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Abstract

For lighting applications it is important to control the direction of light beams using optical
elements. Recent developments make it possible to design asymmetrical optical elements.
To be able to calculate the shape of an optic that produces the desired light pattern, new
design methods have to be developed. In this thesis the relation between optics and optimal
mass transport will be explored. Using calculus of variations, a system of non linear PDEs
is derived. We pose that an optical design is given by the solution of a Monge-Ampère type
equation with a special boundary condition. Using a recently developed numerical algorithm
by Oberman et al.[BFO12c], a computer program was written for solving this class of Monge-
Ampère equations. Different examples show that the convergence behaviour is between first
and second order depending on the problem set. The algorithm scales very well as the runtime
grows with the 1.3rd power of the number of grid points. To show the practical usability, a
free form lens is computed for a parallel beam source, with very promising results.
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Chapter 1

Introduction

Lighting plays a central role in modern life. We use lights everywhere, from our homes and
offices to the streets. Its use can be utilitarian like in an office, or have a wider purpose by
creating a certain mood like candles. Some lights are used to be able to see things, others
like bike rear lights, are used to be seen by other people.

For many applications there is the wish to be able to direct the light from a lamp or light
source. For example, car lights should illuminate the road and traffic signs without blinding
any oncoming traffic. Recently, the steering of light has attracted much attention as it might
have multiple benefits. First, it can help in producing exactly the lighting needed for the
application. For example a bike light might send most of the light to the street surface, but
some in other directions for your visibility. Second, directing light where it is needed reduces
light pollution. Street lights send some light up into the sky. This obscures the stars for
many people living in urban regions, and can even affect the health of people and animals,
see [Wik12b], [Wik12a]. Third, it reduces cost and energy usage. For example a floodlight
used to illuminate a building sends on average half its light over the roof. The light that
arrives at the building hits the windows and is waisted. So, only a fraction of the light is
used as intended. If you are able to send lamplight were it is useful you can do with a much
smaller lamp and save money and electricity at the same time.

In a lighting shop you find that most lamps and/or luminaires use optical elements to direct
the light. Often this element is a reflector. On closer inspection one would see that the vast
majority of these elements are either rotationally symmetric (e.g. spotlights) or translationally
symmetric (e.g. fluorescent tubes in offices). There are several reasons for using symmetrical

Figure 1.1: Light pattern as desired for car headlights. Source: Wikipedia
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elements: a) it is much easier to design a symmetrical optic, b) until recently it was the only
type of optic that could be easily produced in mass production. However, many applications
demand asymmetrical optical components. For example in street lighting the area illuminated
by a single pole is a big rectangle, which is not centred around the lamp, and consequently
these are not rotational symmetric. Another example is the car head lights, see Figure 1.1,
where you must illuminate the road without blinding oncoming traffic. Recent insights and
advancements in technology make it feasible to design free form optics. There are several
developments that come together to drive this.

Figure 1.2: A ‘peanut‘ nonrotationally symmetric lens for a street light. The asymmetric
cavity and lens steer the hemisphere of light into a rectangular pattern, source http://

led22.ru/ledstat/power/powereng.html, accessed 04-12-2012

Figure 1.3: A set of rotationally symmetric collimators, source [BM07]

The introduction of LED lighting gives rise to a revolutionary change in lighting. First it
increases the efficacy, a measure of the amount of visible light produced per unit of electrical
power input, for many lighting applications. Secondly its thermal properties are different,
allowing the use of different materials like plastics instead of glass. This allows more freedom
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in manufacturing of optical components. Thirdly, the total amount of light produced by LEDs
is not yet at the same level as that of certain old technologies like sodium street lights. The
implication is that a more efficient use of the light is needed to have the same results. For an
example of an asymmetric lens, see Figure 1.2.

The global movement to a more sustainable society means there is a bigger focus by
customers on efficiency. Lamps should provide the same illumination as they are used to, but
not waste any by sending into the sky and they should consume much less electricity. There
is a significant saving to be made as around 19% of all electricity world wide was for lighting
in 2005 [Int06]. New production methods and materials allow more freedom in the design of
optics. Examples are injection molding for glass and plastics, or advancements in technology
of milling machinery, see for example Figure 1.3.

This all requires the design tools to catch up with these developments. Therefore new
design methods have to be invented to help optical designers utilise these new opportunities.
One would like to have tools that can be given a light source specification and a target
intensity. These tools should then output the optical element that achieves this. That means
we search for a so-called inverse method. This name comes as these problems are the inverse
of the direct problem, which is to calculate the light output distribution given a light source
and an optical element.

1.1 Current state

Currently there are only a very limited number of methods for solving these optical problems
[BM07]. The first method is based on multi-parameter optimisation. The designer should
create a quantitative merit function, and an analytically parameterised description of the free
form surface. Then this is optimised with a generic optimisation algorithm. However this has
many drawbacks, as the freedom in surface shape is restricted by the initial parameterised
description, and without a good merit function it will not work.

A second method is the simultaneous multiple surface (SMS) method [BM07] [Wik12c].
It is a constructive method that slowly builds up an optical surface. The method is very
complex, see [Wik12c] for an overview. It was one of the first methods that can handle
extended sources (a line or surface emitting light). One disadvantage is that it only maps
the edge rays of a source to a target without steering the distribution of light in between.
A second disadvantage is that it is a very low order and unstable method, which is very
hard to implement without a lot of user intervention. It is a method based around the full
‘phase space‘ which means that for fully free form optics, the mathematics takes place in a
four-dimensional space.

A third category of methods is based on partial differential equations (PDEs) and optimal
transport. According to Benitez [BM07] the use of PDEs in optical design is rare. However,
it might offer many benefits. Before designing an optical element directly, we can take a step
back for a moment. If we would know a suitable mapping that specifies for each ray coming
from the source where on the target it should go, making an optic is relatively easy. For finding
a mapping we are given the intensity distribution of the light source, and a target intensity
distribution. The main physics principle involved is a conservation law, that states that the
amount of light is conserved. This is now very similar to a big class of known problems called
optimal mass transport. It turns out that for the mathematics it does not matter whether we
are transporting sand piles, or light rays. As optimal transport is a very big field with a lot
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of applications, there exists a lot of research on analysis of these problems. In this thesis the
link between optics and optimal transport is explored, and a numerical method is developed.

1.2 Outline of thesis

This thesis consists of the following chapters:

• In Chapter 2 a short overview of relevant concepts from geometrical optics and lighting
is given.

• Chapter 3 explores the rotationally symmetric situation, as symmetry allows for an
easier analysis.

• This analysis is expanded for asymmetric optics in Chapter 4. We derive a general set
of equations, after which for a different problem a specific equation is shown.

• A numerical solver for the Monge-Ampère equation is described in Chapter 5, including
a discussion of the boundary condition.

• The numerical solver is then used to solve a collection of examples in Chapter 6

• In Chapter 7 everything comes together for calculating the surfaces of a lens based on
this theory.

• Finally we give in Chapter 8 the conclusions and discussion.
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Chapter 2

Geometric Optics and Photometry

The aim of this chapter is to give a short introduction to the terminology and concepts of
lighting and geometrical optics. For a more comprehensive treatment of these concepts the
reader is referred to textbooks as [Hec02] and [PPP07].

2.1 Photometry

In illumination design a lot of physical quantities and units are used, cf. [Mae97, sec 2.2], see
Figure 2.1. To understand them, imagine a single light bulb viewed from a large distance, so
it resembles a point source. Then the following quantities are defined:
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Figure 2.1: Various photometric quantities and their SI units. Image courtesy of Peter Nuyens.
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Figure 2.2: Diagram explaining the different optical effects. From left to right: Reflection,
refraction, refraction at critical angle, total internal reflection

Luminous flux , also called luminous power, is the quantity describing the perceived amount
of light. For example, the total amount emitted by a light bulb or falling on a surface.
The amount of light is the radiated energy per unit time, adjusted for the sensitivity of
the human eye to different colours. The unit of luminous flux is the lumen [lm].

Luminous intensity is the luminous flux per solid angle. The corresponding unit is lumen
per steradian [lm/sr], which is called the candela [cd].

Illuminance is the luminous flux received by a unit area on a surface. The corresponding
units is the lux, which is equal to lumen per square meter [lm/m2]. If the surface emits
the light it is called emittance

In the case a light source has a specified intensity profile I, given as function in spherical
coordinates, then the total flux is easily calculated by integrating over the unit sphere. The
light leaving our source can be manipulated using optics, the topic of the next section.

2.2 Geometrical optics

In this report we restrict ourselves to the domain of geometrical optics as this is enough for
our purpose. This is an approximation where the wave character of light is ignored. This
approximation is valid as long as the typical dimensions in the system are much larger then the
wavelength of the light, which is the case for most illumination optics. In this approximation
light is described as travelling in straight lines called rays. When light rays hit an optical
surface two important phenomena can happen, reflection and refraction. The effect on the
light ray depends on the geometry and material of the optical surface. The geometry of the
surface is often described using the surface normals. In geometrical optics the angles of rays
at an interface are always measured with respect to the surface normal.

2.2.1 Reflection

The simplest effect is when light rays are reflected by an optical surface, see Figure 2.2. This
happens for example on a mirror or on a smooth water surface. The law of reflection states
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that the angle θ1 of the incident ray is equal to the angle θ2 of the reflected ray, i.e.,

θ1 = θ2, for 0 ≤ θ1, θ2 ≤ π
2 . (2.1)

In three dimensions the incident ray, the surface normal and the reflected ray all lie in a plane.

2.2.2 Refraction

If light rays hit the surface of another transparent medium they can be refracted (bend). An
example is light entering water from the air. We have the following situation, a light ray
hits the surface at an angle of incidence θ1 and after passing the interface it continues under
angle θ2 with respect to the surface normal, see Figure 2.2. The refraction angle depends on
a material property of the media involved, namely the index of refraction. Assume the first
medium has index n1 and the second n2 then the refraction is governed by Snell’s law

n1 sin θ1 = n2 sin θ2. (2.2)

If n1 < n2 the light travels into a medium with a higher reflective index and deflects toward
the normal, an example is light entering water from air. The reverse is true when n1 > n2

light enters a medium with a smaller index of refraction and the light is bent away from the
normal. An example is light leaving glass and entering air.

In this last case something interesting can happen. As the rays are deflected away from
the normal we have θ2 > θ1. This means that there exists an angle θc for the incident ray
called the critical angle where θ2 = 90◦. The refracted ray now travels parallel to the surface.
One might wonder what happens if θ1 > θc. Then the ray is completely reflected back into
the medium it came from, according to the law of reflection. This effect is called total internal
reflection (TIR) is illustrated in Figure 2.2.
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Chapter 3

Rotationally Symmetric Optics

In this chapter a description of a rotationally symmetric optical system be given. The use of
a minimisation formulation is shown for some simple examples.

The problem is the setup as seen in Figure 3.1. We have a point source at the origin
sending light along directions in the source set X ⊂ [0, π2 ], with intensity distribution (density)
f : X → R+. An angle at the source is usually denoted with t ∈ X, and is defined as the angle
between the positive x-axis and the ray, counter clockwise. The x-axis is the rotation axis
for the rotational symmetry case. Using some optical component like a lens or reflector the
light is directed in a target direction. The target is the so-called far field, i.e., you look from
a large distance so that the whole system can be regarded as a point source. Therefore, the
target is described only by an angular coordinate representing the direction the light is send
to. This target interval is called Y ⊂ [0, π2 ], and the prescribed target intensity is denoted
by g : Y → R+. Target rays are denoted using an angle θ defined as the angle between the

Figure 3.1: The setup of the optical system. On the left is a point source with intensity
distribution f(t). On the right, in the far field we have the target distribution g(θ). In the
middle is an unknown optical system.
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positive x-axis and the ray.
What we would like to know is the mapping function s : X → Y which maps t 7→ θ(t).

This function tells us exactly which light ray from the source is directed to which direction
at the target. So the mapping assigns to each source angle t a target angle θ, so for brevity
θ(t). One of the most fundamental laws of physics is the law of conservation of energy. Which
states that in this case the amount of luminous flux in the source should equal the amount
in the target. Therefore our problem must be such that the conservation law∫

X̂
f(t) dt =

∫
s(X̂)

g(θ) dθ, (3.1)

is obeyed for all closed subsets X̂ ⊂ X. To compute a mapping it is often easier to formulate
(3.1) as differential equation, i.e.,

f(t) = g(θ(t))|θ̇(t)|. (3.2)

Here θ̇(t) denotes the t-derivative of θ(t). For solutions to this equation to exist, a few
conditions are imposed on the source and target densities:

1. f(t) > 0 for all t ∈ X with f(t) ≥ 0 for t at the boundary of X, and f must be
continuous,

2. g(θ) > 0 for all θ ∈ Y as we have only positive densities, and g is continuous,

3.
∫
X f(t) dt =

∫
Y g(θ) dθ < ∞, both the source and target densities are required to have

a finite energy.

