
 Eindhoven University of Technology

MASTER

Cost sensitive model selection for food sales prediction

Vasanthapriyan, S.

Award date:
2010

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/1abd14a4-37ec-425f-844e-091ebaaa49e1

COST SENSITIVE MODEL
SELECTION FOR FOOD SALES

PREDICTION

S. Vasanthapriyan
(0641859)

TECHNISCHE UNIVERSITEIT EINDHOVEN

COST SENSITIVE MODEL
SELECTION FOR FOOD SALES

PREDICTION

by

S. Vasanthapriyan
(0641859)

Supervisor: dr. Mykola Pechenizkiy
Tutor: drs. Jorn Bakker

A thesis submitted in partial fulfillment for the
degree of Masters of Science

in
Computer Science and Engineering

February 2010

http://www.tue.nl

Examination committee:

dr. Mykola Pechenizkiy (TU Eindhoven)
drs. Jorn Bakker (TU Eindhoven)
Prof. Paul De Bra (TU Eindhoven)
dr. Jaap van der Woude (TU Eindhoven)

Abstract

The ability to forecast consumer demand accurately is of great importance to companies

like food sales retail and whole sales. These companies are very interested in the most

accurate way to predict the sales of especially short shelf life products and seasonal

products. Bad predictions often lead to a stock shortage at the start of the season and

rest stock at the end of the season, causing additional costs. Thus, both shortage and

surplus of goods can lead to loss of income for the company. In the current evaluation

methods these costs are not taken into consideration. In this paper, we use a cost

function to find these associated costs. We use these costs as an input to the ensemble

of learners which employs dynamic integration of classifiers to select the best model for

final prediction.

Acknowledgements

I would like to thank Mykola Pechenizkiy, my supervisor for his many suggestions and

guidance during this Master thesis work. I am also thankful to Jorn Bakker for his

valuable input and motivation that encouraged me to always do better in this work.

Also I thank the Database and Hypermedia research Group members for their valuable

comments and suggestions on my research.

Especially I would like to thank Prof. Jaap van der Woude, the Master’s coordinator

and study advisor for Computer Science and Engineering program at TU/e, giving me

valuable advices and encourages throughout my stay in Eindhoven.

I should also mention the Nuffic Fellowship which was awarded to me for the period

2007-2009 and was crucial to the successful completion of this work.

I would like to thank Maggy de Wert, who gave extra motivations and strengths on

formatting this report.

Finally, I would like to express my gratitude to my mother for her constant support

throughout my life.

S. Vasanthapriyan

iii

Contents

Abstract i

Acknowledgements iii

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Cost Sensitive Learning . 2

1.3 Problem/Objectives . 2

1.4 Related Work . 3

1.5 Approach and Results . 3

1.6 Organization of Study . 5

2 Problem Description 7

3 Cost Function 11

3.1 Generalized Cost Function . 11

3.2 Evaluation of the Cost Function . 14

4 Algorithm 17

4.1 Feature Generation . 17

4.2 Feature Selection . 19

4.3 Ensemble Learning . 19

5 Experimental Setup 23

5.1 Implementation . 23

5.2 Data Setup . 23

5.3 Structure of the Experiment Setup . 24

6 Evaluation 27

6.1 Baseline predictions and error measures 27

v

Contents

6.2 Historic Sales data from related products as input 28

6.3 Moving Average as the Prediction label 33

6.4 Results and Discussions . 33

7 Conclusions and Recomendations 35

A Pseudo-code of the COST Function 37

B Pseudo-code of the Performance Matrix 39

Bibliography 41

vi

List of Figures

1.1 Data mining is the core of Knowledge Discovery Process [6] 4

1.2 High level overview of the food sales prediction task 5

2.1 Early prediction versus late prediction . 8

2.2 Over prediction versus under prediction 8

3.1 Available Stock versus actual sales . 13

3.2 Type of prediction versus cases . 14

4.1 Step-wise approach of food sales classification 17

4.2 Ensemble set-up . 20

5.1 Sliding window approach . 24

6.1 Periodic demand versus variation of demand 28

6.2 True label and worst case scenario prediction of cost sensitive method . . 30

6.3 High periodic series . 31

6.4 True label and best case scenario of cost sensitive method 32

6.5 Comparison of scaled cost (CS) and MASE of selected products 32

vii

List of Tables

3.1 Type of prediction versus cases . 14

4.1 Original feature set . 18

4.2 External feature set consisting of rain and temperature 18

4.3 External feature set consisting of cultural and religious holidays 19

4.4 The different learning styles used in our ensemble 21

5.1 Cost configuration file for any product . 25

5.2 Cost configuration file of the cost sensitive learning method for any prod-
uct . 25

5.3 Cost configuration file for error based learning for any product 25

6.1 Summary of the statistics . 29

6.2 External feature set consisting of rain and temperature 29

6.3 Moving average is compared with each integration method 29

ix

Chapter 1

Introduction

1.1 Motivation

Sales forecast is a prediction based on past sales and an analysis of expected market
conditions. Moreover, it involves predicting the future outcome of various business deci-
sions and also includes demand forecasting, trend forecasting, and sales and marketing
plans. Accurate sales forecasting is certainly an expensive way to meet the aforemen-
tioned goals. But it leads to improved customer service, reduced loss of sales and reduced
product returns and more efficient production planning. Accurate forecasts is therefore
useful for food sales companies due to the short shelf-life of many food products and the
dependency on seasonal changes[3].

In real life, there are seasonal influences on the products which make the prediction
hard. Most of the time, promotions, religious activities (for example Christmas), sales of
complementary products and cultural holidays cause rises and drops in the sales pattern.
Seasonal changes are often difficult to predict. This might lead to a stock shortage at
the start of the season and rest stock at the end of the season causing additional costs.
Thus, both shortage and surplus of goods can lead to loss of income for the company.
Predictions are also influenced by price, quality, location and economic conditions. In
this research however we focus only on seasonal influences.

In sales management, forecasts of future demand are gathered to select an efficient
inventory level, in order to reduce keeping cost and reduce keeping time. When these
costs occur one can usually determine the cost of having made the error on prediction,
and the amount of this cost will usually increase as the magnitude of the error increases.
Moreover, this increased amount of costs will affect the company’s food sales in future.

Because of all these reasons, sales forecasting has a crucial role in the decision support
system of a commercial enterprise. Obtaining effective sales forecasts can help the
decision-maker to determine the amount of products to be stored on shelf. Therefore
the food sales companies are highly interested in sales forecasting.

To handle above mentioned costs in data mining and machine learning settings we
introduce cost sensitive model selection [7][16], which will minimize the total costs.
The goal of cost sensitive model selection is to build a classifier not only to minimize
the expected number or proportion of mistakes, but also to minimize the expected
misclassification costs.

1

2 1.2. Cost Sensitive Learning

1.2 Cost Sensitive Learning

Data Mining, also known as Knowledge Discovery in Databases (KDD)[6], is the process
of discovering meaningful new correlations, patterns, and trends by sifting through large
amounts of data stored in repositories, using pattern recognition technologies as well as
statistical and mathematical techniques. Classification is one of the techniques in data
mining settings and machine learning which is used to predict group membership for
data instances.

