
 Eindhoven University of Technology

MASTER

Genetic algorithms for scheduling purposes

Mesman, B.

Award date:
1995

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a5feec8d-304e-4644-b420-c29c360b3ac9

Eindhoven University of Technology
Department of Electrical Engineering
Design Automation Section (ES)

Genetic Algorithms for Scheduling Purposes

ByB.Mesman

Master Thesis

performed: March 94- August 95
by order of Prof. Dr. Ing. J.A.G. Jess
supervised by Ir. M.J.M. Heijligers

The Eindhoven University of Technology is not responsible lor the contentsof training and thesis reports

Abstract

Genetic algorithms (GAs) are a general purpose heuristic inspired on the principals of evolution
and survival of the fittest. Beuristics are viewed from the perspective of the tradeoff between
exploration and exploitation. The amount of exploration in a genetic algorithm is determined
by the crossover mechanism and by the mechanism of selecting parents for creating a new
individual. The schema theorem from [Holl75], the major theoretica! result on GAs so far,
guarantees good features (schemas) of an individual to spread in subsequent generations when
they are not disrupted in crossover process. This result has lead researcherstoa very exploitative
attitude towards GAs. An important extension to the schema theorem by [DeJo92] suffers
from ambiguity and errors. This report presents extensions of the ideas behind the schema
theorem in two respects. First, a relation is analytically established between the statistics of two
subsequent generations of a population. This relation prediets a number of phenomena that
have been observed in practice and reported in literature. The relation especially emphasizes the
importance of having a varled population, an effect that can be brought about by introducing
exploration into the crossover mechanism, contrary to the traditional exploitative attitude. The
crossover mechanism we use is uniform crossover because it does not suffer from the problem
of positional bias and because the amount of exploration can easily be set by one parameter. From
analysis it is concluded that this operator works best when set at its explorative extreme.

The second way we have extended the original schema theorem regards a pennutation
encoding of a salution and a unifonn order crossover operator specifically targeted this encoding.
A permutation encoding is often a very convenient way to express typical scheduling decisions
in a scheduling problem, and it is with this type of problems in mind that the following research
is conducted. The schema theorem is extended by detailed examination of how a schema (a
combination of features) is created by crossover. We now take into account all possible ways
a schema is created whereas the original schema theorem considers only the survival from one
parent. Analyses are performed on the resulting schema theorem and it is again concluded
that the parameters of uniform order crossover should be set at its explorative extreme. This
suggests the possibility that the GA could perform even better when it is devised even more
explorative by alteration of the selection mechanism. Using a Boltzmann selection scheme, it
is even possible to adjust the amount of exploration each generation to match the statistics in
the current population. This is done by updating the Boltzmann parameter in termsof a target
varlation and the actual varlation in the population. Results show that this adaptive approach
is promising. The behaviour of uniform order crossover is analyzed further with respect to
the occurrence of a local optimum. It is shown how a local optimum can arise as a result of
the partition property of uniform order crossover. Purthermare it is shown that some specific
measures taken to reduce the salution space have no effect other than to increase the probability
of encountering a local optimum, and should therefore not be used.

iii

iv

The genetic algorithm is used to tackle the problem of scheduling a data-flaw graph (DFG) in
high-level synthesis, which is an important part of designing a chip-layout from a behaviaral
description. A scheduling algorithm from [Heij95] is used to turn a permutation into a schedule
in a way that matches the charaderistics of the crossover operator. Efficiency is improved by
computing a distance-n-tatrix prior to running the genetic algorithm. For acyclic graphs, this
computation is carried out in O(V E) time by a new APLP-algorithm. Results on running the
genetic algorithm show it to be superiortoa number of different approaches~

Contents

1 Introduetion

2 Genetic algorithms

2.1 Introduetion .

2.2 Outline of the genetic algorithrn

2.3 The schema-theorem and the building-block hypothesis

2.4 Convergence, exploration, and exploitation

2.5 Where to find more on genetic algorithrns .

3 Crossover operators for bitstring-representations

3.1 Single point crossover and inversion

3.2 n-point crossover

3.3 parameterized uniform crossover .

3.4 Introduetion to disroption-analyses

3.5 Cantrolling the exploration-exploitation tradeoff

3.6 An extensive disruption-analysis

4 GA-statistics

4.1 Adaptive GAs

4.2 Moments of score .

4.3 . The expected score

V

1

3

3

4

7

9

12

13

13

15

16

17

19

20

23

23

25

27

vi

4.4 . The linear all one problem

5 Permutation representations

5.1 Uniform crossover for permutations

5.2 Constructing parents

5.3 A schema-theorem for permutation-encoding .

5.4 When does the GA work? . .

5.5 Adaptive selection pressure

5.6 Local optima: how do they look like? .

5.7 Partitioning resources: a reduction in search-space

6 Scheduling in High Level Synthesis

6.1 Problem description and methad of solving

6.2 Fast deterministic scheduling algorithms

6.2.1 ASAP and ALAP scheduling

6.2.2 List scheduling

6.2.3 Permutation-scheduling .

6.3 Producing a distance matrix .

6.4 Results

7 Conclusions

A Derivations

A.l Statistica} derivations

A.1.1 m-th order score moments

A.1.2 Two offspring .

A.l.3 Expected scores

A.1.4 Crossover-statistles for the all-one problem

28

31

32

33

37

39

41

43

45

47

47

48

48

49

50

52

55

57

59

59

59

60

62

62

A.1.5 Crossover varlation for the all-one problem

A.2 A necessary condition for directed search

A.3 Sensitivity analysis for adaptive boltzman-selection

A.3.1 Linear updating

A.3.2 Linear updating with integration .

vii

64

66

67

67

68

Chapterl

Introduetion

The first step encountered in the translation of a behavioral description of a chip into a chip­
layout, is high-level synthesis (HLS). HLS translates the behavioral description into a description
of a network of modules and a controller for this network. Within this synthesis trajectory,
scheduling is the problem of allocating operations to modules and cycle steps, given preeedenee
constraints represented by a data-flow graph. Because this scheduling problem is NP-hard, exact
solving methods are too expensive in terros of computation-time when consictering large-size
problems. When the requirement of optimality is relaxed however, heuristic methods are able to
obtain a reasonable solution in a reasonable amount of time. A genetic algorithm is one of the few
heuristics that has been tried successfully on the scheduling problem at the design automation
section of Eindhoven University of Technology. There was however not much insight in the
underlying mechanisrns, and the available theory failed to provide a satisfying explanation. This
thesis follows from the discontent with that situation.

1

Chapter2

Genetic algorithms

2.1 Introduetion

Since long has mankind struggled with the problem of optimizing functions, and one of the
flourishing branches within this struggle is called combinatorial optimization. Let N = {1, ... , n}
be a fini te collection and let c = (c1 , ... , c1) be an I-vector over N. For F Ç N, define
c(F) = 'L-iEF ei. Suppose we are given a collection of subsets F of N. The combirtiltorial
optimization problem is

max{c(F): FE F}

Note that the function to be maximized is assumed to be linear. A minimization problem
can be incorporated in this model by maximizing the negative of the objective function. A
binary vector x = (x1, ... , Xn) is used to indicate merobership of F for each j E N. A vast
amount of probieros are modeled in this way, mainly from the area of operations research.
Techniques used within the area of combinatorial optimization to tackle such probieros typically
have deterministic behaviour and aim at finding the optima! value. A typkal algorithm uses
subroutines for finding a non-feasible solution by relaxing the integrality constraint and solving
a linear programming problem. The purpose of this is to derive a lower (upper) bound on the
solution, which is used to fix variables at a certain value which otherwise would exceed the
bound. Many of the earlier graph-problems were tackled using algorithms that could readily
solve large problem-instances using reasonable computational effort. With the rise of the theory
of computational complexity (mid 70's) however, it became clear that there is a large amount of
probieros for which it is believed that no such algorithm exist. Any algorithm pretending to find
the optima} solution to such a problem, probably would require an impractical amount of time
or resources to solve even a disappointingly small instanee of that problem. This initiated (early
80' s) the development of heuristics. Beuristics derive from the optimality-feature and often from
the deterministie-feature of traditional combinatorial optimization techniques, in order to find a
reasonable solution with a constraint on the computational effort. Non-deterministic behaviour
is used to handle a spedfic type of trap: the problem of getting stuck at a local suboptimal
value. Beuristic algorithms appear as either tailored or generaL A tailored algorithm has the
advantage of ha ving lots of problem spedfic knowledge incorporated. A general algorithm has
the advantage of being applicable toa largersetof problems. lt should be noted however that
it is often possible to incorporate some problem spedfic knowledge into a general algorithm as
well. A large group of general algorithms are characterized by their so called local search methods.

3

[,

4

These methods use the notion of neighbourhood to iterate from one solution to imother. Generally
recognized as a local searclh method is the so called genetic algorithm.

2.2 Outline of the genetic algorithm

Nature has proveda fruitful souree of inspiration for scientists looking for an 'easy' way out of
the immense complexity that comes along with optimally solving certain types of large problems.
Perhaps the most popular of the resulting heuristics is simuiateel annealing [Aart89], which is
basedon the principlesof thermodynamics and has been successfully applied to many problems.
Recently, interest in genetic algorithms experienced an explosive growth. Although the idea
was already published in 1975 [Holl75], it seems that its popularity was subjeeteel to that of
heuristics in general, which has popularized mainly during the last decade. Genetic algorithms
rely on the principle of sull'VÎval of the fittest, and unlike most iteration (Iocal search) methods,
maintain a population of individuals (potential solutions) that evolve according to some measure
reflecting the quality of a solution. Besides the obvious analogy in nature, different authors
[Gold89b], [Hofs79] have suggested another interesting analogy: that of combining ideas to
obtain better ones, an ability recognized as a landmark in the development of human intelligence.
These analogies may convince the not-so-critical reader in believing that genetic algorithms are
wonderlul problem-solver:s and there's no further theory required for applying them. Judging
by the literature, there's a world full of not-so-critical readers. The only effect an analogy should
have, however, is to arouse interest instead of belief. lt is the aim of this thesis to develop some
theory that can be of assis1tance in applying a genetic algorithm on a difficult problem. For the
sake of easy reading, the genetics-analogy will be reflected in our terminology. Suppose A is an
arbitrary alphabet not containing *· Withoutlossof generality we assume that the symbols in A
are numbers.

Def 2.1 (chromosome) a chromosome is a vector of/ symbols fram the alphabet A.

/ is called the length of the chromosome, and this will usually be a constant. Because most
opera ti ons in the genetic algorithm workon veetors smaller than a chromosome x, it is convenient
totalk about the elements x[i]:

Def 2.2 (gene) a gene is an element of the chromosome.

The genetic algorithm pmcesses a number of cl1romosomes at a time. Therefore it is convenient
to talkabout a coneetion of chromosomes:

Def 2.3 (population) a population Pis a colleefion of chramosames.

The chromosome is a coded representation of something called a phenotype. The coding is
done by way of the mapping pheno from the set of chromosomes to the set of phenotypes. The
code in the chromosome is also referred to as the genotype. In applying genetic algorithms to
problem-solving, the phenotype will be a potential solution to the problem. There is some quality
measure, called a score, assigning a value to each solution. Since all manipulation is done on
chromosomes, we will assume the score s(x) to be directly calculated from the chromosome x.

5

Def 2.4 (score s) the score s is a mapping from the set of chromoSomes to the set of real numbers. The
score s(x) of a chromosome x is a numerical measure of the quality of a phenotype corresponding to x.

In the process of running the genetic algorithm, new chromosomes are created by genetic
operators:

Def 2.5 (genetic operator,parents,children,offspring) a genetic operator is a mapping from the set
of p-tuples of chromosomes to the set of c-tuples of chromosomes. The elements of the p-tuple are called
parents. The elements of the c-tuple are called children or offspring.

c and p are charaderistics of a specific genetic operator. By far the most important type of
operator (and implicant of the mentioned analogies) is called crossover.

Def 2.6 (crossover operator) a crossover operator cross is a non-deterministic genetic operator operat.­
ing on 2 parents and creating either 1 or 2 children by combining some features of the parents.

Notall genotypesin a population are considered for creating offspring (mating), and some will
be considered many times. The mechanism controlling this choke is called the selection scheme. In
nature it takes some timefora new individual to mature to the point that it is able to mate, so in
order to mate this individual has to survive till this point of maturity. If it survives even longer, it
will be able to mate more than once. In this way, the number of offspring 'produced' by a certain
individual depends for the larger part on this individuals' ability to survive. In analogy to the
principle of 'survival of the fittest', the selection mechanism fora genetic algorithm chooses a
parent x on the bases of its score s(x). That' s why the score is usually called a fitness-function.

Def 2.7 (selection scheme) a selection scheme is a non-deterministic function sel fr.om the set of
chromosotnes to thesetof real numbers between 0 and 1. sel(x) is the probability of selectingparent x fora
genetic operation, and is basedon its score s(x).

The main selection scheme is called proportionate selection (also known as roulette wheel
selection) and its function is defined by:

s(x)
sel(x) = L (') :z:teps x

The genetic algorithm presented so far, proceeds by creating new populations iteratively
(each of an increasing generation) by applying the crossover mechanism. Suppose x and y are
parents, and z is one of their offspring. Most crossover operators have the property that genes
conserve their location within the chromosome. That is, z[i] equals either x[i] or y[i], and x[j]
and y[j] for any j # i have no hearing on z[i]. Suppose now, that we have a population with
individuals all having an average score and, as a fortunate result of applying the crossover
operator, one individual enters the population that has a much higher score. A proportionate
selection scheme will consicter this individual for mating far more often than all the other
individuals in the population. The next generation will be crawling with its offspring, most of
them expected to have a high score. In the next generation, an individual not deseending from the

6

high-score individual will be hard to find. When the whole population consistsof alllook-a-likes
(descendent from the same chromosome), it is quite probable that there is a gene (with index i)
the value of which is shared by all chromosarnes in the population. So forsome g, x[i] = g for
all x E P. Because genes are location-conservative when it comes to crossover, the gene having
the same value in all clu·omosomes, will never change value in coming generations in any of the
chromosarnes when crossover is the only genetic operator. Still, the optima} chromosome may
carry a different value on that particular gene (xopt[i] f- g), and so the genetic algorithm will
never find the optima} salution from that point on. The remedy for this inconvenience is the
occasional use of a mutation-operator.

Def 2.8 (mutation operator) a mutation operator mut is a non-deterministic genetic operator, operating
on 1 parent and creating 1 child by arbitrarily changing the value of an arbitrary gene from the parent.

For clarity, it is common to introduce another, trivial, genetic operator called reproduetion
corresponding to the idlentity-function. lt is part of the set of operators used by a genetic
algorithm, because usually an operator has an associated probability of appliance: Pc and Pm
for crossover and mutation respectively, and reproduetion is used to show what to do when no
other genetic operator is applied. The corresponding probability is Pr = 1 -Pc - Pm· The genetic
algorithm may be formulated in the following way:

(Let P; be the population at generation i, and let n be the number of individuals in the
population)

Fill P(O) with n randomly created individuals;
i:=O;
do until (stop criterion is met)

od

do while (IP(i+l) l<n)
choose a genetic operator;
select the necessary number of parents from P(i);
apply the operator;
insert result in P(i+l);

od
i:=i+l;

Lots of variations are possible of course. For example instead of creating a whole new
population we could insert a single new individual and throw another one out. The algorithm as
presented above is the original one from [Ho1175].

Example : Suppose we have a population of 8 chromosarnes which are binary veetors of
length 5, and the scores is such that the binary vector x is the binary representation of the integer
s(x). There are nogenetic operators other than crossover, which is defined as follows. The
mechanism takes two chromosarnes and randomly chooses a crossover-point The tails of the
chromosarnes (the parts after the crossover-point) are exchanged between the two chromoSomes.
Two offspring are created in this way. This processis illustrated in figure 3.1. The successive steps
of the genetic algorithm are administrated in table 2.1. The first row represents the randomly
generated population of generation 1. The second row denotes the scores corresponding to the
individuals from the first row. The third row represents the individuals from the first row that

7

Table 2.1: An evolving population

generation 1 10011 01010 11 01110 00110 11 01011 10001 01101 00011
score 19 10 11 14 6 11 11 17 11 13 3 11

select 1-0011 1-0001 10-001 01-110 100-11 011-10 01-010 00-110
generation 2 10011 10001 10110 01001 10010 01111 01110 00010
score 19 17 22 9 18 15 14 2
select 1011-0 1001-1 1-0110 0-1111 100-01 100-11 1-0110 0-1110
generation 3 10111 10010 11111 00110 10011 10001 11110 00110
score 23 18 31 6 19 17 30 6

are selected for crossover. The crossover points are denoted by a "-". Note that some of the
(below average) individuals from the first generation are not selected, whereas others (above
average) are selected twice. Every pair of individuals between two double vertical lines are
parent pairs. The pairs directly below the parent pairs are their offspring, which are memhers of
the next generation. The optima} value (all one vector) is found in the third generation.

2.3 The schema-theorem and the building-block hypothesis

Why would a genetic algorithm work as a problem-solver? A disappointing amount of
explanation can be found in the literature on genetic algorithms. Fortunately, [Holl75] provided
an analysis of hls genetic algorithm, which is the subject of this section.

Examination of the genetic algorithm and the example outlined in the previous section reveals
some features of the underlying mechanism. Two chromosomes are selected from a population.
Because they are selected, we expect these chromosomes to have a high score compared to the
remaining chromosomes in the population. Although the selected individuals are no perfect
solutions to the problem at hand, there are some features that makes them better than the not­
selected individuals. When these features are combined, possibly an even better individual would
be created. The crossover mechanism blindly combines bits and pieces from both chromosomes
and most often the result has no better performance than its parents. Sometimes however, the
crossover mechanism will combine exactly those features from the two chromosomes that are
responsible for their above-average performance as a solution to the problem. This results in
a major step in the development of the population towards a good solution the problem. The
algorithm will proceed in this way when the features that are responsible for above-average
performance are guaranteed to spread among the population. Only then can we be sure that
sooner or latertwoof these features will be combined by the crossover mechanism toaneven
better feature. In the following, a good feature will be formalized as a schema. The schema-theorem
guarantees that good features will spread among the population. Furthermore, the suggestion
that this willlead the genetic algorithm toa good solution (under specified circumstances) is
stated in the building-block hypothesis.

Suppose x is a chromosome as defined in section 2.2.

Def 2.9 (schema) a schema is a vector of l symbols from the alphabet A u{*}.

8

A schema and a chromosome have a lot in comrnon. The only notational difference is that a
schema may contain the symbol *· When kis a schema, and k[i] =f:. *, then k[i] is called a gene, as
is the case with a drromosome. The conceptual difference is that a drromosome is a blueprint for
a phenotype, and a schema is a partial blueprint fora phenotype. The schema is said to be defined
on all i with k[i] =/: *· Because we assumed the symbols from the alphabet A to be numbers,
a drromosome and a schema have a straightforward geometrie interpretation: a drromosome
corresponds to a point in R1 and a schema corresponds to a hyperplain H k of dimension k, where
the schema is defined on k genes (it has order k). In the text we will identif)r a schemawithits
corresponding hyperplane H k.

Def 2.10 (containment) A chromosome x is said to contain the schema H k if x can be obtained from H k

by substituting for the *'s symbols from A.

The geometrical interpretation of containmentis that uHk. There's a score corresponding to
a schema Hk! s(Hk), which is simply the average score of all chromosarnes that contain Hk:

(2.1)

Let P; denote the population at generation i, and let E;[s] = r.h LreP; s(x),the average score
of the current population (generation i). Suppose we don't do any crossover or mutation on
our selected parents, but instead let the selection mechanism choose from the current population
P; the drromosomes for the next population P;+l· Since the schema-theorem explicitly assumes
proportionate selection, we expect that a chromosome containing H k produces on the average
·~:[:[chromosarnes for the next population. If the current population P; contains N(Hk> i)
drromosomes with schema H k! we expect this number for the next generation to be multiplied
by the mentioned fraction. So:

N(Hk, i+ 1) = N(Hb i) s(H[k])
E; s

(2 .2)

Suppose we perfarm bath mutation and crossover. If a drromosome from P; contains the
schema H k and produces an offspring, either the schema will survive in the offspring, or it will
be disrupted with a probability Pdi•. We now update equation 2.2 by multiplying the right-hand
side with 1 - Pdis, and are left with the problem of finding an expression for Pdi•· The schema
H k can be disrupted by either the mutation operator or the crossover-opera tor. The probability
that a gene is mutated is Pm· The probability that a selected drromosome matesis Pc· In order for
H k to survive under the mechanism of these operators, it is required that the chromosomeis not
mutated on these k genes, and there is no disroption as a consequence of crossover. Let Pd(Hk)
denote the probability that H k is disrupted as a result of the crossover operator. The value of
Pd(H k) depends on the specific crossover operator chosen for the job. The analysis for obtaining
an expression for Pd(H k) is called disruption-analysis. In the next chapter we will discuss several
crossover operators and execute a disruption-analysis on them.

