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Philips produces respiratory masks to treat apnoea (a sleep disorder) patients.
In order to facilitate the development of the new masks, Philips Research
creates computational tools for virtual mask fitting on 3D facial scans of the
patients. Certain mask types are designed for patients who open their mouth
during sleep, and therefore the virtual mask fitting of such types of masks
requires 3D scans with the mouth open to a certain degree. Such 3D scans are
difficult to collect. Within this context, the current work is focused on simulating
the open mouth geometry from a patient’s neutral closed mouth scan by means
of a physically-based soft tissue model. The open-mouth (deformed) state is
computed using finite element simulation software (Marc Mentat). The
proposed model consists of a double-layer structure: skin layer and skull layer,
with springs connecting them in between to simulate the sliding effect of
superficial fascia. We assume the skull layer to be rigid and we presume
different hyperelastic material models (St.Venant-Kirchhoff, Mooney-Rivilin and
Gent) for the skin layer. Besides, a morphing method is also developed for
benchmarking of the mouth-opening simulations. Finally, we compare all the
methods and transform the most effective one into a mouth-opening tool.

We have developed five methods in total for the computational tool to open
participants’ mouths virtually. Except from the morphing method, the other four
methods are based on 3D finite element soft tissue models (physically-based
models) which allow a reasonable prediction of tissue deformations resulting
from the open mouth process. The models are built based on individual facial
surface scans and generic soft tissue thickness data. Using this information,
we created our models in Lagrangian formulation. The models incorporate
geometric nonlinearity and mechanical nonlinearity of the biological tissues.
We verified our simulation results with the actual open mouth scans and
calculated the average error and standard deviation map for each method. The
methods based on the physically-based models generally outperform the
morphing methods. For the best physically-based models, the largest error
typically occurs at the cheek area and is within [—2mm, 2mm].
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TU/e Introduction

1. Introduction

Sleep apnoea is a sleep disorder when people frequently stop breathing during the night due to
closure of the upper airway, so people partially wake up many times during the night, which
causes continual sleepiness during the day and other health disorders. Sleep studies show that
6-7% of the Western population suffers from at least a mild form of apnoea, where almost 85% of
the cases remain undiagnosed and untreated. Male gender, age, overweight, low muscle tone
and snoring can increase the likelihood of apnoea up to 40%. Sleep apnoea can be effectively
treated (but not cured) by providing positive air pressure which prevents the upper airway from
obstruction. The air pressure is generated by a pump and delivered by means of a tube and a
facial mask to a patient.

A good mask should satisfy two criteria: it should be comfortable, and should be air-tight. If the
mask does not fit the face, a patient can get red marks where the mask contact is too tense, or
air leaks where the mask contact is too loose. The air leaks reduce the efficiency of the therapy
and, if the mask is leaking towards an eye, it can cause an eye inflammation. Traditionally, masks
are evolved by a trial-and-error approach where numerous variations of the mask shapes are
realized in silicone and tested on the live persons. In order to accelerate the optimization of the
mask shapes Philips has a ‘3D mask sizing’ project. In this project, Philips is developing a novel
CPAP (Continuous Positive Airway Pressure) mask advice system which facilitates the
professional mask advices given to the patients in sleep labs or DME (Durable Medical
Equipment facility). Within the mask advice system, the patients are first scanned with a 3D
scanner and then the system virtually fits the available masks to the 3D facial scans. Compared
with the physical mask fitting, virtual mask fitting is less time consuming and expensive. Indeed,
for physical mask fitting, if a mask does not fit, it cannot be fitted to another patient due to
hygienic restrictions while the average price of a CPAP mask is about $100. Since there are
masks from different vendors and sizes (like small, medium and large) available, it is difficult for
the doctor to pick the right mask for the patient. Thus, a virtual mask fitting system provides a
solution for the doctor and the patient who can virtually try several masks at no cost. Based on all
the advantages listed above, the virtual mask advice system can increase the percentage of the
patients who are satisfied with the therapy and continue the treatment. The patients complying
with the therapy generate a significant part of income of Philips Respironics since the mask has
the life time of 3-6 months after which a new mask should be purchased.

1.1. Objective

The virtual mask fitting system requires accurate and realistic models for quantitative assessment
of the patient comfort for different mask types. For a patient who opens his/her mouth during
sleep, a full face mask which covers both the mouth and the nose is needed to provide proper
pressure through the mouth and nose. see Figure 1.1. The advice of the full face masks should
be naturally based on the open mouth 3D facial scans. However, people do not correctly interpret
the ‘open mouth’ (to the extent during their sleep) command. In Figure 1.2, we show the four
open mouth sample scans. One can see that the participants open their mouths in different ways.
The left-most one opened her mouth really widely while the right most man’s mouth opening is
barely visible.

Motivated by above facts, the main objective of my graduation project is to “open” the
participants’ mouths in a uniform way given his/her neutral (closed-mouth) facial scan and
possibly other information about the face (e.g. the thickness of the soft tissue). In other words, |
am going to develop a computational tool which gives reasonably accurate prediction on the
open mouth geometry based on the closed mouth scans and the desirable open mouth angle.



Introduction TU /e

Figure 1.2 Sample open mouth scans

1.2. Problem description

To simulate the mouth opening process, we need a reliable human face model with suitable
mathematical boundary conditions. To derive a satisfactory model, we have to address the
following two sub-problems:

o How to do the geometric modelling
¢ How to do the mechanical modelling

The geometric modelling involves the capturing of complex facial surface feature, mesh
generation and the processing of volumetric data (for example the soft tissue thickness
information obtained from CT or MRI data) from the surface processing.

The mechanical model consists of a proper constitutive relation (which means that it can
reasonably well represent the material properties), a suitable physical conservation law to obey,
and appropriate boundary conditions.

1.3. Solution approach

The overview of our simulation pipeline is depicted below. Detailed explanations on each step will
be given in Section 4.4.
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Figure 1.3 Solution approach
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1.4. Outline

The thesis is organized as follows: Section 2 gives a review of the state-of-art in soft tissue
modelling. Then some useful biological and continuum mechanical background knowledge is
presented in Section 3. We will give a detailed mathematical description on the models
developed in this project and implementation details in Section 4. Next, simulation results and
discussions are presented in Section 5. Conclusion and suggestions for further work will be given

in the last section.
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2. State of the art of facial soft tissue modelling

A considerable amount of studies on facial soft-tissue modelling have been performed over the
past three decades. Early works such as [1] restricted themselves to pure geometric
deformations (so-called non-physical models). However, with physically based modelling, more
realistic facial models arose. First, it was based on mass spring systems and finite difference
schemes. Later researchers applied the finite element method for the solution of the related
partial differential equations. Below we will only focus on the important physically based models.

Depending on the computational methods, most models fall into three main categories: mass-

spring models (MSM), models based on a finite element method (FEM), and other models.

2.1. Mass-spring models

Mass-spring models consist of a set of mass points linked by springs and possibly dampers. In
the simplest formulation, the equation of motion of a point i is:

P SO L )
2 = iLj - ’

dt dt JEN(D) ”n]”

where 7 is the displacement vector of node i. 7, = 7, — 7; is the direction vector. yu is the mass, y
the damping factor and K; ; the stiffness of the spring connecting point i and points j in the
neighbourhood N (i) of point i.

MSM were widely accepted for real-time application over the last twenty-five years. Early work
focused on facial animation based on the masses and the springs. Waters [2] defined springs on
layered regular lattices and used biphasic springs with two stiffness parameters to match the
stress/strain curve of soft tissue described in a biomechanical study. Keeve et al. [3] deployed a
similar approach for modelling fat tissues, but with the addition of a volume-preservation force
intended to model the incompressibility of human soft tissue. Later, Keeve et al. [4] proposed
another model with the assigned spring stiffness which depends on the elasticity of the soft tissue
type, layer thickness and the size of the tissue elements. In [5], an alternative formulation of
mass-spring systems was presented, where the model enables the user to specify the anisotropy
independently of the geometry of the underlying mesh. Moreover, a method for generating
constant volume deformation was proposed.

The main advantages of spring models over finite element based models are their ease of
implementation (since they do not require continuous parameterization) and their computational
efficiency. However, they suffer the following problems in soft tissue modelling [6]:

e Topological design
The topology of the mass-spring models is very important. Because under-constrained
systems will fall into unwanted local minima, while over-constrained systems will
decrease the range of deformation.

¢ Validity of deformations
The deformation results induced by springs-mass system cannot be easily compared to
those given by biomechanical studies because springs do not rely on continuum
mechanics. Compared with FEM models, one of the major disadvantages of mass-spring
models is the inability to increase the precision of the model using the same mesh
structure (e.g. by doubling the amount of nodal points in the model).

Below shows a typical mass-spring model structure:

8
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Nonlinear Springs Linear Springs

Figure 2.1Mass-spring model structure

2.2. FEM-based models

The finite element method is widely used in the engineering world. FEM-based models are
superior to most other models when accurate solution of continuum mechanics problems with
complex geometry has to be found. It also provides the most flexible modeling platform free of all
limitations with respect to the material type and the boundary conditions. FEM has strong
biomechanical relevance at the cost of high computational effort, especially for complex geometry
and large deformations.

Unlike mass-spring models starting with a discrete object model, FEM-based models consider a
deformable object as a continuum: a solid body with mass and energies distributed throughout.
FEM is used to find an approximation for a continuous function that satisfies some equilibrium
equations. In FEM, a body is discretized as a set of basic elements (triangles, quadrilaterals,
tetrahedra, prisms, etc.) on which shape functions with compact support are defined. This leads
to continuous representation with varying levels of continuity. A finite element model is
represented by the node displacement vector u. The equilibrium equations together with stress-
strain relationship lead to the equation f(u) = 0. This equation can also be derived by the
principle of minimization of the strain energy or by the principle of virtual work. Below, a review of
existing and relevant FEM-based soft tissue models is given.

Back in 1986, Larrabee [7] presented a finite element model of skin deformation. The work is
followed by Deng’s PhD thesis [8]. Later, Keeve et al. [9] proposed an anatomy-based linear finite
prismatic element model which is based on CT volume data and laser scans. Koch et al. [10]
simulated facial surgery using a surface-based FEM model with springs (combined with struts
spring structure refinement) to represent the soft tissue layer. However, this model lacks the true
volumetric physics although the stiffness of the springs is derived from CT-scan images. By
employing a similar approach but adding a muscle model, an emotion editor is created in [11]. A
true volumetric FEM model was proposed in [12] for facial surgery simulation with the capability
of incorporating incompressibility. However this model was restricted to the linear elastic theory
and thus not suitable for large deformations. To achieve higher accuracy, Roth et al. [13]
developed the tetrahedral Bernstein-Bézier elements by combining the finite element method with
Bernstein-Bézier representation. Later they upgraded the globally C°-continuous surface to the
C*-continuous model [14]. Nebel [15] introduced a soft tissue model which only relies on 3D scan
data by presuming generic soft tissue structure shape and mechanical parameters. In [16], Cotin
presented three different models, based on linear elasticity theory and the finite element method,
which are well suited for surgery simulation with a strong focus on real-time application.

Since linear elasticity approximates the deformation accurately only when the deformation is
small, researchers started to develop FEM-based models using non-linear elasticity theory.
Guillaume et al. [17] implemented St.Venant-Kirchhoff elasticity and incompressibility constraints.
A comparison was carried out between results (displacement in the chin area resulting from bone
realignment) computed with a linear elastic model, a geometrical nonlinear model and a physical
nonlinear model in E. Gladilin’s work [18].
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To model the anisotropic effect, Chabanas et al. [19] presented a layered element structure
model, in which they assigned different mechanical properties to elements on different layers
(dermis and hypodermis). Wang and Yang [20] first investigated the hyperelastic models of the
facial soft tissues and then proposed a novel non-linear biomechanical model based on mixed
elements, which is designed to address the heterogeneity in geometry and mechanical
properties. Hung et al. [21] presented a four-layer model, with all layers treated as non-linear
isotropic Mooney Rivilin materials, which aims at simulating wrinkling in facial soft tissue
composite. In Bledie et al. [22], a finite element facial model was created, based on patient
specific bone and skin image data, combined with generic muscle data employing commercial
FEM software.

Simulation of deformable objects becomes a hot topic in biomedical engineering, computational
physics, and computer graphics. Except from mass-spring models and FEM-based models, there
are a lot of other models that have been proposed over the past decades:

2.3. Other models

1) Mass-tensor model (MTM)
MTM was originally developed to find a golden mean between speed and accuracy,
later it was extended to non-linear, anisotropic elasticity. Recently, linear MTM was
successfully applied to cranio-maxillofacial surgeries [16].

2) Boundary Element Method-based models (BEM)

BEM is a physically accurate method restricting the computation domain on
boundaries. It computes the deformation by numerically solving the boundary
integration equation on a surface mesh. Since the global matrix of BEM is dense and
asymmetric and needs to be updated each step, James and Pai [23] use a multi-
resolution Green’s Function to accelerate the computation of the BEM matrix. In [24],
BEM is coupled with a mass-spring constraint model. The work is devoted to provide
visually accurate results for surgical trainees and to work efficiently in a real-time
simulator.

3) Molecular model [25]
This method can be seen as a generalized mass-spring model, where mass points are,
in fact, spherical mass regions called molecules. Elastic forces are then established
between molecules by a spring-like connection. [23] also aims at integrating properties
of materials to define the stiffness of such spring-like connections.

10
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3. Background knowledge

To build a realistic facial tissue model, knowledge from the following fields of study is needed.

e Biological knowledge
e Elasticity theory

This section consists of two subsections: The first subsection gives a basic introduction to the
anatomy of human facial soft tissue and its mechanical properties. The second subsection covers
the basics in elasticity theory which will be used in the mathematical description of the model in
Section 4.

3.1. Facial soft tissue structure and property

3.1.1. Facial soft tissue anatomy

Facial soft tissue includes various structures: skin, muscle, fascia vasa, nerves etc.. Below we
will give a brief description on skin, muscle and fascia.

Skin

The integument or skin is the largest organ of the body, making up 16% of body weight, with a
surface area of 1.8m? . It has a multicomponent microstructure, the basis of which is an
intertwined network of collagen, nerve fibers, small blood vessels and lymphatic, covered by a
layer of epithelium and transfixed at intervals by hairs and the ducts of sweat glands, as
illustrated in Figure 3.1. Skin is a dynamic organ in a constant state of change, as cells of the
outer layers are continuously shed and replaced by inner cells moving up to the surface.
Although structurally consistent throughout the body, skin varies in thickness according to
anatomical site and age of the individual. Skin varies in thickness over the face: around the eyes
it is thin, whereas around the lips it is thick. Skin thickness is less in women than in men, giving a
luster to the skin surface of women.

Hair shaft

Pore
Dermal papillae
Epidermis (papillary layer of dermis)
Meissner’'s corpuscle
7l Free nerve ending
i w’— Reticular layer of dermis
W ': Sah is (oil) gland
Dermis ' Arrector pili muscle
Sensory nerve fiber
Eccrine sweat gland
Pacinian corpuscle
Hypodermis
(superficial Artery
fascia) Vein
Hair root Adipose tissue
Hair follicle
Hair follicle receptor
Eccrine sweat gland (root hair plexus)
Copyright © 2004 Pearson Education, Inc.. publishing ns Benjamin Cummings.

Figure 3.1 Typical human skin structures
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Human skin has a layered structure consisting of the epidermis and the dermis. The epidermis is
the outer layer, serving as the physical and chemical barrier between the interior body and
exterior environment; the dermis is the deeper layer providing the structural support of the skin.

e The epidermis

The epidermis is stratified squamous epithelium. The main cells of the epidermis are the
keratinocytes, which synthesize the protein keratin. The four separate layers of the
epidermis are formed by the differing stages of keratin maturation. The epidermis varies
in thickness from 0.05 mm on the eye lids to 0.8+1.5 mm on the soles of the feet and
palms of the hand. Moving from the lower layers upwards to the surface, the four layers
of the epidermis are:

1. stratum basale (basal or germinativum cell layer)

2. stratum spinosum (spinous or prickle cell layer)

3. stratum granulosum (granular cell layer)

4. stratum corneum (horny layer)

e The dermis

The dermis consists of irregular, moderately dense, soft connective tissue. Its matrix
consists of an interwoven collagenous network, with varying content of elastin fibers,
proteoglycans, fibronectin and other matrix components, blood vessels, lymphatic
vessels and nerves. The dermis varies in thickness, ranging from 0.6 mm on the eye lids
to 3 mm on the back, palms and soles. It is found below the epidermis and is composed
of a tough, supportive cell matrix. Two layers comprise the dermis: a thin papillary layer
and a thicker reticular layer.

The papillary dermis lies below and connects with the epidermis. It contains thin loosely
arranged collagen fibers. Thicker bundles of collagen run parallel to the skin surface in
the deeper reticular layer, which extends from the base of the papillary layer to the
subcutaneous tissue. The dermis is made up of fibroblasts, which produce collagen,
elastin and structural proteoglycans, together with immune-competent mast cells and
macrophages. Collagen fibers make up 70% of the dermis, giving it strength and
toughness. Elastin maintains normal elasticity and flexibility while proteoglycans provide
viscosity and hydration. Embedded within the fibrous tissue of the dermis are the dermal
vasculature, lymphatic, nervous cells and fibers, sweat glands, hair roots and small
guantities of striated muscle.

Fascia

There are two types of fascia existing in facial soft tissue: superficial fascia and deep fascia.
Underneath skin is a loose connective tissue layer. This is the superficial fascia (also called the
subcutaneous or hypodermis). It consists of adipose tissue distributed in a network of connective
fibers. This connective tissue is mostly collagen arranged in a lattice with fat cells. Thus it is an
important depot of fat. For different age, gender or different places on face, it contains different
levels of fat. For example, between males and females there is a difference in the underlying fat
tissue, there being less in men than in women. It usually has the least fat at forehead and nose
and the most at cheeks. Superficial fascia stores fat, anchors the skin to the underlying structures
(mostly to muscles), but loosely enough that the skin can slide relatively freely over those
structures.

Beneath the superficial fascia lies the deep fascia, which coats the bones or other tissues. It is
also the landing point of certain muscles.

Muscle
The muscles of the face are commonly known as the muscles of facial expression. Some facial
muscles also perform other important functions, such as moving the cheeks and lips during

12
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chewing, swallowing, and speech. The muscles of facial expression are superficial, and all attach
to a layer of subcutaneous and skin at their insertion. Some of the muscles attach to skin at both
the origin and the insertion. Generally, three types of muscle can be discerned as the primary
motion muscles: linear/parallel muscles, elliptical/circular sphincter-type muscles and sheet
muscles.

