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Abstract: Philips produces respiratory masks to treat apnoea (a sleep disorder) patients. 
In order to facilitate the development of the new masks, Philips Research 
creates computational tools for virtual mask fitting on 3D facial scans of the 
patients. Certain mask types are designed for patients who open their mouth 
during sleep, and therefore the virtual mask fitting of such types of masks 
requires 3D scans with the mouth open to a certain degree. Such 3D scans are 
difficult to collect. Within this context, the current work is focused on simulating 
the open mouth geometry from a patient’s neutral closed mouth scan by means 
of a physically-based soft tissue model. The open-mouth (deformed) state is 
computed using finite element simulation software (Marc Mentat). The 
proposed model consists of a double-layer structure: skin layer and skull layer, 
with springs connecting them in between to simulate the sliding effect of 
superficial fascia. We assume the skull layer to be rigid and we presume 
different hyperelastic material models (St.Venant-Kirchhoff, Mooney-Rivilin and 
Gent) for the skin layer. Besides, a morphing method is also developed for 
benchmarking of the mouth-opening simulations. Finally, we compare all the 
methods and transform the most effective one into a mouth-opening tool.  

 

Conclusions: We have developed five methods in total for the computational tool to open 
participants’ mouths virtually. Except from the morphing method, the other four 
methods are based on 3D finite element soft tissue models (physically-based 
models) which allow a reasonable prediction of tissue deformations resulting 
from the open mouth process. The models are built based on individual facial 
surface scans and generic soft tissue thickness data. Using this information, 
we created our models in Lagrangian formulation. The models incorporate 
geometric nonlinearity and mechanical nonlinearity of the biological tissues. 
We verified our simulation results with the actual open mouth scans and 
calculated the average error and standard deviation map for each method. The 
methods based on the physically-based models generally outperform the 
morphing methods. For the best physically-based models, the largest error 
typically occurs at the cheek area and is within [−2𝑚𝑚, 2𝑚𝑚]. 

Cong Yu  c.yu.2@student.tue.nl 
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1. Introduction 
Sleep apnoea is a sleep disorder when people frequently stop breathing during the night due to 
closure of the upper airway, so people partially wake up many times during the night, which 
causes continual sleepiness during the day and other health disorders. Sleep studies show that 
6-7% of the Western population suffers from at least a mild form of apnoea, where almost 85% of 
the cases remain undiagnosed and untreated. Male gender, age, overweight, low muscle tone 
and snoring can increase the likelihood of apnoea up to 40%. Sleep apnoea can be effectively 
treated (but not cured) by providing positive air pressure which prevents the upper airway from 
obstruction. The air pressure is generated by a pump and delivered by means of a tube and a 
facial mask to a patient. 
 
A good mask should satisfy two criteria: it should be comfortable, and should be air-tight. If the 
mask does not fit the face, a patient can get red marks where the mask contact is too tense, or 
air leaks where the mask contact is too loose. The air leaks reduce the efficiency of the therapy 
and, if the mask is leaking towards an eye, it can cause an eye inflammation. Traditionally, masks 
are evolved by a trial-and-error approach where numerous variations of the mask shapes are 
realized in silicone and tested on the live persons. In order to accelerate the optimization of the 
mask shapes Philips has a ‘3D mask sizing’ project. In this project, Philips is developing a novel 
CPAP (Continuous Positive Airway Pressure) mask advice system which facilitates the 
professional mask advices given to the patients in sleep labs or DME (Durable Medical 
Equipment facility). Within the mask advice system, the patients are first scanned with a 3D 
scanner and then the system virtually fits the available masks to the 3D facial scans. Compared 
with the physical mask fitting, virtual mask fitting is less time consuming and expensive. Indeed, 
for physical mask fitting, if a mask does not fit, it cannot be fitted to another patient due to 
hygienic restrictions while the average price of a CPAP mask is about $100. Since there are 
masks from different vendors and sizes (like small, medium and large) available, it is difficult for 
the doctor to pick the right mask for the patient. Thus, a virtual mask fitting system provides a 
solution for the doctor and the patient who can virtually try several masks at no cost. Based on all 
the advantages listed above, the virtual mask advice system can increase the percentage of the 
patients who are satisfied with the therapy and continue the treatment. The patients complying 
with the therapy generate a significant part of income of Philips Respironics since the mask has 
the life time of 3-6 months after which a new mask should be purchased.  

 Objective 1.1.
The virtual mask fitting system requires accurate and realistic models for quantitative assessment 
of the patient comfort for different mask types. For a patient who opens his/her mouth during 
sleep, a full face mask which covers both the mouth and the nose is needed to provide proper 
pressure through the mouth and nose. see Figure 1.1. The advice of the full face masks should 
be naturally based on the open mouth 3D facial scans. However, people do not correctly interpret 
the ‘open mouth’ (to the extent during their sleep) command. In Figure 1.2, we show the four 
open mouth sample scans. One can see that the participants open their mouths in different ways. 
The left-most one opened her mouth really widely while the right most man’s mouth opening is 
barely visible.    
Motivated by above facts, the main objective of my graduation project is to “open” the 
participants’ mouths in a uniform way given his/her neutral (closed-mouth) facial scan and 
possibly other information about the face (e.g. the thickness of the soft tissue). In other words, I 
am going to develop a computational tool which gives reasonably accurate prediction on the 
open mouth geometry based on the closed mouth scans and the desirable open mouth angle.  
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Figure 1.1 An application of  a typical CPAP full face mask 

 
Figure 1.2 Sample open mouth scans 

 Problem description 1.2.
To simulate the mouth opening process, we need a reliable human face model with suitable 
mathematical boundary conditions. To derive a satisfactory model, we have to address the 
following two sub-problems: 

• How to do the geometric modelling  
• How to do the mechanical modelling 

The geometric modelling involves the capturing of complex facial surface feature, mesh 
generation and the processing of volumetric data (for example the soft tissue thickness 
information obtained from CT or MRI data) from the surface processing.  
The mechanical model consists of a proper constitutive relation (which means that it can 
reasonably well represent the material properties), a suitable physical conservation law to obey, 
and appropriate boundary conditions.  

 Solution approach 1.3.
The overview of our simulation pipeline is depicted below. Detailed explanations on each step will 
be given in Section 4.4. 

http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=S5uo06yD8dG_GM&tbnid=PvTr8_51FtE8oM:&ved=0CAUQjRw&url=http://www.thecpapshop.com/blog/2012/03/upgraded-full-face-gel-cpap-mask-by-philips-respironics/&ei=_GAnUsnsOKSm0QWQ-4HwCw&bvm=bv.51495398,d.d2k&psig=AFQjCNGHwcmJcPPECqMuqwP1a1UkYBrBvQ&ust=1378398811528864
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Figure 1.3 Solution approach 

 

 Outline  1.4.
The thesis is organized as follows: Section 2 gives a review of the state-of-art in soft tissue 
modelling. Then some useful biological and continuum mechanical background knowledge is 
presented in Section 3. We will give a detailed mathematical description on the models 
developed in this project and implementation details in Section 4. Next, simulation results and 
discussions are presented in Section 5. Conclusion and suggestions for further work will be given 
in the last section.  
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2. State of the art of facial soft tissue modelling 
A considerable amount of studies on facial soft-tissue modelling have been performed over the 
past three decades. Early works such as [1] restricted themselves to pure geometric 
deformations (so-called non-physical models). However, with physically based modelling, more 
realistic facial models arose. First, it was based on mass spring systems and finite difference 
schemes. Later researchers applied the finite element method for the solution of the related 
partial differential equations. Below we will only focus on the important physically based models. 
 
Depending on the computational methods, most models fall into three main categories: mass-
spring models (MSM), models based on a finite element method (FEM), and other models. 

 Mass-spring models 2.1.
Mass-spring models consist of a set of mass points linked by springs and possibly dampers. In 
the simplest formulation, the equation of motion of a point 𝑖 is: 
 

𝜇
𝑑2𝑟𝚤��⃑
𝑑𝑡2 = −𝛾

𝑑𝑟𝚤��⃑
𝑑𝑡

+ � 𝐾𝑖,𝑗
�𝑙𝑖,𝑗

0 − �𝑟𝚤𝚥���⃑ �𝑟𝚤𝚥���⃑ �
�𝑟𝚤𝚥���⃑ �

,
𝑗∈𝑁(𝑖)

 

 
where 𝑟𝚤��⃑  is the displacement vector of node 𝑖. 𝑟𝚤𝚥���⃑ = 𝑟𝚤��⃑ − 𝑟𝚥��⃑  is the direction vector.  𝜇 is the mass, 𝛾 
the damping factor and 𝐾𝑖,𝑗 the stiffness of the spring connecting point 𝑖 and points 𝑗 in the 
neighbourhood 𝑁(𝑖) of point 𝑖. 

 
MSM were widely accepted for real-time application over the last twenty-five years. Early work 
focused on facial animation based on the masses and the springs. Waters [2] defined springs on 
layered regular lattices and used biphasic springs with two stiffness parameters to match the 
stress/strain curve of soft tissue described in a biomechanical study. Keeve et al. [3] deployed a 
similar approach for modelling fat tissues, but with the addition of a volume-preservation force 
intended to model the incompressibility of human soft tissue. Later, Keeve et al. [4] proposed 
another model with the assigned spring stiffness which depends on the elasticity of the soft tissue 
type, layer thickness and the size of the tissue elements. In [5], an alternative formulation of 
mass-spring systems was presented, where the model enables the user to specify the anisotropy 
independently of the geometry of the underlying mesh. Moreover, a method for generating 
constant volume deformation was proposed. 

 
The main advantages of spring models over finite element based models are their ease of 
implementation (since they do not require continuous parameterization) and their computational 
efficiency. However, they suffer the following problems in soft tissue modelling [6]:  
 

• Topological design 
The topology of the mass-spring models is very important. Because under-constrained 
systems will fall into unwanted local minima, while over-constrained systems will 
decrease the range of deformation.  

• Validity of deformations    
The deformation results induced by springs-mass system cannot be easily compared to 
those given by biomechanical studies because springs do not rely on continuum 
mechanics. Compared with FEM models, one of the major disadvantages of mass-spring 
models is the inability to increase the precision of the model using the same mesh 
structure (e.g. by doubling the amount of nodal points in the model). 

Below shows a typical mass-spring model structure: 
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Figure 2.1Mass-spring model structure 

 FEM-based models 2.2.
The finite element method is widely used in the engineering world.  FEM-based models are 
superior to most other models when accurate solution of continuum mechanics problems with 
complex geometry has to be found. It also provides the most flexible modeling platform free of all 
limitations with respect to the material type and the boundary conditions. FEM has strong 
biomechanical relevance at the cost of high computational effort, especially for complex geometry 
and large deformations. 
 
Unlike mass-spring models starting with a discrete object model, FEM-based models consider a 
deformable object as a continuum: a solid body with mass and energies distributed throughout. 
FEM is used to find an approximation for a continuous function that satisfies some equilibrium 
equations. In FEM, a body is discretized as a set of basic elements (triangles, quadrilaterals, 
tetrahedra, prisms, etc.) on which shape functions with compact support are defined. This leads 
to continuous representation with varying levels of continuity. A finite element model is 
represented by the node displacement vector 𝑢. The equilibrium equations together with stress-
strain relationship lead to the equation 𝑓(𝑢) = 0. This equation can also be derived by the 
principle of minimization of the strain energy or by the principle of virtual work. Below, a review of 
existing and relevant FEM-based soft tissue models is given.  

 
Back in 1986, Larrabee [7] presented a finite element model of skin deformation. The work is 
followed by Deng’s PhD thesis [8]. Later, Keeve et al. [9] proposed an anatomy-based linear finite 
prismatic element model which is based on CT volume data and laser scans. Koch et al. [10] 
simulated facial surgery using a surface-based FEM model with springs (combined with struts 
spring structure refinement) to represent the soft tissue layer. However, this model lacks the true 
volumetric physics although the stiffness of the springs is derived from CT-scan images. By 
employing a similar approach but adding a muscle model, an emotion editor is created in [11]. A 
true volumetric FEM model was proposed in [12] for facial surgery simulation with the capability 
of incorporating incompressibility. However this model was restricted to the linear elastic theory 
and thus not suitable for large deformations. To achieve higher accuracy, Roth et al. [13] 
developed the tetrahedral Bernstein-Bézier elements by combining the finite element method with 
Bernstein-Bézier representation. Later they upgraded the globally 𝐶0-continuous surface to the 
𝐶1-continuous model [14]. Nebel [15] introduced a soft tissue model which only relies on 3D scan 
data by presuming generic soft tissue structure shape and mechanical parameters. In [16], Cotin 
presented three different models, based on linear elasticity theory and the finite element method, 
which are well suited for surgery simulation with a strong focus on real-time application. 

 
Since linear elasticity approximates the deformation accurately only when the deformation is 
small, researchers started to develop FEM-based models using non-linear elasticity theory. 
Guillaume et al. [17] implemented St.Venant-Kirchhoff elasticity and incompressibility constraints. 
A comparison was carried out between results (displacement in the chin area resulting from bone 
realignment) computed with a linear elastic model, a geometrical nonlinear model and a physical 
nonlinear model in E. Gladilin’s work  [18].   
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To model the anisotropic effect, Chabanas et al. [19] presented a layered element structure 
model, in which they assigned different mechanical properties to elements on different layers 
(dermis and hypodermis). Wang and Yang [20] first investigated the hyperelastic models of the 
facial soft tissues and then proposed a novel non-linear biomechanical model based on mixed 
elements, which is designed to address the heterogeneity in geometry and mechanical 
properties. Hung et al. [21] presented a four-layer model, with all layers treated as non-linear 
isotropic Mooney Rivilin materials, which aims at simulating wrinkling in facial soft tissue 
composite. In Bledie et al. [22], a finite element facial model was created, based on patient 
specific bone and skin image data, combined with generic muscle data employing commercial 
FEM software.  
 
Simulation of deformable objects becomes a hot topic in biomedical engineering, computational 
physics, and computer graphics. Except from mass-spring models and FEM-based models, there 
are a lot of other models that have been proposed over the past decades: 

 Other models 2.3.
 

1) Mass-tensor model (MTM) 
MTM was originally developed to find a golden mean between speed and accuracy, 
later it was extended to non-linear, anisotropic elasticity. Recently, linear MTM was 
successfully applied to cranio-maxillofacial surgeries [16]. 
 

2) Boundary Element Method-based models (BEM) 
BEM is a physically accurate method restricting the computation domain on 
boundaries. It computes the deformation by numerically solving the boundary 
integration equation on a surface mesh. Since the global matrix of BEM is dense and 
asymmetric and needs to be updated each step, James and Pai [23] use a multi-
resolution Green’s Function to accelerate the computation of the BEM matrix. In [24], 
BEM is coupled with a mass-spring constraint model. The work is devoted to provide 
visually accurate results for surgical trainees and to work efficiently in a real-time 
simulator. 
 

3) Molecular model [25] 
This method can be seen as a generalized mass-spring model, where mass points are, 
in fact, spherical mass regions called molecules. Elastic forces are then established 
between molecules by a spring-like connection. [23] also aims at integrating properties 
of materials to define the stiffness of such spring-like connections. 
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3. Background knowledge 
To build a realistic facial tissue model, knowledge from the following fields of study is needed. 
 

• Biological knowledge  
• Elasticity theory 

This section consists of two subsections:  The first subsection gives a basic introduction to the 
anatomy of human facial soft tissue and its mechanical properties. The second subsection covers 
the basics in elasticity theory which will be used in the mathematical description of the model in 
Section 4. 

 Facial soft tissue structure and property 3.1.

3.1.1. Facial soft tissue anatomy 
Facial soft tissue includes various structures: skin, muscle, fascia vasa, nerves etc.. Below we 
will give a  brief description on skin, muscle and fascia.  
 

Skin 
The integument or skin is the largest organ of the body, making up 16% of body weight, with a 
surface area of  1.8 𝑚2 . It has a multicomponent microstructure, the basis of which is an 
intertwined network of collagen, nerve fibers, small blood vessels and lymphatic, covered by a 
layer of epithelium and transfixed at intervals by hairs and the ducts of sweat glands, as 
illustrated in Figure 3.1. Skin is a dynamic organ in a constant state of change, as cells of the 
outer layers are continuously shed and replaced by inner cells moving up to the surface. 
Although structurally consistent throughout the body, skin varies in thickness according to 
anatomical site and age of the individual. Skin varies in thickness over the face: around the eyes 
it is thin, whereas around the lips it is thick. Skin thickness is less in women than in men, giving a 
luster to the skin surface of women.  

 
Figure 3.1 Typical human skin structures 
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Human skin has a layered structure consisting of the epidermis and the dermis. The epidermis is 
the outer layer, serving as the physical and chemical barrier between the interior body and 
exterior environment; the dermis is the deeper layer providing the structural support of the skin.  
 

• The epidermis 
The epidermis is stratified squamous epithelium. The main cells of the epidermis are the 
keratinocytes, which synthesize the protein keratin. The four separate layers of the 
epidermis are formed by the differing stages of keratin maturation. The epidermis varies 
in thickness from 0.05 mm on the eye lids to 0.8±1.5 mm on the soles of the feet and 
palms of the hand. Moving from the lower layers upwards to the surface, the four layers 
of the epidermis are: 

1. stratum basale (basal or germinativum cell layer) 
2. stratum spinosum (spinous or prickle cell layer) 
3. stratum granulosum (granular cell layer) 
4. stratum  corneum (horny layer) 

 
• The dermis 

The dermis consists of irregular, moderately dense, soft connective tissue. Its matrix 
consists of an interwoven collagenous network, with varying content of elastin fibers, 
proteoglycans, fibronectin and other matrix components, blood vessels, lymphatic 
vessels and nerves. The dermis varies in thickness, ranging from 0.6 mm on the eye lids 
to 3 mm on the back, palms and soles. It is found below the epidermis and is composed 
of a tough, supportive cell matrix. Two layers comprise the dermis: a thin papillary layer 
and a thicker reticular layer. 
 
The papillary dermis lies below and connects with the epidermis. It contains thin loosely 
arranged collagen fibers. Thicker bundles of collagen run parallel to the skin surface in 
the deeper reticular layer, which extends from the base of the papillary layer to the 
subcutaneous tissue. The dermis is made up of fibroblasts, which produce collagen, 
elastin and structural proteoglycans, together with immune-competent mast cells and 
macrophages. Collagen fibers make up 70% of the dermis, giving it strength and 
toughness. Elastin maintains normal elasticity and flexibility while proteoglycans provide 
viscosity and hydration. Embedded within the fibrous tissue of the dermis are the dermal 
vasculature, lymphatic, nervous cells and fibers, sweat glands, hair roots and small 
quantities of striated muscle. 
 

Fascia  
There are two types of fascia existing in facial soft tissue: superficial fascia and deep fascia. 
Underneath skin is a loose connective tissue layer. This is the superficial fascia (also called the 
subcutaneous or hypodermis). It consists of adipose tissue distributed in a network of connective 
fibers. This connective tissue is mostly collagen arranged in a lattice with fat cells. Thus it is an 
important depot of fat. For different age, gender or different places on face, it contains different 
levels of fat. For example, between males and females there is a difference in the underlying fat 
tissue, there being less in men than in women. It usually has the least fat at forehead and nose 
and the most at cheeks. Superficial fascia stores fat, anchors the skin to the underlying structures 
(mostly to muscles), but loosely enough that the skin can slide relatively freely over those 
structures. 
Beneath the superficial fascia lies the deep fascia, which coats the bones or other tissues. It is 
also the landing point of certain muscles.  
 

Muscle  
The muscles of the face are commonly known as the muscles of facial expression. Some facial 
muscles also perform other important functions, such as moving the cheeks and lips during 
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chewing, swallowing, and speech. The muscles of facial expression are superficial, and all attach 
to a layer of subcutaneous and skin at their insertion. Some of the muscles attach to skin at both 
the origin and the insertion. Generally, three types of muscle can be discerned as the primary 
motion muscles: linear/parallel muscles, elliptical/circular sphincter-type muscles and sheet 
muscles.  
 
The main movement involved in mouth opening is the mandible motion. In this complex process, 
muscles work in groups with other muscles to perform a smooth, balanced, coordinated series of 
movement of the mandible. Figure 3.2 illustrates the muscle distribution over the lower face. 

 
Figure 3.2 Lower face muscle distribution 

3.1.2. General mechanical properties of soft tissue 
There are numerous publications about biomechanical properties of soft tissues. Summarizing 
the facts observed from various experiments with different tissue types, soft tissue generally 
exhibits nonhomogeneous, anisotropic, quasi-incompressible, non-linear and plastic-viscoelastic 
material properties [28]. Below I am going to explain those properties one by one. 
 

• Heterogeneity and anisotropy 
Soft tissues are multi-composite materials containing cells, intracellular matrix, fibrous 
and other microscopic structures. Consequently, the mechanical properties of living 
tissues, e.g. material stiffness and compressibility, depend on the spatial direction. But 
since the heterogeneity and the anisotropy of microscopic structures can hardly be 
obtained from the available data, these properties are seldomly considered in a discrete 
macroscopic model.  

• Plasticity 
In physics, plasticity describes the large deformations of a material which undergoes 
irreversible energy dissipation and material destruction. Largely deformed soft tissue 
shows plastic behaviour. It is worth pointing out that during the mouth-opening process 
there is no deformation large enough to cause plastic behaviour, therefore the plasticity 
property is not relevant in the present project. 
 

• Viscoelasticity 
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The time-dependent material behaviour is called viscoelasticity. Different from a purely 
elastic material, a viscoelastic solid does not respond to loading and unloading 
immediately, but with an exponential delay, which is known as creep and recovery. For 
the purpose of our project, we do not take into account this property, since we are only 
interested in its static state.  
 

•    Quasi-incompressibility  
A material is called incompressible if its volume remains unchanged by the deformation. 
Soft tissue is a composite material that consists of both incompressible and compressible 
ingredients. Due to the high proportion of water, soft tissue is assumed to be quasi-
incompressible (not totally incompressible but close). In this project, we describe facial 
tissue as a quasi-incompressible material and further treatments on quasi-
incompressibility will be given in Section 4. 
 

• Nonlinearity 
There are two kinds of nonlinearities, which are relevant for the modelling of deformable 
soft tissue. The nonlinear relationship between strain and displacement is known as the 
geometrical nonlinearity. This type of nonlinearity is an intrinsic property of any 
mechanical continuum independently from its material properties. Another type of 
nonlinearity is caused by the nonlinear stress – strain relationship. This kind of 
nonlinearity is called the physical nonlinearity. 
 

Figure 3.3 illustrates intuitively the nonhomogeneity of human skin by showing the complex 
anatomic structure in the nose and paranasal sinuses cross section: 
 

 
Figure 3.3 Nose and paranasal sinuses: cross section [26] 

3.1.3. Human facial soft tissue and its mechanical properties 
After discussing the general properties of soft tissue, we limit our focus on the facial soft tissue. 
Just as pointed out in the human facial anatomy section, the facial composite is logically 
separated into layers (epidermis, dermis, superficial fascia and muscle) due to the significant 
difference in mechanical properties between the layers.  
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The epidermis is thin (around 2.5% of the dermis thickness) and comprised of dead cells. It is 
considered to be insignificant in terms of mechanical properties. The dermis is primarily 
responsible for the mechanical properties of skin as a result of the interaction of two cellular 
bases: collagen (about 75% of skin dry weight) and elastin (about 4% of skin dry weight). 
 
Collagen, the basic structural element for soft and hard tissues in animals, gives mechanical 
integrity and strength to our bodies. It has a strong stress response to applied load and has a 
limited range of deformation. Collagen fibers are the main constituent of the dermis and form an 
irregular network of wavy coiled fibers that run almost parallel with the skin surface [29]. Collagen 
is characterized by high strength (tensile strength of 1.5-3.5MPa), low extensibility (rupture at 
strains in the order of 5-6%), and high stiffness (Young’s modulus approximately 0.1GPa to 1GPa 
in the linear region). The width of the bundles is 1-40μm [30].  
 
Elastin fibers are the second main component of the dermis. Elastin is the most “linearly” elastic 
bio-solid material known. It is less stiff than collagen. The fiber width is 0.5-8μm. The behaviour 
of elastin is very similar to an ideal rubber with an essentially linear stress/strain response over a 
wide range of deformations [29]. The stress-strain curve of elastin is shown in Figure 3.4: 

 
Figure 3.4 the stress-strain curve of elastin [29] 

Figure 3.5 gives the strain/stress curve of human skin in uniaxial tension case: 
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Figure 3.5 Stress-strain relationship of skin in different stages [31] 

The stress-strain curve of skin for uniaxial tension is nonlinear due to the non-uniformity of its 
structure, as can be seen in Figure 3.5. The curve can be divided into four stages. In the first 
stage the contribution of response of the undulated collagen fibers can be neglected and elastin 
is mainly responsible for the skin stretching. Thus the stress-strain relation is approximately linear 
with a Young’s modulus of approximately 5kPa according to Daly [32] (see Figure 3.6), since 
elastin can be considered as a “linear” elastic material. In the second phase, a gradual 
straightening of an increasing fraction of the collagen fibers causes an increase in stiffness. In the 
third phase all collagen fibers are straight and the stress-strain relation becomes linear again. 
Beyond the third phase, rupture of the fibers occurs. 
 

 
Figure 3.6 Stress-strain curve of human skin at low stress [32] 

 Elasticity theory 3.2.
In the biological world, atoms and molecules are organized into cells, tissues, organs and 
individual organism. At the atomic and molecular level the movement of matter must be analysed 
with quantum, relativistic, and statistical mechanics [29]. At the cellular, tissue, organ and 
organism level, it is usually sufficient to take Newton’s law of motion as an axiom. In this context, 
we consider the tissue level. In these systems it is convenient to consider the material as a 
continuum. Below, the several fundamental solid mechanics concepts are presented which will 
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be crucial in the later mathematical analysis of the FEM-based soft tissue models. 

3.2.1. Basic concepts in solid mechanics  
The basic solid mechanics concepts we are going to introduce include: Cauchy stress tensor, 
strain, Green’s strain tensor, Cauchy’s infinitesimal strain tensor, left and right Cauchy-Green 
deformation tensor, internal virtual work and the second Piola-Kirchhoff stress tensor. 
 

Cauchy stress tensor 
Let the cross-section of a body be 𝐴, and let the force that acts in the tissue be 𝐹. The ratio 
 

𝜎 =
𝐹
𝐴

 
 
is the stress in the body. The basic unit of stress is Newton per square meter (N/m2) or Pascal 
(Pa). 1 Pa = 1N/m2.We define the stress vector 
 

𝕋𝜐 =
𝑑𝔽
𝑑𝑆

, 
 
where a subscript 𝜐 is used to indicate the relevance of the normal direction of the surface d𝑆. 
Thus vector 𝕋𝜐 represents the force per unit area acting on the surface.  
 
Imagine a little cube in the body. Consider a set of rectangular Cartesian coordinates 𝑥1, 𝑥2, 𝑥3. 
Let the surface of the cube normal to 𝑥1 be denoted by  Δ𝑆1. Let the stress vector that acts on the 
surface Δ𝑆1 be 𝑇1. Resolve 𝑇1 into three components in the direction of the coordinate axes and 
denote these by 𝜎11, 𝜎12, 𝜎13. Similarly, we treat the 𝑥2, 𝑥3 directions. The 3 × 3 matrix 𝜎𝑖𝑗 is 
defined as Cauchy stress tensor. Below is an illustration about the Cauchy stress tensor: 
 

 
Figure 3.7 Cauchy stress tensor illustration 

 
Cauchy observed that the stress vector 𝕋 across a surface will always be a linear function of the 
surface's normal vector 𝜐, the unit-length vector that is perpendicular to it. That is, 𝕋 = 𝜎(𝜐), 
where the function 𝜎 satisfies 

𝜎(𝛼𝜐1 + 𝛽𝜐2) = 𝛼𝜎(𝜐1) + 𝛽𝜎(𝜐2), 
 
for any vectors 𝜐1, 𝜐2 and any real numbers 𝛼, 𝛽. With the fundamental laws of conservation of 
linear momentum and static equilibrium of forces, we derive the linear relation between 𝕋  and 𝜐. 
 

