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Abstract

This report will cover the theory concerning the formation and properties of weak

physical gels made out of hydrophobic cores that are linked together with polymer

chains. When these molecules are dissolved in water they self organize into cross-

linked flowerlike micelles. These gels have a wide range of unique properties and

are easy to synthesize with low amounts of material. Having a good physical

understanding of the mechanisms that drive the formation of these gels, and how

to influence the properties of the gel allows us to do more direct research and

produce gels with the desired properties.
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Chapter 1

Introduction

A gel is defined as a Non fluid colloidal network of polymer network that is expanded through-

out its whole volume by solvent [4]. The formation of the gel in the carrier liquid can be

characterized as a liquid - solid transition, this process is called gelation. This definition

leaves us with a wide range of materials. Because so many materials qualify as a gel we

introduce subdivisions in the gel classification. The basic concept stays the same; the elastic

modulus is finite and larger than the viscous modulus and it is a colloidal cross-linked polymer

network that spans the entire system. A overview of the different types of gels is shown in

1.1 [5]. The first distinction we can make by the type of interactions that are dominant in the

formation of the gel.

Figure 1.1: Different types of gel ordered by there microscopic properties

The first distinction we make is if the type of interactions of the bonds in the gel are

chemical or physical. Chemical bonds are atomic, non reversible, interactions and have a

typical interaction energy of a few electron volts (eV ). Physical bonds are thermal, reversible,

interactions of the order of magnitude of a few kbT . In the case of the chemical gel we see

two different ways of making the atomic bonds in the colloidal network that can be formed

by exposure to, e.g. heat, radiation [6,7], reactive monomers and cross-linking polymers [8].

A typical example of a chemical gel is an aerogel shown in figure 1.2 on the left, here the

carrier fluid is replaced by a gas after the gel is formed. The result is an ultra lightweight

material with very low heat conduction. In the physical regime the bonds are caused by
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v/d Waals forces, hydrophobic or electrostatic interactions. Because of this we can control

the interactions by changing the pH [9], ionic strength or temperature [10]. In the category of

physical gels we define two sub divisions; strong physical gels that have a linear shear modulus

up to an deformation of 25% and weak physical gels that are only linear up to an deformation

of 5%, but generally have self healing properties. A typical example of a strong physical gel

is gelatin shown in figure 1.2 on the right.

Figure 1.2: An aerogel functioning as isolation between a flame and a flower (left). I
typical example of a strong physical gel we all know, gelatin (right).

In this report we will focus on weak physical gels, this type of gels are require a relatively

low amount of material to synthesize. The properties of the gel can be varied fairly by making

changes to the building blocks the gel is made of. This makes that weak physical gels have a

wide range properties we can control, leading to a wide range of applications. An example of

an application is drug delivery [11] where the gel is injected and slowly dissolves in the body

releasing the drug at a controlled rate without the need for intravenous therapy. This means

the patient does not have to stay in the hospital for a drip, freeing up valuable bed space.

Another group of people that could benefit from this drug delivery system are patients that

have having trouble keeping track of their medication. Being able to predict properties like

rheology and viscosity, and manipulate them is important here since the gel needs to be able

to be injected through a thin needle, yet when in the body it needs to act like a solid where

you want to control the release rate of the drug. There are many more application of weak

physical gels like wound care [12], tissue engineering materials [13], dental care [14] injectable

polymeric systems [15] and other applications like rheology regulation in polymer blends [16].

Because of the versatility of these kind of gels having control over there macroscopic properties

and understanding the physical mechanisms that drives these properties is very useful.

In this report we will construct a theoretical framework that predicts the macroscopic

properties of the gel depending on the microscopic properties of the building blocks we have

control over, like interaction strength and polymer length. We will do this by making a free

energy analysis of the microscopic properties and use this to predict the mesoscopic structure
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of the gel. This can than be translated to macroscopic properties. The building blocks of

the particular gel we model are called “binders” and “linkers”, see figure 1.4 (micro). These

binders are stiff rod like particles can form hydrogen bridges with other binders to form

clusters, their chemical structure is shown in figure 1.3 on the left. The binders are connected

Figure 1.3: Left the chemical structure of the binder and right the chemical structure of
the linker (PEG/PEO)

to each other via polymer chains, we will call these chains linkers. We will model these

chains as self avoiding Gaussian chains made out of N0 Kuhn segments, a Kuhn segment is

the distance it takes for the directional vector of the polymer chain to be uncorrelated, this

length we call a. The linkers are made of polyethylene oxide often referred to as PEG or

PEO. The chemical structure of the linkers is shown in figure 1.3 on the on the right. The

first step is to define the free energy difference between the different states of aggregation, this

we can use to calculate the structure of the clusters. The theory concerning the free energy

difference will be covered in section 2.1. Since the binders are interconnected they from a

network like structure like shown in figure 1.4 (meso). We can find this mesoscopic structure

of the network by using the single cluster’s structure in a mean field approximation. This will

be covered in section 2.2. Once we have the average mesoscopic properties we can translate

these to macroscopic properties using standard techniques. The techniques concerning the

elastic properties of the gel in section 2.3.
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Figure 1.4: The multi scale approach used in the report, starting at molecular interactions
and resulting in macroscopic behavior.



Chapter 2

Theory of a Physical Gel

In this chapter we will set up a framework to go from the microscopic parameters of the system,

such as energetic interaction strength and the length of the polymer chains, to macroscopic

properties that can be measured in experiments like the elastic and viscoses modulus. We

will do this by making a free energy analysis of the microscopic interactions of the system

and see the free energy difference of stacking binders. We will use this to make a predictions

of the cluster network mesoscopic structure. This we can translate to the macroscopic

properties of the system.

2.1 Microscopic interactions

In this section we will analyze the free energy difference between lose binders (figure 2.1 left),

binder-chains (figure 2.1 middle) and binder-chain cluster (figure 2.1 right). The free energy

difference between loose binders and binder-chains we call ∆Fchain, the difference between

binder-chains and binder clusters we call ∆Fcluster for the difference between binder-chains

and binder clusters.

Figure 2.1: Left (1): loose binder-linker units. Middle (2): a unclustered binder-chain.
Right (3): a clustered binder-chain.
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All the free energies will be per binder, so a cluster with m particles in it will have a

free energy difference of m × ∆F where ∆F can depend on the cluster size. We find that

the free energy difference between a unclustered binder-chain between and a clustered state

depends on the number of Kuhn segments in a linker (N0) the length of a Kuhn segment (a),

the interaction strength of the hydrogen bridge (ε) in units of kbT , the number of hydrogen

bridges n, the spacing between the clusters (δ(m)) and the cluster size (m)

∆Fcluster

kbT
≈ − 3π(n× ε)

5︸ ︷︷ ︸
1

+
3
√
m

5
log

(
N0√
m

)
︸ ︷︷ ︸

2

+
3δ(m)2

2N0a2︸ ︷︷ ︸
3

+
2 log (m!)

m︸ ︷︷ ︸
4

. (2.1)

In table 2.1 we list the different components named. In the following sections we will discuss

and explain why these terms are here. The free energy difference between loose binders and

a binder-chain (both unstacked) is given by:

∆Fchain

kbT
= − N

1/5
0

2︸ ︷︷ ︸
5

+
3

2
log

(
3

2πN0a2

)
︸ ︷︷ ︸

6

, (2.2)

and is caused by the entropy change of the linkers. We treat these terms separately since our

colleagues at mechanical engineering use preformed binder-chains to make the gel with.

Table 2.1: The different elements we analyzed for the cluster formation free energy

Number Description

1 Lennard-Jones rod interaction energy.

2 Corona free energy cost.

3 Entropy cost of making a bridge (stretching the chain).

4 Configuration entropy cost for fixing the linker positions.

5 Self avoidance free energy gain.

6 Chain entropy loss.

2.1.1 Lennard-Jones Rod Interactions

The binders can formed hydrogen bonds, these basically are dipole-dipole interactions and

form appendix A.1 we know that the attractive part goes like 1/r6, so we model the potential

as a simple Lennard-Jones potential

Uwell(r) = 4ε

[(
b

r

)12

−
(
b

r

)6
]
, (2.3)
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where U0 the well depth in units of kbT and r is the intermolecular distance. We model the

binders as rods made up out of N individual Lennard-Jones particles with radius b that are

stuck together in a rod formation. If we take two parallel infinitely long rods with a small

angle between them we can derive the interaction energy as shown in appendix A.2. If we

look at the minimum of this interaction energy that is at r = b we find:

Umin = −3(n× ε)π
5

, (2.4)

where n is the number of hydrogen bridges and ε the strength of a single bond in units of

kbT . We expect to see clusters forming when the bonding energy is equal to, or greater than

the entropy cost associated with the formation of the cluster. A single hydrogen bond has a

typical strength of around ε = 1 to 10kbT , the experimentalists use a polymer that has three

N-H · · · O bonds that have a typical strength of 3.3kbT each. The binder is 33 atomic bonds

long, assuming that the length of a hydrogen bond is roughly the same as that of a atomic

bond we can say that the rod is 33 times longer than the distance between them, this should

justify the modeling as if they where infinitely long. The total interaction strength of the

binder is thus roughly 19kbT .