Furthermore, the most of these classification algorithms such as naive bayes, decision
trees and neural networks ignore different misclassification errors: for example they
implicitly assume that all misclassification errors are equal. Conventional algorithms
that operate with symmetric loss functions do not differentiate between under-prediction
versus over-prediction or late-prediction versus early-prediction. Therefore each type of
prediction error is weighted equally. However in the real world this assumption is not
true. The differences between different misclassification errors can be quite large.

For simplicity, to motivate our primary goal of cost-sensitive learning, let’s first con-
sider the binary classification setting[16]. In traditional learning algorithms, which aim
to maximize accuracy, positive and negative examples are treated as equally important
and therefore do not always produce a satisfactory classifier under unequal cost con-
ditions. Mathematically speaking, most classification algorithms attempt to minimize
the expected number of misclassification errors. For example, in medical diagnosis[16]
misclassification of a true patient to a false patient leads to lose his/her life because of
the delay in the correct diagnosis and treatment. Usually, the rare class is the positive
class and it is often more expensive to misclassify an actual positive class into negative
rather than actual negative into positive. Therefore, the cost of False Negative (FN) is
usually larger than that of False Positive (FP).

It is therefore imperative to implement effective cost-sensitive adjustments, which take
this inherent cost associated with specific types of prediction errors into account during
the learning process. Ultimately, cost-sensitive applications demand learning, with the
ultimate goal of minimizing the expected cost of misclassifications.

1.3 Problem/Objectives

All the different stages of the KDD process are affected by economic utility (such an
example is the cost). This economic utility impacts the assessment of decisions made,
based on the learned knowledge. Utility-Based Data Mining (UBDM)[12] addresses this
challenge by taking into account the complex economic environments in which data
mining occurs. Moreover, it encompasses the research work in cost-sensitive learning
(which considers the costs and benefits associated with using the learned knowledge,
and how these costs and benefits should be factored into the data mining process), and
active learning.

In our research too we addressed the challenges pertaining to the incorporation of such
utility factors in real-world domains. This defines our research hypothesis which states
that the utility optimization is better than error optimization in the context of food sales
prediction(minimizing the expected cost is a mechanism that implements this idea).

Chapter 1. Introduction 3

Our focus in this research starts with studying how the food sales prediction is currently
operated in a food sales company, and how we can improve predictions for a large number
of products that are interesting for the company both from sales pattern perspective as
well as regarding their relative importance based on the amount of sales. At the moment,
the prediction is calculated by using a six weeks moving average.

We introduce the ensemble learning approach, which generates multiple base models
using traditional machine learning algorithms and combine them into an ensemble model.
This learning approach often demonstrated significantly better performance than a single
model. In addition to this, we introduce sliding window approach which moves across
the time series. Moreover, we apply dynamic integration methods at instance level and
select the best model which is used for final prediction[14].

We try to show that the use of ensemble learning approach is better than the six weeks
moving average approach. The latter approach works better in situations in which the
pattern is with sudden raises and drops of the sales(also known as noisy data), due
to some form of seasonal behavior. We also try to show that there are situations at
the instance level where either ensembles of classifiers or six weeks moving average are
employed across the series.

1.4 Related Work

Highly non-uniform misclassification costs are very common in a variety of challenging
real-world data mining problems. This issue has been researched recently with the
techniques known as cost-sensitive learning in the machine learning and data mining
communities. Typical examples of the past research were medical diagnosis [8][10],
fraud detection[5], and network troubleshooting.

The research work performed in the food sales prediction by Meulstee[9], presented
ensemble learning approach with the dynamic integration of classifiers for handling sea-
sonal changes in food sales. This technique will be used as our base idea to extend the
use of ensemble approach for cost sensitive model selection. In addition, the experiments
shown in[14] show that ensemble of classifiers with dynamic integration is the best way
to increase the accuracy in the medical field.

1.5 Approach and Results

Our solution to cost sensitive model selection is based on a generic knowledge discovery
framework with an ensemble of classifiers as a data mining component as depicted in
Figure 1.1. We implement our framework using RapidMiner[1], Java and Matlab.

4 1.5. Approach and Results

Figure 1.1: Data mining is the core of Knowledge Discovery Process [6]

The high level overview of the classification task is illustrated in Figure 1.2. The training
data set consists of labeled training instances from Sligro Data Warehouse. For the
learning algorithms we have selected nine algorithms (including moving average) which
are available in RapidMiner repository. Then all models are learned. Next, the best
model is selected and applied to the test instance.

Chapter 1. Introduction 5

Figure 1.2: High level overview of the food sales prediction task

We validate our statement with the real world sales data from Sligro Food Group BV,
a large wholesales seller of food and beverages in The Netherlands.

From the experimental study we suspect that model voting performs better than model
weighting with respect to cost. That is, we saw that in 348 (66.14%) out of 524 ex-
periments, cost sensitive method performs better than non cost sensitive method, when
model voting is selected as the integration method.

1.6 Organization of Study

This thesis is organized as follows: in chapter 2, we introduce the problem description
in detail. The cost function is described in chapter 3. In chapter 4 we discuss feature
generation, feature selection, model learning and model selection. Chapter 5 describes
the forecast experiments which includes data arrangements and experimental setup.
Chapter 6 reports the forecasting results evaluations and discussions. Finally chapter 7
concludes with conclusions and recommendations.

Chapter 2

Problem Description

For a formal setting of the cost-sensitive classification problem, let us first start with some
associated notations. Given a supervised learning problem, a set of labeled examples
or training data (Xi, y) is available to us, where Xi is a vector of attributes and y is
the class label of Xi, belonging a set of class label Y = {1, 2, 3..., j}. We also assume
that the training data are drawn from an unknown probability distribution P (X, y).
The objective of a learning algorithm is to find a model or a hypothesis h which will be
able to map correctly a higher proportion of unlabeled examples drawn from the same
distribution. Alternatively, if an incorrect mapping is considered to be a cost (or a loss),
the major goal of building a classifier can be treated as minimizing the total expected
cost or loss e of the hypothesis h.

e(h) =
∑
X,y

P (X, y)C(h(X), y)

Where C(h(X), y) is the cost function representing the loss caused by an instance
< X, y >. e(h) is calculated as the sum of the costs or losses of all the individual
decisions. Here, P (X, y) is the probability estimation of classifying an instance into
class y.

Note that in traditional classification tasks, the loss (or cost) function C(h(X), y) is 1
when h(X) 6= y and 0 otherwise.

Therefore, these classifiers are also known as minimizing the expected 0/1 loss. Their
underlying assumption is that misclassification errors have the same cost. However, in
this research work we are merely interested in the cost-sensitive classification problems
with non-uniform costs, i.e. different classification errors having unequal costs.

In inventory management of food sales outlets as shown in the example below, keeping
units of consumer goods in stock or on shelf, in order to satisfy customer demand, the
effect of overstocking a product may induce increased stock keeping costs for a single
period, whereas the costs of under stocking will lead to lost sales revenue and dissatisfied
customers.

More precisely, if we look at the four cases (early prediction, late prediction, under
prediction and over prediction) as shown in the following graphs for a particular product,
occurring costs are different which are explained below. Clear comparison of these costs

7

8 Chapter 2. Problem Description

can be done in the section cost function evaluation in the next chapter. In depicted
Figures 2.1 and 2.2, X-axis is meant by number of weeks and Y-axis is meant by number
of units sold.