For the probability of survival, 1 - Pdi•, we now derive

1- Pdi$ (1- Pm)k(1- PcPd(Hk))

~ (1- kpm)(1- PcPd(Hk))

= 1- kpm- PcPd(Hk) + kPmPcPd(Hk)

~ 1- kpm- PcPd(Hk)

9

(~.3)

Both approximations are aresult of the fa ct that Pm is chosen to be small. The schema theorem
is now obtained by knitting the probability of survival, formula 2.3 to the right-hand side of
equation 2.2:

(2.4)

No te that if a schema H k has above average score, and disroption effects are not too severe,
the number of chromosarnes containing schema Hk in population i+ 1, N(Hk, i+ 1), is a
factor> 1 larger than N(Hk, i+ 1). On a restricted time scope this implies an exponential (in
generation-number) increase in the amount of chromosarnes containing H k· Since this is true for
every schema ha ving above average score, we expect that sooner or later two individuals with
different above average schemas will combine. The consequence is stated in the building-block
hypo thesis:

Building Block Hypothesis : If a good solution can be constructed from small (low-order)
schemas having above-average score, then the genetic algorithm has a good chance of finding
this solution.

The 2: sign in equation 2.4 is aresult of the fact that it is also possible fora schema H k in Pi+1

to be created from other schemasin P;. An analysis on this effect is called recombination analysis.
Dependent on the problem, the terros resulting from a recombination analysis may have a small
or a much larger effect than the sole term in equation 2.4. When the probability of creation of
a schema is included in the equation, the 2: sign in 2.4 can be replaced by a = sign. However,
no analyses are known in the literature which effectively include all recombination-effects. This
renders Hollands analysis somewhat superficial, and apparently not much progress has been
made since then. The analyses in this section are however the basics of genetic algorithms,
and now that they have been explained, we can compare the genetic algorithm with another
optimization algorithm in a number of respects.

2.4 Convergence, exploration, and exploitation

The genetic algorithm has been introduced as a general-purpose problem solver. It has been
successfully applied to problems in VLSI-design [Chan91], [Mart91], and many other domains
of optimization. Whether or not these successes are predictabie is a matter of debate, since the
theory of GAs has not matured to the point that we are able to guarantee a certain degree of
performance, and maybe we never will. This seems to be the most important drawback of the
use of a genetic algorithm, and the lack of theory has major consequences to the way genetic
algorithms are used in practice. Little is known about the 'right' adjustment of parameters,

10

leading to rather arbitrary choices when implementing the algorithm. It is. no surprise that
this kind of programming at will, combined with the empirica} nature of the type of research
conducted, has led to the wildest condusions and speculations with regard to the mechanisms
involved in the evolution of a population of solutions. As a consequence, GAs and GA-research
are not taken seriously by many people. To illustrate the Jack of theory, we will compare the
genetic algorithm with simulated annealing. This partienlar choice of comparison is motivated
by the fact that simulated annealing has a lot in common with genetic algorithrns:

• They are both intendedas general-purpose problem sol vers.

• They are both heuristic.

• They are both inspired on principles from nature.

• They are both probabilistic.

One of the major differences between the two has to do with convergence. Although the concept
is usually only vaguely described, the following definition is sometimes used in GA-literature:

Def 2.11 (convergence) The phenomenon that for each gene 95% of the chromosomes in a population
have the same value, is called convergence.

Tightly linked to the concept of convergence is that of alocal optimum. We denote the set
of globally optima! solutions by Xopt· A solution is alocal optimum with regard toa subs.pace
R' of the solution space R when it has the highest score of all solutions in R'. The set of local
optima with regard toR' is denoted by OPT(R'). In the following we will also use the concept
'good' solution, meaning a solution having a score close enough to those of Xopt: solution y

is 'good' iff s(y) - s(x E Xopt) s; t. In most optimization-algorithrns it is very clear when a
local optimum is encountered: No improvement can be made in the current solution given the
available operators. (R' is the set of solutions attainable from the current solution by one of the
available operators.) When a local optimum is also a global optimum, we are pleased by the
result. However, what in practice is usually termed alocal optimum, is the annoying case that it
is nota global optimum. Alocal optimum is more difficult to define in conneetion with a genetic
algorithm. This is because a local optimum is always used to refer to a single solution, whereas
we also want to refer to a whole population of solutions. We therefore have to distinguish
between a local optimum-solution, which is defined as usual with regard to the score function,
and alocal optimum-population. We say that a population is in a local optimum when it is
'trapped' in a subs.pace R' of the solution space R not containing a 'good' solution. We say that
a population is trapped in subs.pace R' when a large part of its individuals are samples within
R' such that the operators cannot produce a solution outsideR' (when fed with parent solutions
from R'). A convention easily derived from this condition for a local optimum-population, is
that we speak of a local optimum when a large part of the population contains a schema not
present in any 'good' solution. This ho wever, is only valid when the operator(s) respect(s) the
notion of a schema. With this I mean that whatever the operator(s) tend(s) to pass on from the
parents totheir children, consistsof what we denote by schemas. No te that we didn't demand the
whole population to be in the subs.pace R'. The probability of this restricted event would be small
enough to leave out of consideration, yet the effect of ha ving a large portion in R' is comparable.
Some solutions have been proposed in literature for the problem of being trapped in a subspace:
stochastic one-parent operators such as mutation and inversion (see section 3.1). However these

11

operators only provide a solution in principle to the problem of having your entire population
in a subspace. I make this claim because a local optimum-population is not just local, it is also
full of locally optimal solutions. The probability that a random search-like operator yields above
average individuals (which is a necessity for survival) is quite small. So although mutation and
inversion can in principle provide the GA with an individual outsideR', it is unlikely that it will
survive to the point that it produces offspring itself. We conclude that a population can run into
a local optimum in pretty much the same sense as, for example, steepest descent can run into a
local optimum-solution.

In simulated annealing, the whole purpose is to achleve convergence towards a good solution
(which is alocal optimum). Convergence is directed according toa so called cooling-schedule,
which is slowand regular enough to prevent the algorithm from getting stuckat alocal optimum
thatis not good enough. The simulated annealing algorithm is stopped when the cooling schedule
has ended and no improvement can be made within the neighborhood of the current solution.
For a genetic algorithm however the best time to stop processing is unclear. Furthermore, the
concepts of convergence and local optima are quite controversial, fora number of reasons:

• There is no easy mechanism for the detection of a local optimum in a genetic algorithm.
Therefore it is difficult to use as a stop-criterion, and the algorithm will proceed.

• There is no easy mechanism to avoid a local optimum, and· when processing continues
despite the local optimum, the usage of time and resources is very inefficient, so we should
avoid convergence from the perspective of efficiency.

• When there is no convergence at all however, good solutions have no opportunity to
penetrate the population, and there is little chance that good solutions combinetobetter
ones. Thus, the total abundance of convergence leads to an impediment of the underlying
genetic mechanism, as suggested by the building block hypothesis.

The latter two points imply that a genetic algorithm without inefficient processing can only
work when there is a proper balance of convergence. This balance can also be viewed from the
perspective of the exploration-explaitation tradeoff.
An easy way to explain what this tradeoff is all about, is perhaps by way of the correlation
between two subsequent states of a running algorithm. In a genetic algorithm a state is clearly
formed by a population of a certain generation, and the 'amount' the next generation depends on
the current one indicates where the exploration-exploitation balance lies. In an iterative algorithm
one iteration is a step from one state to the other, and the correlation between statesis defined by
the step size. We say an algorithm is explorative when the correlation between two subsequent
statesis low. A random search algorithm is the extremum of exploration: there is no correlation
at all between two subsequent states. We say an algorithm is exploitative when the correlation
between two subsequent statesis high. The algorithm literally exploits the result of the previous
state to obtain the next one. A steepest descent approach is perhaps the (non-trivial) extremum
of an exploitative algorithm. lt is iterative in nature, and accepts a minor change in the current
solution (state) that gives the best improvement within all possible minor changes.

The basic working of the simulated annealing algorithm is easily explained in terrns of
exploration and exploitation. In the beginning of the algorithm, it is most explorative. According
to the cooling schedule (and its performance), the balanceis shifted in time towards exploitation.
What is leftin the end is a steepest descent algorithm, and it stops when no improvement can be
made by a minor change in the solution.

I

12

When we consider the genetic algorithm at the level of chromosomes, the concepts of
exploration and exploitation are more difficult to grasp than was the case with the simulated
annealing algorithm. The idea we have tried to give in the previous section was however that the
real interesting processing wasdoneon schemas (or building blocks) which is a very implicit sort
of processing. From the perspective of schemas, a dearer picture of exploration and exploitation
emerges. Exploitation is taken care of by the selection mechanism, allocating more resources
(chromosomes in the next population) to schemas (in the current population) with above average
score. Exploration on the other hand is provided by the crossover mechanism, assumingmutation
is too infrequent to play a role. In literature, disroption is used as a measure of exploration. This
tight conneetion is justified by the definition (above) of explorative: a low correlation between
subsequent states (chromosomes). It is clear that more disroption results in a lower correlation
between parentand offspring. We conclude that the amount of exploration is indicated by the
amount of disroption occurring during the crossover process. This implies that cantrolling the
amount of disroption is a way to control the balance of exploration and exploitation.

In summary: Genetic algorithms Iack theory for both systematic engineering and (average)
performance guarantees. 1t is difficult to avoid Iocal optima without impediment to the implicit
mechanism of schema synthesis. Empirica} evidence suggests however, that the idea of a genetic
algorithm is sound, and thus worth exploiting and analyzing.

2.5 Where to find more on genetic algorithms

For a short overview on genetic algorithms (GAs), the reader is referred to [Beas93a] and
[Beas93b]. In the pioneering work [Ho1175] the original schema theorem can be found. 1t also
provides lotsof thorough mathematica} analyses of several problems (mainly the k-armed bandit
problem), and examples from both nature and industry. A '92-edition is currently available,
updated with topics as classifier systems, and artificiallife. A widely used textbook on GAs
is [Gold89a]. Common to all general treatments on GAs, it discusses the schema theorem,
and the resulting Butilding-Block hypothesis. A number of examples are taken from [Gref85],
to illustrate his Simple GA. The first serious discussion on representation-issues is found in
this textbook. 1t is concluded that using the bitstring-representation, the greatest number of
schemasper bit is processed. This argument in favour of the the bitstring-representation became
known as the O(n3)-argument. Some mathematica} analysis on this argument is provided.
In a small appendix the basicsof Walsh-transforms are discussed. [Mich92] is a more up to
date textbook, containing thorough overviews and an extensive bibliography. lt provokes the
traditional representation of genotypes by giving empirica} evidence in favour of floating-point
representations. An entire chapter on the travelling salesman problem is included, acting as a
benchmark for even more exotic representations and all kinds of genetic operators. The reasons
for the numerous alternatives for traditional GAs are somewhat superficially elucidated. As the
title suggests, the book addresses implementational issues, thus aiming at the more practically
inclined. Mathematica} analysis however, is restricted to the part on the schema-theorem.
In [Davi91] an effort is made to systematically instruct the reader how to engineer a genetic
algorithm. An interesting paradigm within the framework of genetic algorithms is that of
genetic programming. It applies the ideas of GA to programs. [Koza92] is considered the major
representative of the genetic programming community. His book consists mainly of applications
of genetic LISP-programming.

Chapter3

Crossover operators for
bitstring-representations

In the preceding chapter the concept of genetic algorithms (GAs) has been introduced. The
building-block hypothesis was explained to contain the impHeit mechanism of genètic algorithms.
Central in this mechanism is the use of a crossover-mechanism, combining above average
individuals in order to obtain even better solutions. The crossover mechanism is the central
subject of this chapter. In chapter 2 a chromosome was very generally defined as a vector of
symbols over an alphabet. In practice however the alphabet is usually quite restricted. In this
chapter only one type of chromosome is treated: the bitstring.

In section 3.1 the basic mechanism that we already encountered in chapter 2, single point
crossover, will be reviewed. The schema-theorem will be refined for this operator by specifying
the disroption analysis. A possible cure for the major drawback of single-point crossover,
inversion, will be explained. In sections 3.2 and 3.3 an intuitive analysis will be given for
n-point crossover and parameterized uniform crossover resp. Section 3.5 is a discussion on
the tradeoff between exploration and exploitation, which lies at the very core of every general­
purpose problem solver. The last section treats, extends, and criticizes the state of the art in
disruption-analysis with regard to uniform crossover.

3.1 Single point crossover and inversion

x [] [] []

y [] [] []
g1 g2 g3 -----

Figure 3.1: Single-point crossover

13

11

I

14

In single point crossover a crossover-point is randomly chosen between 1 and l- 1, where
l is the length of the chromosomes. Each of the parent chromosarnes is split in two at this
crossover-point, and one of the parts is swapped with the corresponding part from the other
parent. Figure 3.1 illustrates single point crossover. In this figure, x and y are the parents,
and g1,g2, and g3 are genes that tagetherforma schema H3 of order 3. The crossover-point is
chosen between g1 and g2 with uniform probability, and the genes undemeath the dotted line
are swapped between parents, to produce the two offspring. As can be seen, the schema H3 is
disropted as a result of the choke of crossover-point. As the matter a fact, imy crossover point
chosen between g1 and g3 would disropt H3, and the probability of disroption, Pd, is just the
probability of the crossover-point being chosen between g1 and g3. Actually, Pd is just a bit
smaller, because the swapped genes from the second parent coincidentally may be the same as
the swapped genes from the schema from the first parent. We now see that this Pdgets higher
with increasing distance between the genes of the schema that are furthest apart. This distance
is called the defining-length, 8(Hk) of the schema Hk. lf the crossover-point is chosen uniforrnly
in the specified interval, the probability that it will fall within the defining length of H k is just
6~~: l, so Pd = 6 ~~ ~ l . In the pioneering work [Holl75] a schema-theorem using single point
crossover is devised. Equation 2.4 is a generalization of the original schema theorem with respect
to the crossover operator. Substitution of Pd = 6~~~) in the generalized formula yields Hollands
original formula:

(3.1)

The disroption analysis could be supplemented by including a recombination analysis and
an analysis of the case that the disrupted genes from a schema equal the replacing genes. This is
done in [Brid85]

Examination of the value of pd, the probability of disruption, reveals a disadvantage of
single-point crossover: schemas with a low defining length are favored to schemas with a high
defining length, despite the fact that they may have the same order. In the previous chapter,
we saw some of the i:mplications of the schema theorem summarized in the building-block (BB)
hypothesis. It is implied by the hypothesis that hlgh order schemas are created by combining
lower order schemas .. The i deal mechanism using this principle, may favour schemas of a certain
order, but does not distinguish between defining length. This is because schemas with the same
order, but deferring on defining length, essentially carry the same amount of information and
material, so one should not befavored detrimental to the other. It may even be the case that
the schemas with the highest defining length just happen to be the ones with the highest score.
The phenomenon, that schemas are favored according to the positions of their genes in the
chromosome, is called positional bias.

To overcome this disadvantage of single-point crossover, Holland devised a third genetic
operator called inversion. The mechanism of inversion requires a second representation for each
chromosome. The actual phenotype is constructed from representation 1, which is the traditional
bitstring. Represent.ation 2 consistsof two strings, the first of which is a gene-string, and the
second a label-string. The first representation is obtained from the second by mapping each gene
from the gene-string according to its corresponding label from the label-string, on a new string.
This is illustrated in figure 3.2.

15

a)

b)

Figure 3.2: a) representation 1, b) representation 2

x
r-----1 [] :EJ :EJ
I

D :Dl D y

-~1 ___ j g2 l__ g3 __

Figure 3.3: 2-point crossover

Now, mutation and crossover are performed only on the gene-string of representation 2, and
this has the sameeffect on the phenotype as with the traditional representation, so there' snothing
new here. However, inversion is performed on both strings from representation 2. lt randornly
chooses two points on the string and the part between these points is tumed 180 degrees. Because
the same operation is performed on both strings, the effect on the first representation is exactly
nil! Inversion does not effect the phenotype. The catch is that inversion changes the way that
genes are grouped in representation 2. Two genes, each on one extreme of the chromosome,
may end up being neighbors! So, inversion severely affects the defining lengthof most schemas.
Schemas of equal order now have equal probability on getting a favorable defining length for
the next number of generations. Inversion is ho wever, a long way from a GA without positional
bias, and this bias is a major concern in the GA-community. In the next section, we will see the
disruptive effect of positional bias when more than one crossover-point crossover is used.

3.2 n-point crossover

In the same year Hollands pioneering work was published, De Jong finished hls dodoral
thesis [DeJo75] on some variants of the traditional GA. These variants were GAs using n-point
crossover. As the name suggests, n crossover points are chosen randornly instead of one. Figure
3.3 illustrates this idea for n=2.

Again, the genes undemeath the dotted line are swapped between parents to produce the
two offspring. It is clear that the disruptive properties of this operator are very different from

16

single-point crossover .. For instance, despite the presence of crossover points between gl and g3
in figure 3.3, these genes are not separated by the operator. It is no longer true that a very high
defining length guarantees disroption of the schema. As can easily be seen, any two genes in the
chromosome will stay together in the offspring whenever there is an even number of crossover
points between them. 'This idea was the basis for the disroption analysis in [DeJo75].

In [DeJo92] this dismption analysis is extended to schemas withorder higher than 2. The paper
also indudes an analysis of uniform crossover which will be treated insection 3.6. The condusion
from [DeJo92], with regard ton-point crossover, is summarized as follows. As far as rninirnizing
disroption, 2-point crossover gives the highest performance. With increasing order of the schema
in question however, the difference in character between several n-point crossovers with regard
to defining length, quickly fades. This helps explain the results of [Eshe89], in which the same
condusion was drawn from experiments from a perspective of positional and distributional bias.
It should be noted that until a bout 1992, most people thought that rninirnization of the disroption
was the way to an optima} genetic algorithm. In this context, it is not surprising that 2-point
crossover was thought to perform relatively well. It still suffered frorn positional bias, tough.

In the next section, a crossover-operator is introduced that has no positional bias. It also
shocked the GA-community in their belief that rninirnizing disroption should be a goal when
designing a genetic algorithm.

3.3 parameterized uniform crossover

In [Sysw89] a new type of crossover operator, uniform crossover, has been introduced which
provoked the traditional genetic operators with good experimental results. This operator made
the drawback of n-point crossover especially dear, because uniform crossover doesnotsuffer
from a positional bias. The idea was to just randomly piek some genes from the first parent
with a probability Po and from the second parent with a probability 1 - Po· In the sequel of
this report the parameter PO will be called r, and is referred to as the disroption parameter for
reasons that will become dear later. The random choices made by this crossover scheme can be
adrninistrated using a mask h. Each of the bits in this 'mask' h, has a probability r of pointing
at x. The first offspring is produced by taking the genes from the first parent according to the x
inh. The remaining genes are taken from the second parent. This processis repeated with the
complemented mask he to produce the second offspring. The process is illustrated in 3.4. In this
figure, ol and o2 are the first and second offspring resp.

That uniform crossover has several advantages over n-point crossover even convineed the
main researchers in n-point crossover [Spea91]. Important virtues of uniform crossover are:

• There is no positional bias, so the disroption does not depend on the defining length of a
schema, which :reduces the representation-effects to nil.

• The disroptive potentialis easily controlled by one parameter.

• This parameter can have a continuous value, so the crossover mechanism can be controlled
to the highest level of refinement. This stands in sharp contrast to the discrete values of the
number of points in n-point crossover.

17

x

h

y

Figure 3.4: uniform crossover

One aspect of uniform crossover however, is a souree of arnbivalence in its interpretation. The
operator is much more disruptive than n-point crossover, which is either a virtue, or a drawback.
This disruptive potential \\rill be dear after the analysis in the next section.

