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Measurement system design for an Automatic Guided Vehicle

Abstract

In and around the city of Eindhoven in The Netherlands, a new kind of public
transportation system is going to be used. This new system consists amongst others of
articulated and double articulated commuter buses, equipped with all-wheel steering
for high maneuverability at bus stops and in curves. For human drivers it is
impossible to steer such a complex vehicle sufficiently accurate by hand. Therefore,
the buses have to be equipped with an automatic guidance system that steers the
vehicles along the bus lanes.

The Control Systems Group of the Eindhoven University of Technology is doing
research on the measurement and control system of the vehicle.

The automatic guidance system has to consist of a reliable measurement system. Only
with a reliable measurement system, it is possible to steer the vehicle along the bus
lane correctly. This report describes the design of a measurement system for the
automatic guidance system where the vehicles can be equipped with.

The guidance system is designed in such a way that the vehicle is guided laterally. For
the lateral guidance of the vehicle it is important that position and speed of the vehicle
are determined with respect to the path that has to be followed. The path that has to be
followed will be formed by a track of magnets. This is a track in which permanent
magnets are mounted in the road surface at fixed distances of each other. These
permanent magnets will be detected by magnetometers in the vehicle. The
measurement system or the observer is designed according to the theory of Kalman
filtering. In the design of the observer a lot of kinematics of the vehicle are involved.
The kinematic equations of the vehicle are described as well as a state-space
description of the kinematic equations.

The lateral position and velocity of the vehicle can be estimated with an
accelerometer, which measures the lateral acceleration of the vehicle. The velocity
estimates are obtained by integrating the measurements of the accelerometer once,
whereas the estimates of the deviations are obtained by integrating the accelerometer
data twice. The estimates show deviations with respect to the true values caused by
measurement noise. The estimates can be updated and corrected with use of the
measurement data coming from the magnetometers, which measure the lateral
deviation of the vehicle. With this estimation technique, which is completely
independent of all vehicle parameters, it is possible to obtain estimates of the lateral
deviation and velocity of the vehicle, which come close to the true lateral deviation
and velocity of the vehicle. To make the estimates come closer to the true values, the
observer can be improved by extending it with some sensors. The measurement data
of these additional sensors can be used to do an extra update on the estimates, with the
intention to improve the estimates. The sensors that are discussed to improve the
observer are the integrating and rate gyroscope. Gyroscopes measure the orientation
or the rate of change in orientation of the object on which they are mounted.
Simulation results show that gyroscopes are a good option for the improvement of the
observer. For the implementation of the sensors in the observer, it is important to
know their noise properties and that the noise can be characterized in the observer. It
is described how to deal with sensor noise and how to obtain noise properties. Noise
properties of the used sensors are extracted from their datasheets and simulations are
carried out to show the behaviour of the observer with these sensors and their noise.
Furthermore, the observer is described in a SISO and MIMO representation and the
design of the observer is done according to the MIMO representation.
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Chapter 1

Introduction

1.1 Purpose of investigation

The Dutch foundation HOV (= high quality public transport) has designed a double
articulated lightweight bus with 4 independently steerable axles and independent
drives on 6 of the 8 wheels. The bus is going to drive from the central station of
Eindhoven to the centre of Veldhoven, the new district Meerhoven and Eindhoven
Airport. The name of the vehicle is ‘Phileas’ and it is kind of a tram on pneumatic
tires, where great importance is attached to comfort, speed, punctuality and easily
getting on and off. Figure 1-1 shows a picture of the vehicle that is described above.

Figure 1-1: Picture of the vehicle named Phileas

For human drivers, it is impossible to steer such a vehicle by hand. Therefore a
control system to steer the vehicle has to been designed.

The Control Systems Group of the Eindhoven University of Technology is doing
research on the measurement and control system of the vehicle.

For the lateral guidance of the vehicle it is important that position and speed of the
vehicle are determined with respect to the path that has to be followed. The path will
be formed by a track of magnets. This is a track in which permanent magnets are
mounted in the road surface at fixed distances of each other. These permanent
magnets will be detected by magnetometers in the vehicle. Because of the fixed
distance between the permanent magnets, the measurement data coming from the
magnetometers will be available at discrete times only. With the use of additional
sensors in the vehicle and in a model of the vehicle, it is possible to obtain
measurement data at any required sampletime. With these additional sensors it is

®Eindhoven University of Technology 1
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possible to determine the speed and the position of the vehicle when the
magnetometers are not on top of the permanent magnets.

1.2 Assignment

The assignment is to investigate which sensors can be used to realize a good
measurement system. The way how the measurement signals from the different
sensors can be combined, also has to be examined. The combination of sensors is also
called sensor fusion. The found sensors have to be implemented in an observer in
Simulink. According to simulation results, conclusions will be drawn and
recommendations will be done.

1.3 Structure of the report

The observer is designed according to a Kalman Filter. To understand the design of
the observer according to Kalman Filtering a short introduction to Kalman Filtering
Theory is given in Chapter 2.

Chapter 3 deals with the kinematics of the vehicle. It is understandable that there are a
lot of kinematics involved in such a vehicle. These kinematics are also involved in the
design of the observer. In Chapter 3 the kinematic model of the vehicle is described
and the kinematic equations of the vehicle, which will come back in the design of the
observer, are given.

The Simulink model in which the observer has to be implemented has been studied.
This is done to understand the behaviour of the model. The Simulink model and its
functionality are described in Chapter 4.

The actual design of the observer is handled in Chapter 5. A method is introduced to
estimate the lateral velocity and position of the vehicle with respect to the path that
has to be followed. According to some simulation results, the observer is evaluated.

The design of the observer can be improved by extending the observer with a sensor
or several sensors. A few sensors, which can be used for this purpose and how they
can be implemented in the design of the observer, are described in Chapter 6. The
improvement of the observer with use of the sensors is evaluated by means of some
simulation results.

When the sensors which are described in this report are implemented in the observer,
it is important to know their noise properties and that the noise can be characterized in
the observer. How to handle sensor noise and how to obtain noise covariances are
aspects which are dealt with in Chapter 7. There is also said something about low-
frequency sensor properties, like bias and drift.

Finally, the report is concluded with the conclusions and recommendations. The main
conclusions which are drawn during the M.Sc. project and some recommendations for
further research are described in Chapter 8.

2 ®Eindhoven University of Technology
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Chapter 2
Kalman Filtering Theory

This chapter deals with the theory of Kalman filtering. An introduction to the theory
of Kalman filtering is given to explain the observer design which is described later in
this report.

Kalman filters have been employed very successfully in control and guidance systems
since the sixties, with particular application to avionics and navigation. These filters
can track signals of known structure accurately among noise and other signal
components with different structure. Since there is some noise present in every real-
world dynamic process and all observations are subject to noise, it would make sense
to optimize the observer gains for the noise that is present in the input and in the
output. The theory for accomplishing this optimization was first developed by R.E.
Kalman in 1960, and the resulting observer is known as the Kalman filter.

Because the observer is designed in discrete time, only the discrete-time Kalman filter
will be discussed.

2.1 Discrete-time models

For a continuous-time process, with piecewise-constant (i.e., sampled and held)
inputs, the model can be obtained from the continuous-time system (ref. [2]):

%= Ax+Bu 2-1)

The general solution to equation (2-1) is:

t+T

x(t+7)= e’"x(t)+.f eA(’”'f)Bu(.‘,‘)d.‘,‘ (2-2)

t

Now suppose the input u(t) to equation (2-1) is piecewise-constant:
u(t)=u(nT):=u, =const., for n”T <t<(n+1)T (2-3)

Evaluating equation (2-2) with t =aT and 7 =T, and using equation (2-3) gives:
x(nT+T)= eATx(nT)+( [ "TT+TeA("T+T'5)Bd§) u, (2-4)

The factor u, is brought outside the integral because of the fact that u(t) is piecewise-

constant.
Equation (2-4) can be written as:

X, =Px, +T'u, (2-5)

where:

®Eindhoven University of Technology 3
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x, .= x(nT) (2-6)

& :=0(T)=e" @-7
nT+T WT 4T - T B B

F:=LT ANTT-E)p g =IO e BdA =X(6AT —I)=X(®—1) (2-8)

The difference equation or recursion equation (2-5) is the fundamental representation
of a discrete-time system, and plays the same role as equation (2-1) does in a
continuous-time system. In words, it can be read as “the state at the (n + l)st sampling

instant is a linear combination of the state at the nth sampling instant and the
(piecewise-constant) control during the nth sampling instant.”

2.2 Observer design

A full-order observer is a dynamic system of the same order as the process whose
state is to be estimated. It is excited by the inputs and outputs of that process, and has
the property that the estimation error, that means, the difference between the state x,

of the process and the state X, of the observer, converges to zero as n — oo

independent of the state of the process or its inputs and outputs.
Let the observer be defined by the general linear difference equation (ref. [2]):

X, =FX +Ky,+Hu, (2-9)

Now, the matrices F, K and H have to be conditioned such that the requirements to a
full-order observer are met. The conditions can be found by subtracting equation (2-9)
from equation (2-5). This results in:

Xy =X, =®x, +Tu, —Fx, — Ky, —Hu, (2-10)

n

Let e, be defined by:
en = xn - in
Further, the observation y, is given by:
Yo =Cx,
From equation (2-10) can be obtained:

e,n=Fe, +(®-KC—~F)x,+ [ -H)u, (2-11)
Thus, in order to meet the requirements to a full-order observer, the transition matrix

F of the observer must be stable, that means, the eigenvalues of F must lie within the
unit circle, and moreover, the following must hold:

It
e D)
fl

F: o-KC (2-12)

H=T (2-13)

According to these relations, the observer can be expressed as follows:

4 ®Eindhoven University of Technology
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X, =®%, +Tu, +K(y, -C%,) (2-14)

It can be seen from equation (2-14) that the observer has the same dynamics as the
underlying process, except that it has an additional input:

K(y, -C%,)

The role of this additional input can be interpreted as that of driving the error e, to
zero.
So, the observer design reduces to the selection of the gain matrix K such that the

eigenvalues of & =® - KC lie at suitable locations within the unit circle.

For both single- and multiple-output processes the observer gain matrix can be
selected to make the observer a Kalman filter, that means, a filter producing the
estimate X in a least squares sense of the estimation error or in other words, a
minimum variance estimator.

2.3 Discrete-time Kalman filter

The optimum observer is defined as the one that has the smallest covariance matrix of
the estimation error.

2.3.1 Derivation of Kalman filter equations

To derive the equations of the optimum observer, that is, the Kalman filter, it is
supposed that the plant dynamics are modeled by the (possibly time-varying)
dynamics (ref. [2]):

X =P, x, +Tu, +v, (2-15)

In this equation v, is a random noise process having the following statistical
properties:

1. The noise has a mean of zero:
E {vn }: 0
2. v, and v are uncorrelated for n # k , that means:

E{y v }=0,for n#k

Epi 1=V,

A discrete-time random process, or, in other words, a random sequence, with the
properties described above may be referred to as “sampled white noise” with zero-
mean and covariance matrix V,,.

®Eindhoven University of Technology 5
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The observations are given by the following equation:

Ya =Cox, +W, (2-16)
In this equation w, is sampled white noise with covariance matrix:

W, = E{w,w! }

Furthermore, v, and w, are uncorrelated:

E{y,wl }=0 for all n.k (2-17)
The observer for this process is defined by (ref. [2]):

%,,=®,%,+Tu,+K,(y,-Cx,) (2-18)

With the use of equation (2-15) and (2-18) the estimation error can be determined.
The estimation error is defined by:

~

e, =x —X (2-19)

Upon this definition, the estimation error is given by:

e =(<I> —KnCn)En +v, - K w

- (2-20)
=P e +v,
where:
¢ =d -K,C, (2-21)
v,=v,-K w, (2-22)

Toward the goal of minimizing the covariance matrix of the estimation error, the
equation that governs its propagation is first developed. Then the gain matrix that
minimizes the covariance matrix is found.

Using equation (2-20), the following can be written in preparation for deriving the
covariance propagation equation:

~

~T _ (& ~ ~TXT T
en+len+1 - (q)nen +vn)(en (Dn +vn )

~ -~ ~ (2-23)
=@, ce/d +v e dl +d v +v v
Now, the expected value on both sides of equation (2-23) is taken, letting:
P =Efz (2-24)

and with the note (ref. [2]) that E {Envf }: 0, this results in:

6 ®Eindhoven University of Technology
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~

Pn+l = &)nﬁnﬁsz + ‘7'1 (2'25)
In this equation V, equals the following:

7 =Epv}

= E{(v, - K,w, 07 -/ KT )} (2-26)
=V, +K,WK]

where the assumption is made that v, and w, are uncorrelated.
With use of equation (2-21) and (2-26), the following can be obtained from equation
(2-25):

B, =(®,-K,C)P@ -CTKT)+V, +KW KT (2-27)

n+l

The objective now is to find the value of K, that minimizes ﬁml . The optimum gain
matrix is given by (ref. [2]):

R, =@ Bc(c,BcT+w,)' (2-28)
The equation for the propagation of the minimum covariance matrix is:
ﬁrﬂ-l = (Dn {ﬁn - EC: (Cn ﬁn C: + Wn )-lcn ﬁn }q): + Vn (2'29)

This equation can be rewritten. Let K , be defined by:

K =9 K, (2-30)

n

where:
R, =Bcr(c,BcT+w,)" 2-31)

The a posteriori covariance matrix is defined as:
B=B-Bcl(c,BcT+w,)'C,B =(1-K,C,)P, (2-32)
Now, equation (2-29) becomes:

B,=® Pdl+V, (2-33)

The gain matrix can also be expressed in terms of the a posteriori covariance matrix as
follows:

K =PCTW (2-34)

®Eindhoven University of Technology 7
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2.3.2 Interpretation

For convenience, the equation of the observer (2-18) is repeated, but now with use of
the optimized gain matrix:

%.,=®,% +Tu, +® K (y,-C3%)

n+l nn n%n n nn (2_35)
=0 x +Tu,
where:
=% +K, (y,-C7%,) (2-36)

The intuitive interpretation is provided by the equations (2-35) and (2-36). The first of
these equations is simply the equation of the dynamic process:

xn+l = q)nxn + Fnun

with X, appearing in place of the state x, on the right-hand side and with X,
appearing on the left. Since the observation y,,, does not appear in equation (2-35),
this equation can be regarded as a description of how the optimum state estimate X,

propagates during the time interval between the nth and the (n+1)st observation, an
interval during which no observations have occurred.

The effect of the nth observation is reflected in equation (2-36). This equation tells
how the state estimate X, prior to the observation is updated by the observation. First,

the residual:

is calculated. Then, the residual is multiplied by the gain matrix K , - Finally, the result

of the multiplication is added to the prior state estimate. All these operations occur at
the instant of the nth observation. Thus, X can be interpreted as the optimum state

estimate immediately before the nth observation, that is, the a priori state estimate. In
the same way, X, can be interpreted as the optimum estimate of the state immediately
after the nth observation, that is, the a posteriori state estimate. With the use of this
interpretation, equation (2-36) shows how the new observation is used to get the a
posteriori estimate from the a priori estimate, and equation (2-35) shows how that
estimate propagates in time to give the a priori estimate of the state just before the
(n+1)st observation.

The important relations of Kalman filtering are summarized in the next table, Table
2-1.

8 ®Eindhoven University of Technology
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Observation i =% +K,(y,-Cx)
Time Enﬂ = cbn‘%n + Fnun
R =BCT(c.BCT+w, ) =BCTW

Table 2-1: Important relations for a discrete-time Kalman filter

The procedure for a discrete-time Kalman filter is also shown in the flowchart of

Figure 2-1.

Propagate state
Xn+1 = q)n'xn + Fn“n

v

Predict observation
Yo =C,X,

v

Propagate covariance

Pn+l =(I)"13'1(I)§ +Va

v

Compute gain

R =Pcrc,Bcr+w,)

v

Read observation
Yn
¥

Update state estimate
i, =%, +K, (v, ~5,)

Update covariance

B=(r-K.c)P

Figure 2-1: Flowchart for a discrete-time Kalman filter

The procedure shown in the flowchart above can be used even if the schedule of
observations is not known in advance. In particular, the procedure is valid for
applications in which observations are made at random instants.
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2.4 Practical application of Kalman filtering

In reference {2] a practical application of Kalman filtering techniques is described
which is very useful for the observer design which is dealt with in this report. This
practical application is related to problems where multi-rate, delayed and
nonsynchronous sampling is involved. The application as introduced in ref. [2] is
discussed here.

2.4.1 Multi-rate, delayed and nonsynchronous sampling

An application of moderate complexity might involve the use of several sensors. The
sensors may not all take their observations concurrently, but it is desired to integrate
the observations optimally. A typical sampling pattern involving three sensors is
illustrated in Figure 2-2.

First
sensor
(ya)
(n-1)T nT (n+1)T
Second
sensor
(ye)
| | ]
(n-1)T nT (n+1)T
Third
sensor
(yc)
(n-1)T nT (n+1)T
T, T, T; T, T, T;
| { | ] | ! 1
2.3 e lyws taez Lees

Figure 2-2: Sampling pattern involving three sensors

The first sensor, with output y,, takes samples at multiples of T seconds. The second
sensor, with output yg, takes samples at the same rate, but these samples are offset
from the first by 7, seconds. The third sensor, with output yc, takes samples twice as
frequently as the first two and is synchronized with the first sensor.