Figure 2.1: Early prediction versus late prediction

Figure 2.2: Over prediction versus under prediction

If you look at Figure 2.1, when early prediction occurs (drawn in green/thick line), there
is a possibility to have extra stock (corresponding stock level is depicted in the below
graph), which has to be stored and maintained in the store. As a result, the associated
keeping cost is added. In addition, if the stored stock reaches it’s perish date, then the
obsolete cost will be added. Contrast to early prediction, in late prediction we will also
see a case of remain stock, also causing keeping cost, and again there will be a possibility
of perish items of those stored items. In these two cases, late prediction has the highest

Chapter 2. Problem Description 9

possibility of storing it or perishing it, in comparison with the early prediction. Thus,
we can see that the costs are different and therefore it must be considered.

Furthermore, Figure 2.2 depicts the over prediction versus under prediction. Whenever
over prediction happens, we see more stock on shelves (look at the corresponding remain
stock). Therefore we need to keep them, which causes two types of costs as we explained
earlier: keeping cost and perish cost. But for under prediction, we don’t have sufficient
stock (look at the corresponding remain stock), and therefore the loss of sales cost is
added. This clearly shows that the costs for both cases are different.

To reflect this in our research, an asymmetric cost function(in chapter 3), which is
made up of stock dependent and storage-time dependent, is developed and employed as
the objective function for the ensemble of classifiers approach for the model selection,
deriving superior forecasts and a cost efficient decision.

Chapter 3

Cost Function

3.1 Generalized Cost Function

While academic research has continued to improve the misclassification error rate, in
particular, one important problem is that there are different kinds of errors which have
different costs. For example, the analysis we did in the problem description chapter
(Figures 2.1 and 2.2), in the food sales perspective, the cost of under prediction always
differ the over prediction of sales. Moreover, this is true for late prediction versus early
prediction too. The relative importance of different kinds of errors can be represented
by a cost function.

In this research, we consider the sales policy for the products causing stock dependent
and storage-time dependent keeping cost. It’s not a point of sale. It is dependent on
the past sales. Moreover, at the end of the sales, if there are more stock remains at the
stores, we need to store them and maintain them. This means there are some associated
costs related, i.e. keeping cost for that product. Thus, all these have to be reflected in
the cost function.

The generalized cost function can be given as

Ct = f(et, st)

f(et, st) is a function that calculates the cost at time t. The error et can be calculated
by et = yt − pt . That is the difference between the actual sales yt and the predicted
value pt at time t. As was explained earlier, the stock is dependent on previous sales.
Available stock at time t can be given as st = st−1 − yt−1. Moreover, when there is
a possibility to store the stock for a period of time, it might need a place and proper
maintenance etc. In this case, the keeping cost has to be added. The keeping cost can
be given as Ck = Sn ∗ Kc. The total number of units stored of a particular product
can be given as Sn, where Kc is the keeping cost for that product. The profit cost is
calculated when the sale is done and can be given as Cpr = yt ∗ Cp∗ Ω. The number of
products can be yt and the purchase price of the product can be given as Cp. The profit
ratio is the ratio of a product’s sales divided by the purchase price of that product and
denoted by Ω (≥ 1). Whenever the stock is purchased, it can be given as Cpur = n ∗Cp.

11

12 3.1. Generalized Cost Function

The number of products that needs to be purchased is given by n, where the purchase
price is indicated by Cp.

(Cpur + Closs) is used in the situations when the demand is higher than the available
stock in the shelves. Then available stock will be sold. The cost associated with the loss
of sales cost (which is due to no stock at the store) is given by Closs = Nloss ∗ Cp∗ Ω .
The finding of the value for Nloss will be explained later in this chapter.

To reflect all these in the given generalized cost function, we came up with a final version
of the cost function in the following form as shown below.

f(et, st) =

{
CK + (−Cpr) ifst 6= 0
(−Cpr) + (Cpur + Closs) ifst = 0

When there is no stock availability at the store, the needed stock will be purchased.
Cpur is the cost occurred by purchasing new items. Closs is the cost because of loss of
sales due to the no stock availability in the store which was explained earlier.

The purchase price of the stock always has the value in between zero and one. It is
because we cannot have absolute values as we do not have domain knowledge at the
moment but we would like to compare the results. Therefore, it is better to have a
relative measure which means all values are given as part of one dimension for this
particular scale. This applies for the keeping cost of the products too.

How sales are done, how the stock is maintained, how new items are purchased and how
obsolete items are discarded are explained below.

• In the first week available stock of any product is initialized to 1.

• At the beginning, the expiration date of any product is initialized to the duration of
the product. Date of expiry of the product will be updated whenever the purchase
is done.

• The stock is updated each time a sale is made, because the available stock is
verified before the next sale.

• If the perish date exceeds, the existing stock is discarded and restocked to zero.

• If the stock is available at the end of the sale’s year or for example at the end of
a seasonal period, the remaining stock is considered as discarded.

• The restock due to a stock shortage, is referenced with Needed Stock. The asso-
ciated cost occurred with the Needed Stock is referenced with stock cost. These
are shown in equation 3.1.

Needed Stock = Demand−Get TotalStock

stock cost = Needed Stock ∗ Purchace Price
(3.1)

Moreover, products cannot be purchased at the last day of the sales. This leads
to an over stock, which adds additional costs.

Chapter 3. Cost Function 13

• If the demand is higher than the available stock st at time t, then the available
stock will be sold. The amount of goods that are short, will be added as a loss of
sales. We need to find a proper value for Nloss. This can be explained with the
graph as depicted in Figure 3.1. In the graph depicted, X - axis is meant by the
number of weeks and Y- axis is meant by the amount of products in units.

When we look at week no.12, 13 or 14 in the depicted graph, the stock is not
sufficient for sales. Therefore the available stock will be sold which can be given
as in equation 3.2.

Sales Cost = Available Stock ∗ Profit Ratio ∗ Purchace Price (3.2)

Figure 3.1: Available Stock versus actual sales

But there will be a loss of sales cost, because of no stock availability. The technique
used to calculate this is explained hereunder.

The estimated demand can be either pessimistic or optimistic. If it is pessimistic
then it is always bigger than the actual sales (i.e. worst case), which is always an
over prediction. This causes remaining products to be stored. That is, the keeping
cost will be added when time goes. If it is optimistic, actual sales and demand
are the same. This will not happen all the time. Thus, we define an upper bound
called maximum demand (max). The average of max demand and average stock is
indicated by penalty stock, which is indicated by Nloss. This is given in equation
3.3.

Penalty = (max−Available Stock)/2 (3.3)

Therefore the penalty cost (Loss of Sales Cost) can be given in equation 3.4.

Loss of Sales Cost = Penalty ∗ Profit Ratio ∗ Purchace Price (3.4)

We here showed one way of calculating the cost of loss of sales. But there are
several ways to achieve this. For example, we can define the safety margin for

14 3.2. Evaluation of the Cost Function

each product (stock level- which reduces the loss of sales cost) and when the stock
reaches to the stock level, the stock can be restocked as given in equation 3.5.