3.4 Introduetion to disroption-analyses

This section serves two purposes. In the first place, it is intended as a practice for the reader
to get a feeling of how disroption-analyses are performed. The result will be rather trivial, but
strong enough for the second purpose, a demonstration of the disruptive potential of uniform
crossover.
Suppose we have have a building-block H k with an average score that is a times the average
score of the population, E[s;], so s(Hk) = aE[s;]. Furthermore we have a population P; with
cardinality n, containing one representative instanee x of Hk! with s(x) = s(Hk)· We want to
express the number of chromosomes containing schema Hk in population i+ 1, N(Hk> i+ 1), in
termsof N(Hk,i).
Assuming proportionate selection, the probability that x is chosen formatingis 2: •(x)•(x') =

:t 1EPi

~~~::~ = ; , and the expected number of times x is selected formatingis n; = a, which is by the 
way independent of the population size. To calculate the number of chromosomes containing H k 

in thenextgeneration, weuseformula 2.4 and multiply a with (1-pd(Hk)),assumingpm = Oand 
Pc = 1. For simplicity, we ignore the fact that H k may be formed by recombination, and demand 
that H k survives by complete replication. This implies that in the mask hall bits corresponding 
to H k have to be set, so the number of set bits in h has to beat least as large as the order of H k· 

So assuming i ~ k bits will be set in the mask h, what is the probability that H k is left completely 
intact by the mask? There are G) ways to choose i bits from l. When k of these bits must be set 
for survival of H k, l - k bits remain, i - k of which have to be set to complete the i set bits. This 
can be done in G=:~) ways. If we let Pi denote the probability that i bits will be set in the mask h, 
the probability of survival is 

(3.2) 

There are several possibilities for choosing Pi· With an adaptive GA it is preferred that p; 
can be changed along the way, so there's more anticipation on the order of the building blocks 



jr 

18 

in process. However, it is not easy to design a scheme starting with this parameter. We stick 
to the scheme of uniform crossover shown in this section, and note that the stochast i is a 
Bemoulli-process repeated 1 times. This results in a binomial distribution: p; = G)ri(l- r) 1

-i. 

Substitution in 3.2 yields: 

~ c ~ k)ri+k(l- r)l-i-k 

•=0 

rk ~ c ~ k)ri(1- r)l-k-i 

rk(r + (1- r)) 1-k 

rk (3.3) 

As I already mentioned, the result is rather trivial: in order for H k to survive, k bits have to be 
set in the mask at the corresponding loci. The probability of this happening is just rlc. The above 
denvation was actuaniy my first own analysis on this subject. Imagine my surprise when I saw 
the result. There is another reason why a recombination analysis is omitted: it is almost exactly 
the same as the disroption analysis itself. lnstead of a building block from one parent, a building 
block distributed ove1r two parents has to survive. As aresult of the deletion of the recombination 
analysis and a toleranee towards imprecisions, the resulting schema-inequality 3.4 is extremely 
comprehensive. 

. s(H~c) 
N(H~c , z) E[s;] (1- Pmk- PcPa(H~c)) 

N(H~c, i)arlc (3.4) 

lt is immediately dear how disroptive uniform crossover is: the probability of survival of 
schema H k decreases exponentially with the order k. This means that in order to survive, a has to 
increase exponentially in k. Remember that a = 1;[. ~ll, so the score of the buildingblockof order k 
has to be exponentially (in k) higher than the average of the population! When consirlering single­
point crossover, the probability of disroption is only reversed proportionate with the defining 
length, so uniform crossover is much more disroptive than single-point crossover, especially for 
large schemas. The contrast with 2-point crossover is even stronger, because 2-point crossover 
is less disroptive than single-point crossover. Furthermore, the recombination analysis leads to 
a similar expression as 3.4, so the recombination or exploratian potential of uniform crossover 
has the same contrast to n-point crossover. As mentioned in section 2.4, there is a very tight 
conneetion between disroption and both exploitation and exploration, and the balance between 
the latter two is drastically different in uniform crossover compared to any n-point crossover. 



19 

3.5 Controlling the exploration-exploitation tradeoff 

Because uniform crossover disrupts more schemas than n-point crossover, it exploits less 
information on building blocks. Because it opens the way to even better schemas, it explores 
more of the search space. Which is better, exploration or exploitation? Where lies the ideal 
balance between these two? 

These have been questions raised from the moment GAs were bom, and nobody has ever 
been able to shed light on the issue. Furthermore, reported empirica} results are contradictory. 
[Sysw89] concluded from his experiments that exploration was more desirable, arguing in favour 
of his uniform crossover. Others concluded otherwise. Adaptive strategies like [Spea92] let the 
GA (in this case: each chromosome) decide for itself which of two crossover operators should 
be used on them. The conclusion from this paper was that the preferenee for uniform crossover 
faded during search. This conclusion stands in contrast to the general consensus that more 
exploration is desired towards the end of a run, when the population converges and becomes 
more homogeneous. This consensus on its turn stands in contrast to more traditional methods 
such as simulated annealing, were large stochastic variations are allowed earlyin the search 
process, whereas no stochastic variations are allowed near the end of search. The contrast can 
be explained by the stop-criterion: traditional iterative methods stop when 'there is no direct 
impravement possible from the current state', and need zero stochastic variations in order to 
settle. GAs on the other hand are supplied with a stop criterion such as a restrietion on the 
number of generations. Any processing on a converged homogeneaus population is a waste of 
resources, and should be avoided using large stochastic variations. 

Some results have been reported concerning the optima} disroption when coding scheme and 
population size are varied. The dependenee of disroption on representation and the specific 
problem is made clear in [Huli91]. In this paper a method is. given to calculate a suitability-value 
of a coding scheme fora certain problem. Population size is considered in [DeJo90]. Here, 
empirica} evidence shows a preferenee for uniform crossover when using a small population 
size, and a preferenee for 2-point crossover when using a large population size. The authors 
explain this result by arguing that large stochastic varlation is needed to deal with the stochastic 
imprecisions when a small population size is involved. The 'stochastic imprecisions' arise when 
the GA has to estimate the average score of a schema on the basis of just a few individuals 
carrying the schema. 

In section 4.3 I will demonstrate a new result (formula 4.4) showing that impravement in 
average score over subsequent generations, is linearly proportional to the varlation in score. 
However, a high varlation in score does not necessarily imply a need for large stochastic 
variations in search: when interactions of high order are involved in a problem, schemas of high 
order are involved in the solution, and these can only be obtained and maintained in a population 
when disroption is not to severe on high order schemas. Under these circumstances, the highest 
scores (and thus the highest varlation in score) can only be reached when the stochastic varlation 
in search is not too large! This conclusion seems to contrast equation 4.4 at first sight. They are 
consistent ho wever, when we assume that the desired disroption actually changes during search. 
The proper balance between exploration and exploitation depends on the order of schemas 
involved. This in turn, depends on the particular type of problem, and the progress made by 
the evolutionary process so far. The idea of a dynamica/ rather than constant level of disroption 
is supported in [DeJo92]. In this paper it is repeatedly argued that there is a "need for different 
levels of disroption at different points in the evolutionary process", suggesting the use of an 



20 

adaptive crossover mechanism to even further balance exploration and exploitation. 

At this point, the advantage of uniform crossover of being able to vary disroption by use 
of a single parameter, is made particularly clear. However, in order to use this advantage we 
should have a pretty @~ood understanding of the relation between disroption and the parameter 
cantrolling the uniform crossover mechanism. In other words, we need an exact disroption­
analysis. 

3.6 An extensilve disruption-analysis 

The most extensive disroption analysis on uniform crossover so far, can be found in [DeJo92]. 
It discems from previous analyses by taking overlap into account. Overlap is the phenomenon 
that parents have one or more genes in common. The probability that two genes (at location d) 
share their value is indicated by a parameter Peq(d). As mentioned insection 3.2, the population 
becomes more homogeneaus and converges when Peq rises, so that Peq can be used to reflect 
the amount of convergence of the population. In summary, the idea in [De}o92] is as follows. 
Suppose a subset I C K U< is a schema) is chosen for crossover. The probability of this occurrence 
is Pc(J) = r1 11(1 - r)IK/II. Let p. ,1(I<), p. ,2(I<), and p.(I<) denote the probability that the first, 
second, or any child oontains I<. The probability that the first child contains I< is the probability 
that the not-chosen bits I< I I correspond in both parents, so 

P•,l(I<) = II Peq(d) 
dEK/I 

The second child is constructed using the complemented mask, so the schema-genes from the 
first parent are now I< I I. The probability that the second child contains Kis the probability that 
the not-chosen bits I correspond in both parents, so 

P•,2(K) = II Peq(d) 
dEl 

The probability of survival is obtained by adding these terms. One case however, is covered 
by both terms: both offspring contain K. The probability of this occurrence is subtracted from 
p. (I<) in [De}o92], because it is counted twice otherwise. When we are interested in the expected 
number of survivors, this case should be counted twice, and the subtraction can be omitted. So 
the probability that a schema I< survives is 

jp.(I<) = L r1 11(I- r)IK/II{ITPeq(d) + II Peq(d)} (3.5) 
lEK dEI dEK/I 

To simplify, we assume that Peq(d) is the same for all d, so let Peq(d) = Peq for all d. We now write 
i and k for IJl and IK I, and note that the probability of survival, p.(I<), depends only on k, the 
cardinality of I<. Because there are m subsets IE I< equation 3.5 can be rewritten as 

(3.6) 



21 

This is as far as 3.6 goes, and the equation is still not very transparent Furthermore, when we 
want to dynamically determine the optima! level of disroption at every point of the evolutionary 
process (as suggested insection 3.5), we should at least be able to evaluate expression 3.6 very 
quickly. We cannot do that when we have to evaluate a summation. The authors did not 
notlee however, that 3.6 can be turned into a form, which is very easy to comprehend. An easy 
manipulation from my part did the job: 

k 

p,(k) ~ (~) ri(1 - r)k-i{P~q + P!;i} 
s:::::O 

k k 

{; e)(Peqr)i(1- r)k-i + {; G)ri(Peq(1- r))k-i 

(Peqr + (1- r))k + (r + Peq(1 - r))k 

(1- r(1 - Peq))k + (Peq + r(1- Peq))k (3.7) 

This expression is easy enough to evaluate, so that an adaptive GA could easily determine a 
(close to) optima! value for runder stated restrictions. These restrictions include among other 
things, being able to estimate the schema-order k that is to be stimulated at the current point of 
the search process. A cri ticallook ho wever, reveals that 3.6 may not be a very valuable tooi. Like 
every other disruption-analysis within the framework of the original schema theorem 2.4, it is 
merely a survival-probability. It was already remarked in chapter 2 that this may be insufHeient 
for a large number of problems. Furthermore, there are some probieros with the interpretation 
of the parameter Peq as wellas it's effective use in the schema equation. Peq reflects the amount 
of convergence of the population. To what? 1t could be to K, but it is stated more generaL So, 
suppose the population is not converging to I<, then the interpretation of Peq is the same, but 
it's potentlal use is different. The genes in I< that differ from the value that the population is 
converging to, have no Jonger a probability Peq of being equal in different chromosomes, but 
a probability of 1 - Peq! But in the analysis it is taken to be Peq, so the calculated probability 
of survival is totally wrong, if the schema ]{ is a lot different from the one the population is 
converging to. 1t would have been correct if Peq reflected the convergence to I<, but if this were 
the case than there would be two measurements of the same thing in one equation. This is 
because in the schema-equation 2.4 the number of chromosarnes carrying I<, N ( H k, i), is also a 
reflection of the amount of convergence to ]{. Another point is that the reader may get the idea 
that Peq is the fraction of the population that carries the gene-value the population is converging 
to, which is either PI or PO· Since Peq is defined independent from the gene value, it is an average 
value: 

Peq LP(Y = ilx = i)p(x =i) 

PIP!+ POPO 

PI+ (1- Pd 
= PÖ + (1- PO? 

So Peq is not the same as the fraction PI or PO· The critica! reader of [DeJo92] may have notleed 
this and treat Peq correctly in this respect, so it is not incorrect but only deceiving. The last 



22 

objection is, like the first one, an objection to all disroption-analyses within the frameworkof the 
original schema theorem: it assumes that the second parent is selected randomly, whereas all 
parents are selected with a probability proportionate to their score. 

The condusion from these objections is that the disruption-analysis in [DeJo92] is urneliabie 
in most cases. Since t:his is the most extensive analysis up to this writing, it seems we have to 
devise our own analysis if we want to make reliable engineering decisions for the design of a 
genetic algorithm, based on such an analysis. The following two chapters are largely devoted to 
serve that purpose. 



Chapter4 

GA-statistics 

In the preceding chapters we made a clear choke for parameterized uniform crossover as our 
main genetic operator. It was shown that this operator, unlike n-point crossover, does not 
favour schemas which are grouped in a certain way within the genotype, so it has no positional 
bias. This has the advantage that schemas of a spedfied order are treated indifferently by 
the crossover-mechanism. Furthermore, the level of disroption can easily be adjusted with the 
bit-mask probability r, according to our wishes regarding the bias on schema-order. In this 
chapter we will calculate the dependenee on r of some statistica! values of the score within the 
population, and we will use this information to see whether there is an optima! value for r 
matched to the statistics of the current population in order to obtain maximum efficiency of the 
GA. 

An overview of earlier workon adaptive GAs is given in section 4.1. In section 4.2 we will 
express the score-statistics from population Pi+1 in terms of the score-statistics of an offspring 
given its parents x and y from population P;. It is also shown that this expressim1 remains the 
same under the assumption that the crossover-operator will produce 2 offspring (the second with 
a complemented mask) instead of one. In section 4.3 an expression is derived for the expected 
score in the (i + 1 )-th generation in terms of the expected score and its varianee of the i-th 
generation, using a non-standard but reasonable assumption. The implications of this expression 
and its assumption will be discussed. In section 4.4 a simple linear problem will be analyzed 
using the expressions derived in previous sections. 

4.1 Adaptive GAs 

To enhance a GAs potential to find good solutions, GAs have been proposed which adapt some 
aspect of the GA-mechanism to either the search process or search space. This section gives 
an overview of the ideas found in the literature concerning adaptation in a GA. We will take a 
critical look at these approaches when they could serve our purpose, and we will leam from it 
how not to design an adaptive GA. The types of adaption encountered in the literature cover 
most aspects mentioned in the preceding chapter to have some influence on GA-performance. 
Since we are interested in an adaptive crossover operator, this section will treat a few influential 
ideas found in the literature covering crossover aspects. The larger part of the literature on 

23 



24 

genetic algorithms concentrates on either the schema-theorem or the optima} parameter settings 
for operator probabilities. It is no surprise then, that the aspectsof GAs most researchers found 
suiteel for adaptation, are the operator probabilities. In a so-called off line-approach to adaptive 
GAs, [Gref86) trieel to find the optimal operator probabilities as a global result. He codeel the 
parameter-settings in a bitstTing, and let a meta-GA optimize the parameters! A chromosome 
consisteel of codeel parameter-values, and the score of a certain parameter setting was simply 
the performance of a GA using these settings. We are however more interesteel in the online 
approach, were a GA during its own search is adapteel to the current state in the search-process. 
Online approaches to adapting the operator-probabilities repeatedly turn up in the literature, 
most of them global ii.n the sense that a parameter setting useel at some point in the search 
process, is applied to all memhers in the population. The first report on applying the online 
approach (globally) to a GA with adaptive operator-probabilities, was [Davi87). He useel a 
set of 5 crossover operators with different characteristics. The probabilities of applying these 
operators were altered by a credit-assignment mechanism much like Hollands' bucket-brigade 
algorithm [Holl85). In the approach of [Davi87), operators were given credit according to the 
performance of the offspring resulting from the use of this operator. [Davi87) took cleverly into 
account the interactive performance of all operators. This interaction arises when an offspring 
produceel by operator a, itself does not perform well, but potentially produces high-performance 
offspring when processed by operator b. The credit-assignment mechanism not only increased 
the probability of an operator producing high-performance individual x, but also of the operator 
responsible for x's parents. In the previous chapter we have already lookeel at different operators 
and choose one single crossover-operator, which is flexible enough to provide us with a wide 
choice of tradeoffs between exploration and exploitation. It is of course possible to apply the 
approach in [Davi87] by regarding the crossover mechanism using different parameter settings 
as different crossover mechanisms. This approach is useful when there is very little knowledge 
of how to adapt the parameter setting to the stTucture of the problem and of the suitability of the 
different operators to this structure and the representation of solutions. However, it is our hope 
to deeluce some of this knowledge in this thesis, and it would he efficient to use this knowledge 
in the adaptive mechanism. 

Other ideas apply the adaptation to the crossover mechanism itself. In [Scha87), both 
the number and loci of crossover points is adapted. This is done locally for each individual 
chromosome by tagging each gene. The tag specifies whether or not the space to the right 
of the corresponding gene is a crossover point. When the n-point crossover is performed, 
the tags stay with their genes. An interesting consequence of this method is the possibility 
to observe as the search progresses, the GAs preferenee in the exploration versus exploitation 
tradeoff. The statistics, administTateel during search, indicated an increasing total number of 
crossover points in the population. This implies that the GA prefers more disroption as the 
search progresses. In section 2.4 the tight conneetion between disroption and exploration was 
established, which implies a shift towards more exploration during the search processof the GA. 
This is in accordance with general consensus. 

The last interesting idea we treat here, is the one found in [Spea9?l. As in [Scha87), the 
adaptation is done locally for each individual chromosome. The difference is that Spears actually 
knits an extra bit at the end of each chromosome. indicating the type of crossover that is to he 
performed on this particular individual. He Iets his chromosarnes choose between two crossover 
operators: 2-point, and uniform, corresponding toa 0 and a 1 resp. When 2 individuals selected 
for mating did nothave corresponding values of the last bit, a crossover operator was chosen 
with a 50% chance. At this point I already need to make a critica} remark: Because the 2-point 
crossover has a positional bias, a reset last bit (corresponding to 2-point crossover) will always 



25 

be grouped with the last couple of bits in the chromosome, which may have its effect on the 
performance. 
With the method in [Spea92] it was also possible to observe the GAs preferenee as the search 
progresses. The statistics showed that the 50%-50% distribution at the beginning of the search 
gradually transformed into a 80%-20% distribution at the end of the search in favor of 2-point 
crossover. This may suggest that 2-point crossover is generally better than uniform crossover. 
It also contrasts the general consensus that more exploration is desired towards the end of a 
run, when the population converges and becomes more homogeneous. No explanation for 
this surprising result was given in the paper, but it is obvious that Spears simply overlooked 
the interaction between the crossover operators, which was carefully dealt with in [Davi87] 
mentioned above. The interaction playing a role in this process is as follows. Uniform crossover, 
withits exploitative character, produces offspring with a large variety of scores. 2-point crossover 
on the other hand, conservatively produces offspring which do not radically differ in score. When 
selection takes place on the resulting population, say two third of the individuals produced with 
uniform crossover will not be selected, because they have the worst score of the whole population. 
The consequence is that the individuals carrying the 0-bit (2-point crossover) will dominate the 
next population. This is an indirect result of the different strategies of 2-point and uniform 
crossover, and a direct result of letting each chromosarnes choose for itself. We now see that the 
choice of local adaptation in this case traps the uniform crossover operator. This being a wise 
lesson, we choose to take a global approach on our adaptive GA. The adaptation is with respect 
to the bit-mask probability r, and each r will be fixed for one generation. That doesn't mean that 
crossover will be identical for each mating: ris a stochastic parameter, so uniform crossover will 
