a is described by: 

a(kh)= CRxR(kh)+ DRw(kh) 

xR (kh)= ARxR (kh)+ BR w{kh). 

Tbe evolution of tbe continuous-time velocity signal is given by: 
(obtained througb integration of state-space differential equation (see also [8])) 

r 

v(kh + -r)= eerv(kh)+ Jee(r-u)da · a(kh~ TE [O,h). 
0 

Tbe discrete-time actuator signal is cbaracterised by: 

Tbe signal y depends on u in tbe following way: 

C ", • .....-x",(kh)+(fc",eA,(NI Brdu+ Dr }(kh- h1 T,;;À 

(A.55) 

(A.56) 

(A.57) 

(A.58) 

y(kh + -r)= 
C re"'' x r (kh) + Î C yeA,-(À-• I B ydU · u(kh - h) + 0 C re Ar i•-• I B rdu + D r }(kh 1 T > À 

(A.59) 
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And the error e evolves according to: 
T 

e(kh + 1')= e(kh)+ j(v(kh+ a)- y(kh+ a))da 
0 

T TU T 

=e(kh)+ JeE17dO'·v(kh)+ J JeE(a-p)dpda·a(kh)- Jcp'eA"'17dO'·xp'(kh) 
0 0 0 0 

( JJcp'eA"'(a-p)Bp'dpda+ Jvp'da)u(kh-h~ T~À 
0 0 0 

{ Î C P'e ,,(a-p) B P'da + D P'} u(kh- h )+ ( 7 Î C P'e.oy(a-p) B P'dJ>iu + 7 D P'da }(kh ~ r> À 

Define the combined state vector x as 

x(kh)= 

e(kh) 
v(kh) 

xR(kh) 
Xp•(kh) ' 
XK (kh) 

u(kh-h) 

(A.60) 

(A.61) 

then, by substituting (A.55) and (A.57) into (A.58), (A.58) into (A.59) and using (A.8) to write the 
integrals in terms of a matrix exponential, (A.60) can be rewritten as: 

O)ex{(~ 
1 On! 0 0 0 0 OJ 

e(kh + T)= (1 0 ê 1 1' o 1 o o o o x(kh) 
0 0 0 0 CR 0 0 0 

O)ex{(~ 
cp' D"JIO 0 0 

0 0 

+(kh~ T~À (1 0 Ap' Bp' 1' 0 0 0 I 0 

0 0 0 0 0 0 0 

(1 0 o)ex{(~ 
cp' 

DP'J r 0 0 0 0 

D"] 
Pd 

Ap' Bp' (T-À) 0 0 0 eArÀ 0 ~ x(kh~ T>À 

0 0 DK Kv Ka CR 0 CK 

o)exp[(~ 
1 

~H1.J~kh) +(1 0 ê 

0 

0, T~À 

(1 0 O)ex{(~ 
cp' 

~; }r-A)J ~ J~kh~ Ap' T>À 

0 0 KaDR 
(A.62) 

where 
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(A.63) 

Equation A.62 can further be reduced to: 

(A.64) 

where 

0 1 0 1 0 0 0 0 0 

0 E 1 0 1 0 0 0 0 

H 1 =(1 o o). F1 = 
0 0 0 0 0 CR 0 0 0 

0 0 -1 
0 Cr Dp' ' Gt= (A.65) 

0 0 0 0 0 0 
0 Ap' Br 0 0 0 I 0 0 
0 0 0 0 0 0 0 0 1 

0 1 0 

0 E 1 

F2 = 0 0 0 
0 Cr Dr ' 

0 Ar Br 
0 0 0 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 CR 0 0 0 
G2= 

0 0 0 0 0 DO). 
Pd 

(A.66) 

0 0 0 eArJ. 0 0 

DK Kv Ka CR 0 CK 0 

F, =[~ 
1 

~J G,=UJ H3 =(1 o o). E 

0 

(A.67) 

0 

0 

H 4 = H 2 ' F4 = F2 ' G 4 = 
DR 
0 

(A.68) 

0 

KaDR 

The state of P' evolves from one sampling time to next according to: 
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À h 

xP'(kh + h) = eArh xP'(kh) + JeAr(À-u) BP'da · u(kh- h) + JeAr(h-u) BP'da · u(kh) 
0 À 

(A.69) 

=eArhxP'(kh)+ B~~u(kh- h)+ B~ · u(kh) 

Note that (A.57) can be written as: 

(A.70) 

Combining equations A.55, A.56, A.58, A.60, A.69, A.70 and the state-space equations of K yields 
the discrete-time state equation: 

x(kh + h)= Ax(kh)+ iJw{kh) 

with 

A 

A= 

B= 

H Fl(h-À)G 
· ·· ·········· · ·· · ·1 ·· ······· ··· ····· · 7·~·Ë·· · c· · ···~)·T ········· · ··· ·· · · · ··· · ·· ·· ·· 

0 ! (1 0 )exp(( R )h ! 0 0 0 
: 0 0 : . . ö''f··············ö .... Ä·~·············· ·T·ö····ö· · ·ö 

···1ii··················································· .. ·········1ii······ ········· ··· 
BP'dDK s;:dKv s ;:dKaCR eArh BP'dCK B~ 

BK 0 0 0 AK 0 

DK Kv KaCR 0 CK 0 

H 4eF•(h-À)G4 

(1 o)exp((~ ~· H~) 
BR 

s;:dKaDR 
0 

where 

B~~; f••,I•~>Brdu;(f o)ex{( A; B; }](~) 

B';.; je•,I•~>Brdu;(f o)ex{( A; B; )(h-J)X~} 

(A.71) 

(A.72) 

(A.73) 

(A.74) 

(A.75) 

(A.71) denotes the finite-dimensional part of the state space equations of the norm-equivalent 
discrete-time system. Calculations in volving the infinite-dimensional part of the state space equations 
follow now. 

Define the operator C: !Rn ~ ~[0, h), 
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(A.76) 

and the adjoint operator C:: ~[0, h) ~ IRn, 

À h 

C"e= JaieFtTH[e(T)dT+ JaJeF[THJe(T)dT. (A.77) 
0 À 

The operator C:c: IRn ~ IRn has an n dimensional matrix representation: 

À h 

êTê= JaieFtTH[H1eF1Ta1dT+ JaJeF[THJH2eF2Ta2dT. (A.78) 
0 À 

This matrix can be computed as two matrix exponentials. Let 

(A.79) 

then by using (A.2): 

(A.80) 

Similarly, define the operator D: IR~ ~[0, h), 

(A.81) 

and the adjoint operator: 

À h 

D"w= JaJeF[THjw(-r}d-r+ JaieF[THiw(-r}d-r. (A.82) 
0 À 

The operator D"D: IR~ IR can be represented by a scalar: 

À h 

bT b- JaT eF[.T HT H eF3Ta d-r + JaT eF[T HT H eF•Ta d-r - 3 33 3 4 44 4 (A.83) 
0 À 

which can be computed as: 

(A.84) 

where: 
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(A.85) 

Consider tbe ~norm of e witb support on [0, h); it cao be expressed in terms of the inproduct on ~[0, 
h) because ~[0, h) is a Hilbert space. 