2.1.2 Corona free energy

The polymer chains in our system are modeled as self avoiding Gaussian chains, this means

they are in a swollen state and not ideal, meaning they take up some physical volume. The

first order correction to an ideal Gaussian chain are the two particle interactions on the same

linker, or excluded volume interactions between the monomers. The gels made in the lab have

a chain that has 3 atomic bonds per Kuhn segment, using this we can make an estimate for

the excluded volume we find v = 2π(a/6)2a, where a is the length of a Kuhn segment. Using

the expressions found in B.2 for the radius of gyration and the free energy cost associated

with the self avoidance we find:

〈Ravoid〉 ≈ 0.7aN
3/5
0 , (2.5)

where N0 is the number of Kuhn segments. For the free energy difference we find:

Favoid

kbT
≈ N

1/5
0

2
. (2.6)

If we start with loose binders and make a binder chain out of them we start the free energy

difference for the chain length going to infinity goes to

∆Favoid

kbT
≈ −N

1/5
0

2
. (2.7)
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Putting in some numbers for a typical linker with 180 Kuhn segments we have an self avoidance

free energy gain of proximally 1.4kbT . In our system the polymer chains get concentrated

Figure 2.2: A schematic representation of the corona polymer shell around a binder core.

around the clusters core as schematically shown in figure 2.2. This leads to the chains getting

in the way of one other and changing their behavior compared to just a self avoiding situations.

The polymer chains will not only have a self avoidance but they also start feeling the presence

of the other chains. This gives rise to an corona free energy [17] cost per binder of:

∆Fcorona

kbT
≈
√
m log

(
aN

3/5
0 m1/5

a
√
m

)
,

=
3

5

√
m log

(
N0√
m

)
, (2.8)

for N0 �
√
m, so long chains, or small clusters. Because of this effect the radius of gyration

of a cluster’s corona is different than that of a single self avoiding polymer chain,

〈Rcorona〉 ≈ aN
3/5
0 m1/5. (2.9)

For a typical linker with 180 Kuhn segments and a cluster size of 10 to 20 we find that this

corona free energy is roughly 7.7 to 9.9 kbT .

2.1.3 Entropic Analysis of a Polymer Sol

The last thing we need to look at is the entropy of the linkers and binders before and after

the formation of binder-chains and clusters. From expression B.7 we see that the that the

entropy of a Gaussian chain depends on R, the end to end distance and N the number of

monomers and is given by [18]:

S(R) =
3kb
2

log

(
3

2πN0a2

)
− 3kb ~R

2

2N0a2
. (2.10)
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The difference in free energy between loose binders and a binder-chain is caused only by the

linkers between them and is given by:

∆Schain = −3kb
2

log

(
3

2πN0a2

)
, (2.11)

per binder. For derivation see appendix B.3. For typical values of N0 and a we find that this

is around 30kbT . If clusters are formed out of the binder-chain we fold the linkers, however

it turns out that this does not give rise to an entropy change along as the individual linkers,

as well as the chain as a whole, can still be described as an ideal chain (random walk). See

appendix B.4 for the derivation.

When we look to the system as a whole we see that forming the cluster we lose configuration

entropy,

∆Sconfig = −2kb ln (m!)

m
, (2.12)

per binder, found via the Boltzmann entropy formula (see appendix B.4 for more details).

For some typical values of the cluster size, 10 to 20 we find that this term is 1.5 to 2.1kbT .

The last entropic term is that of the difference between if two consecutive binders are in

the same cluster (loop) or in different clusters (bridge). Since we assumed that the individual

linkers are still behaving as Gaussian chains when they are in the stack we can use the equation

B.14 to find the difference between a loop (R ≈ 0) and a bridge (R ≈ δ(m)), where δ(m) is

the inter cluster distance. Doing this we find the entropy cost of making a bridge is:

∆Sbridge = −3kb (δ(m))2

2N0a2
, (2.13)

and zero for a loop. Which is between 1 and 100kbT .
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2.2 Mesoscopic Structure

In order to say something about the rheology we will need to say something about the structure

of the gel. We will do this by computing the probability a cluster increases in size by using the

free energy differences found in section 2.1. The size of the clusters, and their configuration

can be used to predict the mesoscopic structure of the gel.

Figure 2.3: The binders form stacks that are interconnected resulting in a network
structure of polymer chains.

2.2.1 Looping and Bridging probability

Our system consists of a fixed number of binders N a volume V and the temperature T , so

canonical. The N binders in the system can make clusters. If we look at a single cluster and

add a particle to this cluster the free energy of that particle changes with ∆Fcluster and the

cluster size is increased by one. If the particle is not added to this cluster the free energy

does not change and the cluster does not increase in size. In the system we want to model we

Figure 2.4: Left: A poly chain where the linkers are already connected to the linkers.
Right: the building blocks used to model our system. The linkers will link tho one
another the chain ends will connect to an other linker in a formed system.

have pre-formed binder-chains as shown in figure 2.4 on the left, these chains have typically

25 elements. In our model we will view the binder-linker chains as loose particles (figure 2.4
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on the right), since its easier to compute the statistics per particle. We will omit the extra

free energy term, ∆Fchain, that we have since we know the chains are preformed.

The probability the cluster grows in size we call p+, this can be broke down in to two

contributions a loop and a bridge. A loop is where the linker from one binder ends in on

the same cluster (figure 2.5 on the left). A bridge is when the linker connects to an binder

in an other cluster (figure 2.5 in the middle). In figure 2.5 on the right we see an example

of a cluster with four binders in it, one loop and three bridges and three open slots. We

will assume that all the clusters are the same, so the three open slots will get filled by three

bridges from another cluster. For the probability of looping we know that the end to end

Figure 2.5: A schematic representation of a loop (left), bridge (middle) and a cluster of
size m = 4 with one loop and three bridges and three acceptation places left (right).

distance, ~r, of a linker is small. The probability on a loop is given by the integral over space,

but we need to filter out all ~r that are not ending in the same cluster. We will approximate

the clusters as point particles, so a loop is when ~r = 0.

p+,l ≈
∫
δ(~r)p+(~r)dV ∼ p+(0), (2.14)

where δ(r) Dirac delta function functioning as a filter function. The birding probability also

goes with p+(r) integrated over space and only has a finite value if there is an other cluster

to bridge to.

p+,b ≈
∑
i

∫
δ(~r − ~Ri)p+(~r)dV ∼ ρmp+(δ), (2.15)

where we assumed the clusters are spaced equally with a distance δ. ρm is the number of

clusters any cluster can bridge to. From now on we will not write down the + anymore, so

the probability on a loop is given by pl and on a bridge pb.

When clusters are formed and grow larger the cluster density goes down assuming they

keep using all the available space. This causes the entropy cost for a bridge to scale with

m as schematically shown in the figure 2.6. The avarage number of clusters we can make

bridges to, ρm can be found by looking at how many clusters there are in the corona’s radius
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Figure 2.6: A schematic representation of the relation between the cluster size and the
cluster spacing.

of gyration 〈Rcorona〉 ≈ aN
3/5
0 m1/5, the size of the cluster core m1/3reff and the average

distance between the clusters is δ = m1/3δ0. We find that the number of clusters we can make

bridges to is given by:

ρm =

(
aN

3/5
0 m1/5 +m1/3reff

m1/3δ0

)3

. (2.16)

The initial spacing between the binders, δ0 can be related to the initial density:

ρ0 =
N

V
=

1

δ3
0

. (2.17)

2.2.2 The corona effect

The corona effect is not to be mistaken with the corona free energy. Although both are

caused by the dense polymer network around the cluster core, the corona effect is a dynamic

limitation to the cluster’s growth rather than an energetic. To avoid confusion the dynamic

limitation will be referred to as ‘‘the corona effect” where if we talk about the energetics

we will call it “the corona free energy”. If clusters are formed the network of polymers

close to the cluster core gets so dense that a new particle cannot pass the mash of polymer

chains surrounding it. This effectively gives us a largest cluster size regardless of the energetic

properties of the cluster. To approximate the maximum cluster size we have to calculate how

much material there is in the corona, and use this to find a mesh size. We know the corona

radius scales with aN
3/5
0 m1/5 and the cluster core takes up mv0. The total amount of material

in the corona it goes as m × aN0. For the total volume the polymers have at their disposal
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we find:

3V

4π
= (aN

3/5
0 m1/5 +m1/3reff )3 − (m1/3reff )3,

≈ a3m3/5N
9/5
0 + 3a2m11/15N

6/5
0 reff + 3am13/15N

3/5
0 r2

eff (2.18)

The mesh of polymer is densest closest to the cluster core, this is because all chains start

and end at a cluster core. So we will assume that only the volume given by the last term

in equation 2.18 is imported. We will assume that the amount of material in this volume is

given by a fraction of the total polymer length we call αc. αc is going to be between smaller

than 1 and lesser than 0, the typical value we found to give the same results as the gel we try

to model is αc ≈ 1/4. For the density close to the clusters core we find:

ρ1 =
L

V
,

≈ αc(m× aN0)

3aN
3/5
0 m13/15r2

eff

,

=
αcm

1/3N
2/5
0

3r2
eff

. (2.19)

This we can use to find a mesh size, ξ ∼ ρ
−1/2
1 . If the mesh size is roughly the same size as

the typical size of the binders, r0, the binders can no longer pass and the cluster will not get

larger. This gives us a cutoff point:

1 =
αcm

1/3N
2/5
0

3
. (2.20)

Solving m,

mmax ∼ 2187
√

3

α
15/2
c N3

0

(2.21)

So, our cutoff function is a function of m and mmax where it has to be one for m � mmax

and zero for m � mmax. We also assume that the transition is smooth, so no step function

at m = mmax, but rather a transition zone whose width depends on the interaction energy of

the binders. Using these limits we will pick a cutoff function with has these properties:

f(m,mmax) =
(
e
m−mmax
ξ(n×ε0) + 1

)−1

, (2.22)

where ξ determents the width of the function. To match the experimental results we need

to set ξ ∼ 1/100. Note that this function has no physical background, but it does have the

correct limites.
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2.2.3 Effective number of cross-links

In the next chapter we will show that the effective number of cross-links, the number of bridges

being part of a infinite network, is the typical value we need for modeling the system. To find

the effective number of cross-linkers, νeff . The first thing we will define is the probability on

making a branch, this is defined as the probability a bridge is connected to another bridge,

α =
∞∑
i=0

[〈Pb〉]2 〈Pl〉i ,

≈
∞∑
i=0

[〈Pb〉]2 (1− 〈Pb〉)i,

= pb. (2.23)

The probability that one of these ends is part of a infinite system and thus making the cluster

part of this network is given by

(1− β), (2.24)

where β is the probability that this bridge is not part of the infinite network. The probability

that all of these bridges in the cluster of the infinite network is,

(1− β)f . (2.25)

This adds f effective chains to the system. There is also a chance that only f−1 of the chains

are part of the structure,

β(1− β)f−1. (2.26)

This adds f − 1 effective chains to the network. We do not know which of the f chains is not

connected so we need to count all the possible options that are unique, there are: f !/(f−j)!j!
unique configurations where j the number of unconnected chains. So for the no-loop cluster

we find that νeff goes as:

νeff ∼
j<f∑
j=0

f !(f − j)
(f − j)!j!