probably be different each time it is used. The point is that using this method, the crossover-bias 
in [Spea92] is completely eliminated, for the individual chromosarnes have no vote in designing 
the mask used for crossover. The value of r will be set dependent on the statistles of the score 
on the current population. How this dependenee can be maximally exploited is the topic of this 
chapter. 

4.2 Moments of score 

How does the performance of a genetic algorithm depend on the bit-mask probability r ? And 
when this probability is changed each generation? In order to shed some light on this issue, 
we need to relax the question to one that may be within our capacity to analyze: How does r 
influence the relation between the population of the i-the generation, P;, and Pi+I ? because 
the first two (more difficult) questions involve performance, we will be mainly interested in the 
relation between P; and Pi+1 restricted to the scores withinthese populations. Thus we have 
to find a way to characterize the scores in a population. One way is by calculating the average 
score in the population. A better characterization can be found when we also consider varlation ~ 
of the scores in the population. These values are calculated using resp the first and second 
order moments of the scores in the population. The m-th order moment of a discrete stochast 
x is defined as E[xm] = :Z::::: xmp(x ). It is the expected value (over a distribution p) of the m-th 
power of x. The reader may have noticed that there is no probability-distribution specified when 
we consider an existing population of individuals. Instead of a probability p( s) of ha ving an 
individual with scores we will consider the fraction f( s) of individuals in the population ha ving 
score s. This is obvious, since we do not wish to characterize a probability distribution, but the 
scores of individuals in a population. However, if the i+ 1-th population does not yet exist, we 
can only estimate its score-distribution. The best possible estimate on this dis tribution is the plain 



26 

old probability distribution of the score, given that all individuals in Pi+t are made from individuals 
in Pi! So from this point on we assume that Pi is an existent population characterized by score­
momentson fractions, and that Pi+1 is a non-existentpopulationcharacterized by score-moments 
on probabilities that are conditional on Pi insome way. From probability theory we know that 
ha ving the values of an increasing number of momentsof a probability distribution, we have an 
increasingly better characterization of this distribution. So the idea rises that we characterize the 
scores in populations Pi and Pi+1 by as many score-momentsas possible, and then try to relate 
the Pi+1-moments to the Pi-moments by way of the bit-mask probability r. This will be the goal 
for this and following sections. 

The initial assumptions are that exactly two parents are selected for producing one offspring, 
and that our population is large enough so that the score distribution of Pi+t can be reliably 
estimated by the conditional probability distribution of the score. There are no assumptions 
on the type of crossover or the selection scheme. We start with an expression for the m-th 
score-moment of Pi+1: 

(4.1) 

where E;+1 and Pi+l denote the expectation and probability when observing the i+ 1-th 
population, P;+t· As I said, Pi+t is a probability distribution, conditional on Pi insome way: 

Pi+l (s) = 2:: p(x, y)p(s(cros(x, y)) = six, y) (4 .2) 
x,yEP1 

In this equation p(x, y) is the probability that x and y will be chosen from the population Pi to 
mate. p(s(cros(x, y)) =si x, y) is the probability that x and y will produce an offspring with score 
s.ln appendix A.1.1 the following equation is derived from 4.1 and 4.2: 

Ei+t[sm] = 2:: p(x, y)E[sm(cros(x, y))lx, y] (4.3) 
r,yeP; 

Here E[sm(cros(x , y))ix, y] is the m-th moment of the scores of the offspring given the parents 
x and y from the i-th generation, using the probabilities p(cros(x, y) = x'lx, y). Given two 
individuals x and y, .how cros( x, y) can be made from individuals x and y depends only on 
the crossover-positions selected by the crossover-operator. Since these positions are selected at 
random (either uniform or by somen-points crossover) p(cros(x, y)ix, y) describes a probability 
distribution on the crossover sites. So using very general assumptions on the GA, we have 
reduced the problem of finding the m-th moment of the score in a population to the problem of 
calculating the statistics of the crossover sites. The reduction in complexity becomes apparent 
when realizing the enormous difference between the number of possible populations (exponential 
in both the population size IPI and the string length l) and the number of possible crossover sites 
(at most exponential in 1). It states at most exponential in 1, because using n-points crossover the 
complexity is only 0( 1n ). 

What if the crossover mechanism makes two children instead of one? This case is examined 
in sectiqn A.1.2. We conclude that it makes no difference for the score-moments to produce 



27 

one or two offspring from two selected parents. In the past, variations on standard GAs have 
been tried, which produce only one offspring. The idea was that more stochastic varlation was 
obtained from selecting more parents. Indeed, to produce the same of individuals in coming 
generations, twice the number of selections have to be made. We now can conclude that this has 
no effect on any moment of the score (and thus has no use), provided that the population is large 
enough. If the varlation has had any effect in the past, then it should be due to the vialation of 
this assumption. 

4.3 The expected score 

In the previous section we have reduced the problem of finding the m-th moment of the score 
in a population to the problem of calculating the statistles of the crossover sites. In this section 
we collect the fruits of that work by relating the first order statistles (the expected score) of 
two subsequent populations. This provides us with the knowledge of entities that influence the 
progress of the genetic algorithm. We will make a somewhat unusual assumption, which none 
the lessis a reasanabie description of the GAs mechanism in practice. We will assume that for 
all chosen parents, the sum of their scores equals the sum of the scores of the resulting offspring. 
Stated this way, the assumption places a heavy burden on the credibility of the analysis, but 
it only has to be valid on the average of all chosen parents. For all practical purposes, this is 
quite a useful approximation. The argument is that when combining genotypes, we take some 
of the material from both individuals for one offspring, and leave the rest of the material for the 
other. If we took the good material from one or both parents for the first offspring, we take the 
garbage for the second. This is not true in general, because of the numerous possible interactions 
among genes. Sametimes we will create two very good offspring, and sametimes we will create 
only garbage. The point is that they will approximately average out when taken over all chosen 
parents and the population is large enough, so the assumption yields a credible approximation 
on the average. The assumption may suggest that there will be no impravement in subsequent 
generations, because the total score remains the same. Of course the total score does not remain 
the same, because we only select the best individuals for producing the new population. 
The second extra assumption concerns the selection scheme. We assume the most widely used 
scheme of proportionate selection. This means that an individual will be chosen for mating with 
a probability proportional to its score. In appendix A.1.3 the following result is derived: 

var;[s] 
Ei+1[s] = E;[s] + E;[s] (4.4) 

Equation 4.4 is interpreted as follows. The progress (in average score) a genetic algorithm 
makes each generation, is proportional to the varianee in the population (and inversely propor­
tional to the average score). To my knowledge, this is actually the first time arelation is formally 
established between progress (Ei+1 [s]- E;[s]) and variance. Let's see how equation 4.4 prediets 
the course of the expected score during search. The equation prediets that the increase ( v;~dî l) 
in expected score will decline, exactly because of the increase in expected score. If you would 
draw the expected score as a function of generation, it would be a curve flatlening (converging) 
with increasing generations. The flatlening is increased because the converging population 
will become more homogeneous, which reduces variance, which by 4.4 reduces the increase in 
expected score, but even without the lossof varianee the curve will flatlen. The described curve 
is characteristic for the actual functions, obtained in all experiments with GAs. GA-researchers 



I 
11 

28 

have always argued that attention should be paid to maintaining varianee in the population, 
espedally towards the end of search, because convergence implies homogeneity of population. 
Now we see that there is even more reason to emphasize variance, because by 4.4 the increase in 
score is proportional to variance. 

The result is remarkable in its generality, for the expression is independent of the crossover­
operator used, and thus also of any parameter fixing the crossover mechanism! The main 
assumption was on the selection scheme, and indeed, equation 4.4 is entirely due to this choice. 
This can be seen as follows: suppose we choose as our crossover bit mask h the all-one vector. 
Since no assumption is made on the crossover mechanism, this choice is allowed. The all-one 
vector doesn't do any combining, it merely assigns the first parent to the first offspring, and the 
second parent to the second offspring. So population Pi+1 consistsof all chosen parents from P;. 
Because selection was done proportionally to score, it is expected that the average score increases 
although no actual impravement has taken place. This is confirmed by 4.4, which states that the 
expected score can only increase in following generations (unless negative scores are allowed). 
So equation 4.4 is entirely due to the selection scheme. 
But if the crossover scheme has no direct influence on the expected score of the next generation, 
why should we even bother designing a complex crossover operator? The answer is that the 
higher statistica! moments (in particular the variance) of the next generations score are dependent 
on the crossover mecharusm, and by 4.4 this has its effect on the expected score of P;+2· Soit seems 
that we should design our crossover operator by maxirnizing the varianee of the next genera ti ons 
score, instead of the expected score, which is more intuitive. Note that the idea of maxirnizing 
the varianee pleads for the use of a disruptive operator such as uniform crossover. Now that we 
mention disruption, equation 4.4 pretty much reflects the ideas presented insection 2.4 on the 
exploration-exploitation tradeoff: When we want to exploit high-performance individuals, we 
should be very selective with the choice of partners for mating. Indeed, in the discussion above 
we concluded that the increase in average score (as reflected in equation 4.4) is entirely due to 
selection process. But being selective on parents tends to dirninish the next populations variance, 
which (again by 4.4) has a bad long-term effect on the populations average score. We conclude 
that selection pressure (exploitation) should be balanced with disruptive crossover(exploration) 
to neutralize the effect on variance. Thus, in equation 4.4 we find support for our plea for a 
disruptive crossover mechanism such as uniform crossover. 

4.4 The linear all one problem 

In this section we will continue our effort to optirnize the score-statistics of a population. In 
section 4.3 we found support for the dedsions to use uniform crossover to optirnize variation 
(and higher order statistics). Because the calculation of these statistics in general are far too 
complex, we apply the ideas to a simple problem. We know from experience that the result 
of applying a method to a simple instanee can already lead to major conclusions on how to 
apply the method in genera!. This section is devoted to the analysis of such a simple problem: 
the linear all one problem. In this problem, the score of an individual is just the number of 
ones in its chromosome. The problem has frequently been used by GA-researchers because of 
its simplidty. Just like in this section, the idea was that a GA must perform well on a simple 
problem before it can be considered for use on a difficult problem. For the reader interested in 
benchmark-problems: more recently, functions are devised according toone's wishes [Gold90] 
using W alsh-functions. 



29 

In section 4.2 we reduced the analysis of statistics to the análysis of the conditional moments 
E[sm lx, y], the m-th moment of the score s of the offspring given a probability distribution 
p(cros(x, y) = x'lx, y) on the possible offspring x'. That is, weneed to know what offspring 
with what probability can be produced by the parents x and y from the i-th generation. By 
assumption, all we know are the statistica} moments of the score of the current population, so 
our model of the current population consists of scores. From these scores we will derive the 
probabilitydistributionp(cros(x,y) = x'lx,y),orbetterp(cros(x,y) = x'ls(x),s(y)) as aresultof 
the last remark So it comes down to the question: How many ones has the offspring, given the 
number of ones in the parents. In order to answer this question we consider one gene from the 
offspring. The gene-value (allele) will be one in the following two cases: 

• the allele in the first parent is one and the corresponding bit in the bit mask h is one 

• the allele in the second parent is one and the corresponding bit in h is zero. 

Since r is the probability of a one in the bit mask h, the probability PI(x') of a one on a 
specified gene of the offspring x' will be: PI (x') = PI(x )r +PI (y)(1 - r). The probability PI(x) is 
approximated by the fraction of ones in a string of length l with s( x) ones, so PI (x) = i.ip. Thus 
using the abbreviated notion PI for PI (x'), we get: 

(4.5) 

So the evaluation of an offspring' s score is just a Bemoulli-trial with probability PI specified by 4.5 
repeated l times. As a result, the score has a binomial probability distribution with parameter PI· 
In the followingtheprobability p(s(cros(x, y)) = seis( x), s(y)) is used frequently and abbreviated 
to p(scls(x), s(y)). 

(4.6) 

This probability is used to calculate 

E[smis(x), s(y)] = I:p(scis(x), s(y))s~ (4.7) 

lf we can calculate this expression, we have completed the work done in section 4.2, and we 
can derive (for the all one problem) a relation between the score statistics of two subsequent 
populations. This relation canthen be optimized by proper choice of the bit-mask probability r. 
In appendix A.1.4 two approaches are given for trying to calculate expression 4.7, bothending 
up in hopeless recurrence-relations. This may not be a disaster, however. Remember that 
our interpretation of equation 4.4 was to get as large a varlation as we can get. Although we 
expect higher other statistics to play an important role in this process as well, we could (as an 
approximation) restriet our scope to optimizing variation. In appendix A.1.5, an expression is 
derived (expression A.30) for the second order moment of the the (i + 1 )-th genera ti ons score 
(Ei+I[s2])in termsof the momentsof order up to 3 from the i-th generations score. In general, we 
expect the moment of order m from the (i+ 1 )-th generations score todependon the momentsof 



30 

order up to m + 1 from the i-th generations score. This has an obvious analog in queuing theory, 
where the main concem is the time a job has to wait in a queue fora server to become vacant, or 
the total time the job stays in the system. The generalized Pollazek-Khinchine relations express 
the m-th order moment of these waiting- or staying times in terms of the moments up to order 
m + 1 from the arrival times. Because we can consider the population from the i-th generation 
as the supplier of 'jobs' for the population from the {i+ 1)-th generation, we expect a similar 
relation to hold for the moments of the score. GA-theory may be interwoven with lots of other 
mathematical theories, depending on one's own specific view on GAs. 

Insection 4.3 it was shown that we should maximize the expression for Ei+ I [.s2] with respect 
to the bit-mask probability r to get the highest possible average score in generations thereafter. 
We suggested in the previous chapter that this parameter r should be adaptive (dependent on 
the the statistles of the population) in order to obtain maximum efficiency. We maximize Ei+l [ s2] 

by setting the derivative (with respect to r) of expression A.30 to 0. This is done in appendix 
A.1.5, and we simply obtain the value r = ~- This is not at all what we expected, because there 
is no dependenee on the statistles of the population. The best possible parameterized uniform 
crossover justrandomly puts ones and zerosin the mask with equal probability! Is this a mis take? 

No. The only mistake we made is the one everybody else made in GA community. It is the 
assumption that the most disroptive crossover we know, uniform crossover, providesus with 
all the disroption we could ever need. In fact, most people still think that uniform crossover 
provides too much disroption! What we have just done, constitutes strong evidence that all these 
people are wrong. We showed that for an extremely simple problem, the best way to use uniform 
crossover is in its most disruptive appearance. This problem is so simple, that we can say with 
absolute certainty that the building-block hypothesis holds for this problem: The all-one vector is 
constructed by all-one sub veetors (schemas), all of which have above average scores. You could 
hardly think of any problem that is more easily 'guided' to the optimum by schemas, than the 
linear all-one problem. Furthermore, harder problems (less easily guided by schemas) require an 
exploration-exploitation tradeoff that is shifted towards exploration. This is true because a hard 
problem is often characterized by a high risk of encounteringa local optimum, an effect that can 
only be neutralized by allowing more exploration. Yet, the most easy problem we can think of, 
already requires the maximum amount of exploration obtainable with uniform crossover. This 
implies that for every problem disroption should be set to its maximum. 

In this chapter we have analyzed score-statistles of a dynamic population of individuals. We 
derived formulas expressing the way a genetic algorithm finds improvements in these statistles in 
subsequent genera ti ons. These expressions lead to an important insight in the implicit mechanism 
of a genetic algorithm. At the beginning of this chapter we hoped that we could find an optima] 
setting for the bit-mask probability r that is matched to the current statistics. What we found is a 
revolutionary and counterintuitive result stating that this probability should always be set to its 
most disroptive value. 



Chapter5 

Permulation representations 

One of the most serious objections made to GA-theory, is that its fundamental theorerns regard 
only bitstring-representations. These representations are indeed the most suited when one's 
interest is to analyze the rnechanism of GAs, but its practical purpose rernains quite lirnited as 
bit strings are rarely the most convenient form to express solutions to all but pet-problerns. It is 
of course true that any type of information can potentially be expressed in bits, but this would 
introduce trivia! interactions between genes, of which the GA is unaware. Thus a forced bitstring­
representation would make life unnecessarily hardfora GA. Using other representations has 
its price as well: an appropriate crossover-operator has to be designed, and disroption-analyses 
for other-than-bitstring representations are very difficult. In this chapter we will address exactly 
these issuesfora particular type of representation. A pennutation-encoding is often a convenient 
way of expressing solutions to certain types of scheduling-problems. That is, we have to allocate a 
number of jobs to machines in time, subjected to sorne constraints (precedence, resource, timing, 
etc.). Weil known exarnples of such problerns are job-shop scheduling (]SS) and the scheduling 
of data-flow-graphs (DFG) in VLSI circuit-design (see [Heij95] and [Wehn91]). A solution can be 
expressed by giving for each job the machine it is allocated to and its starting time, or equivalently 
by giving for each machine the starting tirnes for the jobs allocated to it. We now lookfora 
representation of a solution suitable for processing by a genetic algorithrn. After sorne puzzling 
we decide that for our specific scheduling problern, a list of absolute starting tirnes is not a 
representation suitable fora GA. This is rnainly because the crossover process rnay swap absolute 
starting times such that preeedenee constraints are violated. This problern can be dealt with by 
defining 'relative' starting times, frorn which absolute starting tirnes can be derived that do not 
violate preeedenee constraints. This is still not satisfactory. The point is that we want the GA 
to process essential information. What is essential about most scheduling problerns? Priority, or 
order is essential. Typical scheduling decisions are: 'put this operatien before that one', 'when 
there is a conflict, give this job priority over that one'. If we want a GA to process essential 
information, we had better put this kind of scheduling decisions directly into the representation 
of a solution. This is not done satisfactory with relative starting times. However, it is done 
satisfactory when using a permutation as a representation, because priority and order is exactly 
what a permutation represents. Absolute starting times can be easily extracted frorn a specified 
order of operations (a permutation) using a fast simple scheduling heuristic that respects the 
partial order specified by the preeedenee constraints. This justifies our use of a permutation as a 
representation for (potential) scheduling-solutions. 

31 



I I 

32 

Since scheduling problems are among the most difficult of problems [Gare79], some theory 
conceming a crossover-operatorfora permutation-representation should be available for those 
wanting to tack1e serious problems with GAs. The purpose of this chapter is to provide the reader 
with theoretica} results thatprovide either insight in the implicit GA-mechanism, or methodology 
for designinga coherent genetic algorithm. 
ln the first section, a uniform order crossover-operator from [Sysw91] will bedescribed which is 
analogous to the uniform crossover used for bit strings in the previous chapter. ln the next section 
a characterization will be given of the parents responsible for producing an offspring with a 
certain schema. Section 5.3 will use this characterization for the design of a new schema-theorem 
for uniform order crossover, in order to guide the GA in its search. Insection 5.4 some conditions 
are derived under which the GA will workas a problem-solver. We try to improve the GA 