Merging the sampling schedules of the three sensors results in dividing the sampling
interval into three subintervals of lengths 7, T, and T3, respectively. For the particular
sampling pattern of Figure 2-2, T; + T> = T3 = T/2. Thus each cycle has three
sampling cases separated by intervals of different duration:

e Case 1: Sensors A and C operate simultaneously.

e Case 2: Sensor B operates alone.
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s Case 3: Sensor C operates alone.
To merge the data from the sensors, the following relationships will be used:

X, =X, + Kn(yn - CAan)
Xpel T Xpst + Kn+1 (yn+1 - Can+l )

Xps2 =Xpya + Kn+2 (yn+2 - Can+2 )

Because y, occurs for Case 1 in which two sensors operate simultaneously, the
observation matrix Cyac has two rows. The first contains the observation sensitivity
coefficients for sensor A and the second for sensor C. The other two observation
matrices Cg and Cc correspond to Cases 2 and 3 in each of which there is only one
observation and thus each has only one row.

Considering the observation cycle, the state update equation is written as follows:

Xnti Z(I)a,- Xpeic1 T ra,-unﬂ‘-l , =123

where

7 .
T, =['e""Bdr, =123

After one observation cycle of three updates, the cycle would revert to the beginning.
The cycle can be interpreted by expressing the procedure in words:

s Between samples, the state estimate and covariance matrix are propagated to
the next sampling instant using the state transition matrix corresponding to the
elapse of time between the samples.

¢ At sampling instants, the state estimate is updated using the current
observation, the observation matrix and the gain matrix.

2.5 Conclusions

The theory of Kalman filtering is introduced. Kalman filters have been employed very
successfully in control and guidance systems since the sixties, with particular
application to avionics and navigation.

The discrete-time Kalman filter with its filtering equations is described, and an
interpretation is given to the discrete-time Kalman filter or observer.

A Kalman filter seems to be very useful for applications in which multi-rate, delayed
and nonsynchronous sampling is involved.

®Eindhoven University of Technology 11



Measurement system design for an Automatic Guided Vehicle

12 ®Eindhoven University of Technology



Measurement system design for an Automatic Guided Vehicle

Chapter 3

Kinematics of the vehicle

There are a lot of kinematics involved in the vehicle. These kinematics are also
involved in the observer design. This chapter discusses the kinematics of the vehicle.
First, a frame model of the vehicle and three types of coordinate frames will be
introduced and then the equations of the kinematics are presented.

3.1 Definition of coordinate frames

There will be used three types of coordinate frames to explain the kinematics which
are involved in the observer design. These coordinate frames are shown in the vehicle
model of Figure 3-1.

Yw

—>

Xw

Figure 3-1: Model of vehicle with sensor configuration

The coordinate frames are the world fixed coordinate frame w, the vehicle fixed
frames si and the path frames pi. The frames pi are thought to move along the desired
path, adjacent to the frames si, such that the extension of the y-axis of frame pi goes
through the origin of frame si. The x-axes of the frames si are directed along the
longitudinal axes of the carriages on which the frames are fixed. The x-axes of the
frames pi are directed along the tangent of the path at the origin of frame pi, such that
the y-axis of frame pi points to the origin of frame si. The origins of the frames si are
the points where the different sensors are mounted, so that the si frames are also
called the sensor frames. The sensor configuration is also shown in Figure 3-1. The
frames pi and si are unity frames and they represent the orientation of the different
frames. The distances ”'y,; are defined as the y-component of the vector pointing from
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the origin of the path fixed frames pi to the origin of the vehicle fixed frames si. So,
the label #'y,; denotes the y-coordinate of frame sI with respect to frame p1.

3.2 Kinematic equations of the vehicle

Now that the coordinate frames of the vehicle model are defined, the equations of the
kinematics can be presented.

Let "x,; and "y, denote the position of the origin of frame si expressed in frame w,
then the velocity of frame si expressed in the directions of frame w becomes:

si

si w . faW
= Vy,COSTEG— v, sin"E (3-1a)

Yy = v, sin"g;+ v, cos"e, (3-1b)

Xsi

TN
]

o
[

In this equation, v, and S’vy ~are the velocities of frame si with respect to frame w,
st st

but in the directions of frame si. Furthermore, “¢€,; denotes the orientation of frame si

with respect to frame w.
By differentiating equation (3-1) with respect to time, the following result can be
obtained:

¥;="v, cos"e,;—"v, sin"g —(”vxﬂ, sin”g;+"v _coswesi) Ve, (3-2a)

St Xsi St Ysi Ysi
sin"e,; ) ", (3-2b)

we  _ Sis W si - w si w _Si
Y= Vv, Sin E.+"V, COS 8“-+( Vxﬂ_ CcoSs gsi 1%

Xsi st Ysi Ysi

An acceleration sensor or accelerometer mounted on the vehicle in frame si, with its
sensitive axis directed along the y-axis of frame si, will measure the lateral
acceleration a,_, which is given by the following equation:

o owe w Wee W
a, ="y;Co8 E;—"X;sin"€ (3-3)

Substitution of equation (3-2) into equation (3-3) results in:

—{ v, sin"g +"v, cos"€, +( v, cos’g,;—"v _sin”eﬂ,)wéﬂ.}coswesi—

2

w .Yl

{v cos"e,—"v, sin"g, ( sin"g +"v, cos"g, )Wés,.}sinwssi

v, sin¥e, ) +%v_(sin"g, e (3-4)
b, (in"e, )"+, sin"e, )

St

€ ) +* v (cos”e £,

2 2 . 2
}+ ", {cos £, ) +(s1n”8ﬂ.) }

Il
<
'O
o
7]

si

Il
<
~
——
+.. =
@]
w2
)
K
—
UJ
| arid
5
m

The velocity #'y,; of frame si with respect to the path frame pi and in the direction
perpendicular to the tangent of the path as shown in Figure 3-1 is given by:

[ si i si s pi
Py ="v, cosPe +%, sinfe (3-5)
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In this equation ** €,; is the yaw deviation of frame si with respect to the tangent of

the path. The tangent of the path is lying along the x-axis of frame pi.
The path and the vehicle-referenced coordinates are illustrated in more detail in
Figure 3-2.

Yw

— >

Xw

Figure 3-2: Path and vehicle referenced coordinates

Taking the time derivative of equation (3-5) yields:

pi 5t s Pl pia {si pio _si s pi
,cosPeg+Tv, sinfle;+ %( v, COSTEL—"v, sin es,.) (3-6)

pi.. __3;',
Ysi =V ¥,

y
Now, it is assumed that the yaw deviations and the longitudinal acceleration are small.
With these assumptions, equation (3-6) can be written as:

pi . ) pi
Y = vys +V.m‘ €y

st si wea o wg R
=, +y (ve,-"¢,) 3-7)

Here "¢ pi 18 the yaw rate of frame pi, which is defined in Figure 3-2. Equation (3-7)

shows that the acceleration of frame si with respect to frame pi can be obtained from
the reading of the accelerometer, the longitudinal velocity and the yaw rate of the path
fixed frame pi.

Equation (3-7) can be written in a state-space form. After adding measurement noises,
equation (3-7) can be expressed as:

Xy =Ax; +Bu, +B w, (3-8a)

Ve =Cxg +vy (3-8b)
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In this equation the different variables are defined as:

; ; T
. Pty
xsi —[ ysi ysi ]

uSi :a}’si- vxsi Spi

=[o 1]
]
0

B=B, =
[0
A=
0
c=|1

Furthermore, the measurement noise coming from the accelerometer as well as error
in the measurement of the longitudinal velocity of the vehicle are denoted by wy; in
equation (3-8). Further in equation (3-8), y;; is the lateral position error between the
vehicle frame si and the path frame pi and in the direction perpendicular to the tangent
of the path. The lateral position errors are measured by the magnetometers which are

mounted at the origins of the si-frames on the vehicle. The magnetometer

measurement noise and the noise due to magnet misalignment are denoted by vy;.

Equation (3-8) can be worked out for the complete sensor configuration of the

vehicle. The complete sensor configuration consists of two sensor frames at the
tractor, one sensor frame at the first semitrailer and one sensor frame at the second
semitrailer. Equation (3-8a) is worked out for the four sensor frames as follows:

Ay 1 [o 1] |# 0 0
Xsl = '.)fél = 1o ).}Sl t Uyt "Wy
7y, 0 0)|"y, 1 1

i

Py 0 1]}* 0 0
k84 = p4 ..)f)d :[ }‘ pd ).)S4 +{ :].u.ﬂ +l: }ows4
y54 O 0 ys4 1 1

The same can be done for equation (3-8b). This results in the following:

pl
ysl =[1 0]‘[‘01:}?31}'{’\)51

ysl

p4
ysdz[l O]‘[ y54}+v54

pé
ysd

(3-9a)

H

(3-9d)

(3-10a)

|
!
;

(3-10d)
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Equations (3-9) and (3-10) are written in a single-input single-output (SISO)
representation. In a case like this it is often more convenient to use a multiple-input
multiple-output (MIMO) representation. Furthermore, equations (3-9) and (3-10) are

perfectly suitable for such a representation. Rewriting the equation
in a MIMO representation, gives the following result:

s (3-9) and (3-10)

5,101 0000 0O]|”y,|[00O00O0
110 00 0 000 0|]"y, 1 000
2y 110 001 000 0||”y,| |00 0 Of[u,
Xz"zj}ﬂ:O 0 00O0O0TO 0.P2y32+0 1 0 O.uX2+
Py 11000001 00||”y,| 1000 0f]u,
”?$.110 00 00 00 0|7y, 10 0 1 Of|u,
3,110 000 00O 1{|"y,{ |0 00O
75,/ 10 000000 0f[y,] 0001
0 0 0 0] (-11)
1 0 0O
0 00 O0]]|w,
010 0w,
000 0w,
001 0f|w,
0 00O
0 0 0 1
7y ]
o
Yy 1 0000 O0OO "zyx2 Vg
¥, OOIOOOOO”Z'S v,
y= y: o000 100 o0f P&j ¥ vs: G-12)
Y| 0000001 0f|”y, V.,
p4y:4
7 Vs |
With the use of this representation, equation (3-8) now becomes:
x=A_ x+B u+B_ . w (3-13a)
y=C_x+v (3-13b)
where:
S TS TR M P S S T M
®Eindhoven University of Technology 17



Measurement system design for an Automatic Guided Vehicle

1y p2

. P P2y g3 P32 pd pd - ]T
x_[ ysl ysl ys? ysZ ys3 ys3 ys4 ysd s

01000000
00000O0O0O0O
00010000
Azoooooooo.
"100000O0T10 0|
0000O0O0OO0O
00000O0O01
0000000 0
0 0 0 0]

1 000

0000
Bm=8m=0100;
0000

0010

0000
00 0 1]

1 0000000
C300100000
"0 000100 0f
00000O0T10

The observation matrix C, consists of four rows. Each row contains the observation
sensitivity coefficients for a particular sensor at the vehicle frame si. So, the first row
contains the observation sensitivity coefficients for the sensor at vehicle frame s/ and
the fourth row contains the observation sensitivity coefficients for the sensor at
vehicle frame s4. Therefore, the observation matrix Cy, can also be expressed as:

Cm = [Csl Csz Cs3 C54 ]T
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where C =l 0 0 0 0 0 0 0]is the observation matrix for the sensor at
vehicle frame s/ and C, =[0 0 0 0 0 0 1 0]isthe observation matrix for

the sensor at vehicle frame s4. The other two observation matrixes Cg; and Cg; can be
obtained from Cy, and speak for themselves.

3.3 Conclusions

After the definition of the different coordinate frames involved in the kinematics of
the vehicle, the kinematic equations of the vehicle can be formed. From the kinematic
equations a model description can be obtained in a state-space form. The model
description is formed by the model equations which describe the model. The model
equations can be worked out for the complete sensor configuration of the vehicle.
This can be done in a single-input single-output (SISO) representation or in a
multiple-input multiple-output (MIMO) representation. It seems that the model
equations lend themselves perfectly for a description in a MIMO representation.
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Chapter 4

Description of the simulation model

To evaluate the sensors they have to be implemented in an observer. The observer is
implemented in an existing Simulink model. To understand the working of the model,
it will be described in this chapter. First, the Simulink model will be introduced and
then the different model blocks or subsystems are discussed.

4.1 The Simulink model

As was mentioned before the observer will be implemented in an existing Simulink
model. The model is developed by my coach during his doctoral research. The
Simulink block diagram of the model is illustrated in Figure 4-1.

Observer

)

road structure roadstructure

force state

state

road structure

steernput  word -1—1 ion1 efrors p

>
o o] o] &

YyYvYyvwvey
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Measurement system

desired states (12) [+ 12
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controller velocity2
le cto fufe
velocity1

Figure 4-1: Block diagram of the Simulink model

The model simulates a driving vehicle. The vehicle consists of a tractor and two
semitrailers which are connected through two articulation points. The vehicle
maintains a constant velocity and it drives along a desired path. The path is formed by
a straight line and a curve with a given radius. The vehicle is controlled by means of
its steering angle.

The Simulink model consists of many blocks and subsystems. Figure 4-1 shows the
main blocks of the model and is therefore the upper layer of the model. The main
blocks and an explanation of their functionality will be given in the next paragraph.
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4.2 Explanation of the model blocks

In this section an explanation of the functionality of the different model blocks is
given. This is done to illustrate how simulations are run and to give some
understanding in the simulation model. Thus, now a description of the model blocks
will be given together with an explanation of their functionality.

See Figure 4-1 for the names of the different model blocks.

Road structure

» In this block the trajectory of the road is defined. The length of the straight line
and the radius of the curve can be entered in this block. These values will be used
for the calculation of the desired states in the model.

Vehicle

» This block contains the transformation of the steer- and force-inputs into states of
the vehicle. The states of the vehicle are its position and its velocity with respect
to the path reference frame. Furthermore, the block outputs the yaw and its first
and second derivatives with respect to the path reference frame together with the
second derivative of the position with respect to the path reference frame. To
obtain the positions of the vehicle with respect to the world reference frame a
transformation is also made between the states of the vehicle and the world
reference frame.

Desired states

» The desired states of the vehicle are calculated in this model block. The inputs of
the block are the road structure, the positions of the vehicle with respect to the
world reference frame, the states of the vehicle and the simulation clock. The
desired states are the states of the vehicle when the vehicle drives ideal along the
desired path with no deviations. This is not true in practice, so there is always a
difference between the desired states and the true states of the vehicle.

Measurement system

» This block forms the measurement system of the model. The block has the road,
the positions of the vehicle with respect to the world reference frame called world,
the true states of the vehicle and the desired states as its input. The block outputs
the errors and the deviations, which are fed back to the controller so that the
measurement system is in closed loop. With deviations is meant the smallest
difference in position of the vehicle and the desired path in the direction that is
perpendicular to the tangent of the path. The errors are the deviations in the yaw
and the yaw rate of the vehicle. The measurement system is a continuous-time
system and it assumes that the deviation from the path as well as the time
derivative of the deviation are continuously available for the controller. The time
derivative of the deviation however can not been measured directly. Furthermore,
the deviation can only be measured at discrete times when magnetic markers are
used. Besides this, the effect of disturbances and noise coming from the sensors is
not taken into account in this system. These aspects are taken along in the
observer design.
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Controller

» In this block the controller of the system is implemented. The vehicle is controlled
by means of its steering angle and it has 4 independently steerable axles. So, the
controller calculates indepently the 4 steering angles of the steerable axles out of
the desired states, the deviations, the errors and the driving speed. The steering
angles are fed into the vehicle block. The control of steering angles is to achieve
that the driven route of the vehicle approaches the desired path as close as
possible.

Observer design

» This is the main block of the Simulink model in relation to the assignment. This
block contains the implementation of the designed observer. The block has as its
input the road structure, the states of the vehicle, the positions of the vehicle with
respect to the world reference frame called world, the deviations from the path and
the desired states. Its output is the same as the errors output of the measurement
system, only the output of the observer is calculated in a complete different way.
Further, the output of the observer is not fed into any other block, so the observer
is in open loop. In this way the performance of the observer can be compared with
the performance of the measurement system. The observer design will be
discussed in detail in a later stage of this report.

The observer is designed according to a Kalman Filter. To understand the observer
design according to Kalman Filtering a short introduction to Kalman Filtering Theory
was given in Chapter 2.
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Chapter 5

Observer design

5.1 Introduction

The observer has to estimate the velocity of the deviation and the deviation itself of
the vehicle. There are different methods to do this. There is an article (ref. [9]) in
which a passivity-based observer has been discussed. This observer estimates both
positions and velocities of a tractor semitrailer vehicle. However, this kind of observer
has a few disadvantages. First, it relies on complete knowledge of vehicle parameters
like mass, centre of gravity and cornering stiffnesses. Because there might be a large
uncertainty in these parameters in practice, it can not be guaranteed that the estimated
positions and velocities converge to the real positions and velocities. Another
disadvantage is that this method relies in fact on accurate position measurements. In
this case however, there are discrete markers like permanent magnets used for
position measurements. The passivity-based observer simply ignores the discrete
nature of the magnetic markers and assumes that the deviation stays constant in
between the magnets, where the position can not be measured. In this report another
technique is used for the observer design. The method which is used here combines
the discrete magnetic markers with acceleration measurements according to a Kalman
filtering technique. The method can also be extended with the measurements of
additional sensors. This estimation technique is completely independent of all vehicle
parameters. Moreover, the effects of disturbances are also taken into account by the
observer. The observer design with its estimation technique according to Kalman
filtering is described in this chapter.

