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Abstract 

Within the framework of the Masters project at the Eindhoven University of Technology, 
Faculty of Electrical Engineering, in association with Philips Medical Systems, a feasibility 
study on the digitalization of the gradient amplifier controlloop in an MRI scanner has been 
carried out. A description of the analog controlloop and its componentsis given, and a 
design criterium is presented. The analog controlloop is extended to a digitalized control 
loop. Because of the delay time introduced by the fact that the controller is a sampled system, 
the transients behavior deteriorates. Same general expressions for the final values of the 
current error and its integral are derived. These expressions show that the current error 
integral is non-zero in most of the cases, affecting the criterium. For the sampled pulse width 
modulator, algorithms for three sampling rates are given. Higher sampling rates result in less 
delay in the control loop. Feedforward seems to be a salution to many problems. It is shown 
that the criterium is automatically met in steady-state for proper choice of the feedforward 
filter, and also during the presence of transients it can be met if the feedforward filter results 
in a linear phase characteristic of the feedforward path. Furthermore, the range of the current 
error is reduced considerably, resulting in a gain of four bits for the ADC in the error path. In 
the last chapters of the thesis, a study is carried out on the digitalization of the pulse widths 
of the pulse width modulator. It seems that by choosing an appropriate rounding scheme for 
the switching times, the accuracy can be improved. High accuracy, however, can only be 
achieved for low sampling rates, because the quantization error on the pulse width is 
distributed over a langer time in that case. Digitalizing the putse widths causes the same 
effects to occur as when a DA converter is placed in the control loop. Drifts and oscillations 
of the current error and its integral are the result. A remedy against this is the use of a noise 
shaper, based on a positive quantization error feedback. The best performance is achieved for 
the highest sampling rate of the PWM, four times per cycle. 
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1. Introduetion 

MRI systems beloog to the advanced technica) equipment in modem hospitals. These systems 
are used to make three-dimensional scans of the inside of humans. MRI (Magnetic Resonance 
Imaging) is based on magnetic nuclear resonance (NMR), a physical phenomenon based on 
the interaction of eertaio nuclei with a magnetic field. In the hu man body, hydrogen (H), 
sodium (Na), and phosphorus (P) nuclei are sensitive to NMR. These nuclei are mainly found 
in weak tissues, therefore, an important application of MRI is the localization of tumors. 

The principle of NMR is, that some types nuclei align with a static magnetic field Bo (which 
must be in the order of 1 [T]). Aligned with B0, they are susceptible to a resonance frequency 
ffio, the Larmor frequency. The Larmor frequency is proportional to the magnetic field 
strength. This resonance frequency is typically in the RF range. Tobring the nuclei into 
resonance, they must be triggered by an external RF pul se. Th is means, that an amount of RF 
energy is transferred to the nuclei. During the relaxation process following the pulse, the 
excitated nuclei loose their energy reradiating RF signals. This relaxation signa) is called the 
free induction decay. lts rate of decay depends on the kind of molecules in a tissue to which 
the phosphorus, sodium, and hydragen nuclei are bounded, and its strength depends on the 
concentrations of these nuclei. 

Three independent weak magnetic field gradients (T/m) superposed to B0 are applied 
orthogonally, in the x-, y-, and z-directions. The z-gradient is used toselect a eertaio tissue 
slice orthogonally to the z-axis. The technique of MRI scanning is based on the fact that the 
reradiated RF signa) from a selected slice is related to the 2D-Fourier transfarm of the image 
of the slice. The free induction decay can be manipulated by applying time-constant and time­
varying magnetic field gradients in the x- and y- direction. Sampling in time of the 
manipulated free induction decay corresponds to sampling the 2D-Fourier transfarm of the 
image of the selected slice. 

The weak gradients in the magnetic field are built up by generating suited currents in the 
three orthogonal gradient coils. The complete system for generating the currents in these coils 
is called the gradient chain. Each coil has its own gradient amplifier power module, by which 
a voltage can be applied to the gradient coil. Each gradient amplifier consists of four 
parallelly connected Pulse Width Modulated voltage amplifiers. Connecting them in parallel 
results in less voltage harmonies over the gradient coil resulting from the switching behavior 
ofthe PWM's. 

For good image quality, it is important that the places in the spatial frequency domaio 
corresponding to the sampled RF signa! are accurately reached by generating the prescribed 
current shapes in the gradient coils to generate the correct magnetic field gradients. For 
accurate positioning in the spatial frequency domain, the integrated current error in each 
gradient coil should not exceed I O[f.I.As]. However, generating these currents accurately is a 
problem because of the presence of disturbances and model parameter uncertainties. For this 
reason, the present gradient coils and their gradient amplifiers are embedded in analog 
gradient coil control loops. 

Although the analog controlloop gives reasanabie performance, it could be advantageous to 
digitalize certain parts of the analog controller structure. Doing so, complex analog electrooie 
circuits may be replaced by cheap and "simpte" digital components, without deleriorating the 
system' s performance. Th is could result in less components, a higher reliability, and lower 
service casts. 



Other advantages of using computers, are the possibility to u se modem control strategies, like 
advanced controller design, and the application of "Intelligent Control", making use of prior 
knowledge of the current shapes. Even more general, the digital components could make it 
advantageous to redesign the complete control structure for optimal performance and 
minimized casts. 

By digitalizing the gradient amplifier control loop, however, also many problems may occur. 
The use of AD and DA converters will generate quantization errors, which will have their 
influence on e.g. the lO[f.LAs] criterium of the integrated current error. Another problem 
might be the loss of phase margin because of the fact that the system must be sampled. 

In this master thesis, the analog gradient amplifier controlloop is analyzed to have a 
reference for the performance of the digitalized control loop. With respect to this reference, 
the advantages and disadvantages of replacing the analog gradient amplifier controlloop by a 
digital configuration will become clear. 
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2. Process, Actuator, and SimpUfled Analog Control Loop 

In this chapter, the processof the current through the gradient coil is defined first, and the 
kind of actuator, the PWM, is introduced to the reader. After this, the simplified model of 
analog gradient amplifier controlloop (GACL) is given. 

2.1 The Process to be Controlled 

In fact, the process to be controlled is just generating a desired current in a coil that has a 
series resistance. The current must be generated by applying the correct voltage form 
following from the desired coil current form. 

lfcoil 

Figure 1: The process: Generating a desired current through a coil with a voltage souree 

For the model in Figure 1, the voltage-current relation is simply: 

The numerical values of the coil and its series resistance are L,.=l85[j.1H], and Rc=0.06[Q]. 

In the s-domain, (l) can be written as the transfer function G(s): 

G(s) 
(s) 1 I Lc 

ucoil(s) 

This process has a time constant of r=L/Rc=11324[s]""3[ms]. 

(1) 

