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Abstract

Within the framework of the Masters project at the Eindhoven University of Technology,
Faculty of Electrical Engineering, in association with Philips Medical Systems, a feasibility
study on the digitalization of the gradient amplifier control loop in an MRI scanner has been
carried out. A description of the analog control loop and its components is given, and a
design criterium is presented. The analog control loop is extended to a digitalized control
loop. Because of the delay time introduced by the fact that the controller is a sampled system,
the transients behavior deteriorates. Some general expressions for the final values of the
current error and its integral are derived. These expressions show that the current error
integral is non-zero in most of the cases, affecting the criterium. For the sampled pulse width
modulator, algorithms for three sampling rates are given. Higher sampling rates result in less
delay in the control loop. Feedforward seems to be a solution to many problems. It is shown
that the criterium is automatically met in steady-state for proper choice of the feedforward
filter, and also during the presence of transients it can be met if the feedforward filter results
in a linear phase characteristic of the feedforward path. Furthermore, the range of the current
error is reduced considerably, resulting in a gain of four bits for the ADC in the error path. In
the last chapters of the thesis, a study is carried out on the digitalization of the pulse widths
of the pulse width modulator. It seems that by choosing an appropriate rounding scheme for
the switching times, the accuracy can be improved. High accuracy, however, can only be
achieved for low sampling rates, because the quantization error on the pulse width is
distributed over a longer time in that case. Digitalizing the pulse widths causes the same
effects to occur as when a DA converter is placed in the control loop. Drifts and oscillations
of the current error and its integral are the result. A remedy against this is the use of a noise
shaper, based on a positive quantization error feedback. The best performance is achieved for
the highest sampling rate of the PWM, four times per cycle.
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1. Introduction

MRI systems belong to the advanced technical equipment in modern hospitals. These systems
are used to make three-dimensional scans of the inside of humans. MRI (Magnetic Resonance
Imaging) is based on magnetic nuclear resonance (NMR), a physical phenomenon based on
the interaction of certain nuclei with a magnetic field. In the human body, hydrogen (H),
sodium (Na), and phosphorus (P) nuclei are sensitive to NMR. These nuclei are mainly found
in weak tissues, therefore, an important application of MRI is the localization of tumors.

The principle of NMR is, that some types nuclei align with a static magnetic field B, (which
must be in the order of 1[T]). Aligned with By, they are susceptible to a resonance frequency
Wy, the Larmor frequency. The Larmor frequency is proportional to the magnetic field
strength. This resonance frequency is typically in the RF range. To bring the nuclei into
resonance, they must be triggered by an external RF pulse. This means, that an amount of RF
energy is transferred to the nuclei. During the relaxation process following the pulse, the
excitated nuclei loose their energy reradiating RF signals. This relaxation signal is called the
free induction decay. Its rate of decay depends on the kind of molecules in a tissue to which
the phosphorus, sodium, and hydrogen nuclei are bounded, and its strength depends on the
concentrations of these nuclei.

Three independent weak magnetic field gradients (T/m) superposed to By are applied
orthogonally, in the x-, y-, and z-directions. The z-gradient is used to select a certain tissue
slice orthogonally to the z-axis. The technique of MRI scanning is based on the fact that the
reradiated RF signal from a selected slice is related to the 2D-Fourier transform of the image
of the slice. The free induction decay can be manipulated by applying time-constant and time-
varying magnetic field gradients in the x- and y- direction. Sampling in time of the
manipulated free induction decay corresponds to sampling the 2D-Fourier transform of the
image of the selected slice.

The weak gradients in the magnetic field are built up by generating suited currents in the
three orthogonal gradient coils. The complete system for generating the currents in these coils
is called the gradient chain. Each coil has its own gradient amplifier power module, by which
a voltage can be applied to the gradient coil. Each gradient amplifier consists of four
parallelly connected Pulse Width Modulated voltage amplifiers. Connecting them in parallel
results in less voltage harmonics over the gradient coil resulting from the switching behavior
of the PWM’s.

For good image quality, it is important that the places in the spatial frequency domain
corresponding to the sampled RF signal are accurately reached by generating the prescribed
current shapes in the gradient coils to generate the correct magnetic field gradients. For
accurate positioning in the spatial frequency domain, the integrated current error in each
gradient coil should not exceed 10[pAs]. However, generating these currents accurately is a
problem because of the presence of disturbances and model parameter uncertainties. For this
reason, the present gradient coils and their gradient amplifiers are embedded in analog
gradient coil control loops.

Although the analog control loop gives reasonable performance, it could be advantageous to
digitalize certain parts of the analog controller structure. Doing so, complex analog electronic
circuits may be replaced by cheap and “simple” digital components, without deteriorating the
system’s performance. This could result in less components, a higher reliability, and lower
service costs.



Other advantages of using computers, are the possibility to use modern control strategies, like
advanced controller design, and the application of “Intelligent Control”, making use of prior
knowledge of the current shapes. Even more general, the digital components could make it
advantageous to redesign the complete control structure for optimal performance and
minimized costs.

By digitalizing the gradient amplifier control loop, however, also many problems may occur.
The use of AD and DA converters will generate quantization errors, which will have their
influence on e.g. the 10[(LAs] criterium of the integrated current error. Another problem
might be the loss of phase margin because of the fact that the system must be sampled.

In this master thesis, the analog gradient amplifier control loop is analyzed to have a
reference for the performance of the digitalized control loop. With respect to this reference,
the advantages and disadvantages of replacing the analog gradient amplifier control loop by a
digital configuration will become clear.



2. Process, Actuator, and Simplified Analog Control Loop

In this chapter, the process of the current through the gradient coil is defined first, and the
kind of actuator, the PWM, is introduced to the reader. After this, the simplified model of
analog gradient amplifier control loop (GACL) is given.

21 The Process to be Controlled

In fact, the process to be controlled is just generating a desired current in a coil that has a
series resistance. The current must be generated by applying the correct voltage form
following from the desired coil current form.

R, L.

Uc'nif <> I coil

Figure 1: The process: Generating a desired current through a coil with a voltage source

For the model in Figure 1, the voltage-current relation is simply:

Ucm'{ (I) = Rclcm‘l ({) + Lc

dl,, (1)
dt

(1)

The numerical values of the coil and its series resistance are L.=185[iH], and R =0.06{€].

In the s-domain, (1) can be written as the transfer function G(s):

Icm'l (S) 1 / Lt'
G(S) = = -
Ucm’! (S) s+ Rc / Lc

This process has a time constant of =L /R =1/324[s]=3[ms].

In Figure 2, the desired output current /,.(¢) is given. This reference current form will be used
throughout the document, because it represents the nominal current form of the gradient coil.
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Figure 2: (a): Desired Coil Current I,,(t) (b): Corresponding voltage U,,;(t)

The trapezium shown in Figure 2(a) can be thought to be built up by a series of ramp
functions with different slopes, that are switched on at the bending points of the trapezium:

I,,d. (t) = B(p(t — 1ms) — p(t — 2ms) — p(t — 3ms) + p(t — 4ms))

(2)
!
In (2), tis in [ms], and p(t)= J- u(7)dT , with u(t) the unit step function.
0
According to the specifications, the error integral
t
E(t) = [e(rdr
0
(3)
should not exceed 10[nAs], what is essential for the MRI-image quality:
|E(1)| < 10u4s V20
(4)

In Table 1, the specifications for e(t) given at the specifications sheets [1] under the heading
“Risetime” are given. The maximum range to which e(t) must be limited at the trapezium top
of I,:(t) are given for several time intervals at the flat top. The error is expressed as a fraction
of the desired high level of I,.,(t).

Table 1: Specifications for e(t) at the flat top of the trapezium. A ,,,=600A

Time Interval ¢ [us] Error Interval e
1 0 (r <100 1% XApx (e £ 1% X Apa
2 100 ( ¢+ < 150 -0.5% xAmx (e ( 0.5% X Amax
3 150 ( ¢+ < 500 0.1% xApmx ( € < 0.1% X Apux
4 500 <€t -170mA ( e < 170mA




Unfortunately, just generating /,,(t)=1I,.(t) by applying the voltage following from (1) is not
possible, because of voltage disturbances, components changes due to heating, etc. Therefore,
the process must be embedded in a feedback loop with a controller, as will be discussed in
paragraph 2.3.

2.2 The Pulse Width Modulator

The gradient amplifier, which is the voltage source used for generating /,,;(?), is a Pulse
Width Modulator (PWM) voltage amplifier. The voltages needed to generate the coil
currents, are in the range of -V'=-350V to V=350V DC. In our case the output voltage of the
controller is in the range of -10 to 10V, so the voltage amplification is a factor 35.

The reason that the PWM is used, is that this is a compact and relatively cheap power
amplifier. A disadvantage of the PWM is that it also generates higher order voltage
harmonics because its output consists of voltage pulses. The type of PWM that is used as
gradient amplifier is a full-bridge PWM, that is described in some detail in [2]. The next
figure explains the principle:

RN >
» Pos. Bridge
l__\:"l o= Pulses
PWM input P ‘
u AN\ 1 u+ Comparator High Voltage
i | Level ; " owt ]
riangular Ditf  Full Bridge
Wave »3 Pulses
negative
input

=

i &

u- Comparator H'Q{‘ Voltage  neg Bridge
evel_ gulses

Figure 3: Functional blocks of the Full-bridge PWM

In Figure 4, the relevant signals are shown to explain how the PWM output pulse sequence is
obtained in the model of Figure 3. The PWM input signal u" is compared directly to the
triangular wave in the positive half-bridge of the PWM. If the input is lower than the
triangular wave, the output of the positive half-bridge will be OV, and if it is higher, it will be
V*. The negative half-bridge does the same for the negative version of . In the first period
of the triangular wave in Figure 4, the vertical dashed lines illustrate the switching principle.
The full-bridge pulse sequence is obtained by subtracting the negative half-bridge pulse
sequence from the sequence of the positive half-bridge.
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Figure 4: Full-bridge PWM signals (a): triangular wave, sinusoidal u® (full) and its negative
version (dashed); (b): Positive Half-bridge pulse sequence, (c): Negative Half-
bridge pulse sequence (d): Full-bridge pulse sequence

As is illustrated in Figure 4, the full-bridge pulse widths are proportional to the level of u*.
The higher the input level, the wider the PW’s, taking into account the sign of the input.

The output voltage of the PWM can not be applied to the gradient coil directly, since the
voltage harmonics will generate undesired current harmonics. Therefore, the PWM output is
low-pass filtered first, by two second-order low-pass sections LP1 and LP2:

1A, 212
'Wk e > o~
s2+2*zeta*'wnis+wn1A2 $2+2*zeta"wn2s+wn2n2 Filtered PWM
P%‘ﬂ;’é‘e’“t Full Bridge LP1(s) LP2(s) output
PWM

Figure 5: The PWM output voltage must be filtered because of the higher harmonics of the
pulses

The second-order low-pass filters can be expressed in the s-domain as follows:

(02

n

s+ 2w, s+w]

(5)



The filter parameters have the following values:

1

o, = = 27712000
T JLG
1
w,, = = 27124000
27 LG,
=03

We can write for the poles of these filters:

P, = ~fw, £ jan1“§2

The imaginary part is a consequence of the small damping factor £<0.707, and causes
resonance at the frequency at (see {S], p. 217-219):

o, =w,1-20°

The resonance frequencies of LP1 and LP2 are w, ;=10.9kHz, and @,»=21.7kHz,
respectively. The bandwidth of a second-order low-pass filter is given by:

0, =o,[1-2¢° +\/2—4(;2(1—§2)]”2

Formula (7) shows that the -3dB bandwidths of the filters are @,,=17.4kHz, and
w;>=34.9kHz. This means that the asymptotic attenuation is OdB up to 17.4kHz,
-40dB/decade between w,; and @,,, and -80dB/decade beyond 34.9kHz.

The following figure gives the Bode plots of the two filters in series. At the resonance
frequency of 12.5kHz, the amplification is about 6dB.

(6)

(7)
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Figure 6: Bode plots of the low-pass filter combination of LP1 and LP2

2.3 The Simplified Analog Control Loop

The performance of the analog GACL will be used as a reference for the performance of the
digitalized control loop. The analog control loop as discussed in this chapter, has been
studied by a former graduate at MBS (see [2]). Its main characteristics are mentioned in this
chapter. The analog control loop is a simplified version of the GACL, existing gradient
amplifier control loop (see [1]). Figure 7 shows the elements of this simplified model:

ec(t)
1
’CM 3}
S
Transport Sum2 . Ec(t)
Delay td lmegralor
integratorl
324 1
Mﬂ 3 5+324 o __als} > c(s) > e | | P
iref Sumi S s2bs+a s2rds+c s+Re/Le Icoil
Gain3 C(s) LP1 LP2 G(s)

Figure 7: Model for closed-loop transfer function

The filters LP1 and LP2 are the second-order low-pass filters, that are necessary to filter out
the higher harmonics of the Pulse Width Modulator (PWM). For simplicity, the filter
coefficients are called a,b,c, and d here, instead of the expressions in { and @, as in the
previous paragraph, so a=(2112000)’, b=1.2112000, c=(2n24000)?, and d=1.2124000. The
controller C(s) is a simple PI controller, that compensates for the slowest time constant of the
process, L/R.=1/324[s], and reduces the steady-state current error.