5.2 Lateral velocity and position estimation

The goal of the observer is to give continuous estimates of the velocity and the
deviation of the sensors with respect to the desired path which is formed by the track
of magnets. The velocity estimates are obtained by integrating the measurement of

P'3 _ once, whereas the estimates of the deviations are obtained by integrating ” y_,

twice. Everytime a magnet passes by, a correction will be made to the estimates to
correct for measurement noise and accelerometer drift.

The observer has to be implemented on a digital system, so that the estimates are
given at discrete time intervals. This is where a complication is introduced into the
estimation scheme by the discrete nature of the magnetic markers. The magnetic
markers, laid on the road centerline at fixed intervals, provide the lateral position
errors only when the magnetometers on the vehicle are approximately above a marker.
If the system is discretized with a sampling time in the range at which the lateral
position measurements become available, large estimation errors will be introduced.
Therefore the sampling interval chosen for reading accelerometer measurements and
estimating lateral velocity and position is fixed at A, which is set to 5 msecs. This
value is small enough to allow accurate estimation. However, this also means that
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magnetometer measurements are not available at every sampling instant A, but after
every n sample times, where n keeps varying with the velocity of the vehicle.

The problems arising out of this non-availability of measured data are addressed by
the use of a multi-rate estimation scheme which is described in section 2.4.1. The
model equations are simply integrated when measurements are not available, and
measurement information is used when it becomes available at a marker.

Now, the model equations can be discretized. But first, the structure of the discrete
time Kalman filter, according to which the observer is designed, will be given. The
structure of the discrete time Kalman filter (ref. [3]) is depicted in Figure 5-1.

v(k) $x(0) w(k)

: + '
u_k)_%_> B x(k+1) 11 x(k) o E
H Z H
§ § y(k)
E A [— i
e | ) |
E i +
) o ] ! k
_E_» B x(k+1) __1_1 x(k) C : y( )_l ( )
Z 1

Figure 5-1: Discrete time Kalman filter

For this discrete time Kalman filter, the following general equations hold. The
equations are written in vector- and matrixform.

x(k +1)=Ax(k )+ Bu(k)+ v(k) (5-1)
y(k)=Cx(k)+ w(k) (5-2)
%(k +1)=A%(k)+Bu(k)+ K(y(k)-§(k)) (5-3)
§(k)=Cx(k) (5-4)
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In Figure 5-1, the upper outlined block is the plant and is the modelled behaviour of
the real system. The lower outlined block is the simulation and it simulates the
behaviour of the real system. Actually, the behaviour of the plant is also simulated in
the situation here. The plant and the simulation are both excited with the same input
signal u(k). The lower outlined block (simulation) is actually the observer of the real

system and it estimates the state (k +1). The purpose of the observer is to estimate
the state so that the estimated state %(k +1) and the real state x(k +1) approximate

each other as close as possible.

Now that the structure of the discrete time Kalman filter has been described, the
model equations can be discretized. First, equation (3-8a) will be discretized with
sample time A. According to ref. [4] this results in:

Xg (k +1)=Adxsi (k)+Bd“:s (k)+deWaf,,~ (k) (5-5)

In this equation is:

A, =e™ (5-6a)

B, = ¢"Bdz (5-6b)

B, =[ ¢*B, dc (5-6¢)
Assuming the signal u,(t) to be piecewise-constant, then:

u, (k):i [ )=, () (5-6d)
Ref. [4] says that, W, (k):-i— ) mesi (t)dt (5-6¢)

Furthermore, k is the ¥” sampling instant and # is the corresponding time. The
average of the accelerometer reading over one sampling period is used as the input in
equation (5-5).

The other equation in (3-8), equation (3-8b), is now replaced by (ref. [4]):

v e, )=Cxale, )+ v, ), j=012.... (5-7)

where 1 is the time when the magnetometer at the vehicle frame si is on the i

magnetic marker, and v, (t i ) is the magnetometer noise from the magnetometer at

the vehicle frame si. Furthermore, C = [1 0 ] is the observation matrix for the
magnetometer at vehicle frame si.

From the previous it follows that:

O<(k+)A<t,—1;, k=0,.,n;-1

j 3
where ¢, is the time when the (j + 1)" magnetic marker measurement is available,
and n; is the number of complete sample times counted between the jand G+ D"
magnetic marker measurements. Then the following holds:
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(2, +n,8 )<t <(t; +(n, +1)a) (5-8)

Now that the model equations are discretized, the predictor and the corrector
equations can be presented.

5.2.1 Predictor equations

Every sampling instant k after the 7" marker, until k = n;— 1, the following predictor
equation is used (chapter 2 and ref. [4]):

Rk +11,)= A% (k.7 )+ Byu, (k). k=0,..,n, -1 (5-9a)
%, (0.7,)=%40,.2,) (5-9b)

J27

This equation represents the propagation of the state estimate. The time ¢ is the time
instant the magnetometer at vehicle frame si crosses the j” magnetic marker and n;is
the number of complete sample times counted between the j* and the (j + 1)"
magnetic marker measurements. The notation X (k +1,¢ j) means that the state

estimate is made at instant &£ + 1, while ¢; indicates that for this estimate all real,
measured outputs till time instant ¢; are used.
According to equation (2-19), the estimation error is defined by:

Esi (k)= xsi (k)_ isi (k) (5-10)
and the covariance of the estimation error is defined by:
lmisi (k): E{ESI (k)ESl (k)T} (5_11)

The covariance of the estimation error for the predictor equation (5-9) propagates as
follows:

P(k+11,)=A,P, (k1,)AT +B, W, BT, (5-12a)
.0.1,)=2,(,) (5-12b)

1

In equation (5-12b), P, (t j) is the estimation error covariance at time f; after
incorporating the magnetic marker measurement at #. Furthermore,

W, =E {wdsi (k)wL (k )} is the covariance of the noise w,_ (k) coming from the
accelerometer at vehicle frame si.

After that equation (5-9) is updated n; times, there still might be a small interval A,,
smaller than A, before which a magnetometer will pass over a magnetic marker and

provide a measurement. This interval can be obtained from equation (5-8), and is
given by:

A =T, -nA, T,=t,, ~t;

J
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The problem is now that the time T; is not known in advance and that it is not easy to
determine. If 7; could be determined, the predictor equation could be modified, taking
into account the small time interval A, The problem is not solved here, it is assumed
that neglecting the time interval A, will not introduce that big errors in the prediction.
The assumption is an acceptable one for low speeds of the vehicle. At low speeds the
covered distance of the vehicle during one sampling instant A is very small. This
means that the covered distance during the time interval A,, which is smaller than A, is
also very small. It is assumed that the lateral velocity and position will not change that
drastically in the time interval A,, so that the prediction does not have to be modified.
At high speeds the same assumption is made. Suppose a maximum velocity of 20 m/s
of the vehicle, then the covered distance of the vehicle during one sampling instant A
is 10 cm. At high speeds, the lateral velocity and position will also not change that
drastically over such a short distance, so that the assumption which is made before is
an acceptable one.

5.2.2 Corrector equations

When the magnetometer at the vehicle frame si is on top of a magnetic marker, the
prediction which is made by equation (5-9) can be corrected. This is done in a few
steps. First the Kalman gain is computed. This is done by the following equation:

1

R (,.)=P.0,01, )C’"[Cf’si (02, )CT 4V, | (5-13)

Vy, =E {de,. (k)vgsi (k )} is the covariance of the noise v, (k) due to magnet
misalignment and magnetometer noise coming from the magnetometer at vehicle
frame si.

Then a prediction is made of the observation or measurement from the magnetometer
at the vehicle frame si at time instant #;,;. To make the prediction, the following
equation is used:

Py

ysi(tﬂl’tj):Cisi(th’tj) (5-14)

Now, the prediction of equation (5-9) is corrected by the corrector equation, which is
given by (chapter 2 and ref. [4]):

isi (tm’ Lin )= isi (z,mv L )+ Ksi(f;n) pi)’si (tj+1)- Cx, (tj+l’ L )} (5-15)

) in this
equation is the measurement from the magnetometer at vehicle frame si at the time
instant z;, ;.

At last the prediction of the covariance of the estimation error is corrected by the
following equation:

This equation represents the update of the state estimate. The term ”' y, (t 1l

i\)si (tjﬂ )= iisi (tjﬁ 4 tj )— I”{si (Ij«l-l )Cissl (Ijﬂ * zj) (5'16)

The update of the covariance of the estimation error is expressed by this equation.
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Just as in the continuous-time domain, the discrete-time model equations can be
written in a MIMO representation. By rewriting equation (5-5) the following result
can be obtained:

X(k+l)zAmdx(k)+Bmdu(k)+Bmwdwd(k) (5'17)
with:

x(k+1)=[" y (k+1) Py (k+2) - Py,(k+1) Py, k+2)

x()=[" y (k) Pyale+1) < PHyL(k) Py, e+ s

Model equation (5-7) can also be written in a MIMO representation. This results in:
y(k)=C,x(k)+ v, (k) (5-18)

where the index k& is used instead of #;, for the reason that it is now better visible that
the equation is in the discrete-time domain. In this equation is:

y&)=a k) yo(k) yok) v
vd(k)z[va’,,(k) Vd,z(k) Vag;(k) Vd“(k)}T;

and
1000060GO00O
loo100000
C""00001000‘
00000O0T1O0

Equation (5-18) suggests that the measurements coming from the magnetometers are
available all at the same time. In practice this is not the case. This is taken care of in
the formation of the predictor and corrector equations.

The predictor and corrector equations which are described before, hold for the
discrete-time model equations in the SISO representation. When you want to apply
the predictor and corrector equations to the discrete-time model equations in the
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MIMO representation, they have to be adjusted. The equations can be adjusted in the
following way. First, the predictor equation (5-9) which represents the propagation of
the state estimate is adjusted as follows:

Xk +1,1,)= A Xk, 1, )+ By uk), £=0,...n, -1 (5-192)
%(0,,)=%(,.r,) (5-19b)

i i

The covariance of the estimation error for the predictor equation (5-19) propagates
now as:

Plk+11,)= APk 7, )AT, +B,.,
p0,7,)=P(,) (5-20b)

W,B? (5-20a)

mwd

where:
W, =E{w, (Wl () diagl, w,, w, w, [

Adjusting the computation of the Kalman gain which is used in the corrector equation
(5-15) results in:

R.(,)=P(,. 1, )0 [CiPl,0r, )CT +V, | (5-21)

where:
Vy= E{Vd (k )Vg (k )}= diag [Vdﬂ Ve, Vi, Va, ]T

and with the matrix Cpy equal to the matrix Cp, but with the i* row equal to the
matrix Cg and the rest of the matrix C,, contains zeros. This distinction has to be
made because the measurements coming from the magnetometers are not available all
at the same time.

After adjustment, equation (5-14) becomes:

piis(’;‘{»l’tj):cmii(tjﬂ’tj) (5-22)
with:

p?is(tﬂl’£j>=[p1§sl(tj+l’tj) O O O]T

for i = 1, which means that the measurement from the magnetometer at vehicle frame
s1 is available, and:

piis(tﬁ-l’tj):[o 00 ﬁf”sr&(tm’t;)]T

for i =4, which means that the measurement from the magnetometer at vehicle frame
54 is available.

The predictor equation (5-19) is now corrected by the adjusted corrector equation,
which is given by:
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’A‘(’jw Lis )= ;‘(’jw L )+ K, (’j+1 ){pyS(th )- Cmii(thl’ L )} 623

The term Py (t j+1) in this equation are the measurements from the magnetometers at

the vehicle frames si at the time instant #;,;. In the form of a matrix it is written as:

st<tj+1):[p1y:1<tj+l) p2y52<tj+l) p3ys3<tj+1) p4ys4<tj+1)]T

At last, the corrector equation to correct the prediction of the covariance of the
estimation error is adjusted. This yields:

Pl )=, 1, )R, (1,0 )CuBl,nt,) (5-24)

The observer is designed according to the model equations, the predictor and the
corrector equations in the MIMO representation.
Using the predictor and the corrector equations, the estimate X (k +1,¢, ) can be

obtained when the magnetometers at the vehicle frames si are between magnetic
markers and X (t JRTLIR ) can be obtained when the magnetometers are on top of a
magnetic marker.

When one cycle of prediction and correction is run through, the cycle starts all over
from the beginning. The procedure of a cycle is shown in the flowchart of Figure 5-2.

Basically, this is the same flowchart of Figure 2-1, but with some modifications.
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Figure 5-2: Flowchart of observer cycle

In one cycle the distance between two magnetic markers is covered. The cycle works
as follows. Between magnetic markers the model equations are integrated to obtain a
prediction of the state and a correction is made when the magnetometers are on top of
a magnetic marker. When a magnetic marker is passed the cycle starts again with the
prediction of the state. The procedure of one cycle can also be represented in a
flowchart. The observer is designed according to the procedure which is given in the

flowchart of Figure 5-2.
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5.3 Simulation results

To evaluate the performance of the observer, some simulations are carried out. The
simulations are conducted by use of the simulation model which is described in
Chapter 4. The observer design is implemented in a Matlab-file. It is written as a S-
function in a Matlab m-file. The Matlab-file in which the observer is implemented is
given in Appendix A.

The simulations are carried out for a vehicle entering a curve with a radius of 50 m. at
a speed of 10 ms™. The vehicle is equipped with a simple low gain PD-controller to
provide large errors. Furthermore, the vehicle is equipped with one magnetometer and
one accelerometer at each vehicle frame si, to provide lateral position error and lateral
acceleration at the vehicle frames. For these simulations, the observer was
implemented with a sampling time A which was set to 5 ms. and the distance between
the magnetic markers was set to 2 m. Band limited white noise was added to the
acceleration signals applied to the observer to simulate the effect of accelerometer
noise. Furthermore, noise was added to the magnetometer signals to simulate the
effect of magnetic marker misalignment and magnetometer noise. The noise of the
sensors, its value and its covariance are aspects which are discussed in detail in
Chapter 7.

The next figures, Figure 5-3 until Figure 5-6, show the estimated lateral velocity and
the true lateral velocity as well as the estimated lateral deviation and the true lateral
deviation. In each figure the estimated and true lateral velocity of vehicle frame si are
depicted at the right side of the figure. At the left side of each figure the estimated and
true lateral deviation of vehicle frame si are depicted.

As can be seen in this figures, the estimated lateral velocity approximates the true
lateral velocity close, except for some deviations due to the magnetic marker
misalignment and magnetometer noise as well as accelerometer noise. The figures
also show that the estimated lateral deviation is close to the true lateral deviation, but
here the measurement errors due to magnet misalignment and magnetometer noise as
well as accelerometer noise are also visible.

lateral deviation of sensorframe s1 lateral velocity of sensorframe s
0.02 ————r——r——r—— 0.05 ————
o0~ [ -~ true
~— estimated
-0.02 ¢ oh
-0.04 +
E -006} 7 -0.05}
= E
2 by
5 -0.08¢ Z
:
® .01t T 01f
-0.12 ¢ T true
—— estimated
-C.14 - -0.15¢+
-0.16 ¢
“0.18 bbb 20,2 bbb
01 2 3 4 5 6 7 8 9 10 01 2 3 45 6 7 8 g 10
time [s] time [s]

Figure 5-3: Estimated and true lateral deviation and velocity of sensorframe s1
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Figure 5-4: Estimated and true lateral deviation and velocity of sensorframe s2
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Figure 5-5: Estimated and true lateral deviation and velocity of sensorframe s3
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Figure 5-6: Estimated and true lateral deviation and velocity of sensorframe s4

The estimates of the states are close to the true states as can be seen in the figures
above. But the figures also show that there are some deviations in the estimates which
are caused by magnetic marker misalignment, magnetometer noise and accelerometer
noise. To reduce the influence of these disturbances, the observer could be extended
with other measurements of additional sensors. This is described in the next chapter.

5.4 Conclusions

An observer has been designed to estimate the lateral velocity and the lateral deviation
of the vehicle. The method which is used combines the discrete magnetic markers
with acceleration measurements according to a Kalman filtering technique.

This estimation technique is completely independent of all vehicle parameters.

The lateral velocity and deviation are estimated by the predictor and corrector
equations which are introduced in the Kalman filtering theory. The model equations,
the predictor equations and the corrector equations are presented in a SISO and in a
MIMO representation. The observer is designed according to the MIMO
representation. Simulation results show that the estimated lateral velocity and
deviation are close to the true lateral velocity and deviation, except for some
deviations caused by sensor noise and magnet misalignment. The observer can be
improved by the use of the measurements of additional sensors. The expectation is
then that the deviations in the estimated states are reduced.
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Chapter 6

Sensor extension of observer

To improve the observer it can be extended with additional sensors. Then the extra
measurements which become available can be used to implement an extra correction
step in the observer. The intention is that the measurements of these additional sensors
are available at a much higher rate than the rate at which the measurements of the
magnetometers are available. In this way the predictor equations of the observer can
be corrected more often and the observer does not have to wait until the measurement
of a magnetometer becomes available. Then it is possible to improve the estimated
states so that they better approximate the true states.

6.1 Gyroscopes

Gyroscopes are instruments which are used to measure angular motion. Most of the
gyroscopes are vibrating structure gyroscopes. Vibrating structure gyroscopes are
solid state devices which provide an output voltage proportional to the rate of turn
applied to the sensitive axis.

A vibrating structure gyroscope works on the basic principle of detecting coriolis
forces. These forces are generated when a moving particle is rotated.