(A.86) 

Now, suppose tbat a Kronecker deltapulseis applied to input w. Tbe b term only bas a contribution 

during the ftrst sampling period, wbere w = 1. Tbe remaining energy is due to tbe ê term, wbicb 
contributes from tbe second sampling period on, wben zero initial state is assumed. Tbe energy of the 
impulse response cao now be expressed as: 

llell~ = br b + Ïllell~ 1o.h) = br b + f -e (kh)êr êx(kh)= br b + Br f (.F} êr êA k 8 
k~ k~ k~ (A.87) 

=DT D+ Brf(Ar J êT êAk ÊJ= bT b + BT MÊJ 
k=O 

Tbis is tbe well known cbaracterisation of tbe Hz norm of a discrete-time system. M is tbe 
observability gramiao: 

M = f(Ar J êr êAk (A.88) 
k=O 

wbicb cao be computed througb: 

M =êTê+ t.(AT fê'êA=ê' ê+AT(~(ATY ê'êA JA. 
(A.89) 

=êrê+ArMA 

This resulting equation is a discrete-time Lyapunov equation. If A bas all eigenvalues inside tbe unit 
disk, tbe sum (A.88) converges aod M is the unique positive definite salution to tbe discrete-time 
Lyapunov equation: 

(A.90) 

This ends tbe denvation of tbe simple Hz measure for the synchronous case. Tbe computation is quite 
straigbtforward. It only requires the computation of some matrix exponentials aod a salution to a 
Lyapunov equation. Both operations are standard operations in MATLAB aod tbe Control Toolbox. 

A.6 Comput/ng the sversge lntegrsl qusdrstic trscking error tor the 
ssynchronous esse 

Tbe integral quadratic tracking error for the asynchronous case is equal to tbe generalised Hz measure 
of tbe sampled-data system in figure A.6. Tbe denvation of tbe generalised Hz measure is to some 
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extended quite similar to the denvation of the simpte H2 measure for the synchronous case. There are 
however some differences: 

The acceleration profile is generated by a continuous-time system as opposed to a discrete-time 
system in the synchronous case. The piecewise constant acceleration signal bas to be 
approximated with an impulse response of a rationat continuous-time transfer function (the Padé 
approximation might be applied). 
the generalised H2 measure is calculated as the integral of the squared output after applying a 
Dirac pulse at t='f], 'f'JE [O,h), averagedover the interval [0, h). Reeall that the simpte H2 

measure for the synchronous case was calculated after a Kronecker delta pulse was applied. The 
averaging action causes an extra integration in the derivation. 

w~m~ v 
L_j \~ 

I I 

EJ rJ 
I 

I 
I : ______ GJ-----------

Figure A.6 Block diagram for asynchronous case 

The assumptions for the asynchronous case are: 
the continuous-time system R is strictly proper and bas all its po les in the open left half plane; 

h . . I P. . I d . . od P'(s) P( ) t e contmuous-ttme p ant IS stnct y proper an contams an mtegrator m e, -- = s ; 
s 

e 

K contains an integrator mode such that the sampled-data system is asymptotically ramp tracking; 
the computation delay À is smaller than the sampling time h; 
and the discrete-time feedback controller K stabilises the feedback loop. 

Again, the first step in the denvation is to gather the equations descrihing the combined discrete-time 
dynamics of the hybrid system. 
The signal a evolves as: 

r 

a(kh + -r)= C ReARr xR(kh)+ JcReAR(r-u) BRw(kh +a )da 
0 

h 

xR(kh + h)= eARh xR(kh)+ JeAR(h-u) BRw(kh +a )da 
0 

(of course TE [0, h )). 

The continuous-time velocity signal v is related to a by: 
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.,. 

v(kh + T)= ee'~"v(kh)+ Jee(-r-u)a(kh + u)du. 
0 

The undelayed actuator signal is: 

P' generates 

C pe•'' xp (kh) +(Ie "'A,(NI B pd<T + D" }(kh- h ~ T,; À 

(A.93) 

(A.94) 

y(kh+T)= 

C peA,.< x P' (kh) + IC pe Ay(A-• I B pd<T · u(kh - h) + (IC pe Ay(<-• I B pd<T + D P' }(kh ~ T> À 

(A.95) 
with 

À h 

XP' (kh + h)= eAp·h xP'(kh)+ JeAr(À-u) BP'du · u(kh- h) + JeAp·(h-u) BP'du · u(kh) 
0 À 

(A.96) 

=eArhxP'(kh)+ B~u(kh-h)+ B~ ·u(kh) 

which results in a track:ing error: 

.,. 

e(kh+T)= e(kh)+ J(v(kh+u)- y(kh+ u})du = 
0 

.,. ru rup 
e(kh)+ Jeeu du·v(kh)+ J Jee(u-p)CReARPdptu·xR(kh)+ J J Jee(u-p)CReAR(p-t!J)BRw(kh+tJ)dtJdptu 

0 00 000 
.,. 

- JcP'eAru du·xP'(kh) 
0 

( JJcp.eAr(u-p)BP'dp/u+ JvP'du}(kh-h~ T~À 
0 0 0 

,{ Î CP' e•,(•-P I B pdJ>lu + D P' }(kh- h )+ ( 7 Ï C peA' (u-p I B pdJ>iu + 7 D pdu }(kh ~ T >À 

(A.97) 

This equation cao be written in terros of matrix exponentials as: 

(A.98) 

where 
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0 1 0 1 0 0 0 0 0 

0 E CR 0 1 0 0 0 0 

H I = (1 0 0 - 1 0 0)' F! = 
0 0 AR 0 0 I 0 0 0 

0 Cy Dy ' GI= 
0 0 0 0 0 0 

(A.99) 

0 Ay Bp' 0 0 0 I 0 0 
0 0 0 0 0 0 0 0 1 

0 1 0 

H,+ o)ex{[~ 
1 

i;}] o ol 
0 E CR 

0 -1 F2 = 
0 0 AR E 

0 Cp' Dy ' 
0 

0 Ay By 
0 0 0 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 I 0 0 0 
G2 = 

0 0 0 0 0 Do;., (A.100) 
Pd 

0 0 0 eAp·;., 0 0 

DK Kv Ka CR 0 CK 0 

and D~; is given by (A.63). The combined discrete-time state vector .X(kh) is again composed as in 

(A.61). 
Combining equations A.91, A.92, A.93, A.94, A.96, A.97 and the state-space equations of K, yields 
the discrete-time combined state equation: 

hup 
J J fee(u-p)cReAR(p-'8) BR w(kh + o)dt9dpia 
000 

hu J Jee(h-u)cReAR(u-p)BRw(kh+ p)dpia 

h 

Jee(h-u) BR w(kh +a }da 
x(kh + h)= A.x(kh)+ 

00 

with 

" A= 

0 

H 2eF2(h-;.,)G2 

0 

0 

0 

··················~· ~~{(~···~:})·~··~····~··················· 

ïi~~D"~·····ïif:t K:~·····ïif:t"K~-c~· ····~Ä;:;.····ïi?'!'~c~·· · ·"ïi~~-

BK 0 0 0 AK 0 

DK Kv KaCR 0 CK 0 
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Note that the A matrix for the synchronous case and the asynchronous case are equal if the discrete­
time system R(z) equals the ZOH transform of the continuoos-time system R(s ). The real difference is 

in the effect of won the state. The computation of the finite dimensional matrix êT ê is similar to the 
synchronous case. 
Let w(t) = wo(t - TJ), where 8 represents the Dirac pulse, and let 