In Figure 2, the desired output current !,elf) is given. This reference current form will be used 
throughout the document, because it represents the nominal current form of the gradient coil. 
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A (a) 

~~~~ I \ I 
0 2 3 4 5 time [ms] 

V (b) 

lOOI 

-I~: ll LJ I 
0 2 3 4 5 time [ms] 

Figure 2: (a): Des i red Coil Current l,ej(t) (b ): Corresponding voltage Ucoil(t) 

The trapezium shown in Figure 2(a) can be thought to be built up by a series of ramp 
functions with different slopes, that are switched on at the bending points of the trapezium: 

!,.et (t) = B(p(t- lms)- p(t- 2ms)- p(t- 3ms) + p(t- 4ms)) 

t 

In (2), t is in [ms], and p(t)= Ju( r)dr, with u(t) the unit step function. 
0 

According to the specifications, the error integral 

t 

E(t) = J e(t)dt 
0 

should not exceed 10[j..lAs], what is essential for the MRI-image quality: 

IECt)l:::;; lO,uAs ,Vt?:.O 

(2) 

(3) 

(4) 

In Table 1, the specifications for e(t) given at the specifications sheets [1] under the heading 
"Risetime" are given. The maximum range to which e(t) must be limited at the trapezium top 
of lcou(t) are given for several time intervals at the flat top. The error is expressedas a fraction 
of the desired high level of Icoit). 

Table 1: Specificationsfor e(t) at theflat top ofthe trapezium. Amax=600A 

Time Interval t [!ls] Error Interval e 

1 0 ( t < 100 -1% X Amax ( e ~ 1% X Amax 
2 100 ( t < 150 -0.5% X Amax ( e ( 0.5% X Amax 
3 150 ( t < 500 -0.1% X Amax ( e ~ 0.1% X Amax 
4 500 ~ t -170mA ( e ~ 170mA 
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Unfortunately, ju st generating lcou(t)=l,eit) by applying the voltage following from (I) is not 
possible, because of voltage disturbances, components changes due to heating, etc. Therefore, 
the process must be embedded in a feedback loop with a controller, as will be discussed in 
paragraph 2.3. 

2.2 The Pulse Width Modulator 

The gradient amplifier, which is the voltage souree used for generating lcou(t), is a Pulse 
Width Modulator (PWM) voltage amplifier. The voltages needed to generate the coil 
currents, are in the range of -v+ =-350V to v+ =350V DC. In our case the output voltage of the 
controller is in the range of -10 to I OV, so the voltage amplification is a factor 35. 

The reason that the PWM is used, is that this is a compact and relatively cheap power 
amplifier. A disadvantage of the PWM is that it also generates higher order voltage 
harmonies because its output consists of voltage pulses. The type of PWM that is used as 
gradient amplifier is a full-bridge PWM, that is described in some detail in [2]. The next 
figure explains the principle: 

Figure 3: Functional blocks ofthe Full-bridge PWM 

In Figure 4, the relevant signals are shown to explain how the PWM output pulse sequence is 
obtained in the model of Figure 3. The PWM input signa! u+ is compared directly to the 
triangular wave in the positive half-bridge of the PWM. If the input is lower than the 
triangular wave, the output of the positive half-bridge will be OV, and if it is higher, it will be 
v+. The negative half-bridge does the same for the negative version of tt. In the first period 
of the triangular wave in Figure 4, the vertical dasbed lines illustrate the switching principle. 
The full-bridge pulse sequence is obtained by subtracting the negative half-bridge pulse 
sequence from the sequence of the positive half-bridge. 
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V 

10~-----
0 . : - - ..... ._ . ... 

:. ~ , 
-10~ 

0 ~ ~ ~ 0.5 1 1.5 2 2.5 3 3.5 4 time 
~ ~ ~ ~ (b) 

~f CH1 1 : o o o : ~ : 1 n a 
0 : : 0.5 1.5 2 2.5 3 3.5 4 time 

vj d : ! : I ~ rl'O:I I : rs d 
0 0.5 1 1.5 2 2.5 3 3.5 4 time 

-~~~ 1
:

1 ~ 1:1 4Jld 
0 0.5 1.5 2 2.5 3 3.5 4 time 

Figure 4: Full-bridge PWM signals (a): triangular wave, simtsoidal u+ (Juli) and its negative 
version ( dashed); (b ): Positive Half-bridge pulse sequence; ( c): Negative Half­
bridge pulse sequence ( d): Full-bridge pulse sequence 

As is illustrated in Figure 4, the full-bridge pulse widths are proportional tothelevel of Lt. 
The higher the input level, the wider the PW' s, taking into account the sign of the input. 

The output voltage of the PWM can not be applied to the gradient coil directly, since the 
voltage harmonies will generate undesired current harmonies. Therefore, the PWM output is 
low-pass filtered first, by two second-order low-pass sections LPl and LP2: 

s 2t-2'zeta'wn 1 s+wn1 "2 

LP1(s) 

s 2t-2'zeta 'wn2s+wn2"2 

LP2(s) 

Figure 5: The PWM output voltage must be filtered because of the higher harmonies of the 
puls es 

The second-order low-pass filters can be expressed in the s-domain as follows: 

u/ n 

(5) 
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The filter parameters have the following values: 

m, 1 = JL:C: = 2n12000 
I, LC 

I I 

Ç=0.3 

We can write for the poles of these filters: 

The imaginary part is a consequence of the small damping factor Ç~O. 707, and causes 
resonance at the frequency at (see [5], p. 217-219): 

The resonance frequencies of LPI and LP2 are Wp, 1=10.9kHz, and Wp,2=21.7kHz, 
respectively. The bandwidth of asecond-order low-pass filter is given by: 

Formula (7) shows that the -3dB bandwidths of the filters are ron 1=17 .4kHz, and 
roh2=34.9kHz. This means that the asymptotic attenuation is OdB up to 17.4kHz, 
-40dB/decade between rob1 and rob2, and -80dB/decade beyond 34.9kHz. 

The following figure gives the Bode plots of the two filters in series. At the resonance 
frequency of 12.5kHz, the amplification is about 6dB. 

(6) 

(7) 
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Gain dB 

,:11 , ll·iiii I i 1~11. , lil!! ii ~11\!llffil 
-100~~~L-~~~~~~~~~~~~~~~ 

1& 1d 1d Id 1d 1d Id 
Frequency (rad/sec) 

Phase deg 
a~~~~~~~~~~~~--~~~~~~~ 

I I 1111111 I 11111111 I I 1111111 

I I 1111111 I 11111011 I I lOltlil 

I I 1111111 I 0 I 101011 I I IIIIIU 

I I I liltil I 11111111 I I 1111111 

-180 .. :· ~ ·:·:: ~: .. :. ~ : ~ :: ~~ . ·:· :::: ~: .. : ·:· ~:: :::: .. :. : : : ~:: ... ~ ·:·:·:: ::: 

1d Jd 
Frequency (rad/sec) 

Figure 6: Bode plots of the !ow-pass filter combination of LP 1 and LP2 

2.3 The Simplified Analog Control Loop 

The performance of the analog GACL will be used as a reference for the performance of the 
digitalized control loop. The analog controlloop as discussed in this chapter, has been 
studied by a former graduate at MBS (see [2]). lts main characteristics are mentioned in this 
chapter. The analog control loop is a simplified version of the GACL, existing gradient 
amplifier controlloop (see [ 1 ]). Figure 7 shows the elements of this simplified model: 

Transport 
Delay td 

Figure 7: Modelfor closed-laap transfer function 

The filters LP 1 and LP2 are the second-order low-pass filters, that are necessary to filter out 
the higher harmonies of the Pulse Width Modulator (PWM). For simplicity, the filter 
coefficients are called a,b,c, and d here, insteadof the expressionsin Ç and Wn as in the 
previous paragraph, so a=(27tl2000)2

, b=1.2n12000, c=(27t24000)2
, and d=1.2n24000. The 

controller C(s) is a simple PI controller, that compensates for the slowest time constant of the 
process, L/Rc=11324[s], andreduces the steady-state current error. 

The PWM itself is not modeled in detail in this simplified model, but its inherent voltage gain 
PWM(s)=35 isjoined to the controller gain (3.7/35) in the block Gain3 in Figure 7. This is 
justified because in the present gradient chain, four PWM modules are connected in parallel, 
resulting in a current ripple caused by the voltage harmonies with a first harmonie at 1OOkHz 
(see [2] for the description of this so called Multi-Phase principle). Because the cut-off 
frequency of LPl in series with LP2 is much lower, this ripple can be neglected in the 
simplified model. 
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2.3.1 Current Error and Propagation Delay Time 

First of all, let' s define the current error as: 

(8) 

In Figure 8, the output signal, which is the coil current lcou(t), the current error e(t), the delay­
corrected coil current error eJt, and the integral of the delay corrected error Ec(t) are plotted. 
The reason for the delay correction will become clear later on in this paragraph. 

A ~f.._____.__: ___._____..._: Z___.__...____.____~a) : S__._____._______._____.: l 
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 time [ms] 

A:~t~: ---1--..-J.._:-: ---1....--~ (~:b) \_ =c=::::=::L: r~: J 
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 time [ms] 

A 10.---~--~---.--~---.~(c~)--r---~--.----.---, 

0 1--------.... M'-'----' ..".,....... __ ---' "'-"---...... fv""------f 

-10~-~-~--~-~-~--~-~-~--~~ 

0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 time [ms] 
-4 

x 10 (d) 

M _:I~: ~< : ==t.._> .~...--...~.-_: :r ---1--..-J..._: :~~: j 
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 time [ms] 

Figure 8: (a): lcou(t) (b): e(t) (c): ec(t) (d): E,.(t) 

The delay-corrected current error eJt) is given by the delay-corrected input signal (delayed 
version of lre/t)) minus the output signal (the coil current lwit)).lre/t) is shifted over the 
propagation delay time of the controlloop for a ramp function td, which is the same in steady­
state for every ramp-shaped lreit). lts maximum value is 5.66[A]. As a consequence of the 
constant delay time, the final value of the current error, given by (9), reaches a constant value 
if a ramp is fed totheinput of the control loop. This is shown in Figure 8 (b). 

e( oo) = lime(t) 
t-?~ 

The following figure illustrates the relation between the constant steady-state delay time td 

fora (saturated) ramp input and the resulting e( =): 

(9) 
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A 

e(oo) 

--~0~~~--------------------.time tl 

Figure 9: Explanation ofthe relation between the steady-state delay time tdand the steady­
state errorfora ramp input Bt; t1 is the settling time 

From Figure 9, it follows that: 

ec(t) e(t) e(=) 

(JO) 

So, if l,elt) consisting of a combination of ramp functions is shift over the propagation delay 
time tJ, we can put the current error to zero in steady-state, because of the subtraction of the 
constant steady-state error. 

If the constant component e( =) is subtracted from e( t), the result is the inverse of the current 
transients. These transients are related to the po les of the closed-loop transfer function that 
will be given in (12). Because we deal with a stabie system, the transients die out in time. 

The delay time of the controlloop fora ramp-shaped ln,/t) can be calculated by applying the 
final value theorem to e(t). First, the open-loop transfer function is given, which looks like: 

K" (sT + I) I I I 
Ho ( s) = ~ · -s · ( 2 b ) · ( 2 d ) · ( L ) 

< : + a s + 1 se + --;; s + I R: s + I 

(11) 

The expression for the closed-loop transfer function can be calculated from Ho(s) as follows: 

H (s) - -"-(_s )_ 
cl - 1 + H

0 
(s) 

(12) 

The factor KP is the factor 3.7 before the controller in Figure 7. The time constant ris equal 
to r=L/Rc=11324[s]. 

In (ll) we can see that the (DC)-open-loop gainis given by: 

(1 3) 
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Numerically, this yields K,=20,000. Fora ramp-shaped lreit) with slope B, the final value 
theerem applied to the error signal e(t) results in a steady-state error of: 

e( oo) == lime(t) limse(s) 
~~- s~O 

B 
-== Btd 
Kv 

(14) 

The propagation delay timefora ramp input is found to be tr~=liKv=50[J..LAs]. The constant 
steady-state error is aresult of the presence of just one integrator in the open-loop transfer 
function. For the analog gradient chain, the trapezium rampBis 600[A/ms], and tr~=50[J..Ls], 
therefore e( oo) is 30A. 

If an input ramp function is applied, integrating e(t) will result in a steady-state ramp for E(t), 

because ofthe non-zero steady-state value e(oo). A better idea is to integrate ec(t), which will 
result in a constant steady-state value for E(t). Therefore, criterium (4) will be applied to Ec(t) 
instead of to E( t). 

In Figure 8, we can see that the negative level of Ec(t) is -390[J..LAs], and the high level is at 
400[J..LAs], which is about a factor 40 too large according to (4). 

2.3.2 Bode Plots and Pole-Zero Maps 

In the following figures, it is illustrated how the PI controller C(s) in Figure 7 influences the 
open-loop Bode plots. First, the Bode plots for H"(s) are plotted in Figure 10. The pole-zero 
map of this transfer function is plotted in Figure 11. 
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Figure JO: Ho( s) without the controller 

Figure 10 shows a rather low crossover frequency of 5424rad/s, and a considerable phase 
distortion for low frequencies. This is because the slow time constant of the coil-resistance 
plant (L/K=ll324[s]) is not compensated. 
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Figure 11: Pole-Zera map of Ho( s) without the controller 

In the pole zero map in Figure 11, the pole near zero belongs to the time constant RJ Lc of the 
plant. The other pole pairs are those of the low-pass filter sections LP1 and LP2. 

In the following two figures, the same plots are given as in Figure 10 and in Figure 11, but 
now for the case that also the PI controller is part of Ho( s). Figure 12 shows the new open­
loop Bode plots. 
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Figure 12: Ho(s) with the PI controller; Gm=4.29dB (w=6.809e4), Pm=74.2deg 
(QJ=2.182e4) 

The phase margin is 74.2(at (l):::3.36kHz, which is an acceptable value. 

In the next Root Locus diagram, we see the pole of the controller in s=O. The other pole and 
the zero near s=O, are aresult of the time constant r=11324[s] that is both in the numerator of 
the controller and in the denominator of the plant. The figure shows that for values of KP 
larger than about 6.2, the system will be unstable, because two branches of the root locus are 
going into the right half p1ane of the complex plane. 
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Figure 13: Root locus of HJs) with the PI controller 

Inthelast but one figure of this section, the pole-zero pattem of the po les of Hels) is given. 
The po les determine the exponential decay rates and the oscillation frequencies of the 
transients, goveming ec(t) as plotted in Figure 8(b). The poles ciosest to the lmaginary Axis, 
called the dominant poles, cause badly damped transients. 
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Figure 14: Pole-Zero map of Hels) including the PI controller 

In the last figure of this section, the Bode plots for Hels) are gi ven. The resonance peak at 
10kHz is aresult of the addition of the low-pass filters to H,ls). The system bandwidth ( -3dB) 
is about 10kHz. 
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Figure 15: Bode plots of Hels) ofthe analog GACL 

2.4 Performance of the Analog Control Loop 

In this chapter, the analog controlloop has been analyzed. Even after correction for the 
closed-loop propagation delay time, EJt) doesn't meet the criterium, but it has a maximum of 
400[jlAs], a factor 40 too large. 
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3. The Digitalized Control Loop 

In this chapter, the analog GACL of Figure 7 is digitalized straightforwardly, as shown in 