To use the coriolis effect to detect angular rotation, a solid structure is forced to
vibrate normally at its resonant frequency. This is achieved by applying an alternating
voltage to the primary electrodes. The vibration provides the structure with a linear
velocity component. When the structure is rotated the coriolis forces cause the
vibration motion of the structure to be coupled to another vibration mode or plane of
the structure. The magnitude of this secondary vibration is proportional to the angular
rate of turn. The vibrating technology can be very robust and available at low cost in
contrast to traditionally gyroscopes which have been very fragile and expensive.

So, gyroscopes (also known as “rate gyros” or just “gyros”) can be used to measure
the angular velocity of a vehicle. The angular velocity from the gyroscope can be
integrated to provide the heading or orientation of the vehicle. The output of a
gyroscope is also called “yaw rate” and the integrated output of a gyroscope is also
called “yaw angle”. The angular velocity and the orientation of a vehicle are main
aspects for the lateral control system of the vehicle. This is because any small
momentary orientation error will cause a constantly growing lateral position error.
Furthermore, a gyroscope is an inertial sensor which has the advantage that it is self-
contained, that means, the sensor does not need any external references. Besides, a
gyroscope is easy to mount at a vehicle, it can be pretty accurate and it is not that
expensive anymore. For these reasons, the gyroscopes are chosen to analyse them as
possible sensors for the extension of the observer.

6.1.1 Integrating gyroscope

First, the integrating gyroscope which provides the orientation or the yaw angle of the
vehicle is examined. For this, the vehicle with the sensor configuration which is
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described before is extended with three integrating gyroscopes. One on the tractor and
one on each semitrailer. The gyroscopes are mounted at the centres of gravity of the
three carriages of an empty vehicle. For convenience, the vehicle sensorframe s2 is
moved to the articulation point which connects the tractor and the first semitrailer.
The model of the vehicle with its extended sensor configuration and the modification
looks now as shown in Figure 6-1.

articulation articulation
point 2 point 1
v (]
14 cg3 s3T c.g2 52 cgl sl

L s€e3 L SE2 L sf] ' ke

< Lsst2 e Lsstl > Lsr ;<Lsf>
6 m. 6.15m. 5217m. | 2.5m. |

second first
semitrailer semitrailer tractor

Figure 6-1: Model of vehicle with extended sensor configuration

The points which are denoted with s¢l, s€2 and s€3 in Figure 6-1, are the vehicle
sensor frames of the (integrating) gyroscopes. Now the measurements of the
gyroscopes can be used for an extra correction step in the observer. The output of an
integrating gyroscope is the yaw angle of the vehicle carriage on which it is mounted.
To do a correction step in the observer with the yaw angle, it is needed to make an
estimate of the yaw angle. Because the states of the observer contain the lateral
deviations of the vehicle frames si and you want to correct the states, it is obvious to
estimate the yaw angle error and not the yaw angle. The yaw angle error is the
difference between the actual yaw angle of a vehicle carriage and the desired yaw
angle of the path. This is clarified in Figure 6-2.

Yw

pée
Esei

-
-

_--""tangent

—>

Xw

Figure 6-2: Definition of yaw angle error of vehicle carriage
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In this figure the different angles are defined. The vehicle frames s&i where the
gyroscopes are mounted and the path frames p&i are shown. The actual yaw angle of a
vehicle carriage is denoted by "¢ and the desired yaw angle of the tangent of the
path with respect to the world is denoted by *¢,. Furthermore, the yaw angle error
which is the difference between the actual yaw angle of a vehicle carriage and the
desired yaw angle of the path is denoted by *“&,g.

Now that the yaw angle error is defined, a way to estimate the yaw angle error can be
introduced. The yaw angle error can be estimated with the use of the estimated states
of the observer. The estimated states of the observer namely contains the lateral
deviation of the vehicle frame si with respect to the path and this information can be
used for the estimation of the yaw angle error. For the estimation the definitions of
Figure 3-1 and the modified sensor configuration of Figure 6-1 are used.

For this kind of vehicle it is supposed that the road curvature is kept small. That
means that road curves are in the range of curves with a radius of 50 m. and bigger.
Furthermore it is assumed that the lateral control of the vehicle is that good, that the
yaw angle errors of the vehicle carriages will stay small. With the assumption of small
road curvatures and the assumption that the yaw angle errors will stay small, the yaw
angle error of the tractor can be estimated by the following equation:

rl __p2
sin pel 8551 - Ysi Ys2 (6-1)
Lsf + Lsr

where Lsf + Lsr the distance is between the vehicle sensor frame s/ and the vehicle
sensor frame s2. With the assumption that the yaw angle error will stay small the
following approximation can be applied:

s pel . pel pel
sin” g, =€y, forsmall *'g

With this approximation equation (6-1) becomes:

pel _ 7! Vst - Ys2 (6-2)
sel ™
Lsf + Lsr

This equation is used as a prediction of the observation from the integrating gyroscope
at vehicle frame sel. Then the prediction of the observation is used in an extra
correction step of the observer. If equation (6-2) is used in a corrector equation it has
to be rewritten in the representation of equation (5-14). Rewriting equation (6-2) in
the representation of equation (5-14) and in the discrete-time domain results in:

relE sel (k )= Cselg(k ) (6-3)
where:
1 1
c,,=|l———— 0 -—— 0 0 0 00
Lsf + Lsr Lsf + Lsr
and:

%(0)=[7"5, () "Fol+1) o 7Tk P k+D)f
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Furthermore, the tilde ~ denotes that the variables are estimates.

When the gyroscopes are implemented in the observer, the sampling interval chosen
for reading gyroscope measurements is set to the same sampling interval as was
chosen for reading accelerometer measurements and is fixed at A, which was set to 5
ms. It is also assumed that the readings of the gyroscope measurement and the
accelerometer measurement are synchronized, so that measurement data of the
gyroscope is available at the same time instant as the measurement data of the
accelerometer. In this way, every sampling instant k after the j* magnetic marker, until
k=n; -1, a prediction of the state can be made and at the same time a correction of
the state can be made. When a magnetometer is on top of a magnetic marker another
correction of the state is made as before. The big advantage of using an extra
gyroscope is that the state can be corrected at a much higher rate than if only
magnetometers are used.

The Kalman gain for the corrector equation of the integrating gyroscope at the tractor
is given by:

[(: sel

sl sel

R, (k+1)=Plk+11,)C,|C Bk +1,1, )T, +v, | 6-4)

where f’(k +1,¢ j) is given by equation (5-20a) and where V, =Ey, (k)vzgw1 (k)} is
the covariance of the noise v do (k) coming from the integrating gyroscope at vehicle

frame sel. The state estimate is updated and corrected by the following equation:
&k +17,)= %k +1,1, )+ Koy (k+1){ e, (k+1)-C Kk +1,7,)} 6-5)

The term #*'¢ , (k +1) in this equation is the measurement from the integrating

sel
gyroscope at vehicle frame se/ at the sampling instant k£ + 1, which is the actual yaw
angle of the tractor, minus the desired yaw angle calculated at path frame pel. So, the

term P¢! €1 (k + 1) represents the yaw angle error of the tractor. The update of the
covariance of the estimation error will be:

Pl +17,)=Blk+1,1,)-K, (k+1)C,, Pk +1,1,) (6-6)

The same can be done for the first semitrailer. However, the estimation of the yaw
angle error of the first semitrailer is slightly different than the estimation of the yaw
angle error of the tractor. This is because only the lateral deviation of one point on the
first semitrailer is known, namely the lateral deviation of the vehicle frame s3. But to
use the estimation as in equation (6-1), you need to know the lateral deviation of two
points on the first semitrailer. The lateral deviation of a second point on the first
semitrailer can be found by transformation of the lateral deviation of the vehicle frame
s2 to the lateral deviation of the vehicle frame 52, but then with respect to the first
semitrailer. In this way it is possible to obtain the lateral deviation of two points on the
first semitrailer and then an estimation can be made of the yaw angle error of the first
semitrailer. Together with the measurement data of the integrating gyroscope on the
first semitrailer another extra correction step can be made in the observer. It is first
explained now how to transform the lateral deviation of vehicle frame s2 to a lateral
deviation of a point on the first semitrailer. This is done according to Figure 6-3. As
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was noted before, the vehicle frame s2 is now positioned on the articulation point
between the tractor and the first semitrailer. The accelerometer at vehicle frame s2 is
mounted in that way that its sensitive axis would measure the lateral acceleration of
vehicle frame s2 in the direction which is perpendicular to the longitudinal axis of the
tractor.

sl

articglation c.gl
point 1

S3T ng
i L SE2

s€l o

Figure 6-3: Transformation of lateral deviation "y, to lateral deviation y,;

Figure 6-3 shows the tractor and the first semitrailer of the vehicle and the
articulation point between them which is called articulation point 1. The angle which
is denoted by « represents the angle between the two carriages of the vehicle. This
angle can be measured with an angular sensor or it can be obtained by taking the
difference of the integrating gyroscope readings from the tractor and the first
semitrailer. The angle f is the angle which defines the transformation of the lateral
deviation "%y, to the lateral deviation y,;. For small angles ¢t it can be said that:

B=a
The lateral deviation y,; can now be calculated as follows:

p2

p2
cos B = Ys2 ey cosq=—0252
yal yal

= Yai cosa= p2ys2 (6'7)

p2

Y2

= yal = >

Cosx

The yaw angle error of the first semitrailer can now be estimated by:

_p3
sin?2g  =Ya” Vs3 6-8
se2 Lsstl ©-8)

With the assumption again that the yaw angle error will stay small, equation (6-8) can
be approximated by:
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p3
pe2g  Yar Ys3 6-9
se2 Lsstl (6-9)

with y,; given as in equation (6-7). Equation (6-9) can also be written in a matrix-
form as in equation (6-3). This yields:

p€2§562(k)=csez(k)§(k) (6'10)
where:

(:(k):()o—--l-—o--1 000

2 cosa(k)- Lsstl Lsstl

Note that the matrix Cg(k) is dependent of the sampling instant &, so that it is a time-
variant matrix. This is because the angle o between the tractor and the first semitrailer
is in the matrix and this angle is not a constant, but it is a time-varying variable. For
the implementation of this C-matrix in the observer this has no consequences. This is
because the C-matrix is calculated on-line, so that each sampling instant k the right
value for the variable ¢ is taken. In this way the C-matrix varies through time, but
every sampling instant & it yields the right matrix, which can be used in an extra
correction step for the integrating gyroscope at the first semitrailer. The three
equations for the extra correction step in the observer are going to be:

IZsel(k + l)= f)(k + 1’ z‘j )CT (k + 1)[Csez(k + l)r)(k + 1’ tj )C;rez (k + 1)+ Vd;gz ]_1 (6'11)

se2

This is the Kalman gain for the corrector equation of the integrating gyroscope at the
first semitrailer. Again, f’(k +1,t j) is given by equation (5-20a) and

Vi, =Eva,, kvi (k)} is the covariance of the noise v, (k) coming from the

integrating gyroscope at vehicle frame se2. The state estimate is updated and
corrected by the following equation:

i(k +1’ t.f ): i(k + l’tj)+ I"{‘522(}'( + 1){ pszg.rEZ(k + 1)-C552(k + l)i(k + 15 tj)} (6'12)

The term P¢ Zsssz(k + 1) in this equation is the measurement from the integrating

gyroscope at vehicle frame se2 at the sampling instant k£ + 1, which is the actual yaw
angle of the first semitrailer, minus the desired yaw angle calculated at path frame

pe2. So, the term #¢_,, (k + 1) represents the yaw angle error of the first semitrailer.
The update of the covariance of the estimation error will be:

Plk+1,1,)=Blk+11,)-K,,(k+1)Cy, (k + )Pk +1,2,)  (6-13)

The procedure for the correction step of the integrating gyroscope at the second
semitrailer is actually the same as the procedure for the correction step of the
integrating gyroscope at the first semitrailer. The estimation of the yaw angle error
can also be done according to Figure 6-3, but with the modification that the tractor is
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now the first semitrailer and the first semitrailer is now the second semitrailer. Figure
6-3 with the necessary modifications is shown in Figure 6-4.

articulation
point 2

T c.g.3
51 se3

$3

Figure 6-4: Transformation of lateral deviation ”’y,; to lateral deviation y,,

Figure 6-4 shows the first and the second semitrailer of the vehicle and the
articulation point between them which is called articulation point 2. The angle which
is denoted by ¢ represents the angle between the two carriages of the vehicle. This
angle can be measured with an angular sensor or it can be obtained by taking the
difference of the integrating gyroscope readings from the first and the second
semitrailer. The angle 8 1is the angle which defines the transformation of the lateral
deviation Py,s to the lateral deviation y,,. For small angles ¢ it can be said that:

0~

The equation for the lateral deviation y,; now becomes:

p3 p3
cosf =—223 0=, cosq):—-—»yﬂ
)’az }’az
= Vg c080=""y, (6-14)
p3
ys3
el =
ya2 COS(Z)

The yaw angle error of the second semitrailer can now be estimated by:

P4
sinPBg =2ar T Ysa 6-15
se3 Lsst2 ( )

We assume again that the yaw angle error will stay small, so that equation (6-15) can
be approximated by the following equation:

péd
pel Va2 — Ysa
£, w2 6-16
se3 Lsst2 ( )
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with y,» given as in equation (6-14). When equation (6-16) is written in a matrix-form
the following result is obtained:

pe3 >

Eyea(k)=Cpa (k)R (k) (6-17)

where:

1 1
C.;k)=0 0 0 O 0 - 0
(k) { cos¢(k)- Lsst2 Lsst2 }

Note that also the matrix Cge3(k) is dependent of the sampling instant &, so that it is a
time-variant matrix. This has no consequences for the implementation of this C-
matrix in the observer, because this C-matrix is also calculated on-line. The three
equations for the extra correction step of the integrating gyroscope at the second
semitrailer in the observer are stated by:

o~

K (k+ DBk +1,1,)CT, (k+1)+V,  |" (6-18)

se3

ok +1)=Blk+1,1,)C, (k+1)C,

fk+1,0,)=%(k+1,0, )+ Koy (e + )72, (k +1)-C oy (k + V)R(k +1,1,)} (6-19)
Plk+17,)=Pk+1,1,)-K ,(k+1)C, (k + )Pk +1,1,) (6-20)

Equation (6-18) is the Kalman gain for the corrector equation (6-19).
Vi, =E {vdm} (k )vgﬁ (k )} is the covariance of the noise v, (k) coming from the

integrating gyroscope at vehicle frame s&3. The term 1”538553(1( + 1) in equation (6-19)

is the measurement from the integrating gyroscope at vehicle frame se3 at the
sampling instant k + 1, which is the actual yaw angle of the second semitrailer, minus

the desired yaw angle calculated at path frame pe3. So, the term #*¢_,(k +1)

represents the yaw angle error of the second semitrailer. At last, equation (6-20) gives
the update of the covariance of the estimation error.

The three correction steps which can be made with the measurement data of the three
integrating gyroscopes are described now as three different steps. But the three
different steps can also be combined to one step because the measurement data of the
three integrating gyroscopes is available at the same sampling instant. The nine
equations which are involved in the three different correction steps can then be
combined to three equations which slightly differ from the equations in the individual
correction steps. When combined, the equation for the Kalman gain which is used in
the state update equation for the three integrating gyroscopes is given by:

K, (k+1)=Blk+17,)CL (c+1)C, (e+ 1Bk +1,7,)CT (k+1)+V,_ | (6-21)
where ﬁ(k +Lt j) is given by equation (5-20a). Furthermore, in equation (6-21) is:

V, =diag [V(s,ﬂ Va., Va., ]T (6-22)
and:
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L I 00000
Lsf + Lsr Lsf + Lsr
C.(k)=/0 0 — 1 o -1 o000 (6-23)
cosa(k)- Lsstl Lsstl
0 00O ! _
cos¢(k)- Lsst2 Lsst2 |

The matrix C_, (k) is the observation matrix for the three integrating gyroscopes at

the three vehicle carriages. The update of the state estimate using the measurements of
the three integrating gyroscopes can also be combined. This results in:

Rk +1,1,)=xlk+12, )+ K, (k+1){"e, (k+1)-C, (k+ D%k +1,1,)} (6-24)

The term P (k + 1) in this equation are the measurements from the integrating

gyroscopes at the vehicle frames s&i at the sampling instant k + 1, which are the actual
yaw angles of the three vehicle carriages, minus the desired yaw angles calculated at
the path frames péi. It also can be written as:

e e (k+ D)=l (k+1) e (k+1) e k+1)]”

s€3

With the use of the Kalman gain matrix Kse (k + 1) and the observation matrix
C, (k+ 1) the update of the covariance of the estimation error is given by:

Pk +1,)=Ple+1,1,)-K, (k+1)C, (k+ 1Bk +1,,) (6-25)

The extra correction step with the measurements of the three integrating gyroscopes is
implemented in the observer. The expectation is that the estimates of the states better
approximate the true states now, with less deviations.

6.1.1.1 Simulation results

The improvement of the observer with the integrating gyroscopes can be shown best
when the distance between the magnetic markers is large and the velocity of the
vehicle is low. In this way, the time between updates with measurement data coming
from the magnetometers is large and there will be large errors in the state estimates.
Using the measurement data coming from the integrating gyroscopes, it is possible to
update the state estimate at a much higher frequency, so that the errors in the state
estimates are a lot smaller. The Matlab-file in which the observer, including the
correction steps from the integrating gyroscopes, is implemented is given in
Appendix A.