The PWM itself is not modeled in detail in this simplified model, but its inherent voltage gain
PWM(s)=35 is joined to the controller gain (3.7/35) in the block Gain3 in Figure 7. This is
justified because in the present gradient chain, four PWM modules are connected in parallel,
resulting in a current ripple caused by the voltage harmonics with a first harmonic at 100kHz
(see [2] for the description of this so called Multi-Phase principle). Because the cut-off
frequency of LP1 in series with LP2 is much lower, this ripple can be neglected in the
simplified model.



2.3.1  Current Error and Propagation Delay Time

First of all, let’s define the current error as:
e(t) = Ircjf (t) - [wil (l)

(8)
In Figure 8, the output signal, which is the coil current /,,;(1), the current error e(t), the delay-

corrected coil current error e (1, and the integral of the delay corrected error E (1) are plotted.
The reason for the delay correction will become clear later on in this paragraph.

A (a)
600-- ] ) 1 ] 1 | 4 ) H T i
400+ .
200¢r .
O‘ i i 1 i 1 1 1 L 1

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5 time [ms]

.
5 time {ms]
5 time [ms]
As 5 16' ‘ ' . . .(d) ‘ ‘ ' '
0
-5 L 1 L I L 1 . L

0 05 1 15 2 25 3 35 4 45 5 time[ms]
Figure 8: (a): Loi(1) (b): e(1) (c): et) (d): E(1)

The delay-corrected current error e,(¢) is given by the delay-corrected input signal (delayed
version of /,,(1)) minus the output signal (the coil current 7.,;(1)). I,.(t) is shifted over the
propagation delay time of the control loop for a ramp function #,, which is the same in steady-
state for every ramp-shaped 1,.,(1). Its maximum value is 5.66[A]. As a consequence of the
constant delay time, the final value of the current error, given by (9), reaches a constant value
if a ramp is fed to the input of the control loop. This is shown in Figure 8 (b).

e(o0) = }itge(t)

(9)
The following figure illustrates the relation between the constant steady-state delay time #,
for a (saturated) ramp input and the resulting e( o).
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Figure 9: Explanation of the relation between the steady-state delay time t; and the steady-
state error for a ramp input Bt; 1; is the settling time

From Figure 9, it follows that:

e (1) = e(1) ~ e(>)
(10)

So, if 1,,,(t) consisting of a combination of ramp functions is shift over the propagation delay
time #,, we can put the current error to zero in steady-state, because of the subtraction of the
constant steady-state error.

If the constant component (e} is subtracted from e(t}, the result is the inverse of the current
transients. These transients are related to the poles of the closed-loop transfer function that
will be given in (12). Because we deal with a stable system, the transients die out in time.

The delay time of the control loop for a ramp-shaped 1,.,(t) can be calculated by applying the
final value theorem to e(t). First, the open-loop transfer function is given, which looks like:

H (5 K, (Sf+lj 1 1 1

5= " ’ ’ 5 ’

¢ TR, s s b - d L
s+l | s+t | st
a a c c R,

(11)

The expression for the closed-loop transfer function can be calculated from H,(s) as follows:

H ()

A =T,

(12)

The factor K, is the factor 3.7 before the controller in Figure 7. The time constant 7 is equal
to 7=L/R=1/324{s].

In (11) we can see that the (DC)-open-loop gain is given by:

(13)

10



Numerically, this yields K,=20,000. For a ramp-shaped /,.(t) with slope B, the final value
theorem applied to the error signal e(z) results in a steady-state error of:

= lime(t) = li =i -‘?—(1 H )—f— B
E(W)’,LT‘Q{)'.\.'.Egse(s)_ggssz -H,(s) e Ly

(14)

The propagation delay time for a ramp input is found to be #,=1/K,=50[pLAs]. The constant
steady-state error is a result of the presence of just one integrator in the open-loop transfer
function. For the analog gradient chain, the trapezium ramp B is 600[A/ms], and 1,=50[s],
therefore e( o) is 30A.

If an input ramp function is applied, integrating e(¢} will result in a steady-state ramp for E(1),
because of the non-zero steady-state value e(ec). A better idea is to integrate e (t), which will
result in a constant steady-state value for E(t). Therefore, criterium (4) will be applied to E(1)
instead of to E(t}.

In Figure 8, we can see that the negative level of E (1) is -390[tAs], and the high level is at
400[pAs], which is about a factor 40 too large according to (4).

2.3.2  Bode Plots and Pole-Zero Maps

In the following figures, it is illustrated how the PI controller C(s) in Figure 7 influences the
open-loop Bode plots. First, the Bode plots for H,(s) are plotted in Figure 10. The pole-zero
map of this transfer function is plotted in Figure 11.

Gain dB
200 T
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-540
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Frequency (rad/sec)

Figure 10: H,(s) without the controller

Figure 10 shows a rather low crossover frequency of 5424rad/s, and a considerable phase
distortion for low frequencies. This is because the slow time constant of the coil-resistance
plant (L/R =1/324[s]) is not compensated.

11
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Figure 11: Pole-Zero map of H,(s) without the controller

In the pole zero map in Figure 11, the pole near zero belongs to the time constant R./L, of the
plant. The other pole pairs are those of the low-pass filter sections LP1 and LP2.

In the following two figures, the same plots are given as in Figure 10 and in Figure 11, but
now for the case that also the PI controller is part of H,(s). Figure 12 shows the new open-
loop Bode plots.
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Figure 12: H,(s) with the PI controller; Gm=4.29dB (0=6.809¢4), Pm=74.2deg
(w=2.182¢4)

The phase margin is 74.2(at w=3.36kHz, which is an acceptable value.

In the next Root Locus diagram, we see the pole of the controller in s=0. The other pole and
the zero near s=0, are a result of the time constant 7=1/324[s] that is both in the numerator of
the controller and in the denominator of the plant. The figure shows that for values of K,
larger than about 6.2, the system will be unstable, because two branches of the root locus are
going into the right half plane of the complex plane.
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Figure 13: Root locus of H (s) with the PI controller

In the last but one figure of this section, the pole-zero pattern of the poles of H,(s) is given.
The poles determine the exponential decay rates and the oscillation frequencies of the
transients, governing e.(t) as plotted in Figure 8(b). The poles closest to the Imaginary Axis,
called the dominant poles, cause badly damped transients.
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Figure 14: Pole-Zero map of H (s) including the PI controller

In the last figure of this section, the Bode plots for H.(s} are given. The resonance peak at

10kHz is a result of the addition of the low-pass filters to H,(s). The system bandwidth (-3dB)

is about 10kHz.
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Figure 15: Bode plots of H,(s) of the analog GACL

24 Performance of the Analog Control Loop

6

10

In this chapter, the analog control loop has been analyzed. Even after correction for the
closed-loop propagation delay time, E(t) doesn’t meet the criterium, but it has a maximum of

400[pAs], a factor 40 too large.



3. The Digitalized Control Loop

In this chapter, the analog GACL of Figure 7 is digitalized straightforwardly, as shown in
Figure 16. A time discrete controller C(z) is designed based on the analog controller.
Internally, binary representations of numbers are used by the digital controller. Therefore,
analog signals must be sampled and digitalized first, using ADC’s. In the digitalized GACL,
the ADC is placed in the error path. Before the ADC, an anti-aliasing filter B(s) is necessary
to limit the signal band width. At the output of C(z), a DAC in combination with a ZOH is
needed to make the digital and time discrete output of the computer analog and time

continuous.
— %
Transport Ec{t)
Delay td
m I 1.61
Referance I E"E 2.44e- 102 +3 45¢-55+1 61 ec(t)
ZOH DA_ref 0]
L—» + 1.61 % 14162°T.)"3,72+3.7*(162°T-1
- 1(2*pi*wi)r2¢ +2.2172piswfs+1.61 5 z-1
Sum B(s) error path C(z)
L’ 5.7¢9 2.3¢10 5400
Ju S M 5 >
oA s+ Seds+5.7e9 s=+0e4s+2 . 3e 10 s+324
ZOH
EWM  PWM LPI(s) LP(s) G(s)

Figure 16: Model of the digitalized GACL

The model shown in Figure 16 is the same as the model used in the master report [2], except
for the quantization error correction unit that has been omitted, because this unit didn’t seem
to be useful [2].

31 Components of the Digitalized System

3.1.1 The Digitalized PI Controller

If a digital controller has to be found if an analog controller is already available, the analog
controller can be transformed to the discrete domain using a Tustin transformation:

2 z-1
§=——
T z+1
(15)
The transfer function of the transformed PI controller C(s) of Figure 7 becomes in the z-
domain:
(1+162T )z +162T -1
C(z)=37 ' :
z—1
(16)

The sampling period is taken equal to the PWM cycle duration, thus 7,=7,=40[us].
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3.1.2  The Analog to Digital Converter

The principal feature of this control scheme is that the ADC is not placed in the feedback
path as usual, but in the error path instead, because of the reduced range of e(t) (about 200A)
compared to the range of I,;(t) (about 1200A). The number of bits that can be saved is

1 @~26 bits for the ADC
0g2200~. 1ts for the .

3.1.3 Anti-Aliasing Filter

Before the AD conversion of the analog e(t), this signal is bandwidth limited by a second-
order Bessel filter B(s) in Figure 16.

Bessel filters are filters with a linear phase characteristic (¢=k®, k is a constant) in a large
frequency range, therefore not affecting signals too much. The general expression for a
Bessel filter is given by (see [3]):

2

w
H S — n
(s) s* +3w s+ o]
(17)
or, equivalently:
1.61
H(s) = 3
K 221
— | +—s+161
W, b
(18)

The maximum bandwidth for B(s) as in (18) depends on the sampling frequency f,.=1/T of
C(z) and ZOH. According to the Nyquist criterium, signals with frequencies higher than £,/2
must be damped enough by B(s), so the cutoff frequency should be at least w,=f .

The cutoff frequency of B(s) is chosen @, =15000-2% (-3dB bandwidth). This bandwidth is
not obeying the Nyquist sampling law, but a filter with a lower cut-off frequency will result
in more oscillatory behavior of the closed-loop system. Besides, the frequency contents of the
I,./(t) trapezium is concentrated between 200Hz and 10kHz, so no aliasing will take place,
because frequencies above the Nyquist frequency of 12.5kHz are not present.

3.1.4 Interpolation Filter

As a consequence of placing the ADC in the error path, I,(z) that is generated digitally, has
to be DA converted first to calculate the analog e(t). The DA conversion of [,,,(t) is
performed by a zero-order hold (ZOH) circuit, in combination with a DAC. The DA
converted signal is filtered with an interpolation filter I(s). For I(s), a second-order Bessel
filter is chosen with an appropriate cutoff frequency, depending on the sampling rate of the
DA converter in the reference path.

3.1.5 Digital to Analog Converter and ZOH at Controller Qutput

Also a DAC is placed in the open-loop chain, representing the DA behavior of the PWM for
the case that its pulse widths are digitalized (to be treated in chapter 8).
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3.2 Simulation with Digitalized GACL

In this paragraph, a simulation is carried out with the model shown in Figure 16. The sample
frequency is 25kHz, equal to the PWM basic frequency, and B(s) has a cutoff frequency of
15kHz.

In Figure 16, the number of bits for the ADC and the DAC is 14, as in [2].
The delay of the loop after /(s) remains £,=50[ps], as will be proven in chapter 4.

Figure 17 shows the signals e.(#) and E.(z) for the case that the trapezium-shaped I,,4(z) is fed
to the control loop. According to the simulation, the first high level of E(r), which
corresponds with the rising slope of the I,,(1), is at a level of about 650[tAs], which is a
factor 65 too large. Furthermore, the peak of e (z) is 13.99[A] now, instead of the 5.66[A] that
was found in paragraph 2.3.1 for the analog GACL. In plot (d), E(z) is shown for larger . It
shows that a drift in E (1) occurs.
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Figure 17: GACL with digital controller for model in Figure 16 with 14 bits ADC and DAC,
and T=T(a): Li(t) (b): e(t) (c): E{t) (d): E(1)

33 Conclusions

Studying the simulation results in Figure 17 of the digitalized GACL in Figure 16 show three
major differences with the results of the analog GACL in Figure 8. The transient signal e (2)
has deteriorated, the high level of E(t) has increased, and a drift appears in E.(t} after I,.(t)
has become zero. These effects seem to be typical for a loop with a digital controller, a ZOH,
an ADC, and a DAC. In the remainder of this thesis, they will be analyzed in detail, and
solutions to the problems are proposed.

17



4. Open-loop Delay and Transients

If the analog GACL is digitalized, some extra delays are introduced to H,(s). For instance, the
ADC needs a certain time to perform a conversion, the control algorithm will need some time
to be executed, there is a time needed to calculated the PWM switching times, the PWM
using sampling of the input implies a delay by itself, and the IGBT’s of the full-bridge need a
fixed time to turn on or off. In the first paragraph of this section, a time table is given
summarizing all the recognized delay times so far.

Adding an extra delay time 7T to H,(s) will result in a reduced phase margin, as will be
discussed in the second paragraph of this chapter. Less phase margin will result in worse
transients behavior. For a too large extra delay time, the system will become unstable,
because one complex pole pair are shifting into the right half of the complex plane. In the last
paragraph of this section, the effect of the extra delay T on the transients is studied both
analytically and by simulation.