even further by altering the selection mechanism in section 5.5. Section 5.6 is devoted to the 
phenomenon of local optima, and section 5.7 shows why a specific sort of search-space reduction 
should not be used in a genetic algorithm. 

5.1 Uniform crossover for permutations 

In this section, the mechanism of uniform crossover is extended to the domain of permutations. 
A permutation is a string over an n-ary alphabet, containing all the elements from the alphabet 
exactly once. Above, we explained that a permutation encoding is quite suitable for scheduling 
problems because the order in which operations have to be executed can easily be related to 
the order in which they occur in a permutation. In this section a crossover operator will be 
introduced that is especially designed for this representation. One of the difficulties in designing 
a crossover operator in general is to produce a legal chromosome. This is especially true when 
we consicter a permutation. The problem is of course that traditional crossover-operators (for 
bitstring-representations), when provided with permutations, in principle can produce any string 
over the n-ary alphabet, whereas only a subset of these are permutations. There are nn possible 
strings over an n-ary alp ha bet and only n! permutations. The resulting redundancy must be filled 
by the crossover-operator in a meaningful way in order to obtain a legal solution, and that' s why 
a crossover operator has to be suited fora certain representation of a solution. We will see that 
the crossover-operator used in this chapter always produces permutations when provided with 
permutations. 

Another aspect to keep in mind is the type of information relevant with regard to the 
score. For the travelling-salesman problem (TSP) adjacency -information is relevant, because 
the distance to its neighbor (within the tour) is added in the total evaluation. However, it 
couldn't care less about cities other than the neighbors in a tour. ln our discussion starting this 
chapter conceming some scheduling problems, we found a permutation encoding suitable for 
representing order-information. This is type of information is spread more evenly around all 
elementsof the pemmtation (compared to a permutation encoding for the TSP). This is also due 
to the type of problem we try to tack1e: The partial order, specified by the preeedenee constraints, 
dominates the order specified by the permutation. In fact, the order specified by the permutation 
plays a role only between elements that are not related by the preeedenee constraints, directly 
or indirectly. The dramatic result when adjacency and order are mixed up, is made particularly 
clear in [Star91 ]. In this article, the crossover-operator from [Sysw91] (also called order-crossover) 
described in this sectionis compared with several other crossover operators especially designed 
for scheduling-purposes. A necessary consequence of the importance of order is that order must 



33 

x 

h 

y 

Figure 5.1: uniform crossover for permutation-representation 

be reflected in our notion of schema. A schema will be given as an incompletely specified order 
of elements. Every permutation that can be obtained from this order by completing it, contains 
the schema. For example (1,5), (1,3,4), (2,5,6,7) are allschemaspart of parent x in figure 5.1. 

In uniform crossover for permutations, a mask h is constructed using a bit mask probability 
r just like in normal uniform crossover. The one's in the mask are used to identify the genes 
from the first parent used for crossover. The difference with uniform crossover for bit strings is 
that the relative order of the selected genes from the first parent is forced onto the corresponding 
elementsin the second parent. This is essential for obtaining a permutation, because each gene 
must occur exactly once. The mechanism is illustrated in figure 5.1. In the figure, the processis 
repeated with the complementary mask he for produdng the second offspring. 

In the example, the order (1,3,5,7) from x is forced onto the corresponding elements from y to 
create al. The absolute positions (and thus the relative order) of the remaining elements (6,4,2) 
from y stay intact. The order (2,4,6) from x is used next to create o2. 

The uniform crossover-mechanism for permutations has not been an important focus of 
theoretica} analysis. A thorough exarnination of literature has revealed that in [Karg92] some 
analysis is given, but the results reported are poor and very impredse. The authors have only 
considered the case in which the bit mask probability r = .5 and (contradictory to their own 
interpretation) schemas consist of fixed positions insteadof relative order. Further (unmentioned) 
assumptions are made with regard to the randomnessof the population. Besides crudal mis takes, 
the analysis suffers from the same objection, madeinsection 3.5 to the analysis in [De}o92]. 

5.2 Constructing parents 

Intherest of this chapter a new analysis of uniform order crossover will be represented, including 
a new schema-theorem for permutations which is free of all objections made to the analyses 
mentioned. Proceeding in a way analogous to section 3.5, we rnight ask 'what is the probability 
that a schema survives under crossover ?'. However, one of the objections made to the entire 
methodology of section 3.5 is that creation of a schema is not suffidently taken into account, 
whereas it may very well play an even bigger role than survival. It is therefore important to 
exactly deterrnine the parental conditions for producing an offspring with a spedfied schema. 
We must realize that the situation hereis radically different from that insection 3.3. For example, 
it is possible that 2 parent-permutations both contain a schema and are nonetheless unable (with 



34 

a certain mask) to produce two duldren hearing that same schema! This is ilhistrated in figure 
5.1 where schema (2,5) is contained in both parents but not in the child ol. 

In the analysis we assume that one dUld is produced by crossover. Before we start with an 
analysis of uniform crossover for permutations, we have to define how the relevant elements are 
referred to. So let two chromosarnes be selected for uniform crossover for permutations. We refer 
to these two chromosarnes as the first parent and the second parent. Furthermore, let the mask 
h be a bitstring containing at '1' at those places which in the first parent correspond to elements 
chosen for crossover, and a ' 0' at all other places. Then 

Def 5.1 K is the set of elements constituting a schema 

Def 5.2 C is the set of elements chosen for crossover 

It is also convenient to be able to talk a bout the intersection of some sets. 

Def 5.3 I is thesetof elements from K that are chosen for crossover, sa I = K n C 

Def 5.4 J is the set of elements not in K that are chosen for crossover, sa J = C I I 

Def 5.5 0 is thesetof elements from K that are not chosen for crossover, sa 0 = KI I 

For an example, observe figure 5.1, and assume that schema K = {1 , 4, 6, 7}. The elements chosen 
for crossover C = {1, 3 , 5 , 7}. The intersection of K and C is I = {1 , 7}. Furthermore, J = {3, 5} 
and 0 = {4 , 6}. 

We refer to the cardinality of each of these sets by their corresponding small print, sok = IK I, 
etc. From the above definitions it follows that I and 0 are a partition of K and that I and J are a 
partition of C. As a result, the following equalities hold with respect to the cardinalities of these 
sets: 

k =i+ 0 

and 
c=i+j 

The reader may have noticed that there are still some elements which have no name. These are 
the elements that are neither in C nor in K, and they have no name because they can not in any 
way affect the way the K ""'~lements are ordered in the offspring, so 

Observation 1 Only the elements (in both parents) from the schema ( K) and those selected for crossover 
(C) play a role in the survival or creation of schema K. 

Consequently, the remairung elements (the elementsnot in K and not in C) are omitted in all the 
following analyses. As an assumption for the analyses it is furthermore known what elements 
have been selected for crossover (C). All numbers and probabilities are thus conditional on the 
selected elements, and in the end we will have to average in order to lose this dependency. 



35 

Examination of the crossover-mechanism leads to three other observations, which together 
constitute a full characterization of possible parent-pairs of a child carrying the K -elements in 
the right order (the order defined by the schema). In each observation, the explicit goal will be to 
produce such a child, and when we say that something doesn't matter, it will be relative to this 
goal. The first observation arises from the fact that the information taken from the first parent 
describes only the relative order of the C-elements. This leads to 

Observation 2 In the first parent, neither the position nor the relative order of the 0-elements matter. 

The relative order of the C elements from the first parent is forced to the same elements from the 
second parent, completely destroying that particular information in the second parent, so 

Observation 3 In the second parent, the relative order of the C-elements does not matter. 

Now, when this relative order is forced, it is important where the I-elements show up in the 
result, especially their position relative to the 0-elements from the second parent, because they 
together constitute the schema K. However, the remaining J-elements may show up anywhere 
in the result. Their position is determined by the absolute position of the 0-elements from the 
second parent and the relative position of the J -elements from the first parent. The former are 
fixed, but the latter can be varled randomly, so 

Ob servation 4 In the first parent, the relative order of the J -elements does not matter. 

These observations will now be used fora prescription for designing parents. The idea is to first 
design a template from the schema K. From this template both parents are constructed. 

• Template: The template is the schema K in the right order with unlabeled (unspecified 
order) J -elements inserted randomly. Note that every order ofthe J -elements is considered 
equivalent w.r.t. the template. The number of ways in which this can be doneis the same 
as the number of ways the reverse is done: randomly piek k elements from the total k + j 
elements. The number of ways is (kt i). Another way to see this is is follows: The first 
I-element can be inserted in the K-elements in k + 1 ways, the second in k + 2 ways, etc. 
The last (j-th) can be inserted in k + j ways. This amounts to (kt()'. Since every order of the 
J -elements is considered equivalent, this fraction has to be divided by j!. The total number 
of ways is (kktj,)! = (kt i) 

• First parent: Because of observation 4 the J -elements can be ordered randomly. This can be 
done in j! ways. As a result of observation 2 the 0-elements can be reinserted and ordered 
(labelled) randomly. There are (k!i) ways to reinsert the 0-elements, and o! ways to label 
them. So reinserting and labelling 0-elements can be done in (k+i)o! = (k~j)! = (k+j)! o (k+;-o)! c! 
ways, since k - o = i and i + j = c. The total number of first parents corresponding to one 
specific template is thus (k+~)!j! 

• Second parent: Because of observation 3 the C-elements can be ordered randomly. This 
can be done in c! ways, so the total number of second parents corresponding to one specific 
template is c!. 



36 

For example, suppose we are concemed with the schema (1,2,3,4) so K ={1,2,3,4}, and 
we know that the elementsin C ={2,3,5,6} have been chosen for crossover. Then I ={2,3}, 
J ={5,6}, and 0 ={1,4}. The template may be chosen as (1,1},2,h,3,4) where the J-elements 
are unlabeled. To produce the first parent, the J-elements can be chosen randomly, so we may 
get the first parent (1,6,2,5,3,4). Furthermore, the 0-elements can be reinserted and ordered 
randomly, so our first parent could be (6,4,2,1,5,3). The second parent is obtained from the 
template by randomly ordering the C-elements, soit may be (1,5,6,3,2,4). Uniform crossover for 
permutations farces the order (6,2,5,3) totheir corresponding elementsin the second parentand 
produces the child (1,6,5,2,3,4). lndeed, the schema (1,2,3,4) is contained in this child. In addition, 
because of observation 1 elements nat in K and nat in C may be inserted randomly in each 
parent, so suppose our first parent becomes (6,4,7,2,1,5,7 ,3,9) and our second parent becomes 
(8,1,5,6,9,3,2,4,7) then the child (8,1,6,2,9,5,3,4,7) is produced, which of course carries the schema. 

The total number of parent-combinations is the product of the number of ways each step can be 
performed: 

(
k + .) (k + .)! (k + j)!2 

# (parent-pairs) = kJ j! c! J c! = k! (5 .1) 

As a check, note that the probability of encounteringa schema K in a randomly generaled 
chromosomeis the reciproke of the number of possible schemas with the elements from K: fï. 
There are (k + j)! possible chromosarnes (remember observation 1), and thus (k + j)!2 possible 
chromosome-pairs. So the probability of creating a chromosome with schema K from randomly 

. ~t(parent-pairs) 1 • 
generated chromosarnes rs hT . = Li' and this equals (and should equal) the #(c omosome-parrs) "' · 
probability of encountering a schema K in a randomly generaled chromosome. 

Note that the number of possible parent-pairs is independent on either the number of selected 
schema-genes (i) or the total number of selected genes (c). They have however effect on the 
individual number of possible first or second parents. 

As an example let' s take k = 3 and j = 1. By equation 5.1 the number of possible parent-pairs 
is 96. Assume for example that i = 2 and thus c = 3. In table 5.1 the templates and (for each 
template) bath parents are constructed by the steps given above. In the table, J-elements are 
indicated by capitals (A and B), 0-elements by figures (1), and J-elements are in small print 
(a). The schema Kis taken to be A1B. The number of templatesis 4, and the numbers of first 
and second parents per template are 4 and 6 resp. Indeed the total number of configurations is 
4 x 4 x 6 = 96. The reader can verify the legality by constructing the offspring using a first and 
second parent from the same row. (they must be constructed from the same template) Note that 
nat all possible first or second parents differ. In the parent 1 column, the second and third row are 
equal, as are the first and second row and the third and fourth row from the parent 2 column. No 
two constructed parent-combinations are the same however. Note also that you cannot randomly 
piek a first and second parent from different rows. In order to produce an offspring with schema 
K the parentsneed to have sarnething in common, and that's why they were constructed from 
one and the same template! 

In this section we have given a complete characterization of the parent-chromosomes when 
a certain schema is required in the offspring. Furthermore, the number of these parent­
combinations is calculated. What we can do with these numbers to actually optimize a genetic 
algorithm will become clear in the following sections. 



Table 5.1: construction of templates and parents for k = 3,j = 1,i = 2, and c = 3. 

11 template I possible first parents I possible second parents 11 

11 aA1B I 1aAB, a1AB, aA1B, aAB1 I aA1B, aBlA, AalB, ABla, Ba1A, BAl a 11 

11 AalB I 1AaB, A laB, AalB, AaB1 I aAlB, aB1A, Aa1B, ABla, Ba lA, BAl a 11 

11 A1aB I lAaB, A laB, Aa1B, AaB1 I a1AB, a1BA, A laB, A1Ba, B1aA, B1Aa 11 

11 A1Ba j1ABa, A1Ba, ABla, ABa1 I a1AB, al BA, AlaB, Al Ba, BlaA, B1Aa 11 

5.3 A schema-theorem for permutation-encoding 

37 

When a distribution of chromosarnes in a population is known, we can use the characterization 
given in the previous section, to calculate exactly the expected number of chromosarnes carrying 
a specific schema in the next generation. In this section we will derive a closed-form expression 
incorporating this idea. The expression represents a schema-theorem fora permutation-encoding 
and can be used to predict the behaviour of a genetic algorithm when a specific distribution of 
chromosarnes in a population is assumed. 

A traditional disroption analysis consistsof calculating the probability Pd that a proportionate 
selected parent carrying schema K, will produce an offspring with schema K. This probability 
would then be substituted in the schema-equation 2.4 to obtain a rough estimation on the 
expected number of individuals carrying K in the next population. The approach we take, is 
radically different: we do not calculate a probability of disruption, yet the result will be a major 
generalization of the schema-theorem 2.4. For clarity I repeat that we want a specific schema ]{ 
to exist in the next generation. In the previous section we gave a way to enumerate all parent 
pairs that produce an offspring containing schema K, given a crossover-mask h. To get the 
expected number of chromosarnes in the next generation that contain ]{,we could try to compute 
(and sum over) the joint probabilities of selecting parents these. An easier way is to sum over 
a single probability of selecting one parent and then compute the probability of selecting the 
'corresponding' parent in table 5.1. This forcesus to decide which parent (first or second) we 
take for the summation. It is convenient to choose the parent that is more easy to characterize 
from the schema K, since ]{is assumed known. We also assumed the bit-mask is known, and 
thus the sets I(= {A, B}, see definition 5.3) and 0 (= {1}, see definition 5.5). The sets I and 
0 are a partition on the schema K, such that the order of the I-elements are inherited from the 
first parent, and the order of the 0-elements are inherited from the second parent. It would be 
convenient to enumerate either all first or all second parents using either the set I or the set 0. 
Examining table 5.1, we observe that all possible chromosarnes containing I in the right order 
(in which the elements occur in the schema K) are present in the first-parent column, and thus 
all chromosarnes containing I in the right order are enumerated. This is true in generaL This 
is not the case with 0 in the second parent. There are (k!P' chromosarnes carrying 0 in the 
right order. For the example of table 5.1 this equals 24, yet there are only 12 different strings in 
the second-parent column. We conclude that we can enumerate all possible first parents with 
the set I, but enumeration of all chromosarnes with the 0-elements in the right order also gives 
chromosarnes that cannot serve as a second parent. The best choice for enumeration is thus the 
first parent. We summarize our strategy for obtaining a schema-theorem as follows: 

assumption We assume the sets]{ (def 5.1), C (def 5.2), I (def 5.3), and 0 (def 5.5) are known. 



38 

enumeration We sumover all possible first parents by enumerating all chromosarnes carrying the set I 
in the right order. 

template We calculate the average number of templates that produce a certain first parent. 

second parent We calculate the average number of second parentsper first parent. 

The first two points have been explained above. We continue by computing the number of 
(possibly double) entries in the first-parent column of a table such as 5.1. In the previous section, 
we saw there are (k+pi! ways to construct a first parent from a given template. There are (k!i) 

Q.±i2.!i.l k + . !!±.i.2f. templates, so the total number of entries in the first-parent column is c! · · x ( k 
3

) = k!c! · . 

Now, there are (ktj)! possible first parents (I-carriers), so the average number of entries of a first 

parent is (ki;~t I (kt i) = (ktD';!. That is, each first parent corresponds, on the average, to (ktD';! 

templates. There are c! ways to co~~ct a second garent from a given template, so per first 
parent, there are, on the average, (kt~l"'· x c! = (k~~l·•· mates fora first parent. There are a total 
of (k~j)! 0-carriers, so the fraction of 0-carriers suitable as matefora certain first parent, is 

(k + j)!i! (k + j)! = i!o! = i!(k- i)! = (k) -1 

k! I o! k! k! i 
(5.2) 

No te this is independent on the total number, c, of genes selected for crossover. Fora schema­
theorem we need just a few more additions. Let N (I , g) denote the number of chromosarnes 
carrying I in generation g of the population. The score of an arbitrary I-carrier (a chromosome 
carrying I in the right order) is estimated by s(I) (see equation 2.1). The probability of selecting 
a specific I-carrier is 2: •(I).CX') = IPîif}t•l' where E 9 [s] is the average score of the individuals 

'z 'EP 

in generation g. The expected number of I-carrier selected for crossover is N(I, g) times this 
probability: ~f;J1 Nf~'i9 ). Similarly, the expected number of 0-carrier selected for crossover is 

"1[/.]l N(I{J('9) since 0 = KI I. Only a fraction (7) - 1 
ofthese 0-carriers are suitable forproducing 

an offspring carrying schema K. So when the J-genes are selected for crossover, the probability 
of producing lm offspnlng carrving schemaKis _!_f!J__!!.J..!ill x ~ N(K/I,g) (k)-1. Because we 

--r ET•-;] 1J51 ET.-;r IPI • 
want to fill a whole new population with offspring from the current population, this probability is 
applied to lP I individuals. To get the expected number of K -carriers for generation g + 1 the result 
has to be averaged over all possible I. Since the probability of choosing from the K -elements 
exactly I for crossover (plus an arbitrary number of elements outside K) is r111 (1 - r )IK I 11, our 
schema-theorem for permutations is 

E[N(K, g + 1)] = L riii(l- r)IK/II s(I)s(KI I) N(I, g)N(KI I, g) (I KI) -1 (5.3) 
IcK ~[s] IPI lil 

To compare this equation with the original schema-theorem 2.4, note that 2.4 is just the term 
from 5.3 with I= K, since N(KI K, g) = lP I, s(KI K) = E[s9], (!~I) = 1, and riKI = Pd· Thus, 
our new schema-theorem is a true generalization of the original one. Also note that the inequality 
has been replaced by an equality. This is because all terms have been taken into account now. 
The equation can be aggravated in the following ways: 



39 

• N (I, g) can be conveniently expressed in a way that reflects the occurrence of (parts of) the 
specific schema K in the current population. 

• s(I) can be expressed (for exarnple by using a generating function, or Walsh-coefficients) 
in a way that reflects sorne features of the problern at hand. 

Equation5.3 can besirnplified assurningboth s(I) and N(I, g) depend only on lil= i, instead 
of the specific genes. Because there are m ways to choose i genes frorn the k scherna-genes, 5.3 
becornes 

E[N(k +l)]=~ ;(l- )k-is(i)s(k-i)N(i,g)N(k-i,g) 
,g ~r r W:[s] IPI 

•=0 g 

(5.4) 

This is the expression I prornised to derive at the beginning of the section. lt can be used 
to predict the behaviour of a genetic algorithrn when a specific distribution of chromosarnes in 
a population is assurned. The distribution of chromosarnes is of course needed for the terros 
N(i, g) and N(k- i, g). We can use it for exarnple, to calculate how 'easy' two schernas combine 
dependent on how well these schernas have invaded the population (reflected by peaks in the 
distribution). In the next section, we will use this new scherna-equation to strike at the very core 
of the GA-rnechanisrn. 

5.4 When does the GA work? 

lt would be arnbitious to try to obtain sufficient conditions fora GA to find a good solution (let 