Updated Stock = demand + Stocklevel (3.5)

3.2 Evaluation of the Cost Function

Once the cost function is derived, it is evaluated for some values to check whether it
behaves well. To evaluate the given cost function we have set different values for the
parameters of the cost function. This is because we don’t know the domain knowledge,
and would like to test whether these parameters make sense on the cost function. We
would like to evaluate the four cases mentioned in the problem description chapter
(Figures 2.1, and 2.2) against our values for the parameters. The obtained results are
illustrated in Table 3.1. The parameter profit ratio is a constant value (in this experiment
it takes the value 2). Purchase price is also constant (in this experiment it takes the
value 1). Each column of the table represents the four cases discussed earlier. KP means
keeping cost and DUR means perish date (number of weeks). The comparisons of these
results are depicted in Figure 3.2. In the graph, discussed cases(X -axis) versus the
associated cost in units(Y- axis) are drawn.

Type Cases Early Prediction Late Prediction Over Prediction Under Prediction

1 H(KP) and H(DUR) -3.36 -2.43 -4.05 -3.2

2 H(KP) and L(DUR) -3.36 -2.43 -4.05 -3.2

3 L(KP) and H(DUR) -4.64 -3.47 -5.25 -3.99

4 L(KP) and L(DUR) -4.64 -3.47 -5.25 -3.99

Table 3.1: Type of prediction versus cases

Figure 3.2: Type of prediction versus cases

Chapter 3. Cost Function 15

From the graph illustrated in Figure 3.2, it can be observed that for any of the mentioned
four types, the cost of late prediction is higher than the cost of early prediction. This
is one of the objectives that we would like to see with our parameter settings because
these calculated costs are entirely dependent on parameter settings.

Moreover, when we compare over prediction and under prediction, it is obvious that
the costs are dependent on the parameter settings. For example, in our experiment the
cost of under prediction is more expensive than the cost of over prediction. In addition
to these investigations on the cost function and its parameters, we also experimented
and concluded that keeping cost of any product should be always less than the purchase
price of that product. Otherwise we will experience high additional costs whenever the
products are stored for a period of time. This is taken into consideration when the
parameter settings are defined in the experiment setup.

Chapter 4

Algorithm

This chapter is divided into three sub sections: feature generation [4.1], feature selection
[4.2] and the ensemble approach [4.3]. The whole idea of the setup is depicted in Figure
4.1 and will be explained in the following sections.

Figure 4.1: Step-wise approach of food sales classification

4.1 Feature Generation

Feature generation also known as feature construction, is a process of building new
features based on those present in the examples supplied to the system, possibly using the
domain theory (i.e., information about goals, constraints and operators of the domain).
Feature construction techniques can be useful when the attributes supplied with the
data are insufficient for concise concept learning. That is, feature generation algorithms
search for new features that describe the target concepts better than the attributes
supplied with the training instances [15].

We have extracted 335 sets of sales figures from the Sligro data warehouse. Each dataset
consists of 120 examples of sales data and each example represents the number of items

17

18 4.1. Feature Generation

sold per week. In our experiments we have generated the features according to two main
categories: original features and external features. Original features are for example
product id, week number, local max and moving average of the sales, as illustrated in
Table 4.1.

Feature Name Description

Week no Number of the week sales done

MA1 One day moving average

MA6 Six days moving average

Local Max Lastly observed highest value

Table 4.1: Original feature set

There are a lot of external features available. According to the recent research on Sligro
DW with sales prediction[9] they have quoted two types of external features.

The first types are temperature and rain. These features have been added due to their
seasonal influence on the consumer demand. For example, the consumer demand of ice
cream will increase as temperature rises, where ice cream can’t be stored for a long time.
The descriptions of these features are illustrated in Table 4.2.

Feature Name Description Values

Temp Describes temperature between 1-8

Rain Describes Rain between 1-8

Table 4.2: External feature set consisting of rain and temperature

The Second type of external features that are recommended are holidays. As we have
already mentioned earlier, it is important to add this information to our dataset because
seasonal holidays affects the products sales a lot. For example, the sales of eggs during
the Easter period are higher than the other days of the year. So it makes sense for a
food sales company to store more eggs during this seasonal period and less during the
other periods.

With holidays we refer to the cultural holidays and religious holidays. For example
Koninginnedag (The Queen’s day) and Bevrijdingsdag (Liberation day) are cultural
holidays. Kerst (Christmas) and Pasen (Easter) are religious holidays. Features de-
scribing holidays have been implemented as binary features, having a value ”one” if the
holiday occurs in the working day of the week, and a value ”zero” if it occurs in the
weekend. The descriptions of these features are illustrated in Table 4.3.

Finally, the features such as promotions from Sligro are to be considered. This is an-
other important feature which we have to add to our set because these retailers are
spending more and more of their marketing money on sales promotions. Features de-
scribing promotions have been implemented as binary features, having a value ”one” if
the promotions occurs in the working day of the week, and a value ”zero” if it occurs in
the weekend.

Chapter 4. Algorithm 19

Feature Name Description Values

Holiday Describes Holiday binary values

Nieuw-Jaar New Year binary values

Drie Koningen Three Kings binary values

Valentijns dag Valentine day binary values

Carnaval Carnival binary values

Goede Vrijdag Good Friday binary values

Pasen Easter binary values

Koninginne dag Queen’s day binary values

Bevrijdings dag Liberations day binary values

Hemelvaart Ascension binary values

Pinksteren Pentecost binary values

Moederdag Mother day binary values

Vaderdag Father day binary values

Sinterklaas Saint Nicholas binary values

Kerst Christmas binary values

Oud en Nieuw Old and New years binary values

Table 4.3: External feature set consisting of cultural and religious holidays

4.2 Feature Selection

All features generated in the previous section can be used to predict the output for a set
of inputs. But in real situations, there are some fundamental issues which may be invoked
by the irrelevant features involved in the learning process in data mining. These issues
have been studied by the statistics and machine learning communities in recent years.
The first issue is identified, with irrelevant input features inducing greater computational
cost. That is, when more features are available, the computational costs for prediction
increases polynomially. Secondly, irrelevant features may lead to overfitting problems.
Therefore, it is reasonable and important to ignore those input features with little effect
on the output.

The goal of feature selection should be to choose a subset Xs of the complete set of input
features X = {x1, x2, x3, ..., xm}, so that the subset Xs can predict the output Y with
accuracy comparable to the performance of the complete input set X, and with great
reduction of the computational cost.

4.3 Ensemble Learning

In real life, singing a chorus with a set of people is always better than performing it with
a single voice. This happens in machine learning too.

20 4.3. Ensemble Learning

So far it is one of the leading areas of research in supervised learning, study methods for
constructing good ensembles of classifiers. An ensemble of classifiers is a set of classifiers
in which individual decisions are combined in a certain way (typically by averaging or
voting) to make the final prediction. The main discovery of these ensembles is often much
more accurate than the individual classifiers that produces the ensembles. A necessary
and sufficient condition for an ensemble of classifiers to be more accurate than any of
its individual members, are accurate and diverse classifiers[9][14].

Moreover, it has been shown that ensemble learning often increases the performance
(e.g. bagging [4], boosting [13] and stacking [17]). This means, the generalization error
of the ensemble is lower than the mean of the generalization error of the single ensemble
members.

In the real world, concepts are often not stable but change with time. The models built
with old data change when new data arrives. For example in food sales, the customer
behavior of buying products or the seasonal behaviors always changes the current model
or concept, therefore the regular update of the model is important. This problem is
called concept drift and has been discussed in the past [6][2]. In order to make time-
critical predictions, the model learned from the streaming data must be able to capture
up-to-date trends and transient patterns in the stream. Therefore, if we use the ensemble
of classifiers with sliding window approach across the series, we can easily adopt the new
changes in the new data which might improve the accuracy.