The main movement involved in mouth opening is the mandible motion. In this complex process,
muscles work in groups with other muscles to perform a smooth, balanced, coordinated series of
movement of the mandible. Figure 3.2 illustrates the muscle distribution over the lower face.

M. oincisivis labil superior)s

M, caninus

Pars teansverss . smasalis

Ohrbita

AL depressor
Aepali
Fars afarks
M. pvponmticns m, nazulis

Glandnia paraetis M, erbiculuris

arla

M. masselor

M. Buceinater
M. trinngulariz A mentalis
DL 5

ML imclsivas abii inferioris

Figure 3.2 Lower face muscle distribution

3.1.2. General mechanical properties of soft tissue

There are numerous publications about biomechanical properties of soft tissues. Summarizing
the facts observed from various experiments with different tissue types, soft tissue generally
exhibits nonhomogeneous, anisotropic, quasi-incompressible, non-linear and plastic-viscoelastic
material properties [28]. Below | am going to explain those properties one by one.

e Heterogeneity and anisotropy

Soft tissues are multi-composite materials containing cells, intracellular matrix, fibrous
and other microscopic structures. Consequently, the mechanical properties of living
tissues, e.g. material stiffness and compressibility, depend on the spatial direction. But
since the heterogeneity and the anisotropy of microscopic structures can hardly be
obtained from the available data, these properties are seldomly considered in a discrete
macroscopic model.
e Plasticity

In physics, plasticity describes the large deformations of a material which undergoes
irreversible energy dissipation and material destruction. Largely deformed soft tissue
shows plastic behaviour. It is worth pointing out that during the mouth-opening process
there is no deformation large enough to cause plastic behaviour, therefore the plasticity
property is not relevant in the present project.

e Viscoelasticity

13



Background knowledge TU/E

The time-dependent material behaviour is called viscoelasticity. Different from a purely
elastic material, a viscoelastic solid does not respond to loading and unloading
immediately, but with an exponential delay, which is known as creep and recovery. For
the purpose of our project, we do not take into account this property, since we are only
interested in its static state.

e Quasi-incompressibility
A material is called incompressible if its volume remains unchanged by the deformation.
Soft tissue is a composite material that consists of both incompressible and compressible
ingredients. Due to the high proportion of water, soft tissue is assumed to be quasi-
incompressible (not totally incompressible but close). In this project, we describe facial
tissue as a quasi-incompressible material and further treatments on quasi-
incompressibility will be given in Section 4.

e Nonlinearity

There are two kinds of nonlinearities, which are relevant for the modelling of deformable
soft tissue. The nonlinear relationship between strain and displacement is known as the
geometrical nonlinearity. This type of nonlinearity is an intrinsic property of any
mechanical continuum independently from its material properties. Another type of
nonlinearity is caused by the nonlinear stress — strain relationship. This kind of
nonlinearity is called the physical nonlinearity.

Figure 3.3 illustrates intuitively the nonhomogeneity of human skin by showing the complex
anatomic structure in the nose and paranasal sinuses cross section:

Nasal veszibule
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preess of Mudial grerypoid
randibik: Ll
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Figure 3.3 Nose and paranasal sinuses: cross section [26]

3.1.3. Human facial soft tissue and its mechanical properties

After discussing the general properties of soft tissue, we limit our focus on the facial soft tissue.
Just as pointed out in the human facial anatomy section, the facial composite is logically
separated into layers (epidermis, dermis, superficial fascia and muscle) due to the significant
difference in mechanical properties between the layers.
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The epidermis is thin (around 2.5% of the dermis thickness) and comprised of dead cells. It is
considered to be insignificant in terms of mechanical properties. The dermis is primarily
responsible for the mechanical properties of skin as a result of the interaction of two cellular
bases: collagen (about 75% of skin dry weight) and elastin (about 4% of skin dry weight).

Collagen, the basic structural element for soft and hard tissues in animals, gives mechanical
integrity and strength to our bodies. It has a strong stress response to applied load and has a
limited range of deformation. Collagen fibers are the main constituent of the dermis and form an
irregular network of wavy coiled fibers that run almost parallel with the skin surface [29]. Collagen
is characterized by high strength (tensile strength of 1.5-3.5MPa), low extensibility (rupture at
strains in the order of 5-6%), and high stiffness (Young’s modulus approximately 0.1GPa to 1GPa
in the linear region). The width of the bundles is 1-40um [30].

Elastin fibers are the second main component of the dermis. Elastin is the most “linearly” elastic
bio-solid material known. It is less stiff than collagen. The fiber width is 0.5-8um. The behaviour
of elastin is very similar to an ideal rubber with an essentially linear stress/strain response over a
wide range of deformations [29]. The stress-strain curve of elastin is shown in Figure 3.4:

© 100
ELASTIN
Lig. Nuchas denatured
sol
a— m B
()
L Control
40 -
Specimen
fixed at zero stretch
in 10% formalin
s0F
0 L 40 r L
0 5 1 15 20

% Strain = (4L/L) - 100
Figure 3.4 the stress-strain curve of elastin [29]

Figure 3.5 gives the strain/stress curve of human skin in uniaxial tension case:
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Figure 3.5 Stress-strain relationship of skin in different stages [31]

The stress-strain curve of skin for uniaxial tension is nonlinear due to the non-uniformity of its
structure, as can be seen in Figure 3.5. The curve can be divided into four stages. In the first
stage the contribution of response of the undulated collagen fibers can be neglected and elastin
is mainly responsible for the skin stretching. Thus the stress-strain relation is approximately linear
with a Young’s modulus of approximately 5kPa according to Daly [32] (see Figure 3.6), since
elastin can be considered as a ‘“linear” elastic material. In the second phase, a gradual
straightening of an increasing fraction of the collagen fibers causes an increase in stiffness. In the
third phase all collagen fibers are straight and the stress-strain relation becomes linear again.
Beyond the third phase, rupture of the fibers occurs.
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Figure 3.6 Stress-strain curve of human skin at low stress [32]

3.2. Elasticity theory

In the biological world, atoms and molecules are organized into cells, tissues, organs and
individual organism. At the atomic and molecular level the movement of matter must be analysed
with quantum, relativistic, and statistical mechanics [29]. At the cellular, tissue, organ and
organism level, it is usually sufficient to take Newton’s law of motion as an axiom. In this context,
we consider the tissue level. In these systems it is convenient to consider the material as a
continuum. Below, the several fundamental solid mechanics concepts are presented which will
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be crucial in the later mathematical analysis of the FEM-based soft tissue models.

3.2.1. Basic concepts in solid mechanics

The basic solid mechanics concepts we are going to introduce include: Cauchy stress tensor,
strain, Green'’s strain tensor, Cauchy’s infinitesimal strain tensor, left and right Cauchy-Green
deformation tensor, internal virtual work and the second Piola-Kirchhoff stress tensor.

Cauchy stress tensor
Let the cross-section of a body be A, and let the force that acts in the tissue be F. The ratio

F
7=

is the stress in the body. The basic unit of stress is Newton per square meter (N/m?) or Pascal
(Pa). 1 Pa = 1N/m?.We define the stress vector

where a subscript v is used to indicate the relevance of the normal direction of the surface dS.
Thus vector T, represents the force per unit area acting on the surface.

Imagine a little cube in the body. Consider a set of rectangular Cartesian coordinates x,, x,, x5.
Let the surface of the cube normal to x; be denoted by AS,. Let the stress vector that acts on the
surface AS, be T,. Resolve T; into three components in the direction of the coordinate axes and
denote these by o,4,01,,0,3. Similarly, we treat the x,,x; directions. The 3 x 3 matrix g;; is
defined as Cauchy stress tensor. Below is an illustration about the Cauchy stress tensor:

Tles)

Figure 3.7 Cauchy stress tensor illustration

Cauchy observed that the stress vector T across a surface will always be a linear function of the
surface's normal vector v, the unit-length vector that is perpendicular to it. That is, T = a(v),
where the function ¢ satisfies

o(av; + pvy) = ac(vy) + fo(vy),

for any vectors vy, v, and any real numbers ¢, §. With the fundamental laws of conservation of
linear momentum and static equilibrium of forces, we derive the linear relation between T and v.

T=o0=x*v,

where “+” is matrix multiplication. Note that it can be shown that if a body satisfies rotational
equilibrium, then its stress tensor is symmetric.
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Strain

Deformation of a solid is described by strain. Take a string of initial length L,, and its stretched
length L. Use dimensionless ratios to eliminate the absolute length from consideration, then the
following strain measures can be defined:

Other strain measure examples include:
Green strain:

12-13
Eg 2L2 ’
and Euler-Almansi strain:
2-13%
€ =77
2L%

It is obvious that in infinitesimally small elongations all the above strain measures are
asymptotically equal. However, in finite elongations, they are different.

Green strain tensor
To adopt a more general treatment of the matter, we introduce the concept of strain tensor.
Below, we will give the derivation of Green strain tensor.
Firstly, a particle P in a body located originally at a place with coordinates (X,, X;, X5) is moved to
the place with coordinates (x;,x,,x3), when the body deforms. The vector uis called the
displacement vector of the particle. Clearly,

u1 = xl _Xlﬁ uz =x2 _XZ, u3 =X3 —X3.
The deformation of the body is known if x;, x,, x3 are known functions of X;, X,, X5 and time ¢:

%= ¢(X,1),

where % = (x1,%,,%3), and X = (X;,X,,X3). We assume that the transformation is one-to-one.
Namely, the function above has a unique inverse,

X =¢ (1),
for every point in the body.
To study the stretching and distortion of the body, it is sufficient if we know the change of
distance between any arbitrary pair of points. In the original configuration, consider an
infinitesimal line element connecting the point P(X;, X5, X5) and P'(X; + dX;, X, + dX,, X5 + dX5).
The length ds, of PP’ in the original configuration is given by:

ds2 = dX? + dX? + dX2.

When Pand P’ are deformed to points Q(xq,x,,%x3) and Q'(x; + dxqy,x, + dx,, x3 + dxs3),
respectively, the distance of the length ds of the new element QQ' is

ds? = dx? + dx? + dx3.
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By the deformation function, we have

_ axi

X,

dxl- = an de dXi = a—xjdx]',
ds? = 5, 2% 9% 44 ds? = 5,25 9% 4x ax
S0 = %) 0x; 0x,, 16X = Yoa,da, ™ b

Note that repetition of an index in a single term means a summation over the whole range of
index and this notation will be used later throughout the report whenever a summation symbol is
not used. Hence, the difference between the square of the length elements may be written as:

0x, 0xp
“P9X; 0X;
09X, 0Xg
ng - dsz = (611 — 60!13 a—)Cla—x] dxide.

dsz - dsg = (6 611) XmdX],

We define the Green strain tensor E and Almansi strain tensor e as:

E _1(0x,0x, s
YT 2\ox 0x, Y)

1 90X, 0X,

Note that E and e are symmetric. Based on this derivation, we observe that Green strain tensor
measures the change of distance between two arbitrary points in the body before and after the
deformation. Thus, we can conclude that Green strain tensor is invariant under rigid body motion,
since during rigid body motion the distance between any points in the body stays the same.

Cauchy’s infinitesimal strain tensor

If the first derivatives of the components of displacement u; are so small that the squares and
products of the partial derivatives of u; are negligible compared with the first order terms, then e;;
reduces to Cauchy'’s infinitesimal strain tensor :

_ 1 au]' n 6ui
Eij B 2 axi 6x] '

We can see that fact by writing e in another form (in terms of displacement gradient),

1/0u; 0Ou; Ouy Ouy
el-j =§ -— -_— B

6xi ax]'

Bxl- 0_x}
Similarly, for E:

1/0u; Ou; Ouy duy
=l ),
2\0X; 0X; 0X; 0X;

Cauchy’s infinitesimal strain tensor is the linear part of Almansi’s strain tensor. It is worth noting
that Green/Almansi strain tensor measures the deformations exactly and holds for any amount of
deformation, while Cauchy’s infinitesimal strain tensor only holds for small displacement, small
rotation and small strain deformation.

Left and right Cauchy-Green deformation tensor
We have defined a motion mathematically by a mapping between initial and current particle
positions as:

19



Background knowledge TU /E

i=p(Xt),

where x denotes the current coordinate of the particle X from the original configuration. We define
the deformation gradient tensor F as

d¢
F=—A=V )
0% o

where V,2 d/0X, denotes the spatial derivatives are taken with respect to the original
configuration. It is easy to check that:

d¥ = FdX.
Thus F maps the material fibers in the original or reference configuration into the corresponding
material fibers in the current configuration. The deformation gradient tensor describes the
deformations (rotations and stretches) of each material fiber. A useful decomposition of F is polar
decomposition:

F =RU,

where R is a rotation tensor (thus orthogonal matrix), and U is a stretch tensor. Using the
deformation tensor we can describe the right Cauchy-Green deformation tensor C, as

C=FTF=UTRTRU =U"U,
since RTR = I. We see that the right Cauchy-Green deformation tensor is only composed of the
stress component of the deformation tensor. Namely, Cis invariant under rigid body motion.
Choosing U to be a symmetric tensor, it can be uniquely determined via the relation:
U?=c.

Note that using the concept of stretch (ratio), one can show that C is a symmetric positive definite
tensor and therefore, has real positive eigenvalues (they are called the principal stretches, see
later).The left Cauchy-Green deformation tensor B is defined as

B =FFT.

Note that a useful relation between right Cauchy-Green deformation tensor and Green strain
tensor is:

1
E=5(C-D.

Internal virtual work

Consider a volume Q occupied by an elastic material with the boundary dQ and exterior normal n.
Two types of forces can act on Q: body force, which is described by a force density f and forces
acting on the boundary dQ which are assumed to have the form o -n, where ¢ is the Cauchy
stress tensor. Summing body forces and boundary forces, we obtain that the total net force F on
Qis

F=ffdx+f o-nds.
Q a0

Using the divergence theorem on the surface integral, we obtain
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F=fﬂ(f+v-a)dx.

We define the residual force per unit volume r as:

r=Vo+f.
Let Su denote an arbitrary compatible virtual displacement from the current position of the body.
Note that by “compatible”, we mean that the virtual displacement should satisfy the essential

boundary conditions (if any). The virtual work, §W, per unit volume done by the residual force
r during this virtual motion is r - du. Thus, the total virtual work of the body is:

6W=f(f+V-a)-6udv.
Q

Together, using the Gauss theorem, we get:
V-(céu) = (V-0) - Su + 0: Véu.
Here we introduce the contraction operator:
3
A:B 2 Z AijBi; = tr(ATB),
ij=1

for any two 3 x 3 matrices A and B.The internal virtual work related to stress is defined by:
SWine = fa:Vdu dv.
Q

Further, we can decompose the matrix Véu into symmetric and anti-symmetric parts, viz.

_A+AT+(A—AT)
) 2

for any matrix A. Then we can derive that:

Wine = fa:&e dv,
Q

where e = %(V(Su + (véu)T) is the Cauchy infinitesimal strain tensor correspond to the virtual

displacement. Note that we have used the fact that for a symmetric matrix A (in this case o) and
an anti-symmetric matrix with zero diagonal B (the anti-symmetric part of Véu):

A:B = 0.

The pair ¢ and € are said to be energetically conjugate with respect to the current deformed
volume in the sense that their product gives work per unit time and per current volume. If we
express the virtual work equation in a material coordinate system, an alternative work conjugate
pair will appear. The new pairs with respect to the original body configuration will be presented in
the next section.

The second Piola-Kirchhoff stress tensor
The internal virtual work is expressed in terms of Cauchy stress whose physical meaning is force
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per current configuration area. Notice that the current configuration is usually unknown (to be
calculated), it would be convenient to “pull-back” the expression to the original configuration
where we do know its configuration.

Let J = detF, it can be shown that J gives the volume change. Namely, dv = JdV. The internal
virtual work done by the stress is expressed as:

Wit = fa: de dsz- T:6e dV,
Q Qo

where Q° denotes the original configuration and = = Jo is the Kirchhoff stress tensor. To eliminate
the spatial quantities in the expression like §e, we can express the internal work alternatively as:

SWine = f GoFT):8F dv.
Q

Define

P=JoFT,
as the first Piola-Kirchhoff stress tensor. We have omitted the derivation here, for details see [33].
A loose physical interpretation of the first Piola-Kirchhoff stress tensor is the current force per unit

of undeformed area. From this equation, we find that P is energetically conjugate with F in a
material coordinate system.

The 2nd Piola—Kirchhoff stress tensor S relates forces in the original configuration to areas in the

original configuration via a mapping that preserves the relative relationship between the force
direction and the area normal in the original configuration. It is defined as:

S =JF1gFT.

If we express the internal virtual work in terms of the second Piola-Kirchhoff stress tensor, we
obtain (for derivation details see [33]):

SWine = f S:8E dV,
0o

where E is the Green strain tensor. From this equation, we find that S is energetically conjugate
with E in a material coordinate system.

An important property of the second Piola-Kirchhoff stress tensor is that it stays invariant under
rigid body motion. This can be shown from applying a rotation (multiplying with an orthogonal
matrix R) to the current configuration, then the new stress tensor S’ can be written as:

S' =J'(RF)"Y(RoRT)(RF)T = JF1gF T = §.

Note that under rigid body motion the volume of the body does not change, thus | =J'.

3.2.2. Material constitutive equations (linear/hyper-elasticity)

Having introduced the basics in solid mechanics, we are now ready to present the constitutive
equations which define the material. We will present two main classes of material: Hookean
elastic solid and hyperelastic solid.
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Hookean elastic solid
A Hookean elastic solid is a solid that obeys Hooke’s law, which states that the stress tensor is
linearly proportional to the strain tensor, i.e.:

Oij = Lijki€kir

where g;; is the Cauchy stress tensor, ¢, is Cauchy’s infinitesimal strain tensor, and C;jy, is the
tensor of elastic constants, which are independent of stress or strain.

When a material is isotropic, the array of elastic constants C;j; remains unchanged with respect
to rotation and reflection of coordinates, a great reduction in the number of elastic constants is
obtained. As a result, we get the isotropic Hookean solid constitutive relation as:

O-ij = Aeaaéij + 2.[16_1]
The constants 1 and u are called the Lamé constants, which are usually defined by

E Ev

KEraTyy AT Orwa=zy

where E is Young's elastic modulus, and v is Poisson’s ratio. The physical interpretations of
these two constants are: if we consider a two-dimensional problem, Young’s modulus is the slope
of the stress-strain curve; the Poisson’s ratio is the ratio of the contraction of the surface in one
dimension when one elongates it in the other. Note that Young’s modulus is always a positive
number and has the unit as pressure (Pascal) and Poisson ratio’s dimensionless constant varies
between —0.1 and 0.5.

In engineering notation, the strain tensor € can be written as a vector due to symmetry, viz.,
— T
€ = [€11, €22, €33, 2612, 2653, 2€31]".
Likewise, the stress tensor o:
— T
0 = [011, 032, 033, 012,023, 031]" .