alone the optima] solution), but we can state sorne necessary conditions intuitively. In order to 
state these conditions we have to consider the implicitsearch rnechanisrn a genetic algorithrn relies 
on. This rnechanisrn is (irnplicitly) stated in the building-block hypothesis, and goes sarnething 
like this: large schernas are made frorn smaller ones. We can easily derive necessary conditions 
for the building-block hypothesis to work. Surely, the search process must be directed in sorne 
way: random search does not suffice, and so we dernand that above-average schernas frorn the 
current population occur more frequently in the next generation. If they don't, we cannot expect 
it to be very probable for two schernas to combine. Furtherrnore, the GA must be able to cope with 
the easiest type of problerns, in the sense that is stated by the building-block hypothesis: large 
schernas actually consist of smaller ones. In this section we will use these necessary conditions, 
along with the scherna-equation derived in the previous section, to corne up with sorne very 
surprising result concerning the exploration-exploitation tradeoff. 

To analyze the first condition, we assurne the building-block consisting of K has not yet 
spread in the ~pulation. In this case we can assurne a random population with respect to I. 
There are (kt;)! I-carriers, which is a fraction i!-1 of the total nurnber of chrornosornes. The 

population contains on the average N(i, g) = ltl I-carriers, and frorn 5.4 it follows that 

~i k-is(i)s(k-i) IPI 
E[N(k,g+1)]=~r(1-r) ~[s] i!(k--i)! (5.5) 



40 

We can rewrite equation 5.5 so that it can be interpreted more conveniently: 

k 

E[N(k,g+ 1)] = 1~11[] L (~)ri(l- r)k-is(i)s(k- i) 
k. Lg S i=O t 

(5.6) 

Note that 1{;1 is again the expected number of chromosarnes carrying K in a random population. 
Equation 5.6 expresses t:he increase in E[N(k, g + 1)] relative toa random distribution, when all 
K -carriers are built from scratch. Because our optimum solution eventually has to be build from 
scratch, the random-population assumption is a practical one when analyzing the 'creativity' 
of the GA. We can now derive the conditions under which we expect a schema to thrive. 
From equation 5.6 it fonlows directly when a schema occurs more frequently than in a random 
population (the current population): 

(5.7) 

When the inequality in 5.7 is replaced by an equality, the resulting equation describes exactly 
the borderline between random-search and directed search. When we have a mathematica} 
model for the evaluation of a solution (that is, an expression fors( i)), we can use 5.7 to calculate 
the conditions under which the GA directsits search process. Unfortunately, such a mathematica} 
model is not easy to find in generaL At this point we can incorporate in our analysis the second 
necessary condition for a GA to work: it must be able to cope with problems that correspond 
to the building-block hypothesis. Perhaps the easiest non-trivial of such problems is a linear 
problem. We have already encountered the linear all-one problem insection 4.4 and found some 
surprising results. Lets see how the permutation-equivalent turns out. A linear model assumes 
s( i) = a x i. In appendix A.2 we derive from equation 5.6 the following equation: 

(5.8) 

Actually the linear model s( i) = a x i is not correct, because s( i) is the average score over all 
chromosarnes ha vingattleast ielementsin the right order. s(O) doesn't state any restrietion and is 
simply the average score over all possible chromosomes, ho wever the linear model says s(O) = 0. 
It is better to useas a model s(i) = E[s] +a x i. The calculation in appendix A.2 gets much more 
complicated this way, but the result is a minor change from equation 5.8, so we omit it. From 
equation 5.8 we derive that the GA will perform better than random search when 

s(k) > Eg[s] 
Jr(1 - r) 

(5 .9) 

This condition is mildest when the GA is set to be most explorative, that is, when r = .5. We 
have obtained a result very similar to the one in section 4.4: The balance of exploration and 
exploitation should be set at the extreme in favor of exploration, at least as far as crossover is 
concemed. The reasons for this are already given in section 4.4: more difficult problems need 
more exploration, and for the easiest problem we can think of we already need the maximum 



41 

amount of exploration. In the next section we try to push the balance towards· exploration even 
further. 

5.5 Adaptive selection pressure 

Two factors are involved in the tradeoff between exploration and exploitation: crossover and 
selection. So far we have assumed roulette-wheel selection, and concluded that the explorative 
aspect of crossover should be maximally exploited. In order to push the balance towards 
exploration even further, we have little choice but to alter the selection mechanism. A scheme 
often used is Boltzmann-seleetion. The probability of selecting chromosome x using this scheme 
is: 

ePb•(x) 

sel(x) = L ( ') ePb• x 
x' EP 

(5.10) 

(the denominator is for normalization) In equation 5.10, Pb is a constant related to the selection­
pressure. This highlights an important advantage of this selection-scheme: selection-pressure is 
easily adjustable to fit requirements in different situations. In this respect, the constant Pb is the 
analogous of the bit mask probability r in crossover. We will exploit this property and develop a 
method to choose appropriate parameter values. 

The fundamental ground on which we base our method of choosing parameter values is varianee 
within the population. In section 4.3 and especially equation 4.4 it was made clear just how 
important it is to have a varled population of chromosomes. On the other hand, when the 
population is forced too hard to be varied, a new above average individual may have no chance 
to spread its genesin the population, thus inhibiting the combining of good schemas. Our goal 
with an adaptive selection mechanism is to optimize this variation. That is, when the population 
is too homogeneaus the Boltzmann variabie should be set low, and when the population is too 
varled it should be set high. As an approximate measure for the varlation in the population, we 
use the relative difference between the bestand average score in the population: var= be•:~f[•J. 
The selection mechanism has no direct control over the varlation in the population, because 
selected individuals first go through the process of crossover, which tends to enhance the 
varlation in selected individuals. We will choose the Boltzmann parameter Pb in such a way that 
the varlation in selected individuals tends to converge toa target varlation v. This brings us to the 
first aspect of our scheme: an equilibrium. 

The equilibrium is a situation without any pressure with regard to the variation, upwards or 
downwards. It corresponds to a value the varlation in the population is converging to. With 
regard to the Boltzmann selection scheme, the potential point of equilibrium is easily computed. 
It corresponds to the value of Pb, the Boltzmann-variable, where individuals are selected with 
equal probability. This is the case when Pb = 0 (substitute in equation 5.10). When individuals 
are selected with equal probability, the varlation in selected individuals equals the varlation in 
the current population var;. This is only a potential point of equilibrium because it is necessary 
for equilibrium that the crossover process does not enhance the varlation in selected individuals, 
otherwise vari+l > var;, which does not correspond to an equilibrium. Thus, an equilibrium 
can only be obtained when the individuals in the population are such look a likes, that crossover 
is unable to introduce any disruption. This situation is much like a local optimum in local 



42 

search algorithms. It is also very irnprobable that any impravement is made from the point 
of equilibrium, so that the search process may stop. It is therefore convenient to detect an 
equilibrium, which is actually quite simple: Since crossover does nat enhance varlation in the 
case of equilibrium, varlation in selected individuals equals varlation in population. Furthermore, 
at the point of equilibrium the varlation in selected individuals equals the target varlation set by 
the user. To detect an equilibrium, one has only to check whether the varlation in population 
equals the target varlation set by the user. 
When no such 'local optimum' is encountered, we may assume that crossover always enhances 
the variation, and therefore an equilibrium does nat occur. This is fortunate, because the 
equilibrium implies that individuals are selected with uniform probability, which more or less 
reduces the GA-process to a random search process. However, it is still convenient to talk about 
a (potential) equilibrium, because the target varlation v is tightly connected to it. We define 
the potential equilibrium (or equilibrium for short) as the point in the search process where 
individuals are selected with uniform probability, that is Pb = 0. The target varlation v wedefine 
as the value of the varlation in the population corresponding to Pb = 0 (according tosome update 
rule). It also corresponds to the value the varlation in selected individuals is converging to, but 
never reaches while crossover enhances the variation. 

The first update rule we consider is sirnple: 

Pb= a x var+ b (5.11) 

Equilibrium takes place at P'b = 0, such that var = -~. So when we think a certain amount 
of variation, say 20%, is required, we set a and b such that b = -.2 x a. The second aspect of 
our scheme is dominance. It is the phenomenon that nearly all individuals in the population are 
offspring from one individual. When this is the case, schemas are so much alike that there is little 
chance of further impravement by combining different schemas. Noneed tolook further, clearly a 
situation we want to avoid. Dominanee occurs for example when a random population is infected 
with one good solution. Many people think that 'feeding' a GA with such useful information is a 
helping hand, but nothing could be further from the truth: in the second generation, almast all 
individuals are offspring from that one good solution. This is a severe restrietion of the search 
space for a GA. Instead of helping a hand, you merely introduce dominanee in the population, 
sabotaging the search process. 

Dominanee may also occur when selection pressure is toa high, because differences in score are 
overemphasized, leading to a situation similar to the one sketched above. Progress in the search 
process of a genetic algorithm is typieally highly nonlinear: improvements are sparadie and may 
take high values. Because of our measure of variation (var = be•:;,~[•l), this results in sparadie 
large changes in the variation. When the sensitivity of the update rule is high (a small change in 
varlation results in a large change in the Boltzmann variable), selection pressure may sporadieally 
be set much toa high, resulting in dominance. The occurrence of dominanee thus depends on the 
sensitivity of the update rule. Because the step from selection pressure to probability of selection 
run through the Boltzmann selection scheme (equation 5.10), the sensitivity of the intermediate 
step is also of importance. This sensitivity is analyzed in appendix A.3. 1t is also concluded in 
this section that a simple variation of the Boltzmann selection probabilities does nat imprave 
sensitivity. 

Insection A.3.1 the sensitivily of the first updateruleis analyzed. The analysis leads to expression 
5.12. 



43 

I 
àsel(x) I I À var I 

I( ) 
= a x Pb x var --

u x oor 
(5.12) 

Notice that the sensitivity is quadratic in the variabie a. Minimizing the effect of dominanee 
implies the use of a small value of a. This however severely restricts the dynamic range of the 
Boltzmann-variable Pb, as can be seen in the update rule 5.11. A way around this problem is by 
introducing an element of integration. This leads to the second update rule. 

Pb[i] =a x Pb[i -1] + (1- a)(a x var[i] + b) (5.13) 

Where 0 < a < 1. Notice that the element of integration forces us to make the various variables 
time-dependent. Also notice that this rule makes sure the equilibrium is the same as the 
equilibrium using the linear update rule. The sensitivity of this updateruleis analyzed insection 
A.3.2, and leads to equation 5.14 

I
Àsel(x)l . .IÀvar[i]l 
sel(x) = (1- a) x a x Pb[z] x var[z] var[i] (5.14) 

The sensitivity using the second update rule is a factor (1 - a) smaller than the sensitivity 
using the first update rule (compare with equation 5.12), whereas the equilibrium is unchanged. 
This enables us to handle a relatively large dynamic range for the Boltzmann-variable while 
restricting the effect of dominance. The presentation of results, obtained by using adaptive 
selection pressure on a scheduling problem, is postponed to the next chapter where this problem 
is introduced and implementation issues are discussed. 

In this section we have developed a method to design a genetic algorithm with an adaptive 
selection mechanism. Using the notions of equilibrium and dominanee we were able to 
enforce a certain amount of varlation in the population without jeopardizing the loss of too 
much information. In the next section we examine what will happen when schemas are 
'overrepresented' in the population. 

5.6 Local optima: how do they look like? 

It is often assumed that uniform order crossover is so disruptive, that ending up in a local 
optimum is out of the question. Contrary to this belief, we showed in the former section that 
even in the mildest conditions (with regard to the score-function) disroption should be as high 
as possible. In this section we will show how a local optimum in conneetion with uniform order 
crossover looks like. 

In the first chapter we discussed the concept of a local optimum in relation to genetic 
algorithms. The definition of a local optimum in this regard should encapsulate the suggestion 
that a good solution is very unlikely to be reached in a reasonable amount of time when a local 
optimum is encountered. This unconventional notion of a local optimum is motivated by the 
practical application of henristics in general: finding a good solution (instead of optimal) in a 
reasonable amount of computation time. So for all practical purposes of a genetic algorithm, 



44 

10 11 12 

pi1 

mu 

pi2 

Figure 5.2: the partition property of uniform order crossover 

this condition for a local optimum suffices. A convention easily derived from this condition, is 
that we speak of alocal optimum when a large part (or the whole) of the population contains 
a schema not present in any good solution. A generalization of this degree of penetration of a 
schema, is the degree of penetra ti on of a partitioning. In the following we will formally prove that 
uniform order crossover has the property of maintaining partitions. To define this property we 
need the following: 

Let 1r denote a petmutation of n elements, and let 1r; denote the i-th element of this 
permutation. Let the index set I = {0, 1, ... , n} , and let this set be partitioned into m nonempty 
index subsets h, h , ... , lm, such that each index subset contains only subsequent indices. For 
example h = {5, 6, 7}, h = {2 , 3}, etc. Let 1r(J;) be the projection of the index subset J; under 
the mapping defined by permutation 1r. Now let E; = 1r(I;) Vi :Sm. Then E1 , E2 , ... , Em is a 
partition on the set V = 1r(I). We can now define the notion of the partition-property. 

Def 5.6 (partition-prop1erty) Let G be a genetic operator taking p parents and producing one child, and 
let 1r 1 , ~ , • . • , 7rP be pennutations such that V i : 1r 1 (I;) = 1r2 (I; ) = . . . = 1rP (I;) = E;. Th en G has the 
partition-property iff G( 1r1, ~, ... , 1rP) = 1rP+1 is such that V i : 1rP+1 (I;) = E;. That is, the result of G 
has the same partition h , h ... , lm as all its parents have. 

Theorem 1 Uniform order crossover has the partition-property 

proof: Let J.1. be a randomly generated binary mask of length n. Observe the index set J1 in 1r1
, 

~, and the child ~. Nlow assume there are a ones in the part of mask J.1. corresponding to the 
indexes of h, that is a = l:i Eh J.l.i. Now from the part corresponding to the indexes of h from the 
first parent 1r1, a elements are transferred to the corresponding part in the child ~. The rest of the 
lh I elementsin the h-part of~ is filled with elements from the second parent ~. Immediately 
after the transfer from 1r1, there arelhl-a empty spots in~' and there arelhl-a elements 
from 1r1(h) and thus from E 1 that have notyet been used in~. Since ~(h) = E1, these lh 1- a 

elements from E1 are exactly the elements from the h-part of~ that uniform order crossover 
uses to fill up the emp~y spots in the 11-part of the child ~. Now the h -part of ~ is filled and we 
only used elements from 1r1(11), and ~(h), and thus from E 1• However, l~(h)l = lhl = lEd, 
and the elements in 11"3(1}) are all different and in E1• We conclude that ~(h) = E1. This 



45 

proves the theorem for the h -part. Now we cut off the h -part from all permutations (this can 
be done safely because they all correspond to the sameset of elements: E1) and the mask J.l, and 
consicter the remainders as permutations of elements from V j E1• Now the above argument can 
be repeated induetively for all parts h h . .. , Im. <> 

The partition-property of uniform order crossover is illustrated in figure 5.2. We conclude 
that if a population only has individuals with the same partition, uniform order crossover Will 
maintain this partition in all individuals it produces over all generations. Relàxing the condition 
of entire penetration of the partition to a high degree of penetration, we conclude that it is 
unlikely that a good solution can be found in a reasonable amount of time, and thus the genetic 
algorithm converges toa local optimum (unless there is a good solution that can be expressed 
using the same partition). It was already mentioned in section 3.5 that mutation and inversion 
are no answers to the problem: a local optimum is not just local, it is also an optimum, so 
the probability that a random search-like operator yields above average individuals (which is 
a necessity for survival) is quite small. We thus have to take seriously the problem that the 
population can converge to a locally optima} partition. 

5.7 Partitioning resources: a rednetion in search-space 

Consicter again the scheduling problem introducing this chapter. We have a number of lists 
and an algorithm constructing a solution from these individual lists. Now the way one list is 
interpreted by the construction-algorithm may depend on the order of jobs in another list, so we 
cannot decompose the scheduling problem in independent sub-problems. This means that all of 
the job-lists that together represent one solution, cannot be processed independently, so we want 
these lists to belong to one single chromosome, a permutation for example. The representation of 
these lists in one single permutation can be done in one of the following ways: 

• Each of the lists may be spread more or less randornly across the chromosome. 

• Each of the lists may be allocated to a specified part of the chromosome. 

The latter case would imply an enormous reduction, and can be easily implemented using 
the partition property. Just how large would this rednetion be? Weil, the number of possible 
permutations using the first method is just n!. Using the second method, the number of possible 
part-permutations for each l; is jl; j!, so the total number of possible permutations is rrr;1 jl; j!. 
The rednetion in search space then amounts to 

n! 
(5.15) 

To get an impression as to how large this rednetion can get, suppose that the chromosome of 
length nis partitioned in m equally large pieces. Using the Stirling approximation n! ~ .J27m ( .;-) n 

the rednetion inspace is in O(n-m/2mn), which gets quite large for large chromosomes (and a 
number of parts 2: 2). It seerns that allocating each priority list to a specified whole part of the 
chromosomeis a logica} decision. However, there are very good reasons to decide the opposite. 



46 

reduction ~ 

~ 

Figure 5.3: What good is the reduction in search space ? 

First, we may very well doubt whether this reduction in search space is a practical aid for 
the genetic algorithm. The probability of finding an optimum at any point during search is fora 
large part determined by the fraction of the cardinality of thesetof optimal solutions within the 
total set of solutions. 111le quotientof the sizes of the population and the total set of solutions has 
not much effect since the same chromosome may occur more than once in the population. So the 
reduction in search space only helps when the number of optima} solutions increases relative the 
the total number of solutions. Well, it doesn't. For each partitioned permutation, the number of 
corresponding non-partitioned permutations is given by formula 5.15, which is independent on 
the particular partitioned permutation. So, the reduction is the same for the number of optima} 
solutions and the the total number of solutions. This is illustrated in figure 5.3. lt seems the 
genetic algorithm couldn't care less for the reduction in search space. 

Second, the probability of getting in alocal optimum increases for two reasons! In order to 
see this, it is important to have a clear understanding of the distinction between the partitioning 
deliberately forced upon the permutations for the sake of keeping job-lists together, and the 
unwanted partitioning that spontaneously occurs and gives rise to a local optimum. We thus 
claim that deliberately enforcing a partition stimulates in two ways the rise of an unwanted 
partition. The first reason is that enforcing a partition leaves us with with m permutations instead 
of one. Denote the probability of the spontaneous rise of an unwanted partition (within one 
single permutation) by p, and assume that p does notdepend on the length of the permutation. 
The probability of not getting an unwanted partition is 1 - p using a single permutation, and 
(Bemoulli) (1 - p )m usi:ng m permutations. The probability of not getting an unwanted partition 
is thus a lot smaller. The second reason that we are more likely to get an unwanted partition, 
is that p does depend on the length of the permutation. When the length of a chromosome 
increases, it becomes more unlikely that a spontaneous partition arises. So p is a lot bigger for 
smaller permutations, which is exactly what we have when weenforce a partition on the original 
chromosome. So, there are two causes for an increased probability of obtaining an unwanted 
partition and thus getting in a local optimum. 

We conclude that from the perspective of local optima, it is better to mix the individual 
priority lists altogether in one permutation than to make use of the partition-property. 



Chapter6 

Scheduling in High Level Synthesis 

6.1 Problem description and method of solving 

High Level Synthesis (HLS) is part of the process of generating a chip-layout from a behaviaral 
description of a chip. Perhaps the most important step within HLS is scheduling: the allocation of 
operations to resources in time. In a HLS scheduling problem, typkal operations to be performed 
are multiplication, addition, and comparison. Operations are performed by resources called 