βf
j(1− βf )f−j ,

= (1− β)f. (2.27)

The fraction of bridges that are not being a part of a infinite network is given by [19],

βf,1 = 1− α+ α

∞∑
x=1

1− α
α

(fx− x)!

(fx− 2x+ 1)!x!

[
α(1− α)f−2

]x
, (2.28)
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where f is the functionality this is equal to the number of bridges in a cluster. Plotted in

figure 2.7 is β for different values of f .

Figure 2.7: A plot of the of β as function of α for different number of iterations (left)
and for different values of the functionality (right)
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2.3 Macroscopic Properties

In order to translate the mesoscopic structure we found in section 2.2 we will modify some

standard technique. The simplest model one can make of a rubber is that of an entangled

polymer network made out of ideal polymer chains. In 1953 Flory [18] calculated the the

strain-stress relation of a rubber via the entropy change under stress.

2.3.1 Statistics of a classical rubber

In this part we will follow the deviation Flory made to find the modulus of rigidity for a rubber.

We start with a long, linear, polymers that are randomly coiled. This is schematically shown

on the left side of figure 2.8. When the rubber is formed some of the overlapping polymers will

form bonds. This is schematically shown on the right side of figure 2.8. The result is a linear

polymer that is now cross-linked on place on fixed points on its contour to other polymer

chains [18]. Nodes that connected to a lose end do not contribute the the structures strength,

Figure 2.8: Left: A random polymer network. Right: A random polymer network that
is fixed together at certain points.

the total number of effective or infrastructural, cross-linkers units is given by the total number

of bonds over two (since very bond has two emanating ends in the infrastructural case) minus

the number of lose ends [18].

To find the modulus of rigidity we start with a that is structure that is completely formed,

so the links are fixed and will not break or change position relative to the polymer chains. Now

we put a deformation on the system that is homogeneous throughout the system. So cross-

link number i was at position (x, y, z)i before the deformation and at (x/ax, y/ay, z/az)i after

the deformation for all i. The magnitude of the deformation is given by ax, ay and az, these

are smaller 1 for stretching and larger than 1 for compression. The number of chains having

a specified coordinates (end to end distance) before deformation is given by the probability

density function W (x, y, z). Assuming that these nodes distributed according to this function
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after a deformation is [18]

νi =
νW (xi/ax, yi/ay, zi/az)∆x∆y∆z

axayaz
. (2.29)

For a Gaussian chain W (~r) is given by B.7. The next step towards calculating the entropy

change concerned with deforming the sample is calculating what the probability of an unlinked

network is to be spontaneous in the same state as the deformed linked network. In order to

tackle the problem we will assume that we know in advance what ν units of the polymer will

be involved in making the links. So we need to find two things so solve the problem:

1. The probability an uncross-linked system will occur, spontaneous, in the same state

where the parts designated for cross linking are in the same state as our deformed

system.

2. The probability that our predesignated points on the polymer-chain will link.

The first point we can find by using the Gaussian chain distribution density function (see

appendix B.1, since every chain’s end to end distance is independent of the other chains

they factorize. Since it does not matter what chain is where (since we cannot number them)

permutation of the chains does not matter for the end result as long as the end result is the

same distribution [18].

Ω1 = ν!
∏

(ωνii νi!) . (2.30)

Taking the log, using Stirlings approximation, replacing the sum with an integral and exe-

cuting the integral we find the first part of the entropy change,

kb ln(Ω1) = −ν
[
(a2
x + a2

y + a2
z − 3)/2− ln(axayaz)

]
. (2.31)

The second part can be found by the defining the chance that any link is next to an other

link within the predesignated volume, δV is (ν − 1)δV/V . The chance any off the remaining

ν − 2 units is in the same distance from any other of the remaining units is (ν − 3)δV/V

Ω2 = (ν − 1)(ν − 3)...(1)(δV/V )ν/2

≈ (ν/2)!(δV/V )ν/2 (2.32)

Now replacing V → V axayaz we find for the second part of the entropy,

kb ln(Ω2) = −(ν/2) ln(axayaz) + const. (2.33)

Where the constant does not depend on the deformation. If the deformation does not chance

the total volume, i.e. axayaz = 1 the logarithm disappears. In the case where a2
x = 1/ay =

1/az we get the following expression for the entropy change under an elongation deformation
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is given by:

∆S = −(kbνeff/2)(a2 + 2/a− 3) (2.34)

where we use the effective number of cross-links νeff instead of the total number of links ν

since the dangling ends to not contribute to the elastic properties of the system. We also

replaced ax by a. We know that the force is given by the gradient in the free energy,

force =
T

L0

(
∂S

∂a

)
T,V

(2.35)

the stress τ is given by the force per area forceL0/V0 and the shear stress γ is a− 1/a2 makes

τ =

(
νeffkbT

V

)
γ. (2.36)

Where
(
νeffkbT

V

)
is the Flory rubber shear modulus, G0,Rub.

2.3.2 Phantom network theory

In our system there are more than two polymer chains emanating form a junction point. The

simplest model that takes this change into account is called the phantom network model.

In this model we replace any branches larger than two emanating form a junction point by

one effective new chain. This is done by modeling the junction point with f branches, where

the branches are fixed at there end points, schematically shown on the left side of figure 2.9.

Making use of a modified end to end distribution function of a Gaussian polymer where the

polymer’s ends are fixed [5] we find that the new effective length of the polymer chain is given

by K = N/2, or more general K = f/2. Replacing f − 1 chains by one effective chain we find

that the new length of this chain is given by:

N1 =
N

f − 1
. (2.37)

So our node is new connected to the network by:

K1 = N +N1 = N +
N

f − 1
= N

(
1 +

1

f − 1

)
. (2.38)

monomers. This schematically shown on the right side of figure 2.9. If we look at the second

of junctions connected to the first one via f2 chains, shown in figure 2.10 and do the same

as for the first generation we find that the number of effective monomers connecting the first

node to the network taking two generations into account is given by:

N2 =
K1

f − 1
=

N

f − 1

(
1 +

1

f − 1

)
. (2.39)
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Figure 2.9: (left) A node with functionality f = 4 where 3 branches connected to a elastic
background and one to another node. (Middle) we replaced the 3 branches with one
effective branch. (Right) a single effective branch connecting the node tot the rest of the
network.

And the replacement count of monomers for becomes:

K2 = N +N2 = N

(
1 +

1

f − 1
+

1

(f − 1)2

)
. (2.40)

If we take the number of generations going to infinity we find that the effective number of

Figure 2.10: (1) The first node connects with 3 branches to other nodes that connect to
the elastic background via 3 branches each. (2) Replaced the branches that connect to the
effective background by 1 for every branch point. (3) Replaced the 3 effective branches
by 1 (4) A single effective branch connecting the node tot the rest of the network.

monomers is given by:

K = N

(
1 +

1

f − 1
+

1

(f − 1)2
+

1

(f − 1)3
+ ...

)
.

=
f − 1

f − 2
N. (2.41)

We only took one side of the network into account (figure 2.11) where each side is connected

by f − 1 effective chains of length K. If we also take both sides of the network into account

we know how many monomers connect the junction to the network.

Ntotal = N +
2K

f − 1
=

f

f − 2
N. (2.42)

Putting this corrected monomer length into the end to end distribution function B.7 we find
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Figure 2.11: (1) The two sides of the network. (2) Replace the two sides by two effective
chains. (3) We split the one one link re represent a effective branch. (4) A single
replacement branch.

for the elasticity [5]:

τ =

(
νeffkbT (f − 2)

V f

)
γ, (2.43)

and thus

G0,Rub =
νeffkbT (f − 2)

V f
. (2.44)

We will refer to the Flory rubber elastic modulus as G0.

2.3.3 Osmotic pressure

An other effect that is contributing to the elastic modulus of the system is the osmotic pressure

caused by the overlap of aggregates corona’s. This overlapping of the corona gives rise to an

osmotic pressure. This osmotic pressure can be directly related to the elastic modulus by a

pre-factor [20–22] of around 0.01 to 0.001,

G0,Osm ∼ Π. (2.45)

A theory linking this pressure to the density of the system is the Alexander [23] - de Gennes [24]

model.