𝕋 = 𝜎 ∗ 𝜐, 
 
where “∗” is matrix multiplication. Note that it can be shown that if a body satisfies rotational 
equilibrium, then its stress tensor is symmetric. 
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Strain 
Deformation of a solid is described by strain. Take a string of initial length 𝐿0, and its stretched 
length 𝐿. Use dimensionless ratios to eliminate the absolute length from consideration, then the 
following strain measures can be defined: 
 

𝜖1 =
𝐿 − 𝐿0

𝐿0
,                          𝜖2 =

𝐿 − 𝐿0

𝐿
. 

 
Other strain measure examples include: 
Green strain: 
 

𝜖𝑔 =
𝐿2 − 𝐿0

2

2𝐿2 , 
 
and Euler-Almansi strain: 

ϵe =
𝐿2 − 𝐿0

2

2𝐿0
2 . 

 
It is obvious that in infinitesimally small elongations all the above strain measures are 
asymptotically equal. However, in finite elongations, they are different.  
 

Green strain tensor  
To adopt a more general treatment of the matter, we introduce the concept of strain tensor. 
Below, we will give the derivation of Green strain tensor. 
 
Firstly, a particle 𝑃 in a body located originally at a place with coordinates (𝑋1, 𝑋2, 𝑋3) is moved to 
the place with coordinates (𝑥1, 𝑥2, 𝑥3), when the body deforms. The vector 𝑢 is called the 
displacement vector of the particle. Clearly, 
 

𝑢1 = 𝑥1 − 𝑋1,   𝑢2 = 𝑥2 − 𝑋2,  𝑢3 = 𝑥3 − 𝑋3. 
 
The deformation of the body is known if 𝑥1, 𝑥2, 𝑥3 are known functions of 𝑋1, 𝑋2, 𝑋3 and time 𝑡: 
 

�⃑� = 𝜙��⃑�, 𝑡�, 
 
where �⃑� = (𝑥1, 𝑥2, 𝑥3), and �⃑� = (𝑋1, 𝑋2, 𝑋3). We assume that the transformation is one-to-one. 
Namely, the function above has a unique inverse, 
 

�⃑� = 𝜙−1(�⃑�, 𝑡), 
 
for every point in the body. 
 
To study the stretching and distortion of the body, it is sufficient if we know the change of 
distance between any arbitrary pair of points. In the original configuration, consider an 
infinitesimal line element connecting the point 𝑃(𝑋1, 𝑋2, 𝑋3) and 𝑃′(𝑋1 + 𝑑𝑋1, 𝑋2 + 𝑑𝑋2, 𝑋3 + 𝑑𝑋3). 
The length 𝑑𝑠0 of 𝑃𝑃′ in the original configuration is given by: 
 

𝑑𝑠0
2 = 𝑑𝑋1

2 + 𝑑𝑋2
2 + 𝑑𝑋3

2. 
 
When 𝑃 and 𝑃′ are deformed to points 𝑄(𝑥1, 𝑥2, 𝑥3) and 𝑄′(𝑥1 + 𝑑𝑥1, 𝑥2 + 𝑑𝑥2, 𝑥3 + 𝑑𝑥3), 
respectively, the distance of the length 𝑑𝑠 of the new element 𝑄𝑄′ is  
 

𝑑𝑠2 = 𝑑𝑥1
2 + 𝑑𝑥2

2 + 𝑑𝑥3
2. 
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By the deformation function, we have 
 

𝑑𝑥𝑖 =
𝜕𝑥𝑖

𝜕𝑋𝑗
𝑑𝑋𝑗,            𝑑𝑋𝑖 =

𝜕𝑋𝑖

𝜕𝑥𝑗
𝑑𝑥𝑗 , 

𝑑𝑠0
2 = 𝛿𝑖𝑗

𝜕𝑋𝑖

𝜕𝑥𝑙

𝜕𝑋𝑗

𝜕𝑥𝑚
𝑑𝑥𝑙𝑑𝑥𝑚,             𝑑𝑠2 = 𝛿𝑖𝑗

𝜕𝑥𝑖

𝜕𝑎𝑙

𝜕𝑥𝑗

𝜕𝑎𝑚
𝑑𝑋𝑚𝑑𝑋𝑙 . 

 
Note that repetition of an index in a single term means a summation over the whole range of 
index and this notation will be used later throughout the report whenever a summation symbol is 
not used. Hence, the difference between the square of the length elements may be written as: 
 

𝑑𝑠2 − 𝑑𝑠0
2 = �𝛿𝛼𝛽

𝜕𝑥𝛼

𝜕𝑋𝑖

𝜕𝑥𝛽

𝜕𝑋𝑗
− 𝛿𝑖𝑗� 𝑑𝑋𝑖𝑑𝑋𝑗, 

𝑑𝑠0
2 − 𝑑𝑠2 = �𝛿𝑖𝑗 − 𝛿𝛼𝛽

𝜕𝑋𝛼

𝜕𝑥𝑖

𝜕𝑋𝛽

𝜕𝑥𝑗
� 𝑑𝑥𝑖𝑑𝑥𝑗 . 

 
We define the Green strain tensor 𝐸 and Almansi strain tensor 𝑒 as: 
 

𝐸𝑖𝑗 =
1
2

�
𝜕𝑥𝛼

𝜕𝑋𝑖

𝜕𝑥𝛼

𝜕𝑋𝑗
− 𝛿𝑖𝑗�, 

𝑒𝑖𝑗 =
1
2

�𝛿𝑖𝑗 −
𝜕𝑋𝛼

𝜕𝑥𝑖

𝜕𝑋𝛼

𝜕𝑥𝑗
�. 

 
Note that 𝐸  and 𝑒 are symmetric. Based on this derivation, we observe that Green strain tensor 
measures the change of distance between two arbitrary points in the body before and after the 
deformation. Thus, we can conclude that Green strain tensor is invariant under rigid body motion, 
since during rigid body motion the distance between any points in the body stays the same.  
 

Cauchy’s infinitesimal strain tensor 
If the first derivatives of the components of displacement 𝑢𝑖 are so small that the squares and 
products of the partial derivatives of 𝑢𝑖 are negligible compared with the first order terms, then 𝑒𝑖𝑗 
reduces to Cauchy’s infinitesimal strain tensor : 
 

𝜖𝑖𝑗 =
1
2

�
𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑥𝑗
�. 

 
We can see that fact by writing 𝑒 in another form (in terms of displacement gradient), 
 

𝑒𝑖𝑗 =
1
2

�
𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑘

𝜕𝑥𝑖

𝜕𝑢𝑘

𝜕𝑥𝑗
 �, 

Similarly, for 𝐸: 

𝐸𝑖𝑗 =
1
2

�
𝜕𝑢𝑗

𝜕𝑋𝑖
+

𝜕𝑢𝑖

𝜕𝑋𝑗
+

𝜕𝑢𝑘

𝜕𝑋𝑖

𝜕𝑢𝑘

𝜕𝑋𝑗
 �, 

 
Cauchy’s infinitesimal strain tensor is the linear part of Almansi’s strain tensor. It is worth noting 
that Green/Almansi strain tensor measures the deformations exactly and holds for any amount of 
deformation, while Cauchy’s infinitesimal strain tensor only holds for small displacement, small 
rotation and small strain deformation.  
 

Left and right Cauchy-Green deformation tensor 
We have defined a motion mathematically by a mapping between initial and current particle 
positions as: 
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�⃑� = 𝜙��⃑�, 𝑡�, 
 
where 𝑥 denotes the current coordinate of the particle 𝑋 from the original configuration. We define 
the deformation gradient tensor 𝐹 as 
 

𝐹 =
𝜕𝜙
𝜕�⃑�

= ∇0𝜙, 

 
where ∇0≜ 𝜕/𝜕𝑋,  denotes the spatial derivatives are taken with respect to the original 
configuration. It is easy to check that: 
 

𝑑�⃑� = 𝐹𝑑�⃑�. 
 
Thus 𝐹 maps the material fibers in the original or reference configuration into the corresponding 
material fibers in the current configuration. The deformation gradient tensor describes the 
deformations (rotations and stretches) of each material fiber. A useful decomposition of 𝐹 is polar 
decomposition: 
 

𝐹 = 𝑅𝑈, 
 
where 𝑅 is a rotation tensor (thus orthogonal matrix), and 𝑈 is a stretch tensor. Using the 
deformation tensor we can describe the right Cauchy-Green deformation tensor 𝐶, as 
 

𝐶 = 𝐹𝑇𝐹 = 𝑈𝑇𝑅𝑇𝑅𝑈 = 𝑈𝑇𝑈, 
 
since 𝑅𝑇𝑅 = 𝐼. We see that the right Cauchy-Green deformation tensor is only composed of the 
stress component of the deformation tensor. Namely, 𝐶 is invariant under rigid body motion. 
Choosing 𝑈 to be a symmetric tensor, it can be uniquely determined via the relation: 
 

𝑈2 = 𝐶. 
 
Note that using the concept of stretch (ratio), one can show that 𝐶 is a symmetric positive definite 
tensor and therefore, has real positive eigenvalues (they are called the principal stretches, see 
later).The left Cauchy-Green deformation tensor 𝐵 is defined as 
 

𝐵 = 𝐹𝐹𝑇 . 
 
Note that a useful relation between right Cauchy-Green deformation tensor and Green strain 
tensor is: 
 

𝐸 =
1
2

(𝐶 − 𝐼). 
 
 

Internal virtual work 
Consider a volume Ω occupied by an elastic material with the boundary 𝜕Ω and exterior normal 𝑛. 
Two types of forces can act on Ω: body force, which is described by a force density 𝑓 and forces 
acting on the boundary 𝜕Ω which are assumed to have the form 𝜎 ∙ 𝑛, where 𝜎 is the Cauchy 
stress tensor. Summing body forces and boundary forces, we obtain that the total net force 𝐹 on 
Ω is  
 

𝐹 = � 𝑓 𝑑𝑥
 Ω

+ � 𝜎 ∙ 𝑛 𝑑𝑠
𝜕 Ω

. 

 
Using the divergence theorem on the surface integral, we obtain 
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𝐹 = � (𝑓 + ∇ ∙ 𝜎) 𝑑𝑥
 Ω

. 

 
We define the residual force per unit volume 𝑟 as: 
 

𝑟 = ∇∙𝜎 + 𝑓. 
 
Let 𝛿𝑢 denote an arbitrary compatible virtual displacement from the current position of the body. 
Note that by “compatible”, we mean that the virtual displacement should satisfy the essential 
boundary conditions (if any). The virtual work, 𝛿𝑊, per unit volume done by the residual force 
𝑟 during this virtual motion is 𝑟 ∙ 𝛿𝑢. Thus, the total virtual work of the body is: 
 

𝛿𝑊 = � (
Ω

𝑓 + ∇ ∙ 𝜎) ∙ 𝛿𝑢 𝑑𝑣. 

 
Together, using the Gauss theorem, we get: 
 

∇∙(𝜎𝛿𝑢) = (∇ ∙ 𝜎) ∙ 𝛿𝑢 + 𝜎: ∇𝛿𝑢. 
 
Here we introduce the contraction operator: 
 

𝐴: 𝐵 ≜ � 𝐴𝑖𝑗𝐵𝑖𝑗

3

𝑖,𝑗=1

= 𝑡𝑟(𝐴𝑇𝐵), 

 
for any two 3 × 3 matrices 𝐴 and 𝐵.The internal virtual work related to stress is defined by: 
 

𝛿𝑊𝑖𝑛𝑡 = � 𝜎: ∇𝛿𝑢 𝑑𝑣.
Ω

 

 
Further, we can decompose the matrix ∇𝛿𝑢  into symmetric and anti-symmetric parts, viz.  
 

𝐴 =
𝐴 + 𝐴𝑇

2
+

(𝐴 − 𝐴𝑇)
2

, 
 
for any matrix 𝐴. Then we can derive that: 
 

𝛿𝑊𝑖𝑛𝑡 = � 𝜎: 𝛿𝜖 𝑑𝑣,
Ω

 

 
where 𝛿𝜖 = 1

2
(∇𝛿𝑢 + (∇𝛿𝑢)𝑇) is the Cauchy infinitesimal strain tensor correspond to the virtual 

displacement. Note that we have used the fact that for a symmetric matrix 𝐴 (in this case 𝜎) and 
an anti-symmetric matrix with zero diagonal 𝐵 (the anti-symmetric part of ∇𝛿𝑢): 
 

𝐴: 𝐵 = 0. 
 
The pair 𝜎 and 𝜖 are said to be energetically conjugate with respect to the current deformed 
volume in the sense that their product gives work per unit time and per current volume. If we 
express the virtual work equation in a material coordinate system, an alternative work conjugate 
pair will appear. The new pairs with respect to the original body configuration will be presented in 
the next section. 
 

The second Piola-Kirchhoff stress tensor 
The internal virtual work is expressed in terms of Cauchy stress whose physical meaning is force 
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per current configuration area. Notice that the current configuration is usually unknown (to be 
calculated), it would be convenient to “pull-back” the expression to the original configuration 
where we do know its configuration.  
 
Let 𝐽 = det 𝐹, it can be shown that 𝐽 gives the volume change. Namely, 𝑑𝑣 = 𝐽𝑑𝑉. The internal 
virtual work done by the stress is expressed as: 
 

𝛿𝑊𝑖𝑛𝑡 = � 𝜎: 𝛿𝜖 𝑑𝑣
Ω

= � 𝜏: 𝛿𝜖 𝑑𝑉
Ω0

, 

 
where Ω0 denotes the original configuration and 𝜏 = 𝐽𝜎 is the Kirchhoff stress tensor. To eliminate 
the spatial quantities in the expression like 𝛿𝜖, we can express the internal work alternatively as: 
 

𝛿𝑊𝑖𝑛𝑡 = � (𝐽𝜎𝐹−𝑇): 𝛿𝐹 𝑑𝑉.
Ω0

 

 
Define 
 

𝑃 = 𝐽𝜎𝐹−𝑇, 
 
as the first Piola-Kirchhoff stress tensor. We have omitted the derivation here, for details see [33]. 
A loose physical interpretation of the first Piola-Kirchhoff stress tensor is the current force per unit 
of undeformed area. From this equation, we find that 𝑃 is energetically conjugate with 𝐹 in a 
material coordinate system. 
 
The 2nd Piola–Kirchhoff stress tensor 𝑆 relates forces in the original configuration to areas in the 
original configuration via a mapping that preserves the relative relationship between the force 
direction and the area normal in the original configuration. It is defined as: 

 
If we express the internal virtual work in terms of the second Piola-Kirchhoff stress tensor, we 
obtain (for derivation details see [33]):  
 

𝛿𝑊𝑖𝑛𝑡 = � 𝑆: 𝛿𝐸 𝑑𝑉
Ω0

, 

 
where 𝐸 is the Green strain tensor. From this equation, we find that 𝑆 is energetically conjugate 
with 𝐸 in a material coordinate system.  
 
An important property of the second Piola-Kirchhoff stress tensor is that it stays invariant under 
rigid body motion. This can be shown from applying a rotation (multiplying with an orthogonal 
matrix 𝑅) to the current configuration, then the new stress tensor 𝑆′ can be written as: 
 

𝑆′ = 𝐽′(𝑅𝐹)−1(𝑅𝜎𝑅𝑇)(𝑅𝐹)−𝑇 = 𝐽𝐹−1𝜎𝐹−𝑇 = 𝑆. 
 
Note that under rigid body motion the volume of the body does not change, thus 𝐽 = 𝐽′. 

3.2.2. Material constitutive equations (linear/hyper-elasticity) 
Having introduced the basics in solid mechanics, we are now ready to present the constitutive 
equations which define the material. We will present two main classes of material: Hookean 
elastic solid  and hyperelastic solid.  
 

 𝑆 = 𝐽𝐹−1𝜎𝐹−𝑇 .  
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Hookean elastic solid 
A Hookean elastic solid is a solid that obeys Hooke’s law, which states that the stress tensor is 
linearly proportional to the strain tensor, i.e.: 
 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙 , 
 
where 𝜎𝑖𝑗 is the Cauchy stress tensor, 𝜖𝑘𝑙 is Cauchy’s infinitesimal strain tensor, and 𝐶𝑖𝑗𝑘𝑙 is the 
tensor of elastic constants, which are independent of stress or strain. 
 
When a material is isotropic, the array of elastic constants 𝐶𝑖𝑗𝑘𝑙 remains unchanged with respect 
to rotation and reflection of coordinates, a great reduction in the number of elastic constants is 
obtained. As a result, we get the isotropic Hookean solid constitutive relation as: 
 

𝜎𝑖𝑗 = 𝜆𝜖𝛼𝛼𝛿𝑖𝑗 + 2𝜇𝜖𝑖𝑗 . 
 
The constants 𝜆 and 𝜇 are called the Lamé constants, which are usually defined by  
 

𝜇 =
𝐸

2(1 + 𝜈) ,        𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈), 

 
where 𝐸 is Young’s elastic modulus, and 𝜈 is Poisson’s ratio. The physical interpretations of 
these two constants are: if we consider a two-dimensional problem, Young’s modulus is the slope 
of the stress-strain curve; the Poisson’s ratio is the ratio of the contraction of the surface in one 
dimension when one elongates it in the other. Note that Young’s modulus is always a positive 
number and has the unit as pressure (Pascal) and Poisson ratio’s dimensionless constant varies 
between −0.1 and 0.5. 
 
In engineering notation, the strain tensor 𝜖 can be written as a vector due to symmetry, viz., 
 

𝜖 = [𝜖11, 𝜖22, 𝜖33, 2𝜖12, 2𝜖23, 2𝜖31]𝑇. 
 
Likewise, the stress tensor 𝜎: 
 

𝜎 = [𝜎11, 𝜎22, 𝜎33, 𝜎12, 𝜎23, 𝜎31]𝑇 . 
 
Hooke’s law can then be rewritten as 
 

𝜎 = 𝐷𝜖, 
 
where the 6 × 6 matrix 𝐷is given by 
 

𝐷 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜆 + 2𝜇 𝜆 𝜆 0 0 0

𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇⎦

⎥
⎥
⎥
⎥
⎤

, 

where the constants 𝜆 and 𝜇 are Lamé constants mentioned earlier. 

Hyperelastic solid  
When the work done by the stress during a deformation process is dependent only on the initial 
state at time 𝑡0 and the final configuration at time 𝑡, the behavior of the material is said to be 
path-independent and the material is termed hyperelastic. Now we will present several useful 
aspects related to hyperelastic materials which will help us understand the hyperelastic models 
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that we are going to use later. For the detailed content of this section, we refer to [34]. 
 

Strain energy density function  
In order to deform an elastic body, certain amount of work is required. It is stored in the body as 
strain energy. Due to the path-independent property of hyperelastic material, the strain energy 
function Ψ can be established as the work done by the stress from the initial to the current 
position as: 

Ψ(𝐹(𝑋), 𝑋) = � 𝑃(𝐹(𝑋), 𝑋): �̇� 𝑑𝑡,
𝑡

𝑡0

 

 
where 𝐹 is the deformation tensor, and �̇�, its derivative with respect to time and  𝑃 is the first 
Piola-Kirchhoff stress tensor. Note that we have used the fact that 𝑃 and 𝐹 are energetically 
conjugate.  

 
Since the elastic potential must remain invariant under a rigid body rotation, Ψ should depend on 
𝐹 only via the stretch component 𝑈 and independent of 𝑅. Hence, Ψ is usually expressed as a 
function of 𝐶 = 𝑈2 = 𝐹𝑇𝐹 as: 

 
Ψ(𝐹(𝑋), 𝑋) = Ψ(𝐶(𝑋), 𝑋). 

 
Thus the constitutive relations can be obtained by observing that  

 
where 𝑆 is the second Piola-Kirchhoff stress tensor and 𝐶 is the right Cauchy deformation tensor 
and 𝐸 is the Green strain tensor.This equation is often used as a definition of a hyperelastic 
material. In other words, the constitutive equation of a hyperelastic material is determined by the 
strain energy function.  

 

Isotropic material  
Because of the isotropic property, we expect that the relationship between Ψ and 𝐶 must be 
independent of the material axes. Therefore, Ψ should only be a function of the invariants of 𝐶, 
as:  

 
Ψ(𝐶(𝑋), 𝑋) = Ψ(𝐼𝐶 , 𝐼𝐼𝐶 , 𝐼𝐼𝐼𝐶 , 𝑋), 

 
where 𝐼𝐶 , 𝐼𝐼𝐶 and 𝐼𝐼𝐼𝐶 are the invariants of 𝐶. They are intrinsic magnitudes and remain invariant 
under the rotation of axes. They are defined as: 
 

𝐼𝐶 = tr 𝐶 = � 𝐶𝑖𝑖

3

𝑖=1

, 

 
𝐼𝐼𝐶 = 𝐶: 𝐶 = 𝑡𝑟(𝐶𝑇𝐶), 

 
𝐼𝐼𝐼𝐶 = det 𝐶. 

 
Their relation with the principal stretches (the eigenvalues of 𝐶) 𝜆1, 𝜆2, 𝜆3 is: 

 

Ψ̇ =
𝜕Ψ
𝜕𝐶

: �̇� =
1
2

𝑆: �̇�, 

1
2

�̇� = �̇�, 

𝑆(𝐶(𝑋), 𝑋) = 2
𝜕Ψ
𝜕𝐶

=
𝜕Ψ
𝜕𝐸

, 
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𝐼𝐶 = 𝜆1 + 𝜆2 + 𝜆3, 

 
𝐼𝐼𝐶 = 𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆2𝜆3, 

 
𝐼𝐼𝐼𝐶 = 𝜆1𝜆2𝜆3. 

 
After some computation, the second Piola-Kirchhoff stress can be evaluated in terms of 
invariants of 𝐶 as: 

 
where Ψ𝐼 = 𝜕Ψ

𝜕𝐼𝐶
, Ψ𝐼𝐼 = 𝜕Ψ

𝜕𝐼𝐼𝐶
, Ψ𝐼𝐼𝐼 = 𝜕Ψ

𝜕𝐼𝐼𝐼𝐶
.  

 

Material models and uniaxial tension test 
Below we introduce five hyperelastic material models which have been used (or suggested to be 
used) in soft tissue modelling over the years. Then, a figure showing stress-strain relationship 
under uniaxial test of different material models is given as an illustration of the difference 
between the material models. Note that except from the St.Venant-Kirchhoff model, the rest of 
the strain density functions are given for the case when the material is totally incompressible. 
Thus, the strain density function is stated with the implicit constraint 𝐼𝐼𝐼𝐶 = 1. 
 

1. St.Venant-Kirchhoff model  
The simplest example of a hyperelastic material is the St.Venant-Kirchhoff model, which 
is defined by a strain energy density function Ψ as: 
 

Ψ(𝐸) =
1
2

𝜆(𝑡𝑟𝐸)2 + 𝜇𝐸: 𝐸, 
 
where 𝜆 and 𝜇 are Lamé constants and 𝐸 is Green strain tensor. We can obtain the 
second Piola-Kirchhoff stress tensor as  
 

𝑆 = 𝜆(𝑡𝑟𝐸)𝐼 + 2𝜇𝐸. 
 
Note that the last equation is analogous to the constitutive relation in linear elasticity, 
where Cauchy’s infinitesimal strain tensor has been replaced by the Green strain tensor 
and Cauchy stress has been replaced by the second Piola-Kirchhoff stress tensor. 
Although St.Venant-Kirchhoff material has been found to be of little practical use beyond 
the small strain regime, it takes the geometric nonlinearity into account and is thus 
suitable for large displacement, large rotation but small strain problems. This will be 
explained with more details in Section 4.1.3. 
 

2. Mooney-Rivilin model 
A general form for the strain energy density function of incompressible rubbers 
attributable to Mooney and Rivilin is expressed as: 
 

Ψ(𝐶) = � 𝐶𝑟𝑠(𝐼𝐶 − 3)𝑟(𝐼𝐼𝐶 − 3)𝑠,
𝑟,𝑠≥0

 

 
where 𝐼𝐶 and 𝐼𝐼𝐶 are the first and the second invariant of 𝐶 respectively. The most 
frequently used from this family of equations is obtained when only 𝐶01 and 𝐶10 are 
different from zero. In this particular case we have:  
 

 𝑆 = 2Ψ𝐼 + 4Ψ𝐼𝐼𝐶 + 2𝐽2Ψ𝐼𝐼𝐼𝐶−1,  
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Ψ(𝐶) = 𝐶10(𝐼𝐶 − 3) + 𝐶01(𝐼𝐼𝐶 − 3). 
 
Since 𝜇�= 2(𝐶10 + 𝐶01)� denotes the shear modulus (non-negative), thus we need  
 

𝐶10 + 𝐶01 ≥ 0. 
 

3. Neo-Hookean model 
With 𝐶01 = 0, Neo-Hookean material is defined by a hyperelastic strain energy density 
function Ψ given as: 
 

Ψ = 𝐶1(𝐼𝐶 − 3). 
 
In this case, 𝜇 = 2𝐶1 ≥ 0, thus 𝐶1 ≥ 0. 
 
 

4. Yeoh model 
The strain energy density function of the Yeoh model is written as: 
 

Ψ = � 𝐶𝑖(𝐼𝐶 − 3)𝑖 ,
𝑖=1,2,3

 

 
where 𝐶𝑖 are material constants. The compatibility condition for the Yeoh model is that 
2𝐶1 = 𝜇. Thus 𝐶1 ≥ 0. 
 
 

5. Gent model 
In this model, the strain energy density function is designed such that it has a singularity 
when the first variant of the left Cauchy-Green deformation tensor reaches a limiting 
value 𝐼𝑚. The strain energy density function for the Gent model is: 
 

Ψ = −
𝜇𝐽𝑚

2
ln �1 −

𝐼𝐶 − 3
𝐽𝑚

�, 

 
where 𝜇 is the shear modulus and 𝐽𝑚 = 𝐼𝑚 − 3. In the limit (𝐼𝑚 → ∞), the Gent model 
reduces to the Neo-Hookean solid model. 
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Note that for incompressible material, the independent variables in terms of invariants of 𝐶 are 𝐼𝐶 
and 𝐼𝐼𝐶. 𝐼𝐶 and 𝐼𝐼𝐶 satisfy: 
 

𝐼𝐶 ≥ 3, 
𝐼𝐼𝐶 ≥ 3. 

 
This is derived by calculating the minima of first and second invariants of 𝐶 under the constraint 
𝐼𝐼𝐼𝐶 = 1.  The calculation goes as follows: 
 
Since  

𝐼𝐼𝐼𝐶 = 𝜆1𝜆2𝜆3 = 1, 
then  
 

𝐼𝐶 = 𝜆1 + 𝜆2 + 𝜆3 =
1

𝜆2𝜆3
+ 𝜆2 + 𝜆3.  

 
To calculate the minima of 𝐼𝐶, we need to calculate the root of partial derivatives of 𝐼𝐶 with 
respect to 𝜆2 and 𝜆3. We have: 
 

𝜕𝐼𝐶

𝜕𝜆2
= 1 −

1
𝜆3

1
𝜆2

2 = 0, 

and  
𝜕𝐼𝐶

𝜕𝜆3
= 1 −

1
𝜆2

1
𝜆3

2 = 0. 