In some of the papers, e.g. [Eva01], f and g are usually treated as measures which have these
properties automatically. The most interesting part of (3.2) is the absolute value of θ̇(t). This
allows for two different solutions. If sgn (θ̇(t)) > 0 then we have a diverging solution where
the light rays will never cross. The condition sgn (θ̇(t)) < 0 leads to a converging solution
where all the rays will cross. Note that a corollary of (3.2) is that θ̇(t) can never be equal to
0 as both f and g are strictly positive in the interior.

To solve the differential equation a boundary condition must be specified. We want the
mapping to be surjective, so the most natural condition is s(X) = Y . A sufficient condition
is s(∂X) = ∂Y [Fro12]. Obviously, the boundary of an interval consists of only two points.
Let X = [t0, t1], Y = [θ0, θ1], then there are two possible boundary conditions, either

θ(t0) = θ0 and θ(t1) = θ1, (3.3a)

or
θ(t0) = θ1 and θ(t1) = θ0. (3.3b)

These options only lead to consistent problems if they are in agreement with the sign chosen
for θ̇(t). So, to solve a problem, we take (3.2) together with a sign for θ̇(t) and one of the
boundary conditions, either (3.3a) or (3.3b). It does not matter whether you choose the first
or the second BC, as θ0 and θ1 are not independent but related through (3.1). Global energy
conservation from (3.1) makes sure that at the other side the boundary condition is also met.
Note that t0 and t1 are the bounds of the set X, which is the support of the function f .
The same is true for θ0 and θ1 as bounds of Y which supports g. This means that these
parameters can not be chosen freely but are part of the problem formulation, and relate
directly to condition 3 above.
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3.1 Segmentation

For design reasons it is often needed to create more freedom, e.g., to be able to optimise with
respect to some merit function. This freedom can be created by dividing X into different
segments. Each of these segments corresponds to a subset of the source set X, and has its
own target. Each segment is allowed to have a different sign for θ̇(t). Then one can create a
parameterised family of solutions by letting the location of the interfaces be parameters, or
alternatively the division of the target density over the different segments. Solving the optical
problem then generates a solution containing the parameters. One can then minimise some
cost function over the solution with this parameter. To make this reasoning more precise,
an exact formulation of this segmentation is required to know the conditions. This section is
formulated as general as possible, without referring to the rotational symmetry,

Consider the domain X and co-domain Y of the mapping s. Assume X and Y are compact,
convex sets. This domain can be partitioned into n segments X1, X2, . . . , Xn. This is done
such that the following properties/conditions holds

1. Each Xi is a closed connected set with a nonzero measure.

2.
⋃n
i=1Xi = X.

3. The measure of Xi ∩Xj is zero if i 6= j.

4. We write Yi = s(Xi) the image of Xi under the mapping s.

5. For the images we need
⋃n
i=1 Yi = Y . Note this is a covering not a partitioning, i.e., not

necessarily disjoint.

6. We define on each Yi a gi ≥ 0 as the target distribution for source segment Xi.

7. We need
∑n

i=1 g
i(y) = g(y) for all y ∈ Y . Energy conservation per segment requires∫

Xi
f(x) dx =

∫
Yi
gi(y) dy.

8. The gi are continuous.

These requirements make sure we get independent problems on each segment. Furthermore,
some nasty problems, e.g. zero measure sets, are excluded by requiring some regularity. The
choice of the sets Yi and the accompanying functions gi introduces a new degree of freedom
in the problem, as it is not fixed, as long as the requirements above are satisfied. It is up to
an optical designer to determine the most appropriate way of segmenting her problem. The
designer can use this freedom to help achieve other design goals/criteria. From here on, we
return to the rotational symmetric situation. For each of the segments we now have exactly
one of three cases.

1. f = 0 on Xi and g = 0 on Yi. That means there is no light in the segment so the
mapping is meaningless (undefined). By allowing these type of segments we can relax
the conditions for a well-posed problem. If f(x) = 0 is in some convex closed subset of
X we can make this into a separate segment, and still solve the problem.

2. f > 0 and g > 0 on the interior of Xi. On the boundary ∂Xi we can allow f = 0.
We choose θ̇(t) > 0 on Xi.

3. f > 0 and g > 0 on the interior of Xi. On the boundary ∂Xi we can allow f = 0.
We choose θ̇(t) < 0 on Xi.
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3.2 Formulation as minimisation problem

One way to use the freedom from segments is to optimise some cost function. The associated
cost function determines in which way an optimal map is sought. A simple example is the
following minimisation using a quadratic cost function comparing the target direction of a
ray to the source direction.

min
θ

{∫
X

(θ(t)− t)2f(t) dt
∣∣ |θ̇(t)| = f(t)

g(θ(t))
and θ(tr) = θr

}
, (3.4)

where tr and θr are reference positions from the boundary condition. Although we are only
minimising over a set containing two solutions (one with θ̇(t) positive, and one with θ̇(t)
negative) it is useful to do some analysis in the one-dimensional case. This simplifies the
formulae so some inside can be gained.

The minimisation problem as posed in (3.4) is further analysed, cf. Section 2.2 from
[?evans2001]. The constraint given by the differential equation can be incorporated into
the minimisation functional using a Lagrange multiplier [CC03]. This means we look for an
extremal for the following functional

J [θ;λ] =

∫
X
F (t, θ, θ̇) dt =

∫
X

(
(θ(t)− t)2f(t) + λ(t)

(
f(t)− |θ̇(t)|g(θ(t)

))
dt, (3.5)

for θ ∈ {s ∈ C(X;Y ) | s(tr) = θr}, where C(X : Y ) isthe set of continuous functions from X
to Y .

For a minimum to occur a necessary condition can be derived by calculating the first
variation of J [θ;λ] or by using the Euler-Lagrange equation (derived by calculating the first
variation in a general case). The first variation of J [θ;λ] with respect to θ(t) is given by

d
dεJ [θ + εδθ;λ]

∣∣
ε=0

=
∫ t1
t0
δθ(t)

{
2(θ(t)− t)f(t)− λ(t)|θ̇(t)|g′(θ(t))

+ d
dt [λ(t)g(θ(t)) sgn(θ̇(t))]

}
dt

(3.6)

for all possible variations δθ(t) continuously differentiable and subject to the boundary con-
dition δθ(t0) = δθ(t1) = 0. This leads to the following equation which can also be calculated
directly using the Euler-Lagrange equation (Euler’s First equation)

2(θ(t)− t)f(t) = λ(t)|θ̇(t)|g′(θ(t))− d

dt
[λ(t)g(θ(t)) sgn(θ̇(t))], ∀t ∈ X. (3.7)

Note that this corresponds to equation (2.13) in Evans [?evans2001]. We can also derive the
variation with respect to λ(t) which would yield the constraint equation. Using segmentation
we can split a problem into subproblems, where we know or choose the sign of θ̇(t). This way
we can reformulate the functional (3.5). This split functional will no longer have absolute
value bars, so the variations are easier. Suppose we have a problem that can be split into two
segments such that X = X+

⋃
X−. For the first segment X+ we choose θ̇(t) > 0, the second

segment X− we choose θ̇(t) < 0. In accordance with the requirements formulated before we
also define the corresponding target sets Y + with density g+, and Y −, with density g−. Then
we can write for the functional
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J [θ;λ] =
∫
X

[
(θ(t)− t)2f(t) + λ(t) ·

(
f(t)− g(θ(t))|θ̇(t)|

)]
dt

=
∫
X+

[
(θ(t)− t)2f(t) + λ(t) ·

(
f(t)− g+(θ(t))θ̇(t)

)]
dt

+
∫
X−

[
(θ(t)− t)2f(t) + λ(t) ·

(
f(t) + g−(θ(t))θ̇(t)

)]
dt.

=: J+[θ;λ] + J−[θ;λ].

(3.8)

If we look carefully at (3.8) we see that the two integrals are defined on disjoint domains,
except the interfaces. Now we have the sum of two positive functionals defined on disjoint
domains that have to be minimised with respect to θ(t). The functions that have to be
varied to find the extrema are completely independent for the two functionals. This means
both functionals can be optimised independently. So we now look for extrema of both the
functionals J+[θ;λ] and J−[θ;λ], and then stitch the solutions together to create a solution
for the combined problem.

Looking at the first segment, the Euler-Lagrange equation with respect to θ (here F
denotes the integrand in the functional), i.e.,

∂F

∂θ
− d

dt

(
∂F

∂θ̇

)
= 0, (3.9)

gives together with the EL equation w.r.t. λ that the extremal of J+ is given by the solution
of {

0 = 2f(t)(θ(t)− t) + λ̇(t)(g+)(θ(t))

0 = f(t)− g+(θ(t))θ̇(t)
∀t ∈ X+ (3.10)

This can be done likewise for the other segment. The first equation in (3.10) is equivalent
with (3.6) where 1 is substituted for sgn(θ̇(t)), demonstrating the simplification created by
choosing a sign for θ̇(t).

3.2.1 Examples

To show how segmenting works, two examples is given. A simple quadratic cost function
is used. A one-segment solution is compared to a two-segment solution. This is done by
assuming θ(t) is smooth, i.e., at least continuously differentiable, on each segment and directly
solving (3.2). Then the solution is put into the cost functional

C[θ] =

∫ t2

t0

(θ(t)− t)2f(t) dt, (3.11)

so we can compare different solutions with respect to this cost. t0 and t2 are the boundary
points of the source set X and t1 is the location of the interface between the segments.
To solve the individual segments, one can use the differential equation directly. Later the
parameterised cost can be minimised directly, so no Euler-Lagrange equation is needed.

In this example the following situation is examined. We have a source with density
f(t) = 1 for −π/2 ≤ t ≤ π/2. The target density is g(θ) = 1/2 for −π ≤ θ ≤ π. So we double
the beam angle, and halve the intensity. It is obvious that the total intensity is the same for
source and target. A one-segment and a two-segment solution are elaborated, the results of
the other cases can be seen in Table 3.1.
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One increasing segment

A mapping with one increasing segment is proposed. This means we look for the solution of
the following system

θ̇(t) = f(t)
g(θ(t)) = 1

1/2 = 2, t ∈ (−π
2 ,

π
2 ),

θ(−π
2 ) = −π.

(3.12)

This is a very simple ODE, with solution θ(t) = 2t. After some calculations based on (3.12)
and (3.11) it can be shown that

C[θ] =
π3

12
. (3.13)

There is no parameter so the cost is a constant.

Two segments, first increasing, second decreasing

Now a solution is proposed consisting of two segments. Each segment illuminates a different
segment of the target. t1 ∈ [t0, t2] is the boundary between the two segments. The first seg-
ment has an increasing solution, the second a decreasing solution.

Figure 3.2: Plot of cost functional as func-
tion of t1 for a two-segment solution, first
segment increasing, second decreasing.

This gives the following system to be solved

θ̇(t) = 2,
θ(−π

2 ) = −π

}
−π

2 ≤ t ≤ t1,

θ̇(t) = −2,
θ(t1) = π

}
t1 ≤ t ≤ π

2 .

(3.14)

After solving we get the following solution

θ(t) =

{
2t −π

2 ≤ t < t1,
−2t+ 2t1 + π t1 ≤ t ≤ π

2 ,
(3.15)

resulting in a cost value of

C[θ] = −2t31
3

+ πt21 −
π2t1

2
+
π3

6
∈ (

π3

12
,
9π3

12
),

(3.16)
which is plotted in Figure 3.2. We see that the
cost is minimal if t1 = π

2 . This corresponds with

one segment with a positive sign for θ̇(t).

The results are shown in Table 3.1 (where + denotes a increasing segment and - denotes
a decreasing segment). From this it can be deduced that a single rising segment is the best.
For the configurations with two segments the best case is the limit where the separation point
moves to the boundary and we have no crossing rays. This is as one would expect. A diverging
solution means the rays are not refracted far, while for a converging solution all rays are sent
into completely different directions.
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Table 3.1: The costs for different segment configurations and the optimal t1 under quadratic
costs

Configuration Cost best t1 best cost

+ π3

12
π3

12

- 9π3

12
9π3

12

+ - −2t31
3 + πt21 − π2t1

2 + π3

6 t1 = π
2

π3

12

- +
2t31
3 + πt21 + π2t1

2 + π3

6 t1 = −π
2

π3

12

Table 3.2: Table of costs depending on the boundary point, for different segment configura-
tions.

Configuration Target Cost best t1 best cost

+ π3

12
π3

12

- 9π3

12
9π3

12

+ - split
5π3−6π2t1+12πt21−8t31

48 t1 = π
2

π3

12

- + split
5π3+6π2t1+12πt21+8t31

48 t1 = −π
2

π3

12

+ + shared
3π3−4πt21

24 t1 = ±π
2

π3

12

+ - shared π3−π2t1
6 t1 = π

2
π3

12

- + shared π3+π2t1
6 t1 = −π

2
π3

12

- - shared
5π3+4πt21

24 t1 = 0 5π3

24
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An example with different target splittings

In this example the source has again a constant distribution f(t) = 1 on −π
2 ≤ t ≤ π

2 .
The target is g(θ) = 2 on θ ∈ [0, π2 ]. This example is worked out for the one-segment and
two-segment solutions. For the latter we consider two options from the infinite number of
possibilities :

• Split targets: Both source and target are segmented. The upper segment is send to
upper target, etc.