Π(ρ) =
kbT

s3

[(
V

V0

)νos
−
(
V

V0

)νel]
, (2.46)

where s is the mean distance between the anchoring point of the polymers, in our case this

can be (experimentally) found by looking at the cluster size and dividing it by the number of

linkers in it times two (since every linker has two chains emanating from it). ρ0 is the density

of the blob if it is unperturbed, ρ is the density it has because other clusters corona’s are in

the way. For neutral particles νos = −9/4 (shrinking of the system due to crowding effects)

and νel = 3/4 (swelling of the system due to elastic properties of the polymers).

A schematic representation of our system is shown in figure 2.12. L0 can be estimated by

looking at the radius of gyration of a single chain L0 ≈ aN
3/5
0 m1/5. The compressed state

can be found by looking at the inter cluster distance, L ≈ m1/3δ0. Since we do not know the
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Figure 2.12: An illustration of the system where the corona’s of the clusters overlap and
cause the local density of chains to go up compared to the native state.

factor between the osmotic pressure and the elastic modulus we will use the osmotic pressure.





Chapter 3

Proof of concept

In this chapter we will show that the theory constructed does gives gives results in the line

with experiments and simulations. To do so we first need to is translate the free energy

difference shown in figure 3.1 to a probability on finding the different clusters states.

∆Fcluster

kbT
≈ − 3π(n× ε)

5︸ ︷︷ ︸
1

+
3
√
m

5
log

(
N0√
m

)
︸ ︷︷ ︸

2

+
3δ(m)2

2N0a2︸ ︷︷ ︸
3

+
2 log (m!)

m︸ ︷︷ ︸
4

. (3.1)

First we define two different events for the clusters, it grows and makes a loop or it grown and

Table 3.1: The different elements we analyzed for the cluster formation free energy

Number Description

1 Lennard-Jones rod interaction energy.

2 Corona free energy cost.

3 Entropy cost of making a bridge (stenching the chain).

4 Configuration entropy cost for fixing the linker positions.

makes a bridge. Assuming we can use Boltzmann statistics to find the relative probabilities

we find:

pl(m = 1, ~r = 0) ∼ 1, (3.2)

pb(m = 1, ~r = δ) ∼ 0, (3.3)

pl(m > 1, ~r = 0) ∼ fme
−∆Fl , (3.4)

pb(m > 1, ~r = δ) ∼ fmρme
−∆Fb . (3.5)

The free energy difference ∆F is given by 2.1 where for a loop we use δ(m) = 0 and

for a bridge we use the average cluster distance, δ(m) = 3
√
m(δ0 − reff ). If we assume

the probabilities are independent they factorize, the average number of interactions becomes
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(cluster size):

〈m〉 =
1

Z

∞∑
m=1

m(pl + pb)
m, (3.6)

where we can cutoff the sum for large m� mmax because of the corona effect (dynamic). The

bridging probability of a cluster of size m is given by the sum of all the terms in 〈m〉 times

the number of bridges that terms has times the number of realizations that combination of

pb and pl. The average number of bridges is given by:

〈mb〉 ≈
1

Z

∞∑
m=1

m∑
i=0

(m− i) m!

(m− i)!i!
pm−ib pil,

=
1

Z

∞∑
m=1

mpb(pb + pl)
m−1. (3.7)

For the normalization constant we find:

Z =
∑
m

(pb + pl)
m. (3.8)

These expressions will gives us the cluster size and the number of bridges a cluster has. The

next step is to find what part of these bridges is part of a infinite network since only these

cross-links are contributing to the systems strength. If we use equation 2.28 where f is equal

to two times 〈mb〉. We shown that in our case α is equal to pb (see equation 2.23), but

instead of calculating this we can also use the cluster size and the number of bridges since

the probability on a bridge is given by the fraction of bridges in a cluster,

α =
〈mb〉
〈m〉

. (3.9)

In order for the theory to represent the computer simulations or experiments we need to set

the constants to the appropriate value. All the used constants used and typical values are

shown in table 3.2. The size and mass of the binders and linkers comes form the data the

experimentalist supplied, we also used this as an indication for the size and mass for the

simulation constants.

3.1 The model and computer simulations

We will try compare the results we find with the results found in the computer simulations.

In the computer simulations the binders are modeled as three spheres that interact using a

full Lennard-Jones potential with strength ε. These LJ-Spheres are linked together by stiff

springs and not allowed to rotate relative to one another (red spheres in figure 3.1). The
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Table 3.2: Used constants to emulate the computer simulations or the experiments in
the model.

What Symbol Simulation Experiment

Binder Length Lb 5.03× 10−9 m 5.45× 10−9 m

Binder Radius Rb 1.68× 10−9 m 1.65× 10−10 m

Binder Mass Mb 8.70× 10−22 kg 8.70× 10−22 kg

Kuhn segment Length Lk 1.68× 10−9 m 5.03× 10−10 m

Kuhn segment Radius Rk 6.70× 10−10 m 1.68× 10−10 m

Kuhn segment Mass Mk 2.46× 10−22 kg 7.39× 10−23 kg

Typical interaction strength ε 1 to 5 kbT 3.3 kbT

Number of hydrogen bridges n 3 3

Typical number of Kuhn segments N0 10 180

Corona effect strength αc 0.91/0.87/0.81 1/5

Witdh of the cut off function ξ 1/100 1
kbT

1/100 1
kbT

polymer chains are also modeled by spring linked spheres, however these spheres are allowed

to rotate relative to one another (Blue spheres in figure 3.1). The blue spheres only have the

repulsive part of the the Lennard-Jones potential, there connecting springs are tuned so that

the radius of gyration is that same as that of an self avoiding polymer chains.

Figure 3.1: An image of the model used to represent the molecules in the computer
simulations, the red spheres make up the binder rod and the blue spheres the polymer
chains.

In order to match the results found in the computer simulations we set the Kuhn segment

length (a) to be the center to center distance, by doing this the number of Kuhn segments

(N0) is the same as the number of beads in the chain. However this is tricky because of

the limit
√
m � N0, and the number of beads is small. In the computer simulations there
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are very few Kuhn segments meaning we run into this limit rather fast. In addition to this

the part of the corona causing the corona effect (dynamic) is close to one for short chains

and dropping rather quickly for longer chains so αc could not be taken constant. The total

interaction energy of the rods in the simulations cannot be modeled as that of an infinitely

long rod, we found that the interaction energy is roughly 4.5 times ε. The parameters used

to the computer simulations are shown in table 3.2. The solid line is the result found using

Figure 3.2: A plot of the average cluster size and the cluster (left), the solid line the
results found by the theory and the points fount by simulation and the elastic modulus
(right) for a mass fraction of 2%

the theory, the dots are the results found using the computer simulations. We see that for

the longer chains (N0 = 9 and 12) we are doing pretty close to the simulation results. But

for the shortest chain N0 = 6 we see a larger errors and a different trend for ε > 3. This is

because the theory breaks down here, since the square root of the cluster size is roughly the

same as the number of Kuhn segments.

The elastic modulus is also calculated in the simulations using a similar Flory rubber

theory and shows the same trends, like higher an elastic modulus for longer chains and the

plateau getting wider. However since the elastic modulus depends directly on the density of

the system fittings these two plots is impossible at this time. Even though we are at the limit

of what the model can predict it still able to produce reasonable results for the cluster size.

It is safe to assume that the model does better in the regime of the experimentalists.

3.2 The model and Experiments

For the gel made in the experiments use we do not have the problem of running into the

limit r0
√
m� aN0, where r0 is roughly the same size as a. Longer chains also means smaller

clusters due to the corona effect and corona free energy. Plotted in figure 3.3 (right) is the

elastic modulus found using the modified Flory rubber theory and the same values for the

constants as the experimentalist used, see table 3.2. The red dots are the actual results from

the experiments. Even though the Florry rubber model is one of the simplest model it already

is predicting the elastic modulus. Plotting the elasticity as function of the density we can also
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see where the percolation points is, since if the network is percolating it will gets a finite elastic

modulus. A reason that the Flory rubber theory is not predicting the elasticity correctly is

Figure 3.3: A plot of the cluster size (solid) and the number of bridges (dashed) are
shown on the left. The elastic modulus is plotted on the right, the solid line the results
found by the theory and the points fount by experiments for a chain length of N0 = 180.

that it assumes that the polymers that are getting cross-linked are in a unperturbed state.

Where in our case they are getting compressed due to the corona around the clusters core.

The next step is to explore the phase space and try to construct a phase diagram.





Chapter 4

Phase Space Exploration

In this section we will discus the results found by the theory and see what the the behavior

in terms of cluster size (m), number of effective links (νeff ) and the elastic properties due

to cross-linking (G0) and the osmotic pressure (Π0) are in terms of the interaction energy

(n × ε), spacer (N0) length and density (ρ0). For the constants we will use some typical

values in the same range as use in the experiments, these variables are shown in table 3.2,

the only thing we changed was the corona effect strength (αc = 1/4 instead of 1/5) to keep

the maximum cluster size smaller. We will follow the same structure as the theory starting

at the microscopic level and working up to the macroscopic properties.

4.1 Microscopic Interaction

In this section we will use the expression found in chapter 2 for the cluster size and the number

of effective cross-links to get an idea of the clusters structure and macroscopic properties

depend on the microscopic parameters like interaction energy and spacer length. Making use

of the free energy found in section 2.1 (equation 4.1) we find that the bonding probability

(equation 2.14 and 2.15) as function of the interaction energy n×ε, the Kuhn length a number

of Kuhn segments N0 the cluster size m and the spacing δ0(m). Plotted in figure 4.2 on the

left is the distribution of cluster sizes on the right is the average cluster size as function of the

density. If m = 1, so no loop or bridge is made (nothing happens), we set ∆F = 0, if m > 1

the free energy difference per particle is given by 4.1.