T>TJ 

0, T$TJ 

= (1 0 O)ex{(~ ~ {J-q)J(;} <>q 

(A.l03) 
and 

hup 
hu J J J eE(u-p)c ReAR(p-'8) B R wo(n- TJ )dtJdpdu 

0 0 0 
J JeE(u-p)c ReAR(p-q) B R wlidpdu 

= 

hu 
J J eE(h- u)c ReAR(u-p) B R w(p- TJ )dpdu 
0 0 

1 0 0 

0 1 

0 0 
0 0 
0 0 
0 0 0 

h = 
JeE(h-u) BR w(u -TJ )du 
0 

0 

0 

0 

0 0 
h 

JeE(h-u)c ReAR(u-q) BR wdu 
0 

eE(h-q)B W 
R 

0 

0 

0 

(A.104) 

These two operators describe the effect of a Dirac pulse on the output and the combined discrete-time 
state. Let 

[

0 1 0 J 
Ax = 0 E CR • 

0 0 AR 

(A.l05) 

The D 6 (TJ) operator defines a mapping from we ~ to e e L2 [0, h). The ad joint operator is given by: 
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(A.l06) 

Operator D; D 6 (TJ) bas scalar representation: 

(A.107) 

The Dirac delta pul se is applied at time t = TJ , TJ e [0, h) to input w in tigure A.6. The operator 

v;D.s(TJ) describes the ~[0, h) norm of output e during the first sampling period. The cumulative 

integral quadratic error over the remaining sampling intervals is given by: 

Ïllell~[o,h) = i:xT (kh)êT êx(kh)= Br(TJ)Ï(AT J êT êAk B,s(TJ)= Br(TJ)MB6 (TJ) (A.108) 
k~ k~ k~ 

where Mis the positive definite salution to the discrete-time Lyapunov equation: 

(A.109) 

The (squared) generalised H2 norm is now characterised as: 

(A.llO) 

lt is the average of the energy of the response to w(t) = ö(t - TJ), where the average is taken over 

TJ e [0, h). The frrst part of integral (A.ll 0) is computed as: 

where 

Robert Cloudt 

-AT I 
...... ~ .. 0 

T···ö····ö 
-AT 0 0 0 h x 

0 0 0 
·········· .......... ······Ä;···· 

(A.lll) 

(A.112) 
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This follows from substitution of variables in the integral expression and using (A.8). The second part 
of integral (A.llO) is computed as: 

(A.ll3) 

where 

(T" r,, )=exp((- A; 
T22 0 

0~~0}) (A.114) 

and 

1 0 0 

0 1 0 

0 0 I 
0= 

0 0 0 
(A.115) 

0 0 0 

0 0 0 

This ends the denvation of the generalised H2 measure of the sampled-data system in figure A.6. 
Again, the computation involves some matrix exponentials and a discrete-time Lyapunov equation. 
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Appendix B. MATLAB Tools 

B. 1 Overview 

Some MATLAB tools were devellopped during this graduation project. They include the computation 
of the frequency gains for a general system, and the computation of the integral quadratic tracking 
errors for a motion control system with velocity and acceleration feedforward. An example controller 
parameterisation function is included, and a convenient interface to the sequentia! quadratic 
programming implementation of MATLABs Optimization Tooibox is provided. Genetic algorithm 
code is presented too. 
The MATLAB code is provided for the functions enumerated below. 

FFG 
DFG 
PFG 

Fundamental frequency gain 
Discrete frequency gain 
Performance frequency gain 

simpleH2 Integral quadratic tracking error for a motion control 
system wi th acceleration and veloei ty feedforward and 
synchronous acceleration profile 

genH2 Average integral quadratic tracking error for a motion 
control system with acceleration and velocity 
feedforward and asynchronous acceleration profile 

sqp 

ga 

Interface to sequential 
Optimization Toolbox 
Genetic algorithm 

quadratic programming in 

pa ram Example of a parameterisation function, parameterising 
second order controllers for a position controlled DC 
motor 

8.2 FFG.m 

% FFG Fundamental Frequency Gain for a samplect-data system 
% 
% p = FFG(G11, G12, G21, G22, K, w) returns the FFG at frequencies (in rad/s) 
% specified in vector w of the general samplect-data feedback control system 
% specified by the continuous-time LTI systems G11, G12, G21, G22 and 
% discrete-time feedback controller K. 
% 
% 11-6-2004 
% Robert Cloudt 

function p = PFR(G11, G12, G21, G22, K, w) 

h = get(K, 'Ts' ); 

% Form discrete control sensitivity 
G22d = c2d(G22, h, 'zoh' ); 
Rd = feedback(K, G22d, +1); 
[nout, nin] = size(G12); 

% Compute frequency responses 
G11resp freqresp( G11, w); 
G12resp freqresp(G12, w); 
G21resp freqresp(G2 1, w); 
G22resp freqresp(G22, w); 
Rdresp = freqresp(Rd, w); 
for k = 1:length(w) 

Hresp(1:nin, 1:nin, k) (1- exp(-j*w(k)*h) )/(j*w(k) )*eye(nin); 
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end ; 

% Compute FFR 
for k = 1:length(w) 

p(k) max(svd(G11resp(:, ., k) + 1/h*G12resp(:, ., k)*Hresp(:, ., k)* .. . 
Rdresp(:, :, k)*G21resp(:, :, k))); 

end ; 

8.3 DFG.m 

% DFG Discrete Frequency Gain for a sampled-data system 
% 
% p = DFG(G11, G12, G21, G22, K, w) returns the DFG at frequencies (in rad / s) 
% specified in vector w of the general sampled-data feedback control system 
% specified by the continuous-time LTI systems G11, G1 2 , G21, G22 and 
% discrete-time feedback controller K. 
% 
% 11-6-2004 
% Robert Cloudt 

function p = DFG(G11, G12, G21, G22, K, w) 

h = get (K, ' Ts ' ); 

% Form ZOH transformed systems 
G11d c2d(G11, h, 'zoh' ); 
G12d c2d(G12, h, 'zoh' ); 
G21d c2d(G21, h, 'zoh' ); 
Rd = feedback(K, G22d, +1); 

% Construct interconnection 
M = G11d + G21d*Rd*G12d; 

% Compute DFR 
Mresp = freqresp(M, w); 
for k = 1:length(w) 

p(k) = max(svd(Mresp(:, ., k))); 
end ; 

8.4 PFG.m 

% PFG Performance Frequency Gain f o r a sampled-data system 
% 
% p = PFG(G11, G12, G21, G22, K, w) returns the PFG at frequencies (in rad / s) 
% specified in vector w of the general sampled-data feedback control system 
% specified by the continuous-time LTI systems Gll, G12, G21, G22 and 
% discrete-time feedback controller K. 
% 
% 11-6-2004 
% Robert Cloudt 

function p = PFR(G11, G12, G21, G22, K, w) 

h = get(K, ' Ts ' ); 

% Compute infinite summatien term in PFG 
[A, B, C, D] = ssdata(G12); 
n = size(A, 1); 
nin = size(B, 2); 
F [A, zeros(size(A)); C'*C, -A']; 
G [B; C'*D]; 
H [D'*C, -B']; 
J D' *D; 