• Shared targets: Both source segments illuminate the whole target. The target distri-
bution is modified according to the amount of light coming from each segment. Each
target density is a scaled down version of the total density, proportional to the total
light in the source segment.

For the one-segment solutions the problem statement is the same as in the previous ex-
ample, with slightly different coefficients. For simplicity only the solutions are given. The
results for this case are summarised in Table 3.2.

For illustration, the configuration with a shared target and with two segments, the first
increasing and the second decreasing, is shown. This gives the following problem setup

f(t) = 1

g1(θ) = 2t1+π
π

}
−π

2 ≤ t ≤ t1, 0 ≤ θ ≤
π
2 ,

f(t) = 1

g2(θ) = π−2t1
π

}
t1 ≤ t ≤ π

2 , 0 ≤ θ ≤
π
2

(3.17)

where we note that g1(θ) + g2(θ) = g(θ) for all values of the parameter t1. The targets are
proportional to the size of the segment.

After solving (3.17) together with the conservation law and a boundary condition, we get
the following solution

θ(t) =


π
2
π+2t
π+2t1

, −π
2 ≤ t < t1,

π
2
π−2t
π−2t1

, t1 ≤ t ≤ π
2

(3.18)

resulting in a cost value of

C[θ] =
π3 − π2t1

6
. (3.19)

We see that the cost it minimal if t1 = π
2 at the boundary of the domain. This corresponds

once more with one segment with a positive sign for θ̇(t).
We conclude that the introduction of an extra degree of freedom in the form of the bound-

ary between two segments, allows us to formulate a minimisation problem. The optimum for
these examples was obtained in the case that they reduce to a single segment, which is what
one would expect. This shows that a minimisation formulation for these kind of optical prob-
lems can have merits. As can be seen in (3.10) there is no direct need in the one-dimensional
case as the differential equation for energy conservation can be solved. In higher dimensions,
as we see in the next chapter, this equation has multiple unknowns and the whole exercise
gets some real use. Although there is no direct need for minimisation, there is a use case also
in the one-dimensional situation. An optical designer can use the extra freedom introduced
to optimise her design with respect to other requirements or goals like colour mixing.
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Chapter 4

Free-form Optics

In this chapter the asymmetrical situation is discussed. We start with a point source and
derive a set of Euler-Lagrange equations. Then a different system based on a parallel beam
of light is discussed.

Figure 4.1: The coordinates system for the source distribution in 3D

4.1 Point source

The system we are looking at in general is very similar to the one described in Chapter 3
and Figure 3.1. However, as we have no symmetry we need two coordinates instead of one.
The source rays can be represented as vectors on a subset of the unit sphere X ⊂ S2 ⊂ R3.
Using spherical coordinates a ray can be represented as x = (1, t, u) = cos t i + sin t cosu j +
sin t sinu k ∈ X, with i, j and k the unit vectors of the Cartesian coordinate system and
where t is the angle between the ray and the positive x-axis, and u is the azimuthal angle
measured between the projection onto the yz-plane and the positive y-axis. For simplicity
the radial coordinate is dropped, and any point on S2 is identified by the pair (t, u). This
system is show in Figure 4.1. On this source we have a density function f : X → R+, for
brevity we often write f = f(t, u). At the target we have a target set Y ⊂ S2 and density
function g : Y → R+. The coordinates on the target are denoted by (1, θ, φ) ∈ Y . We are
looking for a mapping s : X → Y which is a vector field which maps (t, u) 7→ (θ(t, u), φ(t, u)).
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From here on s is used to denote the abstract mapping function, while θ and φ are used for
the components. For readability the dependency on t and u are assumed for all appropriate
functions from here on, and not written out explicitly, e.g., read g(θ, φ) as g (θ(t, u), φ(t, u)).

The governing principle is conservation of luminous flux (as special form of cosnervation
of energy), as described by ∫∫

X̂
f(x) dS =

∫∫
s(X̂)

g(y) dS, (4.1)

for all connected closed subsets X̂ ⊂ X, and dS a surface element on S2. In differential form
this reads

f sin t = g(θ, φ) sin θ · |θtφu − θuφt| ∀(t, u) ∈ X, (4.2)

where θt denotes the partial derivative of θ w.r.t. t etc. For this problem to be well-posed
it is required that f and g are positive continuous functions on X and Y , respectively, and
have finite and equal energy, i.e.,∫∫

X
f(t, u) sin t dt du =

∫∫
Y
g(θ, φ) sin θ dθ dφ <∞. (4.3)

The boundary condition needed for (4.2) follows from the requirement that we are looking
for a mapping. This means we require

s(X) = Y. (4.4)

Unfortunately the system described here has no unique solution, because we have two
unknown functions θ and φ with only one equation (4.2). There are many mappings that are
able to transport the light in the correct way. For example imagine that we have two source
rays with the same intensity, one could then swap their targets; although continuity would
usually prevent this. This ambiguity is resolved by looking for the specific mapping among
the ones that solve (4.2) that minimises∫∫

X
c(x, s(x))f(x) dS, (4.5)

for some cost function c : X × Y → R. This formulation is called the Monge transport
problem. Depending on the cost function, there exist theorems about existence and uniqueness
of solutions. In the case of optics it is favourable to minimise the deflection of each light ray.
In mathematical terms this means that the angle between a source ray, and the corresponding
target ray should be as small as possible. This would lead to the cost function

c(t, u, θ, φ) = arccos [(cos t i + sin t cosu j + sin t sinu k) · (cos θ i + sin θ cosφ j + sin θ sinφ k)]
= arccos [cos t cos (θ) + cos (u− φ) sin t sin (θ)] .

(4.6)

4.1.1 Euler-Lagrange equations

In this section we derive a system of equations whith a solution that solves the minimisation
problem formulated at the beginning of the chapter. For simplicity the problem is restricted
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to the case with one single segment with a positive sign for the Jacobian. First combine (4.2),
(4.5) and (4.6) in a more formal way. Define a set of admissible functions

Fadm =
{
s = (θ, φ) : X → Y,

∣∣ f sin t = g(θ, φ) · |θtφu − θuφt| sin θ, s is continuous
}
.

(4.7)
Then we look for

min
s∈Fadm

∫∫
X
c(t, u, θ, φ)f(t, u) sin tdtdu. (4.8)

This can be combined using a Lagrange multiplier λ(t, u). This means we look for a
function s : X → Y that is an extremal for

J [θ, φ;λ] =

∫∫
X

(
c(t, u, θ, φ)f(t, u) sin t+ λ(t, u) · (f sin t− g(θ, φ) sin θ · |θtφu − θuφt|)

)
dtdu.

(4.9)
To determine equations whose solution is the extremal of J [θ, φ;λ] the first variation with
respect to θ, φ and λ has to be calculated.

An extremal of this functional can be found by solving a set of PDEs, which can be
derived using the Euler-Lagrange equation (or by calculating the First Variation). The Euler-
Lagrange equation with respect to θ is given by

∂F (θ, φ, λ)

∂θ
− ∂

∂t

[
∂F (θ, φ, λ)

∂θt

]
− ∂

∂u

[
∂F (θ, φ, λ)

∂θu

]
= 0, (4.10)

where F is the integrand of the integral in (4.9) and equivalent equations can be written for
φ and λ. The derivation is analog to Section 3.2. Just as in the rotational symmetric system
(see Section 3.1), we can define segments to enable us to get rid of the absolute value of the
determinant of the Jacobi matrix. For now it is assumed the sign of the Jacobian is positive.
This results in the PDEs

0 = g(θ, φ) (φuλt − λuφt) sin θ + fcθ(t, u, θ, φ) sin t,
0 = g(θ, φ) (λuθt − θuλt) sin θ + fcφ(t, u, θ, φ) sin t,
0 = f sin t− g(θ, φ) (θtφu − θuφt) sin θ,

(4.11)

where cθ is the derivative of c w.r.t. θ, and cφ w.r.t. φ. Substituting (4.6) in (4.11) results in
0 = g(θ, φ) (φuλt − λuφt) sin θ − f cos θ cos(u−φ) sin t−cos t sin θ√

1−(cos t cos θ+cos(u−φ) sin t sin θ)2
sin t,

0 = g(θ, φ) (λuθt − θuλt) sin θ + f sin t sin θ sin(u−φ)√
1−(cos t cos θ+cos(u−φ) sin t sin θ)2

sin t,

0 = f sin t− g(θ, φ) (θtφu − θuφt) sin θ.

(4.12)

Unfortunately, nor (4.11), nor (4.12) does not bring us much further in finding the map-
ping. This is a system of three coupled nonlinear PDEs. Moreover it is not really clear what
boundary conditions should be applied or how they should be treated. However, it is known
in optimal mass transport [?evans2001] that for a quadratic cost function, the mapping can
be written as the gradient of some convex potential v(t, u). So we have s = ∇v or in compon-
ents, θ = vt and φ = vu. This would clearly simplify the equations. The energy conservation
equation (the third in (4.11)) would become

det(D2v) =
f sin t

g(∇v) sin θ
. (4.13)
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Figure 4.2: Sketch of the set-up for parallel beam optical system

This is an equation of the Monge-Ampère (MA) type. The main motivation for this analysis
is that we know that for certain optical problems the relevant equation is of this MA type.
Furthermore, we have the physical analogy between the transport of light and the displace-
ment of, say, a pile of sand. Together these two facts make a compelling case to look for the
relation between optimal mass transport and optical design. Unfortunately an explanation
is not available (yet). In the next section the optical system for which we have an MA type
equation are discussed.

4.2 Parallel beam

In this section a different optical setup is used, see Figure 4.2. The source is a set X ⊂ R2

in the xy-plane that emits a parallel beam in the z-direction. On this source the emittance
is given by f(x, y) in [lm/m2], using Cartesian coordinates. The light will then hit an optical
surface that is either a reflector or a refractive surface. The light then creates a certain
intensity distribution in the far field. The goal is to determine the surface needed such that
a certain prescribed intensity pattern Ĝ(θ, φ), with units [lm/sr], is created in the far field.
Here θ and φ are the spherical coordinates as defined in the beginning of this chapter, and
we assume Ĝ is defined on a domain Ŷ ⊂ S2.

Just as for the point source we have the conservation of luminous flux and can therefore
write ∫∫

X̃
f(x) dS =

∫∫
s(X̃)

Ĝ(y) dS, (4.14)

for all X̃ ⊂ X, or equivalently in coordinates∫∫
X̂
f(x, y) dx dy =

∫∫
s(X̂)

Ĝ(θ, φ) sin θ dθ dφ. (4.15)

It turns out that for certain optical problems, as we see later, a Monge-Ampère type
equation can be derived. These equations are all of a similar form and therefore we can write
a general problem description, and hopefully build a general solver. For now let v : X → R
be a function describing the unknown optical surface, and let Y ⊂ R2 be the target set on
which a target density g : Y → R is defined. This set Y is not Ŷ and are defined later. Ŷ
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is the physical space on which Ĝ is defined, while Y is a parameter space on which G and g
are functions. For each optical problem we have a luminous intensity Ĝ on a set Ŷ . Using
a transformation we are able to rewrite the problem such that a new density g : Y → R is
created. The general problem then becomes, using the notation D2v for the Hessian matrix
of v. Find v convex such that

det(D2v(x)) = f(x)/g(∇v(x)) for x ∈ X,
∇v(X) = Y,

(4.16)

In this setting v is a potential function that is closely related to the optical surface and whose
gradient s = ∇v is exactly the mapping we were looking for.

During current, ongoing and as of now unpublished research, Prins [Pri12] has derived
a set of equations, whose solution describes the surface of a reflector and a lens. To my
understanding the derivation is based on the physical laws of reflection and refraction in
vector form, together with a relation between the location of the surface and the surface
normals.

4.2.1 Reflector

For a reflector described as v : X → R Prins [Pri12] has shown that the solution is given by∣∣det(D2v(x, y))
∣∣ =

f(x, y)(v2
x + v2

y + 1)2

4G(vx, vy)
, (4.17)

and

G(vx, vy) = Ĝ

(
arccos

(
1− 2

v2
x + v2

y + 1

)
, arctan

(
vy
vx

))
. (4.18)

Introducing the function

g(vx, by) =
4G(vx, vy)

(v2
x + v2

y + 1)2
, (4.19)

and choosing the positive sign for the determinant (which can be done using the segmentation
process as described in Section 3.1) the equation (4.17) can be written as the Monge-Ampère
equation

det(D2v(x, y)) = f(x, y)/g(∇v(x, y)), (4.20)

where f : X → R, g : Y → R and with the boundary condition ∇v(X) = Y . Here Y ⊂ R2 is

defined as the set Y =
{

(y1, y2) ∈ R2
∣∣ (arccos

(
1− 2

y21+y22+1

)
, arctan

(
y2
y1

))
∈ Ŷ

}
= s−1(Ŷ ).