Hooke’s law can then be rewritten as

o = De,
where the 6 x 6 matrix Dis given by

A+ 2u A A 0 0O

[ A A+2u A 0 o0 0]

D= A A A+2u 0 0 0
1 0 0 0 u 0 0f

0 0 0 0 u O

| 0 0 0 00 ,uJ

where the constants 1 and u are Lamé constants mentioned earlier.

Hyperelastic solid

When the work done by the stress during a deformation process is dependent only on the initial
state at time t, and the final configuration at time t, the behavior of the material is said to be
path-independent and the material is termed hyperelastic. Now we will present several useful
aspects related to hyperelastic materials which will help us understand the hyperelastic models
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that we are going to use later. For the detailed content of this section, we refer to [34].

Strain energy density function

In order to deform an elastic body, certain amount of work is required. It is stored in the body as
strain energy. Due to the path-independent property of hyperelastic material, the strain energy
function ¥ can be established as the work done by the stress from the initial to the current

position as:
t

Y(F(X),X) = f P(F(X),X): F dt,

to

where F is the deformation tensor, and F, its derivative with respect to time and P is the first
Piola-Kirchhoff stress tensor. Note that we have used the fact that P and F are energetically
conjugate.

Since the elastic potential must remain invariant under a rigid body rotation, ¥ should depend on
F only via the stretch component U and independent of R. Hence, ¥ is usually expressed as a
function of ¢ = U? = FTF as:

Y(F(X),X) =¥Y(CX),X).

Thus the constitutive relations can be obtained by observing that

=2l
SacTT 27
Le=k
2 - )’
v o¥
SEEX =252 =

where S is the second Piola-Kirchhoff stress tensor and C is the right Cauchy deformation tensor
and E is the Green strain tensor.This equation is often used as a definition of a hyperelastic
material. In other words, the constitutive equation of a hyperelastic material is determined by the
strain energy function.

Isotropic material
Because of the isotropic property, we expect that the relationship between ¥ and C must be
independent of the material axes. Therefore, ¥ should only be a function of the invariants of C,
as:

w(CX),X) =Y, 1,1, X),

where I, 11; and I1I. are the invariants of C. They are intrinsic magnitudes and remain invariant
under the rotation of axes. They are defined as:

3
IC =trC =ZCii,
i=1

I, = C:C = tr(CTC),
111, = det C.

Their relation with the principal stretches (the eigenvalues of C) 1,,1,, 5 is:
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IC =/‘11+12 +A3,
IIC = 11/’{2 + 11/’{3 + 12/’{3,

IIIC = 11/122,3.

After some computation, the second Piola-Kirchhoff stress can be evaluated in terms of
invariants of C as:

where ¥, = FY LY

S = 21‘1"1 + 4’1‘1"”(: + 2]21‘1"[”6‘_1,

ow oYy oY
i’ T e T T aig

Material models and uniaxial tension test

Below we introduce five hyperelastic material models which have been used (or suggested to be
used) in soft tissue modelling over the years. Then, a figure showing stress-strain relationship
under uniaxial test of different material models is given as an illustration of the difference
between the material models. Note that except from the St.Venant-Kirchhoff model, the rest of
the strain density functions are given for the case when the material is totally incompressible.
Thus, the strain density function is stated with the implicit constraint 111, = 1.

1.

St.Venant-Kirchhoff model

The simplest example of a hyperelastic material is the St.Venant-Kirchhoff model, which
is defined by a strain energy density function ¥ as:

1
Y(E) = El(trE)z + uE:E,

where A and p are Lamé constants and E is Green strain tensor. We can obtain the
second Piola-Kirchhoff stress tensor as

S = A(trE)] + 2uE.

Note that the last equation is analogous to the constitutive relation in linear elasticity,
where Cauchy’s infinitesimal strain tensor has been replaced by the Green strain tensor
and Cauchy stress has been replaced by the second Piola-Kirchhoff stress tensor.
Although St.Venant-Kirchhoff material has been found to be of little practical use beyond
the small strain regime, it takes the geometric nonlinearity into account and is thus
suitable for large displacement, large rotation but small strain problems. This will be
explained with more details in Section 4.1.3.

Mooney-Rivilin model
A general form for the strain energy density function of incompressible rubbers
attributable to Mooney and Rivilin is expressed as:

W) = ) Culle =3 (Ul - 3%,
7,520

where I, and Il are the first and the second invariant of C respectively. The most
frequently used from this family of equations is obtained when only Cy, and C;, are
different from zero. In this particular case we have:
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W(C) = CyoUc —3) + Cor (¢ — 3).
Since #(= 2(Cyo + Co1)) denotes the shear modulus (non-negative), thus we need

Cig+Cy = 0.

3. Neo-Hookean model
With Cy; = 0, Neo-Hookean material is defined by a hyperelastic strain energy density
function ¥ given as:

Y = CI(IC - 3)

In this case, u = 2C; = 0, thus C; = 0.

4. Yeoh model
The strain energy density function of the Yeoh model is written as:

Yy = Z C;(I; — 3)},
i=1,2,3

where C; are material constants. The compatibility condition for the Yeoh model is that
2C; = u. Thus ¢; = 0.

5. Gent model
In this model, the strain energy density function is designed such that it has a singularity
when the first variant of the left Cauchy-Green deformation tensor reaches a limiting
value I,,,. The strain energy density function for the Gent model is:

where u is the shear modulus and J,, = I, — 3. In the limit (I, - o), the Gent model
reduces to the Neo-Hookean solid model.
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Note that for incompressible material, the independent variables in terms of invariants of C are I,
and I1;. I, and /I, satisfy:

I >3,
I, = 3.

This is derived by calculating the minima of first and second invariants of C under the constraint
I1I. = 1. The calculation goes as follows:

Since
IIIC = /111213 = 1,
then

1
IC=A1+12+13=W+/12+/13.
2743

To calculate the minima of I., we need to calculate the root of partial derivatives of I, with
respect to 4, and 1;. We have:

al. 11

a2, TmE
and

EYR 227

We have pointed out before that the eigenvalues of C are all real and positive. Solving above
equations, we found that I, reaches its minima when 1, = 1; = 1. This also implies 4, = 1. Thus
we found that

In a similar way, we have:

And when F = [ (identity matrix), 4; = 1, thus I —3 =1l —3 = 0.

A consistent strain energy function should satisfy the following criteria (and many more, see [44]):

1. The strain energy density function must be non-negative for all deformations.
2. The strain energy density function must have a zero value at the undeformed state.

The calculation of I, and I1. shows that the presented material models are consistent under a
mild constraint on the parameters (like in the Yeoh model).

It is common to use a uniaxial test procedure to test the mechanical properties of a certain
material. With uniaxial testing, length of the material is deformed in one direction and the
resulting stress-strain relationship determined. Below we are going to present the uniaxial test for
the material mentioned above (except from St.Venant-Kirchhoff material), with specified
parameters.
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Note that all figures are drawn under the x —axis “engineering strain” (ranging from
—75% ~400%) and y —axis “engineering stress” with the unit MPa. These figures are plotted
using the calculated strain-stress relation in terms of the principal stretch. Below is type of
material and the material constants used in each figure:

Up-left: Mooney-Rivilin, C;q = 1.030Mpa, Cy; = 0.114Mpa.

Up-right: Neo-Hookean, C; = 3.1Mpa.

Bottom-left: Yeoh, C; = 1.202MPa, C, = —0.057MPa and C; = 0.004MPa.
Bottom-right: Gent, yu = 2.290MPa, J,,, = 30.

By plotting the stress-strain relationship for different hyperelastic materials, we are making the
effort to find the best match for human skin stress-strain relationship shown in Figure 3.5. By
comparing the figures, we find that Yeoh and Gent model has more similarity with the target
shape than Mooney and Neo-Hookean material.

Incompressible material and near incompressibility

Incompressible media have the property that after deformation each small portion of the medium
has the same volume as before deformation. Soft tissues due to the high percentage of water
content are usually treated as quasi-incompressible. Since for incompressible material the
constraint det F = J = 1 must be fulfilled, special care must be taken when we deal with this type
of problem. For instance, the constitutive equation of isotropic compressible Hookean solids
reads:

O-ij = AEaa(Sij + 2‘U,€ij,

where the constants are determined by,
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where E is Young’'s modulus and v is Poisson’s ratio. It can be shown that v =% represents

incompressibility. Thus the parameter 1 will become unbounded in the incompressible limit.
Therefore, an alternative formulation of the theory is needed.

Taking Mooney-Rivilin material as an example, the strain energy density function for totally
incompressible material reads:

W(C) = CyoUc —3) + Cor (I — 3),
with the constraint

Il = 1.

To drop the restriction 111, = 1, we include a hydrostatic work term in the strain energy function to
obtain

W'(C) = CoUs—3)+ Co (Ul —3) + W(UIL).

However, this expression is not convenient from a computational point of view. Thus the final
strain density function used in computation is written as:

w(e) =9(C) + Ully),

1
where l/P\’(C) =y (IIIC3C> is the deviatoric part of the strain density function ¥ and U(II1;) is the

volumetric part. Material which satisfies such a strain density form is called near incompressible.
The terminology “near incompressibility” is used to denote materials that are truly/almost
incompressible, but the numerical treatment invokes a small measure of volumetric deformation.
Thus, near incompressibility is often a device by which incompressibility can more readily be
enforced within the context of the finite element formulation [34]. More details on the formulation
within the finite element context will be given in Section 4.1.4.
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4. Mathematical models and implementation details

With the background knowledge presented in the previous section, we are now ready to
introduce the facial soft tissue models we developed in this project. As mentioned in section 2.2,
FEM has superior performance over other methods in terms of accuracy. Due to the high
demand of accuracy and the availability of the FEM software package Marc, we decide to mainly
focus on the development of FEM-based soft tissue models in this project. In this chapter, we will
give a detailed mathematical description of the FEM-based models and a computer-vision based
method which is also used for mouth-opening. This chapter is organized as follows: First, we
describe our FEM-based facial soft tissue models in the following aspects: general model
assumptions, the configuration of the models and governing equations for the systems. Then, the
FEM approach which we deployed to solve the problem is presented in great details. It is
followed by a brief description of the morphing method. At the end of the chapter, a summary
(table) of the methods we used for the mouth-opening tool and a step-by-step computer
implementation procedure are stated.

4.1. FEM-based facial soft tissue models

In this section, we will present our FEM-based models in the following fashion: to start with, we
list the assumptions we made at the modelling stage. Then we illustrate the configuration of our
models, from which one can get an intuitive idea about the construction and the structure of our
mesh. What follows are the governing equations that describe the physical system
mathematically. After transforming the problem into mathematical equations, we apply the
numerical solver (FEM) to solve the equations.

4.1.1. General model assumptions

The following simplifications are made in all the FEM-based models:

1. Plasticity ignored
It is only necessary to model the strain and stress range that is relevant to the open
mouth process. The part of the stress-strain curves which represents the very large strain
is rarely invoked by the open mouth process.

2. Viscoelasticity ignored
Viscoelasticity will only play a role in dynamic modelling. Since we are only interested in
the static result, namely the open mouth geometry, the viscoelastic property can be
ignored.

3. Initial stress free
For the initial state of the model, the skin is considered with zero tension in the resting
state (stress free). Note that this is not completely true as there exists a pretension in the
skin [30].

4. Isotropy and homogeneity

All the soft tissue layers In the models are considered to be isotropic and homogeneous.
From Section 3.1.2, we know this assumption is not realistic but a compromise to gain
computational simplicity. But notice that the heterogeneity is partly taken care of by
adopting a layered structure of soft tissues.

5. Gravity ignored
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Although human faces suffer gravity, we ignore body force (gravity) in all the models,
since we deem the effect of the gravity on the facial geometry is small compared to
deformation due to the mouth opening process.

6. No muscles modelled
Another significant simplification of the models is ignoring the existence of the muscles
and the forces caused by muscles in the mouth-opening process.

4.1.2. Configuration of the model

The model configuration mainly comprises of a two-layer structure (skin layer and skull layer) with
connecting springs in between. What we are interested in is the displacement field of the skin
surface layer. We set the skull layer as rigid to provide the movement of the jaw. The two layers
are connected by springs, which are designed to model the sliding effect of the superficial fascia.
Further, the skull layer is divided into two parts by a “cut” along the x-axis at the mouth height:
lower skull and upper skull. The lower skull can move freely in 3D and therefore simulate the
moving jaw in the mouth opening process. Figure 4.1 is a snapshot from MENTAT (GUI of Marc)
illustrating the configuration of the models.

lower_skull_elenents

skin_slements

upper_skull_elenents

noneg

Figure4.1 Layer structure illustration

Springs

Clamped upper skull

Boundary conditions
Skin surface Y

<— Moving lower skull

Figure 4.2 Local element illustration
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i 0 S

Figure 4.3 springs elongation during mouth opening

It is worth to point out that to “create” a mouth in the model and a free moving jaw, another two
sets of nodal points are added at the mouth position at the skin layer and at the upper-lower skull
border line. These nodes are assigned to have the same x, y-coordinates with the original nodes
but 0.5 mum projection (outwards) in the z-direction. Therefore, after some modification on the
connectivity of the elements, the original nodes at the skin layer represent the position of the
upper lip and the added nodes the lower lip.

In the local elements illustration, we magnified four elements which are located at the side of the
mouth. Note that all skin nodes have a one to one mapping to skull nodes except from the ones
on the line containing the mouth opening. On the sides of the mouth every skin node has two
spring connections: to the upper skull and to the jaw. We recognized that this is caused by the
addition of nodes: in the skin layer we only added the nodes in the lip position with the width of a
mouth, while in the skull layer we added the nodes across the head width. From the illustration,
one can also observe that we use uniform grids for both layers.

4.1.3. Governing equations

Having specified the model assumptions and the configuration, we are ready to present the
governing equations of the system. Mathematically speaking, the governing equations of the
system consist of physical equilibrium laws, constitutive equations, and boundary conditions.
Below we will elaborate each of the items to provide a full-round mathematical description of the
system.

Cauchy’s equilibrium equation

The equilibrium law in solid mechanics is attributed to Cauchy’s force equilibrium equation. Let Q
denote our domain of interest — the skin layer — and let w denote an arbitrary subdomain of Q
with the boundary dw and exterior normaln. Two types of forces can act on w, namely, body
forces and surface traction forces. Since we ignore gravity in the models, we only consider
surface traction force, which, when it acts on the boundary dw, takes the form o - n, where ¢ is
the Cauchy stress tensor introduced in section 3.2.1. Summing up the total net force F on Q, we
get

F=J. o-nds.
w

Using the divergence theorem on the surface integral, we obtain
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F=f(v-a)dx.

In equilibrium, F = 0. Since w is arbitrary, we conclude that
V-0=0, in Q.

Hereby we have derived Cauchy’s equilibrium equation.

Boundary conditions (postulations)

We point out very strongly that we have used Marc to assign boundary conditions by
manipulating the movement of lower and upper skull, but how exactly Marc treats spring support
is not yet completely known (further study is needed). Thus what is stated below is my personal
understanding of the boundary conditions which is applied to the skin layer. To understand what
happens exactly in Marc, it requires more structural mechanics knowledge within the finite
element context (where they treat springs as a special finite element as well) and more familiarity
with Marc as well. It is out of the scope of this thesis.

To obtain a unique solution u, Cauchy’s equilibrium equation must be supplemented by suitable
boundary conditions. According to the configuration of the model, the boundary conditions should
be induced by the spring forces which are applied to every node at the inner side of skin layer,
I;,. There are concentrated surface tractions applied on I;,. In mathematical terms, the boundary
conditions are of Neumann type, which take the form

on=g, Onl"l-n,

where ¢ is the Cauchy stress tensor and n is is the outward unit normal to the surface, and g is
traction.

Basically, we model the open-mouth process as prescribed displacement of the lower skull (the
moving jaw) and the clamped upper skull. Through the rotation and translation of the lower skull
(just like the movement of the jaw when people open their mouth), springs connecting lower skull
nodes and corresponding skin nodes will produce pulling forces on the inner side of skin layer. At
the same time, since the upper skull is clamped, any displacement of the skin layer nodes which
are connected to the upper skull nodes, will lead to the elongation of the springs as well. An
illustration of the elongation of the spring described above is Figure 4.3, where we can observe
the elongation of the springs both in the lower and upper skull. The stretching effect is the most
obvious at the side of the mouth, which is realistic.

As pointed out in section 4.1.2, the skin nodes located at the sides of mouth are connected with
two springs (one with lower skull nodes and one with upper skull nodes) and the rest of the skin
nodes have a one to one connection with the skull nodes. Thus, it is sensible to group skin nodes
when we discuss boundary conditions.

l. Skin nodes that have only one spring connection. Further we divide this group into two
subgroups:

a) Nodes that are connected to lower skull nodes.
In this case, the surface traction is caused by the rigid movement of the lower skull. We

denote the displacement vector (constant vector) of the skull nodes as D. Thus the surface
traction g,;, is:

91, (x) = H(D —u(x))6(x — x;), x € Iy, k € Ny,
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where X is the spring stiffness, Nj, is the index set of nodes in this category, and x;
denotes the coordinates in the Cartesian coordinate system of node k, u(x) denotes the
displacement field, defined as x — X, for every point in the body. Note that §(x) is the delta
function, which has the property:

fﬂ w08 —)dQ = w(y),

for any continuous function w(x) defined on Q. We use the delta function to represent a
concentrated force which in this case is the force applied on the discretized nodes on the
surface.

b) Nodes that are connected to upper skull nodes. We can write the surface traction g,;, in a
similar way like g;;,. The difference is that for the nodes connected to the clamped upper

skull, the stretching/contraction of the springs comes from the displacement of skin nodes
only. We have

i, = 7((0 - u(x))S(x —X), X €T, k € Ny,
where N;;, denotes the index set of nodes in this category.
Il. Skin nodes that have two springs connections. For this type of skin nodes, the total traction

g; should be the sum of traction that is induced by the springs connecting both the lower
and upper skull nodes, g; and g,,, namely:

91 =91+ gy = K[(D —u(x))8(x —x) + (0 —u(x))8(x —x,)], k€N,
where N, is the index set of the nodes belonging to this category.
Thus to summarize, the boundary conditions of the mouth opening process can be written as:

o'n=g, on Fint
where

9g=9rt+ 39, t 9, on [i,.

Principle of virtual work

The principle of virtual work is of utmost importance in the engineering world and it is also the
corresponding weak form of the Cauchy equilibrium equation. Below we first derive the weak
form of the Cauchy equilibrium equation and then we give its engineering interpretation, namely,
as the principle of virtual work. At the end, we will present total and updated Lagrangian
formulations which are used to linearize the nonlinear problems in the solution procedure.