4.1 Timing Table

Because the PWM must be able to give its maximum output, there should be no limitations
on the individual switching times in the half PWM period that they belong to. All the
preparations to calculate the next PWM switching moments must be scheduled before the
beginning of each PWM cycle, if one PWM-input sample is used to calculate the switching
moments for the period (7, pwy=T)- In the case that a different sample is used for each
switching time, the preparations have to occur before their specific quarter the PWM cycle.
In the timing table below, the order in which the events preceding the beginning of the PWM
cycle must be executed is given:

Table 2: Timing Table for digital controller and PWM.

TIME Conversion Alg. Calc. Switching
EVENT Time Time . Times Calc

> >

AD Conversion

Control Algorithm
DSP

Calculation of the PWM
switching times

Time till beginning of
PWM cycle: T,

For the design of a digital controller, it is essential that the total delay between taking the
sample and the beginning of the PWM cycle is always the same. Therefore, the maximum
durations must be taken for the delay times in Table 2. As a result, the conversion must start
at a fixed time before the beginning of the PWM cycle. This time will be called T, the
preparation time. The next figure shows how this time is related to the (virtual) PWM
triangular wave:
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Figure 18: Preparation times between the sampling moments and the beginning of the PWM
cycles, sampling once per PWM cycle

4.1.1  Choice of the AD-Conversion Sampling Frequency

The highest realizable sampling frequency of the ADC in the error path must be high enough,
because, as a rule of thumb, the AD conversion time is the inverse of the highest sampling
frequency of the ADC. A higher AD conversion rate is not a problem, because no high power
signals are involved with the AD conversion, on the contrary to the high powers that are
involved with the switching IGBT’s of the PWM, which is in fact the ZOH at the output of
C(z). The PWM switching frequencies are limited to about 25kHz, because of power losses.
A sampling frequency for AD conversion of e.g. 100kHz could be chosen. Choosing such a
high frequency, which is much higher than needed for the closed-loop bandwidth of about
10kHz, gives us the possibility to do part of the low-pass filtering digitally, resulting in an
analog low-pass (Bessel) filter with a less sharp cut-off characteristic, because the -3dB point
has to lie at the Nyquist frequency of 50kHz now. Within the computer, the sampling
frequency can be decreased to about 25kHz after the digital filtering (cut-off frequency of
about 10kHz) has taken place. This combination of a digital low-pass filter and a sampling
rate reduction is called a decimator.

4.2 Stability Requirements

What has to be studied first, is what the maximum value of the extra open-loop delay time T
can be so that enough phase margin is kept. In each case, the preparation time T, discussed in
the former paragraph must fit within the maximum 7. If a certain minimum phase margin is
required, let’s have a look at what the maximum 7 is allowed to be. Considering a general
open-loop transfer function H,(s), we can proceed as follows. First, we have to calculate the

phase margin of H,(s) without the delay term e*T . The delay term which modulus is unity
doesn’t change the frequency for which the magnitude plot of H,(s) crosses OdB. Finding the
phase margin for H,(s) now results in simply decreasing the phase margin of the case that no
delay was present by w,T, in which ., is the crossover frequency for H,(s). In formula, we

can write now:

PM(H,(j@)); = PM(H,(j©)) 7o —@ T
(19)

Instability is reached for the value of T where PM(H (jw))r-o equals zero.
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4.3 Theoretical Calculation of the Transients

In this paragraph, the effect of an extra delay factor (e.g. due to digitalization) in H (s} on the
transients in /,,;(t) will be studied. The roots of the characteristic equation of the control loop
are calculated for different values of T. For the calculation of the system poles and the
transients, a second-order Padé approximation is used for the delay factor:

L,.T

e—-sTEI S*L’;'+S ““1-‘%'
L T
1+s—2-+s )

(20)

Because we are dealing with a delay T present in the digital control structure as in 3.2, also an
anti-aliasing Bessel filter with a cutoff frequency of 15kHz is placed in the loop:

r;‘ derror

ec(t)

!
Transport L3 Ec(f
Deiay td tntggrator
| s+324
Clockt Fen sz+gs+f 5 r‘
B(s) Gain3 o) 0P P
Iref{t)
ramp
error
a c 1Te
» ‘]' output
s2+bs+a 524ds+c i s+Rolle 4 fco(t)
LP1 LP2 Gfs)

Figure 19: GACL with anti-aliasing Bessel filter and open-loop delay factor

The trapezium shaped /,,,(t) consists of a number of time-shifted ramp functions, so the
output transients can be studied by feeding a simple ramp-shaped /,,,(?) to the control loop.
The output is calculated by multiplying the Laplace transform of /(1) with H(s). Observing
Figure 19 and using (20), H,{s) is found to be:

2
l—s— 45—
2 12
H (s) = acfK o

T T
s(s* +bs+a)(s* +ds+c)(s* +gs+ f)(1+s-2-+s2 TL’_)

(21)
H (s} is expressed in H,(s) as in (12).

The system poles are now calculated by equating the denominator of H,(s) to zero. Because
we have to find the roots of a 9" order polynomial, a computer is used to calculate the roots
for different values of T. Knowing the complex conjugated and the real valued roots of the
system characteristic equation, a partial fraction can be performed to find the corresponding
time transient signals. If 7,,(¢) is a ramp function Br which Laplace transform is B/s’, Loift)
can be found by partial fraction of H(s) multiplied by B/s*. The transients are those fraction
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terms belonging to the poles of H,(s). The fraction terms belonging to B/s are the Laplace
transform of the steady-state output of H(s), which is the ramp /(1) minus the steady state-
error ef o),

In the next plot the positions of the slowest complex pole in the complex plane are shown for
values of T increasing from 7=0 to 7=55[ps]. The slowest complex pole belongs to the worst
damped transient, and is called the dominant pole for that reason.

T=46.5[ps]

1 Il i i

2
-14000 -12000 -10000 -8000  -6000  -4000  -2000 0 2000 Re

1 i

Figure 20: Slowest pole moving in the complex plane for T=0 to T=50{ps]

The verge of stability is reached for 7=46.5[us], for which an undamped oscillatory transient
will be part of /,,,;(t). This is in accordance with (19), since for H,(s) of Figure 19, the phase
margin for the case 7=0 equals 56.76° at w,=3.4kHz.

Calcnlating the roots of the system’s characteristic equation resulted in only single complex
pole pairs, and in single real poles. The corresponding transients are calculated now using
partial fraction theory.

Unrepeated complex poles a=o+jf are present within the denominator of H,(s) as:
(s—a)s—a)=(s—a)’ + B>

The corresponding transient for this denominator factor in the time domain yields:
h,(t) = ¢ (Im(Q, ) cos it + Re(Q, ) sin fit)

(22)
where Im(Q,) and Re(Q,) are the imaginary and the real parts of Q, respectively:

1
0, = E&I‘}((S —a)* +B*)H,(5)

Also unrepeated negative real poles may be present. An unrepeated real pole s=a corresponds
to the time signal:

h, (1) =e"
(23)
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An important conclusion is that every fraction is proportional to B, the slope of the input
ramp. Thus also the transients will increase in amplitude if B increases, i.e. if the rise-time
becomes shorter.

44 Simulations of the Transients for Different T

The formulas above are used to calculated the transients for different values of the extra
delay time T in H,(s). The total transient signal and the transient corresponding to the
dominant complex pole are shown in the next figure for four values of T: 0, 4[us], 10[us],
and 20[us]. The transient signals calculated with (22) and (23) seem to be almost equal to the
results of a Simulink simulation with the model in Figure 19 using the same values of T. This
justifies the use of the Padé approximation for the delay factor for the theoretical analysis.
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20} (b)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 time [ms]
A
20} ©
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A
20 (d)
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Figure 21: Transient signals for different delay times. Line types curves: full: transient
calculated with Simulink; dashed-dotted: analytically calculated transient;
dotted: transient corresponding to dominant complex pole. Delay times T: (a):

T=0 (b): T=4[us] (c): T=10[us] (d): T=20[us]

From Figure 21, it can be concluded that the dominating complex pole determines the
behavior of the transient as expected. The result found with Simulink (e.(z) in Figure 19), is
equal to the analytically calculated transient, except within the time interval (0,z,), with
t,=50[us], the closed-loop delay time. In this interval, the Simulink values are equal to the
negative output of the system, because the delay block for the reference signal in Figure 19
then gives a zero output. In the analytical calculation, ,.(t)=Bt is subtracted from I,(t)
beginning at =0 (not at t=¢,), and the e( o) is added to the output.
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In Figure 21, also the specification bars from Table | are shown. Because the transients are
the same for every ramp input (only the sign may be different), it doesn’t matter that I,.(t) is
chosen to be a continuous ramp function starting at =0 instead of a trapezium as in Figure 2.

Because /,,;(t) in Figure 19 follows I,.(t) delayed over t,, also the intervals of 7 in Table 1
must be shifted forward in time over #,=50[ts]. The corresponding specification bars are
shown in Figure 21. For a delay time 7=0, all the specifications are met, except for the third
interval of 1.

In the next figure, the maximum value of e (r) is shown per time interval for as a function of
T

.............................................................

0 1 P 1 i i i i
0 5 10 15 20 25 30 35 40 T [ms]

Figure 22: Maximum absolute e (t) per specification interval and spec. borders: numbers
indicated in brackets correspond to interval numbers in Table 1

Figure 22(b)(3) shows that the specifications are never met within the third time interval. For
the other time intervals, there is an obvious relation between the increasing delay time T and
the maximum value ¢.(¢) in the interval. In Figure 22(a), e.(t) will violate the specs of the first
time interval for all values of T larger than about 4[ps]. Using (19), this means that the phase
margin should be at least 52°. Because the specs are violated for the smallest 7 within the
first interval for T=4[us] (after the third interval), this is the critical delay time. As remarked
earlier in this chapter, if the rise-time decreases, i.e. B increases, the overshoot will grow
proportionally to B.

4.5 Conclusions

From the considerations in this chapter, it can be concluded that the open-loop delay factor
should not be larger than about 4[us] for the current control loop setup if good enough
tracking of I,,,(t) is required. This is not very much, since the PWM with an update frequency
/T, pwps of 25kHz already introduces a larger amount of ZOH delay, see e.g. Figure 27. In the
chapter 6, PWM schemes with higher T pyy will be derived, resulting in a reduced ZOH
delay time of the PWM.

In chapter 7, a completely different approach is studied to reduce the transients in /,,;(?) due
to the tracking of I,,(r). Feedforward will be applied there to adapt /,,(t) for the filters it is
fed to.
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5. Analysis of Steady-state Errors and Delays

In this chapter, H,(s) of the GACL is extended with some extra elements to derive some
general expressions for the final values e(eo) and E (o) of e(t) and E (1), respectively. In
paragraph 5.2 H,(s) is extended with a general delay factor T, and an arbitrary number (N) of
second-order low-pass filters may be present. In paragraph 5.3, a zero-order hold circuit
(ZOH) is also added to the generalized control loop model.

If an extra low-pass filter is needed in the loop based on Figure 7, an anti-aliasing filter for
example, the formulas that are derived in this chapter can be used to calculate ¢(eo) and E (o).
Also the steady-state effects of a ZOH and some delays that are inherent to a discrete
controller, can be studied with the formulas derived in this chapter.

It must be stressed, that the theory that will be discussed in this chapter, is only valid for the
process and controller combination based on Figure 7, as given in Figure 23 or Figure 26. If
another controller is used, or if a feedforward is used, the analysis must be redone for the new
situation.

5.1 Second-order Low-pass Filter

The steady-state propagation delay f,yy.- of a second-order filter for a ramp function Bt can
be calculated by studying the steady-state error of the output signal of the filter when a ramp
is applied to the filter input. For a general second-order filter of the form

H(s)=——"
() s*+bs+a
(24)
we can derive for the steady-state error when a ramp-shaped input is applied:
=i B(l H )—Bb—Bt
e( )_ XI_I;I(}S S2 (S) - a - d, filter
(25)
So, the expression for the steady-state propagation delay time for a ramp input yields:
b
Ly fier = —
(26)
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52 Control Loop with N Second-order Low-pass Filters and a Delay

In the figure below, the analog GACL containing N second-order low-pass filters and a
variable delay factor ¢™" is shown:

3] N
s
Transport Sumg - integrated
Delay ¢, egratr delay corrected error
al a2 —aN
— Tl EEEEEETTEERS »

@;’— s2ib1s4al s2402 s4+a2 sZbN.s+aN
rame P P2 LPN

e S|

delay T ) output ramp

Figure 23: Analog GACL with N second-order low-pass filter sections and a variable delay
factor

H,(s) having N second-order low-pass filters and a variable delay factor is given as:

-sT N

Hﬂ(s) _ € H a;

2
t,8 s +hs+a

(27)

The constant 1, equals L./3.7, where 3.7 is the controller proportional gain factor K. The
steady-state delay ¢, is the same as calculated in (14). This can be proven with the following
derivation. The closed-loop function of (27) is found by evaluating (12):

e—sT

-

H,(s)= N ‘ N

td,s]_I(s2 +bs+a)+e| |a,
jz=]

=l

=

a.

i

(28)

For an I,,(t)=Bt, we can find the final value of ¢(t) by working out the left part of (29). The
exponentials in (28) are replaced by their Taylor approximations, after that, (29) is written as
just one fraction, and only the relevant power-of-s terms in the numerator are taken into
account:

e(e0) = lime(t) = limsﬁ(l —H,(s))=Bt
t—300 =0 5‘2 o d >

(29)

This steady-state error is proportional to 7,=50[us] and B, proving that ¢, is still the steady-
state closed-loop delay time for a ramp.