 
We have pointed out before that the eigenvalues of 𝐶 are all real and positive. Solving above 
equations, we found that 𝐼𝐶 reaches its minima when 𝜆2 = 𝜆3 = 1. This  also implies 𝜆1 = 1. Thus 
we found that  
 

𝐼𝐶 − 3 = (𝜆1 − 1) + (𝜆2 − 1) + (𝜆3 − 1) ≥ 0. 
 
In a similar way, we have: 
 

𝐼𝐼𝐶 − 3 = (𝜆1𝜆2 − 1) + (𝜆1𝜆3 − 1) + (𝜆2𝜆3 − 1) ≥ 0. 
 
And when 𝐹 = 𝐼 (identity matrix), 𝜆𝑖 = 1, thus 𝐼𝐶 − 3 = 𝐼𝐼𝐶 − 3 = 0. 
 
A consistent strain energy function should satisfy the following criteria (and many more, see [44]):  
 

1. The strain energy density function must be non-negative for all deformations. 
2. The strain energy density function must have a zero value at the undeformed state. 

 
The calculation of 𝐼𝐶 and 𝐼𝐼𝐶 shows that the presented material models are consistent under a 
mild constraint on the parameters (like in the Yeoh model).  
 
It is common to use a uniaxial test procedure to test the mechanical properties of a certain 
material. With uniaxial testing, length of the material is deformed in one direction and the 
resulting stress-strain relationship determined. Below we are going to present the uniaxial test for 
the material mentioned above (except from St.Venant-Kirchhoff material), with specified 
parameters.  
 



Background knowledge 
 

28 

 

 
 
Note that all figures are drawn under the 𝑥 −axis “engineering strain” (ranging from 
−75% ~400%) and 𝑦 −axis “engineering stress” with the unit MPa. These figures are plotted 
using the calculated strain-stress relation in terms of the principal stretch. Below is type of 
material and the material constants used in each figure: 
 

• Up-left: Mooney-Rivilin, 𝐶10 = 1.030Mpa, 𝐶01 = 0.114Mpa. 
• Up-right: Neo-Hookean, 𝐶1 = 3.1Mpa.  
• Bottom-left: Yeoh, 𝐶1 = 1.202MPa, 𝐶2 = −0.057MPa and 𝐶3 = 0.004MPa. 
• Bottom-right: Gent, 𝜇 = 2.290MPa, 𝐽𝑚 = 30. 

 
By plotting the stress-strain relationship for different hyperelastic materials, we are making the 
effort to find the best match for human skin stress-strain relationship shown in Figure 3.5. By 
comparing the figures, we find that Yeoh and Gent model has more similarity with the target 
shape than Mooney and Neo-Hookean material.  

Incompressible material and near incompressibility 
Incompressible media have the property that after deformation each small portion of the medium 
has the same volume as before deformation. Soft tissues due to the high percentage of water 
content are usually treated as quasi-incompressible. Since for incompressible material  the 
constraint det 𝐹 = 𝐽 = 1 must be fulfilled, special care must be taken when we deal with this type 
of problem. For instance, the constitutive equation of isotropic compressible Hookean solids 
reads: 

𝜎𝑖𝑗 = 𝜆𝜖𝛼𝛼𝛿𝑖𝑗 + 2𝜇𝜖𝑖𝑗 , 
 
where the constants are determined by, 
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𝜇 =
𝐸

2(1 + 𝜈) ,        𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈), 

 
where 𝐸 is Young’s modulus and 𝜐 is Poisson’s ratio. It can be shown that 𝜐 = 1

2
 represents 

incompressibility. Thus the parameter 𝜆 will become unbounded in the incompressible limit. 
Therefore, an alternative formulation of the theory is needed.  
 
Taking Mooney-Rivilin material as an example, the strain energy density function for totally 
incompressible material reads: 
 

Ψ(𝐶) = 𝐶10(𝐼𝐶 − 3) + 𝐶01(𝐼𝐼𝐶 − 3), 
with the constraint 
 

𝐼𝐼𝐼𝐶 = 1. 
 
To drop the restriction 𝐼𝐼𝐼𝐶 = 1, we include a hydrostatic work term in the strain energy function to 
obtain  
 

Ψ′(𝐶) = 𝐶10(𝐼𝐶 − 3) + 𝐶01(𝐼𝐼𝐶 − 3) + 𝑊(𝐼𝐼𝐼𝐶). 
 
However, this expression is not convenient from a computational point of view. Thus the final 
strain density function used in  computation is written as: 
 

Ψ′′(𝐶) = Ψ′�(𝐶) + 𝑈(𝐼𝐼𝐼𝐶), 
 

where Ψ′�(𝐶) = Ψ′ �𝐼𝐼𝐼𝐶
−1

3𝐶� is the deviatoric part of the strain density function Ψ and 𝑈(𝐼𝐼𝐼𝐶) is the 

volumetric part. Material which satisfies such a strain density form is called near incompressible. 
The terminology “near incompressibility” is used to denote materials that are truly/almost 
incompressible, but the numerical treatment invokes a small measure of volumetric deformation. 
Thus, near incompressibility is often a device by which incompressibility can more readily be 
enforced within the context of the finite element formulation [34]. More details on the formulation 
within the finite element context will be given in Section  4.1.4. 
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4. Mathematical models and implementation details 
With the background knowledge presented in the previous section, we are now ready to 
introduce the facial soft tissue models we developed in this project. As mentioned in section 2.2, 
FEM has superior performance over other methods in terms of accuracy. Due to the high 
demand of accuracy and the availability of the FEM software package Marc, we decide to mainly 
focus on the development of FEM-based soft tissue models in this project. In this chapter, we will 
give a detailed mathematical description of the FEM-based models and a computer-vision based 
method which is also used for mouth-opening. This chapter is organized as follows: First, we 
describe our FEM-based facial soft tissue models in the following aspects: general model 
assumptions, the configuration of the models and governing equations for the systems. Then, the 
FEM approach which we deployed to solve the problem is presented in great details. It is 
followed by a brief description of the morphing method. At the end of the chapter, a summary 
(table) of the methods we used for the mouth-opening tool and a step-by-step computer 
implementation procedure are stated.  

 FEM-based facial soft tissue models  4.1.
In this section, we will present our FEM-based models in the following fashion: to start with, we 
list the assumptions we made at the modelling stage. Then we illustrate the configuration of our 
models, from which one can get an intuitive idea about the construction and the structure of our 
mesh. What follows are the governing equations that describe the physical system 
mathematically. After transforming the problem into mathematical equations, we apply the 
numerical solver (FEM) to solve the equations.  

4.1.1. General model assumptions 
The following simplifications are made in all the FEM-based models: 
 

1. Plasticity ignored 
It is only necessary to model the strain and stress range that is relevant to the open 
mouth process. The part of the stress-strain curves which represents the very large strain 
is rarely invoked by the open mouth process.  
 

2. Viscoelasticity ignored 
Viscoelasticity will only play a role in dynamic modelling. Since we are only interested in 
the static result, namely the open mouth geometry, the viscoelastic property can be 
ignored.  
 

3. Initial stress free 
For the initial state of the model, the skin is considered with zero tension in the resting 
state (stress free). Note that this is not completely true as there exists a pretension in the 
skin [30].  
 

4. Isotropy and homogeneity  
All the soft tissue layers In the models are considered to be isotropic and homogeneous. 
From Section 3.1.2, we know this assumption is not realistic but a compromise to gain 
computational simplicity. But notice that the heterogeneity is partly taken care of by 
adopting a layered structure of soft tissues. 
 

5. Gravity ignored 
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Although human faces suffer gravity, we ignore body force (gravity) in all the models, 
since we deem the effect of the gravity on the facial geometry is small compared to 
deformation due to the mouth opening process. 
 

6. No muscles modelled 
Another significant simplification of the models is ignoring the existence of the muscles 
and the forces caused by muscles in the mouth-opening process.  

4.1.2. Configuration of the model 
The model configuration mainly comprises of a two-layer structure (skin layer and skull layer) with 
connecting springs in between. What we are interested in is the displacement field of the skin 
surface layer. We set the skull layer as rigid to provide the movement of the jaw. The two layers 
are connected by springs, which are designed to model the sliding effect of the superficial fascia. 
Further, the skull layer is divided into two parts by a “cut” along the 𝑥-axis at the mouth height: 
lower skull and upper skull. The lower skull can move freely in 3D and therefore simulate the 
moving jaw in the mouth opening process. Figure 4.1 is a snapshot from MENTAT (GUI of Marc) 
illustrating the configuration of the models. 
 

 
Figure 4.1 Layer structure illustration 

 
 
 
 
 
 
 
 
 
 
 
 
 

Springs 

Clamped upper skull 

Moving lower skull   
  

 
 

 

Boundary conditions  
Skin surface 

Figure 4.2 Local element illustration 
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Figure 4.3 springs elongation during mouth opening 

It is worth to point out that to “create” a mouth in the model and a free moving jaw, another two 
sets of nodal points are added at the mouth position at the skin layer and at the upper-lower skull 
border line. These nodes are assigned to have the same 𝑥, 𝑦-coordinates with the original nodes 
but 0.5 𝑚𝑚 projection (outwards) in the 𝑧-direction. Therefore, after some modification on the 
connectivity of the elements, the original nodes at the skin layer represent the position of the 
upper lip and the added nodes the lower lip. 
In the local  elements illustration, we magnified four elements which are located at the side of the 
mouth. Note that all skin nodes have a one to one mapping to skull nodes except from the ones 
on the line containing the mouth opening. On the sides of the mouth every skin node has two 
spring connections: to the upper skull and to the jaw. We recognized that this is caused by the 
addition of nodes: in the skin layer we only added the nodes in the lip position with the width of a 
mouth, while in the skull layer we added the nodes across the head width. From the illustration, 
one can also observe that we use uniform grids for both layers.  

4.1.3. Governing equations 
Having specified the model assumptions and the configuration, we are ready to present the 
governing equations of the system. Mathematically speaking, the governing equations of the 
system consist of physical equilibrium laws, constitutive equations, and boundary conditions. 
Below we will elaborate each of the items to provide a full-round mathematical description of the 
system.   
 

Cauchy’s equilibrium equation 
The equilibrium law in solid mechanics is attributed to Cauchy’s force equilibrium equation. Let Ω 
denote our domain of interest – the skin layer – and let 𝜔 denote an arbitrary subdomain of Ω 
with the boundary 𝜕𝜔 and exterior normal 𝑛. Two types of forces can act on 𝜔, namely, body 
forces and surface traction forces. Since we ignore gravity in the models, we only consider 
surface traction force, which, when it acts on the boundary 𝜕𝜔, takes the form 𝜎 ∙ 𝑛, where 𝜎 is 
the Cauchy stress tensor introduced in section 3.2.1. Summing up the total net force 𝐹 on Ω, we 
get 
 

𝐹 = � 𝜎 ∙ 𝑛 𝑑𝑠.
𝜕𝜔

 

 
Using the divergence theorem on the surface integral, we obtain 
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𝐹 = � (∇ ∙ 𝜎) 𝑑𝑥.
𝜔

 

 
In equilibrium, 𝐹 = 0. Since 𝜔 is arbitrary, we conclude that 
 

∇ ∙ 𝜎 = 0,     in  Ω. 
 
Hereby we have derived Cauchy’s equilibrium equation.  
 

Boundary conditions (postulations) 
We point out very strongly that we have used Marc to assign boundary conditions by 
manipulating the movement of lower and upper skull, but how exactly Marc treats spring support 
is not yet completely known (further study is needed). Thus what is stated below is my personal 
understanding of the boundary conditions which is applied to the skin layer. To understand what 
happens exactly in Marc, it requires more structural mechanics knowledge within the finite 
element context (where they treat springs as a special finite element as well) and more familiarity 
with Marc as well. It is out of the scope of this thesis.  
 
To obtain a unique solution 𝑢, Cauchy’s equilibrium equation must be supplemented by suitable 
boundary conditions. According to the configuration of the model, the boundary conditions should 
be induced by the spring forces which are applied to every node at the inner side of skin layer, 
Γ𝑖𝑛. There are concentrated surface tractions applied on Γ𝑖𝑛. In mathematical terms, the boundary 
conditions are of Neumann type, which take the form  
 

𝜎 ∙ 𝑛 = 𝑔,                                  on Γ𝑖𝑛, 
 
where 𝜎 is the Cauchy stress tensor and 𝑛 is is the outward unit normal to the surface, and 𝑔 is 
traction. 
 
Basically, we model the open-mouth process as prescribed displacement of the lower skull (the 
moving jaw) and the clamped upper skull. Through the rotation and translation of the lower skull 
(just like the movement of the jaw when people open their mouth), springs connecting lower skull 
nodes and corresponding skin nodes will produce pulling forces on the inner side of skin layer. At 
the same time, since the upper skull is clamped, any displacement of the skin layer nodes which 
are connected to the upper skull nodes, will lead to the elongation of the springs as well. An 
illustration of the elongation of the spring described above is Figure 4.3, where we can observe 
the elongation of the springs both in the lower and upper skull. The stretching effect is the most 
obvious at the side of the mouth, which is realistic. 
 
As pointed out in section 4.1.2, the skin nodes located at the sides of mouth are connected with 
two springs (one with lower skull nodes and one with upper skull nodes) and the rest of the skin 
nodes have a one to one connection with the skull nodes. Thus, it is sensible to group skin nodes 
when we discuss boundary conditions. 
 
I. Skin nodes that have only one spring connection. Further we divide this group into two 

subgroups: 
 

a) Nodes that are connected to lower skull nodes.  
In this case, the surface traction is caused by the rigid movement of the lower skull. We       
denote the displacement vector (constant vector) of the skull nodes as 𝐷. Thus the surface 
traction 𝑔𝐼𝐼𝑎 is: 
 

𝑔𝐼𝐼𝑎(𝑥) = 𝒦�𝐷 − 𝑢(𝑥)�𝛿(𝑥 − 𝑥𝑘),    𝑥 ∈ Γ𝑖𝑛, 𝑘 ∈ 𝑁𝐼𝐼𝑎 ,  
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where 𝒦 is the spring stiffness, 𝑁𝐼𝐼𝑎 is the index set of nodes in this category, and 𝑥𝑘 
denotes the coordinates in the Cartesian coordinate system of node 𝑘, 𝑢(𝑥) denotes the 
displacement field, defined as 𝑥 − 𝑋, for every point in the body. Note that 𝛿(𝑥) is the delta 
function, which has the property: 
 

� 𝑤(𝑥)𝛿(𝑥 − 𝑦)𝑑Ω = 𝑤(𝑦),
Ω

 

 
for any continuous function 𝑤(𝑥) defined on Ω. We use the delta function to represent a 
concentrated force which in this case is the force applied on the discretized nodes on the 
surface. 
 

b) Nodes that are connected to upper skull nodes. We can write the surface traction 𝑔𝐼𝐼𝑏 in a 
similar way like 𝑔𝐼𝐼𝑎. The difference is that for the nodes connected to the clamped upper 
skull, the stretching/contraction of the springs comes from the displacement of skin nodes 
only. We have 
 

𝑔𝐼𝐼𝑏 = 𝒦�0 − 𝑢(𝑥)�𝛿(𝑥 − 𝑥𝑘),    𝑥 ∈ Γ𝑖𝑛, 𝑘 ∈ 𝑁𝐼𝐼𝑏 ,  
 
where 𝑁𝐼𝐼𝑏 denotes the index set of nodes in this category.  

 
II. Skin nodes that have two springs connections. For this type of skin nodes, the total traction 

𝑔𝐼 should be the sum of traction that is induced by the springs connecting both the lower 
and upper skull nodes, 𝑔𝑙 and 𝑔𝑢, namely: 

 
𝑔𝐼 = 𝑔𝑙 + 𝑔𝑢 = 𝒦��𝐷 − 𝑢(𝑥)�𝛿(𝑥 − 𝑥𝑘) + �0 − 𝑢(𝑥)�𝛿(𝑥 − 𝑥𝑘)�, 𝑘 ∈ 𝑁𝐼 , 

 
where 𝑁𝐼 is the index set of the nodes belonging to this category. 

 
Thus to summarize, the boundary conditions of the mouth opening process can be written as: 
 

𝜎 ∙ 𝑛 = 𝑔 ,                                 on Γ𝑖𝑛, 
where  
 

𝑔 = 𝑔𝐼 + 𝑔𝐼𝐼𝑏 + 𝑔𝐼𝐼𝑎 ,              𝑜𝑛 Γ𝑖𝑛. 
 

Principle of virtual work 
The principle of virtual work is of utmost importance in the engineering world and it is also the 
corresponding weak form of the Cauchy equilibrium equation. Below we first derive the weak 
form of the Cauchy equilibrium equation and then we give its engineering interpretation, namely, 
as the principle of virtual work. At the end, we will present total and updated Lagrangian 
formulations which are used to linearize the nonlinear problems in the solution procedure.  

Weak form derivation 
Let 𝑉 be the Hilbert space: 
 

𝑉 = {𝑣 ∈ [𝐻1(Ω)]3| 𝑣 = 0  on Γ\Γ𝑖𝑛}. 
 
Multiplying  ∇ ∙ 𝜎 = 0 with a test function 𝑣 ∈ 𝑉, and next integrating by parts, we get  
 

0 = � (∇ ∙ 𝜎)𝑣
Ω

𝑑𝑥 = � � �
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
𝑣𝑖�

3

𝑖,𝑗=1Ω
𝑑𝑥 
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= � � � 𝜎𝑖𝑗𝑛𝑗𝑣𝑖

3

𝑖,𝑗=1

�  𝑑𝑆
𝜕Ω

− � � �𝜎𝑖𝑗
𝜕𝑣𝑖

𝜕𝑥𝑗
 � 𝑑𝑥

3

𝑖,𝑗=1Ω
. 

 
Thus, we have: 
 

� �(𝜎 ∙ 𝑛)𝑣� 𝑑𝑆
∂Ω

− � (𝜎: ∇𝑣) 𝑑𝑥
Ω

= 0. 

 
Using finally the Neumann boundary condition 𝜎 ∙ 𝑛 = 𝑔 on Γ𝑖𝑛, and that 𝑣 = 0 on Γ\Γ𝑖𝑛, we end 
up with 
 

� (𝜎: ∇𝑣) 𝑑𝑥
Ω

= � (𝑔𝑣)
Γ𝑖𝑛

 𝑑𝑆,          ∀𝑣 ∈ 𝑉. 

 
We can further simplify the result. Any matrix can be decomposed into its symmetric and anti-
symmetric part, viz., 𝐴 = 𝐴+𝐴𝑇

2
+ �𝐴−𝐴𝑇�

2
. Thus, it follows that 

 

𝜎: ∇𝑣 = 𝜎:
1
2

(∇𝑣 + ∇𝑣𝑇) + 𝜎:
1
2

(∇𝑣 − ∇𝑣𝑇) = 𝜎: 𝜖(𝑣) + 0, 
 
where 𝜖(𝑣) = 1

2
(∇𝑣 + ∇𝑣𝑇). So we get 

  

� �𝜎: ϵ(𝑣)� 𝑑𝑥
Ω

= � (𝑔𝑣)
Γ𝑖𝑛

 𝑑𝑆,          ∀𝑣 ∈ 𝑉. 

 
Or we can write it in another notation: 
 
  

� 𝜎𝑖𝑗ϵ(𝑣)𝑖𝑗  𝑑𝑥
Ω

= � (𝑔𝑖𝑣𝑖)
Γ𝑖𝑛

 𝑑𝑆,          ∀𝑣 ∈ 𝑉. 

 
Note that the double appearance of the index means summing over the spatial dimension, which 
is three in this case. If we interpret 𝑣 as virtual displacement, then 𝜖(𝑣) is the corresponding 
infinitesimal virtual strain and 𝜎𝑖𝑗 is the real Cauchy stress. The right hand side can be seen as 
the external virtual work. We rewrite the above equation in engineering notation as: 
 

� 𝜎𝑖𝑗δϵ𝑖𝑗  𝑑𝑥
Ω

= � (𝑔𝑖𝛿𝑢𝑖)
Γ𝑖𝑛

 𝑑𝑆,          ∀𝛿𝑢 ∈ 𝑉. 

 
Note that the 𝛿 in front the variable denotes a virtual variable.  
 

Total Lagrangian formulation (T.L. formulation)  
To solve a nonlinear problem, a linearization procedure is necessary and usually an incremental 
solution is taken. We select Newton-Raphson iteration solution procedure. Although it is 
theoretically possible to achieve a direct solution for a given load case, it is more practical to 
consider the external load as being applied as a sum of increments. We apply the external load 
evenly in 50 time steps. For details of the content of the following three sections (Total 
Lagrangian formulation (T.L. formulation), Updated Lagrangian formulation (U.L. formulation), 
and Lagrangian elasticity tensor) we refer to [36]. 
 
Lagrangian description is suitable for a body subjected to large displacement, large rotation and 
large strain. Assume that we have obtained the solution (the displacement field) till time 𝑡. And 
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we would like to have the solution at time 𝑡 + Δ𝑡 (the next time step). Let 𝑢 denote the 
displacement increment, namely:  
 

𝑢𝑡+Δ𝑡 = 𝑢𝑡 + 𝑢. 
 
To solve the problem, we apply the principle of virtual work at time 𝑡 + Δ𝑡 : 
 

� 𝜎𝑖𝑗
𝑡+Δ𝑡δϵ𝑖𝑗

𝑡+Δ𝑡 𝑑𝑥
Ω𝑡+Δ𝑡

= � ((𝑔𝑡+Δ𝑡)𝑖𝛿𝑢𝑖)
Γ𝑖𝑛

𝑡+Δ𝑡
 𝑑𝑆 = ℛ𝑡+Δ𝑡 ,          ∀𝛿𝑢 ∈ 𝑉, 

 
where ℛ𝑡+Δ𝑡 denotes the external force term. Note that the superscript 𝑡 + Δ𝑡 is to indicate the 
variable at time 𝑡 + Δ𝑡. Using the property of the 𝛿 −function, we can write out ℛ𝑡+Δ𝑡 explicitly: 
 

ℛ𝑡+Δ𝑡 = � ((𝑔𝑡+Δ𝑡)𝑖𝛿𝑢𝑖)
Γ𝑖𝑛

𝑡+Δ𝑡
 𝑑𝑆 = � 𝑅𝑖

𝑘
𝑡+Δ𝑡

𝑘∈𝑁

𝛿𝑢𝑖 ,      𝑖 = 1,2,3, 

 
where 𝑁 denotes the whole nodes set on Γ𝑖𝑛

𝑡+Δ𝑡 , namely, 𝑁 = 𝑁𝐼  ⋃ 𝑁𝐼𝐼𝑏⋃ 𝑁𝐼𝐼𝑎 . 𝑅𝑖
𝑘

𝑡+Δ𝑡 denotes the 
force applied on the 𝑘th node by the springs in the 𝑥𝑖 direction at time 𝑡 + Δ𝑡  as: 
 

𝑅𝑡+Δ𝑡𝑖
𝑘 = 𝒦�𝐷𝑖

𝑡+Δ𝑡 − 𝑢𝑖
𝑡+Δ𝑡�,                                    if 𝑘 ∈ 𝑁𝐼𝐼𝑎 , 

 
𝑅𝑡+Δ𝑡𝑖

𝑘 = 𝒦�0 − 𝑢𝑖
𝑡+Δ𝑡�,                                           if 𝑘 ∈ 𝑁𝐼𝐼𝑏 , 

 
𝑅𝑡+Δ𝑡𝑖

𝑘 = 𝒦��𝐷𝑖
𝑡+Δ𝑡 − 𝑢𝑖

𝑡+Δ𝑡� + �0 − 𝑢𝑖
𝑡+Δ𝑡��,        if 𝑘 ∈ 𝑁𝐼 , 

 
where 𝑈𝑖

𝑡+Δ𝑡 denotes the 𝑖th component of the displacement vector 𝑈 at time step 𝑡 + Δ𝑡. We use 
a uniform time step. If the time 𝑡 + Δ𝑡 is the 𝑝th step out of the 50, we have 
 

𝐷𝑖
𝑡+Δ𝑡 = �𝑝

𝐷
50

�
𝑖
. 

 
Note that the external force term is deformation dependent. Thus approximation is needed, and 
the treatment will be given in section 4.1.4. 
 
In section 3.2.1, we presented that the second Piola-Kirchhoff stress tensor is energetically 
conjugate with the Green strain tensor. They are the counterparts of the Cauchy stress tensor 
and the infinitesimal strain tensor at the original configuration (𝑡 = 0) respectively. Using this fact, 
we can rewrite the principle of virtual work at time 𝑡 + Δ𝑡 referred to the original configuration as 
 

� 𝑆𝑖𝑗
𝑡+Δ𝑡δE𝑖𝑗

𝑡+Δ𝑡 𝑑𝑥
Ω0

= ℛ𝑡+Δ𝑡 ,          ∀𝛿𝑢 ∈ 𝑉, 

 
where 𝑆𝑖𝑗

𝑡+Δ𝑡 denotes the second Piola-Kirchhoff stress (implicitly) referred to the original 
configuration, namely 
 

𝑆𝑖𝑗
𝑡+Δ𝑡 = 𝐽𝑡+Δ𝑡𝐹−1(𝑡+Δ𝑡) �𝑥𝑡+Δ𝑡(𝑋)� 𝜎𝑖𝑗

𝑡+Δ𝑡 �𝑥𝑡+Δ𝑡(𝑋)� 𝐹𝑡+Δ𝑡(𝑋), 
 

where 𝐹𝑖𝑗
𝑡+Δ𝑡(𝑋) = 𝜕𝑥𝑖

𝑡+Δ𝑡

𝜕𝑋𝑗
, 𝐽𝑡+Δ𝑡 = det �𝐹𝑡+Δ𝑡(𝑋)�, 𝑋 denote the original configuration of the domain, 

namely, the skin layer at time 𝑡 = 0. The Green strain tensor is rewritten with respect to the 
original configuration as: 
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E𝑖𝑗
𝑡+Δ𝑡 =

1
2

�
𝜕𝑢𝑗

𝑡+Δ𝑡

𝜕𝑋𝑖
+

𝜕𝑢𝑖
𝑡+Δ𝑡

𝜕𝑋𝑗
+

𝜕𝑢𝑘
𝑡+Δ𝑡

𝜕𝑋𝑖

𝜕𝑢𝑘
𝑡+Δ𝑡

𝜕𝑋𝑗
�. 

 
Further, we decompose the unknown stress and strain (at time 𝑡 + Δ𝑡) as: 
 

𝑆𝑖𝑗
𝑡+Δ𝑡 = 𝑆𝑖𝑗

𝑡 + 𝑆𝑖𝑗 , 
 

E𝑖𝑗
𝑡+Δ𝑡 = E𝑖𝑗

𝑡 + E𝑖𝑗 . 
 
Thus, 𝑆𝑖𝑗

𝑡  and E𝑖𝑗
𝑡  are the known parts since they are the variables at time 𝑡. 𝑆𝑖𝑗 and E𝑖𝑗 are the 

unknown increments. Next, let us expand the incremental Green strain tensor expression. We get 
 

E𝑖𝑗 = E𝑖𝑗
𝑡+Δ𝑡 − E𝑖𝑗

𝑡 =
1
2

�
𝜕(𝑢𝑗

𝑡+Δ𝑡 − 𝑢𝑗
𝑡)

𝜕𝑋𝑖
+

𝜕(𝑢𝑖
𝑡+Δ𝑡 − 𝑢𝑖

𝑡)
𝜕𝑋𝑗

+
𝜕𝑢𝑘

𝑡+Δ𝑡

𝜕𝑋𝑖

𝜕𝑢𝑘
𝑡+Δ𝑡

𝜕𝑋𝑗
−

𝜕𝑢𝑘
𝑡

𝜕𝑋𝑖

𝜕𝑢𝑘
𝑡

𝜕𝑋𝑗
� 

              =
1
2

�
𝜕𝑢𝑗

𝜕𝑋𝑖
+

𝜕𝑢𝑖

𝜕𝑋𝑗
+

𝜕𝑢𝑘
𝑡

𝜕𝑋𝑖

𝜕𝑢𝑘

𝜕𝑋𝑗
+

𝜕𝑢𝑘

𝜕𝑋𝑖

𝜕𝑢𝑘
𝑡

𝜕𝑋𝑗
� +

1
2

�
𝜕𝑢𝑘

𝜕𝑋𝑖

𝜕𝑢𝑘

𝜕𝑋𝑗
�. 