Weak form derivation
Let V be the Hilbert space:

V={vel[H'(Q)]|v=0 onT\[},}

Multiplying V- ¢ = 0 with a test function v € V, and next integrating by parts, we get

> Bal-j
O=f(V-0)vdx=fz v; |dx
Q 052 0%;
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av;
=f Z o;inv; | dS — f Z 0ij=—
o0 0x;

i,j=1

Thus, we have:
j ((O‘ . n)v) das — f (0:Vv) dx = 0.
a0 Q

Using finally the Neumann boundary condition ¢ -n = g on TI},, and that v = 0 on I'\[},,, we end
up with

f(a Vv) dx —f (gv) ds, Vv EevV.
FLTL
We can further simplify the result. Any matrix can be decomposed into its symmetric and anti-
T AT
symmetric part, viz., A = % + @. Thus, it follows that

1 1
o:Vv = O'ZE(VV +vuT) + O':E(VU —wh) =0:e(v) + 0,

where e(v) = i(Vv + vvT). So we get

J-(a e(v)) dx —f (gv) ds, Vv evV.

Fm

Or we can write it in another notation:

fgijecv)ij dx = (g;v;) dS, Vv EeV.
Q

Cin

Note that the double appearance of the index means summing over the spatial dimension, which
is three in this case. If we interpret v as virtual displacement, then e(v) is the corresponding
infinitesimal virtual strain and o;; is the real Cauchy stress. The right hand side can be seen as
the external virtual work. We rewrite the above equation in engineering notation as:

faijSGij dx = | (g;6u;) dS, Yéu ev.
Q l—‘in

Note that the § in front the variable denotes a virtual variable.

Total Lagrangian formulation (T.L. formulation)

To solve a nonlinear problem, a linearization procedure is necessary and usually an incremental
solution is taken. We select Newton-Raphson iteration solution procedure. Although it is
theoretically possible to achieve a direct solution for a given load case, it is more practical to
consider the external load as being applied as a sum of increments. We apply the external load
evenly in 50 time steps. For details of the content of the following three sections (Total
Lagrangian formulation (T.L. formulation), Updated Lagrangian formulation (U.L. formulation),
and Lagrangian elasticity tensor) we refer to [36].

Lagrangian description is suitable for a body subjected to large displacement, large rotation and
large strain. Assume that we have obtained the solution (the displacement field) till time ¢t. And
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we would like to have the solution at time t + At (the next time step). Let u denote the
displacement increment, namely:

t+At

u =ut+u.

To solve the problem, we apply the principle of virtual work at time ¢t + At :

J- o.it.-i-Atselgj-}-At dx = J. ((gH-At)i(Sui) das = :Rt+At’ Vou € V'
Qt+At

t+At
l—‘in

where R!+At denotes the external force term. Note that the superscript t + At is to indicate the
variable at time t + At. Using the property of the § —function, we can write out R**A¢ explicitly:

REFAL — f HM((g”M)ic?ui) ds = Z KRepne Ou;,  1=123,
Fi‘n kKEN

where N denotes the whole nodes set on T4t namely, N = N, U Ny, U Ny, KR.+a: denotes the
force applied on the kth node by the springs in the x; direction at time t + At as:

Resar = H(DFFAE —uf*at), ifk €Ny,

KRivar = K(0 — uf*ar), ifk € Ny,

*Reynr = K[(DFFA —uf™) + (0 —uf*™)], ifkeN,

where Uf*2t denotes the ith component of the displacement vector U at time step t + At. We use
a uniform time step. If the time t + At is the pth step out of the 50, we have

D
b = (p5g);
L

Note that the external force term is deformation dependent. Thus approximation is needed, and
the treatment will be given in section 4.1.4.

In section 3.2.1, we presented that the second Piola-Kirchhoff stress tensor is energetically
conjugate with the Green strain tensor. They are the counterparts of the Cauchy stress tensor
and the infinitesimal strain tensor at the original configuration (¢t = 0) respectively. Using this fact,
we can rewrite the principle of virtual work at time t + At referred to the original configuration as

f SEATSESA  dx = RHFAL, VU €V,
0o

where Sf}-*“ denotes the second Piola-Kirchhoff stress (implicitly) referred to the original
configuration, namely

Sitj+At = Jt+Atp-1(t+a) (xt+At(X)) O.itj+At (xt+At(X)) FtHAt(x),

t+At
where Fffr“(X) = %, JEHAL = det (F“Af(X)), X denote the original configuration of the domain,
]

namely, the skin layer at time t = 0. The Green strain tensor is rewritten with respect to the
original configuration as:
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1 <6u]t_f+At auit+At auli,;+At au,t(+At>

tHAL — +
Y 2\ 0X; 0X; 0X; 0X;
Further, we decompose the unknown stress and strain (at time t + At) as:
SEA =SH+ Sy,

EffAY = Ef; + Eyj.

Thus, Sf]- and Efj are the known parts since they are the variables at time t. S;; and E;; are the
unknown increments. Next, let us expand the incremental Green strain tensor expression. We get

1/9 ut_+At _ u@ 9 u§+At _ u{f aut+At aut+At aut aut
Eij=Eitj+M—Eitj=_<(] j)+ Gt L)+ k k k k)

2 X, X, oX, 0X;  0X, 0X;
_1(0w; 0w | Ouj 0wy | Ow Oui) | 10w, 0wy
~2\0X; 98X, 0X;0X; 0X,0X;) 2\0X, 0X;)

Note that the first term is linear with respect to the unknown displacement increments u, while the
second term is nonlinear in u. We note 8E§jf“ = OE;;, since each variation is taken on the
displacements at time t + At, with u® fixed. Let

0 _1(0w  Ou;  Oujduy 0wy duj,
YT 2\0x,  0X; ' 0X,0X; = 0X, 0X;

denote the linear part of the strain increment and

_ 1 auk auk
T =2\ ax, ax;

is the nonlinear strain increment. Thus E;; = n;; + 6;;. Substitute the expressions of the unknown
SHHAt and EfH4¢ into the principle of virtual work formulation to get:

fositj+At8Eij dx = fo(S‘t] + SU)((SHU + (SY]U) dx = :RH-At.
Q Q

Rewrite it as:
J’ SLJSEU dx +J- Slt]é"f]l] dx = RH-At - f Sf](YHU dx.
Qo Qo Qo

Notice that the right hand side is known for any given variation éu and no approximation has
been applied yet. For hyperelastic material, the term §;; is usually nonlinear in u. Now we are
going to linearize this term as a necessary step in solving a nonlinear problem. Note that

s _1 <65uk)auk+5uk Sauk
T =2\\"ax;)ax;, " ox;\" 3x,) )

which is linear in u. Therefore, the second term at the left hand side is also linear in the unknown
u. Now we perform the linearization procedure on the first term. Firstly, we expand Sf}-*“ as a
Taylor series at Efj. Let us denote the mapping between strain and stress tensor as f. Namely,

f(Ef,) = Sf} Vi,j =1,2,3. Then
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SEHAE = F(ES™) = f(ES) + (E5™ - ) (E ) + higher order terms.

We get:

St —Sh =5y asf+h her ord = E 05y O, 955 o g, 35U
i E, 3E:, igher order terms = E, 3L, L= (O + Nys) =2 aE:, = OrsoEr

Note that we make the approximation first by ignoring the higher order terms in S;;, then we also
ignore the nonlinear part of the incremental strain. Hence, we obtain

t t

sy as5 sy
—= (86, + 6ny;) = 863 + Ops == 613 = 6, 66,

Sij(sEij =0 Ors aEt rs aEt s aEt

rs aEt
ast as;

Note that we throw away the term Hrs —4 67]11 in the last step approximation because 0, — P t 617[,

is nonlinear in u (two linear terms multlpllcatlon) Thus the final linearized equation is:

05”9 s00;; dx + | SLémydx = R*A — | SLs6,; d
Qant x 0 ij n” x= _QO ij ij X

Updated Lagrangian formulation (U.L. formulation)

In the last section, we present the total Lagrangian formulation in which all variables are taken
reference to the original configuration. In this section we are going to present another formulation
which is also used in our solution procedure. The updated Lagrangian formulation takes the
reference configuration at time t when we solve the principle of virtual work at time t + At.

Just like in the total Lagrangian case, we are going to write the principle of virtual work at time
t + At with time reference t as

f Sit]*AtGEit]*At dx = Rt+AL Yéu eV,

Q_t

where

SEHAE — JUHAtp-1(t+AL) ( t+At(xt)) t+At( t+At(xt)) FUHAt ()
ij ’
and

Et+At aut+At .\ dultat s QuLFAt gyt+at
2\ oxt oxf oxt oxf )

Decompose the unknown stresses and strains as:

SRt = Sf 4+ Sy = o + Sij,
t+At _ t
E{f% = Bl + Eyj = Eyj.
This is because:

54 = J F OGN e (F @) = oy (),

and
1<0uf ouf au,'iau,i)

Ei=z|=%+—=+—=—
Yoo2\oxf  0xf  0x{ dxf

38



TU/e Mathematical models and implementation details

Since now u]? denotes the displacement of the particle in the body from time t (reference time) to
t. Thus

ou; alafa Ouy Ouf\ 1 [0u,0 1(0u; OJu;\ 10u,0
ax ax Ox; 0x;  Ox; 0x; 2\ 0x; 0x; Ox; 6 26x ax

Therefore,

FiHAt _ _l(aui +%>+10uk6uk
2

Y 2\oxf T oxf Ea_xfa_x]t

Thus there is no initial displacement effect in this expression. We define the linear strain

increment:
1 aui au]
Oy =s\>zt5)
2\0x;  0x;

and the nonlinear strain increment

15uk auk
Mij =73 ax ax '

Hence,
Eij = 0 +nij,

5Eij = 6911 + 67’]1]

The equation of the principle of virtual work becomes
f Sl]6El] dx + f 0'156771] dx = :Rt+At - J- 0{‘1'591-]- dx.
at at at

Given a variation , the right hand side is known. So far, no approximation has been made. Just
like in the T.L. case, we begin to linearize (with respect to unknown incremental displacement)
terms.

The term fnt aitj&nl-j dx is linear in u, the reason is the same as in the T.L. case. The term
thSijSEij dx contains a nonlinear function. We repeat the linearization procedure from the T.L.
case, to get:

asfj
Sij aEt Ors)
and

, _ 0S;
S8Ey = Gp 0rs06y

Till now, we have derived the final linearized equation
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dSt
aE_lt] Hrsé'@ij dx + f Jlt]@nl] dx = Rt+At - f O'Ltjsgl] dx.
ot rs ot ot

We find that in the U.L. formulation, we work with the actual physical stress (Cauchy stress) .

Lagrangian elasticity tensor

In the previous section we have presented two linearization formulations which are both suitable
for large displacement, large rotation and large strain problem analysis. To use these

formulations, appropriate constitutive relations must be employed. In this section, we would like
t

. . - ast; _ .
to derive a specific form of the elasticity tensors C;j,. (z aE_lf]> appearing in both formulations.
rs

First, we would like to point out that the elastic constitutive relations which are suitable for small
displacements, small rotation and small strain analysis (like Hooke's law) can be directly used in
large displacement, large rotation but small strain analysis. Specifically, we have that constitutive
relation holds for infinitesimal analysis,

Oij = CijrsErSJ

where ¢, is Cauchy’s infinitesimal strain tensor and o;; is Cauchy stress tensor, and C;js is a
constant forth-order elasticity tensor. For example,

CijT‘S = /16ij6rs + H(gir5js + 6i56}'7”)

is the elasticity tensor for Hookean solid where 1 and u are Lamé constants. Then for large
displacement, large rotation but small strain analysis,

Sij = CijrsErs,

where §;; is the second Piola-Kirchhoff stress tensor and E is Green’s strain tensor. The reason
is explained as follows: separate the large displacement, large rotation but small strain
deformation into two steps. Firstly, the body experiences small displacement, small rotation and
small strain deformation. Thus at this stage,

S=]F_1O'F_TEO', EEE, Sij:Cij‘rSET'S'

Next the body experiences rigid body motions (rotation and translations). Since the S and E stay
invariant under rigid motions (which has been mentioned in section 3.2.1), the relation still holds
for large displacement, large rotation but small strain analysis. Now, we also recognize that the
Hookean solid constitutive relation in large displacement and large rotation but small strain
analysis is the same as in the St.Venant-Kirchhoff model (from section 3.2.2).

Next, we discuss the form of the elasticity tensor in the updated Lagrangian formulation. Note
that we would like to have the updated Lagrangian formulation to produce the same set of linear
equations as in the total Lagrangian formulation (presuming that we use the same discretization
procedure). Recall the definition of Green'’s strain tensor:

d52 — dsg = ZEUdXLdX],
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where ds and ds, represent the length of an infinitesimal line element in the body, in the current
and original configuration respectively. Thus, we have:

1
Elt]XmdX] = E(dsz - dsg),

1
E{fAtdX;dX; = > (d(s")? — ds?),

where s’ represents the length of an infinitesimal line element in the body in the t+ At
configuration. By deducting the first equation from the second equation we have:

1
EngldX] = E(d(sl)z - dsz),

where the 0 at the superscript place indicates that the variable is evaluated with respect to the
original configuration. At the same time if we put the configuration at time t at as the reference
configuration, we have

1
Eijdxidxj = E(d(s')z - dSz),

where E;; is the incremental strain with respect to the current time t configuration. Hence,
1
EjdX;dX; = E.dx,dx; = E(d(s’)2 —ds?).

Using dx = FdX, we obtain that
EngldX] = ErSFriFS]'dXidX]"
Since this relation holds for any infinitesimal line element, we have

Eg = ErsFrist-

Note that
dSf = Cl,dEys,
where
0
0 _ aSU
ijrs — aEPs

is the Lagrangian elasticity tensor with respect to the original configuration at time t. Take the
relation with respect to the configuration at time t. Then we have:

dSij = CijrsdErs-
Note that
dSioj = ]Fi;an}';l ASmn,

dES, = Fypy FysdEpg.
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Hence,
dSin = ]Fi;an};zldSmn = CiojrsdEps = Ciojrs(Ferqsdqu)-

Thus we have,
dSap = JFaiFpjClisrForFysAEpq = CabpqdEpq-

ijsr
We have got the form for the elasticity tensor in updated Lagrangian formulation as:
Cabpq = ]FainjCinererqsdqu-

Theoretically and numerically, if formulated mathematically correct, the total Lagrangian and
updated Lagrangian formulation yield exactly the same result. However, integration of constitutive
equations for certain types of material behaviour makes the implementation of the total
Lagrangian formulation inconvenient. If the constitutive equations are converted back to the
original configuration and proper transformations are applied, then both formulations are
equivalent [35]. Therefore, the choice of formulations (T.L. or U.L.) is based merely on the
numerical effectiveness of the methods. But if the stress-strain law is available in terms of the S
(the second Piola-Kirchhoff stress tensor), the T.L. formulation will be most effective in general.
Note that it is possible that more than one formulation is used in one continuum. The user does
not have absolute freedom in choosing the formulations in Marc. Marc chooses the formulations
dependent on the formulation of the element in some cases.

Constitutive equations

Three types of material models have been tried out in this project. They are the St.Venant-
Kirchhoff model, Mooney model and Gent model. Note that they are all hyperelastic models
(instead of linear model), the reason for doing so is that: though we know that the linear model
gives formulation and computation simplicity, the physical behaviour of soft tissue will only be
considered as linear elastic if its displacement and deformation remain small (typically less than
10%) of the mesh size [17]. Presume the mesh size is 3mm, then it means that the linear elastic
model is only suitable if the displacement is less than 0.3mm. This is not true for the nodes
locating at the lower face, where they usually have a 5~8mm displacement during the mouth
opening process. Below | will give the constitutive equations of the three materials in turn.

¢ St.Venant-Kirchhoff model

As we have mentioned in the previous section, the St.Venant-Kirchhoff model is an extension
of Hookean solid to large displacement and large rotation regime. Its constitutive relation is
given as:

S = A(trE)I + 2uE,
or alternatively,

Sij = CijrsExrs)
with
Cijrs = /16ij6rs + “(61'1”6}'5 + 61'56]'7”)’

where 1 and u are Lamé constants. Obviously, the Lagrangian elasticity tensor in this case is
a constant tensofr, C;jys.

e Mooney-Rivilin model
This material model is often being used for modelling rubber, and assumes near
incompressibility. As mentioned in section 3.2.2, for incompressible Mooney material the
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strain density functions can be rewritten as:
w(O) = G, (Ie = 3) + C,(11c = 3) + UULL),

where I = 1111, and IT; = 111,11, and in Marc the volumetric part of the strain
density function U is given by

9 1 2
u(ile) =5k (1113 - 1) ,

where k represents the bulk modulus and is calculated by
k = 1000 * (C01 + CIO)'

e Gent model

Another material model that we used to simulate the skin layer is the Gent model. Just like
the Mooney model, the material is assumed to be nearly incompressible. Its strain density
function is:

E I
¥() = — 5 InIn (1 - 61 ) +U(lly),

m

where E is the small strain tensile modulus, and I,,, is the maximum value of the first variant
and thus is demanded to be larger than 3.

The Lagrangian or material elasticity tensor can be obtained from the strain energy density
function. Intuitively speaking, this fourth-order tensor gives the tangent value of the nonlinear
“strain-stress curve”. It is defined as :

S as 9’y

C=35=2%5¢c " *acac

To write out explicitly,
3
C= Z Cij€i® E;RELRE,
i,j,kl=1
where &, £, E;€; are the Cartesian basis vectors, “®” denotes tensor product and

oSy _, 2%y _e
0E,  0C;0C,

Ciji =

Note that combining the derivation of the elasticity tensor used in the updated Lagrangian
formulation from the last section, we are also able to derive the elasticity tensor used in the
updated Lagrangian formulation.

The reasons that we choose the three particular hyperelastic material models to model skin is the
following: the St.Venant-Kirchhoff model can be seen as the most “linear” hyperelastic model,
although it is only suitable for the small strain analysis, it still holds a fair ground to model the
skin layer for mouth-opening process, considering the not so big stretching in most of the skin
during the process. As for Mooney material, this is a very common hyperelastic material model
for modelling rubber and it also used in several literature to simulate biological tissues. Gent
model’s uniaxial result looks quite promising (quite similar to the one’s from human skin), thus we
expect that the Gent model can show its advantage as the strain becomes bigger in the
simulation. Another important reason for choosing Gent and Mooney material models are their
availability in the material library of Marc. For other hyperelastic material models (like Yeoh), the
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user needs to write a subroutine to implement it.