Robert Cloudt 
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E expm([zeros(nin, 1), H, J; 
zeros(2*n, 1), F, G; 
zeros(l, (2*n + nin + l))]*h); 

Ad E( (nin + 1): (nin + 2*n), 2: (2*n + 1)); 
Bd E((nin + 1): (nin + 2*n) , (2*n + 2): (2*n + nin + 1)); 
Cd E(l:nin, 2: (2*n + 1)); 
Dd E(l:nin, (2*n + 2): (2*n + nin + 1)); 
infsumsys = ss(Ad, Bd, Cd, Dd, h); 

% Ferm discrete control sensitivity 
G22d = c2 d(G22, h , 'zoh' ); 
Rd = feedback(K, G22d, +1); 

% Compute frequency responses 
Gllresp freqresp(Gll, w); 
Gl2resp = freqresp(G12, w); 
G2lresp = freqresp(G21, w); 
infsumsysresp = freqresp(infsumsys, w); 
Rdresp = freqresp(Rd, w); 
for k = l:length(w) 

Hresp(l : nin, l:nin , k) (1- exp(-j*w(k)*h))/(j*w(k))*eye(nin); 
end ; 

% Compute PFR 
for k = l : length(w) 

Aw(:, :, k) = (Gllresp(:, ., k)) '*Gllresp(:, :, k) + ... 
1/h*(Gllresp(:, :, k)) '*Gl2resp(:, :, k)*Hresp(:, ., k)* ... 

Rdresp(:, :, k) *G21resp(:, :, k) + ... 
l/h*(G2lresp(:, :, k))'*(Rdresp(:, :, k))'*(Hresp(:, :, k))'* ... 

(Gl2resp(:, :, k)) '*Gllresp(:, :, k) + .. . 
l/h*(G21resp(:, :, k))'*(Rdresp(:, :, k))'* .. . 

infsumsysresp(:, :, k)*Rdresp(: , :, k)*G2lresp(:, ., k); 
% take real part becuase of numerical inaccuracies 
p(k) = sqrt(max(real(svd(Aw(k))))); 

end ; 

8.5 simpleH2.m 

% simpleH2 Simple sampled-data H2 measure for motion control system 
% with acceleration and velocity feedforward 
% 
% J = simpleH2(R, P, Kfb, Ka, Kv, lambda) returns the simple sampled-data H2 
% measure of a continuous-time plant P controlled by discrete-time feedback 
% controller Kfb and (discrete-time) feedforward specified by Ka and Kv . Lambda 
% defines the computation delay. R is a discrete-time system whose impulse 
% response specifies the desired acceleration profile. Kfb and R have the same 
% sampling time . 
% 
% 19-7-2004 
% Robert Cloudt 

function J = simpleH2(R, P, Kfb, Ka, Kv, lambda) 

% Perturba tion size 
e = -le-3; 

% Remove integrator from P 
[ z , p , k ] = zpkdat a(P, 'v' ) ; 

p = esort (p); 
p = p(2:length(p)); 
Pquote = zpk(z, p, k); 

% Extract system matrices and sizes 
[Ak, Bk, Ck, Dk, h] = ssdata(Kfb); 
[Ar, Br, Cr, Dr] ssdata(minreal(R)); 
[Apquote, Bpquote, Cpquote, Dpquote ] = ssdata(Pquote); 
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nk = size(Ak, 1); 
nr = size(Ar, 1); 
npquote = size(Apquote, 1); 

% Construct CChat 
DpdOlambda = lambda*[Cpquote, O]*expm([Apquote, Bpquote; 

zeros(l, (npquote + l))]*lambda)* ... 
[zeros(npquote, 1); 1] + lambda*Dpquote; 

Hl = [ 1, 0, 0 , -1 , zeros ( 1 , ( npquote + 1) ) ] ; 
Fl = blkdiag([O, 1, 0; 

0, e, 1; 
0, 0, 0], [0, Cpquote, Dpquote; 

zeros(npquote, 1), Apquote, Bpquote; 
zeros(1, (npquote + 2))]); 

Gl [1, zeros(l, (nr + npquote + nk + 2)) ; 
0, 1, zeros(l, (nr + npquote + nk + 1)); 
0, 0, Cr, zeros(l, (npquote + nk + 1)); 
zeros(l, (nr + npquote + nk + 3)); 
zeros(npquote, (nr + 2)), eye(npquote), zeros(npquote, (nk + 1)); 
zeros(l, (nr + npquote + nk + 2)), 1]; 

H2 = [ [ 1 , 0, 0] * expm ( [ 0 , 1 , 0 ; 
0, e, 1; 
0, 0, O]*lambda), -1, zeros(l, npquote), 0]; 

F2 Fl; 
G2 = [1, zeros(l, (nr + npquote + nk + 2)); 

0, 1, zeros(1, (nr + npquote + nk + 1)); 
0, 0, Cr, zeros(l, (npquote + nk + 1)); 
zeros(l, (nr + npquote + nk + 2)), DpdOlambda; 
zeros(npquote, (nr + 2)), expm(Apquote*lambda), zeros(npquote, (nk + 1)); 
Dk, Kv, Ka*Cr, zeros(l, npquote), Ck, 0]; 

Q = expm([-Fl', Hl'*Hl; zeros(npquote + 5) , Fl]*lambda); 
Ql2 = Q(l: (npquote + 5), (npquote + 6): (2*npquote + 10)); 
Q22 = Q((npquote + 6): (2*npquote + 10), (npquote + 6) : (2*npquote + 10)); 
P = expm([-F2', H2'*H2; zeros(npquote + 5), F2]*(h- lambda)); 
Pl2 = P(l: (npquote + 5), (npquote + 6): (2*npquote + 10)); 
P22 P((npquote + 6): (2*npquote + 10), (npquote + 6): (2*npquote + 10)); 
CChat = Gl'*Q22'*Ql2*Gl + G2'*P22'*Pl2*G2; 

% Construct DDhat 
H3 [1, 0 I 0]; 
F3 = [0, 1, 0; 

0, e, 1; 
0, 0 , 0]; 

G3 [0; 0; Dr]; 
H4 H2; 
F4 F2; 
G4 [0; 0; Dr; 0; zeros(npquote, 1); Ka*Dr]; 
R = expm([-F3', H3'*H3; zeros(3), F3]*lambda); 
Rl2 = R(l:3, 4:6); 
R22 = R(4 : 6 , 4:6); 
S = expm([ - F4', H4'*H4; zeros(npquote + 5), F2]*(h- lambda)); 
Sl2 S(l: (npquote + 5), (npquote + 6): (2*npquote + 10)); 
S22 S((npquote + 6): (2*npquote + 10), (npquote + 6): (2*npquote + 10)); 
DDhat = G3'*R22'*Rl2*G3 + G4'*S22'*Sl2*G4; 

% Construct Ahat 
Bpquotedlambdah = [eye(npquote), zeros(npquote, 1)]* ... 

expm([Apquote, Bpquote; 
zeros(l, (npquote + l))]*(h - lambda))* ... 