Figure 4.2: Ensemble set-up

Chapter 4. Algorithm 21

The ensemble set-up we have used is graphically shown in Figure 4.2. Initially, as we
described earlier, the first 77 data points will be used as train instances and the rest
would be test instances. We have selected eight supervised learning methods (base
learners) with default parameter settings from the RapidMiner repository. They are
listed in Table 4.4.

Here, we have selected different types of base learners where each of them has a different
learning style. That is they are independent to each other. If we have similar behavior
of learners in the ensemble then we won’t be able to see better results (they produce
similar results) because all of them are related to each other with respect to the learning
style. Therefore increasing diversity of an ensemble, by adding learners with different
learning styles, is needed to ensure increased prediction accuracy.

No Base Learner Learning Style

1 C4.5 Decision Tree

2 CHAID Decision Tree

3 Rule Learner Rule Learning

4 Basic Rule Learner Rule Learning

5 Attribute Based Vote Lazy Learning

6 1-Nearest Neighbors Lazy Learning

7 Lib SVM Functional Learning

8 Linear Regression Functional Learning

9 Moving Average Six Weeks

Table 4.4: The different learning styles used in our ensemble

Short explanation of the base learners:

• C4.5 is an algorithm used to generate a decision tree. This operator learns decision
trees from both nominal and numerical data. C4.5 builds decision trees from a
set of training data using the concept of information entropy. Decision trees are
powerful classification methods which often can also easily be understood.

• The CHAID decision tree learner works like the decision tree with one exception:
it uses a chi squared based criterion instead of the information gain or gain ratio
criteria. The learner has the learning capabilities of polynominal attributes, bi-
nominal attributes, numerical attributes, polynominal label, binominal label and
weighted examples.

• The RuleLearner learns a pruned set of rules with respect to the information gain.
In the growing phase, for each rule greedily conditions are added to the rule until
the rule is perfect. In the prune phase, for each rule any final sequences of the
antecedents are pruned with the pruning metric p/ (p+n).

• The BasicRuleLearner, in contrast to the RuleLearner, learns a set of rules mini-
mizing the training error without pruning.

• AttributeBasedVoting learner is very lazy. Actually it does not learn at all but
creates an AttributeBasedVoting Model. This model simply calculates the average

22 4.3. Ensemble Learning

of the attributes as prediction (for regression) or the mode of all attribute values
(for classification).

• LinearRegression learner is used to calculate a linear regression model.

• The K-nearest-neighbor (KNN) algorithm measures the distance between a query
scenario and a set of scenarios in the data set. We can compute the distance
between two scenarios using some distance function. Euclidean distance is one of
the distance function used.

• LibSVMLearner in RapidMiner API encapsulates the Java libsvm which is an Sup-
port Vector Machine learner. The SVM is a powerful method for both classification
and regression.

• Moving average creates a new series of attributes which contains the moving av-
erage of new series. The calculation of a series moving average uses a window of
a fixed size (in our case six weeks) that is moved over the series data. At any
position, the values that lie in the window are aggregated according a specified
function. This aggregated value forms the moving average value which is put into
the result series.

In this research, we have added the six weeks moving average too as a base learner
to our ensemble setup which differs from earlier, because we wanted to know in which
cases six weeks moving average is selected. We also wanted to have both ensemble of
classifiers and six weeks moving average together, so our algorithm intelligently chooses
one of these for prediction purposes. Finally, each of these base learners are trained on
the window sizes of 52, 26 and 13. To validate the train data, we use the cross validation
technique, where the local classification errors of each base classifier for each instance
of the training set are estimated. The models are generated applying all of the base
learners for the respective window sizes. The cost function which we derived is used
with these cross validation results to find the costs for the cost sensitive method.

Basically our research is about cost sensitive model selection. The base learner’s per-
formance is stored in a matrix consisting of costs (is calculated using the cost function
discussed in chapter 3) for each learner on each instance in the training set. In addition,
we calculated the Mean Absolute Error (MAE) for each learner on each instance in the
training set, and stored them in the performance matrix.

Once the performance matrix has been created, the algorithm finds the similar instances
from the training set for the new instance using the Euclidean distance method. Once
the neighborhood has been created, it uses one of the dynamic integration methods
which selects the number of base learners (best models) to achieve final prediction.

The three different integration methods are used in our approach. They are model
selection, model voting and model weighting. With model selection, the learner that
has both the lowest distance to the testing instance and the lowest cost on the training
set(if error based method then error), is selected. With model voting, for each neighbor
the base learner with the lowest cost on the training set(if error based method then
error), is selected. Then, final prediction is done by letting each selected classifier vote.
The predicted label with the highest number of votes is selected. With model weighting,
each vote has a weight proportional to the estimated generalization performance of the
corresponding classifier. These steps are graphically explained in Figure 5.1.

Chapter 5

Experimental Setup

5.1 Implementation

RapidMiner (formerly known as Yale) is an environment for machine learning and data
mining processes and is used in our experimental studies[11]. RapidMiner is the world-
wide leading open-source data mining solution and is widely used by researchers and
companies[1]. The modular operator concept of the RapidMiner allows the design of
complex nested operator chains for a huge number of learning problems. RapidMiner
uses XML(eXtensible Markup Language), a widely used language well suited for de-
scribing structured objects, to describe the operator trees modeling KD processes. All
RapidMiner processes are described in an easy XML format.

We have implemented our ensemble approach in Java (six weeks moving average is
also implemented). From our Java implementation we called the RapidMiner API for
learning and applying the different base learners.

5.2 Data Setup

For our study we have selected around 335 best selling products, over a period of 120
weeks, provided by Sligro Food Group BV(Dutch food and beverages market)[14] .
From the time series of aggregated transactional data, out of 120 data points, the first
77 instances are used as the training set and the last 43 instances are used for testing.

Though we have continuous data (time series data do not have the property of in-
dependent identically distributed), we need to make them segmented to use with the
traditional machine learning algorithms explained earlier. Therefore, the raw data is
converted into a pattern classification problem using a sliding window approach, and
the respective target prediction was set as some discretised future value in the raw time
series sequence.

Here we describe the time series segmentation approach in detail. Mostly time series
segmentation can be done with the technique called sliding window. A simple sliding
window can be described by a segment which is grown until it exceeds the bound.

23

24 5.3. Structure of the Experiment Setup

The sliding window algorithm works by anchoring the left point of a potential segment
at the first data point of a time series, and then with window size w (the width of the
used windows which is smaller than the given time series), step size are moved across
the series making new example sets. We choose a time shift of 1 of how far into the
future we would like to predict a chosen attribute. This is illustrated in Figure 5.1 and
it has the training window size of W. In our setup we have used three different window
sizes.

Figure 5.1: Sliding window approach

5.3 Structure of the Experiment Setup

First, the experiment starts with extracting the 335 datasets from the Sligro data ware-
house. As we described earlier each of the data sets contains 120 points. We started
our prediction of sales experiments with six weeks moving average for training instances
for all window size of all products and continued to each set of test instances. Then we
conducted the experiment with our ensemble approach for neighborhood size of 1 with
model selection, model weighting and model voting as dynamic integration methods.