 
Note that the first term is linear with respect to the unknown displacement increments 𝑢, while the 
second term is nonlinear in 𝑢. We note δE𝑖𝑗

𝑡+Δ𝑡 = δE𝑖𝑗, since each variation is taken on the 
displacements at time 𝑡 + Δ𝑡, with 𝑢𝑡 fixed. Let 
 

𝜃𝑖𝑗 =
1
2

�
𝜕𝑢𝑗

𝜕𝑋𝑖
+

𝜕𝑢𝑖

𝜕𝑋𝑗
+

𝜕𝑢𝑘
𝑡

𝜕𝑋𝑖

𝜕𝑢𝑘

𝜕𝑋𝑗
+

𝜕𝑢𝑘

𝜕𝑋𝑖

𝜕𝑢𝑘
𝑡

𝜕𝑋𝑗
� 

 
denote the linear part of the strain increment and  
 

𝜂𝑖𝑗 =
1
2

�
𝜕𝑢𝑘

𝜕𝑋𝑖

𝜕𝑢𝑘

𝜕𝑋𝑗
� 

 
is the nonlinear strain increment. Thus E𝑖𝑗 = 𝜂𝑖𝑗 + 𝜃𝑖𝑗. Substitute the expressions of the unknown   
𝑆𝑖𝑗

𝑡+Δ𝑡 and E𝑖𝑗
𝑡+Δ𝑡 into the principle of virtual work formulation to get: 

 

� 𝑆𝑖𝑗
𝑡+Δ𝑡δE𝑖𝑗  𝑑𝑥

Ω0
= � �𝑆𝑖𝑗

𝑡 + 𝑆𝑖𝑗��𝛿𝜃𝑖𝑗 + 𝛿𝜂𝑖𝑗� 𝑑𝑥
Ω0

= ℛ𝑡+Δ𝑡 . 

 
Rewrite it as: 
 

� 𝑆𝑖𝑗𝛿E𝑖𝑗  𝑑𝑥 +
Ω0

� 𝑆𝑖𝑗
𝑡 𝛿𝜂𝑖𝑗  𝑑𝑥

Ω0
= ℛ𝑡+Δ𝑡 − � 𝑆𝑖𝑗

𝑡 𝛿𝜃𝑖𝑗  𝑑𝑥
Ω0

. 

 
Notice that the right hand side is known for any given variation 𝛿𝑢 and no approximation has 
been applied yet. For hyperelastic material,  the term 𝑆𝑖𝑗 is usually nonlinear in 𝑢. Now we are 
going to linearize this term as a necessary step in solving a nonlinear problem. Note that  
 

𝛿𝜂𝑖𝑗 =
1
2

��𝛿
𝜕𝑢𝑘

𝜕𝑋𝑖
�

𝜕𝑢𝑘

𝜕𝑋𝑗
+

𝜕𝑢𝑘

𝜕𝑋𝑖
�𝛿

𝜕𝑢𝑘

𝜕𝑋𝑗
��, 

 
which is linear in 𝑢. Therefore, the second term at the left hand side is also linear in the unknown 
𝑢. Now we perform the linearization procedure on the first term. Firstly, we expand 𝑆𝑖𝑗

𝑡+Δ𝑡 as a 
Taylor series at E𝑖𝑗

𝑡 . Let us denote the mapping between strain and stress tensor as 𝑓. Namely, 
𝑓�𝐸𝑖𝑗

𝑡 � = 𝑆𝑖𝑗
𝑡  , ∀𝑖, 𝑗 = 1,2,3.  Then  
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𝑆𝑖𝑗
𝑡+Δ𝑡 = 𝑓�𝐸𝑖𝑗

𝑡+Δ𝑡� = 𝑓�𝐸𝑖𝑗
𝑡 � + �𝐸𝑖𝑗

𝑡+Δ𝑡 − 𝐸𝑖𝑗
𝑡 �

𝜕𝑓
𝜕𝐸

�𝐸𝑖𝑗
𝑡 � + higher order terms.  

 
We get: 
 

𝑆𝑖𝑗
𝑡+Δ𝑡 − 𝑆𝑖𝑗

𝑡 = 𝑆𝑖𝑗 = 𝐸𝑟𝑠
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡 + higher order terms ≅  𝐸𝑟𝑠

𝜕𝑆𝑖𝑗
𝑡

𝜕𝐸𝑟𝑠
𝑡 = (𝜃𝑟𝑠 + 𝜂𝑟𝑠)

𝜕𝑆𝑖𝑗
𝑡

𝜕𝐸𝑟𝑠
𝑡 ≅ 𝜃𝑟𝑠

𝜕𝑆𝑖𝑗
𝑡

𝜕𝐸𝑟𝑠
𝑡 . 

 
Note that we make the approximation first by ignoring the higher order terms in 𝑆𝑖𝑗, then we also 
ignore the nonlinear part of the incremental strain. Hence, we obtain 
 

𝑆𝑖𝑗𝛿𝐸𝑖𝑗 ≅ 𝜃𝑟𝑠
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡 �𝛿𝜃𝑖𝑗 + 𝛿𝜂𝑖𝑗� = 𝜃𝑟𝑠

𝜕𝑆𝑖𝑗
𝑡

𝜕𝐸𝑟𝑠
𝑡 𝛿𝜃𝑖𝑗 + 𝜃𝑟𝑠

𝜕𝑆𝑖𝑗
𝑡

𝜕𝐸𝑟𝑠
𝑡 𝛿𝜂𝑖𝑗 ≅ 𝜃𝑟𝑠

𝜕𝑆𝑖𝑗
𝑡

𝜕𝐸𝑟𝑠
𝑡 𝛿𝜃𝑖𝑗 . 

 

Note that we throw away the term 𝜃𝑟𝑠
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡 𝛿𝜂𝑖𝑗 in the last step approximation because 𝜃𝑟𝑠

𝜕𝑆𝑖𝑗
𝑡

𝜕𝐸𝑟𝑠
𝑡 𝛿𝜂𝑖𝑗 

is nonlinear in 𝑢 (two linear terms multiplication). Thus the final linearized equation is: 
 

�
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡 𝜃𝑟𝑠𝛿𝜃𝑖𝑗 𝑑𝑥 + � 𝑆𝑖𝑗

𝑡 𝛿𝜂𝑖𝑗  𝑑𝑥
Ω0

=
Ω0

 ℛ𝑡+Δ𝑡 − � 𝑆𝑖𝑗
𝑡 𝛿𝜃𝑖𝑗  𝑑𝑥

Ω0
. 

 

Updated Lagrangian formulation (U.L. formulation) 
In the last section, we present the total Lagrangian formulation in which all variables are taken 
reference to the original configuration. In this section we are going to present another formulation 
which is also used in our solution procedure. The updated Lagrangian formulation takes the 
reference configuration at time 𝑡 when we solve the principle of virtual work at time 𝑡 + Δ𝑡. 
Just like in the total Lagrangian case, we are going to write the principle of virtual work at time 
𝑡 + Δ𝑡 with time reference 𝑡 as 
 

� 𝑆𝑖𝑗
𝑡+Δ𝑡δ𝐸𝑖𝑗

𝑡+Δ𝑡 𝑑𝑥
Ω𝑡

= ℛ𝑡+Δ𝑡 ,          ∀𝛿𝑢 ∈ 𝑉, 

where  
 

𝑆𝑖𝑗
𝑡+Δ𝑡 = 𝐽𝑡+Δ𝑡𝐹−1(𝑡+Δ𝑡) �𝑥𝑡+Δ𝑡(𝑥𝑡)� 𝜎𝑖𝑗

𝑡+Δ𝑡 �𝑥𝑡+Δ𝑡(𝑥𝑡)� 𝐹𝑡+Δ𝑡(𝑥𝑡), 
and  

𝐸𝑖𝑗
𝑡+Δ𝑡 =

1
2

�
𝜕𝑢𝑗

𝑡+Δ𝑡

𝜕𝑥𝑖
𝑡 +

𝜕𝑢𝑖
𝑡+Δ𝑡

𝜕𝑥𝑗
𝑡 +

𝜕𝑢𝑘
𝑡+Δ𝑡

𝜕𝑥𝑖
𝑡

𝜕𝑢𝑘
𝑡+Δ𝑡

𝜕𝑥𝑗
𝑡 �. 

 
Decompose the unknown stresses and strains as: 
 

𝑆𝑖𝑗
𝑡+Δ𝑡 = 𝑆𝑖𝑗

𝑡 + 𝑆𝑖𝑗 = 𝜎𝑖𝑗
𝑡 + 𝑆𝑖𝑗 , 

 
𝐸𝑖𝑗

𝑡+Δ𝑡 = 𝐸𝑖𝑗
𝑡 + 𝐸𝑖𝑗 = 𝐸𝑖𝑗 . 

 
This is because: 
 

𝑆𝑖𝑗
𝑡 = 𝐽𝑡𝐹−1(𝑡)(𝑥𝑡)𝜎𝑖𝑗

𝑡 (𝑥𝑡)𝐹𝑡(𝑥𝑡) = 𝜎𝑖𝑗
𝑡 (𝑥𝑡), 

 
and   

𝐸𝑖𝑗
𝑡 =

1
2

�
𝜕𝑢𝑗

𝑡

𝜕𝑥𝑖
𝑡 +

𝜕𝑢𝑖
𝑡

𝜕𝑥𝑗
𝑡 +

𝜕𝑢𝑘
𝑡

𝜕𝑥𝑖
𝑡

𝜕𝑢𝑘
𝑡

𝜕𝑥𝑗
𝑡 �. 
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Since now 𝑢𝑗

𝑡 denotes the displacement of the particle in the body from time 𝑡 (reference time) to 
𝑡. Thus 

𝑢𝑗
𝑡 = 0, 

 
E𝑖𝑗

𝑡 = 0, 
 

E𝑖𝑗  =
1
2

�
𝜕𝑢𝑗

𝜕𝑥𝑖
𝑡 +

𝜕𝑢𝑖

𝜕𝑥𝑗
𝑡 +

𝜕𝑢𝑘
𝑡

𝜕𝑥𝑖
𝑡

𝜕𝑢𝑘

𝜕𝑥𝑗
𝑡 +

𝜕𝑢𝑘

𝜕𝑥𝑖
𝑡

𝜕𝑢𝑘
𝑡

𝜕𝑥𝑗
𝑡 � +

1
2

�
𝜕𝑢𝑘

𝜕𝑥𝑖
𝑡

𝜕𝑢𝑘

𝜕𝑥𝑗
𝑡 � =

1
2

�
𝜕𝑢𝑖

𝜕𝑥𝑗
𝑡 +

𝜕𝑢𝑗

𝜕𝑥𝑖
𝑡� +

1
2

𝜕𝑢𝑘

𝜕𝑥𝑗
𝑡

𝜕𝑢𝑘

𝜕𝑥𝑗
𝑡 . 

 
Therefore,  
 

𝐸𝑖𝑗
𝑡+Δ𝑡 = 𝐸𝑖𝑗 =

1
2

�
𝜕𝑢𝑖

𝜕𝑥𝑗
𝑡 +

𝜕𝑢𝑗

𝜕𝑥𝑖
𝑡� +

1
2

𝜕𝑢𝑘

𝜕𝑥𝑗
𝑡

𝜕𝑢𝑘

𝜕𝑥𝑗
𝑡 . 

 
Thus there is no initial displacement effect in this expression. We define the linear strain 
increment:  
 

𝜃𝑖𝑗 =
1
2

�
𝜕𝑢𝑖

𝜕𝑥𝑗
𝑡 +

𝜕𝑢𝑗

𝜕𝑥𝑖
𝑡�, 

and the nonlinear strain increment 
 

𝜂𝑖𝑗 =
1
2

𝜕𝑢𝑘

𝜕𝑥𝑗
𝑡

𝜕𝑢𝑘

𝜕𝑥𝑗
𝑡 . 

 
Hence,  
 

𝐸𝑖𝑗 = 𝜃𝑖𝑗 + 𝜂𝑖𝑗 , 
 

𝛿𝐸𝑖𝑗 = 𝛿𝜃𝑖𝑗 + 𝛿𝜂𝑖𝑗 . 
 
The equation of the principle of virtual work becomes 
 

� 𝑆𝑖𝑗𝛿𝐸𝑖𝑗  𝑑𝑥
Ω𝑡

+ � 𝜎𝑖𝑗
t 𝛿𝜂𝑖𝑗  𝑑𝑥

Ω𝑡
= ℛ𝑡+Δ𝑡 − � 𝜎𝑖𝑗

t δ𝜃𝑖𝑗  𝑑𝑥
Ω𝑡

. 

 
Given a variation  , the right hand side is known. So far, no approximation has been made. Just 
like in the T.L. case, we begin to linearize (with respect to unknown incremental displacement) 
terms.  
 
The term ∫ 𝜎𝑖𝑗

t δη𝑖𝑗  𝑑𝑥Ω𝑡  is linear in 𝑢, the reason is the same as in the T.L. case. The term 
∫ 𝑆𝑖𝑗δE𝑖𝑗  𝑑𝑥Ω𝑡  contains a nonlinear function. We repeat the linearization procedure from the T.L. 
case, to get: 
 

𝑆𝑖𝑗 ≅
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡  𝜃𝑟𝑠, 

and  

𝑆𝑖𝑗𝛿𝐸𝑖𝑗
𝑡 ≅

𝜕𝑆𝑖𝑗
𝑡

𝜕𝐸𝑟𝑠
𝑡  𝜃𝑟𝑠𝛿𝜃𝑖𝑗 . 

 
Till now, we have derived the final linearized equation  
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�
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡  𝜃𝑟𝑠𝛿𝜃𝑖𝑗  𝑑𝑥

Ω𝑡
+ � 𝜎𝑖𝑗

t 𝛿𝜂𝑖𝑗  𝑑𝑥
Ω𝑡

= ℛ𝑡+Δ𝑡 − � 𝜎𝑖𝑗
t δ𝜃𝑖𝑗  𝑑𝑥

Ω𝑡
. 

 
We find that in the U.L. formulation, we work with the actual physical stress (Cauchy stress) . 
 

Lagrangian elasticity tensor 
In the previous section we have presented two linearization formulations which are both suitable 
for large displacement, large rotation and large strain problem analysis. To use these 
formulations, appropriate constitutive relations must be employed. In this section, we would like 

to derive a specific form of the elasticity tensors 𝒞𝑖𝑗𝑟𝑠 �=
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡 � appearing in both formulations.  

First, we would like to point out that the elastic constitutive relations which are suitable for small 
displacements, small rotation and small strain analysis (like Hooke’s law) can be directly used in 
large displacement, large rotation but small strain analysis. Specifically, we have that constitutive 
relation holds for infinitesimal analysis, 
 

𝜎𝑖𝑗 = 𝒞𝑖𝑗𝑟𝑠𝜖𝑟𝑠, 

 
where 𝜖𝑟𝑠 is Cauchy’s infinitesimal strain tensor and 𝜎𝑖𝑗 is Cauchy stress tensor, and 𝐶𝑖𝑗𝑟𝑠 is a 
constant forth-order elasticity tensor. For example,  
 

𝒞𝑖𝑗𝑟𝑠 = 𝜆𝛿𝑖𝑗𝛿𝑟𝑠 + 𝜇�𝛿𝑖𝑟𝛿𝑗𝑠 + 𝛿𝑖𝑠𝛿𝑗𝑟� 

 
is the elasticity tensor for Hookean solid where 𝜆 and 𝜇 are Lamé constants. Then for large 
displacement, large rotation but small strain analysis, 
 

𝑆𝑖𝑗 = 𝒞𝑖𝑗𝑟𝑠𝐸𝑟𝑠, 

 
where 𝑆𝑖𝑗 is the second Piola-Kirchhoff stress tensor and 𝐸 is Green’s strain tensor. The reason 
is explained as follows: separate the large displacement, large rotation but small strain 
deformation into two steps. Firstly, the body experiences small displacement, small rotation and 
small strain deformation. Thus at this stage, 
 

𝑆 = 𝐽𝐹−1𝜎𝐹−𝑇 ≅ 𝜎,          𝐸 ≅ 𝜖,        𝑆𝑖𝑗 = 𝒞𝑖𝑗𝑟𝑠𝐸𝑟𝑠. 

 
Next the body experiences rigid body motions (rotation and translations). Since the 𝑆 and 𝐸 stay 
invariant under rigid motions (which has been mentioned in section 3.2.1), the relation still holds 
for large displacement, large rotation but small strain analysis. Now, we also recognize that the 
Hookean solid constitutive relation in large displacement and large rotation but small strain 
analysis is the same as in the St.Venant-Kirchhoff model (from section 3.2.2). 
 
Next, we discuss the form of the elasticity tensor in the updated Lagrangian formulation. Note 
that we would like to have the updated Lagrangian formulation to produce the same set of linear 
equations as in the total Lagrangian formulation (presuming that we use the same discretization 
procedure). Recall the definition of Green’s strain tensor: 
 

𝑑𝑠2 − 𝑑𝑠0
2 = 2𝐸𝑖𝑗𝑑𝑋𝑖𝑑𝑋𝑗, 
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where  𝑑𝑠 and 𝑑𝑠0 represent the length of an infinitesimal line element in the body, in the current 
and original configuration respectively. Thus, we have: 
 

𝐸𝑖𝑗
𝑡 𝑑𝑋𝑖𝑑𝑋𝑗 =

1
2

(𝑑𝑠2 − 𝑑𝑠0
2), 

𝐸𝑖𝑗
𝑡+Δ𝑡𝑑𝑋𝑖𝑑𝑋𝑗 =

1
2

(𝑑(𝑠′)2 − 𝑑𝑠0
2), 

 
where 𝑠′ represents the length of an infinitesimal line element in the body in the 𝑡 + Δ𝑡 
configuration. By deducting the first equation from the second equation we have:  
 

𝐸𝑖𝑗
0 𝑑𝑋𝑖𝑑𝑋𝑗 =

1
2

(𝑑(𝑠′)2 − 𝑑𝑠2), 

 
where the 0 at the superscript place indicates that the variable is evaluated with respect to the 
original configuration. At the same time if we put the configuration at time 𝑡 at as the reference 
configuration, we have 

𝐸𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 =
1
2

(𝑑(𝑠′)2 − 𝑑𝑠2), 

 
where 𝐸𝑖𝑗 is the incremental strain with respect to the current time 𝑡 configuration. Hence,  

𝐸𝑖𝑗
0 𝑑𝑋𝑖𝑑𝑋𝑗 = 𝐸𝑟𝑠𝑑𝑥𝑟𝑑𝑥𝑠 =

1
2

(𝑑(𝑠′)2 − 𝑑𝑠2). 

Using 𝑑�⃑� = 𝐹𝑑�⃑�, we obtain that  
 

𝐸𝑖𝑗
0 𝑑𝑋𝑖𝑑𝑋𝑗 = 𝐸𝑟𝑠𝐹𝑟𝑖𝐹𝑠𝑗𝑑𝑋𝑖𝑑𝑋𝑗. 

 
Since this relation holds for any infinitesimal line element, we have  
 

𝐸𝑖𝑗
0 = 𝐸𝑟𝑠𝐹𝑟𝑖𝐹𝑠𝑗 . 

Note that 
𝑑𝑆𝑖𝑗

0 = 𝒞𝑖𝑗𝑟𝑠
0 𝑑𝐸𝑟𝑠

0 , 

where 

𝒞𝑖𝑗𝑟𝑠
0 =

𝜕𝑆𝑖𝑗
0

𝜕𝐸𝑟𝑠
0  

is the Lagrangian elasticity tensor with respect to the original configuration at time 𝑡. Take the 
relation with respect to the configuration at time 𝑡. Then we have: 
 

𝑑𝑆𝑖𝑗 = 𝒞𝑖𝑗𝑟𝑠𝑑𝐸𝑟𝑠. 

Note that  
𝑑𝑆𝑖𝑗

0 = 𝐽𝐹𝑖𝑚
−1𝐹𝑗𝑛

−1𝑑𝑆𝑚𝑛, 

 
𝑑𝐸𝑟𝑠

0 = 𝐹𝑝𝑟𝐹𝑞𝑠𝑑𝐸𝑝𝑞 . 
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Hence, 
𝑑𝑆𝑖𝑗

0 = 𝐽𝐹𝑖𝑚
−1𝐹𝑗𝑛

−1𝑑𝑆𝑚𝑛 = 𝒞𝑖𝑗𝑟𝑠
0 𝑑𝐸𝑟𝑠

0 = 𝒞𝑖𝑗𝑟𝑠
0 �𝐹𝑝𝑟𝐹𝑞𝑠𝑑𝐸𝑝𝑞�. 

 
Thus we have, 

𝑑𝑆𝑎𝑏 = 𝐽𝐹𝑎𝑖𝐹𝑏𝑗𝒞𝑖𝑗𝑠𝑟
0 𝐹𝑝𝑟𝐹𝑞𝑠𝑑𝐸𝑝𝑞 = 𝒞𝑎𝑏𝑝𝑞𝑑𝐸𝑝𝑞. 

 
We have got the form for the elasticity tensor in updated Lagrangian formulation as: 
 

𝒞𝑎𝑏𝑝𝑞 = 𝐽𝐹𝑎𝑖𝐹𝑏𝑗𝒞𝑖𝑗𝑠𝑟
0 𝐹𝑝𝑟𝐹𝑞𝑠𝑑𝐸𝑝𝑞. 

 
Theoretically and numerically, if formulated mathematically correct, the total Lagrangian and 
updated Lagrangian formulation yield exactly the same result. However, integration of constitutive 
equations for certain types of material behaviour makes the implementation of the total 
Lagrangian formulation inconvenient. If the constitutive equations are converted back to the 
original configuration and proper transformations are applied, then both formulations are 
equivalent [35]. Therefore, the choice of formulations (T.L. or U.L.) is based merely on the 
numerical effectiveness of the methods. But if the stress-strain law is available in terms of the 𝑆 
(the second Piola-Kirchhoff stress tensor), the T.L. formulation will be most effective in general. 
Note that it is possible that more than one formulation is used in one continuum. The user does 
not have absolute freedom in choosing the formulations in Marc. Marc chooses the formulations 
dependent on the formulation of the element in some cases.  
 

Constitutive equations 
Three types of material models have been tried out in this project. They are the St.Venant-
Kirchhoff model, Mooney model and Gent model. Note that they are all hyperelastic models 
(instead of linear model), the reason for doing so is that: though we know that the linear model 
gives formulation and computation simplicity, the physical behaviour of soft tissue will only be 
considered as linear elastic if its displacement and deformation remain small (typically less than 
10%) of the mesh size [17]. Presume the mesh size is 3𝑚𝑚, then it means that the linear elastic 
model is only suitable if the displacement is less than 0.3𝑚𝑚. This is not true for the nodes 
locating at the lower face, where they usually have a 5~8𝑚𝑚 displacement during the mouth 
opening process. Below I will give the constitutive equations of the three materials in turn.  
 

• St.Venant-Kirchhoff model 
As we have mentioned in the previous section, the St.Venant-Kirchhoff model is an extension 
of Hookean solid to large displacement and large rotation regime. Its constitutive relation is 
given as: 
 

𝑆 = 𝜆(𝑡𝑟𝐸)𝐼 + 2𝜇𝐸, 
or alternatively,  
 

𝑆𝑖𝑗 = 𝒞𝑖𝑗𝑟𝑠𝐸𝑟𝑠, 
with  

𝒞𝑖𝑗𝑟𝑠 = 𝜆𝛿𝑖𝑗𝛿𝑟𝑠 + 𝜇�𝛿𝑖𝑟𝛿𝑗𝑠 + 𝛿𝑖𝑠𝛿𝑗𝑟�, 
 
where 𝜆 and 𝜇 are Lamé constants. Obviously, the Lagrangian elasticity tensor in this case is 
a constant tensor, 𝒞𝑖𝑗𝑟𝑠. 

 
• Mooney-Rivilin model 
This material model is often being used for modelling rubber, and assumes near 
incompressibility. As mentioned in section 3.2.2, for incompressible Mooney material the 
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strain density functions can be rewritten as: 
  

 Ψ(𝐶) = 𝐶1�𝐼𝐶� − 3� + 𝐶2�𝐼𝐼𝐶� − 3� + 𝑈(𝐼𝐼𝐼𝐶), 
 

 where 𝐼𝐶� = 𝐼𝐼𝐼𝐶
−1/3𝐼𝐶, and 𝐼𝐼𝐶� = 𝐼𝐼𝐼𝐶

−1/3𝐼𝐼𝐶 and  in Marc the volumetric part of the strain 
density function 𝑈 is given by 
 

𝑈(𝐼𝐼𝐼𝐶) =
9
2

𝑘 �𝐼𝐼𝐼𝐶

1
3 − 1�

2

, 

 
where 𝑘 represents the bulk modulus and is calculated by  
 

𝑘 = 1000 ∗ (𝐶01 + 𝐶10). 
 

• Gent model  
Another material model that we used to simulate the skin layer is the Gent model. Just like 
the Mooney model, the material is assumed to be nearly incompressible. Its strain density 
function is: 

 Ψ(𝐶) = −
𝐸
2

𝐼𝑚 ln �1 −
𝐼𝐶� − 3

𝐼𝑚
� + 𝑈(𝐼𝐼𝐼𝐶), 

 
where 𝐸 is the small strain tensile modulus, and 𝐼𝑚 is the maximum value of the first variant 
and thus is demanded to be larger than 3. 
 

The Lagrangian or material elasticity tensor can be obtained from the strain energy density 
function. Intuitively speaking, this fourth-order tensor gives the tangent value of the nonlinear 
“strain-stress curve”. It is defined as : 
 

𝒞 =
𝜕𝑆
𝜕𝐸

= 2
𝜕𝑆
𝜕𝐶

= 4
𝜕2Ψ

𝜕𝐶𝜕𝐶
. 

To write out explicitly,  
 

𝒞 = � 𝒞𝑖𝑗𝑘𝑙ℰ𝑖⨂
3

𝑖,𝑗,𝑘,𝑙=1

ℰ𝑗⨂ℰ𝑘⨂ℰ𝑙 , 

 
where ℰ𝑘, ℰ𝑙 , ℰ𝑖ℰ𝑗 are the Cartesian basis vectors, “⨂” denotes tensor product and  
 

𝒞𝑖𝑗𝑘𝑙 =
𝜕𝑆𝑖𝑗

𝜕𝐸𝑘𝑙
= 4

𝜕2Ψ
𝜕𝐶𝑖𝑗𝜕𝐶𝑘𝑙

= 𝒞𝑘𝑙𝑖𝑗 . 

 
Note that combining the derivation of the elasticity tensor used in the updated Lagrangian 
formulation from the last section, we are also able to derive the elasticity tensor used in the 
updated Lagrangian formulation.  
 