The simulations to evaluate the improvement of the observer are carried out for a
vehicle entering a curve with a radius of 150 m. at a speed of 10 ms™. The vehicle is
again equipped with a simple low gain PD-controller to provide large errors.
Furthermore, the sensor configuration of the vehicle is extended with an integrating
gyroscope at each vehicle carriage, to provide the yaw angle of each vehicle carriage.
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For these simulations, the sample time A of the observer was not changed and was set
to 5 ms. and the distance between the magnetic markers was set to 10 m. Band limited
white noise was added to the signals coming from the accelerometers, magnetometers
and gyroscopes to simulate the effect of measurement noise and magnetic marker
misalignment.

The results which come out of the simulations are given in Figure 6-5 until Figure
6-8. The figures show the true lateral deviation and velocity of the different sensor
frames. The estimated states of the observer, which are estimated with use of
accelerometer and magnetometer measurement data, are also illustrated in the figures.
Furthermore, the states of the observer which are corrected with use of measurement

data coming from the integrating gyroscopes, are drawn in the figures too.

lateral deviation of sensorframe s1

lateral velocity of sensorframe s1

0.01 e 0.03
— true
oH — estimated 0.02
corrected 001 +
001 f
g L )
= 002 E 001
% 0.03 | 2 002
(5]
.0.04 I > -0.03
| -0.04 —— estimated
005 : corrected
i : -0.05
-0.06 | " 006 |
-0.07 . T . -0.07
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
time [s] time [s]
Figure 6-5: Estimated, true and corrected lateral deviation and velocity of
sensorframe s1
lateral deviation of sensorframe s2 lateral velocity of sensorframe s2
0.03 : — 0.03 —— , :
""""" true T true
— estimated ~—— estimated
0.02f - _corrected corrected
_ 001} .
E w
: £
3 0 =
.g §
3 E
-0.01}
-0.02} -0.02
-0.03 -0.03 -
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
time [s] time [s)
Figure 6-6: Estimated, true and corrected lateral deviation and velocity of
sensorframe s2
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lateral deviation of sensorframe s3

lateral velocity of sensorframe s3
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Figure 6-7: Estimated, true and corrected lateral deviation and velocity of
sensorframe s3
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Figure 6-8: Estimated, true and corrected lateral deviation and velocity of
sensorframe s4

It can be seen in the figures that the estimated states have large errors with respect to
the true states. This is because the distance between the magnetic markers is large,
which implies that the time between updates from the magnetometers is large. This
causes large errors in the estimated states. It is possible to do extra updates on the
estimated states with use of the integrating gyroscopes. The figures show that the
estimated states after correction with the integrating gyroscopes, approximate the true
states much closer. Especially at points where the estimated states without correction
have their maxima, the improvement of the corrected states is large.

During some simulations it was noticed that the measured yaw error showed some
drift with increasing time. This can have two reasons. It is possible that the desired
yaw calculated at the path frames contains some deviations. These deviations are
found back in the yaw error. Another possibility is that the drift is introduced with the
integration process of the integrating gyroscope. The output of the integrating
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gyroscope is namely obtained by integration of the measurement data of a rate
gyroscope. Small errors and noise in the measurement data of the rate gyroscope can
provide large errors in the integrated version of the rate gyroscope. If the measured
yaw error shows drift, a reliable correction step with the integrating gyroscopes is not
possible. It could be even so that the estimated states become worse after correction
with use of measurement data coming from the integrating gyroscopes. Therefore, it
has to be sure that the measurement of the yaw is reliable and the calculation of the
yaw error is accurate.

6.1.1.2 Conclusions

The observer can be extended with integrating gyroscopes. The state estimates
approximate the true states a lot better when the state estimates are extra updated with
the measurement data coming from the integrating gyroscopes. So, integrating
gyroscopes are a good option to improve the observer. However, integrating
gyroscopes have a disadvantage. Because the signal of the rate gyroscope is
integrated, the output of an integrating gyroscope can contain some errors or drift due
to the integration. If this is the case, the measurement data coming from the
integrating gyroscope is not reliable enough to use it in the observer. Therefore, it has
to be sure that the output of the integrating gyroscope contains no errors before it is
used as an extra correction step in the observer. The calculation of the desired yaw at
the path frames also has to be accurate enough, otherwise the outcome of the yaw
error contains some deviations, which also makes the correction step unreliable.

6.1.2 Rate gyroscope

Now, the rate gyroscope which provides the rate of the change in orientation or the
yaw rate of the vehicle is examined. For this, the vehicle is equipped with three rate
gyroscopes. The rate gyroscopes are mounted at the same place as where the
integrating gyroscopes were mounted. The points which are denoted with s¢l, s€2 and
s€3 in Figure 6-1, are renamed by s€1, sé€2 and s€3 and they are the vehicle sensor
frames of the rate gyroscopes. The measurements of the rate gyroscopes can be used
for an extra correction step in the observer. The output of a rate gyroscope is the yaw
rate of the vehicle carriage on which it is mounted. To do a correction step in the
observer with the yaw rate, it is needed to make an estimate of the yaw rate. For the
same reasons as with the integrating gyroscopes, not the yaw rate is estimated, but the
yaw rate error is estimated. The yaw rate error is the difference between the actual
yaw rate of a vehicle carriage and the desired yaw rate of the path.

The yaw rate error of the tractor can be estimated by the following equation. This
equation is obtained by taking the time derivative of equation (6-1).

1 1 i y il y
COSAW 85£1 P ésél =t (6-26)
Lsf + Lsr

where #'¢_,, the yaw rate error of the tractor is, which is the difference between the

sEl

actual yaw rate of the tractor and the desired yaw rate of the path. Furthermore, *' y
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is the lateral velocity of vehicle frame s/ with respect to the path frame p! and **y ,

is the lateral velocity of vehicle frame s2 with respect to the path frame p2.
With the assumption that the yaw angle error stays small the following approximation
can be applied:

pet — pel
cos” g, =1, forsmall *'¢

£l

With this approximation equation (6-26) becomes:

1. 2.
pélé - P Yl il Ys2 (6-27)

=

U Lsf + Lsr

This equation is used as a prediction of the observation from the rate gyroscope at
vehicle frame sél.

Deriving an equation for the estimation of the yaw rate error of the first semitrailer, by
differentiating equation (6-8) with respect to time, results in:

Cospe2 € PE2 & = j"al =P )'}s3 (6-28)
s€2 $€2 LSStl

where 7*?¢_, the yaw rate error of the first semitrailer is, which is the difference
between the actual yaw rate of the first semitrailer and the desired yaw rate of the
path at path frame p€2. Furthermore, ? 3 ¥, is the lateral velocity of vehicle frame s3
with respect to the path frame p3. The term y,, can be obtained by differentiating
equation (6-7) with respect to time. This yields:

2. .
:__ﬂ +p2 Vs Slnza . (6-29)

] 2
“ cosa cos“

Thus, to transform the lateral velocity #?y_, to the lateral velocity of vehicle frame
y 52 Y

52, but perpendicular to the first semitrailer, the lateral deviation 7%y , and the
angular velocity ¢ also have to be taken into account according to equation (6-29).
These variables are namely incorporated in the second term of equation (6-29).
However, the variable ¢ is very small and & even goes to zero when o stays
constant. Furthermore, the value of sina will be very small, because « is small. For
sinQ

cos® o
contribute to the lateral velocity y,, . Therefore, this term will be neglected. With the

these reasons, the term 2y , ¢ will be such small that it would nearly not

assumption again that the yaw angle error will stay small, equation (6-28) can be
approximated by:

. p3 o

PEL A yal - ys3
6 m2al s 6-30
52 Lsstl (6-30)
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This equation is used as a prediction of the yaw rate error of the first semitrailer with
Y, given as:

P2
= a2 (6-31)

=
“ cosa

There also can be found an equation for the estimation of the yaw rate error of the
second semitrailer. This equation is obtained by taking the time derivative of equation
(6-15) and is given by:

N Y —p4 Y
COS?e g,y P 6 = T2 _Jut (6-32)
Lsst2

where 7¢°¢ ., the yaw rate error of the second semitrailer is, which is the difference
between the actual yaw rate of the second semitrailer and the desired yaw rate of the
path at path frame pé3. Furthermore, #*y , is the lateral velocity of vehicle frame s4
with respect to the path frame p4. The term y,, can be obtained by taking the time
derivative of equation (6-14). This results in:

p3 . .
Va3 sing -
=283 4 6-33
yaZ COS(D ys3 COSZ¢¢ ( )

For the same reasons as before, the second term in equation (6-33) will be neglected.
If again the assumption is made that the yaw angle error will stay small, equation (6-
32) can be approximated by the following equation:

‘ . pd .
p63é ) ~ya2 Ysa (6“34)

37 Isst2

Equation (6-34) represents the prediction of the yaw rate error of the second
semitrailer. In this equation is y,, given by:

=253 (6-35)

When the equations (6-27), (6-30) and (6-34) are combined and written in a matrix-
form in the discrete-time domain, the following result can be obtained:

" (4 )=C (RE) 630
with i(k) given as in equation (6-3) and where:

Py (e 1)=[P2 (k1) P28 ,(k+1) PPELk+1)]T  (637)
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and the C-matrix is given by:

Cy (k)

1
Lsf + Lsr

0 00

1
Lsf + Lsr
1 1
0

0 00O

0 0

B Lsstl

(6-38)

cosa(k)- Lsstl
1 1

00000 -
cos¢(k)- Lsst2 Lsst2 |

The matrix C,, (k) is the observation matrix for the three rate gyroscopes at the three

vehicle carriages.

The three rate gyroscopes can also be used for an extension of the observer. The
measurement data coming from the three rate gyroscopes can be used to implement an
extra correction step in the observer. The correction step with the three rate
gyroscopes can be implemented in one step, because the measurement data from the
three rate gyroscopes is available at the same sampling instant.

The three equations for the extra correction step in the observer which can be made
with the measurement data from the three rate gyroscopes at the vehicle carriages are:

Ry (k+1)=Blk +1,1,)CT (ke +1)Cy (b + DBk +1,1,)CT (k+1)+V, | (6-39)
where f’(k +1,¢ j) is given by equation (5-20a). Furthermore, in equation (6-39) is:

Ve "

In equation (6-40), V, =E {vd“ (k)v:ﬂ (k )} is the covariance matrix of the noise

coming from the rate gyroscopes at the vehicle frames s€1, s€2 and s€3.
The Kalman gain which is calculated in equation (6-39) is used in the state update
equation:

Vd“ =diag [Vd_,“ Vdm2 (6-40)

&k +1,8,) =%l +1,, )+ K (k+1){"e, (k+1)-Co (k + )Rk +1,2,)} (6-41)

The term Pg sé (k +1) in this equation are the measurements from the rate gyroscopes

at the vehicle frames sé& at the sampling instant k£ + 1, which are the actual yaw rates
of the three vehicle carriages, minus the desired yaw rates calculated at the path
frames pé&i. It also can be written as:

P (et 1)=[rle (k1) P28, (k1) P (e +1)|T

The update of the covariance of the estimation error can be obtained with the use of
the Kalman gain matrix K, (k+1) and the observation matrix C_, (k+1) and is given
by:

Pk +1e,)=Blk+1,1,)-K,, (k+1)C, (k+ )Pk +1,7,) (6-42)
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The extra correction step with the measurements of the three rate gyroscopes is
implemented in the observer.

When the extra correction step(s) from the integrating and/or from the rate
gyroscope(s) are/is implemented in the observer, the flowchart of Figure 5-2 which
shows the procedure of an observer cycle, has to be modified.

The flowchart of Figure 5-2 with the modifications needed for the extra correction
step(s) is shown in Figure 6-9 on the next page.

There also have been made some changes in the notation of the predictor equations
and of the corrector equations for the magnetometers in the flowchart of Figure 6-9 in
comparison with the notation which is used in the flowchart of Figure 5-2. This is
done to make sure that the corrector equations for the integrating and rate gyroscopes
fit in with the predictor equations and the corrector equations for the magnetometers
in the right way.

6.1.2.1 Simulation results

The simulations carried out to show the improvement of the observer with the rate
gyroscopes are almost the same as the simulations which are described in section
6.1.1.1. The distance between the magnetic markers is again chosen large and the
velocity of the vehicle is low. By choosing this so, large errors in the state estimates
will appear. The large errors in the state estimates can be reduced by using the
measurement data coming from the rate gyroscopes as an extra update of the state
estimates. The Matlab-file which describes the observer, including the correction steps
from the rate gyroscopes, is given in Appendix A.

The information used in the simulations is the same as the information used in the
simulations with the integrating gyroscopes, with some little changes. For the
simulations here, the vehicle is entering a curve with a radius of 100 m. at a speed of 5
ms’'. The distance between the magnetic markers was again set to 10 m. and the
values of the noise used in the simulations were also not changed.

52 ®Eindhoven University of Technology



Measurement system design for an Automatic Guided Vehicle
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Figure 6-9: Flowchart of extended observer cycle
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The simulation results are depicted in the next figures, Figure 6-10 until Figure 6-13.
The figures show the true lateral deviation and velocity of the different sensor frames
as well as the estimated states of the observer. The estimated states of the observer are
obtained with use of accelerometer and magnetometer measurement data. The states
of the observer which have undergone an extra update with use of measurement data
coming from the rate gyroscopes, are also given in the figures. These states are
denoted with corrected states.

lateral deviation of sensorframe sl lateral velocity of sensorframe sl
0.04 * 0.03 " "
= true
003 | - true 1 -~ estimated
— estimated 0.02 - - corrected 1
0.02 - - _comrected E
- 0017 1 - 001 T
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time [s] time {s]
Figure 6-10: True, estimated and rate gyro-corrected lateral deviation and
velocity of sensorframe s1
lateral deviation of sensorframe s2 Tateral velocity of sensorframe 52
0.04 " " 0.03
— true
0.025 1 — estimated
0.03 corrected
0.02r
0.02 1
— = 00157
E g
g 0.01+ g 0.01+
k: 3
z 0 < 0.005
vl >
0
0017} 1
— trye -0.005 1
002+ ‘“— estimated
. corrected 001+
082 3 4 5 6 7 8 9 10 005,25 4 5 6 7 8 9 10
time {s] time [s]

Figure 6-11: True, estimated and rate gyro-corrected lateral deviation and
velocity of sensorframe s2
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Figure 6-12: True, estimated and rate gyro-corrected lateral deviation and
velocity of sensorframe s3
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Figure 6-13: True, estimated and rate gyro-corrected lateral deviation and
velocity of sensorframe s4

The simulation results show that the estimated states have large errors with respect to
the true states. This is because the distance between the magnetic markers is large and
the velocity of the vehicle is low, which implies that the time between updates from
the magnetometers is large. This is the cause of the large errors in the estimated states.
The rate gyroscopes can be used to do extra updates on the estimated states. The
estimation of the lateral deviation and velocity (the states of the observer) becomes a
lot better when the extra updates with the rate gyroscopes are implemented in the
observer. This can be seen clearly in the figures, where the corrected states are
depicted. The corrected states approximate the true states much closer than the
estimated states before correction. Especially at points where the estimated states are
really poor, the improvement of the corrected states is big.
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6.1.2.2 Conclusions

It has been shown that the observer can be extended with rate gyroscopes. The state
estimates approximate the true states a lot better when the state estimates are extra
updated with the measurement data coming from the rate gyroscopes. So, it is a good
option to use rate gyroscopes for the improvement of the observer. Besides, rate
gyroscopes have the advantage that their output is not integrated, so that the output of
a rate gyroscope is much more reliable than the output of an integrating gyroscope.
The calculation of the desired yaw rate at the path frames still has to be accurate
enough to make the outcome of the yaw rate error a reliable value.

6.2 Conclusions

In this chapter it has been described how to extend the observer with sensor
measurements. The sensors which have been handled are the integrating and rate
gyroscope. An integrating gyroscope provides the orientation and a rate gyroscope
provides the rate of change in orientation of the object on which they are mounted.
For both sensors, a method has been found to implement them in the observer. The
estimated states of the observer can be extra updated and corrected with use of the
measurement data coming from the sensors. In this way, the measurement system
becomes more reliable and the estimated states approximate the true states a lot closer.
The results obtained with the two different kinds of sensors are in close
correspondence, but the rate gyroscope is the most reliable sensor of the two, for the
reason that its output is not integrated.

One simulation has been run when both the correction steps are implemented in the
observer, but this does not result in considerable improvements in comparison to the
simulations where one of both correction steps is implemented in the observer.
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Chapter 7

Sensor noise and covariance analysis

When the sensors which are described in the previous chapters are implemented in the
observer, it is important to know their noise properties and that the noise can be
characterized in the observer. The observer is designed according to a Kalman filter
and the Kalman filter calculates the optimal Kalman gain when the right data is
supplied to the observer. With the calculation of the Kalman gain, the covariances of
the sensor noises are used. The Kalman gain will be optimal when the covariances
used in the calculation are in close correspondence with the physical noises of the
used sensors. Sensor noise and how to obtain its covariance are aspects which are
dealt with in this chapter. Many sensors show bad low-frequency properties, such as
bias and drift. These properties are very disadvantageous for the application which is
described in this report which will become clear later. How to handle these low-
frequency properties, is also described in this chapter.

7.1 Filtering of sensor noise

The measurements coming from the sensors are in the form of an analog signal. The
measurements from the sensors are being processed by a computer. Therefore, the
analog signal coming from the sensors has to be discretized by an A/D converter. The
A/D converter takes samples of the analog output of the sensor at a certain sampling
frequency. Before a continuous analog signal is sampled, it has to be filtered by an
anti-aliasing filter. If this is not done, folding deformation or aliasing will occur
during sampling and the original signal cannot be reconstructed. According to the
sampling theorem of Nyquist, the sampling frequency has to be twice as high as the
highest frequency appearing in the analog signal.