∆F

kbT
≈ − 3π(n× ε)

5︸ ︷︷ ︸
1

+
3
√
m

5
log

(
N0√
m

)
︸ ︷︷ ︸

2

+
3δ(m)2

2N0a2︸ ︷︷ ︸
3

+
2 log (m!)

m︸ ︷︷ ︸
4

. (4.1)

In figure 4.1 (left) we see that increasing the interaction energy (ε) increases the free energy

gain per particle this causes the energy gain per particle to stay larger (and posetive) for

larger clusters. We also see that the maximum gain, per particle, is at m = 2 and that in



CHAPTER 4. PHASE SPACE EXPLORATION 30

Table 4.1: The different elements we analyzed.

Number Description

1 Lennard-Jones rod interaction energy.

2 Corona free energy cost.

3 Entropy cost of making a bridge (stenching the chain).

4 Configuration entropy cost for fixing the linker positions.

becomes lower for larger clusters. In figure 4.1 (right) we see the total cluster energy. We see

that the cluster’s total energy does has an optimum where the gain per particle is a decreasing

function of the cluster size. For systems with a large energy gain per particle we expect to

see larger clusters.

Figure 4.1: A plot of the interaction free energy per particle (left) and for the total cluster
(right) for a cluster that only has loops, a = 5.025× 10−10m, N0 = 180, , r0 = 5.445× 10−9m,
a mass percentage of 3% and three hydrogen bonds.
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4.2 Mesoscopic Structure

We can use the free energy difference and the probability for increase the cluster size to predict

the cluster size and bridge distribution. From this we can calculate the average values using a

computer, since the functions cannot be solved analytically without making an approximation

for the the log(m!) term. The probability that the cluster increases in size is given by equation

2.14 and 2.15 we can use these to find the probability that the cluster increases in size:

P (m) =
1

Z
(pl + pb)

m. (4.2)

Plotting this for different values of the interaction energy ε is shown in figure 4.2. If we

Figure 4.2: A plot of the cluster size distribution as function of the cluster size. The solid
line is the cluster size and the dashed line the bridging probablity. a = 5.025 × 10−10m,
r0 = 5.445× 10−9m, a mass percentage of 3% and three hydrogen bonds.

compare this to the results found using simulations on a similar system by V. Hugouvieux

and colleagues [25] we see a similar shape but they also see that the probability of small clusters

does go up. This could be caused by dynamic limitations where small clusters get trapped

between larger clusters. This we will not be able to see in this theory because of the mean-field

approximation.

4.2.1 Mesoscopic structure as function of the Interaction energy

The first thing we will analyze is the cluster size and the number of bridges as function of

the binder interaction energy ε. In figure 4.3 we plot the cluster size (〈m〉 on the left solid

line), number of bridges (〈mb〉 on the left dotted line) and number of effective cross-links

(νeff on the right) as function of ε for different values of the chain length (N0). In figure 4.5

we plotted we plotted the same but for different values of the mass fraction (ρm) If we look

at the cluster size in figure 4.3 we see that we get larger clusters for shorter chains, this is

because the corona effect is less strong for short chains. We also see that shorter chains start

forming clusters at lower energies than longer chains, this is because the corona free energy
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Figure 4.3: A plot of the average cluster size (left) and the number of effective links
(right) as function of the interaction energy where a = 5.025× 10−10m, r0 = 5.445× 10−9m,
a mass fraction of 3% and three hydrogen bonds.

is per binder is smaller for shorter chains. For all three chain lengths we can define three

regimes in the cluster size:

1. The interaction energy is so low no clusters are formed.

2. Clusters start forming and we see strong growth of the cluster size for increasing ε.

3. The size of the clusters is constant because of the corona effect (dynamic).

In figure 4.4 we see the visualizations of a system in state two (left) and three (right) made by

H. Mortazavi using molecular dynamics simulations. For the connectivity we see that there

Figure 4.4: A visualization of the states found in molecular dynamics computer sim-
ulation. Left a cross-linked state in phase two and right a cross-linked state in phase
three.

are no connections if clusters are not formed due to low interaction potentials, this is what we

expect logically. It goes down again for high values of the interaction energy, this is because

we are getting large, isolated clusters that are not able to interconnect anymore because they
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are too far apart from another. These trends are also found in molecular dynamic simulations

of the same system.

Making the same plots for a fixed linker length but chancing the starting density of the

system (figure 4.5) we see that the clusters start forming at lower interaction strength for

higher concentrations. For the connectivity we see that for the low density we get into the

regime of large isolated clusters but if the concentration is high enough the clusters keep

forming cross-links, even for high interactions strengths. These trends cannot be observed

Figure 4.5: A plot of the average cluster size (left) and the number of effective links
(right) as function of the interaction energy where a = 5.025× 10−10m, r0 = 5.445× 10−9m,
N0 = 180 and three hydrogen bonds.

in simulations because increasing the density gives problems with the periodic boundary

conditions.

4.2.2 Mesoscopic structure as function of the Density

From the previous paragraph we know where to put the interaction energy to be in the

different regimes. We will focus on the chain length of 180 to start with, so regime one is

from 0 to 1, two is from 2 to 4 and three for the interaction energy larger than 5. Plotted

in figure 4.6 is the average cluster size (solid line) and the functionality (dotted line) one

cluster has as function of the density. From figure 4.6 we see that if we are in regime three

density does not matter for the cluster size. We also see that smaller cluster form connections

at lower densities. The maximum number of connections per cluster is, off course, limited

by the cluster size itself. This means that the absolute value of the connectivity does not

directly say anything about the rheology of the system, for this we need to look at the cross-

link density. We will do this in the next chapter, for now we will focus on the cluster size and

the trends we can see depending on the different values. For experimentalist the easiest thing

to change is the density and/or the spacer length. A plot of the cluster size and connectivity

as function of the density for different spacer lengths is shown in figure 4.7 for ε is 3.3. This

means we are in regime two for the spacer length of 90 and 180, where we see that the cluster

size does increase if we increase the density. For the spacer length of 270 we are in regime
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Figure 4.6: A plot of the average cluster size (left) and the number of effective links
(right) as function of the density where a = 5.025 × 10−10m, N0 = 180, r0 = 5.445 × 10−9m.
and three hydrogen bonds.

Figure 4.7: A plot of the average cluster size (left) and the number of effective links
(right) as function of the density where a = 5.025× 10−10m, r0 = 5.445× 10−9m, ε0 = 3.3kbT
and three hydrogen bonds.

three. We see that the cluster size does not increase if we increase the concentration, since

the corona effect is the limiting factor and does not depend on the concentrations. We also

see that longer chains make cross-links at lower concentrations.

4.2.3 Mesoscopic structure as function of the spacer length

So far we seen that the longer chain it start to percolate at lower densities and form smaller

clusters at the same mass percentage of material and interaction strength. Plotting the cluster

size and connectivity for different number of Kuhn segments. For very short linkers we will

be going to regime three, clusters limited in size due to the corona effect. Since smaller chains

also means larger clusters we will see the connectivity go down because we are getting large

isolated clusters that are too far apart for cross-linking. The point where we go into regime

three depends on the interaction energy, for lower interaction energies the point where the

corona effect is the limiting factor (regime three) is at sorter chains. Because of the limitation,

N0 >>
√
m we cannot plot for very short chains lengths.

If the chain length is increased we enter regime two, if it is increased more we enter regime
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three again but now there will still be cross-links since we have small cluster cores. In figure

4.8 the red dashed line is the maximum cluster size caused by the corona effect. If we are

to the left of this line we are in regime one or two depending on the interaction energy. If

we are on the line we are in regime three. Having a long linker also means that the amount

of material causing the screening to go down, but here we set it to a constant. However for

extremely long linkers we expect small or no clusters, due to the corona free energy. We see

Figure 4.8: A plot of the average cluster size (left) and the number of effective links
(right) as function of the density where a = 5.025 × 10−10m, r0 = 5.445 × 10−9m, a mass
fraction of 3% and three hydrogen bonds.

again that small interaction energies lead to small cores, also we see that for increasing the

linker length we get smaller clusters. If the linkers are too long we see that no clusters are

formed anymore and that there are no cross-links. This happens at shorted chains for lower

interaction energies.

The step-like structure indicates the clusters are small. This is a discretization effect in

the averaging, caused by the fact that a cluster can only have a whole number of particles (m

is an integer) in there core. The average itself does not have to be an integer.
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4.3 Macroscopic Properties

In this chapter we will use the mesoscopic structure fount via the microscopic properties

to try and predict the macroscopic behavior elastic behavior of the system. For the elastic

properties we have two contritions, one is the elastic modulus found via the Flory rubber

theory,

G0 =
νeffkbT (f − 2)

V f
. (4.3)

The other contribution is the the osmotic pressure that scales linear with the elastic modulus

G0,Osm ∼ Π0 and is given by,

Π(ρ) =
kbT

s3

[(
V

V0

)νos
−
(
V

V0

)νel]
, (4.4)

We will compare the Flory rubber modulus and osmotic pressure as function of the interaction

energy (section 4.3.1), density (section 4.3.2) and linker length (section 4.3.3). We will try to

find and explain trends that can be used to make a distinguishing between the two effects.