4.2.2 Lens

For a refractive surface Prins, again defines a new transformed function

G(vx, vy) = Ĝ

arccos

nl(v2
x + v2

y) +
√

1 + (1− n2
l )(v

2
x + v2

y)

v2
x + v2

y + 1

 , arctan

(
vy
vx

) , (4.21)

and the corresponding Monge-Ampère equation is given by

|det(D2v(x, y))| =
(v2
x + v2

y + 1)2
√

1 + (1− n2
l )(v

2
x + v2

y)(√
1 + (1− n2

l )(v
2
x + v2

y)− nl
)2

f(x, y)

G(vx, vy)
. (4.22)
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Here nl = n1/n2 with n1 the refractive index of the material before the surface and n2 the
index of refraction after the optical surface. In a similar way as above this can be rewritten
in the form of (4.20). As usual in optics one can see that the reflector equation is the limit
case of the lens by taking nl = −1.
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Chapter 5

Numerical Solution of the
Monge-Ampère Equation

The goal of this chapter is to find a luminous flux conserving mapping s = ∇u that transports
the energy with density f(x), defined on a set X ⊂ Rd to a density g(y) on a set Y ⊂ Rd.
The goal is to find a numerical solution for the potential u : X → R satisfying the following
Monge-Ampère (MA) problem

det(D2u(x)) = f(x)/g(∇u(x)) + cru(xr) for x ∈ X
∇u(X) = Y,
u is convex.

(5.1)

In this system cr > 0 is a weighting factor, and xr is some reference point xr ∈ X. This
addition is necessary to guarantee the uniqueness of the discrete solution, as otherwise u
is only determined up to a constant. The expression ∇u(X) = Y is called the transport
boundary condition (TBC). Although we introduced the potential in the previous chapter
with the letter v, it is usually denoted with u in the literature. For that reason we use u from
here on.

In this chapter a discretisation of te Monge-Ampère equation (MA) is discussed. In Section
5.1 earlier literature is discussed. Section 5.2 describes the general outline of the numerical
algorithm, with the discretisation scheme described in Section 5.3. Two schemes are discussed
in Section 5.4 and Section 5.5 for the stable and the accurate sub schemes. The boundary
treatment is considered in Section 5.6. Lastly, some implementation details are left to Section
5.7.

5.1 Literature on solving Monge-Ampère

When discussing the earlier numerical work on solving the MA equation, a distinction has
to be made between different classes of problems that are solved. Most papers only consider
the MA equation combined with Dirichlet boundary conditions. Among those are the early
works of Froese and Oberman [BFO10,FO11a,FO11b,FO12], who developed a sophisticated
discretisation based on finite difference operators. Other methods are by Dean and Glow-
insky[DG06], which are restricted to regular smooth data, and gradient descent methods by
Chartrand et al. [CVWB09]. An important, and often mentioned approach as it was the first,
is the method based on the computational fluid mechanical approach by Benamou and Brenier
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[BB00]. The biggest disadvantage of their method is the introduction of another dimension
which increases the computational cost dramatically. This is also relevant for most of the
gradient descent methods mentioned before. A method based on a Lagrangian formulation
is by Haber, Rehman and Tannenbaum [HRT10]. A finite element approach is proposed by
Brenner and Neilan [BN12]. For periodic boundary conditions an algorithm was proposed by
Saumier [SAK10]

Solving the MA equation combined with the transport boundary condition, as relevant
for our problems, has not received much attention yet. There is a paper by Sulman et al.
[SWR11] which is based on finding a fixed point of a parabolic version of the MA equation on
a rectangular domain. Recently, Froese has developed two methods for solving the MA eq.
with the transport boundary condition. Her first approach [Fro12] is based on an iterative
scheme, where in each iteration the MA equation is solved with Neumann BCs which are
updated during the iteration. The second approach [BFO12c] is the one that is used in this
report. This approach is based on creating a signed distance function that defines the location
of the boundary for the target set. It builds on the earlier work of Oberman and Froese for
the interior with some improvements. The paper describing the algorithm [BFO12c], was
later split in a theoretical paper [BFO12b] and a numerical paper [BFO12a].

5.1.1 Notes on regularity and convergence

Froese and Oberman comment on the existing literature on this topic [FO11b]. They claim
that most of the other approaches can not handle singular solutions very well, while their
method can. The following problems/difficulties for solving (5.1) are identified

Weak solutions For a lot of problems the solution needs to be found in a suitably weak
sense. The numerical methods must be able to find singular solutions. In this case the
notion used is the viscosity solution [FO11a, Section 2.2].

Convexity Uniqueness requires that u is convex, otherwise −u is also a solution (the one
corresponding to crossing rays). One does not want a numerical method to switch to
one of those randomly, or be stuck in the middle.

Accuracy For two-dimensional problems or higher the directional resolution of a discret-
isation scheme becomes important. However Froese et al. also note that for singular
solutions the accuracy is always low, regardless of the discretisation method used.

Computational cost The computational cost of different techniques differs a lot. However,
the cost of a method may depend on the singularity of the problem. This means there
might not be a universal fastest solver. See also [FO12].

There are two important types of ‘singularities‘. The first is seen on the left in Figure
5.1. In this case the target intensity g has very small values and so we are almost dividing by
zero at the right hand sight of (5.1). This causes the mapping to smear out the light from
the source. If this effect is large there is a big distance between the images of source grid
points. The second type of singularity can be seen on the right of Figure 5.1. Here f takes on
very small values resulting in a mapping from many places to almost the same point in the
target. This means the right hand side of (5.1) becomes almost zero. This of course means
the potential will locally almost loose its convexity. The biggest problem is that the solution
provides no longer an invertible mapping.
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Figure 5.1: An example of solutions which are almost singular.

5.2 Numerical approach

The numerical method is explained in the following steps. First the most abstract structure of
the solver is explained, including some basic definitions around the implementation. Secondly
the two methods for the discretisation of the Monge-Ampère operator are described. Finally
the handling of the boundary is shown.

Before continuing with the discretisation, the constraints on the problem should be spe-
cified. Froese et al. [BFO12c] have proved that her scheme converges under the following
conditions

1. f and g are both L1 with
∫∫
X f(x) dx =

∫∫
Y g(y) dy.

2. f must be a nonnegative function.

3. g must be Lipschitz continuous and strictly positive.

4. The target domain Y must be convex.

5. The source domain X should theoretically be convex, although in practice it turns out
some nonconvex domains can still be handled.

In Chapter 6 it is shown that for certain nonconvex source domains, the algorithm still
produces reasonable results. Note that the only restriction on f is integrability, no continuity
is assumed.

5.2.1 Grid points, domain and other technical details

We start with the discretisation of the computational domain X. For simplicity it is assumed
thatX is a rectangular domain. This can always be constructed by extending f with 0’s. So we
write X = [a1, b1]× [a2, b2] ⊂ R2. We discretize this using Mx and My points for respectively
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the x1 and x2-direction, such that the grid size is constant, so h = (b1 − a1)/(Mx − 1) =
(b2 − a2)/(My − 1). This means that a grid point xi,j ∈ X is given by

xi,j =

[
a1 + h(i− 1)
a2 + h(j − 1)

]
, (5.2)

for i = 1, . . . ,Mx and j = 1, . . . ,My. For the solution u we introduce the following approx-
imation

u(xi,j) ≈ ui,j . (5.3)

At several stages in the algorithm we need to create a vector where each element corres-
ponds to a location in the two-dimensional grid. Therefore it is convenient to define a uniform
way of doing this. For implementation reasons the indexing scheme chosen coincides with the
memory layout of MATLAB matrices. The conversion is given by

k = (j − 1)Mx + i, for i = 1, . . . ,Mx j = 1, . . . ,My, (5.4)

implying k = 1, . . . ,MxMy and this means for example xi,j = xk = x(j−1)Mx+i.

5.2.2 Structure of the solver

The algorithm uses Newton’s method (cf. [MRtTB05, sec 9.6]) to solve the discrete sys-
tem. This is obtained after discretising the Monge-Ampère equation for the interior domain.
At each interior grid point a discretised equation is formulated. Together with a discret-
ised boundary condition at each boundary point this gives M = Mx ·My coupled nonlinear
equations in the M unknowns at the grid points. This system is denoted as

N(u) = 0. (5.5)

This nonlinear system can be solved using Newton iteration for which we need the Jacobi
matrix of the system, defined as

Ji,j(u) =
∂Ni(u)

∂uj
. (5.6)

We can then create the following iterative procedure for solving. Start with some ini-
tial guess u0. Then solve in each iteration J(un)w = −N(un) and update the iterant ac-
cording to un+1 = un + βw. Here β ∈ (0, 1] is a damping factor, it is chosen such that
‖N(un+1)‖1 < ‖N(un)‖1. This means we always have a contraction to a solution, or we stop
for not converging at all. In practise we check if ‖un + βw‖1 < ‖N(un)‖1. If this is not the
case β is halfed and we try again until it is true and we can do the update. If β becomes very
small (≤ 10−10) we stop anyway with a warning that we are not converging.

5.3 The hybrid or filtered scheme

A hybrid scheme is based on a stable monotone scheme, which exhibits convergence to the
solution, although it is relatively inaccurate. This stable scheme can also handle singular
solutions. This is then combined with a computationally cheaper and more accurate scheme.
However this accurate scheme only works for regular smooth solutions. The trick is then to
combine them in such a way that in parts of the domain where the solution is regular the
more accurate scheme is used, and in the singular regions it reduces to the stable scheme. To
this end a filter function is used for the selection of the scheme [FO12, Definition 1].
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Figure 5.2: The filter function S(x).

Definition 5.3.1. (Filter function). A filter function is a continuous, bounded function S,
which is equal to the identity function in a neighbourhood of the origin and vanishes for large
arguments.

As an example, also the filter function we use in the implementation, (see Figure 5.2)
Benamou et al. [BFO12c] propose

S(z) =


z |z| ≤ 1,
0 |z| ≥ 2,
−z + 2 1 ≤ z ≤ 2,
−z − 2 −2 ≤ z ≤ −1.

(5.7)

This is used in general to create a scheme (in the interior domain) of the form

Nk = NM,k + ε(h, dα)S

(
NA,k −NM,k

ε(h, dα)

)
, (5.8)

where N is the filtered scheme (to be combined with the boundary data), NA is the accurate
scheme, NM is the stable monotone scheme, S must be seen as point wise evaluation on
the vector argument and ε(h, dα) is a user chosen parameter, such that ε(h, dα) → 0 when
h, dα → 0. dα is the direction discretisation parameter defined in Section 5.4. One can
note that the difference between the filtered scheme and the monotone scheme goes to zero
as h → 0, and therefore convergence can be proved; see [FO12]. In [BFO12c] a value of
ε(h, dα) =

√
h + dα/10 is used, determined by testing different values. Note that if NA

and NM are sufficiently close together, S is the identity and N = NA. Moreover, when the
difference is large then S = 0 and the scheme reduces to the stable scheme.

5.4 Stable Discretisation

The stable discretisation is based on the observation that by looking in a special direction
for taking the derivatives the Hessian can be diagonalised. The convexity constraint is incor-
porated in the MA-operator. This scheme is made to be able to find weak solutions to the
problem [BFO12c].
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Note that the Hessian matrix D2u(x) is a symmetric matrix with real eigenvalues λ1 ≤
λ2 ≤ . . . ≤ λd where d is the dimension. For our implementation d = 2. By definition u is
convex iff det(D2u(x)) ≥ 0. So the det(D2u(x))-operator and the convexity constrained can
be combined by observing that the function u is convex if the smallest eigenvalue λ1 of D2u
is nonnegative λ1 ≥ 0. This is combined into the operator by defining for any symmetric
matrix M with eigenvalues λ1, . . . , λd

det+(M) =

d∏
j=1

λ+
j (5.9)

where (·)+ := max{·, 0} and similarly (·)− := min{·, 0}. Note that although the convexity
constraint is now absorbed into the operator, which is good, we lost the differentiability of
the operator near singular matrices. In practice the 0 is replaced by a small parameter δ > 0
to make sure it is strictly positive. A typical value is δ = 10−6. We use this det+ operator
instead of det for determining numerical solutions of our problem.

The next step is to define a set V of all orthonormal bases of Rd as

V =
{

(ν1, . . . ,νd)
∣∣νj ∈ Rd,νi ⊥ νj if i 6= j, ‖νj‖2 = 1

}
.

In [FO11a, Lemma 2] it is proved that for a symmetric positive definite matrix M ∈ Rd×d
with eigenvalues λj

det(M) =
d∏
j=1

λj = min
(ν1,...,νd)∈V

d∏
j=1

νTj Mνj . (5.10)

The MA operator, given by det(D2u) can now be defined as

det(D2u) = min
(ν1,...,νd)∈V

d∏
j=1

uνjνj , (5.11)

where uνjνj is the second derivative of u along the direction νj . This operator can be
regularised by bounding, away from zero, as follows

det+(D2u) = min
(ν1,...,νd)∈V

d∏
j=1

(
uνjνj

)+
. (5.12)

Obviously, the value of the determinant is independent of the coordinate system used.
We also know that there exists a basis such that the matrix is diagonal, i.e., the basis of
eigenvectors. Therefore this minimum is realised by the basis consisting of the eigenvectors.