[zeros(npquote, 1); 1]; 
BpquotedOlambda = [eye(npquote), zeros(npquote, 1)]* .. . 

expm([Apquote, Bpquote; 
zeros(l, (npquote + l))]*lambda)*[zeros(npquote, 1); 1]; 

Ahat = [H2*expm(F2*(h- lambda))*G2; 
0, [ 1, zeros ( 1, nr) ] * ... 

expm( [e, Cr; 
zeros(nr, (nr + 1))]*h), zeros(l, (npquote + nk + 1)); 

zeros(nr, 2), Ar, zeros(nr , (npquote + nk + 1)); 
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Bpquotedlambdah*Dk, Bpquotedlambdah*Kv, Bpquotedlambdah*Ka*Cr, 
expm(Apquote*h), Bpquotedlambdah*Ck, BpquotedOlambda; 

Bk, zeros(nk, (nr + npquote + 1)), Ak, zeros(nk, 1); 
Dk, Kv, Ka*Cr, zeros(1, npquote), Ck, 0]; 

if max(abs(eig(Ahat))) > 1 
warning( ' Kfb does not stabilize P ' ); 

end ; 

% Construct Bhat 
Bhat = [H4*expm(F4*(h- lambda))*G4; 

[ 1 , 0] * expm ( [ e, Dr; 
0' 0 l *h) * [ 0; 1] ; 

Br; 
Bpquotedlambdah*Ka*Dr 
zeros (nk, 1) ; 

Ka*Dr]; 

% Solve Lyapunov equation 
M = dlyap(Ahat', CChat); 

% Return norm 
J = sqrt(DDhat + Bhat'*M*Bhat); 

8.6genH2.m 

% genH2 Generalised sampled- data H2 measure for motion control system 
% with acceleration and velocity feedforward 
% 
% J = genH2(R, P, Kfb, Ka, Kv, lambda) returns the generalised H2 measure 
% for continuous-time plant P controlled by discrete-time feedback 
% controller Kfb and (discrete-time) feedforward specified by Ka and Kv . 
% Lambda defines the computation delay. R is a continuous - time system whose 
% impulse response specifies the desired acceleration profile. 
% 
% 19-7-2004 
% Robert Cloudt 

function J = genH2(R, P, Kfb, Ka, Kv, lambda) 

% Perturbation size 
e = -1e-2; 

% Remove integrator from P 
[z, p, k] = zpkdata(P, 'v' ); 
p = esort (p); 
p = p(2:1ength(p)); 
Pquote = zpk(z, p, k); 

% Extract system matrices and sizes 
[Ak, Bk, Ck, Dk, h] = ssdata(Kfb); 
[Ar, Br, Cr, Dr] ssdata(minreal(R)); 
[Apquote, Bpquote, Cpquote, Dpquote] = ssdata(Pquote); 
nk = size(Ak, 1); 
nr = size(Ar, 1); 
npquote = size(Apquote, 1); 

% Construct CChat 
AA= [0, 1, zeros(1, nr); 

0, e, Cr; 
zeros(nr, 2), Ar]; 

DpdOlambda = lambda*(Cpquote, O]*expm([Apquote, Bpquote; 
zeros(l, (npquote + 1))]*1ambda)* ... 

[zeros(npquote, 1); 1] + lambda*Dpquote; 
Hl [1, zeros(1, (nr + 1)), -1, zeros(1, (npquote + 1))]; 
Fl blkdiag(AA, [0, Cpquote, Dpquote; 

Robert Cloudt 103 



On the Design of Digital Motor Controllers with Low Sampling Rates 

zeros(npquote, 1), Apquote, Bpquote; 
zeros(1, (npquote + 2) l] l; 

G1 [1, zeros(1, (nr + npquote + nk + 2)); 
0, 1, zeros(1, (nr + npquote + nk + 1)); 
zeros(nr, 2), eye(nr), zeros(nr, (npquote + nk + 1)); 
zeros(1, (nr + npquote + nk + 3)); 
zeros(npquote, (nr + 2)), eye(npquote), zeros(npquote, (nk + 1)); 
zeros(1, (nr + npquote + nk + 2)), 1]; 

H2 [[1, zeros(1, (nr + 1))]*exprn(AA*1ambda), -1, zeros(1, (npquote + 1))]; 
F2 F1; 
G2 [1, zeros(1, (nr + npquote + nk + 2)); 

0, 1, zeros(1, (nr + npquote + nk + 1)); 
zeros(nr, 2), eye(nr), zeros(nr, (npquote + nk + 1)); 
zeros(1, (nr + npquote + nk + 2)), Dpd01ambda; 
zeros(npquote, (nr + 2)), exprn(Apquote*1ambda), zeros(npquote, (nk + 1)); 
Dk, Kv, Ka*Cr, zeros(1, npquote), Ck, 0]; 

Q = exprn([-F1', H1'*H1; zeros(nr + npquote + 4), F1]*1ambda); 
Q12 = Q(l: (nr + npquote + 4), (nr + npquote + 5): (2*nr + 2*npquote + 8)); 
Q22 = Q((nr + npquote + 5): (2*nr + 2*npquote + 8), 

(nr + npquote + 5): (2*nr + 2*npquote + 8)); 
P = exprn([-F2', H2'*H2; zeros(nr + npquote + 4), F2]*(h- lambda)); 
P12 P(1: (nr + npquote + 4), (nr + npquote + 5): (2*nr + 2*npquote + 8)); 
P22 P((nr + npquote + 5): (2*nr + 2*npquote + 8), 

(nr + npquote + 5): (2*nr + 2*npquote + 8)); 
CChat = G1'*Q22'*Q12*G1 + G2'*P22'*P12*G2; 

% Construct Ahat 
Bpquotedlambdah = [eye(npquote), zeros(npquote, 1)]* . . . 

exprn([Apquote, Bpquote; 
zeros(1, (npquote + 1))]*(h- lambda))* . .. 

[zeros(npquote, 1); 1]; 
BpquotedOlambda [eye(npquotel, zeros(npquote, 1)]* . . . 

exprn([Apquote, Bpquote; 
zeros(l, (npquote + 1))]*lambda)*[zeros(npquote, 1); 1]; 

Ahat [H2*exprn(F2*(h- lambda))*G2; 
zeros((nr + 1), 1), exprn([e, Cr; 

zeros(nr, 1), Ar]*h), zeros((nr + 1), 
(npquote + nk + 1)); 

Bpquotedlambdah*Dk, Bpquotedlambdah*Kv, Bpquotedlambdah*Ka*Cr, 
exprn(Apquote*h), Bpquotedlambdah*Ck, BpquotedOlambda; 

Bk, zeros(nk, (nr + npquote + 1)), Ak, zeros(nk, 1); 
Dk, Kv, Ka*Cr, zeros(1, npquote), Ck, 0]; 

if rnax(abs(eig(Ahatlll > 1 

end ; 

warning( ' Kfb does not stabilize P ' ); 
J = 1e10; 
return ; 

% Solve Lyapunov equation 
M = dlyap(Ahat', CChat); 

% Cornpute integral of BMB 
T = exprn([-AA', [eye(nr + 2); zeros((npquote + nk + 1), (nr + 2))] '*M*[eye(nr + 2); 
zeros((npquote + nk + 1), (nr + 2))]; 

zeros(nr + 2), AA]*h); 
T12 = T(1: (nr + 2), (nr + 3): (2*nr + 4)); 
T22 = T((nr + 3):(2*nr + 4), (nr + 3):(2*nr + 4)); 
iBMB = [0, 0, Br']*T22'*T12*[0; 0; Br]; 