The reasons that we choose the three particular hyperelastic material models to model skin is the 
following: the St.Venant-Kirchhoff model can be seen as the most “linear” hyperelastic model, 
although it is only suitable for the small strain analysis,  it still holds a fair ground to model the 
skin layer for mouth-opening process, considering the not so big stretching in most of the skin 
during the process. As for Mooney material, this is a very common hyperelastic material model 
for modelling rubber and it also used in several literature to simulate biological tissues. Gent 
model’s uniaxial result looks quite promising (quite similar to the one’s from human skin), thus we 
expect that the Gent model can show its advantage as the strain becomes bigger in the 
simulation. Another important reason for choosing Gent and Mooney material models are their 
availability in the material library of Marc. For other hyperelastic material models (like Yeoh), the 
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user needs to write a subroutine to implement it.  
 

4.1.4. Finite element approach 
In this section, we will present a detailed picture on how the finite element method has been 
applied to solve the linearized problem posed above. To start with, we show a general procedure 
on how to solve a nonlinear problem using FEM. 

General FEM procedure 
In the finite element method, the actual continuum (in our case, the skin layer) is represented as 
an assemblage of subdivisions called finite elements. These elements are considered to be 
interconnected at specified joints called nodes. Since the actual value of the field variable (like 
displacement) inside the continuum is unknown, we assume that the value of the field variable 
inside a finite element can be approximated by simple functions. These approximating functions 
are defined based on the nodes positions. When the equilibrium equations for the continuum are 
written, the new unknowns will be the nodal values of the field variable.  By solving the 
equilibrium equations, which are generally in the form of matrix equations for linearized nonlinear 
problems, the nodal values of the field variable will be obtained. Once these are known, the 
approximation of the field variable throughout the continuum is known.  
 
A problem is nonlinear if the force-displacement relationship depends on the current state (that is, 
current displacement, force, and stress-strain relations). Let 𝑢 be a generalized displacement 
vector, 𝑃 a generalized force vector, and 𝐾 the stiffness matrix. The expression of the force-
displacement relation for a nonlinear problem is 
 

𝐾(𝑢, 𝑃)𝑢 = 𝑃. 
 
There are three sources of nonlinearity: material, geometrical, and boundary conditions. 
 
Material (physical) nonlinearity results from the nonlinear relationship between stresses and 
strains. For example, the Mooney model and Gent model have non-linear stress-strain 
relationships since their material elasticity tensor is not constant.  
 
Geometrical nonlinearity arises from the nonlinear relation between strain and displacement. 
Since we choose to use the Lagrangian formulation and therefore the Green strain tensor 
(instead of Cauchy’s infinitesimal strain tensor) appears in the principle of virtual work 
formulation. This way, the geometrical nonlinearity is incorporated. 
  
Contact problem, friction and nonlinear support can cause nonlinearity via the boundary 
conditions. We use linear springs as our support condition, thus we do not introduce nonlinearity 
from boundary conditions. 
 
The solution of a general nonlinear problem using the finite element method follows a step-by-
step process, stated as follows: 
 

1. Discretization of the continuum 
The first step in the finite element method is to divide the continuum body into elements. 
Hence, the body of interest is to be modelled with suitable finite elements. The number, 
type, and arrangement of the elements are to be chosen. 
 

2. Selection of a proper interpolation function 
We approximate the solution with the linear combination of interpolation functions within 
an element. The interpolation functions must be simple from a computational standpoint, 
but it should satisfy certain convergence requirements. In general, the interpolation 
function is taken in the form of a polynomial. 
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3. Derivation of element tangent stiffness matrices and out of balance nodal force 

vectors 
From the assumed interpolation function, we are ready to derive the tangent stiffness 
matrix 𝐾𝑡 and the out of balance nodal force vector 𝑓𝑡 of element 𝑒 from the 
total/updated Lagrangian formulation (linearized continuum mechanics equation) 
respectively.  
 

4. Assemblage of element equations to obtain the overall equilibrium equations 
The individual element tangent stiffness matrices and load vectors are to be assembled 
in a suitable manner in this step. The overall equilibrium equation has the formulation: 
 

𝐾𝑡Δ𝑈 = 𝑓𝑡 , 
 

where 𝐾𝑡 is the assembled tangent stiffness matrix, Δ𝑈 the incremental vector of nodal 
displacements, and 𝑓𝑡 the assembled out of balance nodal forces vector of the whole 
continuum. 
 

5. Solution for the unknown nodal displacements 
To obtain the solution of a nonlinear problem we use Newton-Raphson iterative solution. 
Namely, 
 

𝐾𝑡Δ𝑈 = 𝑓𝑡 =  𝑅𝑡+Δ𝑡 − 𝐹𝑡 , 
 

𝑈𝑡+Δ𝑡 = 𝑈 + Δ𝑈. 
 
Note that within one time step, one usually performs multiple times increment solutions to 
achieve a certain accuracy. 𝑅𝑡+Δ𝑡 is the externally applied load vector at time 𝑡 + Δ𝑡. 𝐹𝑡 is 
the vector of nodal point forces related with the internal stresses at time 𝑡.  
 

Following the steps proposed above, we are ready to present the finite element approach tailored 
to our problems.  

Discretization of the continuum 
As it has been shown in the configuration of the models, we discretize the skin layer uniformly. 
There are three types of elements we use in this project:  
 

• Four-node thick-shell element and eight-node element 
• Isoparametric, arbitrary hexahedral element 
• Three-dimensional arbitrarily distorted brick, Herrmann formulation 

 
Illustrations are given in Figure 4.4, Figure 4.5 and Figure 4.6. 
 
 



Mathematical models and implementation details 
 

46 

 
Figure 4.4 Shell element 

  
 

 
Figure 4.5 Hexahedral element 

 

 
Figure 4.6 Hexahedral element, Herrmann formulation 

 

Selection of a proper interpolation function 
In this section, we will present the three types of elements with more details. The isoparametric, 
arbitrary hexahedral element is our focus and will be given in the full details.  

Shell element 
This is a structural element and has global displacements and rotations as degrees of freedom. 
Bilinear interpolation is used for the coordinates, displacements and the rotations. Nodal 
thickness can be defined to create certain “virtual” thickness. Based on the consideration that it 



Mathematical models and implementation details   

 47 

has quite distinctive properties compared with the continuum element and  it does not produce a 
better result than the continuum 3D isoparametric hexahedral element, the study about this 
element is very limited in this work and the discussion about it will be ended here. More 
information about this type of element can be found in [37,38]. Note that the skull layer shown in 
section 4.1.2, is discretized using shell elements and is assumed to be rigid and bearing the 
thickness 0.2𝑚𝑚. 

Three-dimensional arbitrarily distorted brick, Herrmann Formulation 
In the section Incompressible material and near incompressibility, we have mentioned that a 
special formulation is needed to handle the incompressibility or near incompressibility within finite 
element context. Herrmann’s formulation is a solution for it. Below we will give an introduction to 
Herrmann formulation for linear problems. The treatment of nonlinear problems (which is the 
case in all our models) will not be dealt with here. Further information on this topic can be found 
in [38]. 
 
We know that the strain is a measure of deformation, thus we expect the strain can also reflect 
the volume change of the body during the deformation. The volumetric strain, 𝜖𝑉, is a strain 
measure to measure the relative dilation of the body. In the infinitesimal strain theory, it can be 
shown that 
 

𝜖𝑉 =
Δ𝑉
𝑉

= 𝜖11 + 𝜖22 + 𝜖33,  
 
where 𝜖𝑘𝑘 (𝑘 = 1,2,3. ) are the components of Cauchy’s infinitesimal tensor 𝜖𝑖𝑗. Thus the 
incompressibility property actually poses a kinematic constraint to the equilibrium equation as: 
 

div 𝑢 = 𝜖𝑉 = 0. 
 
The constitutive relation for Hookean solid can be written as: 
 

𝜎𝑖𝑗 = 𝜆𝜖𝑉𝛿𝑖𝑗 + 2𝜇𝜖𝑖𝑗 . 
with 
 

𝜇 =
𝐸

2(1 + 𝜈) ,        𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈). 

 
We see that, when the material approaches incompressibility, 𝜖𝑉 → 0, and 𝜆 → ∞(since 𝜈 → 0.5). 
In Herrmann formulation, a new (independent) variable 𝑝 is introduced. It is defined as: 
 

𝑝 = −𝜆𝜖𝑉 . 
 
Thus the new constitutive relation can be written as: 
 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝜇𝜖𝑖𝑗 . 
 
and since we introduce a new variable  𝑝, we also need another equation for it as: 
 

div 𝑢 +
𝑝
𝜆

= 0. 
 
Note that in the incompressible case, we can interpret 𝑝 as the hydrostatic pressure, since the 
hydrostatic pressure is defined as −𝜎𝑖𝑖/3. While in the nearly incompressible case,  
 

−
𝜎𝑖𝑖

3
= − �𝜆 +

2𝜇
3

�  div 𝑢. 
Notice that  
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𝑝 = −𝜆 div 𝑢, 
 
we see that when 𝜇 ≪ 𝜆 (nearly incompressible), 𝑝 is still a good approximation to the hydrostatic 
pressure and 𝑝 = −𝜎𝑖𝑖/3, for incompressible material.  
 
Numerical experiments show that for the nearly incompressible material (which means the value 
of 𝜆 is large), a not fine enough mesh will lead to an inaccurate prediction of volumetric strain 
(which is approaching to 0 in this case), and consequently, a large error in the stress calculation. 
In this case the finite elements are locking [38]. The invention of Herrmann formulation avoids the 
locking of elements.  
  
Coming back to the element itself, this is an eight-node, isoparametric element with an additional 
ninth node for the pressure. The element is based on a trilinear interpolation function in 𝜉 space. 
The pressure is assumed constant throughout the element. The 24 generalized displacements 
are related to the 𝑥, 𝑦, 𝑧-displacements (in global coordinates) at the eight corners of the distorted 
cube. The last node has one degree of freedom (negative hydrostatic pressure).  
 
Note that if we change the formulation of the problem (by adding another variable 𝑝), all the 
related aspects need to be changed as well (e.g. the formulation of the principle of virtual work 
and accordingly the stiffness matrix and out of balance nodal force vector, etc.). These changes 
are not the focus of the thesis. The discussion of the  Herrmann formulation will be ended here.  

Isoparametric, arbitrary hexahedral element 
This type of elements uses trilinear interpolation functions. The isoparametric, arbitrary 
hexahedral element is the basic element for three-dimensional analysis. The domain Ω𝑒 in 𝑥, 𝑦, 𝑧-
space is the image of the tri-unit cube in 𝜉-space under the trilinear mapping 

 
𝑥�ξ⃑� = α0 + α1𝜉 + α2𝜂 + α3𝜁 + α4𝜉𝜂 + α5𝜂𝜁 + α6𝜉𝜁 + α7𝜉𝜁𝜂, 

 
where ξ⃑ = (𝜉, 𝜂, 𝜁). Similar expressions hold for 𝑦�ξ⃑� and 𝑧�ξ⃑�. The coefficients 𝛼0, … , 𝛼7 are 
determined via the conditions: 

 
𝑥�ξa���⃑ � = 𝑥𝑎

𝑒 ,                                    𝑎 = 1, … ,8, 
 

where ξa���⃑  are the nodal points coordinates in 𝜉-space, and 𝑥𝑎
𝑒 are the corresponding coordinates 

of the nodal points in 𝑥, 𝑦, 𝑧-space (𝑥 direction). This gives rise to a system of linear algebraic 
equations. Solving for the 𝛼’s and substituting in the mapping yields 

 

𝑥�ξ⃑� = � 𝑁𝑎�𝜉�𝑥𝑎
𝑒

8

𝑎=1

, 

 
where 

𝑁𝑎(𝜉, 𝜂, 𝜁) =
1
8

(1 + 𝜉𝑎𝜉)(1 + 𝜂𝑎𝜂)(1 + 𝜁𝑎𝜁), 
 
with similar expressions for 𝑦�𝜉� and 𝑧�𝜉�. The correspondence between (𝜉𝑎 , 𝜂𝑎, 𝜁𝑎) and nodal 
points in 𝜉-space are given in the following table.  

 
𝑎 𝜉𝑎 𝜂𝑎 𝜁𝑎 
1 -1 -1 -1 
2 1 -1 -1 
3 1 1 -1 
4 -1 1 -1 
5 -1 -1 1 
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6 1 -1 1 
7 1 1 1 
8 -1 1 1 

Table 1 Node numbers and coordinates correspondence in natural coordinate system 

Once the element type has been decided, by invoking the isoparametric concept, the 
discretization of the displacement field can also be decided. The displacement field within each 
element is interpolated as: 

 

𝑢ℎ�ξ⃑� = �
𝑢1

ℎ

𝑢2
ℎ

𝑢3
ℎ

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡� 𝑁𝑎�𝜉�𝑑𝑎1

(𝑒)
8

𝑎=1

� 𝑁𝑎�𝜉�𝑑𝑎2
(𝑒)

8

𝑎=1

� 𝑁𝑎�𝜉�𝑑𝑎3
(𝑒)

8

𝑎=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= � ℕ𝑎𝕕𝑎
(𝑒) = ℕ𝕕(𝑒),

8

𝑎=1

 

where 
 

          ℕ = [ℕ1, ℕ2, ℕ3, ℕ4, ℕ5, ℕ6, ℕ7, ℕ8], ℕ𝑎 = �
𝑁𝑎 0 0
0 𝑁𝑎 0
0 0 𝑁𝑎

� , 𝕕(𝑒) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝕕1

(𝑒)

𝕕2
(𝑒)

𝕕3
(𝑒)

𝕕4
(𝑒)

𝕕5
(𝑒)

𝕕6
(𝑒)

𝕕7
(𝑒)

𝕕8
(𝑒)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 , 𝕕𝑎
(𝑒) = �

𝑑𝑎1
(𝑒)

𝑑𝑎2
(𝑒)

𝑑𝑎3
(𝑒)

�,                           

𝕕𝑎
(𝑒) is the displacement vector at node 𝑎 in the element 𝑒. Note that the same interpolation is 

used for the three spatial components of the displacement vector.  
 

Besides displacement field discretization, another frequently used matrix is (Cauchy’s 
infinitesimal) strain-displacement relation matrix 𝔹. The derivation of 𝔹 is presented below. The 
(Cauchy’s infinitesimal) strain field is linked to the displacement by the relation 𝜖 = 1

2
(∇𝑢 + ∇𝑢𝑇). 

Making use of the symmetry of strain tensor, an alternative way of writing it is: 
 

⎣
⎢
⎢
⎢
⎢
⎡

𝜖11
𝜖22
𝜖33

2𝜖12
2𝜖23
2𝜖31⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜕
𝜕𝑥

0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧
𝜕

𝜕𝑦
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑧
𝜕

𝜕𝑦
𝜕

𝜕𝑧
0

𝜕
𝜕𝑥⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�
𝑢1
𝑢2
𝑢3

�, 

 
where 𝑢1, 𝑢2, 𝑢3 are the three spatial components of the displacement vector 𝑢. Combining with 
the displacement discretization result 𝑢ℎ�ξ⃑� = ℕ𝕕(𝑒), we get that the strain expression throughout 
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one element is: 
 

𝜖ℎ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝜖11

ℎ

𝜖22
ℎ

𝜖33
ℎ

2𝜖12
ℎ

2𝜖23
ℎ

2𝜖13
ℎ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜕
𝜕𝑥

0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧
𝜕

𝜕𝑦
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑧
𝜕

𝜕𝑦
𝜕

𝜕𝑧
0

𝜕
𝜕𝑥⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�
𝑢1

ℎ

𝑢2
ℎ

𝑢3
ℎ

� = �

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜕𝑁𝑎

𝜕𝑥 𝑑𝑎1
(𝑒)

𝜕𝑁𝑎

𝜕𝑦 𝑑𝑎2
(𝑒)

𝜕𝑁𝑎

𝜕𝑧 𝑑𝑎3
(𝑒)

𝜕𝑁𝑎

𝜕𝑦 𝑑𝑎1
(𝑒) + 𝜕𝑁𝑎

𝜕𝑥 𝑑𝑎2
(𝑒)

𝜕𝑁𝑎

𝜕𝑧 𝑑𝑎2
(𝑒) + 𝜕𝑁𝑎

𝜕𝑦 𝑑𝑎3
(𝑒)

𝜕𝑁𝑎

𝜕𝑧 𝑑𝑎1
(𝑒) + 𝜕𝑁𝑎

𝜕𝑥 𝑑𝑎3
(𝑒)

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

8

𝑎=1

= � 𝔹𝑎𝕕𝑎
(𝑒)

8

𝑎=1

= 𝔹𝕕(𝑒), 

 
where 𝔹 is the element strain matrix given by 
 

𝔹 = [𝔹1, 𝔹2, 𝔹3, 𝔹4, 𝔹5, 𝔹6, 𝔹7, 𝔹8]. 
 
𝔹𝑎 is the strain matrix of node 𝑎, with  
 

𝔹𝑎 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑁𝑎

𝜕𝑥 0 0

0
𝜕𝑁𝑎

𝜕𝑦 0

0 0
𝜕𝑁𝑎

𝜕𝑧
𝜕𝑁𝑎

𝜕𝑦
𝜕𝑁𝑎

𝜕𝑥 0

0
𝜕𝑁𝑎

𝜕𝑧
𝜕𝑁𝑎

𝜕𝑦
𝜕𝑁𝑎

𝜕𝑧 0
𝜕𝑁𝑎

𝜕𝑥 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,           𝑎 = 1, … ,8. 

 
Next, let us  compute 𝔹𝑎 for each node, we note that 𝑁𝑎 are given in natural coordinate system 𝜉. 
To compute each element in 𝔹𝑎, recall the definition of an isoparametric element: 
 

𝑥�ξ⃑� = � 𝑁𝑎�𝜉�𝑥𝑎
𝑒

8

𝑎=1

,   𝑦�ξ⃑� = � 𝑁𝑎�𝜉�𝑦𝑎
𝑒 ,   

8

𝑎=1

𝑧�ξ⃑� = � 𝑁𝑎�𝜉�𝑧𝑎
𝑒

8

𝑎=1

. 

 
It allows us to obtain a relationship between the derivatives of the shape functions with respect to 
the Cartesian coordinates and with respect to the natural coordinates. Note that 𝑁𝑎 is expressed 
in terms of natural coordinates 𝜉. The chain rule of derivatives yields: 
 

𝜕𝑁𝑎

𝜕𝜉
=

𝜕𝑁𝑎

𝜕𝑥
𝜕𝑥
𝜕𝜉

+
𝜕𝑁𝑎

𝜕𝑦
𝜕𝑦
𝜕𝜉

+
𝜕𝑁𝑎

𝜕𝑧
𝜕𝑧
𝜕𝜉

, 

𝜕𝑁𝑎

𝜕𝜂
=

𝜕𝑁𝑎

𝜕𝑥
𝜕𝑥
𝜕𝜂

+
𝜕𝑁𝑎

𝜕𝑦
𝜕𝑦
𝜕𝜂

+
𝜕𝑁𝑎

𝜕𝑦
𝜕𝑧
𝜕𝜂

, 

𝜕𝑁𝑎

𝜕𝜁
=

𝜕𝑁𝑎

𝜕𝑥
𝜕𝑥
𝜕𝜁

+
𝜕𝑁𝑎

𝜕𝑦
𝜕𝑦
𝜕𝜁

+
𝜕𝑁𝑎

𝜕𝑦
𝜕𝑧
𝜕𝜁

, 

 
which in matrix form reads: 
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⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑁𝑎

𝜕𝜉
𝜕𝑁𝑎

𝜕𝜂
𝜕𝑁𝑎

𝜕𝜁 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

= 𝐽(𝑒)

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑁𝑎

𝜕𝑥
𝜕𝑁𝑎

𝜕𝑦
𝜕𝑁𝑎

𝜕𝑧 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 

 
where 
 

𝐽(𝑒) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜉

𝜕𝑧
𝜕𝜉

𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜂

𝜕𝑧
𝜕𝜂

𝜕𝑥
𝜕𝜁

𝜕𝑦
𝜕𝜁

𝜕𝑧
𝜕𝜁⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
is the Jacobian transformation matrix of the derivatives of 𝑁𝑎 between the natural and global 
coordinate systems. The superscript (𝑒) indicates that the matrix is always computed at element 
level. We deduced that 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑁𝑎

𝜕𝑥
𝜕𝑁𝑎

𝜕𝑦
𝜕𝑁𝑎

𝜕𝑧 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

= �𝐽(𝑒)�−1

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑁𝑎

𝜕𝜉
𝜕𝑁𝑎

𝜕𝜂
𝜕𝑁𝑎

𝜕𝜁 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

. 

 
The terms of 𝐽(𝑒) can be computed by the isoparametric definition, i.e. 
 

𝑥�ξ⃑� = � 𝑁𝑎�𝜉�𝑥𝑎
𝑒

8

𝑎=1

, 

 
𝜕𝑥
𝜕𝜉

= �
𝜕𝑁𝑎�𝜉�

𝜕𝜉
𝑥𝑎

𝑒
8

𝑎=1

,      
𝜕𝑥
𝜕𝜂

= �
𝜕𝑁𝑎�𝜉�

𝜕𝜂
𝑥𝑎

𝑒 ,    
𝜕𝑥
𝜕𝜁

= �
𝜕𝑁𝑎�𝜉�

𝜕𝜁
𝑥𝑎

𝑒 ,   𝑒𝑡𝑐.
8

𝑎=1

8

𝑎=1

 

 
Hence, 
  

𝐽(𝑒)�𝜉� = �

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜕𝑁𝑎�𝜉�

𝜕𝜉
𝑥𝑎

𝑒 𝜕𝑁𝑎�𝜉�
𝜕𝜉

𝑦𝑎
𝑒 𝜕𝑁𝑎�𝜉�

𝜕𝜉
𝑧𝑎

𝑒

𝜕𝑁𝑎�𝜉�
𝜕𝜂

𝑥𝑎
𝑒 𝜕𝑁𝑎�𝜉�

𝜕𝜂
𝑦𝑎

𝑒 𝜕𝑁𝑎�𝜉�
𝜕𝜂

𝑧𝑎
𝑒

𝜕𝑁𝑎�𝜉�
𝜕𝜁

𝑥𝑎
𝑒 𝜕𝑁𝑎�𝜉�

𝜕𝜁
𝑦𝑎

𝑒 𝜕𝑁𝑎�𝜉�
𝜕𝜁

𝑧𝑎
𝑒

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

8

𝑎=1

. 

 
The computations above enable us to compute strain matrix for each isoparametric hexahedral 
element. 

Derivation of element tangent stiffness matrices and out of balance nodal 
force vectors  
Since we are dealing with nonlinear problems, element tangent stiffness matrix instead of 
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element stiffness matrix will be obtained as needed for the iteration procedure. Below we start 
with the continuous linearized equation (T.L. & U.L.). Eventually, we will get the discretized 
counterparts (matrices or vectors) for every term that appears in the continuous equation.  

Discretized total Lagrangian formulation 
In section 4.1.3, we have derived the total Lagrangian formulation which is suitable for large 
displacement, large rotation and large strain analysis. It reads 
 

�
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡 𝜃𝑟𝑠𝛿𝜃𝑖𝑗 𝑑𝑋 + � 𝑆𝑖𝑗

𝑡 𝛿𝜂𝑖𝑗  𝑑𝑋
Ω0

=
Ω0

 ℛ𝑡+Δ𝑡 − � 𝑆𝑖𝑗
𝑡 𝛿𝜃𝑖𝑗

𝑡  𝑑𝑋
Ω0

. 

 
We divide the domain into elements, on each element, it holds: 
 

�
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡 𝜃𝑟𝑠𝛿𝜃𝑖𝑗 𝑑𝑋 + � 𝑆𝑖𝑗

𝑡 𝛿𝜂𝑖𝑗  𝑑𝑋
Ω𝑒

=
Ω𝑒

 ℛ𝑒
𝑡+Δ𝑡 − � 𝑆𝑖𝑗

𝑡 𝛿𝜃𝑖𝑗
𝑡  𝑑𝑋

Ω𝑒
. 

 
where Ω𝑒 denotes the element domain and ℛ𝑒

𝑡+Δ𝑡 denotes the external work applied on the 
element 𝑒.  
 
Now we are going to discretize every term in this formulation. In the last section, we have 
discretised the displacement field and derived the (Cauchy infinitesimal) strain-displacement 
relation matrix within an element 𝑒. They read: 
 

𝑢ℎ�ξ⃑� = ℕ𝕕(𝑒), 
 

𝜖ℎ = 𝔹𝕕(𝑒). 
 
Be aware that we are using the total Lagrangian formulation, thus all the variables are referred to 
the original configuration �⃑�, thus the matrix 𝔹 should have the form:  
 

𝔹 = [𝔹1, 𝔹2, 𝔹3, 𝔹4, 𝔹5, 𝔹6, 𝔹7, 𝔹8], 
 
with  

𝔹𝑎 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑁𝑎

𝜕𝑋 0 0

0
𝜕𝑁𝑎

𝜕𝑌 0

0 0
𝜕𝑁𝑎

𝜕𝑍
𝜕𝑁𝑎

𝜕𝑌
𝜕𝑁𝑎

𝜕𝑋 0

0
𝜕𝑁𝑎

𝜕𝑍
𝜕𝑁𝑎

𝜕𝑌
𝜕𝑁𝑎

𝜕𝑍 0
𝜕𝑁𝑎

𝜕𝑋 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑎 = 1, … ,8. 

 
The components of 𝔹𝑎 are the partial derivatives of 𝑁𝑎 with respect to the original configuration 
�⃑�. There is no technical difficulty in taking partial derivatives with respect to the original 
configuration, since the original configuration is known. Using this displacement discretization, 

the first term at the left hand side of the continuous equation ∫
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡 𝜃𝑖𝑗𝛿𝜃𝑖𝑗  𝑑𝑋Ωe , is approximated 

as:  
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�
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡 𝜃𝑖𝑗𝛿𝜃𝑖𝑗  𝑑𝑋

Ωe
→ 𝛿𝕕(𝑒) �� (𝔹𝐿

𝑡 )𝑇ℂ𝔹𝐿
𝑡  𝑑𝑋

Ω0
� 𝕕(𝑒), 

 
where ℂ is the matrix converting form for the fourth order Lagrangian material elasticity tensor 

(𝒞𝑖𝑗𝑟𝑠 =
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡 ). 𝛿𝕕(𝑒)denotes the virtual nodal displacement  as 

 

𝛿𝕕(𝑒) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝛿𝕕1

(𝑒)

𝛿𝕕2
(𝑒)

𝛿𝕕3
(𝑒)

𝛿𝕕4
(𝑒)

𝛿𝕕5
(𝑒)

𝛿𝕕6
(𝑒)

𝛿𝕕7
(𝑒)

𝛿𝕕8
(𝑒)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,     𝛿𝕕𝑎
(𝑒) = �

𝛿𝑑𝑎1
(𝑒)

𝛿𝑑𝑎2
(𝑒)

𝛿𝑑𝑎3
(𝑒)

�.       

 
Note that the subscript 𝐿  denotes that this is the matrix involving linear strain increment 𝜃𝑖𝑗. 𝔹𝐿

𝑡  
represents the linear strain part 𝜃𝑖𝑗-displacement relation matrix. Namely, we want to achieve: 
 

𝜃ℎ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝜃11

ℎ

𝜃22
ℎ

𝜃33
ℎ

2𝜃12
ℎ

2𝜃23
ℎ

2𝜃13
ℎ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

= � 𝔹𝑎𝐿
𝑡 𝕕𝑎

(𝑒)
8

𝑎=1

= 𝔹𝐿
𝑡 𝕕(𝑒). 