In [Fro12], Froese adds an extra term to (5.12) to decrease any nonconvexity. This term
guarantees that if the iterant is locally nonconvex the operator takes on a negative value.
This leads to a large residual and therefore prevents concave solutions. This modification
gives

det+(D2u) = min
(ν1,...,νd)∈V


d∏
j=1

max{uνjνj , δ}+
d∑
j=1

min{uνjνj , δ}

 . (5.13)
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Next a discrete set of orthogonal, not orthonormal, vectors G is chosen with a directional
discretisation parameter dα. The derivatives are then discretised in space with parameter h
using central differences. The discretised Monge-Ampère operator becomes

MAM [u] ≡ min
(ν1,...,νd)∈V


d∏
j=1

(
Dνjνju

)+
+

d∑
j=1

(
Dνjνju

)− (5.14)

where

Dννui =
1

|ν|2h2
(u(xi + νh) + u(xi − νh)− 2u(xi))

is the finite difference operator in the ν direction, which should be on the discretisation grid.
Some of these directions make wide stencils. At the boundary one has to use interpolation to
fill in for the missing grid points. Note that ui here is the discrete solution indexed using a
single index as described in Section 5.2.1

For the Jacobi matrix, Benamou et al. [BFO12c] show that the gradient ∇NM [u] is equal
to the gradient of the argument of the minimum. So the gradient for the Jacobi Matrix is
evaluated using the ’active’ basis for each point. For more detailed descriptions of the Jacobi
matrix see appendix B.

For the evaluation of the right hand side of the equation (5.1) we need to discretise the
gradient of u. Froese [Fro12] has shown that a simple discretisation is not a good approach.
Therefore the numerical derivatives are taken along the same directions (basis) as are used
in the discrete MA-operator. The gradient is then written as a linear combination of these
derivatives, i.e.,

∇u =

 d∑
j=1

νj · e1

|νj |
uνj , . . . ,

d∑
j=1

νj · ed
|νj |

uνj

 , (5.15)

and uνj is approximated using central differences

uνj =
1

2|νj |h
(u(xi + νjh)− u(xi − νjh)). (5.16)

Combining everything from this section gives the following discretisation for the Monge-
Ampère equation. The discretisation is done using a finite number of directions, the set of
bases vectors is called G, resulting in the following formula for the residual of the stable
scheme:

Nm[u] = min
(ν1,...,νj)∈G


d∏
j=1

max{Dνjνju, δ}+
d∑
j=1

min{Dνjνju, δ}


− f(x)/g

 d∑
j=1

νj · e1

|νj |
uνj , . . . ,

d∑
j=1

νj · ed
|νj |

uνj

 , (5.17)

where the (·)+ operator has been regularised as (·)+ = max{·, δ} for some small parameter
δ > 0, and correspondingly (·)− = min{·, δ}. This to bound the derivatives away from zero.
A typical value is δ = 10−6.
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5.4.1 Worked out stencils

In [Obe08] the different stencils used for the discretisation are described. In this subsection
the numerical details of the different stencils is written out explicitly for the two-dimensional
situation. In most examples they use a set of 9, 17 or 33 points stencils, this be replicated
here, see Figure 5.3 for a visual representation.

Figure 5.3: Table 1 and Figure 1 from [Obe08]

The stencils are of the form

(Dννui,j)
+ = D+[i, j; a, b] =

1

(a2 + b2)h2
(ui+a,j+b + ui−a,j−b − 2ui,j)

+ . (5.18)

Note that if one of the vectors in a certain basis is given by (a, b) the other vector is (−b, a)
by orthogonality. Therefore we can describe a basis in R2, with just the first vector.

The 9-point stencil

In this stencil the minimum is taken over two direction sets, i.e., G = {(1, 0), (1, 1)}}. This
means that combined with (5.14), we get the following discrete operator for the interior of
the domain

MA[ui,j ] = min
{

D+[i, j; 1, 0]D+[i, j; 0, 1] +D−[i, j; 1, 0] +D−[i, j; 0, 1],
D+[i, j; 1, 1]D+[i, j;−1, 1] +D−[i, j; 1, 1] +D−[i, j;−1, 1] } (5.19)

For this stencil we do not need to do anything special near the boundaries.
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The 17-point stencil

This stencil incorporates also the directions of the 9-point stencil. The extra directions are
(2, 1) and (1, 2), resulting in G = {(1, 0), (1, 1), (2, 1), (1, 2)}}. We get the following scheme.

MA[ui,j ] = min
(a,b)∈G

{
D+[i, j; a, b]D+[i, j;−b, a] +D−[i, j; a, b] +D−[i, j;−b, a]

}
(5.20)

Boundary modifications As mentioned in [Obe08] it is necessary to make modifications
near the boundary as not all points in the stencil are available. This is solved by modifying
the scheme to use an intermediate point at the boundary whose value is determined using
quadratic interpolation along the boundary. As an example, suppose we need to calculate
D[i,My − 1, 1, 2], then the value in j + b = My + 1 is not available. Then we compute

D[i,My − 1; 1, 2] =
1

3
4(12 + 22)h2

(
2ui+1/2,j+1 + ui−1,j−2 − 3ui,j

)
, (5.21)

where ui+1/2,j+1 is calculated from the interpolation

ui+1/2,j+1 = −1

8
ui−1,j+1 +

6

8
ui,j+1 +

3

8
ui+1,j+1. (5.22)

The 33-point stencil

This stencil incorporates also the directions of the 17-point stencil. Therefore only the extra
directions have be to specified, which are (3, 1), (3, 2), (2, 3) and (1, 3). Making in total the
set G = {(1, 0), (1, 1), (2, 1), (1, 2), (3, 1), (3, 2), (2, 3), (1, 3)}, and MA-operator becomes

MA[ui,j ] = min
(a,b)∈G

{
D+[i, j; a, b]D+[i, j;−b, a] +D−[i, j; a, b]D−[i, j;−b, a]

}
. (5.23)

This version is not implemented by us due to the complications at the boundary which
are more difficult than the 17-point stencil.

5.5 Accurate discretisation

For the accurate scheme a standard centred finite difference approach is used [Fro12]. The
Monge-Ampère equation takes the form

ux1x1ux2x2 − u2
x1x2 = f(x1, x2)/g(ux1 , ux2). (5.24)

The finite difference discretisation operator is given by

MAA[u] = (Dx1x1u)(Dx2x2u)− (Dx1x2u)2 − f(x1, x2)/g(Dx1u,Dx2u), (5.25)
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with the finite difference operators defined as

[Dx1x1u]i,j =
1

h2
(ui+1,j + ui−1,j − 2ui,j),

[Dx2x2u]i,j =
1

h2
(ui,j+1 + ui,j−1 − 2ui,j),

[Dx1x2u]i,j =
1

4h2
(ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1),

[Dx1u]i,j =
1

2h
(ui+1,j − ui−1,j),

[Dx2u]i,j =
1

2h
(ui,j+1 − ui,j−1).

5.6 Boundary condition

The interior is now discretised. The transport boundary condition is given by

∇u(X) = Y. (5.26)

It is claimed by Froese [Fro12], on unclear arguments refering to others, that it is sufficient
to demand that the source boundary is mapped to the target boundary

∇u(∂X) = ∂Y. (5.27)

This BC is implemented by creating a nonlinear equation for each grid point on ∂X
that is local, and can still enforce the correct behaviour. The idea behind the approach of
[BFO12c, Section 2] is to define a convex function H with the property that H(y) = 0⇔ y ∈
∂Y . This results in the the following nonlinear local boundary condition

H(∇u(x)) = 0 for x ∈ ∂X. (5.28)

In the paper they suggest the use of the signed distance function, i.e.,

H(y) =

{
+ dist(y, ∂Y ) y /∈ Y,
−dist(y, ∂Y ) y ∈ Y, (5.29)

where dist(y, ∂Y ) = miny0∈∂Y ‖y − y0‖2.

The next step is to discretise this boundary condition. To this purpose Benamou et
al. [BFO12c] rewrite the function H using the Supporting Hyperplane Theorem [Wik12d],
which states that for each point on the boundary of a convex set there exists a supporting
hyperplane. Using n to denote the outward unit normal to ∂Y , let n(y0) denote the normal
at point y0 and let y(n) denote a point on ∂Y with normal n then the following statements
can be made.

H(y) = max
y0∈∂Y

{n(y0) · (y − y0)} ,

= max
‖n‖=1

{n · (y − y0(n))}

= max
‖n‖=1

{y · n−H∗(n)}
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where H∗ is an auxiliary function defined as

H∗(n) = max
y0∈∂Y

{y0 · n} .

The first step is going from taking the normal at each boundary point, to looking at all
possible normals, and the corresponding point on the boundary. For a detailed explanation
and derivation of the discretisation, see Section 2 of [BFO12c]. In the discrete case we have
to represent our boundary with a discrete set of normal vectors. First we need an important
lemma.

Lemma 5.6.1. If X is a convex domain, mapped by ∇u to the convex set Y = ∇u(X), then
for a point x ∈ ∂X with image y = ∇u(x) ∈ ∂Y , the normal vectors n(x) at x and n(y) at
y make an acute angle, i.e.,

n(x) · n(y) ≥ 0

This means we can restrict ourselves in the evaluation of H to normal vectors making an acute
angle with the unit outward normal at x. (At a corner the intersection of the allowed sets for
the various normals has to be used.) As an example Benamou et al. give the directions at the
left boundary of a square domain. That means the normal n(x) = (−1, 0). So the allowed
directions are

Γ = {n = (n1, n2|n1 < 0, ‖n‖ = 1}.

We can discretise this at any point using an upwind scheme

H(∇u(xi,j)) = max(n1,n2)∈Γ{∇u(xi) · n−H∗(n)}
≈ max(n1,n2)∈Γ

{
max{n1, 0}ui,j−ui−1,j

h + min{n1, 0}ui+1,j−ui,j
h

+ max{n2, 0}ui,j−ui,j−1

h + min{n2, 0}ui,j+1−ui,j
h

−H∗(n1, n2)}

(5.30)

For extra accuracy we also implemented a 3-point upwind difference scheme, instead of the
2-point one. This helps to reduce the error near the boundaries for smooth problems. In
Section 6.1, examples show the effect on the accuracy. It is important to realise that this
method uses the implicit assumption that the target set Y is convex, but not necessarily
rectangular. Otherwise the identification between normal vectors and boundary points does
not work.

5.7 Implementation details

For this numerical approach to be complete there are some important details left to discuss.
First the Jacobi matrix as it is fundamental to the Newton method. Second, the initialisation
and stopping criteria of Newton’s method are described. Finally this chapter is concluded
with a discussion on the interpolation and extrapolation method used during the numerical
calculations.

We also note that we implemented this algorithm first in MATLAB. Later we ported
the calculation of the residuals and the Jacobi matrices to C++ running as MEX-files in
MATLAB. This means we have a program written partly in MATLAB and partly in C++.
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5.7.1 Jacobi matrix

In the previous section only the discretisation of the MA equation itself was discussed. For
Newton’s method also the Jacobi matrix must be calculated. For the Jacobi matrix it is
pointed out in [FO12] that it can be written as a combination of the Jacobi matrix for the
stable method ∇NM and the accurate scheme ∇NA as

∇Nk,l =

(
1− S′

(
NA,k −NM,k

ε(h, dθ)

))
∇NM,k,l + S′

(
NA,k −NM,k

ε(h, dθ)

)
∇NA,k,l (5.31)

where for the filter from (5.7) the derivative is given by

S′(x) =


1 |x| < 1
−1 1 < |x| < 2
0 |x| > 2.

(5.32)

As we do not want the coefficients before the subscheme Jacobi matrices to become negative,
we approximate this with

∇̃N[u] =

(
1− S′

(
NA −NM

ε(h, dθ)

))
∇NM + max

{
S′
(

NA −NM

ε(h, dθ)

)
, 0

}
∇NA (5.33)

The elements of the Jacobi matrices of the various schemes can be found in Appendix B.

5.7.2 Initialisation and stopping criteria

For Newton’s method it is very important to start with a good initial guess, otherwise con-
vergence is not guaranteed. Unfortunately Benamou et al. [BFO12c] do not explain what
they use for this algorithm. From their earlier papers, it can be extracted that they propose
to use a numerical solution of

∆u0(x) = f(x)/g(x− x0), (5.34)

where x0 is a reference point in Y . The key question then is which boundary conditions to
use. This suggestion was made in the context of the MA-equation with Dirichlet boundary
conditions. For a simple rectangular target this could be implemented with Neumann bound-
ary conditions as they are equivalent to the transport boundary condition. By mapping the
edges of the source to the corresponding edges on the target the boundary condition is satis-
fied. For example take X = Y = [0, 1]2. Then sending the right edge at x1 = 1 to the right
edge of the target at y1 = 1 means that we need ∂u

∂x1
|x1=1 = 1.