% Cornpute integral of DD 
R = exprn([-AA', eye(nr + 2), zeros(nr + 2); 

R13 
R33 
iDD 

zeros(nr + 2), -AA', blkdiag(1, zeros(nr + 1)); 
zeros ( (nr + 2), (2*nr +' 4) l, AA] *hl; 

R(l: (nr + 2), (2*nr + 5): (3*nr + 6) l; 
R( (2*nr + 5): (3*nr + 6), (2*nr + 5): (3*nr + 6) l; 
[0, 0, Br']*R33'*R13*[0; 0; Br]; 
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% Return norm 
J = sqrt(iDD/h + i BMB/h); 

8.7 sqp.m 

% SQP Sequential Quadratic Programming for controller optimisation 
% 
% [thetaopt, hopt] = SQP(ub, lb, @param, @stab, @perf, @aux, h, thetaO, hO, N) 
% can be used to optimise controllers with respect to some performance and 
% stability criteria. The controller is parameterized by a parameter vector 
% with size equal to the size of ub and lb. 
% 
% ub and lb are equal length row veetors which specify the upper and lower 
% bounds on the parameter vector. 
% 
% @param is a funtion handle to the parameterisation function. This function 
% has to accept the vector of real parameters and a sample time. It returns 
% a structure containing a characterisation of the controller. The structure 
% has to contain all the information necessary for controller evaluation. 
% 
% @stab is a function handle to the function which specifies the stability 
% criteria. This function should accept the structure returned by the 
% parameterisation function and it has to return a scalar value quantifying 
% the stability eenstraint violation. A value less than or equal to zero 
% indicates (robust) stability. 
% 
% @perf is a function handle to a function which specifies the performance 
% criteria. This function should accept the structure returned by the 
% parameterisation function and it has to return a scalar value quantifying 
% the performance eenstraint violation. A value less than or equal to zero 
% indicates that the performance constraints are met. 
% 
% @aux is a function handle to an auxiliary function which is used to sort 
% individuals which satisfy stability and performance criteria. The function 
% should accept the structure returned by the parameterisation function. The 
% individuals are sorted in ascending order with respect to the value returned 
% by the auxiliary function. 
% 
% h specifies the sampling time of the discrete-time controller being optimised. 
% h can be a real scalar or a two-element vector [hhigh, hlow] which specifies 
% the upper and lower bound on the sampling time. 
% 
% thetaO and hO specifify the initial guesses for controller perameters and 
% sampling time. If h is a scalar, then hO has to be equal to h. 
% 
%Nis the maximum number of iterations in the SQP algorithm. The default is 20. 
% 
% The algrithm returns the optimal vector of real parameters thetaopt and the 
% optimal sampling time hopt. If h is a scalar, then h = hopt. 
% 
% 20-7-2004 
% Robert Cloudt 

function [th etaopt , hopt] 

if (nargi n == 9) 
N = 20; 

end ; 

sqp(ub, lb, param, stab, perf, aux, h, thetaO, hO, N) 

% Determine size of parameter vector 
if (size(ub) -= size(lb)) 

error( 'ub and lb have unequal length' ); 
end ; 
n = l e ngt h (ub); 
if (size(h, 2) == 2) 
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el se 

end ; 

nh = 1; 
ubx = [h(1}, ub]; 
lbx = [h(2}, lb]; 
xO = [hO, thetaO]; 

nh 0; 
ubx = ub; 
lbx = lb; 
xO = thetaO; 

% Set optimisation options 
option s = opti mset ( 'LargeScale' , 'off' , 'Display' , 'Iter' , 'Maxiter' , N, 'TolFun' , 

1e-10, 'MaxFunEvals' , 1000}; 

% Start optimisation 
x f minc on (@fun, xO, [], [], [], [], lbx, ubx, @non lcon, options , param, stab, 

perf, aux, h} ; 

% Return optima! salution 
if nh == 1 

hopt = x(1}; 
thetaop t = x(2: (n + 1}}; 

el se 
hopt = h; 
thetaopt x; 

end ; 
return ; 

% Interface between objective function used in fmincon and auxiliary function 
function f = fun(x, param, stab, perf, aux, h} 
if (size(h, 2} == 2} 

bparam = x(1}; 
theta = x(2: l eng t h (x}}; 

el se 

end ; 

bparam = h; 
theta = x; 

Cstruct = feval(param, theta, hparam} ; 
f = feval(aux, Cstruct}; 
return ; 

% Interface between nonlinear eenstraint function in fmincon and the performance 
and stability functions 
function [c, ceq] = n on lcon(x, param, stab, perf, aux, h} 
ceq = 0; 
if (size(h, 2} == 2} 

bpa ram = x(1}; 

el se 

end ; 

theta = x(2:length(x)}; 

bparam = h; 
theta = x; 

Cstruct = feval (param, theta, hparam} ; 
c(1} = feval(stab, Cstruct}; 
c(2} = feval(perf, Cstruct}; 
return; 
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8.8 ga.m 

% GA Genetic Algorithm for controller optimisation 
% 
% [thetaopt, hopt) = GA(ub, lb, @param, @stab, @perf, @aux, h, N) can be used 
% to optimise controllers with respect to some performance and stability 
% criteria. The controller is parameterized by a parameter vector with size 
% equal to the size of ub and lb. 
% 
% ub and lb are equal length row veetors which specify the upper and lower 
% bounds on the parameter vector. 
% 
% @param is a funtion handle to the parameterisation function. This function 
% has to accept the vector of real parameters and a sample time. It returns 
% a structure containing a characterisation of the controller. the structure 
% has to contain all the information necessary for controller evaluation. 
% 
% @stab is a function handle to the function which specifies the stability 
% criteria. This function should accept the structure returned by the 
% parameterisation function and it has to return a scalar value quantifying 
% the stability eenstraint violation. A value less than or equal to zero 
% indicates (robust) stability. 
% 
% @perf is a function handle to a function which specifies the performance 
% criteria. This function should accept the structure returned by the 
% parameterisation function and it has to return a scalar value quantifying 
% the performance eenstraint violation. A value less than or equal to zero 
% indicates that the performance constraints are met. 
% 
% @aux is a function handle to an auxiliary function which is used to sort 
% individuals which satisfy stability and performance criteria. The function 
% should accept the structure returned by the parameterisation function. The 
% individuals are sorted in ascending order with respect to the value returned 
% by the auxiliary function. 
% 
% h specifies the sampling time of the discrete-time controller being optimised. 
% h can be a real scalar or a two-element vector [hhigh, hlow) which specifies 
% the upper and lower bound on the sampling time. 
% 
% N is the number of generations which the genetic algorithm is allowed to 
% run. The default is 10. 
% 
% The algrithm returns the optimal vector of real parameters thetaopt and the 
% optimal sampling time hopt. If h was a scalar, then h = hopt. 
% 
% 20-7-2004 
% Robert Cloudt 

function [thetaopt, hopt] 

if (nargin == 7) 
Ngen 10; 

end ; 

ga(ub, lb, param, stab, perf, aux, h, Ngen) 