Also an expression can be found for the final value of E(). The final value theorem applied
to £,(t) means that the Laplace transform of the output, /.(s)H(s}, must be subtracted from

25



the input delayed over ¢, (the exponential term in (30)), and the result has to be integrated
(multiplication by 1/s):

E, () =limE, (t)—-hmsl 52(

>0 Ky

—1y8 HLI (s))

(30)

Substituting (28) into (30) gives the following result after writing the exponential powers as
Taylor series and only taking into account the relevant power of s terms:

N N )
Zbll;[ai
i#]

B t =
E, (s)=lim— tdsz(T—z")+tds2 —

§0 S N ’

(31)

This expression can be simplified to:

E, ()= Bt, (T—7+2 j

lla

(32)

We can see that £ (=) has a minimum, which can be found by equating the part in brackets to
zero. The minimum value can be found then by inserting a delay equal to

N

_l z
0/)r -

2~

a.

I

(33)
into H,(s). Of course, this is only possible if

_>;a_ ,
(34)

and enough phase margin is present.

Another conclusion is, that the influence of the second-order low-pass sections on the value
of E (o), is completely determined by their steady-state delay times for a ramp. What can
also be concluded from (32), is, that replacing the second-order low-pass filters by a factor

e~'" having the same delay time as the filters that it replaces, doesn’t change the final value
E(eo). This will be shown in the following simulation.
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5.2.1 Simulation: Substitution of LP1 and LP2 by an equivalent Delay

In the analog GACL, replacing the two second-order low-pass filter sections by a delay factor

T, having the same steady-state delay time for a ramp as the filters, doesn’t influence E (<o),
according to (32):

!y
E ()=B1, T, Y
(35)

The delay introduced by these filters can be calculated using (26), and is found to be
11.8[us). The simulation model used for the plot of E(r) in Figure 25 is given in Figure 24:
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Figure 24: Simulation model used to study the effect of a general delay element

A trapezium as in Figure 2 is used for /,,,(¢). In Figure 25, also E.{t} is shown (the same as in
Figure 8(c)) for the case that the low-pass filters are replaced by their equivalent delay.
Comparing (a) and (b) in Figure 25 shows that replacing the low-pass filters by an equivalent
delay factor, results in almost the same E, (1), approximating the same E(0)=-396[uAs]
during the rising ramp of /,.(t) . The only difference is a small transient signal due to the low-
pass filters.
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Figure 25: Delay-corrected error integral (a): LP1 and LP2 present in control loop, (b): LP1
and LP2 replaced by their equivalent delay of 11.8[is]
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5.3 Control Loop with N Second-order Low-pass Filters, a Delay, and a ZOH

At the output of the digital controller, a ZOH circuit has to be used to make the discrete time
signal continuous. The PWM using samples to calculate the PWM switching times ¢; (see
paragraph 6.1) can be approximated by a ZOH circuit. If the sampling frequency T, pwy is
high enough in comparison with the system bandwidth, the digital C(z) can be replaced by the
analog C(s), adding a ZOH at the controller output with the transfer function:

1-e™" w=jo 90 -
ZOH(s)=—F—— =€ * sinc =

Is
(36)
The next figure shows the generalized control loop extended with the ZOH:

S [ SN v
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Delay td integrator delay corrected error
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m_ 5 s2+b1.s+al s2+b2.s+a2 s2+bN.s+aN
ramp Bt Cor - Zoro-Order LP7 LP2 LPN

e
delay T ) output ramp

Figure 26: The generalized control loop extended with a ZOH at the output of C(s)

The delay between the input and the output of a ZOH for the case that a ramp input is applied
to the ZOH, is simply half the ZOH sampling period T, as shown in the figure below:

0 TJ2 T, !

Figure 27: The delay for a ramp function introduced by the ZOH

Applying the final value theorem as in (29) and (30), tells us that the steady-state closed-loop

propagation delay for a ramp input is still #, (also shown in Figure 26), and that the final
value of E(t) yields:

T t, b
Ec(oo):Btd(T+?“—?"+z—’]

i=1 4;

(37)
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5.3.1 Calculation of E (o) for Digitalized GACL

In Figure 17, E(t) reaches a value of 650[1LAs] during the rising ramp of 1,,(t) between 1[ms]
and 2[ms]. In Figure 16, B(s), ZOH(s), LPI(s) and LP2(s) are the delaying transfer functions.
The steady-state delay time of B(s) found by (26) equals 14.6[us], for the ZOH we have
T,=40{us], and for LPI(s) and LP2(s) we still have 11.8{us]. Filling in these values in (37),
we find E {=0)=042[l1As], rather close to the value found in the simulation.

5.4 Conclusions

In this chapter, the expression in (37) for E (<) is derived for the general structure in Figure
26. This formula shows that E () can only be zero if the combination of t,, T, T, and the
sum of the delays of the low-pass sections is chosen such that (37) yields zero. This is a very
stringent requirement.

A better method to make E (=) equal to zero is the use of feedforward, to be dealt with in
chapter 7.
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6. PWM using One, Two, or Four Samples per Cycle

In this chapter, algorithms will be derived for calculating the PWM switching times from the
samples of u”. The calculation of the switching times can be done using one sample at the
beginning of each PWM cycle, but it seems also to be possible to calculate the switching
times using two or four samples per cycle. Using a higher sampling rate will result in better
transients behavior, because of the reduced ZOH delay times.

If the sampling frequency is increased, also the bandwidth of the Bessel filter B(s) (@ in (18))
can be increased, resulting in a simpler filter and in a smaller filter delay time, which results
in an extra increase of phase margin, adding to the increased phase margin resulting from the
smaller ZOH time for the PWM resulting from the higher update frequency.

6.1 One Sample per Cycle

In this paragraph, we will consider a PWM that samples " at times kT, where k=0,1,2,...,
and T, is the period time of one PWM cycle. , so T, pwy=T;. Then, the switching moments for
the power transistors can be calculated for the k® cycle, and scheduled forward in time.

First, we will calculate the ideal switching moments for the positive and the negative power
half-bridges. These switching moments are called ideal, because they can realize continuous

PW’s.

We can find for the switching moments (see Figure 28):

7, = Fpy(A+u”) t;, = Fp,GA-u")
t,:[.f = TA(A—u+) t, = m(3A+“+)

(38)

In these formulas, A is the amplitude of the triangular PWM wave, u*=-u is the input signal
for the PWM module, and the factor F,7 is defined as:

P
AT 4A
(39)
For the total PW of the full-bridge, we find:
PW=t' —t_ +t —t' = Ly
of " tor Tlon Tlon A
(40)

The figure below explains these formulas:
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Figure 28: PWM with sampling and continuous PW's (a): switching times following from
triangular wave form and control signal u” (b): positive half-bridge pulse form

(c): negative half-bridge pulse form (d): full-bridge pulse form

6.1.1  Simulation: The Analog GACL with T, pyy=T,

Having found now the moments that the pulses for the positive and the negative power
transistor half-bridges must be low, we can program a PSI model for the PWM. At each
sample time k7, the switching moments are calculated, and these are accurately scheduled
forward in time relatively to the sampling moment using a special PSI function to schedule a
discrete event forward in time.

In Simulink, the PWM could be implemented as shown in Figure 29. The calculation and
scheduling forward-in-time of the switching times is now replaced by detecting the
intersections of the output of the PWM-input ZOH with the triangular wave. Of course, the
ZOH periods and the periods of the triangular wave must be equal and in phase. However,
programming this model in Simulink is not a good idea, because Simulink can’t detect the
intersection points of the ZOH output with the triangular wave accurately (see [6]). For this
reason, the simulations with the detailed PWM model will be done in PSL
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Figure 29: Implementation of the PWM in Simulink

In Figure 30, the model used for the simulations with the control loop containing the PWM
with sampling is given. The model is in fact the loop of Figure 7, but the PWM is
implemented now in detail, as given in Figure 3. For simulating the PWM with sampling, the
input of the PWM must be preceded by a ZOH, as shown in Figure 30:

> _ec |
ec(t)
3]
Transport Sumz2 = Ec(y)
Delay [d integrator
]Um s+324 _’J'L‘_
= S
el | Sumt : ZOH
Gain3 C(s) Full Bridge
PWM
s A o ke Nprr
> » P output
s2+bs+a s2+ds+c siRe/le tcoil
LP3 LP4 e

Figure 30: Simulation setup for experiments for PWM with sampling

In Figure 31 (next page), the simulation results for PWM with sampling and continuous PW’s
are plotted. It shows that E (z) becomes positive during the rising ramp of the trapezium, is
close to zero during the high level of 600A, and becomes negative during the falling ramp.
When no PWM was used, as is the case in Figure 25, E£,(r) showed an opposite behavior.
Theoretically, using (37), we would expect a final value of 204[pAs] for the rising ramp with
the slope of the first trapezium ramp, using the PWM period, i.e. T,=40[us] for the ZOH time,
and the delay time of 11.8[ps] for the low-pass filter sections. For the simulation of Figure
31, the final value of E.(t) is not reached, because the ramp is changed already after 1[ms],
when FE, (t) has reached the value of 250[LAs].

32



600 . L L T H ]
400F .
200r e
O 1 i i 1
0 1 2 3 4 5 time [ms]
A
10 ] T (b} i ¥
- 10 i i L 1
0 1 2 3 4 5 time [ms]

0 1 2 3 4 5 time [ms]

Figure 31: PWM with sampling, the PW is calculated at the sampling moments (a): 1,,i(t);
(b): et); (c): ELt), with high level of about 250{tAs], and a maximum peek at
405[uAs]

6.2 Two Samples per Cycle

In paragraph 6.1, the PWM algorithm was derived where a sample of #* was taken at the
beginning of the PWM cycle. Both the on- and off-times for both the half-bridges were
calculated from this sample.

Generally, the PWM forms two distinct voltage pulses for each half of its cycle, as can be
seen in e.g. Figure 28. If there is enough time to perform the digital calculations, it is possible
to calculate the PWM switching times for each half period pulse from different samples for
each half period of the PWM. During each PWM cycle, two samples are taken: one at the
beginning of the cycle, and one at half the cycle time. In this case, T, pyp=T,/2.

The principle of calculating the PW for each half PWM period is shown in the figure below:
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Figure 32: PWM with T, pwy=T4/2 (a): switching times following from triangular wave form
and control signal u® (b): positive half-bridge pulse form (c): negative half-bridge
pulse form (d): full-bridge pulse form

For continuous PW’s, the intersections of the control signal u* with the triangular wave
determine the switching times.

The switching times can then be calculated as follows:

t! =F (A+u*(0)

(41)

34



The factor F4ris defined as in (39).

The PW for the first half-cycle yields:

_Tu (0

PW, = tjf ~ty 2

For the second half-cycle, it yields:

pw, =1 -, = 01D
2 on on 2A

So, the general expression for the PW for one half-cycle is given by:

T +
PW="
24

where 1" is the control signal at the sample time.

6.2.1 Simulation: The Analog GACL with T, pyy=T,/2

(41a)

(41b)

(41c)

(42)

(43)

(44)

The PWM algorithm with T pwa=T/2 has been implemented in PSI. In the following plot, the
results are shown when continuous PW’s are used for both half-bridges. The same simulation

using T, pwy=T, is also plotted for comparising the results.
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Figure 33: Continuous PW’s; (a),(b),(c): T,pwu=T.; (d).(e),(f): T,pwn=T/2 (a) and (d):
Itfnif{t}; (b} and (e) ec{{); (C) and (f) EL({)

In Figure 33(f), E.(t) reaches a lowest value of -98.8[pLAs] during the rising ramp of the
trapezium. According to (37) this value should be -96[uAs] in steady-state, so this is in good
accordance with the simulation. Compared to the result for single sampling resulting in a
highest value of E (t)=405[1As], this is considerably better. Also the harmonics in e.(z) have
diminished, because of the reduced open-loop delay time, and the resulting better phase
margin.

6.3 Four Samples per Cycle

Observing the Full-bridge PWM scheme more scrutinizingly, it should also be possible to use
a different sample of u” for each switching time, if the samples are taken at each T./4, thus

T pwp=T./4. Using T, pwy=T/4 reduces the open-loop delay introduced by the PWM, but
faster digital equipment may be necessary. The next figure illustrates the idea of using

T, pwn=T/4:
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Figure 34: PWM using four input samples per cycle (a): analog switching times following
from the triangular wave form and u* (b): positive half-bridge pulse shape (c):

T/2

negative half-bridge pulse shape (d): full-bridge pulse shape

Depending on the sign of u*(z), we have to make a decision of what switching time must be
calculated using Table 3. Special attention must be paid to the implementation in PSI of the
algorithm in the case that " is zero. The switching times can then best be calculated using

the first and the third samples, those at =0 and t=AT,/2, because a signal cannot be scheduled

zero seconds forward in time.