However, this method is relatively expensive, and it does not work for non-rectangular
geometries. In general the following observations were made:

1. u0 must be a continuous convex function on X.

2. For a general rectangular source domain mapped to a rectangular target, a simple linear
mapping can be specified.

This was used to define a quadratic function on X whose gradient maps X to a rectangular
bounding box which fully includes Y . It turns out that this works very well for almost all
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examples tested. Suppose we write X = [a1, b1]× [a2, b2] and Y ⊂ [c1, d1]× [c2, d2]. Then the
initial guess is written as

d1 − c1

b1 − a1

1
2x

2 +
b1c1 − a1d1

b1 − a1
x+

d2 − c2

b2 − a2

1
2y

2 +
b2c2 − a2d2

b2 − a2
y − ur. (5.35)

Note that for example ∇u(a1, a2) = (c1, c2).

Another important aspect of Newton iteration is when to stop. There are two important
quantities involved. The first is the residual vector N(u), the second is the update vector w.
If they are both small, it is reasonable to conclude we are close to the solution, or at least
as close as the iterations can bring us. In practice the algorithm continues until all of the
following are true

β

h

‖w‖1
‖u‖1

< tol1, (5.36a)

β

MxMy
‖w‖1 < tol2, (5.36b)

‖N‖1
MxMy

< tol3. (5.36c)

for some user chosen tolerances tol1, tol2 and tol3 and β is the damping parameter of the
Newton iteration. Typical values for these threshold are tol1 = 10−4 and tol2 = tol3 = 10−5.

5.7.3 Interpolation and extrapolation

During the numerical solution procedure we need to be able to evaluate the target density
g(y1, y2) as part of the right hand side of (5.1) for any point y = (y1, y2) ∈ R2, this means not
only restricted to the target set Y , but sometimes outside it. This is due to the fact that the
iterant is not a perfect mapping, and may send some parts of the source outside the target
area, before it is restricted by the boundary condition. Moreover, even inside Y we can not
restrict ourselves to grid point as the image under the mapping of the source grid, can be any
point. In practice g is often specified by the user as a table of values on grid points. These
observations lead us to the need to use an interpolation routine for the evaluation of g, and
sometimes also an extrapolation method for extending the functions.

Interpolation

For determining an interpolation algorithm the following was taken into consideration

• The function g is continuous, but its derivatives need not be continuous. This is problem
dependent so in general we can only assume Lipschitz continuity.

• This means any higher order and smooth interpolation algorithm is unsuited.

• It must be computationally cheap as there are many evaluations during the calculation
of the algorithm.

Therefore we decided that bilinear interpolation is the most suitable way to accomplish this.
The implementation is based on the implementation in [PTVF07].
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Extrapolation

For the extension of the density outside the domain, the situation is more complex. According
to [BFO12c] we need to find a Lipschitz continuous and positive extension of the function
g. They refer to [Obe05] for details. However the procedure mentioned in [Obe05] is very
complex and computationally intensive. Therefore an alternative is needed. We have the
following requirements

• The function must be extended in a continuous way.

• The derivative should stay bounded, i.e. the Lipschitz constant should not increase.

• It should allow fast evaluation.

The method chosen is to extend the function by the average value of g on the grid, when
we are 4 times rY from the boundary, where rY is the maximum distance between nay two
points in Y . In the space between the edge of the grid, and the domain with average value,
a simple bilinear interpolation between this average and the value in the closest point on the
grid is used. This way the function is extended continuously and after some distance will
obtain a uniform positive value. This method guarantees the extension is strictly positive as
g is strictly positive.
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Chapter 6

Numerical Examples

In this chapter the numerical results for some selected problems are shown and discussed.
The examples are chosen such that the different aspects of the code can be shown. Before
discussing the results the default parameters are described. All examples in this chapter are
ran using the following parameter set, unless specified otherwise. For definitions see Appendix
C.1.

Mx = 257 My = 257 Ny = 32

maxit = 40 rtol = 10−4 atol = 10−5

stencil = 4 delta = 10−6 H scheme = 1

debug mode = false min damping = 1 init damping = 1

anchor weight = 1

6.1 Smooth example
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Figure 6.1: The source (a) and target (b) densities from (6.2)

The first test is an example from Benamou et al.[BFO12c, Section 5.3.1.] for a problem
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on a square source domain and a corresponding square target. First define the function

q(z) =

(
− 1

8π
z2 +

1

256π3
+

1

32π

)
cos(8πz) +

1

32π2
z sin(8πz). (6.1)

The problem is then given by

X =[−1
2 ,

1
2 ]2, f(x1, x2) =1 + 4

(
q′′(x1)q(x2) + q(x1)q′′(x2)

)
(6.2)

+ 16
(
q(x1)q(x2)q′′(x1)q′′(x2)− q′(x1)2q′(x2)2

)
,

Y =[−1
2 ,

1
2 ]2, g(y1, y2) =1, (6.3)

and the densities are plotted in Figure 6.1. Benamou also gives the analytical solution as

(x1, x2) 7→ (x1 + 4q′(x1)q(x2), x2 + 4q(x1)q′(x2)). (6.4)
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Figure 6.2: The image of a regular grid on the source under the numerical solution of problem
(6.2).

The mapping created from the numerical solution is plotted in Figure 6.2, and the corres-
ponding error in Figure 6.3. The algorithm ran twice. The first time with only the two-point
scheme on the boundary, the second time with a three-point scheme. As can been seen in
Figure 6.3 the error reduces dramatically by two orders of magnitude. The run time for the
two-point scheme was 9.89 seconds resulting in an overall error in the 1-norm of 6.73 · 10−4,
while the three-point scheme was 11.18 seconds with an error of 2.04 · 10−5. In all cases the
number of iterations is 7.
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(a) H scheme=0 (b) H scheme=1

Figure 6.3: The pointwise error for the two-point (a) and three-point (b) schemes for the
boundary discretisation

For both cases also convergence test have been conducted. This means the algorithm was
applied for different grid sizes (27 + 1,28 + 1,29 + 1 and some in between to have more data
for fitting) and the errors and run times can be found in Table 6.1. From this table we see
that the three-point scheme gives us quadratic convergences while the two-point scheme is
only linear. Furthermore the runtime scales like M1.2 respectively M1.24 where M is the total
amount of points (M = Mx ·My).

Table 6.1: Distance between exact solutions and numerical solutions for the mapping from
(6.2) in the 1-norm, including also computation times, see also Figure 6.4

Mx Runtime 2pt (s) Error 2pt Runtime 3pt (s) Error 3pt

129 3.1 1.1 · 10−3 2.3 3.9 · 10−5

193 6.1 7.3 · 10−4 6.3 1. · 10−5

257 11 5.4 · 10−4 11 9.9 · 10−6

385 31 3.6 · 10−4 34 4.4 · 10−6

513 55 2.7 · 10−4 67 2.5 · 10−6

769 150 1.8 · 10−4 190 1.1 · 10−6

These results are very interesting as the paper by Benamou et al. [BFO12c] claims that
for this problem there should be quadratic convergence even with the simple scheme on
the boundary. The fact that we do not observe this might point to an implementation
error. However, as the three-point scheme does give quadratic convergence this is strange.
Surprisingly the run-times grow only very modestly and are in line with the results from
Benamou et al. who calculated M1.3. The biggest practical restriction using large grids is not
computing times but memory usages. On my test machine (a laptop with a Dual core 2.53
GHz processor and 4 GB of memory running Windows 7, MATLAB R2011a) the grid size of
Mx = My = 769 is about the largest that can be done. The most memory usage is observed
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Value Standard Error
Error 2pt Intercept -0.81529 0.00552

Slope 1.01715 0.0022
Error 3 pt Intercept -0.19996 0.005

Slope 1.99601 0.00199

Figure 6.4: Plot of convergence results from Table 6.1

when MATLAB is solving the linear system.

6.2 Examples exploring geometries

In this section several examples using different geometries are shown.

6.2.1 Square to circle

A simple test case for the boundary condition is to see how it handles the transport of a
uniform density on a square to a uniform density on a circle. The problem is defined as

X =
[
−1

2 ,
1
2

]2
, f(x1, x2) =

π

4
, (6.5)

Y =
{

(y1, y2) ∈ R2|y2
1 + y2

2 <
(

1
2

)2}
, g(y1, y2) =1. (6.6)

Calculating the numerical solution for such a geometry we obviously require more normals
on the boundary compared to the square of the previous example, therefore Ny is set to 512.
This results in the mapping shown in Figure 6.5. The calculation is relatively expensive with
63 seconds (compare with 11 sec, for the previous example on the same grid size), using
38 iterations (compared to 11). The most interesting is of course the approximation of the
circular target domain. As can be seen in Figure 6.5b the approximation is good. The reverse
problem, with the source and target swapped can also be solved, as shown in Figure 6.6.
The mapping computed from the inverse problem, can itself be inverted, see Section A, and

43



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

y

Mapping

(a) Full solution ∇u(X)

−0.42 −0.4 −0.38 −0.36 −0.34 −0.32 −0.3 −0.28 −0.26
−0.42

−0.4

−0.38

−0.36

−0.34

−0.32

−0.3

−0.28

−0.26

x

y

Region of Interest of Mapping

(b) Detailed plot of subset of mapping.

Figure 6.5: The image of a regular grid after transforming to a circle (6.5)
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Figure 6.6: The image of a rectangular grid in a circle after transforming to a square (6.2).
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compared to the direct mapping. However, this problem is much harder as the new source
domain is a circle which is extended with zeros to a square. Although it works reasonably
well it does introduce some inaccuracies. The comparison between direct problem and the
reversed gives in most points an difference of O(h). This suggest that the results from directly
calculating and trough the inverse mapping are consistent with each other.

6.2.2 Ellipse to ellipse
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(a) Source ellipse
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(b) Numerical image of the source ellipse

Figure 6.7: The image of a regular grid on the source under the numerical map calculated for
6.2.2

In Figure 6.7 you see the numerical solution for mapping an ellipse with uniform density
to a different ellipse with the same uniform density . This example is taken from Benamou
et al. [BFO12c, Section 5.3.2]. The ellipses are defined using matrices Ax and Ay. Let B be
the unit ball in R2 then X = AxB, Y = AyB, where

Ax =

(
0.8 0
0 0.4

)
,Ay =

(
0.6 0.2
0.2 0.8

)
.

Comparing the numerical solution with the analytical solution provided by Benamou et al.
for different number of grid points shows that the error is of order h which agrees with their
findings. Note that the need to extend the source with zeros, introduces a singularity to this
problem that makes it hard to find the right values of the solver parameters needed for the
best results.

6.2.3 Nonconvex source domain

In this example a nonconvex source domain is used to put the algorithm to the test. We take
a disk with a hole in the middle with uniform density as a source, and a disk with uniform
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Figure 6.8: The image of a regular grid on a disk after mapping with the numerical solution
of (6.7) to a square.

density as a target, i.e.,

X ={(x1, x2) ∈ R2|0.252 < x2
1 + y2

1 < 0.52}, f(x1, x2) =1 (6.7)

Y =
{

(y1, y2) ∈ R2|y2
1 + y2

2 < 0.52
}
, g(y1, y2) =0.75. (6.8)

This problem does not satisfy the theoretical requirements, the others do, for the algorithm to
work. The source domain is nonconvex and also not even simply connected. For this example
a grid size of 192 by 192 points is used. It turns out that the solution is very sensitive to
changes in many parameters. The result is shown in Figure 6.8. One should avoid these kinds
of geometries as the results are unpredictable. The good news from this example is that these
kind of singular problems do not cause the algorithm to break down. The bad news is that
the results are clearly not very accurate as the hole is not completely filled.

6.3 Challenging smooth example

From Maes [Mae97, Section 3.3.3., Example 3.3.3] an example is used that is known to stress
existing algorithms in the symmetric case. The example was extended to the full domain by
rotation around the origin. The problem is described by:

X =
[π

4
,
π

2

]2
, f(x1, x2) =1, (6.9)

Y =
[
−π

8
,
π

8

]2
, g(y1, y2) =

(
4π

π2 + 64y2
1

)
·
(

4π

π2 + 64y2
2

)
. (6.10)

The analytical solution is given by

∇u =
π

8

(
tan

(
2x1 −

3π

4

)
, tan

(
2x2 −

3π

4

))
. (6.11)
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Figure 6.9: The image of a regular grid on the source under the numerical solution of (6.9)

The numerical solution is shown in Figure 6.9, and convergence results are shown in Table
6.2. The results are very surprising. For both boundary schemes the total convergence is
first order, although the three-point scheme gives and error of half the size as the two-point
scheme. The reason for his lower order behaviour is unclear as the functions involved are
all smooth and the geometry is easy. Obviously it might be that there is a mistake in the
computer code.