% Determine size of parameter vector 
if (size(ub) -= size(lb)) 

error( 'ub and lb have unequal length' ); 
end ; 
n = length (ub); 
if (size(h, 2) == 2) 

nh 1; 
el se 

nh 0; 
end ; 

% Genetic algorithm parameters 
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% population size 
% crossover probability 
% mutation probability 
% selective pressure 

N = 50i 
Peross 0.7i 
Pmut = 0.03i 
pres = 1.15i 
M = 16i % number of bits used in binary representation of each parameter 

% Generate random initial population 
pop= (rand(N, (n*M + nh*M)) > 0.5) i 

% Evaluate initial individuals 
NS []i 
RP = []i 
RS = []i 
[popreal, hparam] = decode(pop, h, ub, lb, M) i 

for k = l:N 

end ; 

Cstruct = feval(param, popreal (k, :), hparam (k))i 
stabcv = feval(stab, Cstruct); 
if stabcv > 0 

% no (robust) stability 
NS = [NS; k, stabcv]; 

el se 
perfcv = feval(perf, Cstruct); 
if perfcv > 0 

% (robust) stability 
RS = [RS; k, perfcv]; 

el se 

end ; 
end ; 

% (robust) performance 
RP = [RP; k, feval(aux, Cstruct)]; 

elite = []; 
% Save elite (robust) performing individual 

if -isempty(RP) 

end ; 

RP = sortrows(RP, 2); 
elite= pop(RP(l, 1), :) ; 

% Apply ranking and sharing in the NS and RS classes to maintain diversity of the 
sampling rate 
if (nh == 1) 

if -isempty (NS) 

end ; 

NS = sortrows(NS, 2); 
NS(:, 2) = (size(NS, 1) :-1:1) 1

; 

sigma= (h(l) - h(2))/size(NS, 1); 
for i = l:size(NS, 1) 

end ; 

nichecount = 0; 
for j = l:size(NS, 1) 

dist = abs (hparam(NS(i, 1)) - hparam(NS(j, 1))); 
if (dist < sigma) 

end ; 
end ; 
NS(i, 2) 

nichecount = nich ecount + 1 - dist/sigma; 

NS(i, 2)/nichecount ; 

if -isempty(RS) 
RS = sortrows(RS, 2); 
RS(:, 2) = (size(RS, 1) :-1:1) 1

; 

sigma= (h(l) - h(2))/size(RS, 1); 
for i = size(RS, 1) 

Robert Cloudt 

nichecount = 0; 
for j = size(RS, 1) 

dist = abs(hparam(RS(i, 1)) - hparam(RS(j , 1))); 
if (dist < sigma) 

nichecount = n ichecount + 1 - dist/sigma; 
e nd ; 
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end ; 
end ; 

end ; 

end ; 
RS(i, 2) RS(i, 2}/nichecount; 

% Rank population 
if -isempt y(NS) 

end ; 

NS = s ortrows(NS, 2); 
rank(NS(:, 1)) = N:-1: (N- size(NS, 1) + 1); 
NS = s ortrows(NS, 2); 

if -isempty(RS) 

end ; 

RS = sortr ows(RS, 2); 
rank(RS(:, 1)) = (N- size(NS, 1)) :-1: (N- size(NS, 1) - size(RS, 1) + 1); 
RS = s ortr ows(RS, 2); 

if -isempty(RP) 
RP = sor trows (RP, 2); 
rank(RP(:, 1)) = 1: (N- size(NS, 1) - size(RS, 1)); 

end ; 

% Assign initial dummy fitness value through linear ranking 
for k = 1 :N 

f(k) = 2- pres+ 2*{pres- 1)*(N- rank(k})/(N- 1); 
end ; 

% MAIN LOOP 
for g = 1:Ngen 

% Selection t h rough Steebastic Universal Sampling 
step= sum(f)/N; 
ptr = rand*step; 
partsum = 0; 
sel = [ l; 
for k = 1 :N 

p artsum = p a rtsum + f(k); 
while (ptr < partsum) 

end ; 
end ; 

se1 [se1;k]; 
ptr = ptr + step; 

% Random permutation of selection 
perm= r andperm (N); 
pop= pop(sel(perm), :); 

% Perferm crossover & mutation 
for k = 1:2:floor(N/2) 

if rand < Peross 
% do crossover 
pos= cei1(rand*(n*M + nh*M)); 
if pos < (n*M + nh*M) 

% crossover between pos and pos + 1 
pop(k, :) = [pop(k, 1:pos), pop((k + 1), (pos+ 1): (n*M + nh*M))]; 
pop( (k + 1), :) = [pop( (k + 1), 1:pos), 

el se 
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% possible mutation 
if rand < Pmut 

pop(k, (pos+ 1): (n*M + nh*M))]; 

% mutate individual k 
pos= ceil(rand*(n*M + nh*M)); 
pop(k, pos) = -pos(k, pos); 

elseif rand < Pmut 
% mutate individual k + 1 
pos= ceil(rand*(n*M + nh*M)); 
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end ; 
end ; 

end ; 
end ; 

pop ( ( k + 1) , pos) -pos((k + 1), pos); 

% Reinsert elite individual if necessary 
found = 0; 
if - isempty (elite) 

for k = 1 :N 

end ; 

found = found I isequal (pop(k, :), elite); 
end ; 
if -found 

end ; 

NS = sortrows(NS, 2); 
pop(NS(end, 1), :) =elite; 

% Evaluate individuals 
NS = []; 
RP = []; 
RS = []; 
[popreal , hpararn] = decode(pop, h, ub, lb, M); 
for k = 1:N 

end ; 

Cstruct = feval(pararn, popreal(k, :), hpararn(k)); 
stabcv = feval(stab, Cstruct); 
if stabcv > 0 

el se 

% no (robust) stability 
NS = [NS; k, stabcv]; 

perfcv = feval(perf, Cstruct); 
if perfcv > 0 

% (robust) stability 
RS = [RS; k, perfcv]; 

el se 
% (robust) performance 
RP = [RP; k, feval(aux, Cstruct)]; 

end ; 
end ; 

% Save elite (robust) performing individual 
if - isempty (RP) 

end ; 

RP = sortrows (RP, 2); 
elite = pop(RP(1, 1), :) ; 

% Apply ranking and sharing in the NS and RS classes to maintain diversity of 
% the sampling rate 
if (nh == 1) 

if -isempty (NS) 

end ; 

NS = sortrows(NS, 2); 
NS(:, 2) = (size(NS, 1):-1:1)'; 
sigma= (h(1) - h(2))/size(NS, 1); 
for i = 1:size(NS, 1) 

end ; 

nichecount = 0; 
for j = 1:size(NS, 1) 

dist = abs(hpararn(NS(i, 1)) - hpararn(NS(j, 1))); 
if (dist < sigma) 

end ; 
end ; 
NS(i, 2) 

nichecount = n ichecount + 1 - dist/sigma; 

NS(i, 2)/nichecount; 

if -isempty (RS) 
RS = sortrows(RS, 2); 
RS(:, 2) = (size(RS, 1):-1:1)'; 
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end ; 

sigma= (h(1) - h(2)) / size(RS, 1); 
for i = size(RS, 1) 

end ; 
end ; 

nichecount = 0; 
for j = size(RS, 1) 

dist = abs(hparam(RS(i, 1)) - hparam(RS(j, 1))); 
if (dist < sigma) 

end ; 
end ; 
RS(i, 2) 

nichecount = nichecount + 1 - dist/sigma; 