Table 3: Depending on the sign of the sample u" taken on sample time t,, one switching time
is calculated

t=0 t,=ATl4 t=AT/2 sign(u”)=0 t=3AT14
sign{u’)=0

ségn(u J= 1 {l:ﬁ_ :.FAT(A_u+) t;;}" -~ Aru+ . =FAT(A_”+) tu-n - ATqu

on

sign(u’)=- 1 tr =F,(A+u") ty =—Fqu" |1 =FAT(A+u+) 1, =—F u*

on an

T
The factor Fyris defined again as F,, = 4; :

Although no complete PW is created in one quarter of the PWM cycle, we wish to find a

sensitivity relation between 1" and the PW similarly to (40) and (44). Using the results in
Table 3, a change A, in switching time ¢, results in a change Au™ in u” as:

{Au““

(45)
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7. Improved Performance by Feedforward

Ideally, a feedforward voltage is added directly to L, in series with R.. In practice, however
the feedforward voltage must be added before the PWM, because this is the amplifier that
supplies the coil voltage, using two low-pass filters LP1 and LP2 to filter out the undesired
harmonics caused by the PWM. One method to apply the feedforward voltage is feeding an
IL,{t) that has been matched for H,(s) to the reference path of the control loop, and the other
method is feeding an appropriate signal to the input of the PWM. The next figure illustrates

the two possibilities:

Feed Forward
to input PWM
s+324 ¥ a L4 Ule
+ 137 st3d | Rl | W >
- s o, |s%bsta 82rds+e s+Re/lc P
Iret matched fof Sum1 Gain3 ) LP1 LP2 G(s)

open loop
transfer

Figure 35: Two principally different ways of applying a feedforward

The most obvious place to apply the feedforward is right at the input of the PWM, because
doing so, C(s) isn’t charged anymore with the tracking of /,,(t), but it can be designed for
other purposes. Independently, the feedforward path can be used for getting a good tracking
of I,(1).

The other way of applying the feedforward, to the input of the control loop, will not be
discussed in this chapter, because it is of less practical importance. It will result in a more

oscillating e(z}, resulting in a larger error range, so that more bits must be chosen for the
ADC.

The calculation of the feedforward that must be added to the input of the PWM can be done
in two ways. One method is to multiply the complex Fourier coefficients of 1,.(¢) with the
inverse of the transfer function of the filter consisting of the low-pass sections LP1 and LP2
of the PWM and the process. The advantage of taking the Fourier coefficients is that a very
sharp cut-off frequency of the feedforward filter is obtained, because we can simply omit the
higher harmonics of I,.,(t) for calculating the feedforward.

The other method 1s to design a feedforward filter that matches 7,.41) for the transfer
functions LPI(s), LP2(s), and G(s). This way of calculating the feedforward is more flexible

than the method using the Fourier components, because for calculating the Fourier
components, the form of /() must be known exactly.

7.1 Feedforward using the Fourier Series Expansion of 1,,(?)

7.1.1  Fourier Series Expansion of I.,(t)

The (periodical) trapezium shaped /1,,(¢) can be written as a Fourier series:
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Figure 36: Trapezium shaped I,,(1)

Calculation of the Fourier series /,.,(t) yields:

4A &
Ly@=—+ Y a, cos(iayt)
i=]
(46)
where
54 cos in o {m)
a, = S — |~ —
it 5 5
(47)

and wy=200%2*r, because of the 5{ms] period of the trapezia.
7.1.2  Feedforward to the Fourier Components

First it will be shown how the feedforward can be calculated for the combination of LP (s},
LP2(s), and ZOH(s) that is inherent for the sampled PWM.

In Figure 37, the Simulink model setup is shown that is used to apply the feedforward to the
input of the PWM. In this model, the PWM is modeled by a ZOH with a ZOH time equal to
T=T, pwu. Again, we want to calculate the feedforward by an operation on the coefficients
and the phases of the Fourier series of I,(1).

byt
1 Feed Forward
5 from Fourier
e{tyl . E(f) Coefficients
lnlegrator
mm >+ L 161 ol 3:75+3.74324 + IS
Reference - | 1.13e-10¢ +2.35e-55+1.6} s Sum3 S
Current Sum B(s) C(s) Z20H
a ¢ o 5400 »
l-—> > > »{ output
s2bs+a s Sds+e s+324 %
LP1 LP2 G(s)

Figure 37: Feedforward fed to the input of the PWM
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The transfer function that must be inverted, is given by the chain ZOH(s)-LP1(s)-LP2(s)-G(s).
This transfer function yields:

1—e™™" a c 5400
H(s)= 2 3
Ts \s"+bs+a/)\s +ds+c)s+324

(48)
In (48), T, equals T, pwst.
This means, that the Fourier series of ,.(t) must be changed using:
- 1 Ts (52 +bs+a) (s? +ds+c) s+324
s)= = .
(5) H(s) 1-¢™ a c 5400
(49)

We have to multiply the Fourier coefficients given in (47) with the magnitude of (49) for the
corresponding frequency, and the phase of the corresponding cosine term in (46) must be
shifted with the phase angle of (49) for that frequency.

In Figure 38(a), the feedforward is shown, constructed by performing the feedforward
operation on the first 125 complex Fourier coefficients of the trapezium shaped /,.(1), that
must be fed to the input of the ZOH in Figure 37. The ZOH delay time used here is
T,=20[us], corresponding to T, puy=T.

o
0
20— _
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5 time [ms]
As §X 10° (b)

_5 i i i i 1 i i 3 i

0 0.5 1 1.5 2 25 3 35 4 4.5 5 time [ms]

Figure 38: The desired feedforward voltage that must be fed to the input of the ZOH
replacing the PWM

Figure 38(b) shows that the maximum absolute value of E(t) now is about 8[jLAs], which is
even smaller than prescribed by (4).

Note that because of the way that the feedforward was calculated, no delay will be present
between [,.(t) and the /,,;(t}. Therefore, the e(z) can be integrated immediately to E(z).

Another conclusion drawn by studying Figure 37, is that if an ideal feedforward is added at
the input of the PWM, it doesn’t matter what filters are present in the error path before the
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place where the feedforward is added, as long as e(t) error is zero. This doesn’t mean that we
don’t need a controller, of course, because the controller is still needed to deal with
disturbances and model uncertainties.

7.2 Feedforward Filter

In this chapter, the feedforward is not calculated using the Fourier coefficients of the
trapezium shaped /,.(t), but a feedforward filter will be designed. Because I,.(1) is always a
combination of ramp functions, the first step in calculating the feedforward is described in
(50):

dl,,, (1)

U,@®)=RI ()+L, 0

(50)

For a ramp shaped /,.(¢) this voltage is easy to find.

In the next figure, the place of the feedforward filter FFW is shown:

J_..'z_)_‘ | num_FFW({s)
UVIRIL{'_ |/| "1 den_FFW(s)
=Rieldidt o T Forward FFW(s)

Voltage

E()

» f s+324 <5
: 2 g5+ s +
Iref FFW path Sum4 STHgSY ) Sum3
Delay td,ffw B(s} Gain Cls)
L ! £ P i Icoil
s2+bs+a "1 s2dstc Tl s+Refle B
LPY LP2 o

Figure 39: GACL configuration when a feedforward filter is used

Notice that /() is fed to the GACL delayed over #,4,. This delay (7,,) is needed to
compensate for the delay in the feedforward path, as will be explained later on.

For analyzing the GACL configuration with feedforward, the following model structure is
used:

o num_FFW(s)
' | | T\ den_FFW(s
U=RI+Ldl/dt L—-—-‘-‘ - )
Feed Forward FFW({s)
Voltage

integrator E®

“ Im » . |num_G1{s} T num_G2(s) N
- "den_Gi(s) + "1 den_G2(s) > Z‘::;’”‘
Iref FFW path Sum4 Sum3 )
delay td,fiw Gi{s)

Figure 40: Simplified model of the GACL configuration with feedforward
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In Figure 40, two transfer functions must be taken into account to study e(?) for this
configuration, because e(?) is the result of two independent contributions. One part which will
be called e,,(t) results from the transfer of I,,(1) to e(t) via the reference path (unconnected
feedforward), and the other part, called e(1), results from the transfer of /,,,() to eft) via the
feedforward path (unconnected reference path). Hence, in the Laplace domain, the total
current error can be written as;

e(s) = €,y (8) +ep,(s)

(51)

For calculating both contributions to e(s), the series combination of G,(s) and G,(s) will be
called G/(s)=G,{s)G,(s). The first transfer function is from I,,() via the reference path to e(s),
resulting in the contribution e,.(s):

1

e (s)=1_(s)e " ———
g (8= 1y (8) 1+ G, (s)

(52)

The other transfer function is from /,(t) via the feedforward path to e(s), and it contributes
to:

s+R. /L, -G, ()
e, (s)=1_ (5)——FFW(s)—2——
) =Ly (5) 1/ L ( )I+Gf(s)
(53)
s+R. /L
In (53), the factor ——1—/—2—" represents the actions given by (50).

The delay #,4, that is placed in the reference path equals the steady-state delay for a ramp
function of the feedforward path, shown in the figure below:

TRLx ; teoil
C h num FEW(s) num,_G2({s| 1L
Clogk Pam “ Lie den FEW(s den_G2(s s+RefLe
ook Ramg et lGe FFw P G | Sum  Beor
J“ﬂ% [
-
delay
td, Hw

Figure 41: Feedforward path and equivalent steady-state delay time t,y, for a ramp input

This delay time can be calculated analytically using (25) if the filters mentioned above
connected in series form a combination of second-order filters.

7.2.1  Feedforward following directly from the V/I Relation of G

First, let’s take for the transfer of FFW FFW(s)=1. In that case, the ideal coil voltage is fed
directly to the input of the PWM low-pass filters. The steady-state delay for a ramp-shaped
L(1) 144 1s determined by the filters LP1 and LP2 only (if no PWM-ZOH is present), which
yields
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(54)
which is found using (25).

Applying now the final value theorem to (51), will show that both e(z) and its integral go to
zero for t—eo:

e(e0) = lime(t) = l'ir{)lse(s) =0

(55)

and

E() = lim E(r)= }E}{e(z)dr = lim sE(s) = lime(s) =0

(56)

This results show that 2,4, given in (54) really is the delay time that must be placed in the
reference path of the GACL if FFW(s)=1 is used.

In Figure 40, the simulation results confirm the theoretical results for the case that FFW(s)=1
and no PWM-ZOH is present:
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Figure 42: Signals when FFW(s)=1 is used (a): I,(t) (B} e(t) (¢): E(1)

Although for a ramp-shaped I,.(1), E(t) goes to zero for increasing ¢, Figure 42 shows that
there is still a rather large transient signal present. The absolute value of the overshoot peak is
about 140{pAs], which is a factor 14 too large. A better feedforward filter is used in the next
paragraph.
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7.2.2  Linear Phase Feedforward Path

One way to reduce this large transient peaks, is to make sure that the feedforward path has a
linear phase transfer function.

Because the filters LP1 and LP2 are non-linear phase filters, FFW must contain the inverse
transfer functions LPI(s) and LP2(s), and furthermore two new second-order low-pass
sections are added to make the filter physically realizable:

pp, § +bs+a s +ds+c
ac s°+q,s+p, sS+q,5+p,

FFW(s) =

(57)

Applying the final value theorem as in (55) and (56), show again that both e{e) and E(c) are
equal to zero, provided that for £, is taken:

9, %
P b

Ligpw =

(58)

For the new second-order low-pass sections Bessel filters are chosen, because of their linear
phase characteristics. Their individual -3dB bandwidths are set to 25kHz, which is the
Nyquist frequency of the PWM with T, pyy=T,/2. This means, that the damping is -6dB at the
Nyquist frequency. Doing so, the bandwidth of the feedforward path has changed from
21.6kHz, which is the bandwidth of the series of LP1 and LP2, to about 17.5kHz, the
bandwidth of the series filter FFW, LP1 and LP2. This doesn’t matter, as will be shown by
simulation results, because the fundamental frequency of the reference current is 200Hz, so
also for I,,,(t), the bandwidth of 17.5kHz is high enough to let through the relevant voltage
harmonics.

The plot below shows the simulation results for the new developed filter FFW. Again, no

ZOH is present in H,(s). Using the linear phase FFW(s), IE(¢)l is has a maximum of 16{pAs)
caused by a transient effect,
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Figure 43: Linear Phase Feedforward (a): I..{t) (b): e(t) (c): E(1)

7.2.3  Feedforward and Extra Open-loop Delays

One reason that feedforward is used, is that the transient signals due to bad tracking of ,.(t)
remain small even if there are extra delay factors in the GACL. The extra delays are
represented by the delay factors 7; and 7 in the figure below:

) pl*p2 N shbs+a shds+c
a*e | sigt.s+ "1 s%q2.54p2
Ri+LdVet at.s+o d9cstp
FFW _factor FFW FFW2
2
&) L E()
mtegrator
&N ‘
] s S0y yy A e« S
fref(t delay td,fiw | Sum4 5 vgs+ delavTi $ Sum3  gelay T2
B(s) Y Gain C(s)
a c 1lc
L » » > output
s*bs+a shds+c s+Refle '%t—rj
LP1 LpP2 Gis)

Figure 44: GACL with linear phase feedforward and extra delays T, and T, in G, and G,

Applying the final value theorem as in (55) and (56), show again that both ¢{e) and E( o) are
equal to zero, provided that for 1,4, is taken:

q,

d, fiw -
P,

Ly

P;

T,

! 2

(59)

As discussed in the chapter 4, the transient behavior of the control loop is influenced by an
extra open-loop delay 7=T,+T>. Since the feedforward is not influenced by T (a delay has a
linear phase transfer function), we can concentrate all the open-loop delay time in 75, thus
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T),=0, so T=T,. The simulation results below show, that the transients are really reduced now
even if there is some extra delay in the control loop. The input signal chosen to do this
simulation is a ramp function with a slope equal to the trapezium ramps: 600[A/ms]. The
resulting current transients have to meet the specifications for the settling behavior. The
value of T; here is T>=30[ts]. Even for this rather big delay time, the specifications for e(?)
are met, and E(t) satisfies (4) most of the time, as shown in Figure 45:

10 : —a :
O ._v_a-'-—h—.._.____,_...
-10 - . . : )
0 0.2 0.4 0.6 0.8 1 time [ms]
As
X 10 (b)
0
-1k
-2 i i i i
0 0.2 04 0.6 0.8 1 time [ms]

Figure 45: GACL with linear phase feedforward, T>=30[us] (a): e(t) (b): E(t)

Although the error and its integral are within their specifications in Figure 45, the value of
T,=30[us] may be too large if there are disturbances. For good performance of the control
loop, implying a sufficient amount of phase margin, the total delay time 7 should be
minimized.