Moreover, we have come up with different possible and interesting values for the cost
function parameters. This leads to different combinations of values for the parameters in
all of our experimental setups. Our cost configuration file is shown in Table 5.1 for any
product. First four experiments are with cost sensitive learning of that product. P is the
product id. P 1 1, P 1 2 are denoted by the parameter settings one, parameter settings
two respectively. The last experiment is without cost sensitive learning (i.e. error based
learning). If any product is assigned with P 1 6, then it is for the error based method.
The last column of the table determines which type of method is assigned (c-cost sensitive
method/ e-error based method). Furthermore, the keeping cost cannot be greater than
the purchase price. Keeping products with high keeping costs and a low purchase price

Chapter 5. Experimental Setup 25

is useless (additional cost is generated). To simplify this, we considered that the short
duration of life time products have high keeping cost and vice versa.

Exp Configuration for any product KeepCost Purchase Price ProfitRatio Duration Cost Sensitive

P 1 1 0.1 0.1 1 5 c

P 1 2 0.1 0.9 2 5 c

P 1 3 0.9 1 2 1 c

P 1 4 0.1 1 2 10 c

P 1 6 e

Table 5.1: Cost configuration file for any product

The parameter settings for the cost sensitive types of experiments are shown in Table
5.2.

Exp Configuration for any product KeepCost Purchase Price ProfitRatio Duration Cost Sensitive

P 1 1 0.1 0.1 1 5 c

P 1 2 0.1 0.9 2 5 c

P 1 3 0.9 1 2 1 c

P 1 4 0.1 1 2 10 c

Table 5.2: Cost configuration file of the cost sensitive learning method for any product

In addition to above cost sensitive calculations, we calculated the cost for error based
learning using the same parameters used in the earlier five experiments of the cost
function. The cost configuration files used to calculate the costs for error based learning
are depicted in Table 5.3 for any product.

Exp Configuration for any product KeepCost Purchase Price ProfitRatio Duration Cost Sensitive

P 1 6 0.1 0.1 1 5 e

P 1 6 0.1 0.9 2 5 e

P 1 6 0.9 1 2 1 e

P 1 6 0.1 1 2 10 e

Table 5.3: Cost configuration file for error based learning for any product

Chapter 6

Evaluation

In this section, we are going to validate the hypothesis we defined in the earlier chapters.
Our intention is to see that utility optimization is better than error optimization in the
context of food sales prediction. Food sales companies are more concerned about the
sales prediction of products having a short shelf-life and seasonal changes in demand.
This might lead to no stock availability during the start of the season and might also
cause storing more stock at the end of the season which might cause additional costs.
Therefore, to minimize this cost we introduced cost sensitive model selection with en-
semble approach in earlier chapters. We wanted to experiment, taking this cost into
account versus not taking the cost into account and validate our statement.

6.1 Baseline predictions and error measures

In our research, we start by defining the baseline measures for the experiments. More-
over, our intention in this work is to show that the cost sensitive method performs better
than the error optimization. Therefore we need to calculate the error for the food sales
prediction.

Traditional measures are for example MAE (Mean Absolute Error) or MSE (Mean
Squared Error), which is used in previous food sales research. But we recommend not
to use them because the food sales data have different types of products with different
types of behavior such as seasonal changes. The Mean Absolute Error(MAE) is simply
given by the equation 6.1.

Let Truet denotes the observation at time t. Predictiont denotes the forecast of Truet.
Then we can define the forecast error as

et =|Truet -Predictiont|

(6.1)

27

28 6.2. Historic Sales data from related products as input

For example, Figure 6.1 illustrates two products with different behavior in demand across
the series. The left one has periodic behavior where as the right one has variation of
demand across the series. A learner (for example, naive predictor which chooses the
last observed value as the prediction for the next point) is employed on both of the
series. When we calculate the MSE for the left one then it always takes the popular
value (in this case same as demand i.e. thick line drawn at y=1), and achieves a good
performance. But the right one has noisy data (sudden rises and drops)and therefore
likely produces bad results.

Figure 6.1: Periodic demand versus variation of demand

Therefore, we use the Mean Absolute Scaled Error (MASE) as the prediction error
measure. MASE can be used to compare forecast methods on a single series and also to
compare forecast accuracy between series. The Mean Absolute Scaled Error is simply
given by equation 6.2.

MASE (qt) can be given as

qt =
1/T

∑T
t=1 |Truet − Predictiont|

1/T
∑T

t=1 |Truet − Truet−1|
(6.2)

6.2 Historic Sales data from related products as input

In this section we describe the basic statistics done for the different data sets for the cost
sensitive and non cost sensitive experiments. Two different types of experiments are done
for each integration method (model selection, model weighting and model voting). For
each integration method we calculated the costs for cost sensitive method, and cost for
non cost sensitive method. We used four different parameter settings discussed earlier in
the experimental setup for each product. Table 6.1 shows the summary of the statistics.
We did a total of 524 experiments.

In addition to these basic statistics, we are able to compare the costs calculated from the
predictions for cost sensitive method and non cost sensitive method for all integration
methods. Table 6.2 shows the comparisons of each method (model voting and model
weighting) with respect to cost. The notation CCS is meant by cost of cost sensitive
method and CNCS is meant by cost of non cost sensitive method.

We can see from the results obtained, that when model voting is selected as the integra-
tion method, cost sensitive (CS) method performs much better than other integration
methods. That is, in model voting, in 348 out of 524 experiments, cost sensitive method

Chapter 6. Evaluation 29

Statistics Model Weighting Model Voting

Exp CS(Cost Sensitive) NCS(Non Cost Sensitive) CS(Cost Sensitive) NCS(Non Cost Sensitive)

Mean -603.58 -593.54 -482.69 -450.64

Range 3775.3 3703.7 4243.4 4037.8

Minimum -3166.8 -3048.7 -2997.3 -2790.2

Maximum 608.5 655 1246.1 1247.6

Sum -316277 -311013.8 -252929.4 -236134.2

Count 524 524 524 524

Table 6.1: Summary of the statistics

Performance Model Weighting Model Voting

CCS < CNCS 265 348

CCS > CNCS 259 176

Table 6.2: External feature set consisting of rain and temperature

performs better than non cost sensitive method (NCS) with respect to cost. That is
66.14% out of 524 experiments.

Moreover, the comparison of each of these integration methods with moving average
(with respect to cost) is illustrated in Table 6.3.

Performance based on cost Model Weighting Model Voting

Exp CS NCS CS NCS

Moving Average (better) 231 235 313 315

Moving Average (not better) 293 289 211 209

Table 6.3: Moving average is compared with each integration method

From the results we can conclude that, when model voting is selected as an integration
method, the base learner selected for the final prediction from the ensemble of classifiers
is not the six weeks moving average. Otherwise the performance of the model voting is
likely to be the same as moving average, if it is selected as an individual base learner.

In model voting, when we compare the cost sensitive method and non cost sensitive
method with respect to costs. There will be two situations:

• Cost difference is high(cost sensitive is very expensive, i.e. worst case for CS
method).

• Cost difference is low(non cost sensitive is very expensive, i.e best case for CS
method).