Table 6.2: Distance in 1-norm, divided by the number of points, between exact solutions and
numerical solutions for the mapping from (6.9), including also computational time

Mx Runtime 2pt (s) Error 2pt Runtime 3pt (s) Error 3pt

129 11 3.5 · 10−3 11 1.8 · 10−3

193 20 2.3 · 10−3 18 1.2 · 10−3

257 38 1.7 · 10−3 42 8.7 · 10−4

385 90 1.2 · 10−3 140 5.8 · 10−4

513 220 8.6 · 10−4 430 4.3 · 10−4

6.4 Example with a discontinuous source density.

In this example based on Maes [Mae97, example 3.3.4] we use a piecewise continuous source
density and a uniform target density. The result is given in Figure 6.10. The problem is
specified as a piecewise constant function in the first coordinate multiplied with the same
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Figure 6.10: The image of a regular grid on the source under the numerical solution of (6.12)

function in the second coordinate:

X =[−1

4
,
1

4
]2, f(x1, x2) =


6 x1 < −1

8
2 −1

8 < x1 <
1
8

4 x1 >
1
8

 ·


6 x2 < −1
8

2 −1
8 < x2 <

1
8

4 x2 >
1
8

 (6.12)

Y =[−1

4
,
1

4
]2, g(y1, y2) =1. (6.13)

In Figure 6.10 one can nicely see how the grid cells are compressed or expanded independently
along the two directions. The abrupt change in source density is captured accurately as an
abrupt change in the density of the grid lines of the mapping. Plotting the solution after
each iterations allowed us to observe that around the discontinuities artifacts arose. These
artifacts are straightened out quickly by the algorithm and disappear. This problem took 18
iterations in 31 seconds to compute the solutions shown.

6.5 Program profiling

It is often insightful to know how much computing time the different parts of the program cost.
To generate good estimates it is important to take a big task, to eliminate any initialisation
or plotting from the estimates. we took the calculation of the second lens of Chapter 7 on a
grid of 768 by 768 points. The boundary was defined using 3072 points and also 3072 normal
vectors. This problem ran for 89 iterations before stopping. In Table 6.3 a list of most time
consuming functions is given and their run times. From this we can see that more than 80 %
of the computation time is spend in builtin routines of MATLAB, which are highly optimized.
Therefor any speed up in the computation must come from changing the algorithm, as the
implementation has not much room for improvement.
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Table 6.3: Table containing run times of the most computationally costly routines

Task Code type Run time (s) Relative runtime (%)

Precalculating H∗ MATLAB 42.6 2.5
Calculating Residual N C++ 70.5 4.2
Calculating elements of Jacobi matrix C++ 102.2 6.1
Creating sparse Jacobi matrix MATLAB (built-in) 210.9 12.6
Solving linear system MATLAB (built-in) 1196.7 71.6

Sum of above tasks Mixed 1623.1 98.5

Total calculation Mixed 1671.6 100

Using the windows task manager we can see that both the cpu-usage and memory usage
follow a periodic pattern coinciding with the iterations. For this extreme example the memory
usage of MATLAB averages around 2.5 GB and peaks at around 3.5 GB.
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Chapter 7

Parallel Beam Lens

To test the theory from Section 4.2 and see how the program performs for real problems we
are going to design a lens. The setting is that of an incoming uniform parallel light beam,
with intensity f(x) = 1 on a square domain X = [−0.18, 0.18]2. The target is defined in
spherical coordinates as

Ĝ(θ, φ) =

{
1 θ < 5

180π
0, θ > 5

180π.
(7.1)

The first surface of the lens is flat, so it has no influence on the light beams. We now calculate
the second surface, under the assumption that the lens material has an index of refraction of
1.49, and the surrounding medium is air. The calculated lens is shown in Figure 7.3.

The numerical results were transfered to the illumination simulation program LightTools.
LightTools is a profession simulation package for illumination optics. Given a model of an
optical system including sources, numerous simulations can be run. We use the Monte-Carlo
ray trace functionality. This means that the program picks a random position on the source
and send a ray from there. It calculates the reflections and / or refractions the ray undergoes
while travelling trough the system. Finally it record the direction the ray leaves this system.
Simulating a large amount, e.g. millions, of rays and collecting the simulated rays in bins
on a grid we can estimate the intensity distribution in the far field. This process introduces
errors due to the numerical approximations of the surfaces involved, and due to the statistical
noise introduced by the random character of the ray tracing process. Using this software a
Monte-Carlo ray trace was performed using 107 rays. The resulting intensities are show in
Figure 7.1, where the intensity is plotted on a so called uv-grid which is regular. The relation
between this grid and the coordinates θ and φ is given by

θ =
√
u2 + v2 (7.2a)

φ = arctan
(v
u

)
+ π. (7.2b)

The intensity shown in the image is not equal to 1, as there is a scaling involved depending on
the luminous flux produced by the source. Using the transform we can calculate the following
point wise error estimate e(θ, φ), where the ray trace results are denoted using Gray,

e(θ, φ) =
|G(θ, φ)−Gray(θ, φ)|

G(θ, φ)
. (7.3)

The error is shown in Figure 7.2. These results are very good, as a beam of the expected
shape and size is produced. However, the error is an order of magnitude smaller than the
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error expected from statistical deviations produced in the Monte-Carlo process. The most
probable cause is that the error estimates produced by LightTools are upper bounds and for
such simple intensity function the accuracy is higher.

As we can now design optics that make a beam, we would like to make a more interesting
and challenging example. As the goal of this project is to look for asymmetric optics, we
try something asymmetric. A nice target density representing a flower like structure with 7
leaves is given in

Ĝ(θ, φ) = 2 exp

(
− θ2

(π/20)2

)
(0.8 + 0.2 sin(30θ)) (1 + 0.05 sin(7φ)) (7.4)

on the set Ŷ = [0, 5
180π] × [−π, π]. This target density was transformed numerically using

(4.21) and (4.22). The result is visualised in Figure 7.4. From the coordinate transformation
of (4.21) we can derive that this density is defined on the disk with radius approximately
(after rounding) of 0.18, so this is our Y .

The following Monge-Ampère problem was now formulated for the algorithm

X =[−0.18, 0.18]2, f(x1, x2) =0.31 (7.5)

Y =
{

(y1, y2) ∈ R2 | y2
1 + y2

2 < 0.182
}
, (7.6)

(7.7)

where g(y1, y2) is as shown in Figure 7.4, and the value of f is chosen such that the integrals
of f and g are equal. The solver was set using these parameters

Mx = 257 My = 257 Ny = 513

maxit = 200 rtol = 10−4 atol = 10−6

stencil = 4 delta = 10−6 H scheme = 1

debug mode = false min damping = 0.25 init damping = 0.125

anchor weight = 4.

The resulting lens was simulated again in LightTools, a screenshot of the system is shown
in Figure 7.8. The simulated intensity is shown in Figure 7.5, compare with the theoretical
target in Figure 7.6. We can very nicely see the the features of leaves. The error we calculated
is plotted on the same uv-grid as the solution in Figure 7.7. It is clear that the error is largest
in the centre. This is due to the fact that the seven leaves come together there and they
cannot be represented accurately on a square grid. However also in the remainder of the
domain the error is of an order of 3 percent. There is also a strange circle at 2◦ for which
we have no explanation. For a numerical artifact it would be more logical to be spots of
corruption than a perfect circle.

In order to investigate the behaviour of the system the same experiment was repeated
for grid sizes of 129, 257 and 513 respectively. The resulting optics were all traced with 10
million rays. A plot of the local errors is shown in Figure 7.9. Furthermore we have to take
in mind that the errors we measure can have multiple sources.

• The first source for errors are the discretisation error and truncation error of the nu-
merical solver. This is the error we would like to estimate here

51



• A second source is numerical errors made by the ray tracing application, due to the fact
that the surface is represented by a finite amount of points

• Thirdly, the random behaviour of the ray tracing results in statistical fluctuations in
the perceived intensity. This error scales with 1√

Nray
where Nray is the number of rays

used.

As we cannot measure the individual errors, it is hard to attribute anything to the algorithm.
This is further complicated by the fact we have no control over the second source, and sup-
pressing the third requires a lot of computing time. The 2-norm of the relative errors for each
of the 3 grid sizes was calculated and are shown in table 7.1. We see that error decreases for
larger grids. This is consistent with the results as visualised in Figure 7.9. From these data
we can calculate that the error goes like M0.6

x , so sub linear. Which part of the system is
responsible is for now unclear. A bigger and more intensive test procedure might be able to
reveal more, but we did not have the time remaining for that.

Table 7.1: List of error estimates for three different grid sizes

Mx 2-norm error

129 2.714e-2
257 1.756e-2
513 1.228e-2
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Figure 7.1: The ray trace results for the target G = 1 on a cone with radius of 5 degrees on
uv-grid.

Figure 7.2: The relative absolute difference between the ray trace result and the target func-
tion G = 1
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Figure 7.3: Plot of the second lens surface for producing a uniform intensity.

Figure 7.4: The transformed target density g
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Figure 7.5: The ray tracing results for Ĝ produced with LightTools

Figure 7.6: The theoretical target Ĝ on the same grid as the ray trace results
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Figure 7.7: The relative error between the ray trace result and the target function G.

Figure 7.8: Screenshot of lens in LightTools
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(a) Mx = My = 129 (b) Mx = My = 257 (c) Mx = My = 513

Figure 7.9: A plot of the absolute value of the relative error of the ray trace results compared
to the intended target for three different grid sizes. For comparison all three plots are made
with the same axis.
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Chapter 8

Conclusions and Discussion

Based on our research the following conclusions can be reached:

1. It is possible to describe an optical system in the framework of optimal transport.
This means that we want to find a function (representing the optical surface) that
minimises a certain cost function under the condition that the conservation law of
luminous flux is obeyed. It is very important to determine exactly which cost function
is appropriate /needed for a certain optical problem. Further research is needed on the
topic of determining appropriate cost functions for different optical systems.

2. In Chapters 3 and 4 it is shown that using variational calculus a system of partial
differential equations can be derived, whose solution is the extremal of the minimisation
formulation of the optical problem. Unfortunately a search in literature did not yield a
method to solve the system of equations. The highly nonlinear and coupled nature of
the equations like (4.11) and the lack of a clear set of boundary conditions make it very
hard to solve this directly.

3. For optical problems based on a parallel beam source and a far-field target, it was shown
that the various Monge-Ampère equations (4.17) and (4.22) can be written in the same
form. This allows us to implement different transformation procedures that take a target
distribution and an optical setup and produce a mathematical target distribution fit for
a general solver. It would be very interesting for a further study to do the same for
point-source problems. The power of this approach is that different geometries can be
handled relatively easy and only a generic solver has to be implemented, which does
not need any specific knowledge of the optical problem at hand.

4. In Chapter 5 a numerical solver was described. The theory behind the algorithm chosen
turned out to include some very interesting facts. A method for handling the boundary
condition was introduced using a defining function containing the geometrical inform-
ation of the domain. This approach has as a big advantage that a global condition
is transformed into a non-linear point wise PDE constraint. The approach allows the
mapping to move along the boundary during the iteration if that is needed for finding
a solution. Note that as the boundary condition is solved together with the interior in
a single Newton iteration, the solution is not exact.

5. The numerical solver was shown to be able to handle a wide range of different prob-
lems. From the numerical experiments and the theoretical background the following
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limitations are present:

• Various target intensities can be handled, as long as they are continuous. Further-
more the target intensity should not (locally) get very close to zero. As a rule of
thumb a lower bound of 10 percent of the peak value can be used. If this is not
done, the algorithm might produce unexpected results, or local artifacts

• The target geometry should be convex.

• The source density has no a priori constraints. However the source domain is
padded with zeros to create a rectangular computation domain. This is something
the algorithm can handle, but occasionally gives problems. If large parts of the
(computational) source domain have very low to no intensity all the light rays from
those points are mapped to the same location in target space. This results in a
singularity of the solution, as the mapping loses its invertibility, by being locally
many to one. For practical cases this problem might be mitigated by padding
with some nonzero number instead of zeros. This modifies the problem, and so the
solution is slightly different from the original. However if the numerical instabilities
are reduced the actual result could be more accurate.

• Although mappings should be invertible, it turns out that if the source or target
densities approach zero in part of their domains, this property is lost. At the very
least it becomes much harder and less accurate to invert the mapping. The reason
is that the derivatives of the mapping will approach either zero or infinity. The
problem of numerically inverting is then very badly conditioned.

6. Despite theoretical limitations the solver is very robust. During the calculations of some
of the harder problems artifacts were observed, often caused by discontinuities in the
source distribution. By continuing the process the algorithm was able to cope with this
and the artifacts disappeared in later iterations. This gives confidence that any error
including loss of convexity in the first few iterations will not stop the program from
producing useful results.

7. Lastly we concluded that combining the equations for the parallel beam lens the nu-
merical program a real lens could be designed. On a first look (in the simulations) the
pattern created by this lens resembles the target very good. The error, calculated by
comparing the raytrace results with the intended target, is too large. However, this is
only a first experiment that can be improved, and the results show that the approach
taken has merit.