4.3.1 Macroscopic Properties as function of the Interaction energy

In figure 4.9 on the left we see the same trending behavior as in the simulations, longer chains

result in a larger plateau. We also see a maximum just after the gelation point, we also see

that the maximum is largest for a chain length N0 = 180. The osmotic pressure as a finite

value even before the clusters start cross-linking, see figure 4.9 (right). It is not likely that

the system has a finite elastic modulus even before the system is cross-linked, because when a

force is exerted on the material the clusters (or loose binders) can just relocate in the carrier

fluid. Plotting the curves like this does not show trends we can use to make distinguish

between the two effects.

Figure 4.9: A plot of the Flory rubber modulus (left) osmotic pressure (right) as function
of the interaction energy where a = 5.025 × 10−10m, r0 = 5.445 × 10−9m, three hydrogen
bonds and a mass fraction of 3%.
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4.3.2 Macroscopic Properties as function of the Density

In figure 4.10 and 4.11 we see that the elastic modulus (left) and the osmotic pressure (right)

as function of the mass fraction of material used plotted as the solid line. The dashed lines

are fits to the plateau modulus. We see that more material yields higher values of the elastic

modulus and osmotic pressure. This causes all the slopes of the fits to be positive as shown

in table 4.2. In figure 4.10 (left) we see that higher interaction energy causes the system to

cross-link at higher densities. On the right in figure 4.10 we see that the osmotic pressure

Figure 4.10: A plot of the Flory rubber modulus (left) osmotic pressure (right) as function
of the density where a = 5.025 × 10−10m, N0 = 180, r0 = 5.445 × 10−9m and three hydrogen
bonds

becomes finite at lower densities. Both effects can be explained with the cluster size, lower

interaction energies results in smaller clusters and smaller clusters percolate faster since a

bridge needs to cover less distance. For the osmotic pressure small clusters mean a higher

pressure since the corona scales with m1/5 where the distance between he cluster scales with

m1/3, so

Π(ρ) ∼

(
m3/5

m

)νos
−

(
m3/5

m

)νel
,

≈ 1

m9/10
, (4.5)

so larger clusters means a lower osmotic pressure. If the density is increased the clusters stay

small for lower interaction energies, meaning we see the same trend as we see for low densities,

lower interaction energy means higher osmotic pressure. For the Flory rubber modulus we

find that the number of cross-links a cluster has scales linear with the cluster size. The density

also scales linear with the cluster size so we find,

G0 ∼ mpb
mδ3

,

=
pb
δ3
. (4.6)
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So of the Flory modulus we find that it does not directly depend on the cluster size. Since

pb → 1 for all interaction energies at high concentrations we see that they convent to each

other. If we increase the chain length the osmotic pressure also increases (at least if we are

Figure 4.11: A plot of the Flory rubber modulus (left) osmotic pressure (right) as function
of the density where a = 5.025 × 10−10m, r0 = 5.445 × 10−9m, three hydrogen bonds and
ε0 = 3.3kbT per bond.

in region one or two, so low to moderate interaction energies.), yet the cluster size deceases.

Smaller clusters means more cross-links leading to a higher Flory rubber modulus. So, longer

chains means a higher Flory rubber modulus but lower osmotic pressure.

In figure 4.11 on the left we see that shorter chains cross-link at higher densities, this has

two reasons. One the short chains means larger clusters so a larger cluster to cluster distance

and two, the cost of making a bridge is relatively larger since the chain is shorter. If we go

to high densities we see that short chains have a slightly higher modulus this is because we

are in the regime described by equation 4.6 and pb → 1, but we are keeping the total mass

of used material constant to shorter linkers means effectively more binders. In figure 4.11 on

the right we see shorter linkers means lower osmotic pressure. This is because short chains

make smaller coronas (Rcorona ∼ N3/5
0 ) and the clusters are larger.

Table 4.2: The slopes fount by fitting (dashed lines) though the different curves in figures
4.9 (above the line) and 4.10 (under the line)

Bond energy Chain length Flory rubber Osmotic pressure

(kbT ) (N0) (Slope) (Slope)

1 180 1.18 2.46

3 180 1.24 2.48

5 180 1.33 2.68

3.3 90 1.58 2.48

3.3 180 1.29 2.51

3.3 270 1.06 2.54

In table 4.2 we see see the slopes of the Flory rubber elasticity and osmotic pressure
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depending on the density (so not the cluster size). We see that we have a decreasing slope for

increasing linker for the Flory rubber and an increasing slope longer chains if we look at the

osmotic pressure. This effect could be used to determine what effect, cross-linking or osmotic

pressure is the dominant factor in the elastic response. However in the next paragraph we

will see that plotting the Flory rubber modulus and osmotic pressure as function of the linker

length and keeping the interaction energy constant gives an easier to recolonize trend.

4.3.3 Macroscopic Properties as function of the linker length

In figure 4.12 we plotted the Flory modulus (left) and Osmotic pressure (right) as function of

the linker length for different values of the concentration and keeping the interaction strength

constant. The sigh of the slope has a different sign, negative (decreasing) as function of

the linker length for the Flory rubber and positive (increasing) for the osmotic pressure (see

table 4.3)). The Flory modulus decreases for longer chains since longer chains means a lower

Figure 4.12: A plot of the Flory rubber modulus (left) osmotic pressure (right) as function
of the density where a = 5.025× 10−10m, r0 = 5.445× 10−9m, three hydrogen bonds and an
interaction energy of ε0 = 3.3kbT per bond.

starting concentration. This is because we are keeping the total mass of the material used

constant, so longer linkers means less binders for the same mass. So even though the cluster

are getting smaller should lead to an increase in the Flory modulus, the spacing between of the

clusters is increasing so fast that the number of cross-links per unit volume goes down. The

same arguments can be used for the osmotic pressure, smaller cluster leads to higher pressure

and less material for a lower pressure. However longer chains also mean larger coronas. The

total effect of increasing the linker length for the osmotic pressure is that it increases. The

difference in the sign of the slope is probability the easies and most profound to see what

effect is dominant in causing the elastic modulus.
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Table 4.3: The slopes fount by fitting (dashed lines) though the different curves in figures
4.12

Density Chain length Flory rubber Osmotic pressure

(%) (N0) (Slope) (Slope)

3 180 -1.02 3.76

13 180 -1.3 3.36

23 180 -0.97 3.31



Chapter 5

Results and Conclusion

In this chapter we will discuss the results we found and combine them to form a phase diagram

and explain some of observed behavior of the gel. First we will construct a phase diagram of

the gel as function of the interaction energy ε0 and linker length N0, and see how this changes

if the density is increased.

5.1 Phase Diagram

In section 4.2.1 we defined three different regimes depending on the interaction energy.

1. The interaction energy is so low no clusters are formed.

2. Clusters start forming and we see strong growth of the cluster size for increasing ε.

3. The size of the clusters is constant because of the corona effect (dynamic).

We will start by analyzing the phase diagram at a mass fraction of around 3 percent and start

at low interaction energy and keeping this constant and moving from short chains to longer

chains. Next will move to higher interaction energies and again start at short chains and

move to longer chains. The arrows indicate what would happen if the density is increased.

Blue line The first phase is where there are no clusters formed due to the interaction

energy being low. If no clusters are formed the system will not have a elastic modulus. For

short chains we see that the percolation starts at higher interaction energies and goes to lower

interaction energies if the chain length is increased. This is because the clusters get smaller

for longer chains meaning the distance between clusters is smaller, meaning making a bridge

cost less energy and thus becomes more likely to happen. For higher densities it also becomes

less costly to make the bridges, since the distance between clusters is reduced. Increasing the

density means the boundary between phase one and two goes to lower interaction energies.

This effect is stronger for short chains. For extremely long chains we see that the point where

clusters are formed moves to higher interaction energies, this is because the corona free energy
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is larger for long chains. The density has little effect on this point since we just do not see any

clusters and the energy it cost to make bridge is already small since the chains are so long.

In figure 5.2 the transition point between phase one and two is shown with the blue line.

Figure 5.1: A sketch of a phase diagram of a physical gel made out of binder-chains at a
moderate density.

Orange line If the interaction energy is increased we see that the clusters grow in size.

For short chains these clusters grow fastest because the corona free energy per particle scales

with the log of the chain length. The brown area in figure 5.2 is where this effect is so

strong that no percolation, these are large isolated clusters. If the density is increased the

cluster-cluster distance goes down and the transition from a percolating to a non percolating

system is moved to shorted chains. This transition is indicated in figure 5.2 by the orange

line and goes down for higher densities. If the chain length is increased the growth in cluster

size becomes slower if the interaction energy is increased. This means smaller clusters, thus

smaller cluster to cluster distance. The longer chains start forming bridges now and we see

percolations.

Green line Moving to even higher interaction energies we see the corona effect kicking in,

meaning the cluster size no longer depends strongly on the interaction energy. The transition
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between phase two and three is shown in figure 5.2 by the green line. If the density is increased

this moves to lower interaction energies, since clusters grow in size is for increasing the density

if the system is percolating. For very short chains we move into the regime where the corona

effect is dominant for low interaction energies, this is because the cluster grow fast in size due

to the corona free energies being small. If we increase the chain length we see clusters grow

slower for increasing interaction energy, causing them the reach the point where the corona

effect is dominant at higher interaction energies. For even longer chains the maximum cluster

size goes down fast, at some point this effect becomes stronger than the slowing of the cluster

growth and we see that we reach phase three for lower interaction energies.