With respect to the first case, the series is depicted in Figure 6.2. In the graph, by
”Label” we mean the actual value and by ”Model Voting CS” we mean the integration

30 6.2. Historic Sales data from related products as input

method used to predict for cost sensitive method. It shows that the prediction is very
low compared to true label. That is most of the time when under prediction occurs and
this causes always additional costs (loss of sales cost) across the series. Also from the
graph we can see there is a late prediction with a huge peak (same amplitude as true
label),and it is obvious we can conclude that at this instance level the moving average
is not the base learner. The reason is that moving average always responds with low
amplitude. Moreover, there are a number of early, over, under, and late predictions
happening(including high amplitude ones). As a result this leads to the worst case.

Figure 6.2: True label and worst case scenario prediction of cost sensitive method

In addition, from the graph illustrated we can see that there are many rises and drops,
which the learner, selected for the final prediction, could not recognize. The reason is,
there may be not enough positive instances in the training set to learn from, and to
predict the rises and drops. We suspect that the training error is also too high.

For example, Figure 6.3 shows the training and testing part of a highly periodic series.
If a learner is employed on these training instances then the probability of predicting
the peaks in the training part are very low (i.e. high error) because the data is highly
periodic. As a result, it could not predict the peaks in the testing instances.

Chapter 6. Evaluation 31

Figure 6.3: High periodic series

Another suspected reason is probably due to overfitting the data. It is obvious that food
sales data consist of lots of seasonal and promotional information. The selected learner
is assumed to reach a state where it will also be able to predict the correct output for
unseen data (test data). However, especially in cases where learning was performed
too long or where training examples are rare (for example in this case huge peaks and
drops often occur in the test instances but not in the training instances), the learner
may adjust to very specific random features of the training data which do not have any
corresponding relation with the target function. This problem is called overfitting.

On the other hand, the best case is depicted in Figure 6.4 . From the graph we can infer
that under, late and over predictions are happening here but in few cases the learner is
able to identify the drops and raises of the true label. This causes the generated cost
across the time series to be low when compared to non cost sensitive method. Still the
reasons mentioned in the worst case are valid here too.

32 6.2. Historic Sales data from related products as input

Figure 6.4: True label and best case scenario of cost sensitive method

Our intention in this part of the research is to show that any relationship holds between
the cost sensitive method and the error based method in food sales prediction. That is
to show if they have any correlation between them or not. The comparison of MASE
error (Y-Axis), and the scaled cost(X- Axis) of cost sensitive method for the selected
products for model voting, are shown in Figure 6.5. Here, the cost sensitive method’s
generated cost for a product is scaled by dividing the corresponding one day moving
average cost of that product in order to compare with MASE of that product.

Figure 6.5: Comparison of scaled cost (CS) and MASE of selected products

Chapter 6. Evaluation 33

By definition, if the data points make a straight line going from the origin out to high
x- and y-values, then the variables are said to have a positive correlation and vice versa.
From the graph we can see that there is no correlation between both axis (cost versus
error). That is, there is no relationship between two of these variables.

Furthermore, from Figure 6.5, it can be observed that there are three sets of points
(suspected as outliers). The point marked with number 1 has high cost and low error.
The points marked by number 2 have high error but no cost. The set of points circled
in number 3, have low costs and low error. Because of scaling, these points shown up in
the graph as outliers. The MASE error is not bounded, there is no upper bound defined
for it. Therefore, the error can take the value between 0 to infinitive.

6.3 Moving Average as the Prediction label

In this section we take the estimated demand as six weeks moving average and calculate
costs for 524 experiments. We compared these calculated costs with respective costs of
model voting and model weighting (both cost sensitive and non cost sensitive) of the
products. The results are shown in Table 6.3.

From the table we can see that compared to model weighting in model voting moving
average produces less cost in both cost sensitive (313 times) and non cost sensitive (315
times) method.

6.4 Results and Discussions

From the experiments we conducted to validate our hypothesis, we are able to summarize
the following results and discussions.

From the experimental study we suspect that model voting performs better than model
weighting with respect to cost. That is, we showed that in 348 (66.14%) out of 524
experiments cost sensitive method performs better than non cost sensitive method when
model voting is selected as the integration method.

The reasons discussed below are the possible ways to improve the results and are useful
to consider.

First, the sales policy that we have defined in our research with respect to stock can be
discussed more. As we mentioned earlier that we can define the safety margin (stock
level) for each product which might reduce the problem with no stock availability. In
addition to this, we can think about the stock at the end of the sales’ year (or may be
for the seasonal products at the end of the season) by giving promotions on the last
day which also might reduce the costs. This is rather considered than discarding the
products.

Secondly, the cost function parameters are based on our experiments on food sales
prediction. In food sales company’s point of view they can add their own parameters
or discard the parameters, and use them in the cost function to calculate the associated
costs.

34 6.4. Results and Discussions

Thirdly, in our research we considered the neighbor size of 1. It is possible to experiment
with different sizes of neighbourhoods (not looking at larger k’s since accuracy normally
decreases with the increase in size of neighborhoods), and compare the results. That
is the experiments can be conducted with neighbourhood size k (for example k=1, 2, 5
and 10), and model selection, model weighting and model weighed voting as dynamic
integration methods.

Finally, while the models are trained in our algorithm, we used only a few base learners
(≤ 10). Generally, to get a good ensemble, the base learners should be as accurate, and
diverse as possible. Therefore, it is advisable to have more base learners added to the
ensemble. If there are more learners available we will see a diverse output, and therefore
the one selected for the final prediction produces better results.

Chapter 7

Conclusions and Recomendations

The ability to forecast consumer demand accurately is of great importance to companies
like food sales retail and whole sales. They are more concerned about the sales prediction
of products having a short shelf-life and seasonal changes in demand. Because of the
bad prediction in food sales, both shortage and surplus of goods can lead to additional
costs and loss of income for the company. Therefore, accurate forecasts is useful for a
food sales company to prevent customers from going to competitors.

The six weeks moving average works well when sales pattern is at an approximate level.
Though the moving average is used in the current food sales prediction, it responds late
to the sudden drops and raises (as we discussed earlier), that occur in the data set. An
intelligent method might perform better than the moving average on these mentioned
sudden drops and raises. Therefore, the Ensemble of classifiers method with dynamic
integration of classifiers is proposed.

We discussed four possible types of predictions where the possible costs are generated.
We made the sales policy which includes all these four cases and is reflected as a cost
function. As a result, the cost function is able to calculate the related possible costs for
the food sales prediction. We used these costs in our evaluation method.

We use these mentioned costs as an input to the ensemble of learners which is made up of
different base learners. This ensemble generates multiple base models using traditional
machine learning algorithms, and combines them into an ensemble model. In addition,
we added the sliding window approach which uses a window that moves over recently
arrived instances and uses the learnt concepts for prediction in the immediate future
only. Finally, we apply dynamic integration of classifiers to select the best model for
final prediction and for better handling of seasonal changes and fluctuations in consumer
demands.

From the experimental study we suspect that model voting performs better than model
weighting with respect to cost. That is, we saw that in 348 (66.14%) out of 524 ex-
periments cost sensitive method performs better than non cost sensitive method when
model voting is selected as the integration method.

Sligro can consider this research work with respect to the costs in future sales. First of
all, we have shown that by introducing the cost sensitive model selection with ensemble
approach, the accuracy increases. In this way, with less human intervention better
forecasting is possible. Secondly, we have demonstrated that these calculated costs are

35

36 Chapter 7. Conclusions and Recomendations

entirely dependent on parameter settings. So it is possible to use their own parameters,
and calculate the costs, and produce better prediction results. In addition to this,
the stock policy that we defined is based on our basic experience with the food sales.
Therefore, they can modify or improve it according to their own policies.