Figure 16. A time discrete controller C(z) is designed basedon the analog controller. 
Intemally, binary representations of numbers are used by the digital controller. Therefore, 
analog signals must be sampled and digitalized first, using ADC's. In the digitalized GACL, 
the ADC is placed in the error path. Befare the ADC, an anti-aliasing filter B(s) is necessary 
to limit the signal band width. At the output of C(z), a DAC in combination with a ZOH is 
neerled to make the digital and time discrete output of the computer analog and time 
continuous. 

1.61 

11(2*pi*wt)'zt +2.2112/pi/wfs+l. l 

B(s) 

5.7c9 
s2+4 5e4s+5.7e9 

LPI(s) 

2.3el0 

s49e4s+2Jel0 

LP2(s) 

Figure 16: Model ofthe digitalized GACL 

The model shown in Figure 16 is the same as the model used inthemaster report [2], except 
for the quantization error correction unit that has been omitted, because this unit didn't seem 
to be useful [2]. 

3.1 Cornponents of the Digitalized Systern 

3.1.1 The Digitalized PI Controller 

If a digital controller has to be found if an analog controller is already available, the analog 
controller can be transforrned to the discrete domaio using a Tustin transforrnation: 

2 z-1 
s=---

:Z::z+1 

The transfer function of the transformed PI controller C(s) of Figure 7 becomes in the z­
domain: 

C(z) 
(1+ 162T.)z+ 162T. -1 

3.7 .. .. 
z-1 

The sampling period is taken equal to the PWM cycle duration, thus T,=Tz=4Ü[!ls]. 

(15) 

(16) 
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3.1.2 The Analog to Digital Converter 

The principal feature of this control scheme is that the ADC is not placed in the feedback 
path as usual, but in the error path instead, because of the reduced range of e(t) (about 200A) 
compared to the range of lcnu(t) (about I200A). The number of bits that can besavedis 

1200 
log2 -- z 2.6 bits for the ADC. 

200 

3.1.3 Anti-Aliasing Filter 

Before the AD conversion of the analog e(t), this signa! is bandwidth limited by a secoud­
order Bessel filter B( s) in Figure 16. 

Bessel filters are filters with a linear phase characteristic ( qJ=kOJ, k is a constant) in a large 
frequency range, therefore not affecting signals too much. The general expressionfora 
Bessel filter is given by (see [3]): 

(17) 

or, equivalently: 

1.61 
H(s) = -------=

2
-----

(
_s ) + _2.2_1 s + 1.61 
(J)h (J)h 

(18) 

The maximum bandwidth for B(s) as in (18) depends on the sampling frequency f,=liT,. of 
C(z) and ZOH. According to the Nyquist criterium, signals with frequencies higher thanj,/2 
must be damped enough by B( s), so the cutoff frequency should beat least OJh=f,n. 

The cutoff frequency of B( s) is chosen OJh =15000·27t (-3dB bandwidth). This bandwidth is 
not obeying the Nyquist sampling law, but a filter with a lower cut-off frequency will result 
in more oscillatory behavior of the closed-loop system. Besides, the frequency contentsof the 
l,ej(t) trapezium is concentrated between 200Hz and 10kHz, so no aliasing will take place, 
because frequencies above the Nyquist frequency of 12.5kHz are not present. 

3.1.4 Interpo/ation Filter 

As a consequence of placing the ADC in the error path, !,el t) that is generated digitally, has 
to be DA converted first to calculate the analog e(t). The DA conversion of l,ej(t) is 
performed by a zero-order hold (ZOH) circuit, in combination with a DAC. The DA 
converted signa! is filtered with an interpolation filter I( s). For I( s), a secoud-order Bessel 
filter is chosen with an appropriate cutoff frequency, depending on the sampling rate of the 
DA converter in the reference path. 

3.1.5 Digital to Analog Converterand ZOH at Controller Output 

Also a DAC is placed in the open-loop chain, representing the DA behavior of the PWM for 
the case that its pulse widths are digitalized (to be treated in chapter 8). 
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3.2 Simulation with Digitalized GACL 

In this paragraph, a simulation is carried out with the model shown in Figure 16. The sample 
frequency is 25kHz, equal to the PWM basic frequency, and B( s) has a cutoff frequency of 
15kHz. 

In Figure 16, the number of bits for the ADC and the DAC is 14, as in [2]. 

The delay of the loop after l(s) remains t,p50[J..ls], as will be proven in chapter 4. 

Figure 17 shows the signals eJt) and Ec(t) for the case that the trapezium-shaped l,ej(t) is fed 
to the control loop. According to the simulation, the first high level of Ec(t), which 
corresponds with the rising slope of the I,eJt), is at a level of about 650[J.!As], which is a 
factor 65 too large. Furthermore, the peak of ec(t) is 13.99[A] now, insteadof the 5.66[A] that 
was found in paragraph 2.3.1 for the analog GACL. In plot (d), E,(t) is shown for larger t. It 
shows that a drift in Ec(t) occurs. 
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Figure 17: GACL with digital controller for model in Figure 16 with 14 bits ADC and DAC, 
and T.,=Tz(a): lcou(t) (b): ec(t) (c): Ec(t) (d): Ec(t) 

3.3 Conclusions 

Studying the simulation results in Figure 17 of the digitalized GACL in Figure 16 show three 
major differences with the results ofthe analog GACL in Figure 8. The transient signal ec(t) 
has deteriorated, the high level of Ec(t) has increased, and a drift appears in E,(t) after lrelt) 
has become zero. These effects seem to be typical fora loop with a digital controller, a ZOH, 
an ADC, and a DAC. In the remainder of this thesis, they will be analyzed in detail, and 
solutions to the problems are proposed. 

17 



4. Open-loop Delay and Transients 

If the analog GACL is digitalized, some extra delays are introduced to Ho( s). Por instance, the 
ADC needs a eertaio time to perfarm a conversion, the control algorithm will need some time 
to be executed, there is a time needed to calculated the PWM switching times, the PWM 
using sampling of the input implies a delay by itself, and the IGBT's of the full-bridge need a 
fixed time to turn on or off. In the first paragraph of this section, a time table is given 
summarizing all the recognized delay times so far. 

Adding an extra delay time T to Ho( s) will result in a red u eed phase margin, as will be 
discussed in the second paragraph of this chapter. Less phase margin will result in worse 
transients behavior. For a too large extra delay time, the system will become unstable, 
because one complex pole pair are shifting into the right half of the complex plane. In the last 
paragraph of this section, the effect of the extra delay Ton the transients is studied bath 
analytically and by simulation. 

4.1 Timing Table 

Because the PWM must be able to give its maximum output, there should be no limitations 
on the individual switching times in the half PWM period that they belang to. All the 
preparations to calculate the next PWM switching moments must be scheduled befare the 
beginning of each PWM cycle, if one PWM-input sample is used to calculate the switching 
moments for the period (T,,PwM=Tz). In the case that a different sample is used for each 
switching time, the preparations have to occur befare their specific quarter the PWM cycle. 
In the timing table below, the order in which theevents preceding the beginning of the PWM 
cycle must be executed is given: 

Table 2: Timing Table for digital controller and PWM. 

TIME 
EVENT 

AD Conversion 

Control Algorithm 
DSP 

Calculation of the PWM 
switching times 

Time till beginning of 
PWM cycle: ~' 

Conversion 
Time 

Alg. Calc. 
Time 

Switching 
Times Calc 

For the design of a digital controller, it is essential that the tata! delay between taking the 
sample and the beginning of the PWM cycle is always the same. Therefore, the maximum 
durations must be taken for the delay times in Table 2. As a result, the conversion must start 
at a fixed time befare the beginning of the PWM cycle. This time will be called ~" the 
preparation time. The next figure showshow this time is related to the (virtual) PWM 
triangular wave: 
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time 

Figure 18: Preparation times between the sampling moments and the beginning of the PWM 
cycles, sampling once per PWM cycle 

4.1.1 Choice ofthe AD-Conversion Sampling Frequency 

The highest realizable sampling frequency of the ADC in the error path must be high enough, 
because, as a rule of thumb, the AD conversion time is the inverse of the highest sampling 
frequency of the ADC. A higher AD conversion rate is not a problem, because no high power 
signals are involved with the AD conversion, on the contrary to the high powers that are 
involved with the switching IGBT's of the PWM, which is in fact the ZOH at the output of 
C(z). The PWM switching frequencies are limited toabout 25kHz, because of power losses. 
A sampling frequency for AD conversion of e.g. 1OOkHz could be chosen. Choosing such a 
high frequency, which is much higher than needed for the closed-loop bandwidth of about 
1OkHz, gives us the possibility to do part of the low-pass filtering digitally, resulting in an 
analog low-pass (Bessel) filter with a less sharp cut-off characteristic, because the -3dB point 
has to lie at the Nyquist frequency of 50kHz now. Within the computer, the sampling 
frequency can be decreased toabout 25kHz after the digital filtering (cut-off frequency of 
about 1OkHz) has taken place. This combination of a digitallow-pass filter and a sampling 
rate reduction is called a decimator. 

4.2 Stability Requirements 

What has to be stuclied first, is what the maximum value of the extra open-loop delay time T 
can be so that enough phase margin is kept. In each case, the preparation time Tp discussed in 
the former paragraph must fit within the maximum T. lf a certain minimum phase margin is 
required, let' s have a look at what the maximum T is allowed to be. Consiclering a general 
open-loop transfer function H,ls), we can praeeed as follows. First, we have to calculate the 

phase margin of H,ls) without the delay term e-sT. The delay term which modulus is unity 
doesn't change the frequency for which the magnitude plot of H,ls) crosses OdB. Finding the 
phase margin for Ho( s) now results in simply decreasing the phase margin of the case that no 
delay was present by WeT, in which Wc is the crossover frequency for H,ls). In formula, we 
can write now: 

(19) 

Instability is reached for the value of T where PM(H0 (jW))r=0 equals zero. 
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4.3 Theoretical Calculation of the Transients 

In this paragraph, the effect of an extra delay factor (e.g. due to digitalization) in Ho(s) on the 
transiellts in lcou(t) will be studied. The roots of the characteristic equation of the controlloop 
are calculated for different values of T. Por the calculation of the system po les and the 
transients, a second-order Padé approximation is used for the delay factor: 

(20) 

Because we are dealing with a delay T present in the digital control structure as in 3.2, also an 
anti-aliasing Bessel filter with a cutoff frequency of 15kHz is placed in the loop: 

Figure 19: GACL with anti-aliasing Besselfilterand open-loop delayfactor 

The trapezium shaped l,cj(t) consistsof a number of time-shifted ramp functions, so the 
output transients can be studied by feeding a simple ramp-shaped lreitJ to the control loop. 
The output is calculated by multiplying the Laplace transfarm of lreltJ with Hc!(s). Observing 
Figure 19 and using (20), H,ls) is found to be: 

T T2 

1-s-+s2
-

2 12 
H" (s);::: acfK 2 

2 2 2 T 2T 
s(s +bs+a)(s +ds+c)(s +gs+f)(l+s2+s 

12 

Hels) is expressed in Ho(s) as in (12). 

(21) 

The system poles are now calculated by equating the denominator of H,J(s) to zero. Because 
we have to find the roots of a gth order polynomial, a computer is used to calculate the roots 
for different values of T. Knowing the complex conjugated and the real valued roots of the 
system characteristic equation, a partial fraction can be performed to find the corresponding 
time transient signals. If l,ej(t) is a ramp function Bt which Laplace transfarm is Bli, lcoil(t) 
can be found by partial fraction of HcJ(s) multiplied by Bli. The transients are those fraction 
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terms belonging to the poles of Hels). The fraction terms belonging to Bil are the Lapface 
transfarm of the steady-state output of Hct(s), which is the ramp I relt) minus the steady state­
error e( =). 

In the next plot the positions of the slowest complex pole in the complex plane are shown for 
valnes of T increasing from T=O to T=55[J.ls]. The slowest complex pole belongs to the worst 
damped transient, and is called the dominant pole for that reason. 

2~----~----~----~----~------~----~----~~--~ 
-14000 -12000 -10000 -8000 -6000 -4000 -2000 0 2000 Re 

Figure 20: Slowest pole moving in the complex planefor T=O to T=50[J.1S] 

The verge of stability is reached for T:=46.5[J.1s], for which an undamped oscillatory transient 
wil! be part of lcoit). This is in accordance with (19), since for H"(s) ofFigure 19, the phase 
margin for the case T=O equals 56.76° at Wc=3.4kHz. 

Calculating the roots of the system's characteristic equation resulted in only single complex 
pole pairs, and in single real poles. The corresponding transients are calculated now using 
partial fraction theory. 

Unrepeated complex poles a=a+jf3 are present within the denominator of Hels) as: 

- ? (.l2 
( s - a)( s a) = (s-a)- + 1-' 

The corresponding transient for this denominator factor in the time domaio yields: 

h" (t) ero (lm(Q") cos fJt + Re(Q") sin fJt) 
(22) 

where Im(Qa) and Re(Qa) are the imaginary and the real parts of Qa respectively: 

Also unrepeated negative real poles may he present. An unrepeated real pole s=a corresponds 
to the time signa!: 

(23) 
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An important condusion is that every fraction is proportional to B, the slope of the input 
ramp. Thus also the transients will increase in amplitude if B increases, i.e. if the rise-time 
becomes shorter. 

4.4 Simulations of the Transients for Different T 

The formulas above are used to calculated the transients for different values of the extra 
delay time Tin Ho( s). The total transient signaland the transient corresponding to the 
dominant complex pole are shown in the next figure for four values of T: 0, 4[~-Ls], 10[~-Ls], 
and 20[~-Ls]. The transient signals calculated with (22) and (23) seem to be almost equal to the 
results of a Simulink simulation with the model in Figure 19 using the same values of T. This 
justifies the use of the Padé approximation for the delay factor for the theoretica! analysis. 

~ 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 time [ms] 
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2~ 
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Figure 21: Transient signals for different delay times. Line types curves: full: transient 
calculated with Simulink; dashed-dotted: analytically calculated transient; 
dotted: transient corresponding to dominant complex pole. Delay times T: (a): 

T=O (b): T=4[J.LS] (c): T=lO[J.LS] (d): T=20[J.LS] 

From Figure 21, it can be concluded that the dominating complex pole determines the 
behavior of the transient as expected. The result found with Simulink (ec(t) in Figure 19), is 
equal to the analytically calculated transient, except within the time interval (O,tJ), with 