Purple point The point where we get large isolated cluster happens at higher interaction

energies for longer chains because the clusters grow slower, causing a smaller cluster-cluster

distance and it cost less to make a bridge for longer chains. This is why the orange line to

move to longer chains for higher interaction energies. When we get to the transition between

phase two and three the clusters stop growing as function of the interaction energy. So from

the purple point, where the orange and green line cross the percolation point stops depending

on the interaction energy and only depends on the linker length and density.

In short Longer chains means the clusters grow slower and are smaller, which causes the

connectivity per binder to go up for longer chains. Since we keep the total used mass constant

using longer chains also means less binders per unit volume. Increasing the interaction energy

causes the clusters to be larger and the connectivity per binder to go down but the bonding

energy per unit volume goes up. This scaling stops when we reach the regime where the

corona effect is dominant. The maximum in the elastic modulus is expect to be just to the

right of the blue line, since the clusters are smallest here. Small clusters mean that the

birding probability is large, since the cluster to cluster distance is small. We also seen that

small clusters result in a large osmotic pressure, so both effects seem to peak around the same

point in the phase diagram. However we seen that increasing the chain length caused the

number of connections per unit volume to go down and the osmotic pressure to go up. So we

expect the largest value of the Flory rubber modulus is just above where the blue and orange

line cross. The largest value for the osmotic pressure does not seem to have a maximum, it

just keeps increasing for longer linkers. However if the linker length is to long no clusters are

formed anymore and the system is no longer a gel.

5.2 Strain Stiffening

One of the most interesting effect seen is that the system can strain stiffen, this means the

elastic modulus goes up if stress is exerted on the gel. We assume that both the Flory rubber

theory (equation 2.43) and the osmotic pressure (equation 2.46) a play a role in the elastic

modulus. In our case the binders form flowerlike micelles where coronas overlap. This overlap
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gives rise to an osmotic pressure. This pressure can be related to the elastic modulus [20–22] of

the system, G0 ∼ Π0. An other effect is that these clusters are cross-linked, also giving rise

Figure 5.2: A sketch of what happens if the system is sheered. (Top) We see that
the cross-links are compressed and are not contributing to the stiffness of the system.
(Bottom) We see that the cores are getting spaced further apart due to the elongation
and the cross-links start contribute to the stiffness.

to an finite elastic modulus [1–3]. However since in the derivation of the cross-link elasticity

we started with a polymer network that was in equilibrium and ours is compressed, hence

else there would be no osmotic pressure, this effect is non visible for small perturbations.

For small perturbations the elastic response of the system is due to the osmotic pressure, if

the system is elongated so that L ∼ L0 we come in the regime that represents a equilibrium

polymer network and the Flory rubber elasticity kicks in. This effect is most visible for low

concentrations, close to the percolation point and short chains. The concentration is because

L is already closer to L0 and only a small deformation is needed to go from one regime to

the other. Where if the concentration is high, we need a large deformation meaning a large

force. This large force could break the clusters internal structure destroying the cross-links

and thus the elastic modulus will drop due to the gel being disintegrated. This effect will be

most profound for short chains, large interaction energies and close to the percolation point.
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5.3 Flower- or Rod- like Clusters

We see a different state where instead of a flowerlike motive we see an more elongated state

that looks like a rod, see figure 4.4 on the right. The formation of these rods can only happen

if the cluster is longer than the radius of the corona. Since we can just add a particle on the

stack that is outside the radius of influence of the corona, not adding to the corona effect. If

we assume we making a perfect stack of binders, the height of the cluster goes with bm where

b the height of a single particle. If the cluster is the same height as the radius of gyration of

the corona we are in the regime where we can just keep staking particles on the cluster. We

need to solve,

bm = aN
3/5
0 m1/5. (5.1)

This only has one solution for m that is larger than zero, real and non zero:

m ∼ N3/5
0 (5.2)

So, if m > N
3/5
0 (so for short chains) we find that the cluster core is larger than the corona

and it becomes possible to just add more and more particles to the cluster without increasing

the corona density. The theory does not cover this part of the system because for the the

corona free energy equation 2.8 to be valid we need to have stay in the regime that m < N2
0 ,

meaning we are always in a flowerlike state in the model.

5.4 Technological Relevance

Last year alone there where over 8000 articles posted about physical gels in scientific journals1

showing that physical gels are a hot topic. The reason for this is because these gels are self

assembling and have a wide range of unique and controllable properties by changing the

molecules they are made of. Giving them an even wider rage of applications possible, from

drug delivery [11] to tissue engineering [13] and many other. The amount of material needed

to make the gel is low, combining this self assembling properties makes it a cheap material

to make. In this report we show that under certain conditions it is possible to predict the

macroscopic properties using a free energy analysis of the microscopic building blocks. It

gives insight in the dependence of the gel’s macroscopic properties on the molecules the gel

is made of, allowing for an optimized start for experiments and simulations saving time and

money in synthesizing the desired properties of the gel.

1Found by searing for “Physical Gel” on http://journals.aps.org/
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5.5 Future work

The theoretical part we see that the model only works in a certain regime. One limit is for

sort chains this is caused by expression for corona free energy being only valid for m� N2
0 .

In this regime we see rods like clusters so deriving an expression for the corona free energy for

rod like systems could be useful in extending the theory. The other limit is for long chains,

this is because of the cutoff function for corona effect. The function used was picked since it

has the correct limits and shape but it has no good physical foundation. Having theoretical

model for the corona effect would further increase the range where we can use the model.



Appendix A

Hydrogen Bonds

A.1 Dipole-Dipole Interactions

The interaction potential between two arbitrary charge distributions is given by [26]:

U(~r1, ~r2) =
1

4πε0εr

∫ ∫
ρ(~r1)ρ(~r2)

|~r1 − ~r2|
d3~r1d3~r2. (A.1)

Where ~r1 the vector pointing to the first charge distribution and ~r2 to the second. When the

charges do not overlap and are relatively far apart compared to there spacial distribution we

can rewrite |~r1 − ~r2| [26]

|~r1 − ~r2| =
∣∣∣~R1 − (~δ2 + ~δ1)

∣∣∣ (A.2)

using ~R = ~ra − ~rb and ~r1,2 = ~ra,b + ~δ1,2 where ~δ is small. We can now make a multiple

expansion around ~ra and ~rb. Making use of the of the identities

qa =

∫
d3~rρ(~r1) (A.3)

~µa =

∫
d3~rρ(~r1)(~ra − ~δ1). (A.4)

And similar for the ρ(~r2). For the multi-pole expansion [26] we find:

U(~R,~r1, ~r2) =
1

4πε0εr

[
qaqb
R

+
qa~µb · ~R
R3

+
qb~µa · ~R
R3

+

R2~µa · ~µb − 3(~µa · ~R)(~µb · ~R)

R5
+ ...

]
. (A.5)

The first term is the coulomb interaction between tho charges, the second and third terms are

the interaction between the dipole moment of one with the permanent charge of the other.

The last term is the dipole-dipole interaction. Since our molecules do not have any net charge
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the first three terms are zero, hence qa = qb = 0. The next step is to try and find and

expression that does not depend on the orientation of the dipoles,
〈
U(~R)

〉
. We will do this

with the help of the partition function.

Z =

∫
d3V1

∫
d3V2

∫
d2~e1

∫
d2~e2 exp(−βU(~R,~r1, ~r2)). (A.6)

We are not interested in the total partition function, but only in the part that has the

rotational part of the dipoles in it. So we want some insights on the rotational dependent

part of the configuration integral. By defining

βz(R) = − ln

(∫
d2~e1

∫
d2~e2 exp(−βU(~R,~r1, ~r2))

)
, (A.7)

the total partition function can be written as

Z =

∫
d3V1

∫
d3V2 exp(−βz(R)). (A.8)

Note that z(R) is a free energy. Doing a Taylor expansion around βU and doing the integration

over the angles we find that the first term is a constant and the second term is zero, the first

interesting term is that with U2.

βz(R) = − ln

(4π)2 +

π∫
0

(βU)2

2
dθ1 sin(θ1)

π∫
0

dθ2 sin(θ2)

2π∫
0

dφ1

2π∫
0

dφ2

 , (A.9)

where

U(θ1, θ2, φ1) =
µ1µ2

4πε0εr

1

R3
[2 cos(θ1) cos(θ2)− sin(θ1) sin(θ2) cos(φ1)] . (A.10)

Using ln(ab) = ln(a) + ln(b), ln(1 + x) ≈ x and ignoring all the constants we find the average

interaction potential between two dipoles that have no net charge.

z(R) = −
(
µ1µ2

4πε0εr

)2 1

R6

β

3
. (A.11)

A.2 Rod-Rod Interactions

The linkers can formed hydrogen bridges, these basically are dipole dipole interactions and

form Appendix A.1 we know that the attractive part goes like 1/r6, so modeling the potential
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simple Lennard-Jones potential seems like a logical step.

Fwell(r) = 4ε

[(
b

r

)12

−
(
b

r

)6
]
, (A.12)

where U0 the well depth in units of kbT and r the intermolecular distance. The point where we

indefinitely destroy the gel can be calculated by looking how much work we is done by a force

of exerted on the link. We model the linker as rods made up out of N individual Lennard-

Jones particles with radius b that are stuck together in a rod formation. The direction of if

the rod is given by the unit vector ~u1. We place a second rod next to the first rod. This rods

orientation is given by an other unit vector ~u2. The two vectors ~u1 and ~u2 are ~R apart and

make an angle θ. The vector pointing form particle n in linker one to particle m in linker

Figure A.1: Two linear Lennard-Jones rods with N interaction sides and a distance R
from each other and with a relative angle θ.

two, ~rnm, is given by:

~rnm = nb~u1 −mb~u2 +R, (A.13)

(~rnm)2 = n2b2 +m2b2 + ~R2 − 2nmb2~u1 · ~u2. (A.14)

The total interaction potential is given by:

Urod =
1

2

N/2∑
−N/2

N/2∑
−N/2

Ulj (~rnm) , (A.15)
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where

Ulj (~rnm) = 4ε

[(
b

rnm

)12

−
(

b

rnm

)6
]
, (A.16)

= U+ + U−.