Looking at the small values of e(r) in Figure 43 and Figure 45, another advantage of using
feed-forward is the reduced range of e(z). This means that a D/A converter with less bits can
be placed in the error path.

7.3 Conclusions

In this chapter, two ways of calculating a feedforward have been discussed. The first method,
using the Fourier series expansion of /,.(t), is of less practical importance than the other
method, by which a feedforward filter was designed. A feedforward filter is more flexible,
because complete knowledge of /,.(¢) is not necessary to calculate the Fourier series
expansion, requiring prior knowledge of the reference signal over a whole period.

The best performance of feedforward can be achieved by making sure that the feedforward
path has a linear phase characteristic. This results in very good tracking of /,.,(t) by the
output, because the shape of /,,(2) is not affected much by the transfer function of the
feedforward path.

Another advantage of using a feedforward filter that is a combination of second-order low-
pass filters is that both e(eo) and Efeo) are zero. Using FFW with a linear phase characteristic,
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the maximum value of e(z) is about 2[A] for a rise time of 1{ms], as shown in Figure 1. In the
analog gradient chain without the feedforward, the maximum e(t) is at least 30[A] for the
same risetime. The reduction of a factor 15 in the range of e(?) results in a gain of about 4 bits
for the ADC in the error path.

As a last advantage, the tracking of (1) isn’t a task of the controller anymore, so that the
controller can be redesigned for optimal suppression of disturbances and for changing model
parameters,

During the simulations, /,.(?) is delayed in the reference path over #,4,. This makes e(r} and
E(1) to go to zero in steady-state. In practice, however, small variations in t,, will result in a
non-zero steady-state value of e(t), and therefore in drifts of E(z). The practical realizability '
of this kind of feedforward is dependent on the accuracy of 14, thus of how precisely the
filter coefficients of LP1 and LP2 are known, assuming that the coefficients of FFW are
known exactly. Furthermore, feedforward requires exact knowledge of e.g. R, as a function of
temperature, and of L, as a function of /...
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8. Digitalizing the Analog Pulse Widths

8.1 Equivalent DA Converter

Generally, the relation between a certain quantization interval €, the range of the signal to be
converted range(x(t)), and the number of converter bits b required is given by:

b =log, { rangi(x(t)) ]

(60)

A consequence of using ADC’s or DAC’s, is the appearance of quantization errors e, due to
the loss of resolution when x(2) is rounded to a b bits representation. The resulting
quantization error e, will be in the range:

£ £
—5<e, <5

(61)

In the case that the PWM switching times #; are calculated on a computer using the samples of
u", t; must be rounded to t,;, which must be a multiple of the clock cycle AT of the master
clock with clock frequency f, steering the PWM. For making the calculations simple, one
PWM cycle 7, is divided in N equal parts. The relation between AT, f,;, T, and N then yields:

AT==L
N fcl
(62)

In this case, the PW’s of both the positive and the negative half-bridges must be multiples of
AT.

If any analog switching time ¢, is rounded to a corresponding f,;, a quantization error f,; is
made defined as:

t,, =t -1,

(63)
The resulting loss of resolution of the switching times and thus of the PW’s, is equivalent to
DA converting 1" and using continuous PW’s.

Using (60), the equivalent DAC that corresponds with the N equal parts per half PWM period
can be found by dividing the PWM input range of 24 through the resolution of Au™
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2A
b: lOgZ Au+

(64)

8.2 Single Sampling per PWM Cycle

In first instance, each individual ideal switching time ¢; following from the intersections of
the control signal ™ and its negative version (as derived in Chapter 1) with the triangular
wave, is rounded to the nearest multiple of AT, called ¢,;, using the following rules:

To t,, = kAT (k again is an integer) if
1
kAT <t, < (k +—2-)AT

(65a)
andto t,; = (k + DAT if

(k +%)AT <t, <(k+1AT.

(65b)
In Figure 46, it is shown how the rounding is done. After digitalization, the full-bridge PW
becomes:

+ - - +
PW{I = td,()jf - t{l,uﬂ + tcl,()n - d.on
(66)

The difference between the ideal switching moment ¢*,; and the largest multiple of AT less
than or equal to £ is called z,.

As can be derived from Figure 46, the error e, pw on PW can be expressed in terms of ¢, as
follows:

e, pw =41, if OStv <£
' 2
(67a)
and
AT
eq,PW=4(AT—tV) if —Z-SIV<AT
(67b)

From these formulas, it can be seen that there is an unambiguous relation between ¢, and
e,pw, and e, pw must be in the range:

—2AT <e, py <2AT

(68)

50



Figure 46: PWM with T, pwy=T, and digitalized PW'’s, same plots as in Figure 28.
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Digitalizing the PW’s has the same effect as digitalizing u*. As can be found by transforming
the range of (68) by (40), the quantization error e, of u*, will be in the range:

2A
—7< eq,u <

2A

N

(69)

This shows that ™ can thought to be quantized to an integer number of the amplitude steps:

Agt oA
“EN

(70)
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8.3 Rounding Scheme for Minimized PW Error Range

In this paragraph, a new rounding algorithm is derived for PWM T pwy=T,. The basic
principle behind it is, that the total PW of the full-bridge pulse shape as shown in Figure 46,
should not differ more than A7/2 from the total analog PW for the full-bridge.

To find the optimal rounding scheme in the sense of a minimized e, pw per PWM cycle, let’s
first have a look at the quantization errors ¢,; that result from truncating or taking the ceiling
of the switching times. Truncating means that the analog switching time #; is rounded to the
largest integer multiple of AT equal or less than ¢, and taking the ceiling means that the
switching time is rounded to its ceiling multiple of AT, i.e. the smallest multiple of AT larger
than #,.. Table 4 shows the t,;’s due to these actions. In this table, the time difference 7,,
defined as the difference between r*,; and the largest multiple of AT equal or less than #* g, is
used. The time difference could also be defined for the other #’s, as indicated in Figure 46.

Table 4: Quantization Errors t,; caused by Truncation and Ceiling each t;

! +uff ! +un 4 -uﬁ' ! -un
t,; Truncation -, AT -1, AT -t, -1,
t,i Ceiling AT -1, -t, -1, AT -1,

The total PW error e, py follows by adding the distinct 7,’s. Table 4 shows, that a general
expression of e, py 1s given by

e, pw = PAT—41,

(71)
where pe {0,1,2,3,4}.
The strategy to come to an optimal switching time rounding scheme is now as follows. For

each value of ¢,, the error given in (71) must be within the range (compare to (61)):

1

|
—EATSeq‘,,W <5AT

(72)

This implies, that we have to choose the parameter p in (71) properly for distinct intervals of
t,. This is easy, considering that for each interval, there will be a contribution of -4¢, for e, py.
The next table shows the values of p for the distinct intervals of z,.
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Table 5: Choosing p for distinct intervals of t,

Interval of ¢, )4
1 0
0<t,<=AT
8
1
lAi" <t, s—?i AT
8 8
2
E AT <z, Sé AT
8 8
3
~5- AT <1, Sz AT
8 8
7 4
—8— AT <t, < AT

Now that we know what value of p must be chosen within the distinct intervals of r,, we have
to take a look at which combinations of truncating and taking the ceiling of the #;’s yield the
desired value of p. This can be done easily by studying Table 4. In the next table, the possible
combinations are shown.

Table 6: Rounding Combinations for a minimized range of e, pw per PWM cycle for distinct
values of p. The chosen combinations are shaded.

4 TIC tyi p p = 1 p = 2
0

o T -1, X X x| x| x1{x
C X

ton T x| x X
C X X X

t o T X x| x
C X X X

on T X
C X X X | x| x

Studying Table 5 and Table 6, we see that it should be possible now to have a zero e, pw for
the values t,= 0, t,= 1/44T, t,=1/2AT, and t,=3/4AT. Filling in the new range of ¢, py Which
is AT now, according to (72), into (40), shows that the resolution of u* has also improved by
a factor 4:

Aut =—
N

(73)

This means, using (64), a 2-bit gain in resolution of u*.

84 Double Sampling per Cycle
Now, the same analysis as in 8.3 will be performed for the digitalization of the #,’s when

double sampling per PWM cycle is used. The digitalization variable 7, must now be
determined for each half PWM cycle. For the first half period, it is defined as:
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ty
t, = tj_f —~ATIN ,
AT,
(74)

where the INT(x) function means that the integer value of x is taken, and for the second half
period it is defined as:

t+
t =ATINT| —*=+1|-1t"
v Z (A]"Z J on

(75)

+
on

AT,

Z

with k < <k+1

+

and #,=0 if —*= =k, where £ is an integer.

Z

The errors t,; caused by truncating and taking the ceiling for each #; as a function of ¢, are the
same as in Table 4 for the case of double sampling per PWM cycle, because the definition of
t, is still the same.

First, let’s study what is the range of e, pw per half PWM cycle if “normal” rounding of the

individual #s is used. The following table shows how is rounded in only two distinct
intervals of ¢,, and the resulting value of e, pw:

Table 7: e, pw per half PWM cycle when normal rounding is used

Interval t, t+,,ﬁ' I-,,ﬁ' €4, PW
1 T C -2t
O<t,<— AT
2
1 C T 2AT -2t,
—AT <t, < AT
2
t+(m t-(ln
1 C T -2t,
O<t,<— AT
2
1 T C 2AT -2,
5 AT <t, < AT

Table 7 shows, that for each half PWM period, e, pw is lying within the following range:

~AT <e, ny SAT

(76)

The corresponding quantization step Au*=4A/N is the same as in (70).
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Now, the same analysis has to be done as in chapter 8.3, to find the optimal rounding scheme
minimizing the range of e, pw per half PWM cycle.

Optimizing the rounding scheme, we have to look at e, s per half PWM cycle. This e, pw per
half PWM cycle is found by adding the individual ¢,;’s. Table 4 shows, that a general
expression for it is given by:

e, pw = PAT - 121,

(77)
where pe {0,1,2}.
The strategy to come to an optimal rounding scheme to find the #;;’s is now as follows. For
each value of t,, e, pw as given in (77) must be within the range:
1

1
—‘2'AT_<_equw <§AT

(78)

This implies, that we have to choose the parameter p in (78) properly for distinct intervals of
t,. This is easy, considering that for each interval, there will be a contribution of -2¢, for ¢, py.
The next table shows the values of p for the distinct intervals of £,

Table 8: Choosing p for distinct intervals of t,

Interval of ¢, p
O<1,< : AT 0
<t,< 4
1 3 1
—AT <t, <= AT
4 4
3 2
ZAT <t, < AT

Now that we know what value of p must be used within the distinct intervals of z,, we have to
examine which combinations of truncating and taking the ceiling of the #/s in each half
period yield the desired value of p. This is be done by studying Table 4. In the next table, the
possible combinations are shown.
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Table 9: Optimal Rounding Combinations for distinct values of p (distinct p’s per half
period); The chosen combinations are shaded

Switching | T/C | ¢,
Time
oy T |-t
C AT -,
Lo T | AT -1,
C -1,
t+(m T AT 'tv
C -1,
t-(m T 'tv
C AT -t, X X

We could ask ourselves if it is possible now to optimize the rounding scheme of the #;’s for
both the half PWM cycles and the whole PWM cycle. Comparing Table 9 with Table 6, we
see that the tables don’t show equal combinations of Truncating and Ceiling for p=1 and p=2.
This means that minimizing the range of e, pw can only be done per half PWM period OR per
whole period.

Studying (44), we see that e, pw per half-cycle corresponds with an error of u* of:

2AAPW
eq,u = T

(79)

From (79) we find that if the rounding mechanism is optimized for each half PWM cycle, the
PW spacing AT corresponds to a control signal u” spacing of:

., 24
Ay =—

N
(80)

When normal rounding was used, the e, sy interval in (76) resulted in a spacing of Au®™=4A/N,
so we see that the better rounding scheme results in a one bit gain for the PWM DAC, which
can also be calculated using (64).

8.5 Four Samples per Cycle

In the case that each ¢ is calculated with its own sample of u*, digitalizing the switching
times to ¢,; results in independent quantization errors t,;. The individual values of z,; are
minimized when normal rounding is used to calculated the z;;’s from the ¢;’s, using (65a) and
(-b), resulting a range of AT for ¢,,. Filling in At=AT in (45) yields a quantization spacing of
u® of:

Au’ :ﬁ

N
(81)
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This is the same result as in paragraph 8.2, where the resolution of u” is given by (70).