4.1.4. Finite element approach

In this section, we will present a detailed picture on how the finite element method has been
applied to solve the linearized problem posed above. To start with, we show a general procedure
on how to solve a nonlinear problem using FEM.

General FEM procedure

In the finite element method, the actual continuum (in our case, the skin layer) is represented as
an assemblage of subdivisions called finite elements. These elements are considered to be
interconnected at specified joints called nodes. Since the actual value of the field variable (like
displacement) inside the continuum is unknown, we assume that the value of the field variable
inside a finite element can be approximated by simple functions. These approximating functions
are defined based on the nodes positions. When the equilibrium equations for the continuum are
written, the new unknowns will be the nodal values of the field variable. By solving the
equilibrium equations, which are generally in the form of matrix equations for linearized nonlinear
problems, the nodal values of the field variable will be obtained. Once these are known, the
approximation of the field variable throughout the continuum is known.

A problem is nonlinear if the force-displacement relationship depends on the current state (that is,
current displacement, force, and stress-strain relations). Let u be a generalized displacement
vector, P a generalized force vector, and K the stiffness matrix. The expression of the force-
displacement relation for a nonlinear problem is

K(u,P)u = P.
There are three sources of nonlinearity: material, geometrical, and boundary conditions.

Material (physical) nonlinearity results from the nonlinear relationship between stresses and
strains. For example, the Mooney model and Gent model have non-linear stress-strain
relationships since their material elasticity tensor is not constant.

Geometrical nonlinearity arises from the nonlinear relation between strain and displacement.
Since we choose to use the Lagrangian formulation and therefore the Green strain tensor
(instead of Cauchy’s infinitesimal strain tensor) appears in the principle of virtual work
formulation. This way, the geometrical nonlinearity is incorporated.

Contact problem, friction and nonlinear support can cause nonlinearity via the boundary
conditions. We use linear springs as our support condition, thus we do not introduce nonlinearity
from boundary conditions.

The solution of a general nonlinear problem using the finite element method follows a step-by-
step process, stated as follows:

1. Discretization of the continuum
The first step in the finite element method is to divide the continuum body into elements.
Hence, the body of interest is to be modelled with suitable finite elements. The number,
type, and arrangement of the elements are to be chosen.

2. Selection of a proper interpolation function
We approximate the solution with the linear combination of interpolation functions within
an element. The interpolation functions must be simple from a computational standpoint,
but it should satisfy certain convergence requirements. In general, the interpolation
function is taken in the form of a polynomial.
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3. Derivation of element tangent stiffness matrices and out of balance nodal force
vectors
From the assumed interpolation function, we are ready to derive the tangent stiffness
matrix K' and the out of balance nodal force vector f¢ of element e from the
total/updated Lagrangian formulation (linearized continuum mechanics equation)
respectively.

4. Assemblage of element equations to obtain the overall equilibrium equations
The individual element tangent stiffness matrices and load vectors are to be assembled
in a suitable manner in this step. The overall equilibrium equation has the formulation:

KtAU = ft,

where K¢ is the assembled tangent stiffness matrix, AU the incremental vector of nodal
displacements, and f¢ the assembled out of balance nodal forces vector of the whole
continuum.

5. Solution for the unknown nodal displacements

To obtain the solution of a nonlinear problem we use Newton-Raphson iterative solution.
Namely,

KtAU — ft — Rt+At _Ft
UTHAt = U + AU,

Note that within one time step, one usually performs multiple times increment solutions to
achieve a certain accuracy. R**2t is the externally applied load vector at time t + At. Ft is
the vector of nodal point forces related with the internal stresses at time ¢.

Following the steps proposed above, we are ready to present the finite element approach tailored
to our problems.

Discretization of the continuum
As it has been shown in the configuration of the models, we discretize the skin layer uniformly.
There are three types of elements we use in this project:

e Four-node thick-shell element and eight-node element
e |soparametric, arbitrary hexahedral element
¢ Three-dimensional arbitrarily distorted brick, Herrmann formulation

lllustrations are given in Figure 4.4, Figure 4.5 and Figure 4.6.
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Figure 4.4 Shell element
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Figure 4.6 Hexahedral element, Herrmann formulation

Selection of a proper interpolation function
In this section, we will present the three types of elements with more details. The isoparametric,
arbitrary hexahedral element is our focus and will be given in the full details.

Shell element

This is a structural element and has global displacements and rotations as degrees of freedom.
Bilinear interpolation is used for the coordinates, displacements and the rotations. Nodal
thickness can be defined to create certain “virtual” thickness. Based on the consideration that it
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has quite distinctive properties compared with the continuum element and it does not produce a
better result than the continuum 3D isoparametric hexahedral element, the study about this
element is very limited in this work and the discussion about it will be ended here. More
information about this type of element can be found in [37,38]. Note that the skull layer shown in
section 4.1.2, is discretized using shell elements and is assumed to be rigid and bearing the
thickness 0.2mm.

Three-dimensional arbitrarily distorted brick, Herrmann Formulation

In the section Incompressible material and near incompressibility, we have mentioned that a
special formulation is needed to handle the incompressibility or near incompressibility within finite
element context. Herrmann’s formulation is a solution for it. Below we will give an introduction to
Herrmann formulation for linear problems. The treatment of nonlinear problems (which is the
case in all our models) will not be dealt with here. Further information on this topic can be found
in [38].

We know that the strain is a measure of deformation, thus we expect the strain can also reflect
the volume change of the body during the deformation. The volumetric strain, €,, is a strain
measure to measure the relative dilation of the body. In the infinitesimal strain theory, it can be
shown that

AV
EV=_

Tkt + €32 T €33,

where €, (k =1,2,3.) are the components of Cauchy’s infinitesimal tensor ¢;;. Thus the
incompressibility property actually poses a kinematic constraint to the equilibrium equation as:

divu =¢€¢, = 0.
The constitutive relation for Hookean solid can be written as:

O-i]' = AEVgij + Z‘UEU.
with

E Ev

ATy AT Orwa=zy

We see that, when the material approaches incompressibility, e, — 0, and 1 — co(since v — 0.5).
In Herrmann formulation, a new (independent) variable p is introduced. It is defined as:

p = —A€y.
Thus the new constitutive relation can be written as:
o-ij = —p5u + Z,UEU
and since we introduce a new variable p, we also need another equation for it as:
. p
divu+-==0.
A

Note that in the incompressible case, we can interpret p as the hydrostatic pressure, since the
hydrostatic pressure is defined as —a;; /3. While in the nearly incompressible case,

Oj; 2
—§ = — (A‘}'?‘u) div u.
Notice that
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p=—Adivu,

we see that when u « A (nearly incompressible), p is still a good approximation to the hydrostatic
pressure and p = —a;;/3, for incompressible material.

Numerical experiments show that for the nearly incompressible material (which means the value
of 1 is large), a not fine enough mesh will lead to an inaccurate prediction of volumetric strain
(which is approaching to 0 in this case), and consequently, a large error in the stress calculation.
In this case the finite elements are locking [38]. The invention of Herrmann formulation avoids the
locking of elements.

Coming back to the element itself, this is an eight-node, isoparametric element with an additional

ninth node for the pressure. The element is based on a trilinear interpolation function in fspace.
The pressure is assumed constant throughout the element. The 24 generalized displacements
are related to the x, y, z-displacements (in global coordinates) at the eight corners of the distorted
cube. The last node has one degree of freedom (negative hydrostatic pressure).

Note that if we change the formulation of the problem (by adding another variable p), all the
related aspects need to be changed as well (e.g. the formulation of the principle of virtual work
and accordingly the stiffness matrix and out of balance nodal force vector, etc.). These changes
are not the focus of the thesis. The discussion of the Herrmann formulation will be ended here.

Isoparametric, arbitrary hexahedral element

This type of elements uses trilinear interpolation functions. The isoparametric, arbitrary
hexahedral element is the basic element for three-dimensional analysis. The domain Q¢ in x, y, z-
space is the image of the tri-unit cube in £-space under the trilinear mapping

x(g) =0 + 0§ + 0N + 03¢ + 0,8 + asnd + agéd + azédn,

where &= (¢,7,(). Similar expressions hold for y(§) and z(§). The coefficients ay, ..., @, are
determined via the conditions:

x(g) = x¢, a=1,..,8

where a are the nodal points coordinates in é-space, and x¢ are the corresponding coordinates
of the nodal points in x,y, z-space (x direction). This gives rise to a system of linear algebraic
equations. Solving for the a’s and substituting in the mapping yields

x®=2m®m

where
1
Na(ft n, 0= §(1 + 'faf)(l + nan)(l + (a();

with similar expressions for y(&) and z(£). The correspondence between (¢,,7,,4,) and nodal
points in ¢-space are given in the following table.

a $a Mg a
1 -1 -1 -1
2 1 -1 -1
3 1 1 -1
4 -1 1 -1
5 -1 -1 1
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6 1 -1 1
7 1 1 1
8 -1 1 1

Table 1 Node numbers and coordinates correspondence in natural coordinate system

Once the element type has been decided, by invoking the isoparametric concept, the
discretization of the displacement field can also be decided. The displacement field within each
element is interpolated as:

— 8 -

D N (H)d

h a;l .

0= i =[5 w0tz - 3 e =
a=1 =

Us . a=1
PRAGLS
La=1 h

where
— ( )_
dlle
(e)
d12
(e)
dl3 d(e)
Na 0 0 (dl(e) al
N = [N]J NZ! NS! N4—l NSI N6I N7I NS]! Na = 0 Na 0 4 (d](e) = ‘(l-e) ’ d]'l(le) = dEleZ) 4
0 0 N, dg d®©
(e) a3
(dl6
(e)
d17e
(dl(e)

8
dlff) is the displacement vector at node a in the element e. Note that the same interpolation is
used for the three spatial components of the displacement vector.

Besides displacement field discretization, another frequently used matrix is (Cauchy’s
infinitesimal) strain-displacement relation matrix B. The derivation of B is presented below. The

(Cauchy’s infinitesimal) strain field is linked to the displacement by the relation € = %(Vu + vul).
Making use of the symmetry of strain tensor, an alternative way of writing it is:

EP 0 0
0 9 0
€11 dy
d
€22 0 0 |,
€33 | _ 2z ||y,
26,70 o [ Zl'
2 - 0 Uus
€23 dy 0Ox
2€3 F] F]
0 — —
dz OJy
a 0 d
L0z O0x

where u,,u,,u; are the three spatial components of the displacement vector u. Combining with
the displacement discretization result uh(E) = Nd(®, we get that the strain expression throughout
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one element is:

Sl = Sl o

Q
=

Voo o o o

o

N,

ay
dN,
0z
aN,

0
2041 S
z ul :z
0 ugl a=1
d
dy
d
dx

where B is the element strain matrix given by

L 0z

ON,
ax ot

N 1)

ay a2

aN,

9z
aN,

o2+ e g

N,

ay

aN,

(e) (e)
dgy + =" dg3

5+ %4

ox

]B = []Bli ]Bz, [B3, ]B4, BS! BG' ]B7, Bg]

B, is the strain matrix of node a, with

_aNa -
T 0 0
oN.

0 2.0
9y

oN,
0 0 ~—
=|on, aN, )
0
ay ox
N, 0N,
0
9z ady
aN, 0 oN,
L 9z ax

8
Z B,dY = Bd®,
a=1

Next, let us compute B, for each node, we note that N, are given in natural coordinate system 5

To compute each element in B,, recall the definition of an isoparametric element:

x@=ZM®ﬁw@=ZM@%z@=ZM@4

It allows us to obtain a relationship between the derivatives of the shape functions with respect to
the Cartesian coordinates and with respect to the natural coordinates. Note that N, is expressed

in terms of natural coordinates f The chain rule of derivatives yields:

which in matrix form reads:

ON, 0N, 0x
0§ ox 0¢
dN, 0N, 0x
an ~ dx an
dN, 0N, 0x
0l ~ ox 0¢

ON,dy 0N, dz

dy 0 0z 8¢
ON,dy 0N, 0z
dy on = a9y on’
JdN, 0y 4 JdN, 0z
dy ¢ dy a¢
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[ON] aN,
¢ x
aN, _ @ aN,
an dy
aN, aN,
| 07 | 0z

d

where

r0x 0Jy 0z
0 9 0%
0x 0y 0z
an an on
dx dy 0z
FISTaNT4

](e) -

is the Jacobian transformation matrix of the derivatives of N, between the natural and global
coordinate systems. The superscript (e) indicates that the matrix is always computed at element
level. We deduced that

[aNa] (0N,
ox 73
aaNa — [](e)]—l aaNa i
y n
dN, dN,
0z | 0 |

The terms of J(©) can be computed by the isoparametric definition, i.e.

x®=2m@%

x o oN,() . ax o aN () , ox o an,()
3 8 v om Liom A L

a=1 a=1 a=1

x¢, etc.

Hence,

[ON,(8) , ONy(8) , ONg(§) ]

. af xa af ya af Za

](9)(5)=Z aNa(E)xe aNa(a e aNa(E)Ze
a=1

an a 67] Ya an al
IN(E) , ON(8) . oN.(]) ,
6( Xa 6( YVa 6( Za_

The computations above enable us to compute strain matrix for each isoparametric hexahedral
element.

Derivation of element tangent stiffness matrices and out of balance nodal

force vectors
Since we are dealing with nonlinear problems, element tangent stiffness matrix instead of
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element stiffness matrix will be obtained as needed for the iteration procedure. Below we start
with the continuous linearized equation (T.L. & U.L.). Eventually, we will get the discretized
counterparts (matrices or vectors) for every term that appears in the continuous equation.

Discretized total Lagrangian formulation

In section 4.1.3, we have derived the total Lagrangian formulation which is suitable for large
displacement, large rotation and large strain analysis. It reads

sy )
o OEL, a5t Ors00) dX+f05itj5'7ij dX = R4 —LOS@-(SB;} dx.

We divide the domain into elements, on each element, it holds:

aSU t t+At t t
SET 97‘569 ax + Sij5nij dX = R, - Sijaeij dX.
qe OE%s Qe Q¢

where Q¢ denotes the element domain and R.*At denotes the external work applied on the
element e.

Now we are going to discretize every term in this formulation. In the last section, we have

discretised the displacement field and derived the (Cauchy infinitesimal) strain-displacement
relation matrix within an element e. They read:

u(g) = Nd©@,
= Bd®.

Be aware that we are using the total Lagrangian formulation, thus all the variables are referred to
the original configuration X, thus the matrix B should have the form:

]B = []Bll IBZ) ]B3; Bll—) ]BS; ]B61 IB7; ]BS];

with
oN,
X 0 0
oN,
0 a 0
aN,
0 0 —
_ YA _
]Bza—aNa oN, ; , a=1,..,8
aYy oaX
o M O
0Z oY
My Mo
LoZ 0X

The components of B, are the partial derivatives of N, with respect to the original configuration

X. There is no technical difficulty in taking partial derivatives with respect to the original
configuration, since the original configuration is known. Using this displacement discretization,

the first term at the left hand side of the continuous equation f e oat ‘t’ 0;;00;; dX, is approximated

as:
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St
—216,;60;; dX - 5d(© ( (BH)TCBE dX) d®,
ae aET'S QO

where C is the matrix converting form for the fourth order Lagrangian material elasticity tensor

(Cijrs = :%iz). sd©denotes the virtual nodal displacement as
[5d]
sd
sa’® 54
5((ﬂ(e) al
sd@=| "% | sdY = |6ald|.
od; 54
(Sdlée) a3
s
[5d(° ]

Note that the subscript L denotes that this is the matrix involving linear strain increment 6;;. B}
represents the linear strain part ;;-displacement relation matrix. Namely, we want to achieve:

8
on = = Z BL,d® = BLd®.
a=1

Recall the expression for 9:

0 _1[0w Ou;  Oujduy 0wy Juy,
YT 2\ox, " 0X;  0X,0X; 0X,;0X;)

Note that there are two notations to represent spatial components in this thesis: (X,Y,Z) and
(X1,X,,X3). There is no difference between these two notations. We decompose the matrix B: as

Bf = B* + B.
Similar to the derivation of Cauchy infinitesimal strain-displacement relation, we write out B as:

IBI’ — []Bt, [Bt, ]Bt, ]th ]Bt" ]Bt, [Bt, ]Bg],
where
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out ON,
X 0X
out ON,
ay aY
out N,
0z 0Z
out N,
X Y
out oN,
9z aY
out oN,
Loz 0X

oul N,
oY 9X
out oN,
oYy oZ
out oN,
oX o2

ous ON, oul ON,

X 0X 09X X

oul 0N, oul ON,

Yy oY Yy aY

oub ON, oul ON,

0z oZ 0z Z
ousdN, duboN, oulioN, oJuidN,
9x aY ' oy aX oax aY ' oy X
ousdN, 0ubdN, oulioN, oOuldN,
9z oY oy aZ 9z aY = oY oZ
ousdN, 0ubdN, oulioN, oOuldN,
0z 0X ' 90X 0Z 0z aX ' 0X 9Z!

As next step, we discretize the term involving nonlinear increments

construct matrices B, and $* so that

f SLém;; dX - (5@1<e>)T ( f (B4,)TSB, dX) d®,
0o Qo

Thus, we construct S as:

and B, as:

[S11

21

551
0

o O O O O

t
512

t
522

t
532

0

o O © © O

0 0
0 0
0 0
St, St
Si2 Sis
St Siz
0 0
0 0
0 0

o O © © O
o © ©O © O

0 0

t
Sll

t
S21

t
S31

t
SIZ

t
522

t
S32

o O O O O

0
Sis
533
Si, ]

Th'j, fﬂesitjgnij dX. We

t t t t t t t t t
IBgNL - [BlNL' BZNL' B3NL' IB4-NL’ BSNL' IBGNL! IB7NL’ [BBNL]!

where
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N, 0 0
X
aN,
vV 0 0
aN,
<7 0 0
0 oN, 0
X
oN.
Bave =| 0 B—Y? 0
oN,
0 7 0
N
0 0 a_Xa
aN
0 0 a_Ya
dN
0 0 a_Za

It can be verified that using designed matrices S and B, (6d(e))T(er(]BfVL)TS]B§VL dx)d® is the
discretized counterpart of the term [ . S{;6n;; dX.

Next, we look into the discretised version of the term [ . S/;66; dX. Just like the way we deal with
the previous term, we can also construct a matrix S, such that:

f 55665 dX - (5d©@)" (f (BE)TSdX)-
Qe Q¢

It is not hard to check that if we set

St
Si2
Si3
Stz
Si3
| SE ]

%)
Il

we can get the desirable result. Note that there are no coefficients “2” in front of the components
St,, St, and SE; like in the strain tensor. The reason is that we have derived previously

[ 56 1
56%,
56
52600,
5204,

[ 5200 ]

= BL5d®.