A global scheme of the system which is described in this report is given in Figure 7-1.
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Figure 7-1: The system schematic

The anti-aliasing filter about which is talked before is denoted by the a.a.-filter in
Figure 7-1.
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The signals which are supplied to the observer are the signals coming out of the A/D
converter. So, the properties of the noise coming out of the A/D converter and the
covariance of this noise have to be determined. If the branch with the sensor, the filter
and the A/D converter is cut out of Figure 7-1 and is redrawn with adding the right
signal names, the following figure can be obtained.

noise
dt)
+ a.a.-filter
m(t) + x(t) y(t) A/D s(k)
sensor > ‘l ‘ P conversion >

Figure 7-2: Filtering and sampling of sensor noise

The output of the sensor is denoted by m(t) and the noise signal is called d(t). The
input of the anti-aliasing filter is the signal x(z) and the output of the filter is the signal
¥(t). The signal y(t) after it passed the A/D converter, which is the sampled version of
¥(1), is denoted by s(k).

The measurement signals coming from the accelerometers and the gyroscopes are
sampled with a sampling time of 5 ms., that means a sampling frequency of 200 Hz.
The sampling frequency of the magnetometer output signals depends on the velocity
of the vehicle and is not known beforehand. That is why only the accelerometers and
the gyroscopes are examined. The output signals of the sensors including the noise
consist of signal contributions at much higher frequencies than 200 Hz. According to
the Nyquist theorem the anti-aliasing filter has to have a cut-off frequency of 100 Hz.
at highest. So, the anti-aliasing filter is an analog lowpass filter with the following
idealized characteristic:

l6(jo) T

1

200n —»
w [rad/s)

What has to be determined is the (co)variance of the noise in the signal s(k). This can
be determined as follows. Consider that the signal x(z) consists purely of noise, so the
signal coming from the sensor m(t) = 0. From this, it follows that: x(z) = d(t). The
power spectral density of the signal d(z) is known. Namely, this can be obtained from
the technical specifications of the noise of the concerning sensor. The mean power of
the output process of the anti-aliasing filter can now be described as (ref. [5]):

P, AR, (0)=Var(y(t))=02 =-2-17-[- 5. @)6()| do (7-1)
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where R,y(0) is the autocorrelation function R, (1): E {y(t y(t +7)} evaluated for 7=

2

0 and Py is the mean power of the output signal y(#). Furthermore, o is another

notation for the variance of the signal y(¢) which is denoted by Var(y(r)). Besides,
Sx(w) is the Power Spectral Density (PSD) of the signal x(f) and G(w) is the transfer
function of the anti-aliasing filter. Equation (7-1) can also be written as:

P, AR, 0)=Var(y(t)=0}=[" s.(Nc(f) a (7-2)
Now consider an ideal lowpass filter for which holds:

1, 0 100,
G(f)={0 </ < (7-3)

, elsewhere .

Then the following can be said for the signal y(z):

P, AR, (0)=Var(y()=0} =[" S (AG(r) o
=L°Sxx(f -Odf+[0 Sulf)1df + [ S.(f)-0df (7-4)

100

=), S (f)df

The variance of the signal y(¢) can be calculated now. From this the (co)variance of
the output signal s(k) of the A/D converter has to be determined. In practice, the A/D
converter is often formed by a switch followed by a zero-order-hold. This is
illustrated in Figure 7-3.

E Zero-order-hold E
(1) YW h(®) 3, s
Y(s) Mo ) H(s) 1 S(s)
- A/D converter i

Figure 7-3: Schematic of A/D converter

The variance of the signal s(¢) can be calculated with use of the following equation
(ref. [6]):

@, (s)=® . .(s)-H(s)-H(-5) (7-5)

where @ (s) and @ . .(s) are the power spectral densities of the signals () and

y (t) respectively. The transfer function of the zero-order-hold circuit is denoted by
H(s). Transforming equation (7-5) back to the time domain yields the following
equation (ref. [6]):
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(t+7)dt (7-6)

Oss (’c)=£:° v, (o

y‘yt
In this equation () is the systemcorrelation function and is given by:

v, (z):j: Kt (s +7)de (7-7)

Further in equation (7-6), ¢, (r) and Qe (r) are the autocorrelation functions of the

signals s(¢) and y*(t) respectively. With use of:

0, 0)= 30,7,)86-4,)

a k=~

the variance can now be given by (ref. [6]):

0, 0)=0=

M

vi(nT,)o,, (nT,) (7-8)

- Y

1
Ta

-
il

The transfer of the zero-order-hold circuit of Figure 7-3 is:

1, 0<t<T,,

7-9
0, 1>T, (79)

k(t)={

According to [ref. 6], v, (z) can also be written as:

621—m -T,<7<T,
w,T)= """ | e e (7-10)

a
0 , otherwise

In this case is:

07 =y, 0)=[ he)hle)dt

(7-11)
T, T, _
=J;} ldr=1|; =T,
With use of equation (7-11), the systemcorrelation function of equation (7-10)
becomes:
rfi-d) o1 crer
w,)={"e T | et e (7-12)

0 , otherwise
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From this, it follows that the quantity y, (nTa) only has a value unequal to zero for n
=0, namely y, (O): T, , so that the following holds:

ol=¢,(0)=0’ (7-13)

y

Concluding: The variance of the output signal s(¢) of the zero-order-hold circuit is
equal to the variance of the original signal y(z).

7.2 White noise and colored noise

A Kalman filter considers the noise disturbances to be white noise with a Gaussian
probability distribution function. Moreover, a Kalman filter can only handle with
white Gaussian noise. However, the noise signals which are supplied to the observer
are filtered noise signals, so the noise is not white, but it is colored noise. The coloring
of the noise can be taken care of by adding an extra state to the observer for the
representation of the coloring of the noise disturbance. But if the system is studied
well, adding an extra state to the observer seems not to be necessary. The vehicle
dynamics of the vehicle take place in the low-frequent area until 2 Hz. The signals of
the sensors which measure the output of the vehicle dynamics are filtered by an anti-
aliasing filter. So, the vehicle dynamics are also filtered by the same filter. This is
shown in Figure 7-4.
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Figure 7-4: Process and sensor filtering

The sensor signals are being sampled with a sampling frequency of 200 Hz.
Therefore, the anti-aliasing filter has a lowpass band with a cut-off frequency of 100
Hz. Then the following characteristic can be sketched.
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Figure 7-5: Characteristic of filtered process dynamics

It is assumed that the noise of the sensors has a flat spectrum in the passband of the
anti-aliasing filter. Because the process dynamics are very lowfrequent, the filtered
noise can be considered as white noise seen from the process. The sampling frequency
is much higher than the fastest dynamics of the system, so that the filtered noise
behaves itself as white noise as seen by the process. Therefore, the filtered noise
signals as well as the covariance of the filtered noise can be applied to the observer
without problems about that the observer considers the noise to be white.
Furthermore, the behaviour of the anti-aliasing filter will nearly not affect the
behaviour of the process. Because the process dynamics are very lowfrequent, the
poles of the process will all be located close to the point z = 1 in the z-plane. Or in the
s-plane, the poles will all be located close to the origin. The poles of the anti-aliasing
filter in the s-plane will be located near the cut-off frequency of the filter. Since the
cut-off frequency of the filter is 100 Hz., the poles of the filter will be located near s =
-200m in the s-plane. Thus, the poles of the filter and the poles of the process are so far
apart that they almost will not influence each other. Therefore, the dynamics of the
system will not be harmed by the behaviour of the anti-aliasing filter.

7.3 Bias and drift properties of the sensors

Most of the sensors used in practice possess bias and drift properties according to the
specifications. Bias and drift are constant or very lowfrequent changing values which
come on top of the desired signal of the sensor. Bias is a constant offset which is
output by the sensor when the sensor measures no signal and drift is the drifting of the
sensor signal according to temperature changes for example. These properties are very
adversely, especially when the signal of the sensor has to be integrated, because big
errors are introduced by integrating bias or drift. To get rid of these disadvantageous
effects, the sensor signal can be filtered with a highpass filter. Because the sensors
discussed here have to measure signals in the frequency range of the vehicle
dynamics, which is a range until 2 Hz., the cut-off frequency of the filter has to be
very low. The cut-off frequency of the filter is very critical, because you may of
course not lose any of the important vehicle dynamics. The cut-off frequency of the
filter therefore has to be in the order of magnitude of 0.1 Hz. and the filter has to have
a flank which is very steeply falling down below a frequency of 0.1 Hz. This is
sketched in the following picture.
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Figure 7-6: Characteristic of highpass filter

The design of the filter can be realized by a simple transfer function in the s-domain,
so that it is a continuous and analog filter. The general form of the transfer function of
the filter will be:

F( )=( ! ] (7-14)

where:

n = the order of the filter, and
a = the cut-off frequency of the filter.

The factors n and a are the design parameters of the filter. The cut-off frequency of
the filter has to be in the order of magnitude of 0.1 Hz., so that the behaviour of the
vehicle dynamics will not be harmed. Therefore, the cut-off frequency of the filter is
chosen as a = 0.1 Hz. or a = 0.628 rad/s. The order n of the filter is chosen to be 2, so
that it is a second-order filter. It is chosen like this, because of a several reasons. The
flank of a first-order filter falls down with a slope of —=20 dB/dec. below the cut-off
frequency. For the application here, this is not enough because then the filtered signal
is not enough suppressed at very low frequencies. Higher-order filters will have
disadvantageous phase-effects, due to the phase response of the filter. A third-order
filter will have worse phase-effects than a second-order filter, due to its phase
response. Therefore, the filter is chosen to be a second-order filter. So, now the
transfer function of the filter looks like:

F(s):( —f—-—)z (7-15)

s+0.628

where the cut-off frequency of the filter is given in radians per second. This is done,
because Matlab/Simulink works with this dimension. The behaviour of the filter can
be analyzed on the basis of its bodeplot. The bodeplot of the filter is shown in Figure
7-7.
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Figure 7-7: Bodeplot of highpass filter

As can be seen in Figure 7-7, signals with a frequency higher than the cut-off
frequency of the filter are amplified with a factor of 1, so they are let through. On the
other hand, signals with a frequency lower than the cut-off frequency are amplified
with a factor much smaller than 1, so these signals are suppressed. The working of the
filter can also be shown by a simulation. The simulation can be done by supplying the
input of the filter with a sine wave of a certain frequency added to a constant. At the
output of the filter, the constant should have been filtered out of the signal. The
simulation is carried out with a sine wave of 1 Hz. and having an amplitude of 5 V.
This sine wave is added up to the constant 3. The signal which forms the input of the
highpass filter is shown in Figure 7-8.
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Figure 7-8: Input signal of the highpass filter

What can be seen in this figure is that the input signal of the highpass filter consists of
a sinusoid and a d.c.-offset of 3 V. The sinusoid has an amplitude of 5 V. and the
frequency of the sinusoid is 1 Hz. The output of the highpass filter looks like the
signal which is illustrated in Figure 7-9.
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Figure 7-9: Output signal of the highpass filter

The filtered signal is shown in Figure 7-9. The figure illustrates that the d.c.-offset is
filtered out of the signal and that the sinusoid passes the filter with a slight
deformation. This is because the filter is not optimized for this application. However
the filter is not optimal, it is shown that a highpass filter is a good option for the
suppression of bias and drift in the sensor signals.

The highpass filter can also be implemented as a discrete-time filter. The transfer
function of the discrete-time filter can be obtained by conversion of the continuous-
time filter to the discrete-time domain. This can be done with the command c24 in the
Matlab Command Window. The discretization method is chosen as ‘zoh’ which means
zero-order hold on the inputs. The transfer function of the discrete-time filter after
conversion of the continuous-time filter becomes:

2

F(z): . z°=2z+1 (7-16)
7" —1.9947+0.9937

The bodeplot of the discrete-time filter is the same as the bodeplot of the continuous-

time filter, so they both have the same behaviour.

The highpass filter can be used to filter the signals which are supplied to the input of

the observer. The signals which are supplied to the observer are the reference signals

,which are derived from the desired states of the path, subtracted from the sensor

signals. It is important that not the sensor signals are filtered, but that the sensor

signals minus the reference signals are filtered. When the sensor signals are filtered,

there exists a possibility that important information is lost. For the accelerometer this

can be explained as follows. The acceleration which is measured by the accelerometer

is given by equation (3-4) and is:

o sis si w4 _
a, = "vy, +v, & (7-17)

In this equation "€ is built up as:

w

£y ="E,+" €, (7-18)
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Thus, equation (7-17) can be rewritten as follows:

_ sis si w o pi s
a)’si - vysi+ vxsg{ £pt'+ ‘gsi} (7-19)

vE pi in this equation yields in a curve with a constant radius a

constant acceleration which is not equal to zero. When the sensor signal of equation
(7-19) is being highpass filtered, this constant acceleration is filtered out and lost. This
is not desirable. This problem is taken care off by filtering the acceleration input
signal of the observer. This signal is given by:

The term v, -

(7-20)

As can be seen, the term Sivxsi € . is removed out of this signal, so this signal only

pt
contains the varying components of the lateral acceleration. If this signal is filtered by
a highpass filter, only the bias and drift are filtered out and no important information
is lost. The same can be said for the rate and integrating gyroscopes. The signal which
is measured by a rate gyroscope is given by equation (7-18). In a curve with a

constant radius, the term "€ ,; produces a constant yaw rate unequal to zero. This

constant yaw rate would also be filtered out by a highpass filter and this again is not
desirable. But if the signal of the yaw rate error which is supplied to the observer is

filtered, then this problem does not exist anymore. The term " € pi 18 namely removed

out of the signal of the yaw rate error, so that this signal only contains the varying yaw
rate error. By highpass filtering this signal, no relevant information is lost. For the
integrating gyroscopes the same can be said as for the rate gyroscopes with a slight
modification. The output of an integrating gyroscope is built up as stated in the
following equation:

Yeu="e, +" g (7-21)

The term "¢ pi brovides a constant growing yaw in a curve with a constant radius, and

when the output signal of the integrating gyroscope is filtered by a highpass filter this
constant growing yaw is lost. But instead of filtering the output signal of the
integrating gyroscope, the signal of the yaw error which is input to the observer can
be filtered. The constant growing yaw is removed from this signal, so that it only
contains the varying yaw. The bias and drift present in this signal can be filtered out
with the highpass filter, without losing any important information.

Concluding: When not the sensor signals, but the error signals are highpass filtered,
no loss of important information will appear. The error signals are obtained by
subtracting the reference signals from the sensor signals.

7.4 Covariance and PSD of the noise of used sensors

To simulate the effect of the noise of the used sensors it is necessary to determine the
covariance and the PSD of the noise of the used sensors. The best and easiest way to
do this is to measure the physical noise of the sensors. Then a characteristic can be
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drawn of the density of the noise plotted out against the frequency. The covariance of
the noise can be obtained from this characteristic. In the situation here, the choice of
the sensors is not sure yet, so that the sensors are not present. Therefore, the physical
noise of the sensors can not be measured in practice. Another way to obtain the
covariance and PSD of the noise of the used sensors is to extract the noise properties
from the datasheet of the concerning sensor. The datasheets of the sensors which are
probably going to be used were present, so these datasheets are used to obtain some
reliable values for the covariance and the PSD of the noise of the sensors.

7.4.1 Accelerometer noise

A good option for an accelerometer is the Micromachined Servo Accelerometer,
model MSA100 from the Endevco Corporation. The datasheet of this sensor can be
found in Appendix B. More information about this sensor or other sensors is present
in ref. [7]. According to the technical specifications in the datasheet, the sensor has a
typical scale factor of 200 mV/g. When the acceleration of gravity is taken as 1 g. = 10
m/s’, the scale factor of the sensor can also be written as:

200 [mv]_20[mv]
o] (7]

The typical output noise of the sensor in the range of 0.5 to 500 Hz. is specified as 4
uVrms/VHz. With use of the scale factor, the output noise can be expressed in the
dimension of mg/VHz. This can be done by dividing the output noise by the scale
factor. This results in:

scale factor:

vHz JHz

output noise = £ =

VHz v
%
L s?

~4.1076 {V"’"““ } 1[%2} (7-22)

JHz | 20107 [V]

m
~200-107 —A—Ziﬂ-ﬁ zzo-lo‘ﬁ[g ’m}

VHz VHz

: mg rms
=0.02
{ JHz }

To obtain the height of the Power Spectral Density (PSD) of the noise of the
accelerometer in the range of 0.5 to 500 Hz., the value which is calculated in equation
(7-22) has to be squared. The height of the PSD of the noise of the accelerometer then
becomes:

output noise Vms} 4.107° 1:szs:!

scale factor 20-1073
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height PSD A S, (f)=(200-10 J' =40.10"° | )

To determine the value of the accelerometer noise covariance, it is assumed that the
spectrum of the noise is flat in the range of 0 to 500 Hz. and the height of the
spectrum has the value calculated in equation (7-23). The covariance of the noise
which is filtered by the anti-aliasing filter can then be calculated with use of equation
(7-4). This gives:

P, AR, O)=Var(a@))=02 =[S, (f)df

m
4

2 (7-24)
=4o-10'9f[})00:40.10‘9.1()0:4.10'6[ }
A

Equation (7-23) and (7-24) provide the values which are needed to simulate the noise
coming from the accelerometers. Note that these values are determined theoretically
and not practically and it might be possible that there is a difference in the theoretical
and practical values. The same can be done for the noise of the gyroscopes.