8.6 Pulse Width Resolution and Minimum Quantization Error Interval

Using the same number of N, the resolution of u* is one bit less in the case of double
sampling of u* per PWM cycle than in the case that the PW was calculated optimally for the
whole PWM cycle using one sample of u*. For the case that four samples of u* are used to
calculate the #;;’s, it is even two bits less than in the case of sampling once and the optimal
rounding scheme was used. The table below summarizes the resolutions for one, two, and
four samples per PWM cycle, and for normal rounding and optimal rounding (minimized

e, pw) that were derived in this chapter:

Table 10: Quantization Intervals Au” for different numbers of samples per PWM cycle and
for normal or optimal rounding schemes

Tv.PWM = Tz T\ PWM= T,/2 T\ PWM= T/4
Au’* for normal 4A 4A 4A
rounding N N N
Au* for optimal A 2A 4A
rounding N N N

This could be expected, because the range of e, pw, which remains AT, is spread now over
only half the PWM cycle, instead of over the whole PWM cycle. Generally, if we optimize
the rounding scheme for a constant control voltage for N PWM cycles, the overall range of

e, pw Will still be AT, but divided by T, the range of e, pw will go to zero for N—o, or,
equivalently, Au* will become infinitely high for constant «*. For an «* that is not constant in
time, however, the rounding scheme that was optimal over N PWM cycles for a constant level
of u*, is not optimal anymore.

An idea could be to optimize the rounding scheme over the number of (quarter) PWM cycles
corresponding to the bandwidth of the control loop. This means, that we have to look first
over how many (half) periods of the PWM the controller output signal remains approximately
constant. However, if a noise shaper is used, to be discussed in chapter 10, the rounding
scheme over several half periods will be affected by the noise shaper quantization error
feedback.
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9. Effects of the Digitalized Pulse Widths on the Current Error

In the former chapter, attention was paid to the quantization errors of the PW’s, which are
caused by the final time resolution of the switching times. These quantization errors were
studied by taking the PWM apart. In this chapter, the PWM with digitalized PW’s is placed
in the control loop, at the place of the ZOH and the DAC after C(z) in Figure 16.

In Figure 17(d), a drift of E (1) is shown occurring in the digital GACL. As will be explained
in this chapter, the drift is an effect due to the DAC after the digital controller.

In this chapter, e(t) and E(t) due to the etror in the full-bridge PW’s e, pw will be studied in a
deterministic way for the case that an initial current error e(0)=e¢, is present. The error
behavior studied in this chapter will seem to be typical for the case that a DAC is in the
controller loop.

The simulation model used in this chapter is the same as in Figure 30, so B(s) and the ADC
are not in the loop. The comparators of the PWM in Figure 29 now contain the rounding
mechanism to obtain the digitalized PW'’s, so that the PWM in Figure 30 acts as a DAC.

In the figure below, I,.(t) consists of only one current trapezium, with the time running till
20[ms]. PWM with digitalized PW’s (normal rounding, one sample of u" per PWM cycle)
was used for this simulation. Notice that E (¢t} drifts away after 4[ms], and that it stabilizes at
t=0,016[s] at a final value of about -871[ptAs]. The reason for this drift will be explained in
this chapter.
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Figure 47: PWM with sampling and digitalized PW’s, N=300; (a): L,i(t) (b): e(t) (c): E(t)

9.1 Errors around Reachable Values of the Reference Current
This drifts of e.(t) and E(t) in Figure 47 seem to be consequences of the digitalized PW’s. If

u™ is within the band defined in (82) of half the quantization interval around OV, the
corresponding analog PWM pulses are rounded to a OV PWM output pulse.
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Aut . Au”

(82)

This band of u” can be defined for every symmetric rounding scheme, for which u* is
rounded to an integer multiple u," of Au® according to the rules in (65a) and (-b), in which
AT, t;, and 1,; are replaced by Au®, u*, and u,", respectively.

In the loop in Figure 30, u™ equals the output of C(s), and therefore control over G is lost if u*
is within the band of (82). In order to examine the resulting drift effects, we put I,,,(r)=0.
Then, e(1) is given by:

e(t)y=-1_,(1)

(83)

If there is no control over the plant for >0, so the output of the PWM full-bridge remains 0V,
the current /() can be calculated for the following R-L network, not taking into account the
filters LP1 and LP2:

R. L.

— VN U
ov C) 1oi

Figure 48: Gradient coil network when PWM output is OV; LP1 and LP2 are not taken into
account

Solving 1...(t) yields the following exponentially decaying current form:

C

-5y

I{'m’:’ ([) = I(}e S
(84)

where I, is the initial current at =0.

In the time domain, the differential equation of the controller is given by:

PI (t)=K e(t)+ﬁje(t)dz
out P T Y

(85)

Filling in (84) in (85), yields the following expression for u*(z) (remember that
Pl (O)=u"(2)):

R,
—1 e—z:t _ K[JIOLC
Rz

«

. L,
ut (1) =K, 1| ==

¢

(86)
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For a zero output signal of the PWM, the absolute value of (86) must be within the band
defined in (87):

R.
L. - L Au”
K ||| ==—1le & -2 <=2
! Rt Rzl 2

(87)

Because the time constant 7 of C{s) is chosen 1=LJ/R,, (87) is reduced to:

P,O* < Au

2K ,

(88)

We can also easily integrate e(z) to find E(1):

’ IL [ -
Eit)= je(t)d: :L(e L -1}
o R.

(89)

A value of special interest is:

-1, L
E(oo) = —27¢
)=

(90)

Using the limit of /, given in (88), we find:

Au'L
|E(0)| < c
2K,R

(91)

Now, we can generalize the preceding analysis for the case that /,,,(t) is constant at a value
corresponding to a realizable value of the PWM input kdu™:

k- Awgpwm
R

(3

Iref (I) - = kAIref

(92)

In (92), gpww is the voltage gain of the PWM (gpwi=35), and k is an integer: k=0,£1,12,... . In
order to maintain 7,;(t)=I.(t) in (92) stationarily, the output of ((s) has to be k-Au®
stationarily. This means that the end value of the integrator in C(s) has to reach this value, as
e(e2)=0.

Now, if we want to keep the PW at the width belonging to k-4u” at the input of the PWM for

a certain value of /.,;,(t) given in (92) increased by an initial deviation Al_,;,, we find that
Al,.omust satisfy (88), replacing I,=Al, ;. In this case, the expression for [,,,;(¢) yields:
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R

oy

k-Au®
Icr)il (t) = R gPWM + AIcm’lOe .

(93)

The expression for the final value of E(z) is the same as in (90), replacing I, by Al ip.
9.1.1  Maximum Drifts in E(t) and Master Clock Frequency

In the table below, (91) is evaluated for the values Au™ for different numbers of samples per
PWM cycle and for normal and optimal rounding as in Table 10:

Table 11: Maximum values for \E(ee)| for different numbers of PWM samples per cycle using
different rounding schemes

Tv.PWM;— Tz T\ PWM™ T7/2 T.s‘,PWM= Tz/4
maximum |E( o), 2AL, 2AL, 2AL,
normal rounding KRN KRN KRN

ptte ptie pite
maximum [E{ eo}l, AL, AL, 2AL,
optimal rounding 2K RN KRN KRN

phte pite pite

From the results of the table above, we can calculate how large N must to satisfy (4).
Multiplying N by 1/7,=25kHz, the PWM frequency, we can find the required clock
frequencies f, as defined in (62):

Table 12: Minimal values of f. (MHz) for obtaining \E(eo)l<10[UAs] for different numbers of
samples per PWM cycle (PWM frequency 25kHz) and different rounding schemes

T,\‘.PW.}_{: T Topwu=T/2 Topwy=T/4
Normal Rounding, f, 1458.35 1458.35 1458.35
Optimal Rounding, f. 364.575 729.175 1458.35

Studying the table above, we see that 364.6MHz is the minimal f. for which the criterium for
E(e0) can be met. However, the next time that a current trapezium is generated, the drift might
occur again, resulting in an accumulating E(z), violating the criterium. Another disadvantage
is that f,=364.6MHz can only be used when sampling once per PWM cycle is used, and
sampling once per cycle will result in less phase margin for the control loop than for
sampling twice or four times per PWM cycle. Therefore, another solution must be found to
take away the drift in E(z). A solution to do this will be given in chapter 10.

9.1.2  Simulations showing the Drift in E(t)

Now, the analytical results derived in the first part of this paragraph will be illustrated by a
PSI simulation with the model shown in Figure 30. In (85) K|, equals 3.7/35 instead of 3.7,
because the detailed PWM has a voltage gain gpwy=35. PWM with sampling once per cycle

is used, with the non-optimal normal rounding scheme of paragraph 8.2, so that Au” is given
by (70).

For this simulation, we introduce the parameter /, that replaces the factor 2 resulting from
substituting Au* in (88):
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(94)

For the simulation, the value for N is chosen to be 300, so one PWM cycle is divided in 300
equal parts. In this case, the upper border of the band defined in (82) is approximated if /, in
(94) equals (I=-1.999):

1.9994
K,N
The simulation results are plotted in Figure 49. The plot (a) and (b) give the results when no
digitalized PW’s are used. They show that the controller actively controls the process to get
rid of the initial current error ¢(0)=-1,. In plot (c) and (d), digitalized PW’s are used. In plot
(c), also the negative version of the exponential signal of (84) is plotted, which equals the

simulated e(?), as expected. Notice that in plot (d) E(t) reaches the value 1940[pAs], in
accordance with (91).

¢ =

A
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0
-l s i i )
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A
1 : () ,
05 \‘ ]
O : : . -
0 0.005 0.01 0.015 0.02 time [s]
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As 16 ‘ (d)
O i i 1 i
0 0.005 0.01 0.015 0.02 time [s]

Figure 49: k=0, N=300, |=-1.999; (a): e(t) for analog PW’s; (b): E(t) for analog PW’s; (c):
e(t) for discrete PW’s; (d): E(1) for discrete PW’s

Now, in Figure 50, I, is chosen with /=-2 in (94), and again with N=300. In this case, plot (a)
shows that the controller output changes the PWM output signal because the upper border in
(82) 1s passed, and e(#) s regulated to zero quickly.
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Figure 50: k=0, N=300, I=-2 (a): e(t), discrete PW’s (b): E(t), discrete PW'’s

9.2 Errors around Unreachable Values of the Reference Current

If we want to reach a constant /(1) corresponding to a non-integer multiple of Au” at the
input of the PWM, say p, with k<p<k+/, where k is an integer, the output will not reach 7,,(1)
stationarily, but it will stay fluctuating around the desired /,.,(t)=pAl,.;, where Al,,, is defined
as in (92).

For the discussion below, let’s assume that [,,,,(0)=1,.,(0), so that (0)=0, so that the initial
controller output 1s equal to the initial value of its integrator, which will be set to a voltage

corresponding to ,.(t), thus «*(0)= PI,(0) = pAu” . This level of 1™ corresponds to an

unrealizable output pulse of the PWM, so that PW will be digitalized to the closest realizable
PW,.

u*
prAet
¥
A” A : ..............................................................................
pau’
Au* -
2
O time

Figure 51: initial input of PWM corresponding to unreachable value

of L(t)

Assume that in Figure 51, 1/2<p<l, so that that u"=pAu” is rounded to a too high level
u/=Au’, resulting in an exponentially increasing I,.(t). If we define p*=1-p (see Figure 51),
we can write for the change in 1,,(1):

e,
AICUH (f) = p+AIref [1 - € . )

(95)

Now, ¢(1) yields the negative version of (95). For PI,,(t) we find the following expression:
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out

K,
PL,(1)= pAu’ + K e(t) + L [e(t)dr
0

(96)

+

Equating this formula for PI,,(t) to and solving for ¢ yields the crossing time ¢;, and

after this determining the next sampling time of the PWM greater than this crossing time, will
give the moment that the PW changes to the level of k=0 (zero DC voltage). Solving this
equation has to be done numerically, or can be estimated if the exponential power is
approximated by a first- or second-order Taylor series. This will not be done explicitly,
because as soon as we have to approximate the solutions numerically, it is better to run a
Simulink simulation, what will be done in the next sub-paragraph.

9.2.1 Simulation showing the Fluctuations

For the simulation in Figure 52 the value of p=0.8 is taken, thus /,./(t)=0.8Al,,;. For the
simulation, PWM with sampling once per PWM cycle and normal rounding is used.

The initial values of the integrators of the controller and the plant are taken as discussed
above to prevent the occurrence of transients. So, PI,,,(0) is set to value corresponding to
Ift), P1,,(0)=0.8 Au’. The outputs of the low-pass sections are given values corresponding
to the PWM output PW, that follows from the value to which u* can be thought to be rounded
for p=0.8, which is to Au’.

At t=0, PI,,(0) is rounded to Au’, resulting in a too large PW. This will cause I,,;(t) to grow,
and therefore, e(z) and PI,,,(t) will start to decrease. In Figure 52, it can be seen that PI,,(t)
dives under the level of Au’/2 at the crossing time ¢;. The PW will be changed to a 0OV PWM
output at the next sample moment of the PWM, say ¢, |, and as a consequence, e(t) starts to
grow in the opposite direction, causing PI,,(?) to grow in the opposite direction too. Then e(t)
will continue to grow in the new direction until at a next sample moment Pl,,(¢) is above the
Au'*/2 level again, so that «" is rounded to Au”, and too large a PW is at the PWM output.
This process will repeat itself, resulting in the oscillation of I.,;(t) around the desired constant
value of /,,,(t), and thus e(t) fluctuating around zero.