We will now look for m = m∗ minimizes ~rnm for a given n and right ~rnm in terms of (~rn)∗,

where we replaced m by m∗, and some correction therm that gives the difference between ~rnm

and (~rn)∗.

m∗ = n cos(θ), (A.17)

(~rn)2
∗ = n2b2 sin2(θ) + ~R2, (A.18)

(~rnm)2 = (~rn)2
∗ + b2 (m−m∗)2 . (A.19)

This substation enables us to replace the sum in equation A.15 by an integral and execute it

analytically. We will split the integral up in two parts, one of the repulsive and one for the

attractive to keep the equations readable.

U− =
1

2

∫ N/2

−N/2
dn

∫ N/2

−N/2
dm

4εb6[
(~rn)2

∗ + b2 (m−m∗)2
]3 . (A.20)

Substitution x = b(m−m∗) and y = nb sin(θ).

U− = − 2εb4

sin(θ)

∫ a

−a
dn

∫ b

−b
dm

[
x2 + y2 + ~R2

]−3
, (A.21)

where a = N
2 sin(θ) and b = N

2 + x
tan(θ) . If N � b, so the rod is a lot longer than the distance

from the center of the rod to the minimum in the interaction potential and θ ≤ b/N so the

angle is small and making use that the function decays fast for large values of x and y we can

replace the integration boundaries to go from ∞ to −∞ resulting in:

U− = − επb4

R4 sin(θ)
. (A.22)

Very similar we can calculate U+ resulting in:

U = 4ε

[
π

10

(
b

R

)10

− π

4

(
b

R

)4
]

1

sin(θ)
, (A.23)



51 APPENDIX A. HYDROGEN BONDS

approximating θ ≈ b/l and making a Taylor expansion around zero we find:

U ≈ 4εL

b

[
π

10

(
b

R

)10

− π

4

(
b

R

)4
]
, (A.24)

where εL ≈ nεb making the interaction energy between two Lennard-Jones rods with a number

of n bonding sites

U ≈ 4(ε× n)

[
π

10

(
b

R

)10

− π

4

(
b

R

)4
]
. (A.25)

The minimum in the energy is at R = b and thus:

Umin = −3(ε× n)π

5
. (A.26)





Appendix B

Polymer Chain Entropy

B.1 Statistics of a Gaussian chain

The freely joined chain is a model for long polymer molecules. The model uses a coarse

grained view of the molecule where we make that the direction vector along the polymer

becomes uncorrelated over long distances. This assumption results in that there is no energetic

penalty for bending the chain. This is why the model is also referred to as ideal chain or

Gaussian chain. The probability on finding an end to end distance of this type for the chain

is given by:

P(~R) =

〈
δ

(
~R−

N∑
i=1

~ri

)〉
. (B.1)

The probability of finding a chain with length R is 1 if the chain has this length and is zero

if it doesn’t. Using the integral representation of the Dirac delta found via residue calculus,

δ(x− n) =
1

2πi

∮
|z|=1

zx−n−1dz =
1

2π

2π∫
0

ei(x−n)φdφ. (B.2)

The probability of finding a end to end distance of ~R is equal to:

P(~R) =
1

(2π)3

〈∫
d3k exp

(
i~k ·

[
~R−

N∑
i=1

~ri

])〉
. (B.3)

Now we can make use of the fact that all the probabilities for for finding a vector ~ri are

independent; the average of the product of the probabilities is the same as the product of the

probabilities 〈r1r2〉 = 〈r1〉 〈r2〉.

P(~R) =
N∏
i=1

∫
d3riP (~ri)

{
1

(2π)3

∫
d3k exp

(
i~k ·

[
~R− ~ri

])}
(B.4)
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We also know that all the parts of the chain are identical so P (~ri), so the product factorizes.

P(~R) =
1

(2π)3

∫
d3k exp

(
i~k · ~R

)[∫
d3kP (~r) exp

(
−i~k · ~r

)]N
(B.5)

P (~(r) has its mean value at zero and finite second moment, the Fourier transform of will have

its maximum around k = 0 and go to zero for large values of k. Raising such a function to

the Nth power leaves us with a function that differs from zero only very close to the origin,

and which may be approximated by:[∫
d3kP (~r) exp

(
−i~k · ~r

)]N
≈

[
1− 1

2

〈(
~k · ~r

)2
〉]N

≈ 1− N

2

〈(
~k · ~r

)2
〉

+ O(r4)

= 1− N

6
k2
〈
~r2
〉

+ O(r4)

≈ e−
1
6
Nk2〈~r2〉 (B.6)

Using this result and substituting it back in toB.5. Making use of symmetry, P (r) =

Px(rx)Py(ry)Pz(rz) we have to solve the 1D probability integrals. Doing this we find our

end to end distance probability:

P(~R) =

(
3

2πN 〈~r2〉

) 3
2

exp

(
− 3R2

2N 〈~r2〉

)
(B.7)

B.2 Free Energy of a Self Avoiding Polymer

The interaction between the monomers is given by a potential that only depends on the

distance between the two monomers, U(|~r|). Since our chains are still modeled as being ideal

we can model them as an ideal “gas” of lose monomers in a box of size V . The free energy

cost of putting N monomers with volume v in a box of volume V goes as: v(N/V )× V . The

probability it runs into an other polymer goes with N/V . The typical energy scale is thermal,

kbT , so we get [27],

∆Favoid ≈
vkbTN

2
0

V
. (B.8)

Where we pick V = R3. Now if the concentration of polymers is high we expect them to

become longer then they would in the case of a diluted system, this causes the entropy cost

to rise:

∆Fideal ≈
3kbTR

2

2N0a2
. (B.9)
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Using this we can calculate the distribution function of R,

P (R) =
1

Z
e−β(∆Fi+∆Fa), (B.10)

and from this we can find 〈R〉, unfortunately we cannot execute the integral analytically. How-

ever we know that the function e−f(x) is strongly peaked around the minimum value of f(x)

so we approximate the exponent by a Kronecker delta on xmin (saddle point approximation):

〈x〉 ∼
∫
xe−f(x)dx,

≈
∫
xδ(x− xmin)dx,

= xmin. (B.11)

So we only need minimize ∆Fi + ∆Fa with respect to R,

〈R〉 ∼ N3/5
0 . (B.12)

And the extra free energy cost associated with the ideal self avoiding chain:

∆Favoid ∼ kbN
1/5
0 . (B.13)

B.3 Entropy of an Extended Chain

If we start with z loose binders, where every binder has one linker and we make a chain

extended system for these lose units the entropy is changed. From expression B.7 that the

that the entropy of a Gaussian depends on R, the end to end distance and N the number of

monomers and is given by [18]:

S(R) =
3kb
2

log

(
3

2πNa2

)
− 3kb

~R2

2Na2
. (B.14)

he entropy difference concerning the Gaussian chains is if the bonds are formed the link-chain

goes from z lose units with N0 monomers to one long chain with N = zN0 monomers. To

make this calculation possible we will set the end to end distance to be zero, this is (almost)
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true for a loop. This cost entropy of folding up the linker-chain:

∆S =
3kb
2

log

(
3

2πN0za2

)
− 3zkb

2
log

(
3

2πN0a2

)
,

= −3kb
2

(
(z − 1) log

(
3

2πN0a2

)
+ log (z)

)
,

= − lim
z→∞

3(z − 1)kb
2

(
log

(
3

2πN0a2

)
+

log (z)

z − 1

)
,

= −3zkb
2

log

(
3

2πN0a2

)
. (B.15)

B.4 Entropy of Folding the Chain

To find the entropy difference between the free and stacked state we use the same notation

as we did as in equation B.1 and write the term in the Dirac delta in terms of the individual

linkers under to constrain that the sum of the end to end distances of the parts is equal to

that of the long chain.

P(~R) =

〈
δ

(
~R−

N∑
i=1

~ri

)〉

=

〈
δ

 m∑
j=1

~Rj −
m∑
j=1

N∑
i=1

~ri

〉

≈
m∏
j=1

〈
δ

(
~Rj −

N∑
i=1

~ri

)〉

≈
(
P( ~Rj)

)m
. (B.16)

So along as all the individual chains are the same and can be handled as Gaussian we will see

no entropy difference for the chains themselves between the stacked and the unstacked state.

When we look to the system as a whole we see that forming the cluster we lose configuration

entropy. In a system with Z unlinked particles we have Ω = Z! unique permutations and Z

particles. If clusters are formed we are left with (Z!/
∏
mi!) unique permutations, where mi

the size of the i-th subsystem. The entropy change per particle,

∆Sconfig,1 = kb

[
ln

(
Z!∏
mi!

)

)
− ln(Z!)

]
,

= −kb ln
(∏

mi!
)
,

= −Zkb ln(mi!)

m
. (B.17)

The subsystem itself used also loses all its internal permutations because the particles are
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fixed relative to another if a bond is formed, the entropic loss due to this is given by:

∆Sconfig,2 = kb [m ln(1!)− ln(m!)] ,

= −kb ln (m!) , (B.18)

per cluster.
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