td=50[~-Ls], the closed-loop delay time. In this interval, the Simulink values are equal to the 
negative output of the system, because the delay block for the reference signal in Figure 19 
then gives a zero output. In the analytica! calculation, l,ej(t)=Bt is subtracted from lcoa(t) 
beginning at t=O (not at t=tJ), and the e( oo) is added to the output. 
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In Figure 21, also the specification bars from Table 1 are shown. Because the transients are 
the same for every ramp input (only the sign may be different), it doesn't matter that I,e,(t) is 
chosen to be a continuons ramp function starting at t=O instead of a trapezium as in Figure 2. 

Because lwu(t) in Figure 19 follows l,eit) delayed over ft~, also the intervals of tin Table 1 
must be shifted forward in time over ft~=50[Jls]. The corresponding specification bars are 
shown in Figure 21. Fora delay time T=O, all the specifications are met, except for the third 
interval of t. 

In the next figure, the maximum value of ec(t) is shown per time interval for as a function of 
T: 
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Figure 22: Maximum absolute ec(t) per specification interval and spec. borders: munbers 
illdicated in brackets correspond to interval munbers in Table 1 

Figure 22(b )(3) shows that the specifications are never met within the third time interval. For 
the other time intervals, there is an obvious relation between the increasing delay time Tand 
the maximum value e,(t) in the interval. In Figure 22(a), ec(t) will violate the specs of the first 
time interval for all values of T larger than about 4[Jls]. Using (19), this means that the phase 
margin should be at least 52°. Because the specs are violated for the smallest T within the 
first interval for T=4[Jls] (after the third interval), this is the critica! delay time. As remarked 
earlier in this chapter, if the rise-time decreases, i.e. B increases, the oversboot will grow 
proportionally toB. 

4.5 Conclusions 

From the considerations in this chapter, it can be concluded that the open-loop delay factor 
should not be larger than about 4[Jls] for the current controlloop setup if good enough 
tracking of Icoit) is required. This is not very much, since the PWM with an update frequency 
1/T.,.PwM of 25kHz already introduces a larger amount of ZOH delay, see e.g. Figure 27. In the 
chapter 6, PWM schemes with higher T.,,PwM will be derived, resulting in a reduced ZOH 
delay time of the PWM. 

In chapter 7, a completely different approach is studied to reduce the transients in fcou(t) due 
to the tracking of l,elt). Feedforward will be applied there to adapt lreitJ for the filters it is 
fed to. 

23 



5. Analysis of Steady-state Errors and Delays 

In this chapter, Ho( s) of the GACL is extended with some extra elements to derive some 
general expressions for the final values e(oo) and Ec(oo) of e(t) and Ec(t), respectively. In 
paragraph 5.2 Ho( s) is extended with a general delay factor T, and an arbitrary number (N) of 
second-order !ow-pass filters may be present. In paragraph 5.3, a zero-order hold circuit 
(ZOH) is also added to the generalized controlloop model. 

If an extra !ow-pass filter is needed in the loopbasedon Figure 7, an anti-aliasing filter for 
example, the formulas that are derived in this chapter can be used to calculate e( oo) and Ec( oo). 
Also the steady-state effects of a ZOH and some delays that are inherent to a discrete 
controller, can be studied with the formulas derived in this chapter. 

It must be stressed, that the theory that will be discussed in this chapter, is only valid for the 
process and controller combination basedon Figure 7, as given in Figure 23 or Figure 26. If 
another controller is used, or if a feedforward is used, the analysis must be redone for the new 
situation. 

5.1 Second-order Low-pass Filter 

The steady-state propagation delay t,l,fïlrer of a second-order filter for a ramp function Bt can 
be calculated by studying the steady-state error of the output signa! of the filter when a ramp 
is applied to the filter input. Fora general second-order filter of the form 

a 
H(s) = 7 b 

s- + s+ a 

(24) 

we can derive for the steady-state error when a ramp-shaped input is applied: 

B Bb 
e(oo)=lims-(1-H(s))=-=Bt -

s-c>O S 2 a d ,filter 

(25) 

So, the expression for the steady-state propagation delay time fora ramp input yields: 

b 
t --d,jilter -

a 

(26) 
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5.2 Control Loop with N Second-order Low-pass Filters and a Delay 

In the figure below, the analog GACL containing N second-order low-pass filters and a 

variabie delay factor e-sT is shown: 

output ramp 

Figure 23: Analog GACL with N secOTtd-order !ow-pass filter sections and a variabie delay 
factor 

Ho(s) having N second-order low-pass filters and a variabie delay factor is given as: 

e-xT N a. 
H (s)=-IJ ' 

" · t s . s2 +b s+ a d r=l r 1 

(27) 

The constant td equals L,J3.7, where 3.7 is the controller proportional gain factor KP. The 
steady-state delay td is the same as calculated in (14). This can be proven with the following 
derivation. The closect-loop function of (27) is found by evaluating (12): 

(28) 

For an lr,;(t)=Bt, we can find the final value of e(t) by working out the left part of (29). The 
exponentials in (28) are replaced by their Taylor approximations, after that, (29) is written as 
just one fraction, and only the relevantpower-of-sterrus in the numerator are taken into 
account: 

B 
e( oo) = lime(t) = lims-2 ( 1- Hel (s)) = Btd , 

1-'t= .v-.0 s 

(29) 

This steady-state error is proportional to t~50[J..Ls] and B, proving that td is still the steady­
state closed-loop delay timefora ramp. 

Also an expression can be found for the final value of Ec(t). The final value theorem applied 
to Ec(t) means that the Laplace transfarm of the output, lre;(s)Hcls), must be subtracted from 
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the input delayed over td (the exponential term in (30)), and the result has to be integrated 
(multiplication by 1/s): 

(30) 

Substituting (28) into (30) gives the following result after writing the exponential powers as 
Taylor series and only taking into account the relevant power of s terms: 

(31) 

This expression can be simplified to: 

(32) 

We can see that EJ oo) has a minimum, which can be found by equating the part in brackets to 
zero. The minimum value can be found then by inserting a delay equal to 

t, IN b T _ _!__ _, 

opt- 2 . a. 
!=I I 

(33) 

into HJs). Of course, this is only possible if 

(34) 

and enough phase margin is present. 

Another condusion is, that the influence of the second-order low-pass sections on the value 
of EJ oo), is completely determined by their steady-state delay times fora ramp. What can 
also be concluded from (32), is, that replacing the second-order low-pass filters by a factor 

e-sT having the same delay time as the filters that it replaces, doesn't change the final value 
EJ oo). This will be shown in the following simulation. 

26 



5.2.1 Simulation: Substitution of LP 1 and LP2 by an equivalent Delay 

In the analog GACL, replacing the two second-order low-pass filter sections by a delay factor 
Teq having the same steady-state delay timefora ramp as the filters, doesn't influence EJ oo), 
according to (32): 

(35) 

The delay introduced by these filters can be calculated using (26), and is found to be 
ll.8[jls}. The simulation model used for the plot of Ec(t) in Figure 25 is given in Figure 24: 

act u 

Figure 24: Simulation model used to study the effect of a general delay element 

A trapezium as in Figure 2 is used for Irelt). In Figure 25, also EJt) is shown (the sameasin 
Figure 8(c)) for the case that the low-pass filters are replaced by their equivalent delay. 
Camparing (a) and (b) in Figure 25 shows that replacing the low-pass filters by an equivalent 
delay factor, results in almost the same Ec(t), approximating the sarne El oo)=-396[jlAs] 
during the rising ramp of Irelt) . The only difference is a small transient signal due to the low­
pass filters. 

As _4 
x 10 (a) 
5.-----~------~~~~------~-----. 

-5~----~------~----~------~-----J 
0 _4 2 3 4 5 time [ms] 

As 
x 10 (b) 
5.-----~------~~~--~----~------. 

Ot-----......., 

-5~----~----~------~----~----~ 
0 2 3 4 5 time [ms] 

Figure 25: Delay-corrected error integral (a): LP 1 and LP2 present in control loop, (b): LP 1 
and LP2 replaced by their equivalent delay of 11.8[J1S] 
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5.3 Control Loop with N Second-order Low-pass Filters, a Delay, and a ZOH 

At the output of the digital controller, a ZOH circuit has to be used to make the discrete time 
signal continuous. The PWM using samples to calculate the PWM switching times ti (see 
paragraph 6.1) can be approximated by a ZOH circuit. lf the sampling frequency r,_PWM is 
high enough in comparison with the system bandwidth, the digital C(z) can be replaced by the 
analog C( s), adding a ZOH at the controller output with the transfer function: 

ZOH(s) = l-e-sT, s~w e -jw;, sine(!!!_] 
T,s m,,. 

(36) 

The next figure shows the generalized controlloop extended with the ZOH: 

output ramp 

Figure 26: The generalized controlloop extended with a ZOH at the output of C( s) 

The delay between the input and the output of a ZOH for the case that a ramp input is applied 
to the ZOH, is sim ly half the ZOH sampling period T_,, as shown in the figure below: 

//~~// 
"" : 

:/~~~->;~/. .. Z.OH( Bt) 

~//< 
0 T./2 T.,. 

___ ",_ 

~ 
~ 

~ 

~ 

~ 

~ 
~ 

~ 

t 

Figure 27: The delay fora ramp function introduced by the ZOH 

Applying the final value theorem as in (29) and (30), tells us that the steady-state closed-loop 
propagation delay fora ramp input is still td (also shown in Figure 26), and that the final 
value of Ec(t) yields: 

(37) 

28 



5. 3. 1 Calculation of Ec( =) for Digitalized GA CL 

In Figure 17, Ec(t) reaches a value of 650[~As] during the rising ramp of lr.,j(t) between 1 [ms] 
and 2[ms]. In Figure 16, B(s), ZOH(s), LPJ(s) and LP2(s) are the delaying transfer functions. 
The steady-state delay time of B(s) found by (26) equals 14.6[~s], for the ZOH we have 
T,=40[~s], and for LPJ(s) and LP2(s) we still have 11.8[~s]. Filling in these values in (37), 
we findEi oo)=642[~As], rather close to the value found in the simulation. 

5.4 Conclusions 

In this chapter, the expression in (37) for Ec(oo) is derived for the general structure in Figure 
26. Th is formula shows that EJ oo) can only be zero if the combination of td, Ts. T, and the 
sum of the delays of the !ow-pass sections is chosen such that (37) yields zero. This is a very 
stringent requirement. 

A better metbod to make EJ =) equal to zero is the use of feedforward, to be dealt with in 
chapter 7. 
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6. PWM using One, Two, or Foor Samples per Cycle 

In this chapter, algorithms will be derived for calculating the PWM switching times from the 
samples of u+. The calculation of the switching times can be done using one sample at the 
beginning of each PWM cycle, but it seems also to be possible to calculate the switching 
times using two or four samples per cycle. Using a higher sampling rate will result in better 
transients behavior, because of the reduced ZOH delay times. 

If the sampling frequency is increased, also the bandwidth of the Bessel filter B( s) (Wj in (18)) 
can be increased, resulting in a simpler filter and in a smaller filter delay time, which results 
in an extra increase of phase margin, adding to the increased phase margin resulting from the 
smaller ZOH time for the PWM resulting from the higher update frequency. 

6.1 One Sample per Cycle 

In this paragraph, we will consider a PWM that samples ~t at times kTz, where k=0,1,2, ... , 
and Tz is the period time of one PWM cycle. , so T,·,PwM= T2 • Th en, the switching moments for 
the power transistors can be calculated for the krh cycle, and scheduled forward in time. 

First, we will calculate the ideal switching moments for the positive and the negative power 
half-bridges. These switching moments are called ideal, because they can realize continuous 
PW's. 

We can find for the switching moments (see Figure 28): 

(38) 

In these formulas, A is the amplitude of the triangular PWM wave, u+ =-u· is the input signal 
for the PWM module, and the factor FAT is defined as: 

F = ~ 
AT 4A 

For the total PW of the full-bridge, we find: 

Tu+ 
PW=t+. -r. +t- -t+ =-2 -

off off on nn A 

The figure below explains these formulas: 

(39) 

(40) 
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Figure 28: PWM with sampling and continuous PW's (a): switching times following from 
triangular wave farm and control signa! u+ (b ): positive half-bridge pulse farm 
( c ): negative half-bridge pulse farm ( d): Juli-bridge putse farm 

6.1.1 Simulation: The Analog GACL with T,,PwM=Tz 

Ha ving found now the moments that the pulses for the positive and the negative power 
transistor half-bridges must be low, we can program a PSI model for the PWM. At each 
sample time kT4, the switching moments are calculated, and these are accurately scheduled 
forward in time relatively to the sampling moment using a special PSI function to schedule a 
discrete event forward in time. 

In Simulink, the PWM could be implemented as shown in Figure 29. The calculation and 
scheduling forward-in-time of the switching times is now replaced by detecting the 
intersections of the output of the PWM-input ZOH with the triangular wave. Of course, the 
ZOH periods and the periods of the triangular wave must be equal and in phase. However, 
programming this model in Sirnulink is nota good idea, because Sirnulink can't detect the 
intersection points of the ZOH output with the triangular wave accurately (see [6]). For this 
reason, the simulations with the detailed PWM model will be done in PSI. 
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Ne~ative Half Brid~e Gain2 
u- Gomparator 

Figure 29_- lmplementation of the PWM in Simulink 

In Figure 30, the model used for the simulations with the controlloop containing the PWM 
with sampling is given. The model is in fact the loop of Figure 7, but the PWM is 
implemented now in detail, as given in Figure 3. For simulating the PWM with sampling, the 
input of the PWM must be preceded by a ZOH, as shown in Figure 30: 

Figure 30: Simulation setup for experiments for PWM with sampling 

In Figure 31 (next page), the simulation results for PWM with sampling and continuous PW' s 
are plotted. It shows that EJt) becomes positive during the rising ramp of the trapezium, is 
close to zero during the high level of 600A, and becomes negative during the falling ramp. 
When no PWM was used, as is the case in Figure 25, Ec(t) showed an opposite behavior. 
Theoretically, using (37), we would expect a final value of 204[flAs] for the rising ramp with 
the slope of the first trapezium ramp, using the PWM period, i.e_ T,=40[fls] for the ZOH time, 
and the delay time of 11.8[fls] for the low-pass filter sections. For the simulation of Figure 
31, the final value of Ec(t) is not reached, because the ramp is changedalready after 1[ms], 
when Ec(t) has reached the value of 250[flAs]. 
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Figure 31: PWM with sampling, the PW is calculated at the sampling moments (a): fcou(t); 