Making use of the symmetry of the matrix S, we get the sum exactly by multiplying the vector

(IB%{(S(dl(e))Tand S. The only term left to be approximated is the external load term RL*2t. This is
related to the boundary term of the problem and will be discussed later.

To summarize, we get the discretized total Lagrangian formulation as:
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(52@)" ( f (B)"CBf dX) d© + (5d©)" ( f (BS,)TSB, dX> d©
Qe Qe

= RLHAL— (5d@)" ( f (B)'S dX).
e

The above equation holds for any arbitrary virtual displacement. We can apply (&dl(e))T =e;,i=
1,...,8, to the equation in turn, where ¢; is the base vector in R8. Consequently, we get

( (BH)TCBE dX) d© + ( (B4,)TSBE,, dX) d(® = RL+At — ( (BH)TS dX).
ae ae oe

Let

Kf=| (BDTCBE dx,
Qe

K = | (B)7SBY, ax,
Qe

F=| (BY)'SdX.
_Qe

To calculate these integrals, we need to transform them to the natural coordinate system as:

1 1 1
K= [ (BYTCBL dx = f f f (BL)TCBY, |J©|dgdndg,
e -1 J-1Y-1
1 1 1
K = [ (BY)TSBY, dx = f f f (B)"SBY, [/ |dédnds,
Qe -1 Jv-1Y-1

1 1 1
F=| (B)TSdx = f f f (BTS |J©|dédndq,
Qe -1J-17-1

where || denotes the determinant of /(.

These expressions show that the integrands contain rational algebraic functions in &,n,{. Only for
the case that the element is a regular cube that the Jacobian matrix is constant. In these cases,
the element integrals contain simple polynomials and the analytical expression can be derived.
For general cases, the analytical integration in the natural coordinate system ¢&,n, ¢ is impossible
and the best option is to use numerical integration.

Gaussian Integration

Gaussian quadrature rules are widely used in approximating the integral of a function, usually
stated as a weighted sum of function values at specified points within the domain of integration.
Here we use an 8-point (2 x 2 x 2) Gaussian integration in three dimensions. Gaussian rules for
integrals in several dimensions are constructed by employing one-dimensional Gaussian rules on
each coordinate axis separately.

To use the 2-point Gaussian quadrature rule in the domain [—1,1] to compute f_11 g(®)dg, the
integration points within the interval are: & ==

\/_;’ and &, = % The “weights” of the integration
pointare: W; = 1 and W, = 1. We get:
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J: llg(E)dE =g (— %) +g (%)

The remainder (difference from the exact value) is: R = g (E)
interval [—1

where & denotes a point in the
,1]. Thus, we achieve 4™ order accuracy using thls method. If the two-point rule is
used in each coordinate axis to compute f_l [1 1 g(®)dE, we get

J-1 j-l J-lg(‘s)dfdﬂdc ~ J‘l fli z S D Wﬁ]d“dz ~ f_l{i ig(zl,nm’ Z)Wllwr%l}dc
—1J-1J-1 -1 _121 ) 4 &4
Z Z Z 8C&1 Mm» S W WAWS,

n=1m=1 l=1

IR

To write out the 8- point rule explicitly:

| 1 [ 1 | llg(s)dzdndz = g(-
1

ve( - 757s)

1 1
';—3';@) 1
F-AtE-id
(f 3 f) g< V3’ f)

Below is an illustration on the integration points for an 8-point Gaussian integration.

é.l =Gl

=

d=l-— =A
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J A
‘I//T. I .//
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e o S
| {l/‘;‘zf

e #pd
i L7 -z

Figure 4.7 8-point Gaussian quadrature integration points [40]
Coming back to our computation of element stiffness matrices Kf, K5, and F:

e[ st
<[ s =) i)
t

NED V3
G( )+G‘< 1 1 1>+Gt( 1 1 1)
b x/§'\/§' V3 U v3'v3' V3 "\ V3 V33
+6t (272 72) + 6 (G 2) + 65 (- 5 = )
3 3’3 3'V3'V3 3'v/3'V3

where
G = (B)TCBE|J@)|.
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Similar integrations can be done for the calculation of Kj,and F. Another common numerical
integration rule is the Newton-Cotes rule, which will not be discussed in this thesis.
Discretized updated Lagrangian formulation

We proceed our discussion by discretizing the updated Lagrangian formulation. Due to many
similarities with the discussion in the previous section, we will not repeat the calculation as far as
it has been covered in the last section.

The updated Lagrangian formulation reads (applied on one element e)

aSl] ot t+At t
at OEfs Ors06y dx + if&]if dx = Re™™ - at 0;;60;; dx.

We are going to discretize the above equation terms by terms.

Firstly,

ost, ]
fﬂtaEt 6r560;; dx — (8d) ( fﬂ g(maz)fwg dx)«n(e»

The discretization proceeds pretty much the way it was discussed in the last section. Differences
are:

e The integration is over the body configuration at time t instead of time 0.

e The Lagrangian elasticity tensor is derived at time t but with respect to the current
configuration. This means that the second Piola—Kirchhoff stress tensor is calculated with
respect to the current configuration and the linear incremental strain 8 as well. Thus, B¢
is the same as the one in the last section except that its entries’ partial derivatives taken
with respect to the current Cartesian coordinates x.

Now we continue to discuss the second term:
T
fﬂ 018y dx — (6d©) ( fn (B)SUBY, dx) de®.

Again, the right hand side term is very similar to the one we derived in the total Lagrangian case.
Note that

(ofy of, a3 0 0 0O 0 0 0]
oty ol o5 0O O 0O O O O
oft, ot o& 0O O 0O O O O
0 0 0 of o a5 0 0 O
S*=10 0 0 o df a5 0 0 0]
0 0 0 g df a&5 0 0 O
0 0 0 0 0 0 oy o, df
0 0 0 0 0 0 oai oy ol
[0 0 0 0 0 0 a4 oaty ol

58



TU/e Mathematical models and implementation details

and the matrix B, is the same as the one for the T.L. case except that its partial derivatives are
taken with respect to the current Cartesian coordinates x.

We turn to the last term:

f ity dx—’(&dl(e))TU (Bf)rgudx)
ot Qt

where

— t -

011
t

0322
t

033

)
<
Il

e |-
012

t
0323

t
_0-13_

Now, once again, we have derived the discretized equation:

(8d@®)" ( f (BY)"CB dx) d© + (6d©)" ( f (B},)TS"BY, dx) de®
Qe Qe
= RLFAE — (5d(@)" ( fnt (Bi)Tgudx).

By applying (5@1(6))T =e;,i=1,..,8, in turns, where ¢; is the base vector in R®, we obtain the
final discretized equation for the unknown vector d(:

< t(]Bsg)Tcraai dx) d®© + ( f t(,tVL)TgulBafu dx) d(© = RLHAL — ( (Bi)Tgudx).
Qe Qe

Qg

Now, once again, we first transform these integrals to the natural coordinate system 5 , and then
we deploy the 8-point Gaussian integration rule to evaluate these integrals. The calculations go
on exactly like that in the total Lagrangian case, so they will be omitted.

External work vector

We have discretized the continuous equations for both updated and total Lagrangian formulation.
The only term left to be discretized is the term R.YAL. We have mentioned in section 4.1.3 that it
has the form:

RLFAL = Z KRE, e Ou; = (Su)T Z RE At

KEN, KEN,

where R, . = [¥REne XRE e KRE AT and N, are the nodal sets in the element ethat are
connected to the springs:

k _ tHAE _ o t+AL .
iRiyae = :K(DiJr —uf* ). ifk € Ny,

“REyae = 3C(0 — uf*AY), itk € Ny,
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kl'Rte+At — K[(Uit+At _ uf+AL’) + (0 _ ul§'+At)]’ ifk € N[;
fori=1,23.

Using the displacement discretization u"(€) = Nd(®, we have
su(€) = N 6d©.

Thus RL*4¢ is discretized as:

T
R2+At = (5d(e)) N’ Z ]R§+At .

KEN,

We notice that R¥, ,, contains the unknown variable u{*2¢. We deal with this problem by making
the following approximation:

(R0 ® = (82O) (W) (REa)“ ™ )

k€N,

where (R{2H)) denotes the value of RL*At at the kth iteration in the Newton-Raphson

procedure computing from time step t to t+At. (RK,, “Ddenotes the value of RE, e

computing from u¢+A0&k-1 = where y¢+A0Kk-1 denotes the value of u!*2t at the (k — 1)th
iteration computing u,,5, from time t to t + At. To summarize, we derive the external work vector
as

(k-1)
R§+At =N Z (th(+At) :

KEN,

Element equations assemblage to obtain the overall equilibrium equations
In the last section we discretized the linearized continuous equation term by term within an
element. The global matrices or vectors are obtained by adding up the contributions from every
element.

In this section we will assemble the element matrices/vectors to derive the global discretized
system. Note that this step is implemented in Marc with a default assemblage procedure. Hence,
the user has no freedom in it. | will only explain the general idea of element equations
assemblage. To check how Marc assembles the element equations, see [35].

Note that the interpolation functions defined in section “Selection of a proper interpolation
function” have compact supports. For a particular element, only the shape functions defined on it,
namely, N,, a =1,...8, will be nonzero. Thus we can expect a lot of zeros in the element
matrices. We denote the element matrix which only consists of the components related with the
shape functions of the nodes within the element as []qu]. The assembly process is all about
putting the non-zero components of the element matrices into the right position in the global
matrices. To assemble the matrices, the following arrays are needed.

Firstly, we need to set up the local matrix array LM, which relates the local node number, degree
of freedom and element number with the global equation number as,
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LM(i, a,e) = ID(i,IEN(a, e)),

where i denotes the degree of freedom, which is 3 for a 3D displacement-based element, a is the
local node number, and e represents the element number. ID mapping maps the global node
numbers to global equation numbers. IEN represents the element nodes array, which relates
local node numbers to global node numbers as:

IEN(a,e) = A4,
where A is the global node number.

Hence, for example, if we have derived the element matrices, to find out where to add the
position of the components k,, in the global matrix, we need to first find out how this component
related with the local nodes through the relation:

p=3@—-1)+],

q=30b-1)+j
where 1 <i,j < 3.
Using these relations we can find the related local nodes a and b. We can search for the
corresponding global nodes numbers A and B given the element number e and local node
numbers a and b. Finally, using the ID matrix, we find the equation number in the global system:

P =1D(i, 4),
Q = ID(i, B).

Then the addition process goes on as:
for all the element matrices, [K,,], for every element in [K,,],

KPQ = KPQ + kpq-

The vectors assembled in the same way as matrices.

Solution for the unknown nodal displacements

Basically after we assembled the element matrices in the last section, we get the global
discretized linearized system (for each iterative step):

KAU =R —F,

where K is the global tangent stiffness matrix, AU is the incremental displacement at all nodes, R
is the global external work vector and F is the internal work vector. Below displays a flow graph
illustrating how Newton-Raphson method is deployed to compute the unknown displacement field
U from time tto t + At. Note that the subscript indicates the time and the superscript indicates
the iteration step within the time step.
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Compute K, F;, R;.

0 0
Set Ft(+)At =F, Ut(+)At = Uy,

o _ 0 _
KC+At - Kt’ Rt+Af - Rt’
k=1.
— (k-1) —_ p® (k—-1)
k=k+1 KH_M(R)AU(R) ?th)+At — Fiae
-1
Ugsae = Ugsar +AU®.
Compute ), , R%),, and Check for convergence
k®using u®),
equilibrium not
satisfied

equilibrium satisfied

Figure 4.8 Newton-Raphson solution flow graph

Below are several comments on the graph:

¢ Note that in section 4.1.4, we have mentioned the approximation we made in computing

(k)
R ar» NAmMely

(€9) (k-1)
Riiae = Reyne -

Thus the equation

(k-1) k) — p(k) (k-1)
Kt+At AU® = Rt+At - Ft+At ’

actually is calculated as

(k-1) k) _ pk-1) (k-1)
Kt+At AU® = Rt+At - Ft+At .

e The convergence criteria we deployed here is: residual checking, namely,

Fresi 9]
M < TOL,

”Freattion ” o0

where F,esiquar = R — F and Frqcrion = R, TOL is the control tolerance.
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4.2. Morphing method (a computer vision-based method)

In this project, besides FEM-based models, a morphing method is also deployed parallel to open
the mouths virtually. Image morphing is a popular class of techniques for producing transitions
between images which is based on interpolating the positions and colours of pixels in two
images. For our application, the morphing technique is applied on the range images (depth
maps).

A depth map is by essence a matrix whose elements store the depths of points in certain view
port. Imagine that we want to represent a surface in 3D. Then we need to specify the coordinates
in x,y,z -directions of each point on the surface. Now we let the view port discretize the x, y-
plane. For example, if we specify a view port as [-150,150] in both x and y directions, and 1 as
the step of the grid (Note that this is also the view port we use to show all the depth maps in this
thesis with the unit 1mm), we will end up with 301 x 301 uniformly distributed grid points in the
x,y-plane, whose x, y-coordinates read (i,j),i = —150,...,150,j = —150, ...,150. The depth map,
as its name suggests, assigns the z-coordinates of each grid point according to its location on the
x,y-plane. Therefore, the depth map will be a 301 x 301 matrix. If we let Zbuffer denote the
matrix, Zbuffer(i,j) equals the value of the z-coordinate of the point on the surface whose x, y-
coordinates are i and j. This way, combining the view port and the depth map, we are able to
describe a (discretized) surface.

150
100

50

-50

-100

-150

-100 0 100

Figure 4.9 Depth map of a human face

Figure 4.9 is a typical depth map of an open mouth image. Given a depth map and view port,
such images can be rendered by MATLAB. From the image we can see a clear human face
shape (non-dark blue area), this is due to the fact that we set the background depth as —10°,
while the human face depth values are varying from —80 to —5. We can also observe the
features of a human face due to their difference in depth. For example, the nose tip is the most
protruding point of a face (hence has the largest z-coordinate value indicated by dark red colour)
and the eyebrow and forehead locate more outward than the eyes.

A morphing is determined from two 3D surfaces (depth maps) J, and J; and maps C:J, = 9,

specifying a complete one-to-one correspondence between points in the two surfaces. In
practice, C is partially specified on a sparse set of matching points in the two 3D models:

P = {pp"';pN} and Q = {q;"';QN}

where
C(pi)=qi fori=1,--,N.

The remaining correspondences are determined by interpolation
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1 n
Cp—-p= m; wi () (C(Pneiy) — Preioy):

where N(1),---N(n) are n =3 neighbours of p, w,(p) are defined inverse proportional to the
distance between p and py,

W ( )=—)
A e T —pro

where & = 0.00001 is introduced to prevent division by zero when p coincides with one of the
p1, -, py- The set of neighbours is uniquely determined by imposing a triangulation on points
p1, -, Ppy- Then, for any p, it belongs to at least one triangle. The vertices of this triangle are
defined as neighbours of p. For points outside of the triangulation grid the neighbours of p are
defined as three closest points from the set p,, -+, py. Thus for any point of the model p we can
determine its local coordinates of the triangulation grid, so called 3D Mesh coordinates:

p— (Wl (p)' wy (P): oy Wn (p)' N(l), N(TL), R)

where
1 n
p= —z wi(P) p +R.
Shaw@ &

In the Mask Design Tool the correspondence points P = {p,, -, py} are generated automatically
from the coordinates of 10 Principal Landmarks with indices: P30, P20, P2, P10, P11, P3, P27,
P14, P15, P6, as shown on Figure 4.10 (Left). Using some linear combinations between X- and
Y- coordinates of the principal landmarks, another set of 32 auxiliary landmarks are defined. Thus
the positions of the auxiliary landmarks are scaled together with the principal landmarks. In total
40 landmarks are triangulated into a 3D mesh grid with 56 triangles, see Figure 4.10 (Right).

Typically, the morphing of Scanl (closed mouth scan) to Scan2 (open mouth scan) consists of
the following steps:

1. Automatically detect or manually annotate the set of principal 10 landmarks on
Scanl and Scan2.

2. Compute 3D Mesh grids for both scans.

3. Find 3D Mesh grid coordinates for all vertices of Scan 1, i.e.

(Wl (p)! W (p)! T Wn(p): N(l): N(n), R)

4. Apply the 3D Mesh grid coordinates to 3D Mesh of Scan 2 to find the morphed
positions:

1 n
Clp) = W; wi(P) C(pngey) + R.

k=1

5. Generate the new Zbuffer, if required.
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Figure 4.10 Landmarks -> 3D mesh. Left: 10 Principal landmarks are shown as red balls,
32 auxiliary as blue balls. Right: imposed triangulation grid.

The steps we followed to virtually open the mouth are:

1. Set open mouth landmarks and read closed mouth scan landmarks.

2. Generate two 3D mesh grids for both closed and open mouth cases according to
their landmark positions respectively, see Figure 4.11.

3. Get 3D mesh grid point coordinates from the 3D mesh for closed mouth and
open mouth respectively.

4. Derive the transformation between the closed mouth and open mouth 3D mesh
grid coordinates based on the coordinates we derived in the last step.

5. Linearly interpolate all the points within the triangles (the 3D mesh grid).

6. Render the morphed (open-mouth) image using the coordinate and connectivity
information.
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Figure 4.11 Mouth opening morphing transformation

4.3. Summary of methods

Having presented all the ingredients for our mouth opening tool, the following table provides an
overview about the methods we developed in this project.
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Method

Shorthand

MORPHING

Table 2 Methods overview

FEM 111

Physically-
based model

Complexity

Element type

Material model

Young's
Modulus:

Poisson’s ratio:

Spring stiffness

Hyperelastic
material
constants

Compressibility

Formulation

No

Low

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Yes

High

Shell element

Purely elastic

0.5

0.42

N/A

Compressible

U.L.

Yes

High

Hexahedral
element

Purely elastic

0.5

0.42

N/A

Compressible

T.L.&U.L.

Yes

High

Hexahedral
element
(Herrmann
formulation)

Mooney

N/A

N/A

0.001

Co = 0.0094
COI = 0.082

Nearly
incompressible

T.L.