modules. In general it is possible that a module is able to perform different types of operations 
(ALU), but for our problem description we assume a one to one mapping of operation type and 
module type. A module performs an operation in a discrete number of cycle steps, which is the 
basic time-unit in a HLS scheduling problem. The number of cycle-steps a module needs to 
perform an operation is called delay. Typkal delays used in this report are one cycle step for an 
adder-module and two cycle-steps fora multiplier-module. A HLS scheduling problem appears 
in different forms, dependent on the type of constraints. The basic problem has preeedenee 
constraints among operations, expressed in a directed acyclic graph (DAG) called the Data Flow 
Graph (DFG). The object is usually minimization of the make-span, the number of cycle-steps 
required to perform the schedule. A resource-constrained problem has additional constraints 
on the number of modules for each type of operation. The objective is minimization of the 
make-span. The type of scheduling-problem mostly encountered in practice is a time-constrained 
problem. In ad dition to the basic precedence-constraints it has a constraint on the make-span, and 
the objective is to minimize the number of modules needed to perform the schedule within the 
time-constraint. The last form of the HLS scheduling problem, has (in addition to the preeedenee 
constraints) both resource and preeedenee constraints. The objective is finding a feasible schedule. 
Because there is no actual optimization of any parameter, this problem is also called the feasibility 
problem. The feasibility problem is used in the method described in [Heij91] as an intermedia te 
of solving the time-constrained problem. The idea is to use a heuristic to estimate the minimal 
set of modules (a lower bound) needed to schedule a DFG. This minimal set of modules is added 
as a constraint to the problems to obtain a feasibility problem. A scheduling heuristic is used to 
try to obtain a feasible schedule if there one. If the attempt succeeds we have obtained an optimal 
solution to the time-constrained scheduling problem because we used a minimal set of resources 
that nonetheless generates a feasible schedule. If the attempt fails, the minimal set of modules is 
extended and the loop is iterated. Note that in this case we can no longer guarantee optimality 
when a feasible solution is found. 

47 



48 

We will use the genetic algorithm to solve the feasibility problem as an intermedia te of solving 
the time-constrained problem as described above. Since the GA must handle an optimization 
problem, we have to find a way to turn the feasibility problem into an optimization problem. The 
reason we first turn a time-constrained (optimization) problem into a feasibility problem and then 
back into an optimization problem, is because we like to incorporate resource constraints. These 
type of constraints are handled quite easily by fast scheduling heuristics. Now a GA may not 
be a fast scheduling heuristic, but in order to turn a (chromosome) permutation into a schedule, 
we need some sort of scheduling heuristic, and resource-constrained scheduling heuristics are 
simply the fastest available. The way we turn a feasibility problem into an optimization problem 
is as follows: In the fast resource-constrained scheduling heuristic operations are fixed in time. 
During this process a lower bound on the make-span is derived. As soon as the lower bound 
exceeds the time-constrained, infeasibility is detected. The objective of the GA is to minimize 
the number of operations that are not allocated at the moment infeasability is detected. The next 
section introduces some fast scheduling heuristics that can be used either to turn a permutation 
into a schedule, or to derive a lower bound on the make-span in order to detect infeasibility. 

6.2 Fast deterministic scheduling algorithms 

In section 6.2.1 the fundamental and simplest scheduling algorithms are introduced that solve 
the basic form of the scheduling problem, constrained only by preeedenee relations. In section 
6.2.2 the List scheduler is introduced, a resource constrained heuristic that is used in a GA in 
earlierresearch [Oui92]. Because this algorithm may exclude finding an optima] schedule for 
any given permutation, wedevelopa new resource constrained scheduler insection 6.2.3 that 
does not suffer from this disadvantage. 

6.2.1 ASAP and ALAP scheduling 

As soon as possible (ASAP) and as late as possible (ALAP) algorithms are schedulers that consider 
only preeedenee constraints. They minimize make-span, and the difference between the two is 
made clear by their names. The definitions of ASAP and ALAP-values include the notions 8( v ), 
indicating the delay of operation v, and pred(v) and succ(v), indicating thesetof predecessors 
and thesetof successors resp. of operation v w.r.t. preeedenee relations. The asap-value asap(v) 
of an operation v is recursively defined as follows: 

{ 
0 ifpred(v) = 0 

asap(v) = max.,,Epred(v)(asap(v;) + 8(v;)) otherwise 

The alap-value alap(v) of an operation vis recursively defined as follows: 

I () { tma:r:- 8(v) ifsucc(v) = 0 
aap v = min.,,Esucc(v)alap(v;)- 8(v) otherwise 

The complexity of calculating the asap and alap values of all operations is O(IVI +IEl), where V 
is the set of operations. In figure 6.1 an example is given of both types of schedule. 



49 

ASAP ALAP 
Time 

0 

2 

3 

4 

Figure 6.1: ASAP and ALAP schedule 

ASAP and ALAP schedulers serve in general to obtain an approximation of an execution 
interval, which is the time-interval in which an operation can start execution. Because only 
preeedenee relations are taken into account, the asap and alap value of an operation are not 
more than a lowerbound and an upperbound resp. on the execution interval of the operation. 
The asap-alap interval will give an increasingly better approximation of the execution interval 
when more operations become fixed in time. When an operation becomes fixed in time (it is 
scheduled), the asap and alap value become equal, so that either the asap-value or the alap-value 
gets more tight. Because the asap and alap values are recursively computed, often a tighter 
bound is obtained on the execution-interval of potentially every operation. When a scheduling 
algorithm fixes an operation in time, it can use the recursive definitions of asap and alap to 
calculate the implications on the execution intervals of other operations. When the asap and alap 
value of other operations coincide as aresult of the calculations, it is also fixed in time. When 
not enough resources are available at that specific time for that specific operation, infeasibility is 
detected. We conclude that a scheduler can use the asap and alap recursive computations each 
time an operation is fixed, in order to detect infeasibility. We will use this ability insome of the 
permutation schedulers explained in section 6.2.3. 

6.2.2 List scheduling 

A list scheduler handles the resource constrained scheduling problem. First reported in [Hu61], 
it is perhaps the most famous such algorithm in high-level synthesis today. The goal is to 
minimize the makespan while preserving precedence- and resource-constraints. Each time an 
operation is scheduled, the list scheduler updates the free-list, a list containing all operations that 
can be scheduled without violating the preeedenee constraints, that is, all operations ha ving no 
unscheduled predecessors. Every cycle, for each type of operation a number of operations (at 
most equal to the resource constraint) is selected from the free list. Priority is given according 
to some properties of an operation such as a asap-value, or the number of successors, etc. An 
example of a list schedule is given in figure 6.2. In this example 2 adders and one multiplier 



50

C) Considered for scheduling

Time Scheduled

0

2

3

Cycle

0

1

2

Figure 6.2: List scheduler

are available, all of which have a delay of one cycle. Priority is given according to the smallest
alap-value of an operation. The make—span is 3 cycle—steps.

Priority can also be given according to the order in which the operations occur in a permutation,
thus opening the way to use a list scheduler to produce a schedule from a permuttion. This is the
way a list scheduler is used in the genetic approach of [C1ui921. To see the impact of the priority
function on the makespan, consider the schedule when the left multiplication was scheduled
before the right one, for example by priority of largest alap value: the makespan increases by one
cycle. Judging from this impact, it makes sense to let a genetic algorithm find a suitable priority-
function (a permutation). The disadvantage of using a list scheduler as permutation scheduler
for our GA, is that for some DFGs there is no priority function that enables the algorithm to find
an optimal schedule. This may occur when modules having different delays are available for
scheduling. An example of this phenomenon is given in figure 6.3. The trouble is caused by the
greedy nature of the list scheduler: Because it can schedule the left multiplication sooner than
the right one, it does so despite the advantage of prolonging. We have to find a way to overcome
this disadvantage, otherwise we cannot even guarantee the existence of a permutation yielding
an optimal schedule.

6.2.3 Permutation-scheduling

In this section we will consider other fast scheduling heuristics that use information from a
permutation in such a way that an optimal schedule is not excluded. The first such permutation
scheduler that was used on the scheduling problem introduced in section 6.1 is straightforward:
The permutation is searched from the head to the tail for an operation that is not yet scheduled.
This operation is fixed at its asap. To calculate the implications of this on the asap-alap intervals

of other operations, a di~
of the operations r
is very well possible t
in this way, so that infe~

Because of the
order-information in the
the conditions stated for
set of operations ~
order-information w.r.t
i and j usually only ma
succeeding i and j in t
scheduler is not a very
Another critical remar~
process, for example w~
very little information
scheduler on the quality
is appealing about
a chromosome, a Ia:
the case when only a
permutation scheduler 1

lead to the same condU~

The second perniU
on earliest asap The a
that has a resource o
conditions are met:

®®
e



51 

Time 

0 

2 

3 

4 

5 

a) List-scheeluie b) Optimal schedule 

Figure 6.3: Greedy nature of List scheduler 

of other operations, a distance matrix is used, as explained insection 6.3. Typically, a large fraction 
of the operations preceding this operation in the preeedenee graph, are fixed in time as a result. It 
is very well possible that some resource constraints are violated at the first operation processed 
in this way, so that infeasibility is detected immediately. 

Because of the order in which the permulation is searched, it might seem at first sight that 
order-information in the permutätion is relevant for this scheduler, and thus the aigorithm obeys 
the conditions stated for a combination with uniform order crossover. However, when Vi is the 
set of operations preeeding operation i in the data flow graph, and i is scheduled, most of the 
order-information w.r.t. Vi is rendered useless. The order (in the permutation) of two operations 
i and j usually only matters when they are not preceded (in the permutation) by an operation 
succeeding i and j in the preeedenee graph. The first condusion is thus that this permutation 
scheduler is nota very good choice when used in combination with uniform order crossover. 
Another critical remark is the following. Because infeasibility can be deteeted very earlyin the 
process, for example when at most three operations in the permutation are chosen for scheduling, 
very little information is taken from the permutation. As a result, information is given by the 
scheduler on the quality of an extremely small portion of the permutation. One of the things that 
is appealing about a GA, as explained in the first chapter, is implicit parallelism: by evaluating 
a chromosome, a large number of schemas are evaluated (in parallel) as well. Surely this is not 
the case when only about three genesin a permutation are evaluated. We conclude that this 
permutation scheduler is not suitable in conneetion with a genetic algorithm. Empirica! results 
lead to the same conclusion. 

The second permutation scheduler we tried, is the following. An operation v; is chosen based 
on earliest asap. The operation that gets scheduled is the first operation in the permutation 
that has a resource conflict with v;. Two operations have a resource conflict when the following 
conditions are met: 



52 

• they are of the same type 

• their execution intervals overlap 

• they have no (transitive) relation in the preeedenee graph 

Again, the asap-alap intervals of other operations are updated using a distance matrix. This 
scheduler is probably more suitable for uniform order crossover than the previous permulation 
scheduler, because order plays a bigger role now. Wetried to overcome the last disadvantage of 
the previous permutation scheduler by fust choosing an operation v, based on earliest asap. This 
is nocure to the problem ho wever: because execution intervals may be quite large, there is a large 
number of operations that have a resource conflict with Vi. This implies that the operation that is 
actually selected for scheduling, may be one much more near the bottorn of the preeedenee graph 
than was intended. Fixing this operation at its asap typically fixes a number of other operations 
in time as well, so that we end up with the same problem we had with the previous permulation 
scheduler. Again, empirica} results lead to the same conclusion. 

The problem with both schedulers is that early in the schedule process, an operation can be 
selected for scheduling that lies deep within the preeedenee graph. To overcome this problem we 
would have to limit the choke to a set of operations that are not very remote (in the preeedenee 
graph) from operations already scheduled. This idea is already exploited in the list scheduler, and 
it is no surprise that the third permutation scheduler, a path scheduler, bears a large resemblance 
to the list scheduler. At any time, a list is kept (the free list), of all operations that have no 
unscheduled predecessors. The difference is that the list scheduler lirnits the choke of operation 
(within the free list) to one that could start execution at the current cycle-step. The path scheduler 
doesnotlimit its choke in this way. lt simply takes the first operation in the permulation that is 
also in the free list. The path scheduler is used in [Heij95]. In section 6.4 the results of applying 
the path scheduler are presented. 

6.3 Producing a distance matrix 

In section 6.2.3 we saw several ways to use information in a permutation to fix operations in 
time (to schedule operations). Insection 6.2.1 we discussed that the asap-alap intervals of other 
operations are affected by fixing an operation. Infeasibility rnight even be detected in this way 
long before every operation is scheduled, so that useless computations can be avoided. Just how 
much the asap value or the alap value of an operation change as a result of scheduling another 
operation, is adrninistrated in a distance matrix. The distance matrix D is a V x V matrix, such 
that each positive entry D( i, j) represents the number of cycle-steps that operation j has to be 
scheduled after i in order to satisfy the preeedenee constraints. Before we continue to compute 
the values in the distance matrix, we should consider how to use them to update asap and alap 
values. When exarnining the recursive definitions of asap and alap values insection 6.2.1, it is 
obvious that fixing operation v3 has the following effect on the asap-alap interval of operation v: 

• newasap(v) = MAX(asap(v), asap(v,) + D(v,, v)) when v succeeds v3 in the preeedenee 
graph. 

• newalap(v) = MIN(alap(v),asap(v3 )- D(v, v,)) when v preceeds v3 in theprecedence graph. 



53 

Figure 6.4: a DFG with 4 paths s->t 

The update rules can be used unconditionally when D( i, j) is set at -oo for i and j such that j 
does not succeed i in the preeedenee graph. 

Obviously D( i, j) must equal the maximum total delay of a sequence of operations that succeed 
operation i and preeede operation j, according to the preeedenee col).straints. When the branches 
in the preeedenee graph are labelled with the delay of the operation they branch from, the value 
of D( i, j) corresponds to the value of a longest path in the graph from operation i to operation 
j. Computing the distance matrix thus amounts to finding the relative distances between every 
two operations, which is called an all-pairs longest path (APLP) problem. For general (cyclic) 
sparse graphs, the }ohnson-algorithm 0ohn77] is a very efficient way to solve this APLP problem 
in O(V2 log V + V E) time. It is conceivable however, that an algorithm specifically targeted to 
acydic sparse graphs can make efficient use of the DAG-structure. Such algorithms do exist for 
the single souree longest path (SLP) problem of computing the longest path from a specified souree 
to every other vertex in the graph. For the APLP problem for DAGs, no reference was found in 
literature. It is ofcourse possible to solve the APLP problem by repeating an SLP algorithm V 
times. However, efficient algorithms for the APLP problem for cyclic graphs are more efficient 
than algorithms that repeat an SLP algorithm V times, suggesting we could also do better for the 
acydic case. 

Let G be a DAG, and let G; denote the subgraph of G induced by vertex i and all vertices 
reachable from i. Let Vi and E; denote the vertex-setand the edge-set in G;. LP(G, i, j) denotes 
the lengthof the longest path from node i to jin graph G, and are( i, k) is the lengthof the are 
from node i to k. We use the following recursive formula which holds for graphs in general: 

LP(G, i,j) = maxk{arc(i, k) + LP(G, k,j)} (6.1) 

When the recursion 6.1 would be used as a recursive algorithm, a superfluous amount of paths 
would be examined from i to j. For example, consider the DFG in figure 6.4. A recursive APLP 
algorithm is calledforto find the longest path from s tot. This algorithm considers the paths 
(s,1,3,4,t), (s,1,3,5,t), (s,2,3,4,t), and (s,2,3,5,t). However, when the longest paths from vertex 1 
and 2 are already known by earlier computation, only 2 possibilities need consideration: (s, 
LP(G,l,t)) and (s, LP(G,2,t). Constructinga longest path by using previously constructed longest 
paths is a technique called memoization [Corm90]. To makesure that assumed knowledge is 



54 

indeed available, we have to process the vertices in a bottorn-up fashion. This is accomplished 
by finding a tapological order, an order of operations that respects the partial order implied by the 
DAG preeedenee graph. In [Corm90] an algorithm is described that finds a topological order in 
O(E +V) time. We denote this algorithm by topologicaLsort(i). The topological order specifies 
the reverse order in whid\ the vertices i are taken for determining the longest path to the vertices 
in V;/ i. For example, in the DFG of figure 6.4 first alllongest paths from t are computed, foliowed 
by 4 and 5, then from 3, etc. Furthermore, ead\ vertex i is generally connected toa limited number 
vertices, so weneed to compute LP(G,i,j) only forsome j. To accomplish this increased efficiency, 
weneed to keep for each vertex i a list of the vertices in V;fv;. When traversing the reversed 
topological sorting to vertex j, the list of Vj is determined by uniting the listsof all its immediate 
successors. The list for the sink-vertex t is initiated as NULL. In summary, the computations 
performed for each vertex i is the following: First, list(i) is initiated as NULL. Second, for ead\ 
immediate successar-vertex j and each vertexkin list(j), kis added to list (i), and the lengthof 
path (i,LP(G,j,k)) is computed. Of course, only the longest path is kept in memory. Third, the 
immedia te successar-vertices are added to list(i). The computation of path (i,LP(G,j,k)) is done in 
0(1) time, since both arc(i,j) and LP(G,j,k) are known. The addition of an element to a list may 
take O(llistl) time in most implementations of a list, because the whole list should be checked 
whether or not the element is already in the list. A simple trick red u ces the d\eck-time to 0(1 ): 
All distances of longest paths (except single arcs) are initially set to -oo. When a vertex k is 
added to the list(i), the distance of LP(G,i,k) is d\anged toa positive value. So when we want to 
add vertex k to list(i), we simply check whether or not LP(G,i,k) is still negative, and this is done 
in 0(1) time. We now formulate our APLP-algorithm for DAGsas follows. 

Algorithm 1 APLP for DA.Gs 

\\ determine topological order 
Topological_sort(Source)i 

\\ initialization 
for all i in V list(i) .cleari 
for all i in V d_matrix(i,i) 
for all (i,j<>i) in VxV { 

if (i,j) in E d __ matrix(i,j) 
else d_matrix(i,j) 

list(t) = NULLi 

\\ APLP 

= Üi 

delay(i) i 

= MININFi 

for all i in V in reverse order of Topological_sort(Source) begin 
\\make list(i) and update longest paths from i 
for all (i,j) in E begin 

for all kin list(j) begin 
if (d_matrix(i,k) == MININF) list(i) .add(k)i 
d_matrix(i,k) = MAX(d_matrix(i,k), delay(i)+d_matrix(j,k)) i 

end 
list (i) .add(j) i 

end 
end 

Theorem 2 Algorithm 1 solves the APLP problem for DAGs. 



ss 

Proof: The proof is by induction on a reversed topological sorting of G. The basis is at the 
sink: list(t)=NULL, and LP(G,t,k)=MININF for allkin V. The induction hypothesis for vertex i 
is that as a result of the reversed topological sorting, all immedia te successors of i have already 
been processed, so LP(G,j,k) is detennined for all immedia te successors j of i, and all k reachable 
from j. But now, by formula 6.1, the algorlthm computes LP(G,i,k) for all k reachable from i. Now 
vertex i has been processed and the next vertex in the reversed topological sorting is ready for 
processing.<> 

Note that each are (i,j) is observed exactly once, which is done in the computation for vertex i. 
For each are (i,j) ho wever, the number of computations equals llist(j) I, which is upper-bounded 
by V. Thus, the complexity of algorlthm 1 is O(EV). It should be noted that this worst-case 
bound is quite pessimistic, because llist(j) I is typically much smaller than V. Furthermore, the 
amount of branches that go into a node, are typically one or two, thus making E ha ving the same 
order as V. This effectively makes algorlthm 1 run in O(V2) time, for data flow graphs. 

6.4 Results 

In this section we will review some of the results of running the GA on a a couple of benchmark 
probieros on a HP 9000/73S workstation. The following additional implementation issues may 
be of importance. The population consistsof 100 individuals. Another 100 individuals are created 
using crossover. No other operators are used. From the total of 200 individuals, 100 are selected 
to be discarded, based on their score. The remaining 100 individuals are subjected to selection 
for crossover, etc. 
The benchmark used is the fast discrete eosine transfarm (fdct) with time constraints of 11, 14, 
and 18 doek cycles. Other benchmarks yielded trivial results (optimal salution in generation 0) 