(b): eJt); (c): Ec(t), with high level of about 250[J.1As}, and a maximumpeekat 
405[J.1As} 

6.2 Two Samples per Cycle 

In paragraph 6.1, the PWM algorithm was derived where a sample of u+ was taken at the 
beginning of the PWM cycle. Both the on- and off-times for both the half-bridges were 
calculated from this sample. 

Generally, the PWM forms two distinct voltage pulses for each half of its cycle, as can be 
seen in e.g. Figure 28_ lf there is enough time to perform the digital calculations, it is possible 
to calculate the PWM switching times for each half period pulse from different samples for 
each half period of the PWM. During each PWM cycle, two samples are taken: one at the 
beginning of the cycle, and one at half the cycle time. In this case, T,,PwM= T !2. 

The principle of calculating the PW for each half PWM period is shown in the figure below: 
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Figure 32: PWM with Tv,PwM=T /2 (a): switching times following from triangular wave farm 
and control signa! u+ (b): positive half-bridge pulseform (c): negative half-bridge 
pulse farm ( d): juli-bridge pulse farm 

For continuous PW' s, the intersections of the control signal u+ with the triangular wave 
determine the switching times. 

The switching timescanthen be calculated as follows: 

(41) 

34 



t + = F (A -u+ ( ~ )J 
on AT 2 

t;, ~FAT( A +u'(; )J 

The factor FAT is defined as in (39). 

The PW for the first half-cycle yields: 

T u+ (0) 
p~) = t~H - t~H - --"-l --

011 "JJ 2A 

For the second half-cycle, it yields: 

So, the general expression for the PW for one half-cycle is given by: 

T u+ 
PW=-z-

2A 

where u+ is the control signa! at the sample time. 

6.2.1 Simulation: The Analog GACL with T.,,PwM=T/2 

(4la) 

(4lb) 

(4lc) 

(42) 

(43) 

(44) 

The PWM algorithm with T.,,PwM=T /2 has been implemented in PSI. In the following plot, the 
results are shown when continuous PW' s are used for both half-bridges. The same simulation 
using T.,·,PwM=Tz is also plotted for comparising the results. 
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Figure 33: Continumts PW's; (a),(b),(c): Tr.PwM=Tz; (d),(e),(j): Tr.PwM=T /2 (a) and (d): 
lcoilt); (b) and (e): eJt); (c) and (j): EJt) 

In Figure 33(f), EJt) reaches a lewest value of -98.8[~-tAs] during the rising ramp of the 
trapezium. According to (37) this value should be -96[~-tAs] in steady-state, so this is in good 
accordance with the simulation. Compared to the result for single sampling resulting in a 
highest value of EJt)=405[!lAs], this is considerably better. Also the harmonies in ec(t) have 
diminished, because of the reduced open-loop delay time, and the resulting better phase 
margm. 

6.3 Four Samples per Cycle 

Observing the Pull-bridge PWM scheme more scrutinizingly, it should also be possible to use 
a different sample of ~t for each switching time, if the samples are taken at each T/4, thus 
T,,PwM=T /4. Using T,,PwM=T/4 reduces the open-loop delay introduced by the PWM, but 
faster digital equipment may be necessary. The next figure illustrates the idea of using 
Tr.PwM= T /4: 
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Figure 34: PWM using jour input samples per cycle (a): analog switching times following 
from the triangular wavefarm and u+ (b): positive half-bridge putse shape (c): 
negative half-bridge putse shape ( d): juli-bridge putse shape 

Depending on the sign of u+(t), we have to make a decision of what switching time must be 
calculated using Table 3. Special attention must be paid to the implementation in PSI of the 
algorithm in the case that u+ is zero. The switching times can then best be calculated using 
the first and the third samples, those at t=O and t=!J.T/2, because a signal cannot be scheduled 
zero seconds forward in time. 
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Table 3: Depending on the sign ofthe sample u+ taken on sample timet.,, one switching time 
is calculated 

(,=0 t,,=iJ.T/4 t,,=iJ.T/2 sign( u+ )=0 t.-=3iJ.T/4 
sign(u+)=O 

sign(u+) = l t,~fj = FAT(A u+) + 
foff = FATU 

+ 
t,:, = FAAA- u+) (n FATU+ 

sign(u+)=- 1 t,7tt = FAr(A +u+) t,~f =-F u+ t,:, = FAT(A +u+) 
+ -FATU+ AT ton 

The factor FAT is defined again as FAT 

Although no complete PW is created in one quarter of the PWM cycle, we wish to find a 
sensitivity relation between u+ and the PW similarly to (40) and (44). Using the results in 
Table 3, a change iJ.ti in switching time ti results in a change iJ.tt in u+ as: 

(45) 

38 



7. Improved Performance by Feedforward 

Ideally, a feedforward voltage is added directly to Lc in series with R. In practice, however 
the feedforward voltage must be added before the PWM, because this is the amplifier that 
supplies the coil voltage, using two low-pass filters LPl and LP2 to filter out the undesired 
harmonies caused by the PWM. One metbod to apply the feedforward voltage is feeding an 
l,ej(t) that has been matebed for Hels) to the reference pathof the control loop, and the other 
method is feeding an appropriate signa) to the input of the PWM. The next figure illustrates 
the two possibilities: 

Figure 35: Two principally different ways ofapplying afeedforward 

The most obvious place to apply the feedforward is right at the input of the PWM, because 
doing so, C(s) isn't chargedanymore with the tracking of l,it), but it can be designed for 
other purposes. Independently, the feedforward path can be used for getting a good tracking 
of l,eif). 

The other way of applying the feedforward, to the input of the control loop, will not be 
discussed in this chapter, because it is of less practical importance. It will result in a more 
oscillating e(t), resulting in a larger error range, so that more bits must be chosen for the 
ADC. 

The calculation of the feedforward that must be added to the input of the PWM can be done 
in two ways. One method is to multiply the complex Fourier coefficients of I reit) with the 
inverse of the transfer function of the filter consisting of the low-pass sections LPl and LP2 
of the PWM and the process. The advantage of taking the Fourier coefficients is that a very 
sharp cut-off frequency of the feedforward filter is obtained, because we can simply omit the 
higher harmonies of l,ej(t) for calculating the feedforward. 

The other metbod is to design a feedforward filter that matches I reit) for the transfer 
functions LPJ(s), LP2(s), and G(s). This way of calculating the feedforward is more flexible 
than the metbod using the Fourier components, because for calculating the Fourier 
components, the form of l,~,(t) must be known exactly. 

7.1 Feedforward using the Fourier Series Expansion of IreJt) 

7.1.1 Fourier Series Expansion of l,ej(t) 

The (periodical) trapezium shaped IreltJ can be written as a Fourier series: 
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Figure 36: Trapezium shaped I,eft) 

Calculation of the Fourier series I,ej(t) yields: 

(46) 

where 

(47) 

and w0=200*2*n, because of the 5[ms] period of the trapezia. 

7.1.2 Feedforward to the Fourier Components 

First it will be shown how the feedforward can be calculated for the combination of LP l(s), 
LP2(s), and ZOH(s) that is inherent for the sampled PWM. 

In Figure 37, the Simulink model setup is shown that is used to apply the feedforward to the 
input of the PWM. In this model, the PWM is modeled by a ZOH with a ZOH time equal to 
Ts=T.,,rwM· Again, we want to calculate the feedforward by an operation on the coefficients 
and the phases ofthe Fourier series of l,ejt). 

Figure 37: F eedforward fed to the input of the PWM 
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The transfer function that must be inverted, is given by the chain ZOH(s)-LP l(s)-LP2(s)-G(s). 
This transfer function yields: 

H(s) = 1- e-sT, ( a )(-ry-c -) 5400 
T,s s2 + bs +a s- + ds + c s + 324 

(48) 

In ( 48), T., equals T,,,PWM· 

This means, that the Fourier series of l,e;(t) must be changed using: 

__ _ T,s (s2 +bs+a) (s2 +ds+c) s+ 324 
H(s) - 1- e-T,s a c 5400 

(49) 

We have to multiply the Fourier coefficients given in (47) with the magnitude of (49) for the 
corresponding frequency, and the phase of the corresponding eosine term in ( 46) must be 
shifted with the phase angle of (49) for that frequency. 

In Figure 38(a), the feedforward is shown, constructed by perforrning the feedforward 
operation on the first 125 complex Fourier coefficients of the trapezium shaped l,e;(t), that 
must be fed to the input of the ZOH in Figure 37. The ZOH delay time used bere is 
T.,=2Ü[Jls ], corresponding to T,,PwM= Tz. 
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Figure 38: The desired feedforward voltage that must be fed to the input of the ZOH 
replacing the PWM 

Figure 38(b) shows that the maximum absolute value of E(t) now is about 8[JlAs], which is 
even smaller than prescribed by (4). 

Note that because of the way that the feedforward was calculated, no delay will be present 
between Irelt) and the lcoit). Therefore, the e(t) can be integrated immediately to E(t). 

Another condusion drawn by studying Figure 37, is that if an i deal feedforward is added at 
the input of the PWM, it doesn't matter what filters are present in the error path before the 
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place where the feedforward is added, as long as e(t) error is zero. This doesn't mean that we 
don't need a controller, of course, because the controller is still needed to deal with 
disturbances and model uncertainties. 

7.2 Feedforward Filter 

In this chapter, the feedforward is not calculated using the Fourier coefficients of the 
trapezium shaped l,ej(t), but a feedforward filter will be designed. Because l,eJ(t) is always a 
combination of ramp functions, the first step in calculating the feedforward is described in 
(50): 

U ref (t) 

(50) 

For a ramp shaped I relt) this voltage is easy to find. 

In the next figure, the place of the feedforward filter FFW is shown: 

Figure 39: GACL configuration when afeedforwardfilter is used 

Notice that Irelt) is fed to the GACL delayed over td,Jfw· This delay (td.ffiv) is needed to 
compensate for the delay in the feedforward path, as will be explained later on. 

For analyzing the GACL configuration with feedforward, the following model structure is 
used: 

Figure 40: Simplified model ofthe GACL configuration withfeedfonvard 
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In Figure 40, two transfer functions mustbetaken into account to study e(t) for this 
configuration, because e(t) is the result of two independent contributions. One part which will 
be called e,ej(t) results from the transfer of l,ej(t) to e(t) via the reference path (unconnected 
feedforward), and the other part, called effw(t), results from the transfer of l,eltJ to e(t) via the 
feedforward path (unconnected reference path). Hence, in the Laplace domain, the total 
current error can be written as: 

e( s) = e ref ( s) + e ffiv ( s) 

(51) 

For calculating both contributions toe( s), the series combination of 0 1( s) and Gls) will be 
called Gls)=GJ(s)Gls). The first transfer function is from lrelt) via the reference path to e(s), 
resulting in the contribution e,is): 

_,, 1 
e . (s) = I (s)e · "J1'"' ---

ref re( l + Gt (s) 

(52) 

The other transfer function is from l,it) via the feedforward path toe( s), and it contributes 
to: 

( ) I . ( ) s +Re I Lc FFW( ) (s) 
etJ\v s = reJ s I! Lc s I+G,(s) 

(53) 

s+R.IL. 
In (53), the factor 'L ' represents the actions given by (50). 

11, 

The delay tdJfiv that is placed in the reference path equals the steady-state delay fora ramp 
function of the feedforward path, shown in the figure below: 

delav 
td,ffw 

Figure 41: F eedforward path and equivalent steady-state delay time td,ffiv fora ramp input 

This delay time can be calculated analytically using (25) if the filters mentioned above 
connected in series form a combination of second-order filters. 

7.2.1 F eedforward following directly from the VII Re lation of G 

First, let's take for the transfer ofFFW FFW(s)=l. In that case, the ideal coil voltage is fed 
directly to the input of the PWM I ow-pass filters. The steady-state delay fora ramp-shaped 
l,ej(t) td,ffiv is determined by the filters LPl and LP2 only (if no PWM-ZOH is present), which 
yields 
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b d 
-+­
a c 

which is found using (25). 

(54) 

Applying now the final value theorem to (51), will show that both e(t) and its integral go to 
zero for t~oo; 

e(oo) lime(t) = limse(s) = 0 
t~CII/) s~O 

and 

r 

E( oo) = lim E(t) = lim Je( r)dr = lim sE(s) = lime(s) = 0 
f-?oo H~ S-70 .HO 

0 

This results show that td.ffiv given in (54) really is the delay time that must be placed in the 
reference path ofthe GACL if FFW(s)=l is used. 

(55) 

(56) 

In Figure 40, the simulation results confirm the theoretica! results for the case that FFW(s)=l 
and no PWM-ZOH is present: 

A 
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0 1--------" 

0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 time [ms] 
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] : E : ± :b) E : · E : j 
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 time [ms] 

A x 1Ö4 

2.--.---.--.--.--~~c~_,--,,--~--.-~ 

01------' 

-2~-~-~--~-~-~--~-~-~--~-~ 
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5 time [ms] 

Figure 42: Signals when FFW(s)=l is used (a): lcoit) (b): e(t) (c): E(t) 

Although fora ramp-shaped lrej(t), E(t) goes to zero for increasing t, Figure 42 shows that 
there is still a rather large transient signal present. The absolute value of the overshoot peak is 
about 140[J1As], which is a factor 14 too large. A better feedforward filter is used in the next 
paragraph. 
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7.2.2 Linear Phase Feedforward Path 

One way to reduce this large transient peaks, is to make sure that the feedforward path has a 
linear phase transfer function. 

Because the filters LPI and LP2 are non-linear phase filters, FFW must contain the inverse 
transfer functions LP 1 ( s) and LP2( s ), and furthermore two new second-order low-pass 
sections are added to make the filter physically realizable: 

(57) 

Applying the final value theorem as in (55) and (56), show again that bath e( oo) and E( oo) are 
equal to zero, provided that for td,ffiv is taken: 

(58) 

Por the new second-order I ow-pass sections Bessel filters are chosen, because of their linear 
phase characteristics. Their individual -3dB bandwidths are set to 25kHz, which is the 
Nyquist frequency of the PWM with T,.PwM=T/2. Th is means, that the damping is -6dB at the 
Nyquist frequency. Doing so, the bandwidth ofthe feedforward path has changed from 
21 .6kHz, which is the bandwidth of the series of LP I and LP2, to about 17 .SkHz, the 
bandwidth of the series filter FFW, LPI and LP2. This doesn't matter, as will be shown by 
simulation results, because the fundamental frequency of the reference current is 200Hz, so 
also for l,ej(t), the bandwidth of 17.5kHz is high enough to let through the relevant voltage 
harmonies. 

The plot below shows the simulation results for the new developed filter FFW. Again, no 
ZOH is present in Hjs). Using the linear phase FFW(s), IE(t)l is has a maximum of 16[J.LAs] 