Yes

High

Hexahedral
element
(Herrmann
formulation)

Gent

N/A

N/A

Nearly
incompressible

U.L.&T.L.
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4.4. Implementation details

In this section, we will elaborate the implementation procedure of FEM-based model simulation.
Generally speaking, the FEM-based models are implemented using both MATLAB (in Windows
and Linux systems) and Marc (in Linux operating system). Marc is a general-purpose, nonlinear
finite element modelling tool. For more information about Marc, check [41]. Shortly speaking, the
implementation includes: firstly, preparation for the input file for Marc using MATLAB (obtaining
the close mouth scan from the scan database, computing mouth opening parameter, etc.), then,
finite element analysis carried out by Marc based on the input file, finally, result-retaining from
Marc and open mouth image generation using MATLAB. There are 11 steps involved in our open
mouth tool implementation procedure:

Step 1. Pre-selection of the closed and open mouth pairs from the database (only needed
for model-developing)

Philips has a database of various facial 3D scans. We need to select “good” scan pairs (of open
and closed mouth scans) for development and evaluation of the soft tissue models. Our “good”
scan pair satisfies the following conditions: firstly, both open and closed mouth scans belong to
the same person; secondly, the scan pair can be successfully aligned to each other in the upper
face area where the open and closed mouth faces are basically the same. The alignment is done
with a version of Iterative Closed Point algorithm implemented at Philips. Figure 4.12 and Figure
4.13 present an example of a well-aligned and a badly-aligned scan pairs by means of the
difference depth maps.

The difference maps are obtained by subtracting the closed mouth depth map from the open
mouth depth map. The result indicates the difference of two surfaces in the z-direction.

F X

100 1

50 1

-50 1

-100

150 - : - 5
-100 0 100

Figure 4.12 Example: Well-aligned upper face
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150

100 1

50 1
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-50 1

-100 1

-150

-100 0 100

Figure 4.13 Example: Badly-aligned upper faces

We can see that for the properly aligned scans the difference in the upper head is close to zero,
(indicated with green colour), while on the lower part of the face the difference is negative
because of jaw moving down-backwards (indicated with dark blue colour). The badly aligned
pairs of scans can be visually identified by the extreme difference values across the face. There
are various reasons that might cause two scans cannot be aligned at the forehead part. The most
probable reasons are the 3D scan artefacts and the large variation in the scanning angle.

Step 2. Extract and edit related information (landmarks) from database

The scans are stored in the database together with the list of coordinates of facial landmarks.
Landmarks play an important role in our models. By landmarks, we mean distinctive geometrical
feature points on the human face which are easy to identify on the face like mouth and eye
corners, nose tip, etc. Philips has developed its own landmark annotation techniques, via which
landmarks on facial scans will be automatically detected. Since these tools are not perfect Philips
also developed a GUI by which the landmarks positions can be manually annotated and refined.
Figure 4.14, Figure 4.15 and Figure 4.16 are the snapshots of the landmarks annotation GUI,
using which one can check all the 43 landmarks (blue dots) including 10 prime landmarks (red
dots).

(8 rerecearttanc .
NHdG 4 AA09RL4-Q 08 8D

Participants

400002

Closed Mouth Scan

Edit Primary Landmarks

Edit Al Landmarks

Delete Landmarks
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Figure 4.14 Landmarks annotation GUI
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Figure 4.16 Edit all landmarks window

Currently, there are no landmarks automatically added for the open mouth scans in the database.
Figure 4.17 shows a sample open mouth scan in the GUI. The “good” pairs of the open-closed
mouth scans the landmarks can be copied from the closed mouth scan as explained in the
following step. Whenever needed, one can manually correct the landmark positions in the GUI.
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Figure 4.17 Open mouth case (without landmarks)

Step3. Specify the translation and rotation parameter for the mouth open motion

Our simulations uses four parameters (ti,t,,ts,r), to describe the rigid movement of the jaw.
t;, t, and t; are used to specify the translation of the lower skull in x,y, z-direction respectively
and r (in radians) gives the rotation angle of the jaw around the horizontal axis. The four rotation-
translation parameters are saved in the parameter file, which is then read by Marc procedures.

The major goal of the assignment is to open the mouth uniformly on all scans with identical
rotation-translation parameters (for example specified in the mouth opening tool). At the same
time, in order to correlate the FEM models with the ground truth data, one have to know for each
closed-open scan pair in the test set, the specific rotation-translation parameters.

These parameters are estimated automatically by means of a patch matching algorithm. First, we
use the Iterative Closest Point (ICP) alignment to match the nose bridge area of the open mouth
scan to the nose bridge area of the closed mouth scan. This alignment gives also the alignment
of the upper skulls which are one-to-one related with the facial surfaces. Next, the ICP alignment
is used again to match the chin area of the closed mouth scan to the chin area of the aligned
open mouth scan. This alignment gives also the alignment of the lower skulls (jaws) which are
also one-to-one related with the facial surfaces. The second alignment gives the rotation
translation parameters of the jaw’s movement. Moreover, the alignments allow to copy the facial
landmarks from the closed mouth scan to the open mouth scan where the upper face landmarks
are copied after the first alignment, the chin landmarks are copied after the second alignment and
the mouth corner landmarks are defined as the average of the corner landmark positions at the
first and the second alignments.

We should point out that the movement of the jaw during mouth opening is much more

complicated than we assumed in this model (the moving jaw) which might be in reality non-linear.
Figure 4.18 and Figure 4.19 illustrate the procedure described above.
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Closed Mouth Scan Open Mouth Scan
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Figure 4.18 Before any alignment

Closed Mouth Scan Open Mouth Scan
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Figure 4.19 After first (upper head) alignment
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® Scanl
e Scan?2?

-40 —

-50
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40 20 0 20

Figure 4.20 First alignment result 3D plot (Scanl: aligned closed mouth scan, Scan 2:
open mouth scan)

Figure 4.21 After second (jaw) alignment with landmarks computed for open mouth scan
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Figure 4.22 Second alignment result 3D plot (Scanl: aligned closed mouth scan; Scan 2:
open mouth scan)

Step 4. Obtain skin thickness information (morphing technique)

As part of input information of our models, local skin thickness is of importance in terms of
realism of our models. There are two skin thickness maps (matrices whose entries store the
thickness of the soft tissue according to its location on the x, y-plane) available at Philips for an
“averaged face” geometry. The “averaged face” was computed by averaging and morphing a
number of facial scans. The first soft tissue thickness map is created as an interpolation of 20
average thicknesses obtained via literature study. The second one is derived from MRI data by
Philips internee, Mingming [42]. For our FEM simulations we use the first map which has more
realistic values on the forehead and on the nose bridge.

Features of a face have different proportions and shapes for different individuals. For example,
the width of the mouth, the shape of the nose or more generally, the different distance of specific
features. As a whole, each face has difference in length and width as well. Given all differences
mentioned above, the thickness map for an averaged face should be morphed to match a
specific face before it is applied. The morphing procedure is outlined below.

First, we align the specific closed mouth face to the averaged face to minimize the RMS (Root
Mean Square) distance between the corresponding landmarks. Next, we generate two 3D grids
based on the landmark positions of the average and of the particular face, like illustrated in
Figure 4.10.

The next step is to get the mesh-coordinates for all vertices of the particular face. Using the
mesh-coordinates we find the corresponding points on the average face and sample the soft
tissue thickness. Thus we obtain the soft tissue thickness for all vertices of the particular face.

Step 5. Generate skin geometry

All FEM models derived in this work consist of elements defined on the regular grid. In order to
define a simple yet accurate skin geometry the 3D model, the depth map of the closed mouth
face is rendered on a 3mm grid. Then the “mouth-cut” is made to let the model be able to open
its mouth. Specifically, according to the landmark positions of mouth, another set of mouth nodes
is created with 0.5mm extrusion in the z-direction. The extrusion is needed to facilitate the
separation of the two sets of nodes in Marc Mentat software. The connectivity of the nodes is
then adapted to append them to the surface so that the mouth can open realistically. This can be
illustrated as below:
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Figure 4.23 Skin geometry open (left) and closed (right) mouth

Step 6. Generate skull geometry
3D model vertices are obtained via linear interpolation. The skull geometry is generated by

subtracting the rendered soft tissue thickness map from the rendered surface map. We define the
lower skull according to the landmarks which indicate the height of the mouth. We simplify the

The soft tissue thicknesses are rendered on the same 3mm grid where the values in-between the
jaw geometry by cutting the skull horizontally at the average mouth corner position, as shown in

Figure 4.24:
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Figure 4.24 Skull geometry open (right) and closed (left) mouth

Step 7. Assemble skin and skull geometry

After we derive skin and skull geometries (namely, node coordinates and connectivity), it remains
to assemble them. Content wise, we first remove the background grid nodes around the face
where either skin or skull values are missing. This allows reducing of the computational burden.
Second, we connect the nodes into the elements to get a one-to-one mapping between skin
surface nodes and skull surface nodes except from the mouth side area where by design we

have one skin node connected to two skull nodes.
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Step 8. Complete the input file for Marc

In this step, we complete the input file for Marc by adding spring connections between skin layer
and skull layer and other parameters. It includes specifying built-in parameters, like the element
type we use, material properties and everything needed under the proprietary Marc input file
format, see Appendix 0.

Step 9. Run the simulation in Marc

With the complete input file, the simulation is ready to run. We make a MATLAB function in Linux
environment which can detect the existence of the input file, see Appendix A.2. As a result, once
the completed input file is present in the specified folder, Marc gets started. The operation of the
Marc is controlled by means of procedure file, see Appendix A.3. Marc interprets the commands
in the procedure file and assigns the proper boundary conditions of the model (the prescribed
position of the jaw skull and the clamped upper skull) and computes the resulting open-mouth
geometry.

Step 10. Process the output file from Marc

At the end of the simulation, a user subroutine is automatically executed to produce the simulated
open mouth skin surface nodes coordinates. Note that along this coordinate file, there are also
some other files generated by Marc which can be used to visualize the result in Marc. Some files
(especially .log and .out file) are very useful in debugging of the model and the procedure files.
Based on the newly generated coordinates, the open mouth depth map can be rendered back in
MATLAB in Windows system. Figure 4.25 shows the simulated result (left) and the ground truth
scan (right) for a specific participant.
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Figure 4.25 Simulation result (left) and ground truth scan (right)

Step 11 Post-processing

We perform the mouth open simulation on 62 closed-open mouth scan pairs to evaluate the
performance of different methods. After some calculation, described in detail in section 5.2, we
are able to obtain an average and the standard deviation error map for each method on the
average 3D face model. The average error map can be used for systematic correction of the
open mouth scans after the morphing procedure. Note that the average error map is base only on
62 faces and therefore it is only an approximation to the real systematic error of each method. In
section 5.2 we will explain how the standard deviation map can indicate how close the average
error map is to the real systematic error.
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5. Results and discussion

In this chapter, we present the benchmarking of different methods. We implement the procedure
described in section 4.4 (FEM-based methods) and the morphing method for 62 participants who
have both open and closed mouth scans stored in the database. As a result, we constructed
62 x 5 depth maps (Zbufferg) which store the simulated open mouth geometry on a specified
view port for each individual and for each method. On the other hand, original depth maps which
store the real life open mouth geometry are also available to be used for verification purpose. The
depth maps derived from the original open mouth scan will be referred as ground truth
(Zbuffergr). We point out once again that the view port we use is a square window (from
—150mmto 150mm) both in x and y directions sampled with the grid step (resolution) of 1mm.
Thus the dimension of the depth map matrices is 301 x 301. The difference map (Zbufferp) is
defined as:

Zbufferp & Zbuffergr- Zbuffers.

Obviously, Zbuffery gives a direct indication of the difference in the surfaces in z-direction and
therefore it is used as an indication of simulation error for individual scans and methods.

To derive a quantitative indication on how accurate each method is, simple statistical methods
are applied. We compute the following statistical error indicators: RMS (Root Mean Square) error
and average error and standard deviation map. In this chapter, the simulation results of the five
methods (FEMI, FEMII, FEMIIl, FEMIV and MORPHING) will be compared in a comprehensive
way.

5.1. Benchmarking I: RMS error

In this section, we first present the computation procedure of RMS error of an individual
difference map (Zbufferp). Then we show the RMS results of 62 individuals for FEMIlI and
MORPHING in a figure. Finally, we average the individual results (over 62 participants) for each
methods to derive a RMS error indicator for each method. The results are then summarized in a
table.

The individual RMS error is computed as follows:

1. The difference map (Zbufferp) contains two types of errors: 1) errors in the lower part of
the face around cheeks and chin due to the inaccuracy of the mouth opening method
(modelling error); 2) errors on the boundary edges of the depth maps due to different size
of the scanned areas and heads. The second type errors are not relevant for estimation
of the performance, and should be ignored. Since these errors have typically very high
amplitude, they can be detected by simple comparison with a (fixed) threshold. We
assume the modelling error does not exceeds 5 mm. If the absolute value of entries of
Zbuffery larger than 5 mm, we set it to 0, written in formula as:

if |Zbufferp|;; =5 = (Zbufferp’);; =0, fori,j =1,..,301,
We use Zbufferp’ to denote the truncated difference map.

2. Compute the RMS error. The RMS error is computed by averaging over the whole
difference map:
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RMS error (mm)
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From the formula we see that when we compute the RMS error, we average over both
the face area and the background where the Zbufferf, = 0. This results in the effect that
relatively larger faces will also have larger RMS. Thus, the comparison between the RMS
values computed with different faces does not make much sense, while the comparison
of RMS of different methods applied on the same face is still valid. Moreover, the
average RMS error over the 62 scan pairs is a measure of the accuracy of specific
method.

Below is an example chart which gives the individual RMS errors for the morphing
method and FEM II. Note that the reason that we take MOPHING and FEM Il is that FEM
Il is representative among the FEM-based method while MOPHING is a computer-vision
based (non-physical) method.

: —*— MORPHING

1| ¢

0 10 20 30 40 50 60 70
paticipant number

After we have computed the individual RMS error for each method, to get an indication on the
accuracy of each method itself, we only need to take the RMS average over the individual

results.

ERrms 12
ERMS(average) = (ERMS(l)) .

The RMS error of each method is given in
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Table 3 RMS errors

FEMI FEMII FEMIII FEMIV MORPHING
RO 0.9344 0.8817 0.8882 0.8829 1.0060
error(mm)
5.2. Benchmarking Il: Average error map

The RMS error can only provide us an averaged indication (one number) on the accuracy of each
method. A more sophisticated statistics method should be applied to gain more insights in the
systematic errors produced by different methods. In this section, we are going to calculate error
expectation and standard deviation maps to evaluate the local performance of each method.
Observe that the facial features corresponding to different people do not have identical XY
coordinates, therefore the meaningful averaging of the error maps requires their morphing to the
same reference. The computation is carried out as follows:

1.

Create a 3D morphing mesh from the average open mouth scan landmark positions. Morph
the 62 simulated open mouth and ground truth depth maps to this 3D Mesh, using the
morphing technique described in section 4.2. Render the depth map Zbufferygr
corresponding to the morphed ground truth model, and depth map Zbufferys corresponding
to the morphed simulated model. Then compute the morphed difference map, as:

Zbufferyp = Zbufferygr — Zbufferys.

This way, we get the difference map as seen on the reference “averaged face”. Then the
average error and standard deviation maps are computed in the following steps:

Choose the background threshold value. The role of this value is to filter out
meaningless values in the peripheral facial values of morphed difference map, just
like we explained in section 5.1, where we assume that the absolute value of such
errors should be less than 10. We use Zbufferyp' to denote the truncated morphed
difference map.

Add up all the entries in the morphed difference maps in three ways: element-wise;
element-wise squared; the number of times that each entry is above the background
threshold value in the map. Thus, three new matrices are created:

(Asum)ij = Z (Zbufferyp);;, for i,j =1,..,301,
#scans
(Asumsquare);, = Z (Zbufferyy)?,,, for i,j = 1,...,301,
#scans
Aeownd)j = Y Lauttonpyi<so} for i,j = 1,...,301.

#scanS

Compute the average of the difference maps. Since every scan holds equal weight,
the averaged error map E should just be the algebraic average.
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(Asum)ij T,
ij = % for { (i, )|(i, J) satisfies (Acount)ij= 0.9*Nycans} €lse E;j = 0.
scans
This way we only take into account the values which are “significantly” represented in

all scans.
e Compute the sample standard deviation of the difference maps. According to the

definition, the standard deviation o is calculated as:

o=3EX?) -EX)?

where X denotes the random variable and E(X) denotes the expectation of the
random variable. The estimation of E(X?) (let us denote the matrix as Ej) is

straightforward:
. (Asumsquare)ij ol . *
Eij = N—: for { (l,j)l(l;]) satisfies (Acount)ijZ 0-9*Nscans} else Eij = 0.
scans

The standard deviation map is calculated as:

of; = Z/El*} — Eizj, for i,j =1,..,301.

Below, we present the average error map for each method. Please note that there are two colour
scales used to present the result. We use the scale (—2mm to 2mm) for method FEM II, FEM Il
and FEM 1V, and (—5mm to 5mm) for FEM | and MORPHING. The reason for the usage of

different scale is that we want to highlight the error distribution for FEM Il Il and IV. If we use the
same scale for all 5 methods, we would not be able to see the difference between FEM Il Il and
V.
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Figure 5.1 Average error map FEM IlI Figure 5.2 Average error map FEM II
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Figure 5.3 Average error map FEM VI
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Figure 5.4 Average error map FEM | Figure 5.5 Average error map

MORPHING

As pointed out in section 4.4, we can use the average error map for systematic correction of the
simulated results in order to compensate for the systematic errors. The systematic error
correction is the post-processing step where after synthesis of the open mouth scan, we add the
morphed average error map to the resulting depth map.

Note that the average error map is a random array which can deviate from the expected
systematic error. Therefore it is importance to check whether the systematic error correction
introduce additional error or not. Thus one would like to have the variance of error maps after the
correction less or equal to that without the correction. Let the systematic error X;j have
expectation p;; and the standard deviation oy for i,j =1,..,301. Then, assuming that the
individual maps X;; are independent random variables, the average error map E;; has expectation

w;; and the standard deviation % where 62 is the number of individual error maps in the average.
If no error correction is performed, i.e. if one assume that y;; = 0, then the actual quadratic error
of the measurement is equal to the second moment of X;; which is equal to Hiz]_ + cizj. If the error

correction is performed X;; is reduced with E; then the second moment of X;; —Ej; is about

2
(e .
6—‘2] + oizj, Thus the correction makes sense when

o2
2 2 1 2
uij + Gij = 62 + Gij’
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which is equivalent to
Gij

L > =
|”11| =62

Since the true values of the expectation and the standard deviation are not available, we replace
them with the estimates which give us the practical criterion for the application of the error
correction:

|E;| = a; ~ 0.127 - ;.

1
N

After the systematic error correction, the random deviation from the ground truth can be purely
described in terms of the standard deviation map. In this view, the standard deviation map can be
used for the comparison of the competing methods. The methods with the low standard deviation
are preferable.