As already mentioned before there are some areas were further research is very welcome.
Some ideas are

1. A study of the cost functions corresponding to optical systems when they are treated
as an optimal mass transport problem. How is this influenced by the type of source,
e.g., point source, parallel beam, extended source? How is it influenced by the optical
element, e.g. reflector or lens? Are there other aspects, for example if the target is near
field instead of far field?

2. It would be interesting to see how the Monge-Ampère equations for other optical prob-
lems look like. Do they also adhere to the same common form as was seen in Section
4.2?
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3. Look if the treatment of the boundary condition in the numerical chapter can be used
in the analysis of the Euler-Lagrange equations. This way of defining the boundary
might be useful in more ways then we use now.

4. The optics calculated using the formulae for a parallel beam source should be evaluated.
For different densities and geometries, one should see what the errors are, and if the
program can be enhanced.

5. Investigating the robustness and convergence properties for typical optical problems.

6. For non rectangular source domains the function f is now extended by zeros onto a rect-
angular domain. As this creates instabilities and makes inverting the result impossible
we recommend to look for alternatives.
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Appendix A

Inverting a Mapping

A common workaround for some of the limitations of the numerical solver is to switch the role
of the source and target. This corresponds to the reversibility of the direction of light rays.
This requires us to be able to invert the mapping. The first approach is a very naive and
straight forward inverting. Suppose we have a set X and a set Y and calculated the mapping
s : X → Y as s = ∇u. We know this mapping on a grid on X. Now we create a new grid
over the target set Y . Now for a vector y ∈ Y we calculate

s−1(y) = {x ∈ X|s(x) = y}. (A.1)

This can be done using a gradient descent method, or a Newton iteration (as we implemented).
Doing this for each grid point, gives a numerical approximation of the inverted mapping.
However we do not get the corresponding potential, which we need for the optics.

The second approach is to use an important observation from mass transport [Eva01,
Section 3.1]. For quadratic cost functions, which lead to MA-type equations, the convex
potential has a dual function. Assume the originally calculated potential is u : X → R+, then
the dual v : Y → R+ is given by

v(y) = max
x∈X

(x · y − u(x)) . (A.2)

The current code has a very simple implementation of this, with promising results. It is
much more robust against any numerical problems. It is suggested to implement this better
and more accurately.
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Appendix B

Jacobi Matrices

In this section, a more detailed and implementation ready description of the Jacobi matrices
are given.

B.1 Stable scheme

Recall that in (5.17) the system itself is given. We now look at this for a particular point
(i, j), with corresponding index k = (j − 1) ∗ Mx + i in the interior of the domain. The
minimum is obtained for a basis denoted by {(a, b), (−b, a)}.

The k-th equation in N is then given by

Nk = max{D[a, b], δ} ·max{D[−b, a], δ}+ min{D[a, b], δ}+ min{D[−b, a], δ}
− F (x1, x2)/G (aDs[a, b]− bDs[−b, a], bDs[a, b] + aDs[−b, a]) , (B.1)

where the arguments i and j forD andDs are dropped for readability. Ds is the approximation
of the first derivative, used for the gradient, and D is the derivative operator as defined in
(5.18).

The k-th row of the Jacobian contains the derivatives ofNk with respect to ui,j (in the right
ordering of course). The exact composition is given below. Note however that the Jacobian
depends on the fact which of the values the different maximum and minimum operators take.
For ease of notation the following rule is established a comparison (x > a) has the value 1
if true, and 0 if false. This way it can be used in formula’s without needing extensive case
distinctions (or used in programming directly).

Looking at the formula above one sees that there are five non zero values in the k-th row,
these are at {(i, j), (i + a, j + b), (i − a, j − b), (i − b, j + a), (i + b, j − a)}. In the formula’s

double indexing is used for clarity. Note that J((i, j), (k, l)) =
∂Ni,j

∂uk,l
. We use a short hand for

the gradient of u, defined as

ugrad = ∇u(x1(i, j), x2(i, j)) =
(aDs[a, b]− bDs[−b, a], bDs[a, b] + aDs[−b, a])

a2 + b2
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∂Ni,j

∂ui,j
=− 2

(a2 + b2)h2

[
(D[a, b] > δ) ·max{D[−b, a], δ}+ (D[a, b] < δ) · 1

+ (D[−b, a] > δ) ·max{D[a, b], δ}+ (D[−b, a] < δ) · 1
]
, (B.2)

∂Ni,j

∂ui+a,j+b
=

(D[a, b] > δ) ·max{D[−b, a], δ}+ (D[a, b] < δ) · 1
(a2 + b2)h2

+
F (x) · (a ·G1(ugrad) + b ·G2(ugrad))

G(ugrad)2 · h
√
a2 + b2

, (B.3)

∂Ni,j

∂ui−a,j−b
=

(D[a, b] > δ) ·max{D[−b, a], δ}+ (D[a, b] < δ) · 1
(a2 + b2)h2

+
F (x) · (−a ·G1(ugrad)− b ·G2(ugrad))

G(ugrad)2 · h
√
a2 + b2

, (B.4)

∂Ni,j

∂ui−b,j+a
=

(D[−b, a] > δ) ·max{D[a, b], δ}+ (D[−b, a] < δ) · 1
(a2 + b2)h2

+
F (x) · (−b ·G1(ugrad) + a ·G2(ugrad))

G(ugrad)2 · h
√
a2 + b2

, (B.5)

∂Ni,j

∂ui+b,j−a
=

(D[−b, a] > δ) ·max{D[a, b], δ}+ (D[−b, a] < δ) · 1
(a2 + b2)h2

+
F (x) · (+b ·G1(ugrad)− a ·G2(ugrad))

G(ugrad)2 · h
√
a2 + b2

. (B.6)

B.1.1 Boundary modifications

Let’s look at the modifications near the boundary, and the resulting changes to the Jacobian.
We show the case where i + a is out of bounds. This means that we apply approximations
near the boundary, and as such that D and Ds are no longer the same in bases directions. So
the relevant is again (B.1),

Nk = max{D[a, b], δ} ·max{D[−b, a], δ}+ min{D[a, b], δ}+ min{D[−b, a], δ}
− F (x1, x2)/G (aDs[a, b]− bDs[−b, a], bDs[a, b] + aDs[−b, a]) (B.7)

where D and Ds now take the following definitions depending on there argument

D[−b, a] = (ui−b,j+a + ui+b,j−a − 2ui,j) /(h
2(a2 + b2)),

Ds[−b, a] = (ui−b,j+a − ui+b,j−a) /(2h
√
a2 + b2),

D[a, b] =
(
−1

4ui+a
2 ,j+b

+ 6
4ui+a

2 ,j
+ 3

4ui+a
2
,j−b + ui−a,j−b − 3ui,j

)
/(3

4h
2(a2 + b2)),

Ds[a, b] =
(
−1

8ui+a
2
,j+b + 6

8ui+a
2 ,j

+ 3
8ui+a

2 ,j−b
− ui−a,j−b

)
/(3

2h
√
a2 + b2).

Remark. that D[−b, a] and Ds[−b, a] are unmodified from the regular case. However if close
to a corner of the domain, also j − a or j + a might be out of bounds. Then D[−b, a] and
Ds[−b, a] are modified and also use interpolation, this however can be treated independently
from the current modifications to the Jacobian.
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From the changes in the equation, we need to modify the Jacobian. Luckily the terms
∂Ni,j

∂ui−b,j+a
and

∂Ni,j

∂ui+b,j−a
stay the same. (they are modified only if D[−b, a] has to use interpol-

ation). The
∂Ni,j

∂ui+a,j+b
is replaced by 3 new terms. The new terms are

∂Ni,j

∂ui,j
=− 3

3
4(a2 + b2)h2

[
(D[a, b] > δ) ·max{D[−b, a], δ}+ (D[a, b] < δ) · 1

]
− 2

(a2 + b2)h2

[
(D[−b, a] > δ) ·max{D[a, b], δ}+ (D[−b, a] < δ) · 1

]
, (B.8)

∂Ni,j

∂ui+a/2,j+b
=− 1

4

(D[a, b] > δ) ·max{D[−b, a], δ}+ (D[a, b] < δ) · 1
3
4(a2 + b2)h2

+
F (x) ·

(−1
8 a ·G1(ugrad)− 1

8b ·G2(ugrad)
)

G(ugrad)2 · 3
2h
√
a2 + b2

, (B.9)

∂Ni,j

∂ui+a/2,j
=

6

4

(D[a, b] > δ) ·max{D[−b, a], δ}+ (D[a, b] < δ) · 1
3
4(a2 + b2)h2

+
F (x) ·

(
6
8a ·G1(ugrad) + 6

8b ·G2(ugrad)
)

G(ugrad)2 · 3
2h
√
a2 + b2

, (B.10)

∂Ni,j

∂ui+a/2,j−b
=

3

4

(D[a, b] > δ) ·max{D[−b, a], δ}+ (D[a, b] < δ) · 1
3
4(a2 + b2)h2

+
F (x) ·

(
3
8a ·G1(ugrad) + 3

8b ·G2(ugrad)
)

G(ugrad)2 · h
√
a2 + b2

, (B.11)

∂Ni,j

∂ui−a,j−b
=

(D[a, b] > δ) ·max{D[−b, a], δ}+ (D[a, b] < δ) · 1
3
4(a2 + b2)h2

+
F (x) · (−a ·G1(ugrad)− b ·G2(ugrad))

G(ugrad)2 · 3
2h
√
a2 + b2

. (B.12)

The other modifications go in a similar fashion. In total there are 4 different exceptional
cases and a normal case along the x1-axis and the same amount along the x2-axes, resulting
in a total of 10 cases.
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B.2 Accurate scheme

For the accurate scheme, the Jacobian is filled along diagonals. This is given by

∂Ni,j

∂ui−1,j−1
=2

ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1

16h4
(B.13)

∂Ni,j

∂ui−1,j+1
=− 2

ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1

16h4
(B.14)

∂Ni,j

∂ui+1,j−1
=− 2

ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1

16h4
(B.15)

∂Ni,j

∂ui+1,j+1
=2

ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1

16h4
(B.16)

∂Ni,j

∂ui,j
=− 2 ∗ ui,j+1 + ui,j−1 + ui+1,j + ui−1,j − 4ui,j

h4
(B.17)

∂Ni,j

∂ui−1,j
=
ui,j+1 + ui,j−1 − 2ui,j

h4

+
F (x1, x2) ·G1 ((ui+1,j − ui− 1, j)/(2h), (ui,j+1 − ui, j − 1)/(2h))

G ((ui+1,j − ui− 1, j)/(2h), (ui,j+1 − ui, j − 1)/(2h))2 · 2h
(B.18)

∂Ni,j

∂ui,j−1
=
ui+1,j + ui−1,j − 2ui,j

h4

+
F (x1, x2) ·G2 ((ui+1,j − ui− 1, j)/(2h), (ui,j+1 − ui, j − 1)/(2h))

G ((ui+1,j − ui− 1, j)/(2h), (ui,j+1 − ui, j − 1)/(2h))2 · 2h
(B.19)

∂Ni,j

∂ui+1,j
=
ui,j+1 + ui,j−1 − 2ui,j

h4

− F (x1, x2) ·G1 ((ui+1,j − ui− 1, j)/(2h), (ui,j+1 − ui, j − 1)/(2h))

G ((ui+1,j − ui− 1, j)/(2h), (ui,j+1 − ui, j − 1)/(2h))2 · 2h
(B.20)

∂Ni,j

∂ui,j+1
=
ui+1,j + ui−1,j − 2ui,j

h4

− F (x1, x2) ·G2 ((ui+1,j − ui− 1, j)/(2h), (ui,j+1 − ui, j − 1)/(2h))

G ((ui+1,j − ui− 1, j)/(2h), (ui,j+1 − ui, j − 1)/(2h))2 · 2h
. (B.21)
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Appendix C

Implementation Details

This chapter contains details about the implementation, including a list of definitions of the
parameters that the program supports.

C.1 Parameter definitions

The program supports the following options that can be passed using the setOptions() func-
tion.

Mx Number of grid points along the x-axis (default value 256)

My Number of grid points along the y-axis (default value 256)

Ny Number of normal vectors used for discretising the boundary of the target Y (default
value 32)

maxit Maximum number of iterations (default value 40)

rtol Relative tolerance for stopping criteria (default value 10−4)

atol Absolute tolerance for stopping criteria (default value 10−5)

stencil Allowed values: 2, 4, number of directions used in the stable operator (default value
4)

H scheme Selector for discretisation scheme used along the boundary of the target. Either
a two-point scheme (H scheme=0) or a three-point scheme (H scheme=1 (default)).

min damping The amount of damping applied at least in each iteration. The damping
factor β < min damping (default value 1).

init damping The amount of damping used for the first iteration (default value 1).

delta Value of δ as defined in the stable scheme (default value 10−6).

debug mode Boolean value, if true the program plots the residual and other diagnostic
information during each iteration of the algorithm. (default false)

anchor weight Weight of the reference value of u. (default value 1).
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