caused by a transient effect. 
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Figure 43: Linear Phase Feedfonmrd (a): l,"n(t) (b): e(t) (c): E(t) 

7.2.3 Feedforward and Extra Open-loop Delays 

One reason that feedforward is used, is that the transient signals due to bad tracking of lre/t) 
remain smalleven if there are extra delay factors in the GACL. The extra delays are 
represented by the delay factors T1 and T2 in the figure below: 

Figure 44: GACL with linear phasefeedforward and extra delays T1 and T2 in G1 and G2 

Applying the final value theoremasin (55) and (56), show again that both e( oo) and E( oo) are 
equal to zero, provided that for td,ffw is taken: 

(59) 

As discussed in the chapter 4, the transient behavior of the controlloop is influenced by an 
extra open-loop delay T=T1+ h Since the feedforward is not influenced by T2 (a delay has a 
linear phase transfer function), we can concentrate all the open-loop delay time in T2, thus 
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T1=0, so T=T2• The simulation results below show, that the transients are really reduced now 
even if there is some extra delay in the control loop. The input signa] chosen to do this 
simulation is a ramp function with a slope equal to the trapezium ramps: 600[Nms]. The 
resulting current transients have to meet the specifications for the setding behavior. The 
value of T2 hereis T2=30[!J,s]. Even for this rather big delay time, the specifications for e(t) 
are met, and E(t) satisfies (4) most of the time, as shown in Figure 45: 

A 
lOr-----~-------r~(a~)--~-------r----~ 

-

-
10~------~------~------~------~----~ 

0 0.2 0.4 0.6 0.8 l time [ms] 

As _5 
x 10 (b) 
1~------.-------,-~~---r------~------~ 

-1 

-2~------~------~------~------~----~ 
0 0.2 0.4 0.6 0.8 time [ms] 

Figure 45: GACL with linear phasefeedforward, T2=30[J.1S] (a): e(t) (b): E(t) 

Although the error and its integral are within their specifications in Figure 45, the value of 
T2=30[!J,s] may be toa large if there are disturbances. For good performance of the control 
loop, implying a sufficient amount of phase margin, the total delay time T should be 
minimized. 

Looking at the small values of e(t) in Figure 43 and Figure 45, another advantage of using 
feed-forward is the reduced range of e(t). This means that a DIA converter with less bitscan 
be placed in the error path. 

7.3 Conclusions 

In this chapter, two ways of calculating a feedforward have been discussed. The first method, 
using the Fourier series expansion of l,ej(t), is of less practical importance than the other 
method, by which a feedforward filter was designed. A feedforward filter is more flexible, 
because complete knowledge of l,ej(t) is not necessary to calculate the Fourier series 
expansion, requiring prior knowledge of the reference signal over a whole period. 

The best performance of feedforward can be achieved by making sure that the feedforward 
path has a linear phase characteristic. This results in very good tracking of lrelt) by the 
output, because the shape of l,e,(t) is not affected much by the transfer function of the 
feedforward path. 

Another advantage of using a feedforward filter that is a combination of second-order ]ow­
pass filters is that bath e( oo) and E( oo) are zero. Using FFW with a linear phase characteristic, 
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the maximum value of e(t) is about 2[A] fora rise time of l[ms], as shown in Figure 1. In the 
analog gradient chain without the feedforward, the maximum e(t) is at least 30[A] for the 
same risetime. The reduction of a factor 15 in the range of e(t) results in a gain of about 4 bits 
for the ADC in the error path. 

As a last advantage, the tracking of I relt) isn' t a task of the controller anymore, so that the 
controller can be redesigned for optimal suppression of disturbances and for changing model 
parameters. 

During the simulations, lrelt) is delayed in the reference path over td.ffw· This makes e(t) and 
E(t) to go to zero in steady-state. In practice, however, small variations in td,ffw will result in a 
non-zero steady-state value of e(t), and therefore in driftsof E(t). The practical realizability , 
of this kind of feedforward is dependent on the accuracy of tdffw• thus of how precisely the 
filter coefficients of LPI and LP2 are known, assuming that the coefficients of FFW are 
known exactly. Furthermore, feedforward requires exact knowledge of e.g. Re as a function of 
temperature, and of Lc as a function of Icail· 
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8. Digitalizing the Analog Pulse Widths 

8.1 Equivalent DA Converter 

Generally, the re lation between a certain quantization interval e, the range of the signal to be 
converted range(x(t)), and the number of converter bits b required is given by: 

b = Iog 2 
l

range(x(t))l 

€ 

(60) 

A consequence ofusing ADC's or DAC's, is the appearance of quantization errors eq due to 
the lossof resolution when x(t) is rounded toa b bits representation. The resulting 
quantization error eq will be in the range: 

E E 
- <e <-2 q 2 

(61) 

In the case that the PWM switching times t; are calculated on a computer using the samples of 
u+, t; must be rounded to td. i· which must be a multiple of the clock cycle !1T of the master 
clock with clock frequency fc1 steering the PWM. For making the calculations simpte, one 
PWM cycle Tz is di vided in N equal parts. The relation between !1T, !ct. Tz, and N then yields: 

óT 

(62) 

In this case, the PW's of both the positive and the negative half-bridges must be multiples of 
!1T. 

If any analog switching time t; is rounded to a corresponding td.;, a quantization error tq,i is 
made defined as: 

t . = t. t.,_,. 
qlt f u 

(63) 

The resulting loss of resolution of the switching times and thus of the PW' s, is equivalent to 
DA converting u+ and using continuous PW's. 

Using (60), the equivalent DAC that corresponds with the N equal partsper half PWM period 
can be found by dividing the PWM input range of 2A through the resolution of 11u +: 
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(64) 

8.2 Single Sampling per PWM Cycle 

In first instance, each individual ideal switching time t; following from the intersections of 
the control signal u+ and its negative version (as derived in Chapter 1) with the triangular 
wave, is rounded to the nearest multiple of iJ.T, called tJ,;, using the following rules: 

To t d ,; = ki1T (k again is an integer) if 

I 
k11T ~ t < (k +-)11T 

I 2 

(65a) 

and to td.; = (k + 1)11T if 

1 
(k +-)11T ~ t < (k + 1)11T. 2 I 

(65b) 
In Figure 46, it is shown how the rounding is done. After digitalization, the full-bridge PW 
becomes: 

(66) 

The difference between the ideal switching moment t\IJ and the largest multiple of iJ.T less 
than or equal to t; is called tv. 

As can be derived from Figure 46, the error eq.PW on PW can be expressed in terms of tv as 
follows: 

eq,PW = -4tv if 
11T 

O<t <-
- V 2 

and 

eq,PW = 4(!1T- tv) if 
11T 
- < t < 11T 2 - V 

From these formulas, it can be seen that there is an unambiguous relation between tv and 
eq.Pw, and eq.PW must be in the range: 

- 2!1T < eq.PW < 2!1T 

(67a) 

(67b) 

(68) 
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Figure 46: PWM with T,·,PwM=Tz and digitalized PW's, sameplots as in Figure 28. 

Digitalizing the PW' s has the same effect as digitalizing u+. As can be found by transforming 
the range of (68) by (40), the quantization error eq,u of u+, will be in the range: 

2A 2A 
--<e <-N q,u N 

(69) 

This shows that u+ can thought to be quantized to an integer number of the amplitude steps: 

+ 4A 
!1u =-

N 

(70) 
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8.3 Rounding Scheme for Minimized PW Error Range 

In this paragraph, a new rounding algorithm is derived for PWM T,,PwM=Tz. The basic 
principle behind it is, that the total PW of the full-bridge pulse shape as shown in Figure 46, 
should not differ more than t1T/2 from the total analog PW for the full-bridge. 

To find the optima] rounding scheme in the sense of a minimized eq,Pw per PWM cycle, let's 
first have a look at the quantization errors tq,i that result from truncating or taking the ceiling 
of the switching times. Truncating means that the analog switching time t; is rounded to the 
largest integer multiple of t1T equal or less than t;, and taking the ceiling means that the 
switching time is rounded to its ceiling multiple of t1T, i.e. the smallest multiple of t1T larger 
than t;. Table 4 shows the tq,;'s due tothese actions. In this table, the time difference tv, 
defined as the difference between t\JJ and the largest multiple of t1T equal or less than t\JJ, is 
used. The time difference could also be defined for the other t;' s, as indicated in Figure 46. 

Table 4: Quantization Errors tq,i caused by Truncation and Ceiling each t; 

t\rr t+on (off fon 
tq,i Truncation -tv t1T -tv t1T -tv -tv 

tq.i Ceiling t1T -tv -tv -tv t1T -tv 

The total PW error eq.Pw follows by adding the distinct t,js. Table 4 shows, that a general 
expression of eq.PW is given by 

eq,PW = p/1T- 4t,. 

where pE { 0,1 ,2,3,4}. 

(71) 

The strategy to come to an optima] switching time rounding scheme is now as follows. For 
each value of tv, the error given in (71) must be within the range (compare to (61)): 

1 1 
- - !1T ~ e < - !1T 2 tj,PW 2 

(72) 

This implies, that we have to choose the parameter p in (71) properly for distinct intervals of 
tv. This is easy, consictering that for each interval, there will be a contribution of -4tv for eq,PW· 
The next tab1e shows the values of p for the distinct intervals of tv. 
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Table 5: Choosing p for distinct intervals of tv 

Interval of t, p 

1 0 
O<t,~-ll.T 

8 
1 3 1 
-ll.T <t ~-ll.T 
8 V 8 

3 5 2 
-ll.T <t ~-ll.T 
8 V 8 

5 7 3 
ll.T <tv~-ll.T 

8 8 
7 4 
-ll.T <tv <ll.T 
8 

Now that we know what value of p must be chosen within the distinct intervals of t,, we have 
to take a look at which combinations of truncating and taking the ceiling of the t;' s yield the 
desired value of p. This can be done easily by studying Table 4. In the next table, the possible 
combinations are shown. 

Table 6: Rounding Combinations fora minimized range of eq.PW per PWM cycle for distinct 
values of p. The chosen combinations are shaded. 

t; TIC tq.i p p = l p = 2 p = 3 
= 
0 

l+off T -t .. x I x;, x x ffff~;;,j, x x x x ,,u 
IC !J.T -lv ;.X?~" x ... ,,,,., x x i''x···· x x 

t+ I I !J.T -tv 

:at 
x x x x x 

c -lv x x x x x 

xlt foft T !J.T -lv 
.. c·· 

x x =;=p= x 

c -tv x x 1····'··.·., .. · x 
((}/) T -tv x' x x x ··xJ x x ... ·.c··c. x 

c :c !J.T -tv I :;: ' x .. i ; x x x x X''' x 

Studying Table 5 and Table 6, we see that it should be possible now to have a zero eq.PW for 
the values tv= 0, tv= 114/J.T, tv= l/2/J.T, and tv =314/J.T. Filling in the new range of eq.PW which 
is !J.T now, according to (72), into (40), shows that the resolution of u+ has also improved by 
a factor 4: 

ll.u+ =~ 
N 

This means, using (64), a 2-bit gain in resolution of u+. 

8.4 Double Sampling per Cycle 

Now, the same analysis as in 8.3 will be performed for the digitalization of the t/s when 
double sampling per PWM cycle is used. The digitalization variabie tv must now be 
determined for each half PWM cycle. For the first half period, it is defined as: 

(73) 
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(74) 

where the INT( x) function means that the integer value of x is taken, and for the second half 
period it is defined as: 

t = 11T INT( t,~n +IJ- t+ 
v z /1T on 

z 

(75) 

t+ 

+ 
ton 

with k < - < k + 1 
11~ 

d 0 "f 011 k h k. . an tv= 1 !1T = , w ere 1s an mteger. 
z 

The errors tq,i caused by truncating and taking the ceiling for each t; as a function of tv are the 
same as in Table 4 for the case of double sampling per PWM cycle, because the definition of 
tv is still the same. 

First, let' s study what is the range of eq,PW per half PWM cycle if "norrnal" rounding of the 
individual t;'s is used. The following table showshow is rounded in only two distinct 
intervals of tv, and the resulting value of eq.Pw: 

Table 7: eq.PW per half PWM cycle when normal rmmding is used 

Interval tv t\rr t"otf et.PW 
1 T c -2tv 

0<tv<211T 

1 c T 2.J.T -2tv 
211T <.S;tv < 11T 

t+on (on 
1 c T -2tv 

0<tv<211T 

1 T c 2.J.T -2tv 
211T <.S;tv < 11T 

Table 7 shows, that for each half PWM period, eq,PW is lying within the following range: 

(76) 

The corresponding quantization step L1u+=4A/Nis the sameasin (70). 
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Now, the same analysis has to be done as in chapter 8.3, to find the optima} rounding scheme 
minimizing the range of eq.PW per half PWM cycle. 

Optimizing the rounding scheme, we have to look at eq,PW per half PWM cycle. This eq,PW per 
half PWM cycle is found by ad ding the individual tq/ s. Table 4 shows, that a general 
expression for it is given by: 

e PW = pliT 2tv q, 

(77) 

wherepE {0,1,2}. 

The strategy to come to an optima! rounding scheme to find the td/s is now as follows. For 
each value of tv, eq.PW as given in (77) must be within the range: 

1 1 
2 !iT ~ eq,PW < 2 !iT 

(78) 

This implies, that we have to choose the parameter p in (78) properly for distinct intervals of 
tv. This is easy, consiclering that for each interval, there will be a contribution of -2tv for eq.PW· 

The next table shows the values of p for the distinct intervals of tv: 

Table 8: Choosing p for distinct intervals of tv 

Interval of t,. p 

I 0 
O<t,.::; 

4 
!iT 

1 3 1 
- !iT <t,. :::; - !iT 
4 4 
3 2 

4 
!iT <tv < !iT 

Now that we know what value of p must be used within the distinct intervals of t,., we have to 
examine which combinations of truncating and taking the ceiling of the t;' s in each half 
period yield the desired value of p. This is be done by studying Table 4. In the next table, the 
possible combinations are shown. 
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Table 9: Optima! Rounding Combinationsfor distinct values ofp (distinct p's per half 
period); The chosen combinations are shaded 

Switching TIC tq.i p p = p 
Time = 1 = 

0 2 

tolt' T -tv x .· x 
c f1T -tv .cc.X X" 

(oft T f1T -tv x x 
c -tv x x 

ton T f1T -tv :X x 
c -tv x x 

(on T -tv x "x 
c f1T -tv x x 

We could ask ourselves if it is possible now to optimize the rounding scheme of the t;'s for 
both the half PWM cycles and the whole PWM cycle. Camparing Table 9 with Table 6, we 
see that the tables don't show equal combinations of Truncating and Ceiling for p=l and p=2. 
This means that miniruizing the range of eq.PW can only be doneperhalf PWM period OR per 
whole period. 

Studying (44), we see that eq.PW per half-cycle corresponds with an error of tt of: 

2AMW 

(79) 

From (79) we find that if the rounding mechanism is optimized for each half PWM cycle, the 
PW spacing L1T corresponds to a control signal u+ spacing of: 

+ 2A 
!!..u =­

N 

(80) 

Wh en normal rounding was used, the eq.PW interval in (7 6) resulted in a spacing of L1u + =4AIN, 
so we see that the better rounding scheme results in a one bit gain for the PWM DAC, which 
can also be calculated using (64). 

8.5 Four Samples per Cycle 

In the case that each t; is calculated withits own sample of u+, digitalizing the switching 