Recall the expression for 𝜃: 
 

𝜃𝑖𝑗 =
1
2

�
𝜕𝑢𝑗

𝜕𝑋𝑖
+

𝜕𝑢𝑖

𝜕𝑋𝑗
+

𝜕𝑢𝑘
𝑡

𝜕𝑋𝑖

𝜕𝑢𝑘

𝜕𝑋𝑗
+

𝜕𝑢𝑘

𝜕𝑋𝑖

𝜕𝑢𝑘
𝑡

𝜕𝑋𝑗
�. 

 
Note that there are two notations to represent spatial components in this thesis: (𝑋, 𝑌, 𝑍) and 
(𝑋1, 𝑋2, 𝑋3). There is no difference between these two notations.  We decompose the matrix 𝔹𝐿

𝑡  as  
 

𝔹𝐿
𝑡 = 𝔹𝑡 + 𝔹. 

 
Similar to the derivation of Cauchy infinitesimal strain-displacement relation, we write out 𝔹𝑡 as: 
 

𝔹𝑡 = [𝔹1
𝑡 , 𝔹2

𝑡 , 𝔹3
𝑡 , 𝔹4

𝑡 , 𝔹5
𝑡 , 𝔹6

𝑡 , 𝔹7
𝑡 , 𝔹8

𝑡 ], 
where 
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𝔹𝑎
𝑡 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜕𝑢1

𝑡

𝜕𝑋
𝜕𝑁𝑎

𝜕𝑋
𝜕𝑢2

𝑡

𝜕𝑋
𝜕𝑁𝑎

𝜕𝑋
𝜕𝑢3

𝑡

𝜕𝑋
𝜕𝑁𝑎

𝜕𝑋
𝜕𝑢1

𝑡

𝜕𝑌
𝜕𝑁𝑎

𝜕𝑌
𝜕𝑢2

𝑡

𝜕𝑌
𝜕𝑁𝑎

𝜕𝑌
𝜕𝑢3

𝑡

𝜕𝑌
𝜕𝑁𝑎

𝜕𝑌
𝜕𝑢1

𝑡

𝜕𝑍
𝜕𝑁𝑎

𝜕𝑍
𝜕𝑢2

𝑡

𝜕𝑍
𝜕𝑁𝑎

𝜕𝑍
𝜕𝑢3

𝑡

𝜕𝑍
𝜕𝑁𝑎

𝜕𝑍
𝜕𝑢1

𝑡

𝜕𝑋
𝜕𝑁𝑎

𝜕𝑌 + 𝜕𝑢1
𝑡

𝜕𝑌
𝜕𝑁𝑎

𝜕𝑋
𝜕𝑢2

𝑡

𝜕𝑋
𝜕𝑁𝑎

𝜕𝑌 + 𝜕𝑢2
𝑡

𝜕𝑌
𝜕𝑁𝑎

𝜕𝑋
𝜕𝑢3

𝑡

𝜕𝑋
𝜕𝑁𝑎

𝜕𝑌 + 𝜕𝑢3
𝑡

𝜕𝑌
𝜕𝑁𝑎

𝜕𝑋
𝜕𝑢1

𝑡

𝜕𝑍
𝜕𝑁𝑎

𝜕𝑌 + 𝜕𝑢1
𝑡

𝜕𝑌
𝜕𝑁𝑎

𝜕𝑍
𝜕𝑢2

𝑡

𝜕𝑍
𝜕𝑁𝑎

𝜕𝑌 + 𝜕𝑢2
𝑡

𝜕𝑌
𝜕𝑁𝑎

𝜕𝑍
𝜕𝑢3

𝑡

𝜕𝑍
𝜕𝑁𝑎

𝜕𝑌 + 𝜕𝑢3
𝑡

𝜕𝑌
𝜕𝑁𝑎

𝜕𝑍
𝜕𝑢1

𝑡

𝜕𝑍
𝜕𝑁𝑎

𝜕𝑋 + 𝜕𝑢1
𝑡

𝜕𝑋
𝜕𝑁𝑎

𝜕𝑍
𝜕𝑢2

𝑡

𝜕𝑍
𝜕𝑁𝑎

𝜕𝑋 + 𝜕𝑢2
𝑡

𝜕𝑋
𝜕𝑁𝑎

𝜕𝑍
𝜕𝑢3

𝑡

𝜕𝑍
𝜕𝑁𝑎

𝜕𝑋 + 𝜕𝑢3
𝑡

𝜕𝑋
𝜕𝑁𝑎

𝜕𝑍 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑎 = 1, … ,8. 

 
As next step, we discretize the term involving nonlinear increments 𝜂𝑖𝑗 , ∫ 𝑆𝑖𝑗

𝑡 𝛿𝜂𝑖𝑗  𝑑𝑋Ω𝑒 . We 
construct matrices 𝔹𝑁𝐿

𝑡  and 𝕊𝑡 so that  
 

� 𝑆𝑖𝑗
𝑡 𝛿𝜂𝑖𝑗  𝑑𝑋

Ω0
→ �𝛿𝕕(𝑒)�𝑇 �� (𝔹𝑁𝐿

𝑡 )𝑇𝕊𝔹𝑁𝐿
𝑡  𝑑𝑋

Ω0
� 𝕕(𝑒). 

 
Thus, we construct 𝕊 as: 
 

𝕊 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑆11

𝑡 𝑆12
𝑡 𝑆13

𝑡 0 0 0 0 0 0
𝑆21

𝑡 𝑆22
𝑡 𝑆23

𝑡 0 0 0 0 0 0
𝑆31

𝑡 𝑆32
𝑡 𝑆33

𝑡 0 0 0 0 0 0
0 0 0 𝑆11

𝑡 𝑆12
𝑡 𝑆13

𝑡 0 0 0
0 0 0 𝑆21

𝑡 𝑆22
𝑡 𝑆23

𝑡 0 0 0
0 0 0 𝑆31

𝑡 𝑆32
𝑡 𝑆33

𝑡 0 0 0
0 0 0 0 0 0 𝑆11

𝑡 𝑆12
𝑡 𝑆13

𝑡

0 0 0 0 0 0 𝑆21
𝑡 𝑆22

𝑡 𝑆23
𝑡

0 0 0 0 0 0 𝑆31
𝑡 𝑆32

𝑡 𝑆33
𝑡 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

and 𝔹𝑁𝐿
𝑡  as: 

 
𝔹𝑁𝐿

𝑡 = [𝔹1𝑁𝐿
𝑡 , 𝔹2𝑁𝐿

𝑡 , 𝔹3𝑁𝐿
𝑡 , 𝔹4𝑁𝐿

𝑡 , 𝔹5𝑁𝐿
𝑡 , 𝔹6𝑁𝐿

𝑡 , 𝔹7𝑁𝐿
𝑡 , 𝔹8𝑁𝐿

𝑡 ],  
 
where  
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𝔹𝑎𝑁𝐿
𝑡 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑁𝑎

𝜕𝑋 0 0

𝜕𝑁𝑎

𝜕𝑌 0 0

𝜕𝑁𝑎

𝜕𝑍 0 0

0
𝜕𝑁𝑎

𝜕𝑋 0

0
𝜕𝑁𝑎

𝜕𝑌 0

0
𝜕𝑁𝑎

𝜕𝑍 0

0 0
𝜕𝑁𝑎

𝜕𝑋
0 0

𝜕𝑁𝑎

𝜕𝑌
0 0

𝜕𝑁𝑎

𝜕𝑍 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

 
It can be verified that using designed matrices 𝕊 and 𝔹𝑁𝐿

𝑡 , �𝛿𝕕(𝑒)�𝑇�∫ (𝔹𝑁𝐿
𝑡 )𝑇𝕊𝔹𝑁𝐿

𝑡  𝑑𝑋Ω𝑒 �𝕕(𝑒) is the 
discretized counterpart of the term ∫ 𝑆𝑖𝑗

𝑡 𝛿𝜂𝑖𝑗  𝑑𝑋Ω𝑒 . 
 
Next, we look into the discretised version of the term ∫ 𝑆𝑖𝑗

𝑡 𝛿𝜃𝑖𝑗
𝑡  𝑑𝑋Ω𝑒 . Just like the way we deal with 

the previous term, we can also construct a matrix 𝕊�, such that: 
 

� 𝑆𝑖𝑗
𝑡 𝛿𝜃𝑖𝑗

𝑡  𝑑𝑋
Ω𝑒

→ �𝛿𝕕(𝑒)�𝑇 �� (𝔹𝐿
𝑡 )𝑇𝕊�𝑑𝑋

Ω𝑒
�. 

 
It is not hard to check that if we set  

𝕊� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑆11

𝑡

𝑆22
𝑡

𝑆33
𝑡

𝑆12
𝑡

𝑆23
𝑡

𝑆13
𝑡 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

, 

 
we can get the desirable result. Note that there are no coefficients “2” in front of the components 
𝑆12

𝑡 , 𝑆23
𝑡  and 𝑆13

𝑡  like in the strain tensor. The reason is that we have derived previously  
 

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝛿𝜃11

ℎ

𝛿𝜃22
ℎ

𝛿𝜃33
ℎ

𝛿2𝜃12
ℎ

𝛿2𝜃23
ℎ

𝛿2𝜃13
ℎ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

= 𝔹𝐿
𝑡 𝛿𝕕(𝑒). 

 
Making use of the symmetry of the matrix 𝑆, we get the sum exactly by multiplying the vector 
�𝔹𝐿

𝑡 𝛿𝕕(𝑒)�𝑇and 𝕊�. The only term left to be approximated is the external load term ℛ𝑒
𝑡+Δ𝑡. This is 

related to the boundary term of the problem and will be discussed later.  
 
To summarize, we get the discretized total Lagrangian formulation as: 
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�𝛿𝕕(𝑒)�𝑇 �� (𝔹𝐿
𝑡 )𝑇ℂ𝔹𝐿

𝑡  𝑑𝑋
Ωe

� 𝕕(𝑒) + �𝛿𝕕(𝑒)�𝑇 �� (𝔹𝑁𝐿
𝑡 )𝑇𝕊𝔹𝑁𝐿

𝑡  𝑑𝑋
Ωe

� 𝕕(𝑒)

= ℛ𝑒
𝑡+Δ𝑡 − �𝛿𝕕(𝑒)�𝑇 �� (𝔹𝐿

𝑡 )𝑇𝕊� 𝑑𝑋
Ωe

�. 

 
The above equation holds for any arbitrary virtual displacement. We can apply �𝛿𝕕(𝑒)�𝑇 = 𝑒𝑖 , 𝑖 =
1, … ,8, to the equation in turn, where 𝑒𝑖 is the base vector in ℝ8. Consequently, we get   
 

�� (𝔹𝐿
𝑡 )𝑇ℂ𝔹𝐿

𝑡  𝑑𝑋
Ωe

� 𝕕(𝑒) + �� (𝔹𝑁𝐿
𝑡 )𝑇𝕊𝔹𝑁𝐿

𝑡  𝑑𝑋
Ωe

� 𝕕(𝑒) = ℛ𝑒
𝑡+Δ𝑡 − �� (𝔹𝐿

𝑡 )𝑇𝕊� 𝑑𝑋
Ωe

�. 

 
Let  

𝐾𝐿
𝑡 = � (𝔹𝐿

𝑡 )𝑇ℂ𝔹𝐿
𝑡  𝑑𝑋

Ωe
, 

 

𝐾𝑁𝐿
𝑡 = � (𝔹𝑁𝐿

𝑡 )𝑇𝕊𝔹𝑁𝐿
𝑡  𝑑𝑋

Ωe
, 

 

𝐹 = � (𝔹𝐿
𝑡 )𝑇𝕊� 𝑑𝑋

Ω𝑒
. 

 
To calculate these integrals, we need to transform them to the natural coordinate system as: 
 

𝐾𝐿
𝑡 = � (𝔹𝐿

𝑡 )𝑇ℂ𝔹𝐿
𝑡  𝑑𝑋

Ωe
= � � � (𝔹𝐿

𝑡 )𝑇ℂ𝔹𝐿
𝑡

1

−1

1

−1

1

−1 
�𝐽(𝑒)�𝑑𝜉𝑑𝜂𝑑𝜁, 

 

𝐾𝑁𝐿
𝑡 = � (𝔹𝑁𝐿

𝑡 )𝑇𝕊𝔹𝑁𝐿
𝑡  𝑑𝑋

Ωe
= � � � (𝔹𝑁𝐿

𝑡 )𝑇𝕊𝔹𝑁𝐿
𝑡

1

−1

1

−1

1

−1 
�𝐽(𝑒)�𝑑𝜉𝑑𝜂𝑑𝜁, 

 

𝐹 = � (𝔹𝐿
𝑡 )𝑇𝕊� 𝑑𝑋

Ω𝑒
= � � � (𝔹𝐿

𝑡 )𝑇𝕊�
1

−1

1

−1

1

−1 
�𝐽(𝑒)�𝑑𝜉𝑑𝜂𝑑𝜁, 

 
where �𝐽(𝑒)� denotes the determinant of 𝐽(𝑒). 
 
These expressions show that the integrands contain rational algebraic functions in 𝜉, 𝜂, 𝜁. Only for 
the case that the element is a regular cube that the Jacobian matrix is constant. In these cases, 
the element integrals contain simple polynomials and the analytical expression can be derived. 
For general cases, the analytical integration in the natural coordinate system 𝜉, 𝜂, 𝜁 is impossible 
and the best option is to use numerical integration.  
 
Gaussian Integration 
Gaussian quadrature rules are widely used in approximating the integral of a function, usually 
stated as a weighted sum of function values at specified points within the domain of integration. 
Here we use an 8-point (2 × 2 × 2) Gaussian integration in three dimensions. Gaussian rules for 
integrals in several dimensions are constructed by employing one-dimensional Gaussian rules on 
each coordinate axis separately.  
 
To use the 2-point Gaussian quadrature rule in the domain [−1,1] to compute ∫ g(ξ)dξ1

−1 , the 
integration points within the interval are:  ξ1 = −1

√3
,  and ξ2 = 1

√3
. The “weights” of the integration 

point are: W1 = 1 and W2 = 1. We get: 
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� g(ξ)dξ
1

−1
≅ g �−

1
√3

� + g �
1

√3
�. 

 

The remainder (difference from the exact value) is:  R = g(4)�ξ��
135

, where ξ̅ denotes a point in the 
interval [−1,1]. Thus, we achieve 4th order accuracy using this method. If the two-point rule is 
used in each coordinate axis to compute ∫ ∫ ∫ g(ξ)dξ1

−1
1

−1
1

−1 , we get 
 

� � � g(ξ)dξdηdζ
1

−1

1

−1

1

−1
≅ � � �� g(ξl, η, ζ)

2

l=1

Wl
1� dηdζ ≅ � � � � g(ξl, ηm, ζ)Wl

1Wm
2

2

l=1

2

m=1

� dζ
−1

−1

1

−1

1

−1
 

≅ � � � g(ξl, ηm, ζn)Wl
1Wm

2 Wn
3

2

l=1

2

m=1

2

n=1

. 

 
To write out the 8- point rule explicitly: 
 

� � � g(ξ)dξdηdζ
1

−1

1

−1

1

−1
≅ g �−

1
√3

, −
1

√3
, −

1
√3

� + g �
1

√3
, −

1
√3

, −
1

√3
� 

+g �
1

√3
,

1
√3

, −
1

√3
� + g �−

1
√3

,
1

√3
, −

1
√3

� + g �−
1

√3
, −

1
√3

,
1

√3
� 

+g �
1

√3
, −

1
√3

,
1

√3
� + g �

1
√3

,
1

√3
,

1
√3

� + g �−
1

√3
,

1
√3

,
1

√3
�. 

 
Below is an illustration on the integration points for an 8-point Gaussian integration.  

 
             Figure 4.7 8-point Gaussian quadrature integration points [40] 

Coming back to our computation of element stiffness matrices 𝐾𝐿
𝑡, 𝐾𝑁𝐿

𝑡 and 𝐹: 
 

𝐾𝐿
𝑡 = � � � (𝔹𝐿

𝑡 )𝑇ℂ𝔹𝐿
𝑡

1

−1

1

−1

1

−1 
�𝐽(𝑒)�𝑑𝜉𝑑𝜂𝑑𝜁

= � � � GL
t

1

−1

1

−1

1

−1 
𝑑𝜉𝑑𝜂𝑑𝜁 ≅ GL

t �−
1

√3
, −

1
√3

, −
1

√3
� + GL

t �
1

√3
, −

1
√3

, −
1

√3
�

+ GL
t �

1
√3

,
1

√3
, −

1
√3

� + GL
t �−

1
√3

,
1

√3
, −

1
√3

� + GL
t �−

1
√3

, −
1

√3
,

1
√3

�

+ GL
t �

1
√3

, −
1

√3
,

1
√3

� + GL
t �

1
√3

,
1

√3
,

1
√3

� + GL
t �−

1
√3

,
1

√3
,

1
√3

�, 

 
where  
 

GL
t = (𝔹𝐿

𝑡 )𝑇ℂ𝔹𝐿
𝑡 �𝐽(𝑒)�. 
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Similar integrations can be done for the calculation of 𝐾𝑁𝐿
𝑡 and 𝐹. Another common numerical 

integration rule is the Newton-Cotes rule, which will not be discussed in this thesis.  

Discretized updated Lagrangian formulation 
We proceed our discussion by discretizing the updated Lagrangian formulation. Due to many 
similarities with the discussion in the previous section, we will not repeat the calculation as far as 
it has been covered in the last section.  
The updated Lagrangian formulation reads (applied on one element 𝑒) 
 

�
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡  𝜃𝑟𝑠𝛿𝜃𝑖𝑗  𝑑𝑥

Ω𝑒
𝑡

+ � 𝜎𝑖𝑗
t δη𝑖𝑗 𝑑𝑥

Ω𝑒
𝑡

= ℛ𝑒
𝑡+Δ𝑡 − � 𝜎𝑖𝑗

t δ𝜃𝑖𝑗 𝑑𝑥
Ω𝑒

𝑡
. 

 
We are going to discretize the above equation terms by terms. 
 
Firstly,  

�
𝜕𝑆𝑖𝑗

𝑡

𝜕𝐸𝑟𝑠
𝑡  𝜃𝑟𝑠𝛿𝜃𝑖𝑗  𝑑𝑥

Ω𝑒
𝑡

→ �𝛿𝕕(𝑒)�𝑇 �� (𝔹𝐿
𝑡 )𝑇ℂ𝔹𝐿

𝑡  𝑑𝑥
Ω𝑒

t
� 𝕕(𝑒). 

 
The discretization proceeds pretty much the way it was discussed in the last section. Differences 
are: 

• The integration is over the body configuration at time 𝑡 instead of time 0. 
• The Lagrangian elasticity tensor is derived at time 𝑡 but with respect to the current 

configuration. This means that the second Piola–Kirchhoff stress tensor is calculated with 
respect to the current configuration and the linear incremental strain 𝜃 as well. Thus, 𝔹𝐿

𝑡  
is the same as the one in the last section except that its entries’ partial derivatives taken 
with respect to the current Cartesian coordinates �⃑�.  

 
Now we continue to discuss the second term: 

 

� 𝜎𝑖𝑗
t δη𝑖𝑗  𝑑𝑥

Ω𝑒
𝑡

→ �𝛿𝕕(𝑒)�𝑇 �� (𝔹𝑁𝐿
𝑡 )𝑇𝕊𝑢𝔹𝑁𝐿

𝑡  𝑑𝑥
Ω𝑒

t
� 𝕕(𝑒). 

 
Again, the right hand side term is very similar to the one we derived in the total Lagrangian case. 
Note that  
 

𝕊𝑢 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜎11

𝑡 𝜎12
𝑡 𝜎13

𝑡 0 0 0 0 0 0
𝜎21

𝑡 𝜎22
𝑡 𝜎23

𝑡 0 0 0 0 0 0
𝜎31

𝑡 𝜎32
𝑡 𝜎33

𝑡 0 0 0 0 0 0
0 0 0 𝜎11

𝑡 𝜎12
𝑡 𝜎13

𝑡 0 0 0
0 0 0 𝜎21

𝑡 𝜎22
𝑡 𝜎23

𝑡 0 0 0
0 0 0 𝜎31

𝑡 𝜎32
𝑡 𝜎33

𝑡 0 0 0
0 0 0 0 0 0 𝜎11

𝑡 𝜎12
𝑡 𝜎13

𝑡

0 0 0 0 0 0 𝜎21
𝑡 𝜎22

𝑡 𝜎23
𝑡

0 0 0 0 0 0 𝜎31
𝑡 𝜎32

𝑡 𝜎33
𝑡 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 
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and the matrix 𝔹𝑁𝐿
𝑡  is the same as the one for the T.L. case except that its partial derivatives are 

taken with respect to the current Cartesian coordinates �⃑�. 
 

We turn to the last term: 
 

� 𝜎𝑖𝑗
t δ𝜃𝑖𝑗  𝑑𝑥

Ω𝑡
→ �𝛿𝕕(𝑒)�𝑇 �� (𝔹𝐿

𝑡 )𝑇𝕊�𝑢𝑑𝑥
Ωt

�, 

where  

𝕊�𝑢 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜎11

𝑡

𝜎22
𝑡

𝜎33
𝑡

𝜎12
𝑡

𝜎23
𝑡

𝜎13
𝑡 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

Now, once again, we have derived the discretized equation: 
 

�𝛿𝕕(𝑒)�𝑇 �� (𝔹𝐿
𝑡 )𝑇ℂ𝔹𝐿

𝑡  𝑑𝑥
Ω𝑒

t
� 𝕕(𝑒) + �𝛿𝕕(𝑒)�𝑇 �� (𝔹𝑁𝐿

𝑡 )𝑇𝕊𝑢𝔹𝑁𝐿
𝑡  𝑑𝑥

Ω𝑒
t

� 𝕕(𝑒)

= ℛ𝑒
𝑡+Δ𝑡 − �𝛿𝕕(𝑒)�𝑇 �� (𝔹𝐿

𝑡 )𝑇𝕊�𝑢𝑑𝑥
Ω𝑒

𝑡
�. 

By applying �𝛿𝕕(𝑒)�𝑇 = 𝑒𝑖 , 𝑖 = 1, … ,8, in turns, where 𝑒𝑖 is the base vector in ℝ8, we obtain the 
final discretized equation for the unknown vector 𝕕(𝑒):  
 

�� (𝔹𝐿
𝑡 )𝑇ℂ𝔹𝐿

𝑡  𝑑𝑥
Ω𝑒

t
� 𝕕(𝑒) + �� (𝔹𝑁𝐿

𝑡 )𝑇𝕊𝑢𝔹𝑁𝐿
𝑡  𝑑𝑥

Ω𝑒
t

� 𝕕(𝑒) = ℛ𝑒
𝑡+Δ𝑡 − �� (𝔹𝐿

𝑡 )𝑇𝕊�𝑢𝑑𝑥
Ω𝑒

t
�. 

 

Now, once again, we first transform these integrals to the natural coordinate system 𝜉, and then 
we deploy the 8-point Gaussian integration rule to evaluate these integrals. The calculations go 
on exactly like that in the total Lagrangian case, so they will be omitted. 

External work vector 
We have discretized the continuous equations for both updated and total Lagrangian formulation. 
The only term left to be discretized is the term ℛ𝑒

𝑡+Δ𝑡. We have mentioned in section 4.1.3 that it 
has the form: 
 

ℛ𝑒
𝑡+Δ𝑡 = � 𝑅𝑡+Δ𝑡

𝑒
𝑖

𝑘

𝑘∈𝑁𝑒

𝛿𝑢𝑖 = (𝛿𝑢)𝑇 � ℝ𝑡+Δ𝑡
𝑘

𝑘∈𝑁𝑒

, 

 
where ℝ𝑡+Δ𝑡

𝑘 = [ 𝑅1
𝑘

𝑡+Δ𝑡
𝑒 , 𝑅𝑡+Δ𝑡

𝑒
2
𝑘 , 𝑅𝑡+Δ𝑡

𝑒
3
𝑘 ]𝑇 and 𝑁𝑒 are the nodal sets in the element 𝑒 that are 

connected to the springs: 
 

𝑅𝑡+Δ𝑡
𝑒

𝑖
𝑘 = 𝒦�𝐷𝑖

𝑡+Δ𝑡 − 𝑢𝑖
𝑡+Δ𝑡�,                                  if 𝑘 ∈ 𝑁𝐼𝐼𝑎 , 

 
𝑅𝑡+Δ𝑡

𝑒
𝑖

𝑘 = 𝒦�0 − 𝑢𝑖
𝑡+Δ𝑡�,                                            if 𝑘 ∈ 𝑁𝐼𝐼𝑏 , 
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𝑅𝑡+Δ𝑡
𝑒

𝑖
𝑘 = 𝒦��𝑈𝑖

𝑡+Δ𝑡 − 𝑢𝑖
𝑡+Δ𝑡� + �0 − 𝑢𝑖

𝑡+Δ𝑡��,        if 𝑘 ∈ 𝑁𝐼 , 

for 𝑖 = 1,2,3. 

Using the displacement discretization 𝑢ℎ�ξ⃑� = ℕ𝕕(𝑒), we have  
 

𝛿𝑢ℎ�ξ⃑� = ℕ 𝛿𝕕(𝑒). 
 
Thus ℛ𝑒

𝑡+Δ𝑡 is discretized as: 
 

ℛ𝑒
𝑡+Δ𝑡 = � 𝛿𝕕(𝑒)�𝑇 �ℕ𝑇 � ℝ𝑡+Δ𝑡

𝑘

𝑘∈𝑁𝑒

�. 

 
We notice that 𝑅𝑡+Δ𝑡

𝑘  contains the unknown variable 𝑢𝑖
𝑡+Δ𝑡. We deal with this problem by making 

the following approximation: 

(ℛ𝑒
𝑡+Δ𝑡)(𝑘) ≅ � 𝛿𝕕(𝑒)�𝑇 �ℕ𝑇 � �ℝ𝑡+Δ𝑡

𝑘 �
(𝑘−1)

𝑘∈𝑁𝑒

�, 

 
where (ℛ𝑒

𝑡+Δ𝑡)(𝑘) denotes the value of ℛ𝑒
𝑡+Δ𝑡 at the 𝑘th iteration in the Newton-Raphson 

procedure computing from time step 𝑡 to 𝑡 + Δ𝑡. �ℝ𝑡+Δ𝑡
𝑘 �

(𝑘−1)
denotes the value of ℝ𝑡+Δ𝑡

𝑘  
computing from 𝑢(𝑡+Δ𝑡)(𝑘−1) , where 𝑢(𝑡+Δ𝑡)(𝑘−1) denotes the value of 𝑢𝑡+Δ𝑡 at the (𝑘 − 1)th 
iteration computing 𝑢𝑡+Δ𝑡  from time 𝑡 to 𝑡 + Δ𝑡. To summarize, we derive the external work vector 
as  
 

ℝ𝑒
𝑡+Δ𝑡 = ℕ𝑇 � �ℝ𝑡+Δ𝑡

𝑘 �
(𝑘−1)

𝑘∈𝑁𝑒

. 

 

Element equations assemblage to obtain the overall equilibrium equations 
In the last section we discretized the linearized continuous equation term by term within an 
element. The global matrices or vectors are obtained by adding up the contributions from every 
element. 
 
In this section we will assemble the element matrices/vectors to derive the global discretized 
system. Note that this step is implemented in Marc with a default assemblage procedure. Hence, 
the user has no freedom in it. I will only explain the general idea of element equations 
assemblage. To check how Marc assembles the element equations, see [35]. 
 
Note that the interpolation functions defined in section “Selection of a proper interpolation 
function” have compact supports. For a particular element, only the shape functions defined on it, 
namely, 𝑁𝑎, 𝑎 = 1, … 8, will be nonzero. Thus we can expect a lot of zeros in the element 
matrices. We denote the element matrix which only consists of the components related with the 
shape functions of the nodes within the element as �𝕂𝑝𝑞�. The assembly process is all about 
putting the non-zero components of the element matrices into the right position in the global 
matrices. To assemble the matrices, the following arrays are needed.  
 