7.4.2 Gyroscope noise

It is a good choice to choose for the Fiber Optic Gyroscope, model KVH EeCore 1000
from the KVH Industries, Inc. The datasheet of the sensor is depicted in Appendix C.
More information about this sensor or other sensors can be found in ref. [8].
According to the technical specifications of the sensor, the output noise of the sensor
is specified as the Angle Random Walk and it has the value of 20 °/hr/VHz. To
simulate the noise, this value has to be transformed to the dimension rad/s/VHz. The
transformation yields:

20 [°/nr]= —2—94%%16&5- ~96.96-107° [m% ] (7-25)

With the use of this transformation, the value of the noise becomes:

A rad/
20 r 1=9696.107¢ | —£& (7-26)
~Hz v Hz

To obtain the height of the Power Spectral Density (PSD) of the noise of the
gyroscope, the value which is calculated in equation (7-26) has to be squared. The
height of the PSD of the noise of the gyroscope then becomes:

rad
height PSD A S, (f)= (069610 ' =9.4.10" ——I;/i (7-27)
- Z
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To determine the value of the gyroscope noise covariance, it is assumed that the
spectrum of the noise is flat and the height of the spectrum has the value calculated in
equation (7-27). The covariance of the noise which is filtered by the anti-aliasing filter
can then be calculated in the same way as is done for the accelerometer. This results
in:

P, ARy (0)=Var(g(t)=02 =[S, (£)df

=9.4:107 f|} =9.4.10™ 100 = 94010 {(m%ﬂ (7-28)

Equation (7-27) and (7-28) provide the values which are needed to simulate the noise
coming from the gyroscopes. It has to be noted that these values are also determined
theoretically and not practically and there might be a possibility that there is a
difference in the theoretical and practical values.

7.5 Simulation results

The simulations carried out in the chapters 5 and 6 are carried out with intuitive
values for the noise and the covariance of the noise of the sensors. The intuitive
values were useful to show the principle of the observer. But to evaluate the
performance of the observer with the sensors which are probably going to be used, it
is necessary to implement the sensors in the observer with their true noise properties.
This is done in the next simulations. The values for the noise of the accelerometers
and magnetometers are adjusted to the values which are calculated in the previous
section. The height of the PSD of the noise is implemented in the block Band-Limited
White Noise in Simulink. The covariances of the noise from the sensors are defined in
the Matlab-file which describes the observer. The noise source for simulating the
effect of magnet misalignment and magnetometer noise was adjusted to result in a
maximum measurement error of about 2 ¢m. To achieve this, the covariance of the
noise from the magnetometers was set to 0.0002 m” and the height of the PSD of the
noise was adjusted to 2-10° m*/Hz.

Furthermore, the simulations are carried out for a vehicle entering a curve with a
radius of 300 m. at a speed of 20 ms™. This is done to show that the observer can
handle different road curvatures and vehicle velocities. The distance between the
magnetic markers was set to 4 m. The states of the observer are estimated with use of
measurement data coming from the accelerometers and magnetometers and the state
estimates are extra updated with the measurement data from the integrating and rate
gyroscopes, SO an extra correction step is done to the yaw and yaw rate errors of the
different vehicle carriages. The simulation results can be found in Figure 7-10 until
Figure 7-13. The figures show the true lateral deviation and velocity of the different
sensor frames of the vehicle. The estimated states of the observer after correction with
the integrating and rate gyroscopes, also referred to as the optimal estimated states,
are also depicted in the figures.
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Figure 7-13: True and optimal estimated states of sensorframe s4

The simulation results show that the optimal estimated states are very close to the true
states. The estimated lateral velocity fits even almost the true lateral velocity, whereas
the estimated lateral deviation still shows some deviations with respect to the true
lateral deviation. The estimated lateral deviation fluctuates around the true lateral
deviation, but it will converge to the true lateral deviation. It also can be seen in the
figures that the influence of noise is hardly visible anymore. This is because the true
values of the noise taken in these simulations are much smaller than the intuitive
values of the noise taken in the simulations of the previous chapters. The order of
magnitude of the noise from the accelerometers and gyroscopes is so small in
comparison to the order of magnitude of the sensor signals that the noise on the sensor
signals will be almost not visible anymore. Furthermore, it is so that the covariance
values of the noise used in the calculation of the Kalman gain are strongly related to
the physical noise of the used sensors now, so that the Kalman gain will be optimal.
When the Kalman gain is optimal, the state estimates will also reach their optimum.
The estimated lateral deviations of the different sensor frames still show some errors
with respect to the true lateral deviations of the different sensor frames because the
lateral deviation is obtained by integrating the accelerometer readings twice. The
double integration as well as magnetometer noise cause the small errors in the
estimates of the lateral deviations. The magnitude of magnetometer noise is much
bigger than the magnitude of accelerometer and gyroscope noise, so the influence of
magnetometer noise is still visible. The estimates of the lateral velocity are obtained
by integrating the accelerometer readings once, so the errors with respect to the true
lateral velocities shown by these estimates are much smaller.

If the practical values of the sensor noise are the same as the theoretical values of the
sensor noise, it can be said that the performance of the observer is of high quality and
that it forms a reliable measurement system.

7.6 Conclusions

The sensor signals of the sensors described in this report consist of noise. Before the
analog sensor signals can be processed by a computer, they have to be discretized. An
analog signal has to be filtered by an anti-aliasing filter before it is discretized,
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otherwise aliasing will occur. It is described how the sensor noise can be filtered and
it is also explained how the covariance of the filtered sensor noise can be obtained.
The filtered sensor noise is also called colored noise. It is discussed why the colored
noise can be considered as white noise by the observer.

The sensors described here also possess bias and drift properties. It is shown how to
deal with these properties and how the disadvantageous properties can be suppressed.
Noise properties and values of the used sensors are extracted from their datasheets and
simulations are carried out to show the behaviour of the observer with these sensors
and their noise values.

When the practical values of the noise do not differ too much from the theoretical
values, the estimated states of the observer are very close to the true states and the
influence of noise is hardly visible anymore.
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Chapter 8

Conclusions and recommendations

Here the most important conclusions found by the M.Sc. project are stated.
Furthermore, some recommendations for future research are given.

8.1 Conclusions

In this report a method is developed to design a measurement system for an Automatic
Guided Vehicle. The measurement system or observer is designed according to the
theory of Kalman filtering. The vehicle has to follow a certain roadway reference
system. The reference system is formed by a track of magnetic discrete markers,
which will be detected by magnetic sensing. Among other approaches, magnetic
sensing appears to have some potential advantages. Although permanent magnetic
markers are passive devices, they create magnetic fields. The magnetic field appears
to be less influenced by environmental conditions than other reference systems. The
life cycle of permanent magnets is several decades and they should not need any
maintenance.

The observer estimates the lateral velocity and deviation of the vehicle with respect to
the roadway reference system. The method of estimation which is used combines the
discrete magnetic markers with acceleration measurements according to a Kalman
filtering technique. In contrast to other techniques, this estimation technique is
completely independent of all vehicle parameters. Another main advantage of this
estimation technique is that the effects of disturbances are also taken into account by
the observer.

To improve the estimation technique, the observer is extended with gyroscopes.
Gyroscopes are instruments which are used to measure angular motion. There is
chosen for these sensors, because angular velocity and orientation of a vehicle (which
can be measured by these sensors) are main aspects for the lateral control system of
the vehicle. A method to implement the rate and integrating gyroscopes in the
observer is treated. The method is accurate for small road curvatures only.

One chapter is dedicated to sensor noise and covariance analysis. It is shown how to
simulate sensor noise and a method to obtain noise covariances from sensor
datasheets is introduced.

Simulation results throughout the report show that the estimated states of the observer
are close to the true states of the vehicle. From the measurement results it also can be
seen that the estimated states can be improved a lot when the observer is extended
with the integrating and rate gyroscopes. The improvement is especially big when the
distance between the magnetic markers is big and when the velocity of the vehicle is
low. The estimation technique which combines the discrete magnetic markers with
acceleration measurements is especially useful for high velocities of the vehicle and
for small distances between the magnetic markers. For low velocities and large
distances between the magnetic markers, the estimated states show large deviations
with respect to the true states.

It can be said that the designed observer in this report forms a good basis for a reliable
measurement system of an Automatic Guided Vehicle.
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8.2 Recommendation s

The presented method for a reliable measurement system of an Automatic Guided
Vehicle (AGV) can be used for further research on a measurement system for an AGV.
The estimation technique which combines the discrete magnetic markers with
acceleration measurements is especially useful for high velocities of the vehicle and
for small distances between the magnetic markers. It is recommendable to search for
an estimation technique which produces reliable estimates for low velocities of the
vehicle and large distances between the magnetic markers. Sensors which can be used
for this estimation technique are pulse counters which can be mounted on the wheels
of the vehicle and angular sensors which can be used to measure the steering angle of
the wheels. When the measurements from these sensors are combined it is possible to
obtain the lateral velocity of the vehicle with respect to the roadway reference system.
The lateral deviation of the vehicle can be calculated out of the lateral velocity. The
expectation is that this method is useful for low velocities of the vehicle. For high
velocities of the vehicle this method becomes less reliable, because then slip of the
wheels is going to play a part.

The presented method for the extension of the observer with gyroscopes is accurate
for small road curvatures only. Commuter buses (where this vehicle is one of)
however, might also drive on roads with small curves or large curvatures. Therefore, it
is recommended to extend this method so that it is accurate for large road curvatures
also.

At last, it is recommended that the covariance and the PSD of the noise of the used
sensors are determined according to the physical measured noise of the sensors. Only
then, reliable statements can be done about the true values of the noise. Thus, if it is
known which sensors are going to be used, they have to be ordered so that the true
physical noise can be measured. This is much more reliable than extracting the noise
values from the datasheets of the sensors.
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Appendix 1: Observer.m

Matlab® file which describes the observer.

function [sys,x0,str,ts] =
%

sfuntmpl (t,x,u, flag)

% The following outlines the general structure of an S-function.

%
switch flag,

X PR R R E TR TR L
% Initialization %
EEELLHTLEEHEEIHLR9%%
case (0,

[sys,x0,str,ts]l=mdlInitializeSizes;

global counterf;
counterf = 0;

global xd_f£;

xd_f = [0;0;0;0;0;0;0;0
global M_f;

M _£=0;

global counter_front;
global counter_rear;
global counter_stl;

global counter_st2;
counter_front = 0;
counter_rear = (;
counter_stl = 0;
counter_st2 = 0;

global correction_vyaw;

global correction_yaw_rate;

correction_vaw = 0;

correction_vaw_rate = 1;

FEEEEHEEEES

% Outputs %

FEELEELLE%%

case 3,
sys=mdlOutputs{t,x,u);

FEELELEIEIELTELHEHEH%9%
% GetTimeOfNextVarHit %
FEEEEILEELLEBEEHHEHE3%%
case {(1,2.4,9}
sys=[];%unused flag;

FEEEERLBLELEHEEDEESY
% Unexpected flags %
FTEEEEETLTEEHHHREE%%
otherwise

12

error ([ 'Unhandled flag =

end
% end sfuntmpl
%

$Counter for number of samples.
$Initialize sample-counter.

%¥States of the observer.

$Initialize states of the observer.
$Variable for covariance of estimation
$error.

$Initialize covariance of estimation
gerror.

$Variables for counters to count how
$many times the magnetometers

$at the vehicle have passed

%$a magnetic marker.

$Initialize counter_front.

$Initialize counter_rear.

$Initialize counter_stl.

$Initialize counter_st2.

¥Variable for correction_yaw decision.
$Variable for correction_yaw_rate

$decision.
$Variable for correction_yaw decision,
$0 = FALSE, 1 = TRUE.

$Variable for correction_vyaw_rate
$decision, 0 = FALSE, 1 = TRUE.

‘onum2str{flagl)l};
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% mdlInitialize
% Return the si
% S-function.

Sizes
zes, initial conditions, and sample times for the

function [sys,x0,str,tsi=mdlInitializeSizes

sizes = simsize

sizes . NumContSt
sizes.NumDiscSt
sizes.NumOutput
sizes.NumInputs

sizes.DirFeedthrough

sizes.NumSample

sys = simsizes(
%

s

ates = 0; $Number of continuous states.
ates = 0; $Number of discontinuous states.
s = 8; ENumber of outputs of observer.
= 22; ¥Number of inputs of observer.
= 1; $Direct feedthrough is available.
Times = 1; $AL least one sample time is needed.

sizes);

% initialize the initial conditions

%

x0 = [1];

%

% str is always
%

str = []:

%

$No continuous states.
an empty matrix

%No state ordering.

% initialize the array of sample times

%
ts = [-1 03};

% end mdlInitia

% mdlOutputs
% Return the bl

$Inherited sample time.

lizeSizes

ock outputs.

function sys=mdlOutputs(t,x,u)

global counterf
global xd_f;
global M_f;

global counter_
global counter_
global counter_
global counter_

; %$Sample-counter.
$States of the observer.
$Covariance of estimation error.

front; $Variables for counters to count how
rear; $many times the magnetometers

stl; %$at the vehicle have passed

st2; $a magnetic marker.

global correction_vyaw; $Variable for correction_vaw decision.
global correction_yaw_rate; $Variable for correction_yaw_rate
$decision.

Lsf=2.5; $Distance between tractor's centre of gravity and
$frontsensor.

Lsr=5.217; $Distance between tractor's centre of gravity and
$rearsensor.

Lsstl1=6.15; $Distance between articulation point of first
$semitrailer and sensor on first semitrailer.

Lsst2=6; $Distance between articulation peint of second
$semitrailer and sensor on second semitrailer.

Lstl=6,15; $Length of first semitrailer.

drl=5.217; $Distance between tractor's centre of gravity and
$articulation point.
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dsl = drl - Lsr; $%$Distance between tractor's rearsensor and
%$articulation point.

alfa = u{21); %Angle between tractor and first semitrailer.

beta = u(22); %Angle between first semitrailer and second
$semitrailer.

a= [01;0 0]; $Definition of a-matrix for SISO representation.

b= [0;1]; $Definition of b-matrix for SISO representation.

c = [1 01; $Definition of c-matrix for SISO representation.

A={a zeros(2,6);zeros(2,2) a zeros(2,4); zeros(2,4) a zeros(2,2):.
zeros(2,6) al; %$Definition of A-matrix for MIMO representation.
B=[0 00 0;1000;0000;0100;0000;001120;0000;00011;

$Definition of B-matrix for MIMO representation.

C=[1000000GO0;.
0010000 0;...
0000100 0;..
00000O010;...
1/{(Lsf + Lsr) 0 -1/{(Lsf + Lsxr} 0 0 0 0 0O;...
0 0 1/(Lsstl*cos{alfa)) 0 -1/{Lsstl) 0 O 0;...
0000 1/(Lsst2*cos{beta)) 0 ~-1/(Lsst2) 0;...
0 1/(Lsf + Lsxr) 0 -1/{Lsf + Lsr) 0 0 O 0;...
0 0 0 1/(Lsstl*cos{alfa)) 0 -1/Lsstl 0 0;...
00000 1/(Lsst2*cos(beta)) 0 -1/Lsst2];
$Definition of C-matrix for MIMO representation.
t = u{9); $Simulation time.
dt = 0.005; $Definition of sample time.
w_d = 0.001; $Covariance of noise from accelerometer.
v_d = 0.00002; $Covariance of noise from magnetometer.
Wd = w_d*eye(4); $Covariance matrix of noise from
$accelerometers at tractor and semitrailers.
vd = v_d*eye(d); %Covariance matrix of noise from
$magnetometers at tractor and semitrailers.
vd(5,5) = 0.000005; $Covariance of noise from integrating
$gyroscope at tractor.
vd(6,6) = 0.000005; $Covariance of noise from integrating
$gyroscope at first semitrailer.
vd(7,7) = 0.000005; %$Covariance of noise from integrating
$gvroscope at second semitrailer.
vd{g,8) = 0.000005; $Covariance of noise from rate gyroscope at
$tractor.
vd(9,9) = 0.000005; $Covariance of noise from rate gyroscope at
$first semitrailer.
vda(10,10) = 0.000005; $Covariance of noise from rate gyroscope at
$second semitrailer.
Ad = expm{A*dt); $Calculation of discrete-time A-matrix.
Bd=eye{8) *dt*B+0.5*A*dt"2*B; %Calculation of discrete-time B-matrix.
Bw=Bd; $Definition of discrete-time Bw-matrix.
magnet_distance = 2; %$Distance between magnetic markers.
timestep = 0.001; %Simulation timestep.
if t »= counterf*dt; $Start of observer cycle.
t;
xd_f = Ad*xd_f£f+Bd*[u(l);u{2);u(3);uf{4)]; %Prediction of observer
‘ $states.
M_f = Ad*M_f*Ad'+Bw*Wd*Bw'; $Propagation of the covariance

$0f the estimation error.