times to td.i results in independent quantization errors tq.i· The individual values of tq.i are 
minimized when normal rounding is used to calculated the td,;'s from the t;'s, using (65a) and 
(-b), resulting a range of L1Tfor tq.i· Filling in L1t;=f1Tin (45) yields a quantization spacing of 
u+ of: 

(81) 
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This is the same result as in paragraph 8.2, where the resolution of u+ is given by (70). 

8.6 Pulse Width Resolution and Minimum Quantization Error Interval 

Using the same number of N, the resolution of u+ is one bitlessin the case of double 
sampling of u+ per PWM cycle than in the case that the PW was calculated optimally for the 
whole PWM cycle using one sample of u+. For the case that four samples of u+ are used to 
calculate the td,;' s, it is even two bits less than in the case of sampling once and the optimal 
rounding scheme was used. The table below summarizes the resolutions for one, two, and 
four samples per PWM cycle, and for normal rounding and optimal rounding (minimized 
eq.Pw) that were derived in this chapter: 

Table 10: Quantization Intervals L1u+ for different numbers of samples per PWM cycle and 
for normal or optima! rounding schemes 

T,·.PwM=Tz Tv.PwM=T/2 T,,PwM=T/4 
L1u + for normal 4A 4A 4A 

rounding 
- - -
N N N 

L1u + for op ti mal A 2A 4A 
rounding - - -

N N N 

This could be expected, because the range of eq.Pw. which remains L1T, is spread now over 
only half the PWM cycle, ins te ad of over the whole PWM cycle. Generally, if we optimize 
the rounding scheme for a constant control voltage for N PWM cycles, the overall range of 
eq.PW will still be L1T, but divided by Tz, the range of eq.PW will go to zero for N~oo, or, 
equivalently, L1u + will become infinitely high for constant u+. For an u+ that is not constant in 
time, ho wever, the rounding scheme that was optimal over N PWM cycles for a constant level 
of u+, is not op ti mal anymore. 

An idea could be to optimize the rounding scheme over the number of (quarter) PWM cycles 
corresponding to the bandwidth of the control loop. This means, that we have to look first 
over how many (halt) periods of the PWM the controller output signal remains approximately 
constant. However, if a noise shaper is used, to be discussed in chapter I 0, the rounding 
scheme over several half periods will be affected by the noise shaper quantization error 
feedback. 
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9. Effects of the Digitalized Pulse Widths on the Current Error 

Inthefarmer chapter, attention was paid to the quantization errors of the PW's, which are 
caused by the final time resolution of the switching times. These quantization errors were 
studied by taking the PWM apart. In this chapter, the PWM with digitalized PW's is placed 
in the control loop, at the place ofthe ZOH and the DAC after C(z) in Figure 16. 

In Figure 17(d), a drift of Ec(t) is shown occurring in the digital GACL. As will be explained 
in this chapter, the drift is an effect due to the DAC after the digital controller. 

In this chapter, e(t) and E(t) due to the error in the full-bridge PW's eq.PW will be studied in a 
deterministic way for the case that an initial current error e(O)=e0 is present. The error 
behavior studied in this chapter will seem to be typical for the case that a DAC is in the 
controller loop. 

The simulation model used in this chapter is the sameasin Figure 30, so B(s) and the ADC 
are not in the loop. The camparators of the PWM in Figure 29 now contain the rounding 
mechanism to obtain the digitalized PW' s, so that the PWM in Figure 30 acts as a DAC. 

In the figure below, l,ej(t) consistsof only one current trapezium, with the time running till 
20[ms]. PWM with digitalized PW's (normal rounding, one sample of t/ per PWM cycle) 
was used for this simulation. Notice that Ec(t) drifts away after 4[ms], and that it stahilizes at 
t""O,Ol6[s] at a final value of about -87l[flAs]. The reason for this drift will be explained in 
this chapter. 

~LZ\ : : :·) : : : : l 
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 time [s] 

_::P113 : : :(b) : : : : I 
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 time [s] 

A•:~---;~-~--~---~--~--J 
-1 

0 0.002 0.004 0.006 0.008 O.ül 0.012 0.014 0.016 0.018 0.02 time [s] 

Figure 47: PWM with sampling and digitalized PW's, N=300; (a): lcoil(t) (b): ec(t) (c): Ec(t) 

9.1 Errors around Reaebabie Values of the Reference Current 

This driftsof ec(t) and Ec(t) in Figure 47 seem to be consequences of the digitalized PW's. If 
u+ is within the band defined in (82) of half the quantization interval around OV, the 
corresponding analog PWM pulses are rounded to a OV PWM output pulse. 

58 



(82) 

Th is band of u+ can be defined for every symmetrie rounding scheme, for which u+ is 
rounded to an integer multiple u/ of Llu + according to the rul es in (65a) and ( -b ), in which 
L1T, ti, and td,i are replaced by Llu+, u+, and u/, respectively. 

In the loop in Figure 30, u+ equals the output of C(s), and therefore control overGis lost if u+ 
is within the band of (82). In order to examine the resulting drift effects, we put Irelt)=O. 
Then, e(t) is given by: 

e(t):;::; -]coil(t) 

(83) 

If there is no control over the plant for t>O, so the output of the PWM full-bridge remains OV, 
the current lmil(t) can be calculated for the following R-L network, not taking into account the 
filters LPl and LP2: 

ov I 1,01/ 

Figure 48: Gradient coil network when PWM output is OV; LP I and LP2 arenottaken into 
account 

Solving fco.lt) yields the following exponentially decaying current form: 

where /0 is the initia! current at t=O. 

In the time domain, the differential equation of the controller is given by: 

Filling in (84) in (85), yields the following expression for u+ ( t) (remember that 

Plaur (t) =u+ (t) ): 

(84) 

(85) 

(86) 
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Fora zero output signal of the PWM, the absolute value of (86) must be within the band 
defined in (87): 

Because the time constant ï:"of C(s) is chosen T=LJRn (87) is reduced to: 

I
J I< 11u+ 

0 2K p 

We can also easily integrate e(t) to find E(t): 

E(t) = J e(t)dt = ____Q___f_ e L, 

I I L ( - R,.l 

0 Re 

A value of special interest is: 

E(oo) 

Using the limit of 10 given in (88), we find: 

(87) 

(88) 

(89) 

(90) 

(91) 

Now, we can generalize the preceding analysis for the case that lrelt) is constant at a value 
corresponding to a realizable value of the PWM input kLlu +: 

I . ( ) = k . /j.u + g PWM 
rej t = kMref 

Re 

(92) 

In (92), 8PwM is the voltage gain ofthe PWM (gpw.w=35), and kis an integer: k=0,±1,±2, .... In 
order to rnaintaio lcoil(t)=lreit) in (92) stationarily, the output of C(s) has to be k·Llu+ 
stationarily. This means that the end value of the integrator in C(s) has to reach this value, as 
e(oo)=O. 

Now, if we want to keep the PW at the width betonging to k·Llt/at the input of the PWM for 
a eertaio value of l,ou(t) given in (92) increased by an initial deviation Mw;w, we find that 
Mcouomust satisfy (88), replacing Io=Mcoi/0· In this case, the expression for Icou(t) yields: 
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Jcoi/ (t) 

(93) 

The expression for the final value of E(t) is the sameasin (90), replacing /0 hy Liicoito· 

9.1.1 MaximumDriftsin E(t) and Master Clock Frequency 

In the tahle helow, (91) is evaluated for the values Liu + for different numbers of samples per 
PWM cycle and for normal and optima) rounding as in Table 10: 

Table 1/: Maximum values for IE( =)I for different numbers of PWM samples per cycle using 
different rounding schemes 

T.~.PwM=Tz T.~.PwM=T /2 T.,·.PwM= T /4 
maximum IE( oo)l, 2ALc ~ALe 2ALc 
normal rounding KpRcN K"RcN KpRcN 

maximum IE( oo)l, ALe A.l."c 2ALc 
optima! rounding 2KpRcN KfJRCN KpRcN 

From the results of the table above, we can calculate how large N must to satisfy ( 4). 
Multiplying N by IITz=25kHz, the PWM frequency, we can find the required clock 
frequencies fc as defined in (62): 

Table 12: Minimalvalues offc (MHz) for obtaining IE( oo)l<lO{JlA.s] for different numbers of 
samples per PWM cycle (PWM frequency 25kHz) and different rounding schemes 

T,,PwM=Tz T,,,PwM= T /2 T,,,PwM= T /4 
Nonnat Rounding,,f, 1458.35 1458.35 1458.35 
Optimal Rounding, f 364.575 729.175 1458.35 

Studying the tahle above, we see that 364.6MHz is the minimalfc for which the criterium for 
E( =) can he met. However, the next time that a current trapezium is generated, the drift might 
occur again, resulting in an accumulating E(t), vialating the criterium. Another disadvantage 
is thatfc=364.6MHz can only be used when sampling once per PWM cycle is used, and 
sampling once per cycle will result in less phase margin for the controlloop than for 
sampling twice or four times per PWM cycle. Therefore, another salution must be found to 
take away the drift in E(t). A salution to do this will be given in chapter 10. 

9.1.2 Simulations showing the Drift in E(t) 

Now, the analytica! results derived in the first part of this paragraph will he illustrated by a 
PSI simulation with the model shown in Figure 30. In (85) KP equals 3.7/35 insteadof 3.7, 
hecause the detailed PWM has a voltage gain gpwM=35. PWM with sampling once per cycle 
is used, with the non-optima! normal rounding scheme of paragraph 8.2, so that Liu + is given 
by (70). 

For this simulation, we introduce the parameter l, that replaces the factor 2 resulting from 
suhstituting Liu + in (88): 
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(94) 

For the simulation, the value for Nis chosen to be 300, so one PWM cycle is divided in 300 
equal parts. In this case, the upper border of the band defined in (82) is approximated if 10 in 
(94) equals 1.999): 

1.999A 

KI'N 

The simulation results are plotted in Figure 49. The plot (a) and (b) give the results when no 
digitalized PW' s are used. They show that the controller actively controls the process to get 
rid of the initial current error e(0)=-10• In plot (c) and (d), digitalized PW's are used. In plot 
(c), also the negative version of the exponential signa! of (84) is plotted, which equals the 
simulated e(t), as expected. Notice that in plot (d) E(t) reaches the value 1940[j.tAs], in 
accordance with (91). 

A 

~!~-----------------~-a)--------------~ 
-10~--------~--------~------~~------~ 

0.005 0.01 0.015 0.02 time [s] 

l 
0 0.005 0.01 0.015 0.02 time [s] 

A 

o~r;;;: l 
0 0.005 0.01 0.015 0.02 time [s] 

As x tó' d 

~~r--r:=::::::====~:' ) =....---.-,l 
0 0.005 0.01 0.015 0.02 time [s] 

Figure 49: k=O, N=300, l==-1.999; (a): e(t)for analog PW's; (b): E(t)for analog PW's; (c): 
e(t) for discrete PW's; ( d): E(t) for discrete PW's 

Now, in Figure 50, 10 is chosen with l=-2 in (94), and again with N=300. In this case, plot (a) 
shows that the controller output changes the PWM output signal because the upper border in 
(82) is passed, and e(t) is regulated to zero quickly. 
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A (a) 

0~------------------------------------~ 

-1~--~--~--~--~--~----~--~--~--~--_J 
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 time [s] 

A'~k?:: : : :b) : : : : l 
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 time [s] 

Figure 50: k=O, N=300, l=-2 (a): e(t), discrete PW's (b): E(t), discrete PW's 

9.2 Errors around Unreachable V al u es of the Reference Current 

If we want to reach a constant l,e,(t) corresponding toa non-integer multiple of L1u+ at the 
input of the PWM, say p, with k<p<k+ I, where kis an integer, the output wil! not reach l,e,(t) 
stationarily, but it will stay fluctuating around the desired lrelt)=p&,ef• where &,~1 is defined 
as in (92). 

For the discussion below, let's assume that lcou(O)=l,elO), so that e(O)=O, so that the initial 
controller output is equal to the initial value of its integrator, which will be set to a voltage 

corresponding to l,~j(t), thus u +(0)= P/
11111 

(0) = pt::.u + . Th is level of u+ corresponds to an 

unrealizable output pul se of the PWM, so that PW will be digitalized to the dosest realizable 
PWJ. 

:p• L!u• 

.111+ ••••.•.• ':'{ ............................................................................. . 

01-------------------------------- time 

Figure 51: initia{ input of PWM corresponding to unreachable value 
ojl,ej(t) 

Assume that in Figure 51, 1/2:::;p<l, so that that u+=pL1u+ is rounded toa too high level 
u/ =L1u+, resulting in an exponentially increasing lcou(t). If wedefine p+ =l-p (see Figure 51), 
we can write for the change in lcoit): 

M coil ( t) = p + M ref 1 e- Lc t 
[ 

R" ) 

(95) 

Now, e(t) yields the negative version of (95). For Ploult) we find the following expression: 
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(96) 

!l.u+ 
Equating this formula for PloultJ to -

2
- and solvingfort yields the crossing timet~. and 

after this determining the next sampling time of the PWM greater than this crossing time, will 
give the moment that the PW changes tothelevel of k=O (zero DC voltage). Solving this 
equation has to be done numerically, or can be estimated if the exponential power is 
approximated by a first- or second-order Taylor series. This will not be done explicitly, 
because as soon as we have to approximate the solutions numerically, it is better to run a 
Simulink simulation, what will be done in the next sub-paragraph. 

9.2.1 Simulation showing the Fluctuations 

For the simulation in Figure 52 the value of p=0.8 is taken, thus lrelt)=0.8M,ef· For the 
simulation, PWM with sampling once per PWM cycle and normal rounding is used. 

The initia! values of the integrators of the controller and the plant are taken as discussed 
above to prevent the occurrence of transients. So, Pl01a(O) is set to value corresponding to 
l,er(t), Ploul0)=0.8 L1tt. The outputs of the low-pass sections are given values corresponding 
to the PWM output PW, that follows from the value to which u+ can be thought to be rounded 
for p=0.8, which is to L1u+. 

At t=O, PloulO) is rounded to L1u+, resulting in a toa large PW. This will cause Icoit) to grow, 
and therefore, e(t) and PloultJ will start to decrease. In Figure 52, it can be seen that PloultJ 
dives under the level of L1Lt/2 at the crossing time t1• The PW will be changed toa OV PWM 
output at the next sample moment of the PWM, say t.,, 1, and as a consequence, e(t) starts to 
grow in the opposite direction, causing PloultJ to grow in the opposite direction toa. Then e(t) 
will continue to grow in the new direction until at a next sample moment PloultJ is above the 
L1tt 12 level again, so that u+ is rounded to L1u +, and toa large a PW is at the PWM output. 
This process will repeat itself, resulting in the asciilation of lcoit) around the desired constant 
value of l,e,(t), and thus e(t) fluctuating around zero. 

In plot (b), it seems that E(t) is decreasing globally after all, meaning that still a transient 
effect is present. 
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Figure 52: (a): e(t); (b): E(t); (c): u+ (equal to Plout(t)); N=300, p=0.8 
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10. Implementation of a Noise Shaper to take away the Drift 

At the end of paragraph 9.1, it was stated that even if the PW rounding scheme resulting in 
the smallest range of eq,PW is chosen, the driftsin E(t) might accumulate, violating the 