Firstly, we need to set up the local matrix array LM, which relates the local node number, degree 
of freedom and element number with the global equation number as, 
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LM(𝑖, 𝑎, 𝑒) = ID�𝑖,IEN(𝑎, 𝑒)�, 

 
where 𝑖 denotes the degree of freedom, which is 3 for a 3D displacement-based element, 𝑎 is the 
local node number, and 𝑒 represents the element number. ID mapping maps the global node 
numbers to global equation numbers. IEN represents the element nodes array, which relates 
local node numbers to global node numbers as: 
 

IEN(𝑎, 𝑒) = 𝐴, 
 
where 𝐴 is the global node number.  
 
Hence, for example, if we have derived the element matrices, to find out where to add the  
position of the components 𝑘𝑝𝑞 in the global matrix, we need to first find out how this component 
related with the local nodes through the relation: 
 

𝑝 = 3(𝑎 − 1) + 𝑖, 
𝑞 = 3(𝑏 − 1) + 𝑗, 

where 1 ≤ 𝑖, 𝑗 ≤ 3. 
Using these relations we can find the related local nodes 𝑎 and b. We can search for the 
corresponding global nodes numbers 𝐴 and 𝐵 given the element number 𝑒 and local node 
numbers 𝑎 and 𝑏. Finally, using the ID matrix, we find the equation number in the  global system: 
 

𝑃 = ID(𝑖, 𝐴), 
𝑄 = ID(𝑖, 𝐵). 

 
Then the addition process goes on as: 
 for all the element matrices, �𝕂𝑝𝑞�, for every element in �𝕂𝑝𝑞�, 
 

𝐾𝑃𝑄 = 𝐾𝑃𝑄 + 𝑘𝑝𝑞 .  
 
The vectors assembled in the same way as matrices. 
 

Solution for the unknown nodal displacements 
Basically after we assembled the element matrices in the last section, we get the global 
discretized linearized system (for each iterative step): 

𝐾Δ𝑈 = 𝑅 − 𝐹, 
where 𝐾 is the global tangent stiffness matrix, Δ𝑈 is the incremental displacement at all nodes, 𝑅 
is the global external work vector and 𝐹 is the internal work vector. Below displays a flow graph 
illustrating how Newton-Raphson method is deployed to compute the unknown displacement field 
𝑈 from time 𝑡 to 𝑡 + Δ𝑡. Note that the subscript indicates the time and the superscript indicates 
the iteration step within the time step.  
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Below are several comments on the graph: 
 

• Note that in section 4.1.4, we have mentioned the approximation we made in computing  
𝑅𝑡+Δ𝑡

(𝑘) , namely 
 

𝑅𝑡+Δ𝑡
(𝑘) → 𝑅𝑡+Δ𝑡

(𝑘−1). 
 
Thus the equation  
 

𝐾𝑡+Δ𝑡
(𝑘−1)Δ𝑈(𝑘) = 𝑅𝑡+Δ𝑡

(𝑘) − 𝐹𝑡+Δ𝑡
(𝑘−1), 

 
actually is calculated as  
 

𝐾𝑡+Δ𝑡
(𝑘−1)Δ𝑈(𝑘) = 𝑅𝑡+Δ𝑡

(𝑘−1) − 𝐹𝑡+Δ𝑡
(𝑘−1). 

 
• The convergence criteria we deployed here is: residual checking, namely,  

 
‖𝐹𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙‖∞

‖𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛‖∞
< TOL, 

 
 where 𝐹𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑅 − 𝐹 and 𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑅, TOL  is the control tolerance. 
 

Compute 𝐾𝑡, 𝐹𝑡, 𝑅𝑡. 

Set 𝐹𝑡+Δ𝑡
(0) = 𝐹𝑡 ,  𝑈𝑡+Δ𝑡

(0) = 𝑈𝑡,  
𝐾𝑡+Δ𝑡

(0) = 𝐾𝑡, 𝑅𝑡+Δ𝑡
(0) = 𝑅𝑡, 

 𝑘 = 1. 
 

equilibrium not 
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Figure 4.8 Newton-Raphson solution flow graph 
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 Morphing method (a computer vision-based method)  4.2.
In this project, besides FEM-based models, a morphing method is also deployed parallel to open 
the mouths virtually. Image morphing is a popular class of techniques for producing transitions 
between images which is based on interpolating the positions and colours of pixels in two 
images. For our application, the morphing technique is applied on the range images (depth 
maps). 
 
A depth map is by essence a matrix whose elements store the depths of points in certain view 
port. Imagine that we want to represent a surface in 3D. Then we need to specify the coordinates 
in 𝑥, 𝑦, 𝑧 -directions of each point on the surface. Now we let the view port discretize the 𝑥, 𝑦-
plane. For example, if we specify a view port as [−150 ,150] in both 𝑥 and 𝑦 directions, and 1 as 
the step of the grid (Note that this is also the view port we use to show all the depth maps in this 
thesis with the unit 1𝑚𝑚), we will end up with 301 × 301 uniformly distributed grid points in the 
𝑥, 𝑦-plane, whose 𝑥, 𝑦-coordinates read (𝑖, 𝑗), 𝑖 = −150, … ,150, 𝑗 = −150, … ,150. The depth map, 
as its name suggests, assigns the 𝑧-coordinates of each grid point according to its location on the 
𝑥, 𝑦-plane. Therefore, the depth map will be a 301 × 301 matrix. If we let Zbuffer denote the 
matrix, Zbuffer(𝑖, 𝑗) equals the value of the 𝑧-coordinate of the point on the surface whose 𝑥, 𝑦-
coordinates are 𝑖 and 𝑗. This way, combining the view port and the depth map, we are able to 
describe a (discretized) surface. 
 

 
Figure 4.9 Depth map of a human face 

Figure 4.9 is a typical depth map of an open mouth image. Given a depth map and view port, 
such images can be rendered by MATLAB. From the image we can see a clear human face 
shape (non-dark blue area), this is due to the fact that we set the background depth as −106, 
while the human face depth values are varying from −80 to −5. We can also observe the 
features of a human face due to their difference in depth. For example, the nose tip is the most 
protruding point of a face (hence has the largest 𝑧-coordinate value indicated by dark red colour) 
and the eyebrow and forehead locate more outward than the eyes.   
 
A morphing is determined from two 3D surfaces (depth maps) ℐ0 and ℐ1 and maps 𝐶: ℐ0 → ℐ1 
specifying a complete one-to-one correspondence between points in the two surfaces. In 
practice, 𝐶 is partially specified on a sparse set of matching points in the two 3D models: 

 
𝑃 = {𝑝1, ⋯ , 𝑝𝑁}         and        𝑄 = {𝑞, ⋯ , 𝑞𝑁} 

 
where 

𝐶(𝑝𝑖) = 𝑞𝑖      for 𝑖 = 1, ⋯ , 𝑁. 
 
 
The remaining correspondences are determined by interpolation 
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𝐶(p) − 𝑝 =
1

∑ 𝑤𝑘(𝑝)𝑛
𝑘=1

� 𝑤𝑘(𝑝)
𝑛

𝑘=1

�𝐶�p𝑁(𝑘)� − p𝑁(𝑘)�, 

 
where 𝑁(1), ⋯ 𝑁(𝑛) are 𝑛 = 3 neighbours of p, 𝑤𝑘(𝑝) are defined inverse proportional to the 
distance between 𝑝 and p𝑁(𝑘) 

𝑤𝑘(𝑝) =
1

𝜀 + �𝑝 − p𝑁(𝑘)�
, 

 
where 𝜀 = 0.00001 is introduced to prevent division by zero when 𝑝 coincides with one of the 
𝑝1, ⋯ , 𝑝𝑁. The set of neighbours is uniquely determined by imposing a triangulation on points 
𝑝1, ⋯ , 𝑝𝑁. Then, for any p, it belongs to at least one triangle. The vertices of this triangle are 
defined as neighbours of p. For points outside of the triangulation grid the neighbours of p are 
defined as three closest points from the set 𝑝1, ⋯ , 𝑝𝑁. Thus for any point of the model p we can 
determine its local coordinates of the triangulation grid, so called 3D Mesh coordinates: 
 

p → (𝑤1(𝑝),  𝑤2(𝑝), ⋯ , 𝑤𝑛(𝑝), 𝑁(1), ⋯ 𝑁(𝑛), 𝑅) 
where 

𝑝 =
1

∑ 𝑤𝑘(𝑝)𝑛
𝑘=1

� 𝑤𝑘(𝑝)
𝑛

𝑘=1

p𝑁(𝑘) + 𝑅. 

 
In the Mask Design Tool the correspondence points 𝑃 = {𝑝1, ⋯ , 𝑝𝑁} are generated automatically 
from the coordinates of 10 Principal Landmarks with indices: P30, P20, P2, P10, P11, P3, P27, 
P14, P15, P6, as shown on Figure 4.10 (Left). Using some linear combinations between X- and 
Y- coordinates of the principal landmarks, another set of 32 auxiliary landmarks are defined. Thus 
the positions of the auxiliary landmarks are scaled together with the principal landmarks. In total 
40 landmarks are triangulated into a 3D mesh grid with 56 triangles, see Figure 4.10 (Right). 
  
Typically, the morphing of Scan1 (closed mouth scan) to Scan2 (open mouth scan) consists of 
the following steps:  
 

1. Automatically detect or manually annotate the set of principal 10 landmarks on 
Scan1 and Scan2.  

2. Compute 3D Mesh grids for both scans. 
3. Find 3D Mesh grid coordinates for all vertices of Scan 1, i.e. 

 
(𝑤1(𝑝),  𝑤2(𝑝), ⋯ , 𝑤𝑛(𝑝), 𝑁(1), ⋯ 𝑁(𝑛), 𝑅) 

 
4. Apply the 3D Mesh grid coordinates to 3D Mesh of Scan 2 to find the morphed 

positions: 

𝐶(𝑝) =
1

∑ 𝑤𝑘(𝑝)𝑛
𝑘=1

� 𝑤𝑘(𝑝)
𝑛

𝑘=1

𝐶�p𝑁(𝑘)� + 𝑅. 

 
5. Generate the new Zbuffer, if required. 
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Figure 4.10 Landmarks -> 3D mesh. Left: 10 Principal landmarks are shown as red balls, 
32 auxiliary as blue balls. Right: imposed triangulation grid. 

The steps we followed to virtually open the mouth are: 
 

1.   Set open mouth landmarks and read closed mouth scan landmarks. 
2.  Generate two 3D mesh grids for both closed and open mouth cases according to 
their landmark positions respectively, see Figure 4.11. 
3.   Get 3D mesh grid point coordinates from the 3D mesh for closed mouth and 
open mouth respectively. 
4.  Derive the transformation between the closed mouth and open mouth 3D mesh 
grid coordinates based on the coordinates we derived in the last step. 
5.   Linearly interpolate all the points within the triangles (the 3D mesh grid).  
6. Render the morphed (open-mouth) image using the coordinate and connectivity 
information. 
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Figure 4.11 Mouth opening morphing transformation 

 Summary of methods  4.3.
Having presented all the ingredients for our mouth opening tool, the following table provides an 
overview about the methods we developed in this project. 
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Table 2 Methods overview 

Method 
Shorthand MORPHING FEM I FEM II FEM III FEM IV 

Physically-
based model No Yes Yes Yes Yes 

Complexity Low High High High High 

Element type N/A Shell element Hexahedral 
element 

Hexahedral 
element 

(Herrmann 
formulation) 

Hexahedral 
element 

(Herrmann 
formulation) 

Material model N/A Purely elastic Purely elastic Mooney Gent 

Young’s 
Modulus: 

 
N/A 0.5 0.5 N/A N/A 

Poisson’s ratio: 
 

N/A 0.42 0.42 N/A N/A 

Spring stiffness N/A 1 1 0.001 1 

Hyperelastic 
material 

constants 
N/A N/A N/A 

𝐶10 = 0.0094 
𝐶01 = 0.082 

𝐸 = 0.75 
𝐼𝑚 = 4 

Compressibility N/A Compressible Compressible Nearly 
incompressible 

Nearly 
incompressible 

Formulation N/A U.L. T.L.&U.L. T.L. U.L.&T.L. 
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 Implementation details 4.4.
In this section, we will elaborate the implementation procedure of FEM-based model simulation. 
Generally speaking, the FEM-based models are implemented using both MATLAB (in Windows 
and Linux systems) and Marc (in Linux operating system). Marc is a general-purpose, nonlinear 
finite element modelling tool. For more information about Marc, check [41]. Shortly speaking, the 
implementation includes: firstly, preparation for the input file for Marc using MATLAB (obtaining 
the close mouth scan from the scan database, computing mouth opening parameter, etc.), then, 
finite element analysis carried out by Marc based on the input file, finally, result-retaining from 
Marc and open mouth image generation using MATLAB. There are 11 steps involved in our open 
mouth tool implementation procedure: 
 
Step 1. Pre-selection of the closed and open mouth pairs from the database (only needed 
for model-developing) 
Philips has a database of various facial 3D scans. We need to select “good” scan pairs (of open 
and closed mouth scans) for development and evaluation of the soft tissue models. Our “good” 
scan pair satisfies the following conditions: firstly, both open and closed mouth scans belong to 
the same person; secondly, the scan pair can be successfully aligned to each other in the upper 
face area where the open and closed mouth faces are basically the same. The alignment is done 
with a version of Iterative Closed Point algorithm implemented at Philips. Figure 4.12 and Figure 
4.13 present an example of a well-aligned and a badly-aligned scan pairs by means of the 
difference depth maps. 
  
The difference maps are obtained by subtracting the closed mouth depth map from the open 
mouth depth map. The result indicates the difference of two surfaces in the 𝑧-direction.  

 
Figure 4.12 Example: Well-aligned upper face 
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Figure 4.13 Example: Badly-aligned upper faces 

We can see that for the properly aligned scans the difference in the upper head is close to zero, 
(indicated with green colour), while on the lower part of the face the difference is negative 
because of jaw moving down-backwards (indicated with dark blue colour). The badly aligned 
pairs of scans can be visually identified by the extreme difference values across the face. There 
are various reasons that might cause two scans cannot be aligned at the forehead part. The most 
probable reasons are the 3D scan artefacts and the large variation in the scanning angle.  
 
Step 2. Extract and edit related information (landmarks) from database 
The scans are stored in the database together with the list of coordinates of facial landmarks. 
Landmarks play an important role in our models. By landmarks, we mean distinctive geometrical 
feature points on the human face which are easy to identify on the face like mouth and eye 
corners, nose tip, etc. Philips has developed its own landmark annotation techniques, via which 
landmarks on facial scans will be automatically detected. Since these tools are not perfect Philips 
also developed a GUI by which the landmarks positions can be manually annotated and refined. 
Figure 4.14, Figure 4.15 and Figure 4.16 are the snapshots of the landmarks annotation GUI, 
using which one can check all the 43 landmarks (blue dots) including 10 prime landmarks (red 
dots). 
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Figure 4.14 Landmarks annotation GUI 

 
 

 
Figure 4.15 Edit prime landmarks window  

 

 
Figure 4.16 Edit all landmarks window 

Currently, there are no landmarks automatically added for the open mouth scans in the database. 
Figure 4.17 shows a sample  open mouth scan in the GUI. The “good” pairs of the open-closed 
mouth scans the landmarks can be copied from the closed mouth scan as explained in the 
following step. Whenever needed, one can manually correct the landmark positions in the GUI. 
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Figure 4.17 Open mouth case (without landmarks) 

 
Step3. Specify the translation and rotation parameter for the mouth open motion 
Our simulations uses four parameters (𝑡1, 𝑡2, 𝑡3, 𝑟), to describe the rigid movement of the jaw. 
𝑡1, 𝑡2 and 𝑡3 are used to specify the translation of the lower skull in 𝑥, 𝑦, 𝑧-direction respectively 
and 𝑟 (in radians) gives the rotation angle of the jaw around the horizontal axis. The four rotation-
translation parameters are saved in the parameter file, which is then read by Marc procedures. 
 
The major goal of the assignment is to open the mouth uniformly on all scans with identical 
rotation-translation parameters (for example specified in the mouth opening tool). At the same 
time, in order to correlate the FEM models with the ground truth data, one have to know for each 
closed-open scan pair in the test set, the specific rotation-translation parameters.  
 
These parameters are estimated automatically by means of a patch matching algorithm. First, we 
use the Iterative Closest Point (ICP) alignment to match the nose bridge area of the open mouth 
scan to the nose bridge area of the closed mouth scan. This alignment gives also the alignment 
of the upper skulls which are one-to-one related with the facial surfaces. Next, the ICP alignment 
is used again to match the chin area of the closed mouth scan to the chin area of the aligned 
open mouth scan. This alignment gives also the alignment of the lower skulls (jaws) which are 
also one-to-one related with the facial surfaces. The second alignment gives the rotation 
translation parameters of the jaw’s movement. Moreover, the alignments allow to copy the facial 
landmarks from the closed mouth scan to the open mouth scan where the upper face landmarks 
are copied after the first alignment, the chin landmarks are copied after the second alignment and 
the mouth corner landmarks are defined as the average of the corner landmark positions at the 
first and the second alignments. 
 
We should point out that the movement of the jaw during mouth opening is much more 
complicated than we assumed in this model (the moving jaw) which might be in reality non-linear.  
Figure 4.18 and Figure 4.19 illustrate the procedure described above.  
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Figure 4.18 Before any alignment 

 
Figure 4.19 After first (upper head) alignment 
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Figure 4.20 First alignment result 3D plot (Scan1: aligned closed mouth scan, Scan 2: 

open mouth scan) 

 
 Figure 4.21 After second (jaw) alignment with landmarks computed for open mouth scan 
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Figure 4.22 Second alignment result 3D plot (Scan1: aligned closed mouth scan; Scan 2: 

open mouth scan) 

Step 4. Obtain skin thickness information (morphing technique) 
As part of input information of our models, local skin thickness is of importance in terms of 
realism of our models. There are two skin thickness maps (matrices whose entries store the 
thickness of the soft tissue according to its location on the 𝑥, 𝑦-plane) available at Philips for an 
“averaged face” geometry. The “averaged face” was computed by averaging and morphing a 
number of facial scans. The first soft tissue thickness map is created as an interpolation of 20 
average thicknesses obtained via literature study. The second one is derived from MRI data by 
Philips internee, Mingming [42]. For our FEM simulations we use the first map which has more 
realistic values on the forehead and on the nose bridge.   

Features of a face have different proportions and shapes for different individuals. For example, 
the width of the mouth, the shape of the nose or more generally, the different distance of specific 
features. As a whole, each face has difference in length and width as well. Given all differences 
mentioned above, the thickness map for an averaged face should be morphed to match a 
specific face before it is applied. The morphing procedure is outlined below.  
 
First, we align the specific closed mouth face to the averaged face to minimize the RMS (Root 
Mean Square) distance between the corresponding landmarks. Next, we generate two 3D grids 
based on the landmark positions of the average and of the particular face, like illustrated in 
Figure 4.10. 

 
The next step is to get the mesh-coordinates for all vertices of the particular face. Using the 
mesh-coordinates we find the corresponding points on the average face and sample the soft 
tissue thickness. Thus we obtain the soft tissue thickness for all vertices of the particular face.  

Step 5. Generate skin geometry 
All FEM models derived in this work consist of elements defined on the regular grid. In order to 
define a simple yet accurate skin geometry the 3D model, the depth map of the closed mouth 
face is rendered on a 3𝑚𝑚 grid. Then the “mouth-cut” is made to let the model be able to open 
its mouth. Specifically, according to the landmark positions of mouth, another set of mouth nodes 
is created with 0.5𝑚𝑚 extrusion in the 𝑧-direction. The extrusion is needed to facilitate the 
separation of the two sets of nodes in Marc Mentat software. The connectivity of the nodes is 
then adapted to append them to the surface so that the mouth can open realistically. This can be 
illustrated as below: 
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Figure 4.23 Skin geometry open (left) and closed (right) mouth   

 
Step 6. Generate skull geometry 
The soft tissue thicknesses are rendered on the same 3𝑚𝑚 grid where the values in-between the 
3D model vertices are obtained via linear interpolation. The skull geometry is generated by 
subtracting the rendered soft tissue thickness map from the rendered surface map. We define the 
lower skull according to the landmarks which indicate the height of the mouth. We simplify the 
jaw geometry by cutting the skull horizontally at the average mouth corner position, as shown in 
Figure 4.24: 
 

 
Figure 4.24 Skull geometry open (right) and closed (left) mouth 

                         
Step 7. Assemble skin and skull geometry 
After we derive skin and skull geometries (namely, node coordinates and connectivity), it remains 
to assemble them. Content wise, we first remove the background grid nodes around the face 
where either skin or skull values are missing. This allows reducing of the computational burden. 
Second, we connect the nodes into the elements to get a one-to-one mapping between skin 
surface nodes and skull surface nodes except from the mouth side area where by design we 
have one skin node connected to two skull nodes. 
 



Mathematical models and implementation details 
 

76 

Step 8. Complete the input file for Marc  
In this step, we complete the input file for Marc by adding spring connections between skin layer 
and skull layer and other parameters. It includes specifying built-in parameters, like the element 
type we use, material properties and everything needed under the proprietary Marc input file 
format, see Appendix 0.  
 
Step 9. Run the simulation in Marc 
With the complete input file, the simulation is ready to run. We make a MATLAB function in Linux 
environment  which can detect the existence of the input file, see Appendix A.2. As a result, once 
the completed input file is present in the specified folder, Marc gets started. The operation of the 
Marc is controlled by means of procedure file, see Appendix A.3. Marc interprets the commands 
in the procedure file and assigns the proper boundary conditions of the model (the prescribed 
position of the jaw skull and the clamped upper skull) and computes the resulting open-mouth 
geometry. 
 
Step 10. Process the output file from Marc 
At the end of the simulation, a user subroutine is automatically executed to produce the simulated 
open mouth skin surface nodes coordinates. Note that along this coordinate file, there are also 
some other files generated by Marc which can be used to visualize the result in Marc. Some files 
(especially .log and .out file) are very useful in debugging of the model and the procedure files. 
Based on the newly generated coordinates, the open mouth depth map can be rendered back in 
MATLAB in Windows system. Figure 4.25 shows the simulated result (left) and the ground truth 
scan (right) for a specific participant. 
 

 
Figure 4.25 Simulation result (left) and ground truth scan (right) 

 
Step 11 Post-processing  
We perform the mouth open simulation on 62 closed-open mouth scan pairs to evaluate the 
performance of different methods. After some calculation, described in detail in section 5.2, we 
are able to obtain an average and the standard deviation error map for each method on the 
average 3D face model. The average error map can be used for systematic correction of the 
open mouth scans after the morphing procedure. Note that the average error map is base only on 
62 faces and therefore it is only an approximation to the real systematic error of each method. In 
section 5.2 we will explain how the standard deviation map can indicate how close the average 
error map is to the real systematic error.  
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5. Results and discussion 
In this chapter, we present the benchmarking of different methods. We implement the procedure 
described in section 4.4 (FEM-based methods) and the morphing method for 62 participants who 
have both open and closed mouth scans stored in the database. As a result, we constructed 
62 × 5 depth maps (Zbuffer𝑆) which store the simulated open mouth geometry on a specified 
view port for each individual and for each method. On the other hand, original depth maps which 
store the real life open mouth geometry are also available to be used for verification purpose. The 
depth maps derived from the original open mouth scan will be referred as ground truth 
(ZbufferGT). We point out once again that the view port we use is a square window (from 
−150𝑚𝑚 to 150𝑚𝑚) both in 𝑥 and 𝑦 directions sampled with the grid step (resolution) of 1𝑚𝑚. 
Thus the dimension of the depth map matrices is 301 × 301. The difference map (ZbufferD) is 
defined as: 
 

ZbufferD ≝ ZbufferGT- ZbufferS. 
 
Obviously, ZbufferD gives a direct indication of the difference in the surfaces in 𝑧-direction and 
therefore it is used as an indication of simulation error for individual scans and methods.  
 
To derive a quantitative indication on how accurate each method is, simple statistical methods 
are applied. We compute the following statistical error indicators: RMS (Root Mean Square) error 
and average error and standard deviation map. In this chapter, the simulation results of the five 
methods (FEMI, FEMII, FEMIII, FEMIV and MORPHING) will be compared in a comprehensive 
way. 

 Benchmarking I: RMS error 5.1.
In this section, we first present the computation procedure of RMS error of an individual 
difference map (ZbufferD). Then we show the RMS results of 62 individuals for FEMII and 
MORPHING in a figure. Finally, we average the individual results (over 62 participants) for each 
methods to derive a RMS error indicator for each method. The results are then summarized in a 
table.  
 
The individual RMS error is computed as follows: 
 

1. The difference map (ZbufferD) contains two types of errors: 1) errors in the lower part of 
the face around cheeks and chin due to the inaccuracy of the mouth opening method 
(modelling error); 2) errors on the boundary edges of the depth maps due to different size 
of the scanned areas and heads. The second type errors are not relevant for estimation 
of the performance, and should be ignored. Since these errors have typically very high 
amplitude, they can be detected by simple comparison with a (fixed) threshold. We 
assume the modelling error does not exceeds 5 mm. If the absolute value of entries of 
ZbufferD larger than  5 𝑚𝑚, we set it to 0, written in formula as:  
 

𝑖𝑓  |ZbufferD|𝑖𝑗 ≥ 5 ⟹ (ZbufferD′)𝑖𝑗 = 0,               for 𝑖, 𝑗 = 1, … ,301, 
 
We use ZbufferD′ to denote the truncated difference map.  

2. Compute the RMS error. The RMS error is computed by averaging over the whole 
difference map: 
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𝐸RMS =
�∑ (ZbufferD′)𝑖𝑗

2301
𝑖,𝑗=1

2

301
. 

 
From the formula we see that when we compute the RMS error, we average over both 
the face area and the background where the ZbufferD

′ = 0. This results in the effect that 
relatively larger faces will also have larger RMS. Thus, the comparison between the RMS 
values computed with different faces does not make much sense, while the comparison 
of RMS of different methods applied on the same face is still valid. Moreover, the 
average RMS error over the 62 scan pairs is a measure of the accuracy of specific 
method. 
 
Below is an example chart which gives the individual RMS errors for the morphing 
method and FEM II. Note that the reason that we take MOPHING and FEM II is that FEM 
II is representative among the FEM-based method while MOPHING is a computer-vision 
based (non-physical) method. 

 After we have computed the individual RMS error for each method, to get an indication on the 
accuracy of each method itself, we only need to take the RMS average over the individual 
results. 
  

𝐸RMS(average) = � 𝐸RMS1
(𝑁𝑠𝑐𝑎𝑛𝑠)

� �𝐸𝑅𝑀𝑆(𝑖)�2
𝑁𝑠𝑐𝑎𝑛𝑠

𝑖=1

. 

 
The RMS error of each method is given in  
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Table 3  RMS errors 

 FEMI FEMII FEMIII FEMIV MORPHING 

RMS 
error(mm) 0.9344 0.8817 0.8882 0.8829 1.0060 

 Benchmarking II: Average error map 5.2.
The RMS error can only provide us an averaged indication (one number) on the accuracy of each 
method.  A more sophisticated statistics method should be applied to gain more insights in the 
systematic errors produced by different methods. In this section, we are going to calculate error 
expectation and standard deviation maps to evaluate the local performance of each method. 
Observe that the facial features corresponding to different people do not have identical XY 
coordinates, therefore the meaningful averaging of the error maps requires their morphing to the 
same reference. The computation is carried out as follows: 
 
1. Create a 3D morphing mesh from the average open mouth scan landmark positions. Morph 

the 62 simulated open mouth and ground truth depth maps to this 3D Mesh, using the 
morphing technique described in section 4.2. Render the depth map ZbufferMGT 
corresponding to the morphed ground truth model, and depth map ZbufferMS corresponding 
to the morphed simulated model. Then compute the morphed difference map, as: 
 

ZbufferMD = ZbufferMGT − ZbufferMS. 
 