In plot (b), it seems that E{(t) is decreasing globally after all, meaning that still a transient
effect is present.
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Figure 52: (a): e(t); (b): E(t); (c): u* (equal to Plout(t)); N=300, p=0.8



10. Implementation of a Noise Shaper to take away the Drift

At the end of paragraph 9.1, it was stated that even if the PW rounding scheme resulting in
the smallest range of ¢, pw is chosen, the drifts in E(f) might accumulate, violating the
criterium in (4). In this chapter, a solution to the drift problem is proposed, based on
accumulating u* each sampling period with a delayed version of the quantization error.

10.1  The Function of the Noise Shaper

To prevent e(t) and E(t) from drifting away, a filter based on the structure in Figure 53 can be
used, which is called Noise Shaper in digital audio techniques:

Bi(k)  m Quantizer Bu(k)
! DA !
+
7
<

v+
eq(k) TN
- \L/*

Figure 53: First-order Noise Shaper

In Figure 53, the quantization error e,(k) is added to the input B;,(k) of the filter, delayed over
the sample time T, (represented by the block ).

In the GACL with the digitalized PW’s, the noise shaper is used to filter the quantization

errors e, py(k) resulting from digitalizing PW(k). The implementation of the noise shaper for
the filtering of e, pu(k) is given in Figure 54:
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Figure 54: Implementation of the first-order noise shaper to the PWM input

In Figure 54, the factor z” represents the delay over one period of the PWM sampling time
T, pwy over which e, py(k) 1s fed back to the input of the discrete PW calculation block.
Before adding e, py(k-1) to Pl,,(k), it is multiplied by a factor A/(nT,), where n is the number
of samples per PWM cycle.

In the case that a constant value of the signal PI,(k) in Figure 54 is such that the
corresponding PWM output is rounded to OV by the quantizer, e, pw(k) will increase Pl,,(k)
until u* (k) becomes so large that the corresponding PWM output isn’t OV anymore. In the
closed-loop system of the gradient coil, control can be retaken then, and as a result the drift
signals e(t) and E(t) will grow in the opposite direction.

10.2  Theory on Noise Shapers

In [4], §10.3, a general treatment of noise shapers can be found. In that treatment, e,(k) is
considered as white noise. For the GACL, if PI,,(k) is varying relatively fast over adjacent
periods, e, pu{k) might be considered as white noise.

In the discussion of chapter 9, however, e, pu{k) can not be considered as white noise,
because the errors are completely deterministic there. On the other hand, if u*(k) is changing
over many quantization steps per T,=T, pwas, the theory on the noise behavior of the noise

shaper is quite useful.

The general noise shaper is represented as:
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Figure 55: General form of a noise shaper

For the general noise shaper, the following formula can be found:

e, (2)J(z2)+B,(2)- B, (2) =¢,(2)

(97)
The quantizer is only implicitly within this expression. We can write equation (97) as
B(;u; (Z) e‘ (Z)
— = - (1= J(2)
Bin (Z) Bin (Z)
(98)

In expression (98), it is found that the signal transfer function is equal to 1, while the second
part of the equation

e, ()1~ J(2))
(99)

determines the error at the moment the output word length is reduced.

The term (1-J(z)) is usually called the noise transfer function and determines the coloring of
the output noise. Because the signal gain equals 1, this error can be related to the input signal
as well. In case the word length of a system is reduced to N bits, then a value

& 1
B~ 2Y -1

n

=2¥

(100)

is obtained. The value of e, (k) is thus equal to the LSB value of the N-bits output word. The
noise shaping operation reduces the error even more, as will be shown. From equation (98) it
is seen that the spectral density of the error signal at the output of the system is determined by
the filter operation (1-J(z)).

For the case of the first-order noise shaper, we can write for equation (97) using
J(z)=z"
Bow (Z) = Bin (Z) - eq (Z)(l - an)
(101)

The first-order filter operation reduces the power of ¢,(z) for low frequencies (z=1). The total
power of e (k) is obtained by integrating e,(z) over the signal bandwidth f,. Supposing that
e4(k) is white noise in the band (=0 to f=f,/2), the result becomes:
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(102)
. 2 b .
In this equation, 8, = ———, with f; the output sampling frequency.
Inserting z= e’® we obtain
2
Buut -1 2
—= :‘l—z ‘ =2(1-cosB)
e
q
(103)
and
es, =2(6, —sin6))e;
(104)

Without the noise-shaping the total uniformly distributed noise over the band 8=0 to 6=8, is
equal to:

uniform

6
2 _ 2 2
e —qu.dO—erl
0

(105)

Figure 56 shows the difference with or without the noise shaper. If e,’=1, the noise power is
equal to the surface under the quadratic amplitude curve of the filter.

4
2
B(mt
eq
eqz 1
0 L L
0 0=0, T 0

Figure 56: The quadratic amplitude transfer function of the noise shaper and the constant
power of e,(z)

In comparing the results of equations (104) and (105), the improvement with respect to noise
and dynamic range of the system is obtained. Using F) as the dynamic range improvement
factor we get:
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F €. e sin@,
e B 8,

uniform

(106)

Using a second-order Taylor approximation for sin8,, it can be calculated that the “Break
Even Point” of (106) is at 8=0,=0.617%. Therefore, the noise reduction only exists when high
enough oversampling is applied. This means, that for bigger values of 8y, the total power of
e (k) is even larger than for the uniform case!

In the table below, the improvement factors F; are given for different numbers of samples per
PWM cycle. The system bandwidth f,=10kHz is used for 6.

Table 13: F, for different PWM sample frequencies

T=T; I,=T./2 T.=T/4

F, 1.24 0.70 0.36

Table 13 shows that the largest reduction of the power of the quantization error is reached if
four samples per PWM cycle are used.

Higher order noise shapers show even worse improvement factors for high bandwidths.
Therefore, we will take a first-order noise shaper only.

10.2.1 Simulation: Normal Rounding Scheme, Single Sample per PWM Cycle, N=30 and
N=300

In this sub-paragraph, two simulations are performed using of the noise shaper in the GACL.
Single sampling per PWM cycle is used. The PWM cycle will be divided in 30 equal parts
for the first simulation, and in 300 equal parts for the second simulation. The switching times
are digitalized using the normal rounding scheme, as was done for the simulations in sub-
paragraph 9.1.2. /,.(t) consists of only three current trapezia, and after these, it remains zero.

In Figure 57, the results are shown for the number N=30 when the noise shaper is used. Now,
the maximum value of E(¢) is -573[p1As], and the end value is fluctuating around zero with a
maximum amplitude of about 60[ptAs]. If no noise shaper was used, the value of E () could
drift to a maximum of 4860{pAs], according to Table 11, This means a reduction with a
factor 81 of the drift in E{t).

Comparing the behavior of e,(¢) for the case that the noise shaper is used to the case that it
wasn’t, it can be seen that its amplitudes have increased, resulting in an increased
quantization noise power. This could have been predicted by the fact that F;=1.24 for T,=T,
as in Table 13.
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Figure 57: N=30, noise shaper is used. (a): 1.,(t); (b): e(1); (c): E{t)
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For comparising the behavior with the results from chapter 8.3, the simulations are also
carried out for the case that the PWM cycle is divided into 300 equal parts. Using the noise
shaper, the error integral will fluctuate with an average amplitude of 60[pLAs], which also
means a reduction of a factor 81 compared to the largest value of 4860[tAs] that can occur
due to drift when no noise shaper is used.
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Figure 58: N=300, noise shaper is used. (a): L,i(t) (b): e(t) (c): Eft)

10.3  Different Sampling Rates and Rounding Schemes

In this paragraph, simulations are carried out to study the oscillations in e(t) and E{t)
resulting from the noise shaper. In order to keep it simple, the PWM using discrete PW’s is
replaced by a ZOH in series with a quantizer. The quantization interval of the quantizer
corresponds to Au” as given in Table 10. If the oscillation in E(z) caused by the noise shaper
must be limited to satisfy (4), N, the number of clock cycles of the master clock per PWM
cycle, must be chosen large enough.

The first table gives the simulation results for the minimum values for N required to meet the
criterium in the case that one sample per PWM cycle is used. For comparison with the case
that no noise shaper would be used, the maximum values of the drift in E(t} according Table
11 are also given. The better performance obtained by using the noise shaper is expressed by
the improvement factor F,, defined by division by 10[tAs] (the amplitude of Ef¢) if the noise
shaper 1s used) of the values following from Table 11.

Table 14: Minimal N and improvement factors F; for the case of T;=T,

Minimal N | E(eo) [LAs] F;
Normal Rounding 750 778 78
Optimal Rounding 200 729 73

Table 14 shows that for Ts=T,, using the optimal rounding scheme, N can be reduced from
750 to 200, while F, remains the same, approximately.

In the next table, the results are shown for sampling twice per PWM cycle.
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Table 15: Minimal N and F; for the case of T,=T/2

Minimal N | E{c) [LAS] F,
Normal Rounding 350 1667 167
Optimal Rounding 200 1458 146

As shown in Table 15, also in the case of double sampling, N can be lowered considerably if
the optimal rounding scheme is used, while F, doesn’t change relatively much.

For the last table, sampling four times per PWM cycle is used. The normal rounding scheme
is also the optimal rounding scheme for this case, as was discussed in paragraph 8.5.

Table 16: Minimal N and F; for the case of T,=T/4

Minimal N | E{e) [uAs] £,

Normal Rounding 150 3889 389

According to the three tables above, using the noise shaper always results in an improvement
factor F, much larger than unity. Minimal N in combination with the highest F, can be
reached in the case of T,.=T,/4. N=150 corresponds to a master clock frequency for the digital
circuit driving the PWM of only 3.75MHz if 7,=40{us].

10.4  Conclusions

Positive feedback of the quantization errors seems to be an effective method to prevent the
gradient current error from drifting. For every PWM sampling frequency 7, and every
rounding scheme, a great reduction of the drifts in E(¢) can be achieved. According to the
simulations, the greatest improvement in the behavior of E(1) was obtained for the highest
PWM sampling frequency with T,=T,/4. Another advantage of choosing the highest sampling
frequency is the lower variance of e(1) caused by quantization effects. This results in lower
amplitudes of e(1).
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11. Conclusions and Recommendations

11.1  Conclusions

Studying the analog gradient amplifier control loop learns that this structure is not suited to
meet the criterium of a maximum integrated current error of 10[LAs]. Extra delay times
inherent to a sampled system result in less phase margin, and therefore in more oscillatory
behavior. General expressions for the final value showed that E{eo) is heavily dependent on
delays and second-order filters in the open-loop of the present analog control loop.

A great reduction of the current error and its integral can be obtained by designing an
appropriate feedforward filter. If the transfer of the feedforward path is a combination of
second-order low-pass filters, the final values of the current error and its integral are zero.
The best overall performance is obtained by making the feedforward path linear phase. The
linear phase characteristic reduces the current transients considerably, so that the 10[pLAs]
criterium can be met all of the time in the simulations. The reduced range e(t) results in a gain
of about four bits for the AD converter in the error path.

In practice, however, the performance of feedforward using filters is dependent on the
accuracy of the estimate of the delay time of the feedforward path over which the reference
signal must be delayed in the reference path. This problem, however, also exists for the
original analog control structure, where the delay corrected error was calculated.

Digitalizing the pulse widths is inherent to calculating the PWM switching times digitally.
Dependent on the number of samples used per PWM cycle (one, two, or four samples), the
switching times can be rounded such, that the range of the pulse width error is minimized for
the specific sampling rate. A high resolution can be realized at a relatively low sampling rate
(one sample per PWM cycle), but even then, accumulating drifts may occur in the integrated
current error, violating the criterium. A noise shaper can take away this drift, but the drift is
replaced by an oscillation. The amplitude of this oscillation, however, can meet the criterium
if the resolution of the digitalized pulses is high enough. If each switching time is calculated
using a different sample (sampling four times per PWM cycle), the criterium is met using a
master clock frequency of 3.75Mhz (PWM cycle divided in 150 equal parts), corresponding
to a relatively low pulse width resolution.

11.2 Recommendations

Applying feedforward releases the controller of tracking the reference current. It could be
redesigned to suppress disturbances and model uncertainties. Modern control methods as
LQG or H.. could be used to control the integrated current error directly.

Using higher sampling rates for updating the PWM switching times, e.g. four samples per
cycle, results in a Nyquist frequency higher than those of the lowest PWM voltage pulse
harmonics. As a consequence, the current ripple resulting from the lowest PWM voltage
harmonics is in the control bandwidth now, so that higher cutoff frequencies could be chosen
for LPI and LP2, and the controller has to be redesigned to reduce the ripple. For the same
reason, it must be studied if it is still necessary to connect four PWM modules in parallel to
apply the multiple-phase principle.
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Attention must also be paid to digital filtering techniques. Possibly in combination with a
modern controller, the oscillations caused by the noise shaper could be suppressed, or the
oscillations could be shifted to higher frequencies.

In principle, a feedforward could also be applied in the analog GACL. This would require
extra analog filters in the feedforward path. Using a computer, this filtering can be performed
digitally, resulting in a cheaper realization of these filters. In combination with a newly
designed controller and some extra “tricks” like e.g. using a noise shaper, the system
performance can be improved, and costs might be reduced, giving a good foundation to
digitalize the GACL.
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