Appendix A

Pseudo-code of the COST
Function

Listing A.1:Pseudo-code of the COST Function
The following Pseudo-code code shows the COST Function.

public class CostEvaluator {

// declare global variable

public void SetKpCost(double _KpCost)

{

// initialize keep_cost

}

public void SetPPrice(double _PPrice)

{

// initialize purchase_price ;

}

public void SetProfitRatio(double _ProfitRatio)

{

// initialize Profit_Ratio ;

}

public void SetStockLevel(int _StockLevel)

{

// initialize Stock_Level ;

}

public CostEvaluator(int _Duration)

{

// initialize the variables

// stock is initialized to 1 at the beginning and

// duration too assigned for the product

InitStock(1, Duration);

}

private void InitStock(int startval , int expdate)

{

// stock is initialized to 1 at the beginning and

// duration too assigned for the product

}

private double UpdateStock(int weeknr , int pred)

{

// Throw away obsolete items

For each week check the item’s expire date

37

Appendix A. COST Function 38

If date of expiry week > current week

obsolete items

// Buy new items if needed

//If available stock less than prediction

Needed_stock = prediction - Get_stock ()

Stock_cost = needed * Purchase_Price;

// update the expiry date

int pdate = weeknr + Duration - 1;

// if the current week is last week then

// not allowed to purchase it

return stockcost;

}

private void DeductFromStock(int amount)

{

// deduct the amount sold products

}

public int Get_Stock ()

{

// Calculate the available stock

}

private double sales(int act , int pred)

{

// if the stock is less than the Actual sales then

//sell the available stock

Profit_cost = stock * Profit_Ratio* Purchase_Price;

DeductFromStock(stock);

// find the penalty

penalty = (max - stock)/2;

// find the penalty cost

Profit_cost = (penalty * Profit_Ratio * Purchase_Price);

// if we have enough stock

//sell the products and deduct it

Profit_cost -= act * Profit_Ratio * Purchase_Price;

DeductFromStock(act);

return pcost;

}

public double CalcCost(int week ,int act , int pred)

{

// Cost for items stored

cost = GetTotalStock () * Keep_Cost;

// Cost for sales

cost = UpdateStock(week , pred);

// Cost for purchase

cost = Purchase(act , pred);

return cost;

}

}

Listing A.1: Pseudo-code code shows the COST Function

Appendix B

Pseudo-code of the Performance
Matrix

Listing B.1:Create Performance Matrix
This appendix shows the pseudo code for read the results of the cross validation process
from file and calculate the cost/ error associated.

error(b,i) = error/cost of base learner b on instance i

Label= Actual sales

Error= |Actual sales - Prediction |

methodname = cost sensitive or error based

prediction(b) = prediction done by base learner b

minicost= Minimum cost occurred (Lower bound of the cost)

Original cost= Cost by the sales

ErrorArray = stores the Error

Scaled Cost= Scale the original cost; otherwise cost will be negative.

Always a positive value

MaximumCost = find the Maximum scaled cost; Upper bound of the cost

ArrayCost =Scaled cost are stored in an array

ScaledCostArray = final scaled cost(between 0 and 1) are stored in the array

For each model i=1 to 8

While read the file which contains the cross validation results Until Last Line

Calculate Minicost

Calculate Error

ErrorArray(each line)=Error

Calculate Original cost

Scaled Cost = Original cost + Minicost

For each element of the array ArrayCost

IF MaximumCost < Scaled Cost THEN

MaximumCost = Scaled Cost

end

For each element of the array ArrayCost

ScaledCostArray(element) = Scaled Cost/ MaximumCost

end

END of WHILE

IF methodname == cost sensitive THEN

For each element of the array ScaledCostArray

error (b,i)= ScaledCostArray (element)

end

ELSE

For each element of the array ScaledCostArray

error (b,i)= ErrorArray(element)

end

39

Appendix B. Performance Matrix 40

end

Listing B.1: Performance Matrix

Bibliography

[1] Rapid miner, http://rapid-i.com/content/blogcategory/38/69/.

[2] P. Cunningham A. Tsymbal, M. Pechenizkiy and S. Puuronen. Dynamic integration
of classifiers for handling concept drift. In Inf. Fusion, pages 56–68, 2008.

[3] D. Adebanjo and R. Mann. identifying problems in forecasting consumer demand in
fast moving consumer goods sector. In In Benchmarking: An International Journal,
pages 223–230, 2000.

[4] L. Breiman. Bagging predictors. In Machine Learning, pages 123–140, 1996.

[5] P. K. Chan and S. J. Stolfo. Toward scalable learning with non-uniform class and
cost distributions. In Proc. 4th International Conference on Knowledge Discovery
and Data Mining, pages 64–168, New York, NY, 1998.

[6] A.Kadam G. Widmer D.Delen, G.Walker. Learning in the presence of concept drift
and hidden contexts. In In Machine Learning, pages 69–101, 1996.

[7] Pedro Domingos. Metacost: A general method for making classifiers cost sensitive.
In Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 155–164, August 1999.

[8] Liangyuan Li, Mei Chen, Hanhu Wang, Wei Chen, and Zhiyong Guo. A cost
sensitive ensemble method for medical prediction. In Database Technology and
Applications, International Workshop on, pages 221–224, 2009.

[9] Pechenizkiy M. Meulstee, P. Food sales prediction: if only it knew what we know.
In ICDM Workshops,IEEE Computer Society, pages 134–143, Los Alamitos, 2008.

[10] I. Mierswa, M. Wurst, R. Klinkenberg, and T Scholz, M.and Euler. Predicting
breast cancer survivability: a comparison of three data mining methods. In Artificial
Intelligence in Medicine Volume 34, Issue 2, 2006.

[11] I. Mierswa, M. Wurst, R. Klinkenberg, and T Scholz, M.and Euler. Yale (now:
Rapidminer): Rapid prototyping for complex data mining tasks. In Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2006, 2006.

[12] F. Provost. Toward economic machine learning and utility-based data mining. In
UBDM ’05, Chicago, Illinois, USA, August 2005.

[13] R. Schapire. The boosting approach to machine learning: An overview. In MSRI
Workshop on Nonlinear Estimation and Classification, 2001.

41

Bibliography 42

[14] P. Cunningham Tsymbal, M. Pechenizkiy and S. Puuronen. Handling local con-
cept drift with dynamic integration of classifiers:domain of antibiotic resistance in
nosocomial infections. In cbms, pages 679–684, 2006.

[15] S. Puuronen Tsymbal and I. Skrypnyk. Ensemble feature selection with dynamic in-
tegration of classifiers. In In in: Int. ICSC Congress on Computational Intelligence
Methods and Applications CIMA 2001, pages 558–564, 2001.

[16] P.D. Turney. Types of cost in inductive concept learning. In Proc. Workshop Cost-
Sensitive Learning at the 17th Int’l Conf, 2000.

[17] D. H. Wolpert. Stacked generalization. In Neural Networks, pages 241–259, 1992.

	Abstract
	Acknowledgements
	Contents
	List of figures
	List of tables
	1. Introduction
	2. Problem description
	3. Cost function
	4. Algorithm
	5. Experimental setup
	6. Evaluation
	7. Conclusions and recomendations
	Appendix A
	Appendix B
	Bibliography