The standard deviation maps for each method below show that the standard deviation is in
general lower than the absolute value of the error map and therefore the systematic error
correction does make sense.
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Figure 5.6 Standard deviation map Figure 5.7 Standard deviation map FEM Il
FEM 1II
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Figure 5.9 Standard deviation FEM |
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Figure 5.10 Standard deviation MORPHING

As we can see, the difference of the standard deviation map between different methods is not
really visible. To compare the standard deviation maps between different methods, we use FEM
Il as reference. To show the relative performance of different methods with respect to FEMII we
calculate the percentage map by subtracting the other four methods from FEM II, dividing the
result with FEM Il and multiplying with 100% :

(OrEMII — Omethod)i j

Below are the percentage maps:

(orEMI): j

’
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Figure 5.13. FEM Il -IV Figure 5.14. FEM Il - FEM |

From the red colour on the maps indicates where locally FEM Il has worse performance, and the
blue areas indicate where FEMII is better.

5.3. Observations and discussions

5.3.1. Observations

From the results presented in the previous sections, the following observations can be drawn.
Observation 1: FEM-based methods are generally more accurate than the morphing method.

This fact can be observed from the RMS error. For the morphing method, the RMS error is as
high as 1.006 whereas for FEM-based methods, it is only around 0.8850. Thus via RMS error
estimation, FEM-based method is on average 0.1 mm more accurate than the morphing method.

The average error map also supports the observation. It can be observed from Figure 5.5 hat for
the morphing method, the error is mostly between 0 and 5mm, but for the FEM-based methods I
Il and IV, the maximum absolute error is seldom over 2mm and mostly around 1mm. Even for
FEM I, the advantage over the morphing method is visible from Figure 5.5 and Figure 5.4.
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Observation 2: FEM-based methods have different error distribution than the morphing method.
From the average error maps (Figure 5.11), we can clearly see that for FEM-based methods, the
errors appear in a regular way namely mostly at cheeks and around the mouth, although there
are minor difference between the methods. However, for the morphing based method the error
mostly appear at the lower face and it appears more scattered than the FEM-based methods.
This fact is confirmed by Figure 5.12, where we observed that FEM Il has around 50% less
standard deviation in error than morphing method in the chin area.

Observation 3: Within the FEM-based methods, FEM | is the least accurate method.

A check on both RMS error estimation and average error map like we did in observation 1 yields
the result.

Observation 4: FEM Il and FEM IV are very similar in terms of error distribution.

Indeed, in RMS error indication, the difference between the two methods is only 0.0012mm
Moreover, we can barely see the difference in the average error maps for the two methods. The
percentage map (Figure 5.13) also confirms the statement by showing only around 10%
difference in standard deviation map at cheek area.

Observation 5: In terms of the standard deviation of the errors, FEM I, Ill and IV outperform the
morphing method in the chin area.

This observation is derived from the percentage map. In the morphing method’s percentage map
blue colour dominates in the chin area (which means higher standard deviation values than FEM
), while FEM IV is very similar to FEM Il and FEM Il is better than FEM Il in the check area (as
indicated by red colour in the percentage map in red (which means less standard deviation than
FEM ).

Observation 6: FEM Il has the best average performance in standard deviation.

This observation is drawn from the percentage maps. Indeed, FEMIII is better than FEM Il on the
mouth sides, and therefore is also better then FEM IV which is very close to FEM II, FEM | is
worse than FEM Il and therefore FEM 1 is also worse than FEM Ill. One can find that the
advantage of FEMIII over the Morphing in the chin area is about 40% after the correction of
systematic errors. However, without the compensation of the systematic errors FEM Il performs
the worst among FEM I, 1l and IV in terms of the average error where FEM 1l has 0.0065mm
more error than FEM Il and 0.0053mm more than FEM IV. In the average error map, we also see
that only FEM III has visible error at the upper face (between 0.5mm and 1mm) which leaves
room for improvements and optimizations.

5.3.2. Discussions

Based on above observations, we would like to discuss the following aspects:

1. Physical-based model versus computer-vision method

From the observation 1, we can conclude that the physical-based model is generally more
accurate than the computer-vision based method, though the former costs more
computational power. We observe that, in absolute values, the average advantage of FEMIII
over the Morphing is about 0.5mm after correction of the systematic errors. At the same time,
the FEM method is considerably more accurate without statistics based systematic correction
of the simulation errors. Therefore The FEM based methods are preferable for simulations
which do not have ground truth data, like, for example, the side shifts of the jaw.

2. Shell element versus solid element
Shell element is a structural element. It is also a very common choice of engineers. But
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observation 3 tells us that it performs worse compared to 3D continuum solid element in our
models. This is not a surprise. Though the doubly curved shells we used can represent
objects in three dimensions virtually, they are surface based element in essence. Through
defining the nodal coordinates and the thickness the user gets the interpolated surface.
Especially, in the shell-element based model, we retain the computed facial surface using the
original soft tissue thickness for the neutral face (since this is no other ways to regain the
simulated face surface), we have partially lost the quasi-incompressible property of the facial
tissue. Since the quasi-incompressible property will lead to the loss of thickness in soft tissue
when it gets stretched during the mouth opening process. This could also be a possible
reason for shell elements to lose their accuracy.

3. St.Venant-Kirchhoff model versus Mooney model versus Gent model

From observations 4,5 and 6, we can conclude that the St.Venant-Kirchhoff model (FEM II)
does not underperform other two material models, although Mooney (FEMIII) and Gent (FEM
IV) models have a non-constant elasticity tensor. This can be explained by the fact that
during the mouth opening process the skin elements experience large displacement but not
sufficiently large strain. In the small strain regime, the skin has a linear relationship between
strain and stress, as shown in Figure 3.6. Thus the St.Venant-Kirchhoff model does not show
an obvious disadvantage compared with the other two models.

We also know from Observation 4 that the Gent model behaves quite similar to the
St.Venant-Kirchhoff model. This is probably caused by the similarity of the St.Venant-
Kirchhoff model and the Gent model in their strain-stress relationship in the small strain
regime. In the section “Material models and uniaxial tension test”, we can observe the
linear relationship between strain and stress in the small strain area for the Gent model.

Observation 6 tells us that the Mooney material model performs best in terms of the standard

deviation. Unfortunately, we cannot provide a satisfactory explanation on this yet at the
moment.
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6. Conclusion and future work

We have developed five methods in total which can simulate open mouth facial scans from the
closed mouth scans. Except from the last morphing method, the other four methods are based on
3D finite element tissue models which allow a reasonable prediction of tissue deformations
according to the open mouth process. The models are built based on individual facial surface
scans and generic soft tissue thickness data (which can be taken from the Philips MRI data study
or the open literature study). Using this information, we created four models in Lagrangian
formulation. The models incorporate geometric nonlinearity and mechanical nonlinearity of the
biological tissues. We verified our simulation results with the actual open mouth scans and
calculated the averaged error and standard deviation maps for each method. For physically-
based models, the largest error typically occurs at the cheek area and is within [-2mm, 2mm].

To develop a more powerful computational tool for mouth opening, realistic soft tissue models are
desirable. To improve the performance of the existing soft tissue models, we recommend to look
into the following aspects:

1. Multi-layer soft tissue model

Multi-layer models can be developed to represent different biological soft tissue layers
(e.g. epidermis layer). A substantial amount of work has been done in this direction [21].
Multi-layer models, theoretically speaking, with proper assignment of the parameters, will
model the non-homogeneity better than double layer models.

2. Muscle forces activation

Muscle effect will also improve the result. Like pointed out in section Facial soft tissue
anatomy, open mouth process involves activation of muscle forces (although it is not
predominant). Thus, a proper muscle force activation model can make the mouth open
process more realistic. Besides, adding the muscle layer will also increase the realism
structurally. A lot of effort has been put into studying muscle force models. Related
literature is [11, 22].

3. Anisotropic property

In our models, we have assumed the isotropic property, but the real soft tissue layers are
anisotropic. In Marc Mentat, the user can specify the fourth-order elasticity tensor for an
anisotropic material. For example in linear case, user can specify the fourth order tensor
Cijrs» Which gives the strain-stress relation o;; = Cjjs€rs.

4. Material postulation

In our project, we used Moony and Gent, two hyperelastic material models to simulate
the complex biological object - human facial soft tissue. As we mentioned in section
3.2.2, a nonlinear material constitutive relation is determined by the strain density
function. Hence, for a material as complex as human skin, to postulate a strain energy
function based on experimental data is a way to set up a mathematical model. For more
details, see [29].

5. Nonlinear springs

Due to superficial fascia, there exists “sliding effect” when people open their mouth. In
our model, we use springs to simulate the “sliding effect”. However, the sliding effect is
more than a linear relationship between displacements and forces. In Marc Mentat, it is
possible to define nonlinear springs using a table to model nonlinear boundary
conditions. That will give us more freedom to model the “sliding effect”.

6. Model for superficial fascia

In our model we used springs to model the superficial fascia in our effort of replicating the
“sliding effect”. More advanced models exist to simulate the fibrous connective tissues
[43].

87



Conclusion and future work TU/E

10.

11.

Gravity effect

We have ignored all the body forces in the models. But in reality all humans experience
gravity. Especially for people who have a lot of fat in their face, when they lie down,
probably the gravity will play an important role in the geometry of the face. Thus if we add
body force (gravity) into the model, we may achieve a better result.

Higher-order finite element

In the project, we have employed linearly-interpolated elements. Higher order elements
will increase the accuracy, but at the same time the computational effort will also
increase. A more accurate quadrature rule can also be utilized in combination of the
higher-order element.

Adaptive meshing

To reduce the computational effort, we can use various meshing methods to reduce the
number of nodes. In other words, for the region for which we do not expect too much
change (like the upper head) we can put less nodes there.

Participants classification

In section 3.1.1, we have pointed out that the properties of skin differ with age, gender,
race etc. Taking above mentioned information of a participant into account when we
design our material model would be helpful especially when aiming at a personalized
mask sizing advice.

Parameter optimization

Given a model configuration, the parameters determine the error produced by the model.
In the project, we used parameters values found in the literature. Different sets of
parameters will give different amplitude and distribution of the errors over the error maps.
Thus, parameter tuning plays an important role.

Below we consider the St.Venant-Kirchhoff model (FEM II) as an example to illustrate the
effects of parameters. Note that there are three parameters involved in the model:
Young’'s modulus (E), Poisson ratio (v) and spring stiffness (k). Table 4 below shows the
parameter settings for four different simulations. The resulting error maps are shown in
Figure 6.1 and Figure 6.2.

Table 4 Parameter tuning

Case 1 0.5 0.42 1 79.59890
Case 2 0.5 0.22 1 94.52781
Case 3 0.5 0.42 2 78.91196
Case 4 2.5 0.42 1 84.13046
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Figure 6.2 Case 3&4

From this example, we get an idea about how parameters affect our result. Thus, a significant
improvement for the model might be gained from the optimization of the parameters. With the
current model configuration, one can try to find the optimal set of parameters which will minimize
the specified error measure.
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A. Appendices

A.1 Model definition file

The header of the Marc model input file looks like:
title standard
extended
sizing 0 5823 5992 0
alloc 25
elements 75
version 11
processor 1 1 1 0
all points
shell sect 5 0 1
end
solver
8 0 0 0 0 0 0 0 0 0 0 0
optimize 11
where 5823 is the total number of elements and 5992 is the total number of nodes.
The header is followed by describing how the nodes are connected into the elements:

connectivity
0 0 1
1 7 2166 2267 2268 2167 12382 12483 12484 12383
2 7 2167 2268 2269 2168 12383 12484 12485 12384
3 7 2168 2269 2270 2169 12384 12485 12486 12385

where the first number in the row is the element number, 7 corresponds to “Hexahedral element”
type, and the last 8 numbers are the indices of the nodes. Since the skull is modelled with the
shell elements, the corresponding connectivity part looks like:

2392 75 20433 20447 20448 20434
2393 75 20434 20448 20449 20435
2394 75 20435 20449 20450 20436

4782 75 22918 22935 22936 22919
where 75 in the second row corresponds to the “Shell element” type consisting of only 4 nodes.
The connectivity part is followed by the table of node coordinates:
coordinates

3 7580 0 1

2166 -1.8000000000E+01 -8.7000000000E+01 -6.2510218835E+01

2167 -1.5000000000E+01 -8.7000000000E+01 -5.5302429785E+01

2168 -1.2000000000E+01 -8.7000000000E+01 -5.2346172906E+01

where the first column contains the node indices, and the remaining contain the XYZ node
coordinates in the Cartesian coordinates system.

Next, the skin node set is defined

define node set skin
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The declaration is followed by the list on node indices where ‘C’ character indicates that there are
more indices on the next line

2166 2167 2168 2169 2170C
2171 2172 2173 2174 2175 C
2176 2177 2265 2266 2267 C

This is repeated for the upper and lower skull parts:
define  node set upperskull(shell)

20872 20873 20874 20875 20876 C

20877 20878 20879 20880 20881 C

20882 20883 20884 20885 20886 C

define  node set lowerskull(shell)
20433 20434 20435 20436 20437 C
20438 20439 20440 20441 20442 C
20443 20444 20445 20446 20447 C

Next lines define the material properties of the elements
isotropic

lelastic 10 0 0 Omateriall

“Isotropic” option allows the user to assume isotropic property of the material.

5.000000000000E-01  4.200000000000E-01 0.000000000000000+0 0.000000000000000+0 0.000000000000000+0
0.000000000000000+0 0.000000000000000+0 0.000000000000000+0

1 to 4782

The first two numbers after the declaration specify the Young’s modulus and Poisson’s ratio,
respectively. Then geometry of the skin is defined:

geometry

0.000000000000000+0 0.000000000000000+0 0.000000000000000+0 0.000000000000000+0 0.000000000000000+0
0.000000000000000+0 0.000000000000000+0

1 to 2391

followed by the geometry of the skull:

2.000000000000E-01 0.000000000000000+0 0.000000000000000+0 0.000000000000000+0 0.000000000000000+0
0.000000000000000+0 0.000000000000000+0

2392 to 4782

where the first number after the declaration specifies the (uniform) thickness of the elements
indicated in the second part (element from 2392 to 4782).

Then the springs are defined:
springs

12382 1 20433 11.0000000000000E+00 0.000000000000000+0 0.000000000000000+0
0.000000000000000+0 0.000000000000000+0 1 0

0 0 0 0 1 1 0 0

12383 1 20434 11.0000000000000E+00 0.000000000000000+0 0.000000000000000+0
0.000000000000000+0 0.000000000000000+0 2 0

0 0 0 0 1 1 0 0

In the “springs” option, the first column gives the node number of the first end of the spring and
the third place for the second end. The second and the fourth positions specify the degree of the
freedom at the nodes that indicated before it. The next position is the stiffness of the springs (for
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linear case). At the tenth position, the spring ID is flagged. The end of a Marc input file looks like:

no print
end option

A.2 Linux subroutine

% use this script to run the simulation in marc

% first check the file is ready or not

k=1;

while k<2

while exist('mouth_opening_face_input.dat',file’)~=2
pause(0.5);

end

f=dir('mouth_opening_face_input.dat’);

while f.bytes<=220000
pause(0.5);
f=dir('mouth_opening_face_input.dat’);

end

% run simulation in mentat
Imentat make_mouth_opening_model_V2.proc

pause(30);
end

A.3 Marc procedure file

| Created by Marc Mentat 2012.1.0 (64bit)
*prog_option compatibility:prog_version:ment2012

| Procedure file for creating mouth opening FEM model
| Input:

| - Parameter file "mouth_opening_model_parameters.inproc"

- Database mouth_opening_face_input.mfd containing:
mesh of faces
mesh of skull parts
springs

*reset
*new_model yes
I

*colormap 2
*set_links off
*set_nodes off

93



A. Appendices

TU/e

*elements_solid
*set_applys off
*reset_view
*rot_model_cspace_y_rev
*rot_model_cspace_y_rev
*rot_model_cspace_y_rev
*rot_model_cspace_y_rev
*rot_model_cspace_x_for
*rot_model_cspace_x_for

*add_nodes

000

|

*select_clear
*select_nodes

1#

*store_nodes rotation_node
all_selected

*select_reset

*set_merge_renumber off

I

|*merge_model mouth_opening_face_input.mfd
*import marc_read mouth_opening_face_input.dat

*ill_view
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*select_elements_nodes skin

*store_elements skin_elements all_selected
*select_clear_elements

I

*select_elements_nodes lowerskull(shell)
*store_elements lower_skull_elements all_selected
*select_clear_elements

I

*select_elements_nodes upperskull(shell)
*store_elements upper_skull_elements all_selected
*select_clear_elements

*identify_sets *regen

*geometry_name skin_thickness

*add_geometry_elements

*identify_geometries *regen

I

*new_geometry *geometry_type mech_three_shell

*geometry_name skull_thickness

*geometry_param thick

1

*add_geometry_elements lower_skull_elements upper_skull_elements

| Clamp upper skull

I

*new_apply *apply_type fixed_displacement
*apply_name clamp_upper_skull
*apply_dof x *apply_dof_value x
*apply_dof y *apply_dof value y
*apply_dof z *apply_dof value z
*apply_dof rx *apply_dof_value rx
*apply_dof ry *apply_dof_value ry
*apply_dof rz *apply_dof_value rz
*add_apply_nodes upperskull(shell)
I

| Define linear table

I

*new_md_table 11
*set_md_table_type 1

time

*table_add
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00

11

*table_name

Linear

I

| Clamp and rotate rotation point

I

*new_apply *apply_type fixed_displacement
*apply_name Rotation_point_activation
*add_apply_nodes rotation_node
*apply_dof x *apply_dof_value x
*apply_dof y *apply_dof value y
*apply_dof z *apply_dof value z
*apply_dof ry *apply_dof_value ry
*apply_dof rz *apply_dof_value rz
*apply_dof rx *apply_dof_value rx

I

| Define here the rotation of the lower skull in radials
I

*apply_dof_value rx $rotat
*apply_dof_value x $xtrans
*apply_dof_value y $ytrans

*apply_dof value z $ztrans
*apply_dof_table rx Linear
*apply_dof_table x Linear
*apply_dof_table y Linear
*apply_dof_table z Linear

*new_rbe2
*rbe2_ret_node

1

*rbe2_tied_dof 1
*rbe2_tied_dof 2
*rbe2_tied_dof 3
*rbe2_tied_dof 4
*rbe2_tied_dof 5
*rbe2_tied_dof 6
*add_rbe2_tied_nodes

lowerskull(shell)

*new_loadcase *loadcase_type struc:static
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*loadcase_name Mouth_opening
*loadcase_value maxrec 100
*loadcase_option initstress:tensile

*update_job

*add_job_loadcases Mouth_opening
*add_job_applys clamp_upper_skull
*add_job_applys Rotation_point_activation
*job_option strain:large

*job_option post:binary

*job_option impd:on *job_option elevar:on
*job_usersub_file subrou_V1.f
*add_post_var ecauchy

*add_post_var eel_strain

*update_job

*save_model

I

*job_submit_reset
*submit_job 1 *monitor_job
I

*quit yes
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