criterium in (4). In this chapter, a solution to the drift problem is proposed, basedon 
accuruulating u+ each sampling period with a delayed version of the quantization error. 

10.1 The Function of the Noise Shaper 

To prevent e(t) and E(t) from drifting away, a filterbasedon the structure in Figure 53 can be 
used, which is called Noise Shaper in digital audio techniques: 

B in(k) "L:D Quantizer Boul k) 
V DA 
+ 

I z-l I 

eq(k) + t_b.-
'-1/ 

Figure 53: First-order Noise Shaper 

In Figure 53, the quantization error eq(k) is added totheinput B;,lk) of the filter, delayed over 
the sample time T, (represented by the block { 1

). 

In the GACL with the digitalized PW's, the noise shaper is used to filter the quantization 
errors eqpw(k) resulting from digitalizing PW(k). The implementation of the noise shaper for 
the filtering of eq.rw(k) is given in Figure 54: 
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'\.. ..1 Calculation Calculation ~ 

Discrete Pulse Width Calculation 

Figure 54: lmplementation ofthefirst-order noise shaper to the PWM input 

In Figure 54, the factor z-1 represents the delay over one period of the PWM sampling time 
T,·,PWM over which eq.Pv.;(k) is fed back to the input of the discrete PW calculation block. 
Before adding eq.Pv.;(k-1) to Ploulk), it is multiplied by a factor Al(nT2), where nis the number 
of samples per PWM cycle. 

In the case that a constant value of the signal Ploulk) in Figure 54 is such that the 
corresponding PWM output is rounded to OV by the quantizer, eq,Pv,;(k) will increase Ploulk) 
until u+(k) becomes so large that the corresponding PWM output isn't OV anymore. In the 
closed-loop system of the gradient coil, control can beretaken then, and as aresult the drift 
signals e(t) and E(t) will grow in the opposite direction. 

10.2 Theory on Noise Shapers 

In [ 4 ], § 1 0.3, a general treatment of noise shapers can be found. In that treatment, eq(k) is 
considered as white noise. For the GACL, if Ploulk) is varying relatively fast over adjacent 
periods, eq,Pv.;(k) might be considered as white noise. 

In the discussion of chapter 9, however, eq.Pv.;(k) can not be considered as white noise, 
because the errors are completely deterministic there. On the other hand, if u+ (k) is changing 
over many quantization steps per T,=T,·.PwM. the theory on the noise behavior of the noise 
shaper is quite useful. 

The general noise shaper is represented as: 
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Birlk) CL:D Quantizer k) Boul 
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~~ 

eq(k) + 
{_ b.-
'-.I./ 

Figure 55: General form of a noise shaper 

For the general noise shaper, the following formula can he found: 

eq (z) J(z) + B;n (z)- Bout (z) = eq (z) 

The quantizer is only implicitly within this expression. We can write equation (97) as 

Bout (z) elf (z) (1 J(z)) 

B;n (z) B;11 (z) 

(97) 

(98) 

In expression (98), it is found that the signal transfer function is equal to l, while the second 
part of the equation 

e
11 

(z)(l J(z)) 

(99) 

determines the error at the moment the output word length is reduced. 

The term ( 1-J(z)) is usually called the noise transfer function and determines the colaring of 
the output noise. Because the signal gain equals 1, this error can be related totheinput signal 
as well. In case the word lengthof a system is reduced toN bits, then a value 

(100) 

is obtained. The value of eq(k) is thus equal to the LSB value of the N-bits output word. The 
noise shaping eperation reduces the error even more, as will be shown. From equation (98) it 
is seen that the speetral density of the error signal at the output of the system is determined by 
the filter eperation ( 1-J( z) ). 

For the case of the first-order noise shaper, we can write for equation (97) using 
J(z)=i1

: 

(101) 

The first-order filter operation reduces the power of eq(z) for low frequencies (Z""l). The total 
power of eq(k) is obtained by integrating eq(z) over the signal bandwidthfh· Supposing that 
eq(k) is white noise in the band (/=0 to f=f/2), the result becomes: 
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el 
2 I 2

1 

-1
1

2 e tot = e q 1 - z de 
0 

(102) 

In this equation, 81 = 
2

7ifh , withj; the output sampling frequency. 
!.. 

Inserting z = e ;e we obtain 

2 

Bout 

( 103) 

and 

(104) 

Without the noise-shaping the total uniformly distributed noise over the band 9=0 to 9=81 is 
equal to: 

el 

e
2 

= e
2 fde = e

28 unifilrm q q I 

0 

( 105) 

Figure 56 shows the difference withor without the noise shaper. If e,/=1, the noise power is 
equal to the surface under the quadratic amplitude curve of the filter. 

4 .------.-------r---~~ 

2 

Bout 

0 ..__:::...._ __ ......_ ___ ~---~ 

o 8=81 rr e 
Figure 56: The quadratic amplitude transfer function of the noise shaper and the constant 

power of eq(z) 

In camparing the results of equations (104) and (105), the impravement with respect to noise 
and dynamic range of the system is obtained. Using F 1 as the dynamic range impravement 
factor we get: 
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eunifárm 

(106) 

Using a second-order Taylor approximation for sin8t. it can be calculated that the "Break 
Even Point" of (106) is at 8=81::::0.61rc. Therefore, the noise reduction only exists when high 
enough oversampling is applied. This means, that for bigger values of 8t. the total power of 
eq(k) is even larger than for the uniform case! 

In the table below, the impravement factors F1 are given for different numbers of samples per 
PWM cycle. The system bandwidthfh=lOkHz is used for 81• 

Table 13: F1 for different PWM sample frequencies 

T_,=T/4 

1.24 0.70 0.36 

Table 13 shows that the largest reduction of the power of the quantization error is reached if 
four samples per PWM cycle are used. 

Higher order noise shapers show even worse impravement factors for high bandwidths. 
Therefore, we will take a first-order noise shaper only. 

10.2.1 Simulation: Normal Row1ding Scheme, Single Sample per PWM Cycle, N=30 and 
N=300 

In this sub-paragraph, two simulations are performed using of the noise shaper in the GA CL. 
Single sampling per PWM cycle is used. The PWM cycle will be divided in 30 equal parts 
for the first simulation, and in 300 equal parts for the second simulation. The switching times 
are digitalized using the normal rounding scheme, as was done for the simulations in sub­
paragraph 9.1.2. lre,(t) consistsof only three current trapezia, and after these, it remains zero. 

In Figure 57, the results are shown for the number N=30 when the noise shaper is used. Now, 
the maximum value of Ec(t) is -573[J..LAs], and the end value is fluctuating around zero with a 
maximum amplitude of about 60[J.l.As]. If no noise shaper was used, the value of Ec(t) could 
drifttoa maximum of 4860[J..LAs], according to Table 11. This means a reduction with a 
factor 81 of the drift in Ec( t ). 

Camparing the behavior of ec(t) for the case that the noise shaper is used to the case that it 
wasn't, it can beseen that its amplitudes have increased, resulting in an increased 
quantization noise power. This could have been predicted by the fact that F1=1.24 for T.,=Tz 
as in Table 13. 
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Figure 57: N=30, noise shaper is used. (a): lwit); (b): ec(t); (c): Ec(t) 
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For comparising the behavior with the results from chapter 8.3, the simulations are also 
carried out for the case that the PWM cycle is divided into 300 equal parts. Using the noise 
shaper, the error integral will fluctuate with an average amplitude of 60[~As], which also 
means a reduction of a factor 81 compared to the largest value of 4860[~As] that can occur 
due to drift when no noise shaper is used. 

A~~V\fJ\ :·l : : : l 
0 0.005 0.01 O.Q15 0.02 0.025 0.03 0.035 0.04 time [s] 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 time [s] 

A':~: :(o) : ·:' : I 
-5~~~--~~--~~--~----~----~--~--~ 

0 0.005 O.Ql O.Ql5 0.02 0.025 0.03 0.035 0.04 time [s] 

Figure 58: N=300, noise shaper is used. (a): lcou(t) (b): ec(t) (c): EJt) 

10.3 Different Sampling Rates and Rounding Schemes 

In this paragraph, simulations are carried out to study the oscillations in e(t) and E(t) 
resulting from the noise shaper. In order to keep it simple, the PWM using discrete PW' s is 
replaced by a ZOH in series with a quantizer. The quantization interval of the quantizer 
corresponds to Llu +as given in Table 10. If the oscillation in E(t) caused by the noise shaper 
must be limited to satisfy (4), N, the number of clock cycles of the master clock per PWM 
cycle, must be chosen large enough. 

The first table gives the simulation results for the minimum values for N required to meet the 
criterium in the case that one sample per PWM cycle is used. For comparison with the case 
that no noise shaper would be used, the maximum values of the drift in E(t) according Table 
11 are also given. The better performance obtained by using the noise shaper is expressed by 
the improvement factor F2, defined by division by lO[~As] (the amplitude of E(t) if the noise 
shaper is used) of the values following from Table 11. 

Table 14: Minimal Nand improvement factors F2 for the case ofT.,=Tz 

MinimalN E( =) [J.LAs J F2 
Normal Rounding 750 778 78 
Optimal Rounding 200 729 73 

Table 14 shows that for Ts=Tz, using the optimal rounding scheme, N can be reduced from 
750 to 200, while F2 remains the same, approximately. 

In the next table, the results are shown for sampling twice per PWM cycle. 
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Table 15: Minimal Nand Fzfor the case ofT.,=T 12 

MinimalN E( oo) [l.lAs] F2 
Normal Rounding 350 1667 167 
Optimal Rounding 200 1458 146 

As shown in Table 15, also in the case of double sampling, N can be lowered considerably if 
the optimal rounding scheme is used, while F2 doesn't change relatively much. 

For the last table, sampling four times per PWM cycle is used. The normal rounding scheme 
is also the optimal rounding scheme for this case, as was discussed in paragraph 8.5. 

Table 16: Minimal Nand Fzfor the case ofT.,.=T/4 

Minimal N E(oo) [l.lAs] Fz 
Normal Rounding 150 3889 389 

According to the three tables above, using the noise shaper always results in an improvement 
factor F2 much larger than unity. Minimal N in combination with the highest F2 can be 
reached in the case of T.,=T/4. N= 150 corresponds to a master clock frequency for the digital 
circuit driving the PWM of only 3.75MHz if Tz=40[)ls]. 

10.4 Conclusions 

Positive feedback of the quantization errors seems to be an effective method to prevent the 
gradient current error from drifting. For every PWM sampling frequency T., and every 
rounding scheme, a great reduction of the drifts in E(t) can be achieved. According to the 
simulations, the greatest improvement in the behavior of E(t) was obtained for the highest 
PWM sampling frequency with T,=T/4. Another advantage of choosing the highest sampling 
frequency is the lower variance of e(t) caused by quantization effects. This results in lower 
amplitudes of e{t). 
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11. Conclusions and Recommendations 

11.1 Conclusions 

Studying the analog gradient amplifier controlloop leams that this structure is not suited to 
meet the criterium of a maximum integrated current error of lO[J.LAs]. Extra delay times 
inherent to a sampled system result in less phase margin, and therefore in more oscillatory 
behavior. General expressions for the final value showed that E( oo) is heavily dependent on 
delays and second-order filters in the open-loop of the present analog control loop. 

A great reduction of the current error and its integral can be obtained by designing an 
appropriate feedforward filter. If the transfer of the feedforward path is a combination of 
second-order low-pass filters, the final values of the current error and its integral are zero. 
The best overall performance is obtained by making the feedforward path linear phase. The 
linear phase characteristic reduces the current transients considerably, so that the lO[J.LAs] 
criterium can be met all of the time in the simulations. The reduced range e(t) results in a gain 
of about four bits for the AD converter in the error path. 
In practice, however, the performance of feedforward using filters is dependent on the 
accuracy of the estimate of the delay time of the feedforward path over which the reference 
signal must be delayed in the reference path. This problem, however, also exists for the 
original analog control structure, where the delay corrected error was calculated. 

Digitalizing the pul se widths is inherent to calculating the PWM switching times digitally. 
Dependent on the number of samples used per PWM cycle (one, two, or four samples), the 
switching times can be rounded such, that the range of the pulse width error is minimized for 
the specific sampling rate. A high resolution can be realized at a relatively low sampling rate 
(one sample per PWM cycle), but even then, accuruulating drifts may occur in the integrated 
current error, vialating the criterium. A noise shaper can take away this drift, but the drift is 
replaced by an oscillation. The amplitude of this oscillation, however, can meet the criterium 
if the resolution of the digitalized pulses is high enough. If each switching time is calculated 
using a different sample (sampling four times per PWM cycle), the criterium is met using a 
master clock frequency of 3.75Mhz (PWM cycle divided in 150 equal parts), corresponding 
to a relatively low pulse width resolution. 

11.2 Recommendations 

Applying feedforward releases the controller of tracking the reference current. lt could be 
redesigned to suppress disturbances and model uncertainties. Modem control methods as 
LQG or H~ could be used to control the integrated current error directly. 

Using higher sampling rates for updating the PWM switching times, e.g. four samples per 
cycle, results in a Nyquist frequency higher than those of the lowest PWM voltage pulse 
harmonies. As a consequence, the current ripple resulting from the lowest PWM voltage 
harmonies is in the control bandwidth now, so that higher cutoff frequencies could be chosen 
for LPl and LP2, and the controller has to be redesigned to reduce the ripple. Por the same 
reason, it must be studied if it is still necessary to conneet four PWM modules in parallel to 
apply the multiple-phase principle. 
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Attention must also be paid to digital filtering techniques. Possibly in combination with a 
modern controller, the oscillations caused by the noise shaper could be suppressed, or the 
oscillations could be shifted to higher frequencies. 

In principle, a feedforward could also be applied in the analog GACL. This would require 
extra analog filters in the feedforward path. Using a computer, this filtering can be performed 
digitally, resulting in a cheaper realization of these filters. In combination with a newly 
designed controller and some extra "tricks" like e.g. using a noise shaper, the systern 
performance can be improved, and costs might be reduced, giving a good foundation to 
digitalize the GACL. 
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