This way, we get the difference map as seen on the reference “averaged face”. Then the 
average error and standard deviation maps are computed in the following steps: 
 

• Choose the background threshold value. The role of this value is to filter out 
meaningless values in the peripheral facial values of morphed difference map, just 
like we explained in section 5.1, where we assume that the absolute value of such 
errors should be less than 10. We use ZbufferMD′ to denote the truncated morphed 
difference map. 

• Add up all the entries in the morphed difference maps in three ways: element-wise; 
element-wise squared; the number of times that each entry is above the background 
threshold value in the map. Thus, three new matrices are created:  
 

(𝐴𝑠𝑢𝑚)𝑖𝑗 = � (ZbufferMD′)𝑖𝑗
⋕scans

,                        for  𝑖, 𝑗 = 1, … ,301, 

 
�𝐴𝑠𝑢𝑚𝑠𝑞𝑢𝑎𝑟𝑒�

𝑖𝑗
= � (ZbufferMD′)2

𝑖𝑗
⋕scans

,               for  𝑖, 𝑗 = 1, … ,301,    

 
(𝐴𝑐𝑜𝑢𝑛𝑡)𝑖𝑗 = � 1��(ZbufferMD)𝑖𝑗�<10�,                   for  𝑖, 𝑗 = 1, … ,301.   

⋕scanS

 

 
• Compute the average of the difference maps. Since every scan holds equal weight, 

the averaged error map 𝐸 should just be the algebraic average.  
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𝐸𝑖𝑗 =
(𝐴𝑠𝑢𝑚)𝑖𝑗

𝑁scans
    for � (𝑖, 𝑗)�(𝑖, 𝑗) satisfies (𝐴𝑐𝑜𝑢𝑛𝑡)𝑖𝑗≥ 0.9*𝑁scans� else 𝐸𝑖𝑗 = 0.  

 
This way we only take into account the values which are “significantly” represented in 
all scans.  

• Compute the sample standard deviation of the difference maps. According to the 
definition, the standard deviation 𝜎 is calculated as: 
 

𝜎 = �𝐸(𝑋2) − 𝐸(𝑋)22 , 
 
where 𝑋 denotes the random variable and 𝐸(𝑋) denotes the expectation of the 
random variable. The estimation of 𝐸(𝑋2) (let us denote the matrix as 𝐸𝑖𝑗

∗ ) is 
straightforward: 
 

𝐸𝑖𝑗
∗ =

�𝐴𝑠𝑢𝑚𝑠𝑞𝑢𝑎𝑟𝑒�
𝑖𝑗

𝑁scans
,    for � (𝑖, 𝑗)�(𝑖, 𝑗) satisfies (𝐴𝑐𝑜𝑢𝑛𝑡)𝑖𝑗≥ 0.9*𝑁scans� else 𝐸𝑖𝑗

∗ = 0. 

 
The standard deviation map is calculated as: 
 

𝜎𝑖𝑗
∗ = �𝐸𝑖𝑗

∗ − 𝐸𝑖𝑗
22 ,                        for  𝑖, 𝑗 = 1, … ,301. 

 
 Below, we present the average error map for each method. Please note that there are two colour 
scales used to present the result. We use the scale (−2𝑚𝑚 to 2𝑚𝑚) for method FEM II, FEM III 
and FEM IV, and (−5𝑚𝑚 to 5𝑚𝑚) for FEM I and MORPHING. The reason for the usage of 
different scale is that we want to highlight the error distribution for FEM II III and IV. If we use the 
same scale for all 5 methods, we would not be able to see the difference between FEM II III and 
IV.  

 

 
Figure 5.1 Average error map FEM III 

 

 
Figure 5.2 Average error map FEM II 
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Figure 5.3 Average error map FEM VI 

 
Figure 5.4 Average error map FEM I 

 
Figure 5.5 Average error map 

MORPHING 

As pointed out in section 4.4, we can use the average error map for systematic correction of the 
simulated results in order to compensate for the systematic errors. The systematic error 
correction is the post-processing step where after synthesis of the open mouth scan, we add the 
morphed average error map to the resulting depth map.  
 
Note that the average error map is a random array which can deviate from the expected 
systematic error. Therefore it is importance to check whether the systematic error correction 
introduce additional error or not. Thus one would like to have the variance of error maps after the 
correction less or equal to that without the correction. Let the systematic error Xij have 
expectation µij and the standard deviation σij for  i, j = 1, … ,301. Then, assuming that the 
individual maps Xij are independent random variables, the average error map Eij has expectation 
µij and the standard deviation 

σij

62
, where 62 is the number of individual error maps in the average. 

If no error correction is performed, i.e. if one assume that µij = 0, then the actual quadratic error 
of the measurement is equal to the second moment of Xij which is equal to µij

2 + σij
2. If the error 

correction is performed Xij is reduced with Eij then the second moment of Xij − Eij is  about 

 
σij

2

62
+ σij

2, Thus the correction makes sense when 
 

µij
2 + σij

2 ≥
σij

2

62
+ σij

2 , 
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which is equivalent to  

�µij� ≥
σij

√62
. 

 
Since the true values of the expectation and the standard deviation are not available, we replace 
them with the estimates which give us the practical criterion for the application of the error 
correction:  
 

�Eij� ≥  
1

√62
𝜎ij

∗ ≈ 0.127 ∙ 𝜎𝑖𝑗
∗ . 

 
 
After the systematic error correction, the random deviation from the ground truth can be purely 
described in terms of the standard deviation map. In this view, the standard deviation map can be 
used for the comparison of the competing methods. The methods with the low standard deviation 
are preferable.  
 
The standard deviation maps for each method below show that the standard deviation is in 
general lower than the absolute value of the error map and therefore the systematic error 
correction does make sense. 
 

 
Figure 5.6 Standard deviation map  

FEM III 

 
Figure 5.7 Standard deviation map FEM II 
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Figure 5.8 Standard deviation FEM IV 

 

 
Figure 5.9 Standard deviation FEM I 

 
Figure 5.10 Standard deviation MORPHING 

As we can see, the difference of the standard deviation map between different methods is not 
really visible. To compare the standard deviation maps between different methods, we use FEM 
II as reference. To show the relative performance of different methods with respect to FEMII we 
calculate the percentage map by subtracting the other four methods from FEM II, dividing the 
result with FEM II and multiplying with 100% : 
 

𝑃𝑖𝑗 = 100 ∗
(𝜎𝐹𝐸𝑀𝐼𝐼 − 𝜎𝑚𝑒𝑡ℎ𝑜𝑑)𝑖𝑗

(𝜎𝐹𝐸𝑀𝐼𝐼)𝑖𝑗
,                   for  𝑖, 𝑗 = 1, … ,301.   

 
Below are the percentage maps: 
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Figure 5.11. FEM II - FEM III 

 
Figure 5.12. FEM II - MORPHING 

 
Figure 5.13. FEM II -IV 

 
Figure 5.14. FEM II - FEM I 

 
From the red colour on the maps indicates where locally FEM II has worse performance, and the 
blue areas indicate where FEMII is better.  

 Observations and discussions 5.3.

5.3.1. Observations 
From the results presented in the previous sections, the following observations can be drawn.  
Observation 1: FEM-based methods are generally more accurate than the morphing method. 
This fact can be observed from the RMS error. For the morphing method, the RMS error is as 
high as 1.006 whereas for FEM-based methods, it is only around 0.8850. Thus via RMS error 
estimation, FEM-based method is on average 0.1 mm more accurate than the morphing method.  
The average error map also supports the observation. It can be observed from Figure 5.5 hat for 
the morphing method, the error is mostly between 0 and 5𝑚𝑚, but for the FEM-based methods II 
III and IV, the maximum absolute error is seldom over 2𝑚𝑚 and mostly around 1𝑚𝑚. Even for 
FEM I, the advantage over the morphing method is visible from Figure 5.5 and Figure 5.4. 
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Observation 2: FEM-based methods have different error distribution than the morphing method. 
From the average error maps (Figure 5.11), we can clearly see that for FEM-based methods, the 
errors appear in a regular way namely mostly at cheeks and around the mouth, although there 
are minor difference between the methods. However, for the morphing based method the error 
mostly appear at the lower face and it appears more scattered than the FEM-based methods. 
This fact is confirmed by Figure 5.12, where we observed that FEM II has around 50% less 
standard deviation in error than morphing method in the chin area.  
 
Observation 3: Within the FEM-based methods, FEM I is the least accurate method. 
A check on both RMS error estimation and average error map like we did in observation 1 yields 
the result. 
 
Observation 4: FEM II and FEM IV are very similar in terms of error distribution. 
Indeed, in RMS error indication, the difference between the two methods is only 0.0012𝑚𝑚 
Moreover, we can barely see the difference in the average error maps for the two methods. The 
percentage map (Figure 5.13) also confirms the statement by showing only around 10% 
difference in standard deviation map at cheek area.  
 
Observation 5: In terms of the standard deviation of the errors, FEM II, III and IV outperform the 
morphing method in the chin area.  
This observation is derived from the percentage map. In the morphing method’s percentage map 
blue colour dominates in the chin area (which means higher standard deviation values than FEM 
II), while FEM IV is very similar to FEM II and FEM III is better than FEM II in the check area (as 
indicated by red colour in the percentage map in red (which means less standard deviation than 
FEM II). 
 
Observation 6: FEM III has the best average performance in standard deviation.  
This observation is drawn from the percentage maps. Indeed, FEMIII is better than FEM II on the 
mouth sides, and therefore is also better then FEM IV which is very close to FEM II, FEM I is 
worse than FEM II and therefore FEM I is also worse than FEM III. One can find that the 
advantage of FEMIII over the Morphing in the chin area is about 40% after the correction of 
systematic errors. However, without the compensation of the systematic errors FEM III performs 
the worst among FEM II, III and IV in terms of the average error where FEM III has 0.0065𝑚𝑚 
more error than FEM II and 0.0053𝑚𝑚 more than FEM IV. In the average error map, we also see 
that only FEM III has visible error at the upper face (between 0.5𝑚𝑚 and 1𝑚𝑚) which leaves 
room for improvements and optimizations. 

 

5.3.2. Discussions 
Based on above observations, we would like to discuss the following aspects: 

1. Physical-based model versus computer-vision method 
From the observation 1, we can conclude that the physical-based model is generally more 
accurate than the computer-vision based method, though the former costs more 
computational power. We observe that, in absolute values, the average advantage of FEMIII 
over the Morphing is about 0.5𝑚𝑚 after correction of the systematic errors. At the same time, 
the FEM method is considerably more accurate without statistics based systematic correction 
of the simulation errors. Therefore The FEM based methods are preferable for simulations 
which do not have ground truth data, like, for example, the side shifts of the jaw. 
 
2. Shell element versus solid element 
Shell element is a structural element. It is also a very common choice of engineers. But 
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observation 3 tells us that it performs worse compared to 3D continuum solid element in our 
models. This is not a surprise. Though the doubly curved shells we used can represent 
objects in three dimensions virtually, they are surface based element in essence. Through 
defining the nodal coordinates and the thickness the user gets the interpolated surface. 
Especially, in the shell-element based model, we retain the computed facial surface using the 
original soft tissue thickness for the neutral face (since this is no other ways to regain the 
simulated face surface), we have partially lost the quasi-incompressible property of the facial 
tissue. Since the quasi-incompressible property will lead to the loss of thickness in soft tissue 
when it gets stretched during the mouth opening process. This could also be a possible 
reason for shell elements to lose their accuracy. 
 
3. St.Venant-Kirchhoff model versus Mooney model versus Gent model 
From observations 4,5 and 6, we can conclude that the St.Venant-Kirchhoff model (FEM II) 
does not underperform other two material models, although Mooney (FEMIII) and Gent (FEM 
IV) models have a non-constant elasticity tensor. This can be explained by the fact that 
during the mouth opening process the skin elements experience large displacement but not 
sufficiently large strain. In the small strain regime, the skin has a linear relationship between 
strain and stress, as shown in Figure 3.6. Thus the St.Venant-Kirchhoff model does not show 
an obvious disadvantage compared with the other two models.  
 
We also know from Observation 4 that the Gent model behaves quite similar to the 
St.Venant-Kirchhoff model. This is probably caused by the similarity of the St.Venant-
Kirchhoff model and the Gent model in their strain-stress relationship in the small strain 
regime. In the section “Material models and uniaxial tension test”, we can observe the 
linear relationship between strain and stress in the small strain area for the Gent model.  
 
Observation 6 tells us that the Mooney material model performs best in terms of the standard 
deviation. Unfortunately, we cannot provide a satisfactory explanation on this yet at the 
moment.  
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6. Conclusion and future work  
We have developed five methods in total which can simulate open mouth facial scans from the 
closed mouth scans. Except from the last morphing method, the other four methods are based on 
3D finite element tissue models which allow a reasonable prediction of tissue deformations 
according to the open mouth process. The models are built based on individual facial surface 
scans and generic soft tissue thickness data (which can be taken from the Philips MRI data study 
or the open literature study). Using this information, we created four models in Lagrangian 
formulation. The models incorporate geometric nonlinearity and mechanical nonlinearity of the 
biological tissues. We verified our simulation results with the actual open mouth scans and 
calculated the averaged error and standard deviation maps for each method. For physically-
based models, the largest error typically occurs at the cheek area and is within [−2𝑚𝑚, 2𝑚𝑚]. 
To develop a more powerful computational tool for mouth opening, realistic soft tissue models are 
desirable. To improve the performance of the existing soft tissue models, we recommend to look 
into the following aspects: 
 

1. Multi-layer soft tissue model 
Multi-layer models can be developed to represent different biological soft tissue layers 
(e.g. epidermis layer). A substantial amount of work has been done in this direction [21]. 
Multi-layer models, theoretically speaking, with proper assignment of the parameters, will 
model the non-homogeneity better than double layer models.  

2. Muscle forces activation  
Muscle effect will also improve the result. Like pointed out in section Facial soft tissue 
anatomy, open mouth process involves activation of muscle forces (although it is not 
predominant). Thus, a proper muscle force activation model can make the mouth open 
process more realistic. Besides, adding the muscle layer will also increase the realism 
structurally. A lot of effort has been put into studying muscle force models. Related 
literature is [11, 22]. 

3. Anisotropic property 
In our models, we have assumed the isotropic property, but the real soft tissue layers are 
anisotropic. In Marc Mentat, the user can specify the fourth-order elasticity tensor for an 
anisotropic material. For example in linear case, user can specify the fourth order tensor 
𝐶𝑖𝑗𝑟𝑠, which gives the strain-stress relation 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑟𝑠𝜖𝑟𝑠.  

4. Material postulation  
In our project, we used Moony and Gent, two hyperelastic material models to simulate 
the complex biological object - human facial soft tissue. As we mentioned in section 
3.2.2, a nonlinear material constitutive relation is determined by the strain density 
function. Hence, for a material as complex as human skin, to postulate a strain energy 
function based on experimental data is a way to set up a mathematical model. For more 
details, see [29].  

5. Nonlinear springs 
Due to superficial fascia, there exists “sliding effect” when people open their mouth. In 
our model, we use springs to simulate the “sliding effect”. However, the sliding effect is 
more than a linear relationship between displacements and forces. In Marc Mentat, it is 
possible to define nonlinear springs using a table to model nonlinear boundary 
conditions. That will give us more freedom to model the “sliding effect”.  

6. Model for superficial fascia 
In our model we used springs to model the superficial fascia in our effort of replicating the 
“sliding effect”. More advanced models exist to simulate the fibrous connective tissues 
[43].  
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7. Gravity effect 
We have ignored all the body forces in the models. But in reality all humans experience 
gravity. Especially for people who have a lot of fat in their face, when they lie down, 
probably the gravity will play an important role in the geometry of the face. Thus if we add 
body force (gravity) into the model, we may achieve a better result.  

8. Higher-order finite element 
In the project, we have employed linearly-interpolated elements. Higher order elements 
will increase the accuracy, but at the same time the computational effort will also 
increase. A more accurate quadrature rule can also be utilized in combination of the 
higher-order element.  

9. Adaptive meshing 
To reduce the computational effort, we can use various meshing methods to reduce the 
number of nodes. In other words, for the region for which we do not expect too much 
change (like the upper head) we can put less nodes there.  

10. Participants classification 
In section 3.1.1, we have pointed out that the properties of skin differ with age, gender, 
race etc. Taking above mentioned information of a participant into account when we 
design our material model would be helpful especially when aiming at a personalized 
mask sizing advice. 

11. Parameter optimization 
Given a model configuration, the parameters determine the error produced by the model. 
In the project, we used parameters values found in the literature. Different sets of 
parameters will give different amplitude and distribution of the errors over the error maps. 
Thus, parameter tuning plays an important role.  
Below we consider the St.Venant-Kirchhoff model (FEM II) as an example to illustrate the 
effects of parameters. Note that there are three parameters involved in the model: 
Young’s modulus (𝐸), Poisson ratio (𝜐) and spring stiffness (𝑘). Table 4 below shows the 
parameter settings for four different simulations. The resulting error maps are shown in 
Figure 6.1 and Figure 6.2. 
 

Table 4 Parameter tuning 

 Young’s modulus 
(𝑬) 

Poisson ration 
(𝝊) 

spring stiffness 
(𝒌) 

RMS 
error 

Case 1 0.5 0.42 1 79.59890 

Case 2 0.5 0.22 1 94.52781 

Case 3 0.5 0.42 2 78.91196 

Case 4 2.5 0.42 1 84.13046 
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Figure 6.1Case 1&2 

 
 

 
 Figure 6.2 Case 3&4 

From this example, we get an idea about how parameters affect our result. Thus, a significant 
improvement for the model might be gained from the optimization of the parameters. With the 
current model configuration, one can try to find the optimal set of parameters which will minimize 
the specified error measure.  
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A. Appendices 

A.1 Model definition file 
The header of the Marc model input file looks like: 
title                                               standard 
extended 
sizing                                 0      5823      5992         0 
alloc                       25 
elements                    75 
version                     11 
processor                    1         1         1         0 
all points 
shell sect                   5         0         1 
end 
solver 
         8         0         0         0         0         0         0         0         0         0         0         0 
optimize                    11 

where 5823 is the total number of elements and 5992 is the total number of nodes.  
The header is followed by describing how the nodes are connected into the elements: 
connectivity 
         0         0         1 
         1         7      2166      2267      2268      2167     12382     12483     12484     12383  
         2         7      2167      2268      2269      2168     12383     12484     12485     12384 
         3         7      2168      2269      2270      2169     12384     12485     12486     12385 
….. 

where the first number in the row is the element number, 7 corresponds to “Hexahedral element” 
type, and the last 8 numbers are the indices of the nodes. Since the skull is modelled with the 
shell elements, the corresponding connectivity part looks like: 
 
     2392        75     20433     20447     20448     20434 
      2393        75     20434     20448     20449     20435 
      2394        75     20435     20449     20450     20436 
….. 
      4782        75     22918     22935     22936     22919 

where 75 in the second row corresponds to the “Shell element” type consisting of only 4 nodes. 
The connectivity part is followed by the table of node coordinates: 
coordinates 
         3      7580         0         1 
      2166   -1.8000000000E+01   -8.7000000000E+01   -6.2510218835E+01 
      2167   -1.5000000000E+01   -8.7000000000E+01   -5.5302429785E+01 
      2168   -1.2000000000E+01   -8.7000000000E+01   -5.2346172906E+01 
….. 

where the first column contains the node indices, and the remaining contain the XYZ node 
coordinates in the Cartesian coordinates system. 
Next, the skin node set is defined 
define      node                set                 skin 
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The declaration is followed by the list on node indices where ‘C’ character indicates that there are 
more indices on the next line 
        2166        2167        2168        2169        2170 C 
        2171        2172        2173        2174        2175 C 
        2176        2177        2265        2266        2267 C 
….. 

This is repeated for the upper and lower skull parts: 
define      node                set                 upperskull(shell) 
       20872       20873       20874       20875       20876 C 
       20877       20878       20879       20880       20881 C 
       20882       20883       20884       20885       20886 C 
…. 
define      node                set                 lowerskull(shell) 
       20433       20434       20435       20436       20437 C 
       20438       20439       20440       20441       20442 C 
       20443       20444       20445       20446       20447 C 
….. 

Next lines define the material properties of the elements 
isotropic 
 
         1elastic                                         10         0         0         0material1 

“Isotropic” option allows the user to assume isotropic property of the material. 
  5.000000000000E-01  4.200000000000E-01 0.000000000000000+0 0.000000000000000+0 0.000000000000000+0 
0.000000000000000+0 0.000000000000000+0 0.000000000000000+0 
           1          to       4782 

The first two numbers after the declaration specify the Young’s modulus and Poisson’s ratio, 
respectively. Then geometry of the skin is defined: 
geometry 
 
 0.000000000000000+0 0.000000000000000+0 0.000000000000000+0 0.000000000000000+0 0.000000000000000+0 
0.000000000000000+0 0.000000000000000+0 
           1          to       2391 

followed by the geometry of the skull: 
  2.000000000000E-01 0.000000000000000+0 0.000000000000000+0 0.000000000000000+0 0.000000000000000+0 
0.000000000000000+0 0.000000000000000+0 
        2392          to       4782 

where the first number after the declaration specifies the (uniform) thickness of the elements 
indicated in the second part (element from 2392 to 4782).  
 
Then the springs are defined: 
springs 
     12382         1     20433         11.0000000000000E+00 0.000000000000000+0 0.000000000000000+0 
0.000000000000000+0 0.000000000000000+0         1         0 
         0         0         0         0         1         1         0         0 
… 
     12383         1     20434         11.0000000000000E+00 0.000000000000000+0 0.000000000000000+0 
0.000000000000000+0 0.000000000000000+0         2         0 
         0         0         0         0         1         1         0         0 

In the “springs” option, the first column gives the node number of the first end of the spring and 
the third place for the second end. The second and the fourth positions specify the degree of the 
freedom at the nodes that indicated before it. The next position is the stiffness of the springs (for 
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linear case). At the tenth position, the spring ID is flagged. The end of a Marc input file looks like: 
no print 
end option 

A.2 Linux subroutine  
% use this script to run the simulation in marc 
% first check the file is ready or not  
k=1; 
while k<2 
while exist('mouth_opening_face_input.dat','file')~=2 
    pause(0.5); 
end 
f=dir('mouth_opening_face_input.dat'); 
while f.bytes<=220000 
    pause(0.5); 
    f=dir('mouth_opening_face_input.dat'); 
end 
 
% run simulation in mentat 
!mentat make_mouth_opening_model_V2.proc 
 
pause(30); 
end 

A.3 Marc procedure file 
 
| Created by Marc Mentat 2012.1.0 (64bit) 
*prog_option compatibility:prog_version:ment2012 
| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| Procedure file for creating mouth opening FEM model 
| Input: 
|    - Parameter file "mouth_opening_model_parameters.inproc"  
|    - Database mouth_opening_face_input.mfd containing: 
|                mesh of faces 
|                mesh of skull parts 
|                springs 
| - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| Settings 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| 
*reset 
*new_model yes 
| 
*colormap 2 
*set_links off 
*set_nodes off 



A. Appendices 
 

94 

*elements_solid 
*set_applys off 
*reset_view 
*rot_model_cspace_y_rev 
*rot_model_cspace_y_rev 
*rot_model_cspace_y_rev 
*rot_model_cspace_y_rev 
*rot_model_cspace_x_for 
*rot_model_cspace_x_for 
| 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| Read parameter file 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| 
*exec_procedure mouth_opening_parameters.inproc 
| 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| Add rotation points for lower skull  
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| 
*add_nodes 
0 0 0 
| 
*select_clear 
*select_nodes 
1 # 
*store_nodes rotation_node  
all_selected 
*select_reset 
| 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| Merge database with face description 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| 
*set_merge_renumber off 
| 
|*merge_model mouth_opening_face_input.mfd 
*import marc_read mouth_opening_face_input.dat 
*fill_view 
| 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| Save database 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| 
*save_as_model mouth_opening_simulation.mud yes 
| 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| Defining element sets 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
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| 
*select_elements_nodes skin 
*store_elements skin_elements all_selected 
*select_clear_elements 
| 
*select_elements_nodes lowerskull(shell) 
*store_elements lower_skull_elements all_selected 
*select_clear_elements 
| 
*select_elements_nodes upperskull(shell) 
*store_elements upper_skull_elements all_selected 
*select_clear_elements 
| 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| Defining geometries 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| 
*identify_sets *regen 
*geometry_name skin_thickness 
*add_geometry_elements 
*identify_geometries *regen 
| 
*new_geometry *geometry_type mech_three_shell  
*geometry_name skull_thickness 
*geometry_param thick 
1 
*add_geometry_elements lower_skull_elements upper_skull_elements 
| 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| Defining boundary conditions 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| 
| Clamp upper skull 
| 
*new_apply *apply_type fixed_displacement 
*apply_name clamp_upper_skull 
*apply_dof x *apply_dof_value x 
*apply_dof y *apply_dof_value y 
*apply_dof z *apply_dof_value z 
*apply_dof rx *apply_dof_value rx 
*apply_dof ry *apply_dof_value ry 
*apply_dof rz *apply_dof_value rz 
*add_apply_nodes upperskull(shell) 
| 
| Define linear table 
| 
*new_md_table 1 1 
*set_md_table_type 1 
time 
*table_add 
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0 0 
1 1 
*table_name 
Linear 
| 
| Clamp and rotate rotation point 
| 
*new_apply *apply_type fixed_displacement 
*apply_name Rotation_point_activation 
*add_apply_nodes rotation_node 
*apply_dof x *apply_dof_value x 
*apply_dof y *apply_dof_value y 
*apply_dof z *apply_dof_value z 
*apply_dof ry *apply_dof_value ry 
*apply_dof rz *apply_dof_value rz 
*apply_dof rx *apply_dof_value rx 
| 
| Define here the rotation of the lower skull in radials 
| 
*apply_dof_value rx $rotat 
*apply_dof_value x $xtrans 
*apply_dof_value y $ytrans 
*apply_dof_value z $ztrans 
*apply_dof_table rx Linear 
*apply_dof_table x Linear 
*apply_dof_table y Linear 
*apply_dof_table z Linear 
| 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| Defining rbe2's  for lower skull 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| 
*new_rbe2 
*rbe2_ret_node 
1 
*rbe2_tied_dof 1 
*rbe2_tied_dof 2 
*rbe2_tied_dof 3 
*rbe2_tied_dof 4 
*rbe2_tied_dof 5 
*rbe2_tied_dof 6 
*add_rbe2_tied_nodes 
lowerskull(shell) 
| 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| Defining loadcase 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| 
*new_loadcase *loadcase_type struc:static 
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*loadcase_name Mouth_opening 
*loadcase_value maxrec 100 
*loadcase_option initstress:tensile 
| 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| Defining job 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| 
*update_job 
*add_job_loadcases Mouth_opening 
*add_job_applys clamp_upper_skull 
*add_job_applys Rotation_point_activation 
*job_option strain:large 
*job_option post:binary 
*job_option impd:on *job_option elevar:on 
*job_usersub_file subrou_V1.f 
*add_post_var ecauchy 
*add_post_var eel_strain 
*update_job 
| 
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| - - - - - - - - - - - - - - - - - - - - - - - - - - -  
| 
*save_model 
| 
*job_submit_reset 
*submit_job 1 *monitor_job 
| 
*quit yes 
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