RS(i, 2) / nichecount; 

% Rank population 
if -isempty (NS) 

end ; 

NS = sortrows(NS, 2); 
rank(NS(:, 1)) = N:-1: (N- size(NS, 1) + 1); 
NS = sortrows(NS, 2); 

if -isempty(RS) 
RS = sortrows(RS, 2); 
rank(RS(:, 1)) = (N- size(NS, 1)) :-1: (N - size(NS, 1) - size(RS, 1) + 1); 
RS = sortrows(RS, 2); 

end ; 
if -isempty (RP) 

RP = sortrows(RP, 2); 
rank(RP(:, 1)) = 1: (N- size(NS, 1) - size(RS, 1)); 

end ; 

% Assign dummy fitness value through linear ranking 
for k = 1:N 

f(k) = 2- pres+ 2*(pres - 1)*(N - rank(k))/(N- 1); 
end ; 

if isempty (RP) 
fprintf( 'Generation %d: #stab 

size(RP, 1)); 
el se 

%d, #perf %d\n' , g, size(RS, 1), 

fprintf( 'Generation %d: #stab = %d, #perf = %d, avg(aux) = %g, min(aux) 
%g\n' , g, size(RS, 1), size(RP, 1), mean(RP(:, 2)), RP(1, 2)); 

end ; 
end ; 

% Return optimal salution 
if -isempty(RP) 

[thetaopt, hopt) decode(pop(RP(1, 1), :), h, ub, lb, M); 
el se 

[thetaopt, hopt) 
end ; 
return ; 

decode(pop(RS(1, 1), :), h, ub, lb, M); 

% Decode binary representation to real representation 
function [preal, hparam) = decode(p, h, ub, lb, M) 

% Create column vector containing powers of 2 
pow2 = 2." ( 0: (M - 1)) '; 

% Decode binary strings to real values in range [0, (2"M-1)) 
for k = 1:size(p, 1) 
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for m = 1: (size(p, 2)/M) 

end ; 
end; 

preal(k, m) = p(k, (1 + (m- 1)*M): (M + (m- 1)*M))*pow2; 

% Scale real values 
if (length(h) == 2) 

hparam = h(2) + (h(1) - h(2))*preal(: , 1) ./(2~M- 1); 
for n = 2:size(preal, 2) 

end ; 
el se 

preal(:, (n- 1)) = lb(n- 1) + (ub(n- 1)- lb(n- 1))* ... 
preal(:, n) ./(2~M- 1); 

hparam = h*ones(size(preal, 1), 1); 
for n = 1:size(preal, 2) 

preal(:, n) = lb(n) + (ub(n) - lb(n))*preal(:, n) ./(2~M- 1); 
end ; 

end ; 
return ; 

B.9param.m 

% PARAM.M 
% 
% Secend order controller parameterisation for a position controlled DC motor. 
% 
% Find an LTI controller representation from the parameter vector theta and the 
% sampling time h. 
% The four parameters in the parameter vector specify four closed-loop poles 
% If the discretized plant has structure: 
% 
% 
% G(z) 

% 
% 

k(z-a) 

(z-1) (z-b) 

% and the controller has the structure: 
% 
% R(z) 
% K(z) ----------- , where deg(R(z)) 2 and deg(S(z)) 1, 
% S(z) (z-1) 
% 
% then there exists a unique solution to the Diophantine equation: 
% 
% Q(z)S(z) + P(z)R(z) = C(z) 
% 
% where Q(z) = (z-b) (z-1)A2, P(z) = k(z-a) and C(z) is the desired characteristic 
% equation. C(z) has four roots equal to the closed-loop poles. 
% 
% 4- 8 - 2004 
% Robert Cloudt 

function Cstruct param(theta, hl 

global Pnom; 

% Extract a and b 
[a, p, k] = zpkdata(c2d(Pnom, h), 'v' ); 
p sort (p); 
b p(1); 

% Form polynomials P and Q 
P = [k, -k*a]; 
Q = conv( [1, -b], [1, -2, 1]); 

% Form desired characteristic equation C 
if (theta(1) >= 0) 
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el se 

end ; 

% complex pole pair 
Cl conv([l, -abs{theta{2))*exp(j*pi*theta(l))], 

[1, -abs{theta{2))*exp(-j*pi*theta{l))]); 

% two real poles 
Cl conv{[l, {-{2*theta{l) + 1)*{1- abs{theta{2))) + abs{theta{2)))], 

[1, {-{2*theta{l) + 1)*(1- abs{theta{2))) - abs{theta{2)))]); 

if {theta{3) >= 0) 
% complex pole pair 
C2 conv{[l, -abs{theta{4))*exp{j*pi*theta{3))], 

[1, -abs{theta{4))*exp{-j*pi*theta{3))]); 
el se 

% two real poles 
C2 conv([l, {-(2*theta{3) + 1)*{1- abs{theta{4))) + abs{theta{4)))l, 

[1, {-{2*theta{3) + 1)*{1- abs{theta{4))) - abs{theta{4)))]); 
end ; 
C = conv{Cl, C2); 

% Solve Diophantine equation through a set of linear equations 
nr 2 + 1; 
ns 1 + 1; 
np size{P, 2); 
nq size{Q, 2); 
% nc = nr + ns ; 
for p = l:nr 

A{:, p) = [zeros{{p- 1), 1); flipud{P'); zeros{{ns + nr- p + 1- np), 1)]; 
end ; 
for q = l:ns 

A{:, {nr + q)) 

end ; 
RS = A\flipud{C'); 

[zeros({q- 1), 1); flipud{Q'); 
zeros{{ns + nr- q + 1- nq), 1)]; 

R flipud{RS{l:nr)) '; 
s = flipud{RS{{nr + 1): {nr + ns))) '; 

% Form controller structure 
Cstruct.Kfb = zpk{[], [1], 1, h)*tf{R, S, h); 
Cstruct.Ka = theta{S); 
Cstruct.Kv = theta{6); 
Cstruct.h = h; 
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List of abbreviations 

AID 
ARP 
DIA 
DC 
DFG 
EMF 
FFG 
GA 
LED 
LPTV 
LQG 
LTI 
M5 
MIMO 
MM 
MOSFET 
NS 
OS4 
P5 
PFG 
PHl 
PH2 
PID 
PMDC 
RFG 
RP 
RS 
SISO 
SQP 
TF 
ZOH 

Robert Cloudt 

Analog to digital 
Alias response power 
Digital to analog 
Direct current 
Discrete frequency gain 
Electro-motive force 
Fundamental frequency gain 
Genetic algorithm 
Light ernitting diode 
Linear periodically time-varying 
Linear quadratic Gaussian 
Linear time-invariant 
Motor 5 
Multiple input, multiple output 
Main motor 
Metal, oxide, serniconductor, field effect transistor 
Norninal stability 
Optical sensor 4 
Pinch 5 
Performance frequency gain 
Preheater belt 1 
Preheater belt 2 
ProportionallintegraVderivative 
Permanent magnet, direct current 
Robustness frequency gain 
Robust performance 
Robust stability 
Single input, single output 
Sequential quadratic programrning 
Transfuse 
Zero order hold 
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