and are therefore discarded. The GA is run until a population is obtained carrying at least one 
individual yielding a feasible schedule, or until 100 generations have passed without finding 
a feasible schedule. CPU-time is given in table 6.1 for each benchmark, using four (randomly 
chosen) different seeds. In one case (seed 4, fdctl8) no salution was found. To campare these 
results with other algorlthms, a time constrained list scheduler [Heij91], an improved force 
directed scheduler [Verh91], and a previous genetic scheduler [Clui92] were unable to find a 
feasible schedule for fdct14 and fdct18. In table 6.1 the stochastic character of the genetic algorlthm 
is illustrated by the differences in the runs obtained by different seeds. This is a disadvantage of 
many pro babilistic approaches, because it does nat yield a very robust algorlthm. 

Table 6.1: CPU-times for GA with different seeds 

11 fdct I 1 2 3 4 11 

11 4.65 2.82 2.82 S.21 
14 4.84 14.57 9.89 20.32 
18 10.74 11.69 12.44 00 

The Boltzmann adaptive selection mechanism explained in section s.s has also been run with 
varlous combinations of parameter values. Update mechanism S.l3 is used with the integration 
constant a equal to 0.2S, the varlation sensitivity a taken from the set {1, l.S, 2, 2.S, 3}, and the 
target varlation v taken from the set {0.2, 0.3, 0.5} The results are averagedover four runs using 
different seeds and are given in table 6.2 for fdct14 and in table 6.3 for fdct18. In these tables, 



56 

Table 6.2: CPU-times for GA with Boltzmann adaptive selection, fdct14 

11 l v, a-+ I 1 1.5 2 2.5 3 11 

0.2 11.9 21.85 11.23 12.51 10.53 
0.3 13.63 22.98 13.0 10J2T 8.48 
0.5 :j: 18.63T 22.08 21.42 14.7T 

Table 6.3: CPU-times for GA with Boltzmann adaptive selection, fdet18 

lil v, a-+ I 1 1.5 2 I 2.s I 3 11 

0.2 11.4 20.23 8.33 926 11.84 
0.3 16.39 43.13 6.35 12.22 8.71 
0.5 :j: 22.84T 14.91 16.71 12.01 

t indicates that the average is taken over three runs because the fourth run did not result in a 
feasible schedule. :j: indicates that none of the runs were successful. 

From tables 6.2 and 6.3 we condude that adaptive Boltzmann selection is certainly competitive 
with roulette wheel selection. For some combinations of parameter values, Boltzmann selection 
is even superior, especially for fdct18. Because this benchmark introduces more 'freedom' 
(operations are less restricted by timing constraints), more scheduling-decisions are due to 
information from the optima} permutation (instead of the scheduler). This suggests that for larger 
problems, Boltzmann adaptive selection is increasingly better (for some parameter values) than 
roulette wheel selection. The trouble ho wever, is that no systematic increase in performance can 
be derived from these tab les, as one of the parameters increases (or decreases). This suggests that 
either there is a lot of interaction between the two parameters, or the selection mechanism is very 
robust. 



Chapter7 

Conclusions 

The major condusions drawn from the work leading to this thesis, are summarized as follows: 

• For bitstring representations, arelation (equation 4.4) between the statistica} values of two 
subsequent generations of a population is derived analytically. Extensive literature research 
has not revealed the analytica! establishment of such a relation. A number of phenomena, 
observed in practice and reported in literature, can be directly derived from this relation. 
In particular, the importance of varianee is made dear by the equation. 

• For a permutation representation and uniform order crossover, a new schema theorem 
has been derived taking into account both survival and combination. This is in contrast 
to the traditional schema theorem from [Holl75], which has troubled the minds of many 
subsequent researchers by laying emphasis on survival. 

• Analyses yield highly controversial results when considered in the perspective of exploration­
exploitation. Analyses for both bitstring representations and a permutation representation 
suggest that the crossover mechanism should be as disruptive (explorative) as possible to 
obtain the best results. This stands in high contrast with the traditional view, caused by 
the traditional schema theorem laying emphasis on survival, which is a very exploitative 
idea. My suggestion is that many researchers in the GA-community should reconsider their 
ideas in this respect. 

• A GA works best when interactions between search space and genetic operator are 
considered. Early implementations of our GA did not work because the charaderistics 
of the scheduler did not match the characteristics of the crossover mechanism. Too often 
a genetic algorithm is considered as a black box by putting problems in and expecting 
solutions to come out. A genetic algorithm is a complex system that needs engineering 
before it works well. 

• For DFG scheduling, uniform order crossover yields good results in our implementation. 
Run time efficiency has been improved by a new O(V E) algorithm for solving an all pairs 
longest path problem (APLP) for acydic grap hs. 

• Adaptive Boltzmann selection yields results competitive with traditional roulette wheel 
selection, by balancing the tradeoff between exploration and exploitation, dependent on 
the relative varia ti on in the population. Results suggests that adaptive Boltzmann selection 
will yield increasingly better results when larger problems are considered. 

57 



Appendix A 

Derivations 

A.l Statistica! derivations 

A.l.l m-th order score moments 

In the following we derive an expression of the m-th score-moment of the i + 1-th population in 
termsof the expected performance of the crossover mechanism. We repeat equations 4.1 and 4.2 
as A.1 and A.2: 

(A.1) 

Pi+I(s) = L p(x, y)p(s(cros(x, y)) = six, y) (A.2) 
x,y<P; 

Equations A.1 and A.2 combine to 

L L p(x, y)p(s(cros(x, y)) = six, y)sm (A.3) 

L p(x, y) LP(s(cros(x, y)) = six, y)sm (A.4) 
x,y<P; 

The last step is due to exchange of the summations. Because 

p(s(cros(x, y)) = six, y) = L p(cros(x, y) = x'lx, y) 
x 1:s(x1)=• 

(where s(x') is the score of genotype x'), it follows that 

59 



60 

LP(s(cros(x, y)) = slx, y)sm = L p(cros(x, y) = x'lx, y)sm(x') (A.S) 
:c'tG 

where Gis the collection of all genotypes. Substitution of A.S in A.4 yields: 

L p(x, y) L p(cros(x, y) = x'lx, y)sm(x') (A.6) 

L p(x, y)E[sm(cros(x, y))ix, y] (A.7) 
:c,ytP; 

Here E[sm(cros(x, y))lx, y] is the m-th moment of the scores of the offspring given theparents x 
and y from the i-th generation, using the probabilities p(cros(x, y) = x'lx, y). 

A.1.2 Two offspring 

In the following we prove that it makes no difference to let crossover make one or two offspring. 
We assume that within the pair (x, y ), x and y are the first and second parent resp. An assumption 
on the selection scheme will be thatp(x, y) = p(y, x). Althoughformally a restriction, noselection 
schemes are known in which the assumption is violated. The crossover scheme will choose the 
crossover positions and these positions will be notated by the binary vector h.The first child will 
be produced by choosing the genes according to h from x and according to the complementary 
mask he from y. The first child is denoted crossh (x, y ). The second child will be produced just the 
other way around, soit is denoted cross he (x, y). Insteadof summing once over all individuals 
in the population, we have to sum twice, and each probability on an offspring-pair has to be 
multiplied with the m-th power of the score of both the first and second child. In the denvation 
we use p(x', y'lx, y) as shorthand for p(crossh(x, y) =x', crosshc(x, y) = y'ix, y) 

(A.8) 

The factor i is due to double summation: Each sum [sm(x') + sm(y')] is evaluated both in 
the term p(x, y)p(x', y'lx, y)[sm(x') + sm(y')] and in the term p(y, x )p(y', x'iy, x )[sm(y') + sm(x')]. 
Since we assume that p(x, y) = p(y, x) and we know that p(y', x'iy, x) = p(x', y'jx, y) (because 
they use the same mask), the context of [sm(x') + sm(y')] is the same in both cases. Thus each 
sum is evaluated twice in exactly the same context. 

To reduce the two-offspring case to the one-offspring case, weneed to express p(x', y'lx, y) in 
termsof p(crossh(x, y) = x'lx, y). This relation is determined as follows: First we use the chain 
rule to obtain 

p(x', y'ix, y) = p(crossh(x, y) = x'lx, y) x p(crosshJx, y) = y'ix', x, y) (A.9) 

Observe p(crosshJx, y) = y'ix', x, y). When the parents and the firstchild are known, we can try 
to reconstruct the mask h. This cannot be accomplished completely, however: when a gene has 



61 

the same value in both parents the value of the corresponding mask-bit does not matter. So we 
construct an equivalent mask h' in the following way. When a gene in x' has the same value has 
the gene in x, the corresponding mask-bit is set to one, otherwise it is zero. Now we can also 
construct the complemented mask h~ . So we derive 

p(crosshJx , y) = y'ix' , x , y) 

p(crosshJx , y) = y'ih' , x , y) 

p(crosshJx , y) = y'ih~ , x , y) 

But because the parents and the complemented mask are known, the second child is determined. 
Thus, the probability of the second child being equal toy' is either zero (when they are not equal) 
or one (when they are equal). We use this information in equation A.9 to obtain 

( , 'I ) _ { p(crossh(x , y) = x'ix , y) if 3h: x'= crossh(x , y) and y' = crosshJx, y~ 
P x ' Y x ' Y - 0 otherwise 

(A.lO) 

Substitution of A.lO in A.8 gives 

Ei+l[sm] = ~ L p(x , y) L p(crossh(x , y) = x'ix , y)[sm(x') + sm(y')] 
:r: ,y !P; :t:' !G 

(A.ll) 

where y' is now taken as crosshJx , y) for h such that x' = crossh(x , y). We split the sum 
[sm(x') + sm(y')] and examine the following resulting term: 

p(x , y) L p(crossh(x , y) =x' i x, y)sm(y') 

p(y, x) L p(crossh(x, y) = y'iy, x)sm(y') 
y' !G 

p(x, y) L p(crossh(x, y) =x' i x, y)sm(x') 
:r: ' !G 

The first step is valid because p(x , y) = p(y, x), summation over x' covers the same elements 
as summation over its 'complement' y', and p(x'i x, y) = p(y'iy, x ) (same mask). The last step is 
due to exchange of the variables x' and y'. 
So the two terros we split up from A.ll turn out to have the same value! Now, using this equality 
we can directly obtain A.6 and thus A.7 from substitution of the equality in A.ll. 



62 

A.1.3 Expected scores 

In the following we derive arelation between the expected scores of two subsequent populations. 
We assume proportionate selection: p(x) = ~' where the normalizing constant S; is the total 
score of the i-th generation, Lx'eP s(x'). This gives the followingexpression for p(x, y): 

p(x, y) = p(x)p(y) = s(x~(y) 
' 

Using A.12 in equation A.11 with m = 1 we get: 

Ei+l[s] = -
2

1 L s(x)~(y) L p(crossh(x, y) = x'lx, y)[s(x') + s(y')] s. 
x,y<P; ' x 1 <G 

Now, using our assumption on the sum of scores, it follows: 

1 = 
2

$ L s(x)s(y) L p(crossh(x, y) = x'lx, y)[s(x) + s(y)] 
' x,yEP, x 1 <G 

~ L {s2 (x)s(y) + s(x)s2 (y)} L p(crossh(x, y) = x'lx, y) 
2.::>? 

• x,y<P; x 1 <G 

1 
= 25~ L {s2(x)s(y) + s(x)s2(y)} 

I :c,yt.P, 

1 
= $ L s2(x)s(y) 

' x,y<P; 

1 
= $ L i(x) L s(y) 

' X!P; y<P; 

1 
= S; L s2(x) 

Xf.Pi 

1 "' 2 = E;[s)IP;I ~ s (x) 
X!P; 

= 
E;[s2) 

E;[s] 

var;[s) + Et(s] 
E;[s] 

= E-[] var;[s) 
'

8 + E;[s] 

A.1.4 Crossover-statistics for the all-one problem 

We want to calculate the following expression. 

(A.12) 

(A.13) 

(A.14) 

(A.15) 



63 

(A.16) 

In this expression, p(scls(x ), s(y)) has a binomial distribution: 

(A.17) 

Our first approach is to use a normal distribution instead. The binomial distribution is dosely 
approximated by the normal dis tribution for large I, and in practice the latter is used instead of 
the farmer because of mathematica} convenience. So we use the probability density function 

(A.18) 

for p(scls(x),s(y)) where J..l = E[sls(x),s(y)] = lp1 and rr = /p1(l- PI)· The summationin A.16 
now becomes an integration, and we derive: 

E[sm js(x ), s(y)] 

(A.19) 

Equation A.19 defines a recursive relation for E[smls(x), s(y)]. Using generating functions, this 
recursive relation can be solved by solving a differentlal equation of the first order. This however 
comes down to findingtheprimitive of e-"'

2
, whichdoesn'texist. Otherwaysoftryingtocalculate 

E[sm Is( x), s(y)] using the normal distribution reduced to the samerecursive relation A.19. Other 
ways of solving the recursive relation were not found. We condude that this approach fails in 
calculating E[smls(x) , s(y)]. · 

In our second approach we stick to the binomial distribution, and use the moment generating 
function. The moment generating function f(z) is a transformation on a probability distribution 
Pn defined by 



64 

Differentiating A.20 k times gives 

Substitution of z = 1 in A.21 gives 

00 

n=-oo 

rCk)(z) = E [ n! zn-k] 
(n- k)! 

rCk)(1) = E [ n! J 
(n- k)! 

(A.20) 

(A.21) 

(A.22) 

This is an exact formula for a sum of moments, which can be rewritten to an expression for the 
moment E[nk] in termsof alllowerordermoments. Note that E[nk] = Oif k > n. Ifwe neglect the 
lower order terms, A.22 gives an approximation for E[nk]. If the sum is not too large however, it 
can be calculated without too much effort. Let's first compute the moment generating function 
r( z) for our binomial distribution: 

f(z) = t (!)pf(1- Pl)l-• z' = (p1z + (1- p1))1 

•=0 
(A.23) 

Where p1 is calculated by 4.5. Now differentiating A.23 m times and substituting z = 1 gives 

m( ) /! m 
f 1 = (/-m)!P1 (A.24) 

Substituting A.22 (conditional on x and y) with n = s and k = m in A.24 gives the equality 

[ ~ J n m 
E (s- m)! jx, y = (/- m)!PJ (A.25) 

Camparing this expression to the one derived in our first approach, equation A.19, we find that 
things have only gotten worse: instead of a recurrence relation for the m + 1-th moment in terms 
of the m-th moment we now implicitly have a a recurrence relation for the m + 1-th moment in 
terms of alllower order moments. 

A.1.5 Crossover varlation for the all-one problem 

We try out formula A.25 on thesecondorder moment. The left-hand side of equation A.25 equals 



65 

E [(s ~! 2)! Jx, Y] = E[s(s -1)Jx, y] = E[s2Jx, y]- E[sjx, y] = E[s2Jx, y] -lpi (A.26) 

The right-hand side of equation A.25 equals 

(A.27) 

Combining A.26 and A.27 gives 

(A.28) 

Now we have calculated the conditional second order moment in terros of the bit-mask probability 
r (implicit in PI). Substitution of expression A.28 in A.4 with m = 2 gives the second order 
moment of the (i+ 1 )-th generations score: 

Ei+ I [s2
] = L p(x, y) [lPI (1- pi)+ l2pf] 

x,ytP; 

We substitute4.5 for PI and, assuming proportionate selection (equation A.12) for p(x, y): 

L s(x)s(y) [lPI(1- pi)+ t2pi] 
$-

x,yf.Pi ' 

(A.29) 

= L s(xl;(y) [(s(x)r + s(y)(1- r))2 + (s(x)r + s(y)(1- r))(1- s(;) r- s(J) (1- r))] 
x,yt.Pi ' 

= Eï[s2] (1- ~) [Ei[s3] ( 2 (1 - )2) Eï[s2]2 (1- )] (A.30) 
Ei[s] + l Eï[s] r + r + Ei[s]2 r r 

We maximize A.30 by setting its derivative (with respect tor) to 0: 

dEi+I[s
2
] = 2(1 _ ~ )(2r _ 1) [Ei[s

3
] _ Ei[s

2
]] 

dr I Ei[s] Ei[s]2 
(A.31) 

Setting A.31 to 0, we get r = ~· 



66 

A.2 A necessary condition for directed search 

A linear model assurnes s(i) =a x i. We derive from equation 5.6: 

E[N(k ,g+1)] 
Ie 

= 1~1-1 _ L (~)ri(1- r)lc- is(i)s(k- i) 
k. ~[s] i=O t 

IPI 1 le-l (k) . . = -
1 
--L . r'(1- r)/c-•aia(k- i) 

k. ~[s] i=l t 

lpl 2 le-l k' 
= a """ . '(k ') i(1 )Ic-i T! ~[s] ~ i!(k- i)! t - t r - r 

IPI a2 ~ k' . Ie . 

= kl~[s]~(i-1)!(k·-i-1)!r'(1 -r) -• 

IPI a2k(k -1) ~ (k- 2)! i Ic-i 
= T! ~[s] ~(i-1)!((k-2)-(i-1))!r(1 -r) 

= gj s(k)s(k -1)r(1- r) ~ (k- 2)ri-1(1- r)/c-2- (i-1) 
k! E 2[s] ~ i- 1 

g •=1 

= 1~1 s(k)s(k -1)r(1- r) ~ (k ~ 2) ri(l- r)/c-2- i 
k. ~[s] i=D t 

= gj s(k)s(k -1)r(1- r) ( (1 _ ))k-2 
k! ~[s] r+ r 

= 
IPI s(k)s(k -1)r(1- r) 
T! ~[s] 
IPI s2 (k) 

~ T! E~[s] r(1 - r) (A.32) 



67 

A.3 Sensitivity analysis for adaptive boltzman-selection 

We start the analysis by rewriting equation 5.10, the probability of selection using the boltzmann­
selection scheme. 

sel(x) = 

(A.33) = ~ ePb(s(x')-s(x)) 
L..Jx'EP 

We differentlate expression A.33 with respect to Pb, the variabie controlling selection pressure. 

ósel(x) 

Ópb 

= 

1 x Pb '"' ePb(s(x')-s(x)) 
~ ePb(s(x')-s(x)) L.J 
l..,x'EP x'EP 

Pb (A.34) 
~ ePb(s(x')-s(x)) 
L..Jx1 EP 

We multiply leftand right-hand side with 8pb, and we divide the leftand right-hand side by 
the leftand right-hand side resp. of equation A.33. Furthermore the 8 is replaced by À. 

I 
Llsel(x) I 
sel(x) 

(A.35) 

At first sight it might seem that the following varlation improves the sensitivity: U se -pbes(x) 

in the nominator of equation A.33 insteadof e-Pbs(x). When camparing the taylor expansion of 
these two terms, the alternative indeed depends less on the Boltzmann variabie Pb· However, 
the denominator of equation A.33 is also affected by this variation, and alas, Pb is completely 
cancelled in the whole expression. This simple varlation does not diminish the sensitivity. 

A.3.1 Linear updating 

The linear update rule (equation 5.11) is repeated as equation A.36. 

Pb= a x var+ b 

Both si des are differentiated with respect to var: 

Ópb 
--=a 
8var 

(A.36) 

(A.37) 



68 

From this equation we derive: 

I D..pb I = a x var I A. var I 
Pb Pb var 

(A.38) 

Substitution of equation A.38 in equation A.35 gives: 

I D..sel(x) I I A. var I 
l( ) 

= a x Pb x var --
se x var 

(A.39) 

A.3.2 Linear updating with inlegration 

The second update rule (equation 5.13) is repeated as equation A.40. 

Pb[i] =a x Pb[i -1] + (1- a)(a x var[i] + b) (A.40) 

Now we assume that before a sudden change in variation, as a rèsult of the discovery of a new 
score-champion, the process was at equilibrium: Pb[i- 1] = 0. It also implies that the varlation 
was at var[ i- 1] = -~. Substitution in equation A.40 now gives 

D..pb[i] Pb[i]- Pb[i -1] 
(1- a)(a x var[i] + b) 

(1- a)(a x (D..var[i] + var[i -1]) + b) 

(1- a)a x D..var[i] 

Finally, substitution of equation A.41 in equation A.35 gives: 

I 
D..sel( x) I . ., A. var[ i] I 
sel(x) = (1- a) x a x Pb[z] x var[z] var[i] 

(A.41) 

(A.42) 



70 

[Eshe89] L.J. Eshelman, R.A. Caruana, and J.D. Schaffer. Biasses in the crossover landscape. In 
J .D. Schaffer, editor, Proceedings of the 3rd International Conference on Genetic Algorithms, 
pages 1ü-19, George Mason, June 1989. Morgan Kaufmann. 

[Gare79] M.R. Garey and D.S. Johnson. Computers and intractability: a guide to the theary of 
NP-completeness. Freeman, 1979. 

[Gold89a] D.E. Goldberg, editor. Genetic Algorithms in Search, Optimizatian, and Machine Learning. 
Addison-Wesley, 1989. 

[Gold89b] D.E. Goldberg. Zen and the art of genetic algorithms. In J.D. Schaffer, editor, 
Proceedings of the 3rd International Conference on Genetic Algorithms, pages 8ü-85, 
George Mason, June 1989. Morgan Kaufmann. 

[ Gold90] D.E. Gold berg. Construction of high-order deceptive fundions using low-order Walsh 
coefficients. Illigal Report 90002, University of Illinois, Urbana-Champaign, 1990. 

[Gref85] }ohn J. Grefenstette, editor. Proceedings of the 1st International Conference on Genetic 
Algorithms and their Applications, Pittsburgh, July 1985. Erlbaum Associates. 

[Gref86] }.}. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE 
Transactions on Systems, Man, and Cybernetics, 16(1):122-128,January 1986. 

[Gref87] }ohn }. Grefenstette, editor. Proceedings of the 2nd International Conference on Genetic 
Algorithms and their Applications, MIT, Cambridge, July 1987. Erlbaum Associates. 

[Heij91] M.J.M. Heijligers. Time Constrained Scheduling for High Level Synthesis. Master's 
thesis, Eindhoven University of Technology, May 1991. 

[Heij95] M.J.M. Heijligers, L.J.M. Ouitmans, and }.A.G. Jess. High-level Synthesis Scheduling 
and Allocation using Genetic Algorithms. In submitted to Asia and South Pacific Design 
Automation Conference, September 1995. 

[Hofs79] D.E. Hofstadter. Godel, Escher, Bach. Vintage, 1979. 

[Holl75] J.H. Holland. Adaptation in natura[ and artificial systems : an introductory analysis with 
applications to biology, control, and artificial intelligence. University of Michigan Press, 
1975. 

[Holl85] J.H. Holland. Properties of the Bucket Brigade. In }ohn J. Grefenstette, editor, 
Proceedings of the 1 st International Conference on Genetic Algorithms and their Applications, 
pages 1-7, Pittsburgh, July 1985. Erlbaum Associates. 

[Hu61] T.C. Hu. Parallel sequencing and assembly line problerns. Operation Research, 9(6):841-
-848,November 1961. 

[Huli91] M. Hulin. Analysis of schema distributions. In R.K. Belew and L. Booker, editors, 
Proceedings of the 4th International Conference on Genetic Algorithms, pages 204-209, San 
Diego, July 1991. Morgan Kaufmann. 

[John77] D.B. Johnson. Efficient algorithms forshortest paths in sparse networks. joumal of the 
ACM,24(1):1-13, 1977. 

[Karg92] H. Kargupta, K. Deb, and D.E. Goldberg. Ordering genetic algorithms and deception. 
Illigal Report 92006, University of Illinois, Urbana-Champaign, 1992. 



71 

[Koza92] J.R. Koza. Genetic Programming; on the Programming of Computers by Means of Natural 
Selection. MIT Press, 1992. 

[Mart91] R. San Martin and J.P. Knight. Genetic Algorithms for Optimization of lntegrated 
Circuits Synthesis. In S. Forrest, editor, Proceedings of the 5th International Conference 
on Genetic Algorithms, pages 432-438. Morgan Kaufmann, 1991. 

[Mich92] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Artificial 
Intelligence. Springer Verlag, 1992. 

[Scha87] J.D. Schaffer and A. Morishima. An adaptive crossover distribution mechanism for 
genetic algorithms. In John ]. Grefenstette, editor, Proceedings of the 2nd International 
Conference on Genetic Algorithms and their Applications, pages 36-40, MIT, Cambridge, 
July 1987. Erlbaum Associates. 

[Scha89] J .D. Schaffer, editor. Proceedings of the 3rd International Conference on Genetic Algorithms, 
George Mason, June 1989. Morgan Kaufmann. 

[Spea91] W.M. Spears and K.A. De]ong. On the virtues of parameterized uniform crossover. 
In R.K. Belew and L. Booker, editors, Proceedings of the 4th International Conference on 
Genetic Algorithms, pages 230-236, San Diego, July 1991. Morgan Kaufmann. 

[Spea92] W.M. Spears. Adapting crossover in a genetic algorithm. Report AIC-92-025, Naval 
Research Laboratory AI Center, Washington, 1992. 

[Star91] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, and C. Withley. A Comparison 
of Genetic Sequencing Operators. In R.K. Belew and L. Booker, editors, Proceedings 
of the 4th International Conference on Genetic Algorithms, pages 69-76, San Diego, July 
1991. Morgan Kaufmann. 

[Sysw89] G. Syswerda. Uniform crossover in genetic algorithms. In J.D. Schaffer, editor, 
Proceedings of the 3rd International Conference on Genetic Algorithms, pages 2-9, George 
Mason, June 1989. Morgan Kaufmann. 

[Sysw91] G. Syswerda. Schedule optimization using genetic algorithms. In L. Davis, editor, 
Handbook of Genetic Algorithms, pages 332--349. Van Nostrand Reinhold, 1991. 

[Verh91] W.F.J. Verhaegh, E.H.L. Aarts, J.H.M. Korst, and P.E.R. Lippens. Improved Force­
Directed Scheduling. In Proceedings of the European Conference on Design Automation, 
pages 430-435. IEEE Computer Society Press, February 1991. 

[Wehn91] N. Wehn, M. Held, and M. Glesner. A Novel Scheduling and Allocation Approach for 
Datapath Synthesis based on Genetic Paradigms. In IFIP Working Conference on Logic 
and Architecture Synthesis, pages 47-56, Paris, 1991. 