$Correction step if measurement data of tractor's, semitrailerl's
$and semitrailer2's integrating gyroscope (yaw) is available.
$Assumed is that gyroscope data is available at the same time as
saccelerometer data.
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if correction_yaw == 1
C=1[000000©O00O0;..
0000000 0;
0 00000O0GO0;..
0000CO0O0GOCO;...
1/{Lsf + Lsr) 0 -1/{Lsf + Lsr)} 0 0 0 0 0;...
0 0 1/(Lsstl*cos{alfa)) 0 -1/(Lsstl) 0 0 0;...
0 00 0 1/{(Lsst2*cos(beta)) 0 -1/(Lsst2) 0;.
000000O00O0;...
00060O0O0CO0O0;...
0000000 O0]; $Observation matrix for integrating
$gyroscopes at the wvehicle.
K=M_f*C'*inv(C*M_£*C' + vd); $Calculation of Kalman gain.
M_£f=M_f-K*C*M_f£; $Update of covariance of estimation error.

xd_£f = xd_£f + K * ([u(5); u(6); ul{7); u(8); u{is); ulle);..
u{l7); u{18); u(l9); u{(20)] - C * xd_£);
$Update of state estimate.
end

$correction step if measurement data of tractor's, semitrailerl‘'s
$and semitrailer2's rate gyroscope (yaw rate) is available.
¥Assumed is that gyroscope data is available at the same time as
$accelerometer data.
if correction_yaw_rate ==

cC =10 0 000 0;... $0bservation matrix for rate
PN $gyroscopes at the vehicle.

e

QOO OO

.
M

OO OO0
D o000
OO OO OO

0 0;...
/(Lsf + Lsr) 0 -1/(Lsf + Ler) 0 0 0 0;...
1/(Lsstl*cos{alfa)) 0 -1/Lsstl 0 0;...

0 00 1/(Lsst2*cos(beta)) 0 -1/Lsst2};
*inv{C*M_f£*C' + Vvd); %Calculation of Kalman gain.
_E-R*C*M_£; $Update of covariance of estimation error.
=xd £ + K * ([u{8); u(6); u{7); u(8); u{i5}; u{le);...
u{l7); u(l8); u{l9); u(20)] - ¢ * xd_f£f};
$Update of state estimate.

0
00
00
00
00
00
0 0
(Ls
g

* OO O OO0 OO0
PO O OO OO OO

X =R
] Ul
Hh =
L
2 Hh
th )

end

$Correction step if front magnetometer on tractor is on top of a
$magnetic marker.
1f u(l0)+timestep*u(ld)> (counter_front+ceil{Lsf)) *magnet_distance

counter_ front = counter_front+1l;
C=1[1000000020;...
000600O0CO0 O0;
000O0O0O0O0 0;
000O0O0O0O0 C;
0 0000O0O0 O0;
0000O0O0CGO0 O;
0000000 O;
0000O0O0O0O0;
0 00O0O0CO0CO0O0;...
0000O00O0CO0O0]; $0bservation matrix for front

fmagnetometer on tractor.
K=M_£*C'*inv(C*M_f*C'+Vd); %Calculation of Kalman gain.
M_£f=M_f-K*C*M_£; $Update of covariance of estimation error.
#xA_£ = xd_£ + K * ([u{B); u(b); ul{?)y; ui{8); u{ls); u(is);...
u{l7); u(l8); u{ls9); u{20)] - C * xd_f£);
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%Update of state estimate.
end

$Correction step if rear magnetometer on tractor is on top of a
$magnetic marker.

if u(ll)+timestep*u(ld)> (counter_rear-floor{Lsr}) *magnet_distance
counter_rear = counter_rear+l;
C=1[000000©O0GO0;...
00100000;...
0000C0O00O0O0;...
000000O0CGO0;...
0000000 O0;.
0000000GO0;...
0 00000O0O0;...
0 000C0O0CCO0O0;..
000C000O0O0;...
000000C0CO0]; %0Observation matrix for rear
$magnetometer on tractor.
K = M_f*C'*inv(C*M_f*C'+vd); %Calculation of Kalman gain.
M_f=M_f-K*C*M_f; $Update of covariance of estimation error.

xd_f = xd_f + K * {({u(5); u(6); u{7); u({8); u{ld); u(lé);.
u(l7); u{l8); u(l19); u(20)] - ¢ * xd_£);
%$Update of state estimate.
end

$Correction step if magnetometer on first semitrailer is on top
%$of a magnetic marker.
if u(l2)+timestep*u(ld)>{counter_stl-...

floor{Lsstl+drl)) *magnet_distance

counter_stl = counter_stl+l;

C=1[0000000O00O0;.
Q000000 0O0;.
00001000;...
0000000 O0;...
000000O0O0;...
0 00000CO0GO0;.
00000O0CO0O0;.
0000000 O0;
0000000 O0;...
0000000 07; $0bservation matrix for magnetometer

$on first semitrailer.
= £*C' *inv(C*M_f*C'+vd); %Calculation of Kalman gain.
_f=M_f-K*C*M_f; %$Update of covariance of estimation error.
xd_f = xd_£f + K * ([u(5); u{6); u(7); u(8); u(ls); u{is);..
u{l7)y; ul(lB); u(l9); u(20)} - C * xd_f£);
$Update of state estimate.

M.
M.

=R

end

%Correction step if magnetometer on second semitrailer is on top
$0f a magnetic marker.
if u(l3)+timestep*u(ld)>{(counter_st2-...

floor{dri+Lstl+Lsst2)) *magnet_distance

counter_st2 = counter_st2+1;

C=[000000020;..
0000000 Q;...
00000O0CO0O0;.
0000CO0O01O0;.
0000000O0OD0;...
00000CO0CO0O0;.
00000O0O0O0;...
000CG000O0O0;...
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00 000 0;...

0 0 0 00 01; %0Observation matrix for magnetometer
$on second gemitrailer.

K = M_f*C'*inv(C*M_f*C'+vd); %Calculation of Kalman gain.

M_f=M_f-K*C*M_f£; $Update cof covariance of estimation error.

xd_f = xd_£ + K * {[u(5); u(é6); u(7); u{8); u(ls); u{ie);...

u{l7); u(l8); u(l9); u(20)] - C * xd_f£};

$Update of state estimate.

00
00

end

counterf = counterf+l;
end
sys=xd_f;
% end mdlOutputs
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Appendix 2: Datasheet of MSA100

Micromachined Servo Accelerometer ENDEVCO
MODEL

Model MSA100 MSA100

* 3 mg Bias Composite Error

* Rugged, Low Vibration
Rectification

* High Resolution
* Range Adjustable
Self Test

DESCRIPTION Actoal e
The ENDEVCO® Model MSA100 Servo

Accelerometer utilizes a force rebalanced sensor

that offers exceptional ruggedness, high resolu- e

tion, and low vibration rectification. Temperature N | unt harie 4122 —n]
i T Ml KB TOENTRICATION 2,

output and calibration coefficients are standard 2es) ADSEHRL Bore

. . d t 5B8
features allowing for modeling to 3 mg accura- — fe 135 Ve N (438)
cies. i 27N -

rG < /2 / 3 \ {(am
: ; " . - o100

The Model MSA100 is designed for inertial 4 \;2% i OA—AGM

motion studies in vehicles, tactical grade missile p/ 2 LA
IMU, flight tests, and tilt/angle measurements. (’1 0

ol 2

\ N7
At the heart of the MSA100 is a three-layer Hm
micromachined silicon sensor. The middle layer (aabs Ak,
includes the proof mass which, with applied MSA100 . MSA110
acceleration, s electrostatically rebalanced to a 570044 [ “es
null position between the upper and lower elec- S
trodes. This force rebalancing offers a wide band- 8 ORECTONOF
width, minimal non-linearity and excellent per- : y L =9 ACCELERRION
formance in high shock and vibration environ- NoTE: f I
ments. External resistors are used to adjust full %E’Wm 12(30)

CASE

scale range from the standard £50 gs to lower g soEMRTe ’/_
levels without affecting the accelerometer’s elec- = B < EXCVOLAGE

tronics. The MSA100 also has self-test capability 7 TEMP SENSOR OUT

i
|
which moves the proof mass and outputs a pro- i | . SBRE
portional signal. { pleodint
E 3 SELF TEST
|

The micromachined silicon sensor and hybrid 2 RANGE BELECTION

electronics are hermetically sealed for environ- FTETT ! sl ouTRIT
mental protection in a stainless steel case with INCHES  MLLMETERY)
an industry standard mounting pattern. The XXl (R 13)
Servo Accelerometer is also available with a tri-
angular mounting plate as a Model MSA110.
U.S. Patent 5,205,171
SPECIFICATIONS
PERFORMANCE CHARACTERISTICS: All values are typical at +75°F (+24°C) and 115 Vdc excitation and with £50 g range unless cthenise
stated. Calbration data, bie to the National Institute of Standards, (NIST), is supplied. Ref: Note (6] for definiti
Units MSAT02/MSA110
RANGE[t] 9 150, Adjusiable to $0.5 7}
BIAS g Max 11.5
BIAS COMPOSITE ERROR {2} mg rms Typ 3
i - mg rms Max 5
8IAS TEMPERATURE SENSITIVITY ug/ °F Typ 330
g/ °C Typ 600
ImecGITT ENDEVCO g
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ENDEVCO
MODEL
MSA100

Mlcromachlned Servo Accelerometer

SPECIFICATIONS—continued
PERFORMANCE CHARACTERISTICS-eontinued
Units MSA100MSA110
SCALE FACTOR mvig 200 140
SCALE FACTOR COMPOSITE ERROR 2] ppm Max 1000
SCALE FACTOR TEMPERATURE SENSITIVITY ppmVF Typ -50
ppm/C Typ -80
NON-LINEARITY % FSO Typ $0.1
FREQUENCY RESPONSE (+5% max, ref 100 Hz) Hz 010500
RESONANCE FREQUENCY Hz Typ 2000
PHASE RESPONSE (010 500 Hz) degree, Typ -10
degree, Max -15
AXIS MISALIGNMENT mrad Max 110
VIBRATION RECTIFICATION COEFFICIENT (3] /g Max 30
{0 to 2000 Hz)
VIBROPENDULOSITY ua/g’ Max 10
SELF-TEST g/volt Typ 25
TEMPERATURE SENSOR OUTPUT@ +75°F (+24°C) [4] VTyp 0.630
TEMPERATURE SENSOR SENSITIVITY mV/F Typ 1.2
mV/C Typ 21
ACTIVATION TIME sec Max 05
ELECTRICAL
EXC{TATION 113 Vde to +18 Vde
Bias Voltage Sensttivity <1 yg/Vde
Scale Factor Voltage Sensttivity <200 ppmVde:
INPUT CURRENT 25 mA max per supply
OUTPUT RESISTANCE 1000 ohms maximum
INSULATION RESISTANCE 520 Mohm at 50 Vdc
OUTPUT NOISE [5] TYPICAL 0.5t0 10 Hz 0.4 pVrmsAHz
0.5 to 500 Hz 4 pVrmeAHz
0.5 1o 10kHz 40 pVrmsNHz
PHYSICAL
CASE, MATERIAL 304L Stainless Steel
ELECTRICAL CONNECTIONS Eight solder pins
IDENTIFICATION Manufacturer's logo, model number and seria! number
MOUNTING TORQUE Holes for 440 or M3 mounting screws/ 6 bf-in (0.7 Nm)
WEIGHT 40 grams maximum
ENVIRONMENTAL
TEMPERATURE RANGE, OPERATING -85 10 +221 F (-5510 +105C)
VIBRATION 30 grms, 20 to 2000 Hz
SHOCK {half-sine pulse) 5000 g min, 200 psecond or longer
HUMIDTY Unaffected. Hermetically sealed
ALTTUDE Unaffected
MAGNETIC SENSITIVITY ON BIAS 30 yg/ Gauss at 15 Gauss field
CALIBRATION DATA SUPPLIED
BIAS mv
SCALE FACTOR mvig
AXIS MISALIGNMENT mrad
TEMPERATURE MODELING Caefficients for third. order fit of Bias and Scale Factor
FREQUENCY RESPONSE 20 to 10 khz
ACCESSORIES 5. With 50 g full scale.
EHW285 (4) Size 4, Flat Washers 6. IEEE Std 337-1972. Standard Specification Format Guide and
EH409 (4) 4-40 X 3/8 inch Cap Screws Test Procedure for linear, single axis, pendulous, analog and
EHMa84 (1) Hex Wrench torque balance accelerometer.
7. Range selection external fesistor (R.) connected from pin 2 to
NOTES pin4.
1. For best resutts unit should be calibrated to required lower
| ranges when ling. R_ =10,0000hms S = desired scale factor, Vig.

2. RSS of temperature modeling residual and repeatability:

3. Optional 10 pg/g’ available on special order.

4. Temperature modeling provides third order coefficients for
bias and scale factor.

S: = unadjusted scale factor, Vig.

(2:— 1)

Continued product improvement necessilates that Endeveo reserve the right 1o maodify these specifications without notice. Endeveo meintains @ program of constant
surveillance over al producls 1o ensure a high lavel of veinhhly. This progam includes atlenion to reliabilily factors during product design, the support of stringant

Quality Convral req , and

P Y
synonymous with Iahnblhly

These together with

have made the name Endevco

5p

ENDEVCO CORPQRATION, 30700 RANCHQ VIEJQ ROAD, SAN JUAN CAPISTRANO, CAB2675 USA (849) 483-8181 fax (849) 661-7231 0288
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Appendix 3: Datasheet of KVH EeCore 1000

KVH E«Core™ 1000 Fiber Optic Gyro
(FOG) sensor offers unparalleled accu-
racy and precision at a fraction of the
cost of competing products.

Key Features & Attributes |

* No moving parts towearout =

* Excellent reliability -
50,000 hours MTBF

+ Insensitive to vibration and
linear acceleration

* Low noise, high bandwidth

* Exceptional stability -
minimal temperature and
power-up errors

« Digital or analog output

+ Economical FOG solution ™
KVH E»Core™ 1000 -

Low Cost, High Performance Fiber Optic Gyro

The new KVH E-Core 1000 fiber optic gyro is the perfect
replacement for troublesome mechanical gyroscopes in
applications such as antenna and optical stabilization, navi-
gation, positioning, robotics, and instrumentation. Wide
bandwidth, excellent resolution, and bias stability combined
with resistance to shock and vibration fills a wide variety of
system needs making the KVH E-Core 1000 the ideal upgrade
solution for tracking, stabilization and GPS/FOG navigation.

Based on KVH's exclusive E-Core fiber and precision fiber
optic gyro technology, the device precisely measures angu-
lar rates up to 100 degrees per second with a resolution of
0.05 degrees/sec in 100 Hz bandwidth. This exceptional
dynamic rate is complemented with bias stabilities of better
than 4° per hour. The unit never requires recalibration and
has excellent time and temperature characteristics.

KVH'’s fiber optic gyros are a . .
principle component of Xybion's For replacement of mechanical gyros or new system design,

high accuracy positioning systems  the KVH E»Core 1000 series fiber optic gyros provide preci-

for optical and millimeter wave RF

applications. sion measurement of rotation with high reliability, ease of

interface, and no need for preventive maintenance.
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R4

Applications
+ Antenna Stabilization
+ Industrial Robotics

+ Optical Stabilization

Precision, Performance, and Price
Fabricated from KVH's proprietary E«Core polarization-maintaining fiber,
the KVH E-Core 1000 delivers superior fiber optic precision and reliable
performance for about the same price as a traditional gyro. Unlike
mechanical gyros, the E+Core 1000 is a true single-axis rotation rate
sensor insensitive to cross axis motion and errors. Its high bandwidth

makes it particularly suitable for high dynamic applications. Additionally,
the noise spectrum of the E-Core 1000 is exceptionally flat, lacking the
discrete components of mechanical gyros. Aided by the unique properties
of EsCore fiber, the KVH unit is intrinsically broadband and easily inte-
grated into existing mechanical gyro applications. And, with no moving
parts to maintain or replace, it lasts longer, functions better, and yields
significant savings over the life of the product.

+ Avionics - Attitude/Heading

Technical Specifications

Physical Pertormance
Input Voltage: 120r24 VD1C nomgzar ] Bias Stability vs. Time: 2-4 °fhr, 1 sigma
(9-18 VDC, 18:36 VOQ) transient 5.0 orapitty vs, Temp: 0.08 */sec rms, typical
and reverse voltage protected 0.4 %Jsec, peak to peak
Power Consumption; 2 watts (analog) o T
3 watts (digita) Bias Drift Compensated {typlcal). 5—1? fhr tms
Weight: 0.55 1bs. {0.25 kg} Angle Random Walk {noise): [2)03 flhri;lr;;Hz
Size: 43 X35 016 ) ) o
(109mm x 89mm x 41mm) Rotation Rate: . +100 */sec
Connector Type: 15-pin subminiature D-sub (DA15p)  "Stantaneous Bandwidth: 100Kz
Scale Factor Linearity; <0.5% rms (constant temp.}
Output <1% rms (full temp.)
Scale Factor; 20 mV/°fsec Scale Factor Stability over Temp"  0.5-1.0% rms
Analog: +2.5 VDC (zero rotation) Tumn-on Time: 1 sec
» 2 vf into 19K Ohm \Bias and scale factor stability specifications values are uncompensaled,
Digital: 16 bits, serial, R8232 Calibration can reduce thase ervors by & factor of 10,
8600 BPS, 10 values/sec -
Sensor Output (Port 1) andlog, RS232 or R§422 T A
15 pin Dol wrdew.
Environmental [
Operating Temperature: -40°C 10 +75°C ans - o 1% ‘é‘B’
. o v E£0 =
Storage Temperature: -50°C 10 +85°C v + : f”
Shock: 906G s 2
EMI/RF: CF, IEC9081-2,3.4 a b
MTBF. 50,000 hour A— &
0 52 ewe 4} ps &
KvH industries, Inc. 50 Enterprise Center  Middistown, Rl 02842 USA. %
Phone: (401) 847-3327  Fax: (401) 849-0045  E-Mail: info@kvh.com  Internet: hitp:/fwww kvh.com $
© Copyaght 1996, 7 indumivine, ine KM and B8ar™ sre irierearce of KY% incusins, Inc.. Spaiications Subjact 16 change without nolics
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