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Abstract: The impact of micro-level people’s activities on urban macro-level indicators is a complex
question that has been the subject of much interest among researchers and policymakers. Transporta-
tion preferences, consumption habits, communication patterns and other individual-level activities
can significantly impact large-scale urban characteristics, such as the potential for innovation gen-
eration of the city. Conversely, large-scale urban characteristics can also constrain and determine
the activities of their inhabitants. Therefore, understanding the interdependence and mutual rein-
forcement between micro- and macro-level factors is critical to defining effective public policies. The
increasing availability of digital data sources, such as social media and mobile phones, has opened
up new opportunities for the quantitative study of this interdependency. This paper aims to detect
meaningful city clusters on the basis of a detailed analysis of the spatiotemporal activity patterns for
each city. The study is carried out on a worldwide city dataset of spatiotemporal activity patterns
obtained from geotagged social media data. Clustering features are obtained from unsupervised
topic analyses of activity patterns. Our study compares state-of-the-art clustering models, selecting
the model achieving a 2.7% greater Silhouette Score than the next-best model. Three well-separated
city clusters are identified. Additionally, the study of the distribution of the City Innovation Index
over these three city clusters shows discrimination of low performing from high performing cities
relative to innovation. Low performing cities are identified in one well-separated cluster. Therefore,
it is possible to correlate micro-scale individual-level activities to large-scale urban characteristics.

Keywords: activity patterns; clustering models; geotagged data; City Innovation Index

1. Introduction

The relationship between the activities conducted by city residents and large-scale
city characteristics is a complex phenomenon that has received particular attention from
researchers and policymakers [1,2]. Individual-level activities such as transportation prefer-
ences [3,4], consumption patterns [5,6], communication patterns and social interactions [7]
can significantly impact large-scale city characteristics, such as innovation generation ca-
pability. Transportation preferences affect traffic congestion and pollution, affecting the
ability of cities to innovate and to compete in a globalized economy. Shopping habits
can determine which business areas flourish, thereby boosting the capacity for innovation
in related industries. On the other hand, large-scale urban characteristics can constrain
or facilitate the activity of their inhabitants. For example, a well-connected public trans-
port network reduces the use of private vehicles. Policies implemented by city managers
supporting specific industrial sectors can promote the technical specialization of inhab-
itants [8]. Furthermore, enhanced access to culture, networking and entertainment can
determine social relationships [9,10]. The interplay between micro and macro factors is
complicated by their interdependence. The increasing availability of digital data sources,
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such as social media, mobile phones and a wide variety of virtual sensors, has opened up
new opportunities for the quantitative analyisis of the relationship between individual
urban activities and large-scale urban characteristics. These data sources are like virtual
sensors that capture information on individual behavior providing a more comprehensive
and dynamic understanding of urban life [11].

This study investigates the relationship between the activity of the city inhabitants
observed through their social media digital traces and large-scale characteristics of the city,
such as its capacity to generate innovation. In particular, the following research questions
are dealt with in this paper.

1. Can meaningful city categories (clusters) be detected based on micro-level city activity
patterns derived from individual citizen activity data?

2. Is there any relationship between the clusters obtained and large-scale city character-
istics such as the City Innovation Index [12]?

The study analyzes a worldwide city dataset, obtaining city features based on the
decomposition of city spatiotemporal activity patterns of social interactions into latent
topic patterns. The dataset covers 17 years of city residents’ digital activity gathered from
geotagged social media digital traces. The city features are used to cluster cities with similar
behaviors. We explore several state-of-the-art clustering algorithms, selecting the optimal
one on the basis of the Silhouette clustering quality measure.

The article is organized as follows: Section 2 provides information on previous works
and applications. Section 3 describes the data sources used to build the experimental dataset.
Section 4 presents the methodology and experimental setup. Section 5 gives the details of
the experimental setup. Section 6 presents and discusses the computational experiment
results. Section 7 provides a discussion of results in relation with other recent publications.
Finally, Section 8 gives our conclusions and some ideas for future research work.

2. Background and Related Work
2.1. Large-Scale Urban Characteristics, Innovation and Public Policies

Large-scale urban characteristics, such as the capability for the generation of inno-
vations, are important for urban development and growth [1,13]. Cities that provide
environments fostering innovation are more likely to attract investment and new busi-
nesses, which leads to higher job market growth and economic prosperity. Boosting the
ranking of the city on these large-scale urban characteristics demands a strategic approach
that involves public policies and regulation. For example, governments can create in-
centives and tax reductions [14,15] and invest in developing infrastructure encouraging
innovation, such as high-speed internet access [16,17], co-working spaces [18,19], public
transportation and social and recreational areas [20]. City Innovation Index rankings allow
one to compare the innovation level of cities across the world [21]. These rankings usually
involve indicators such as research and development, entrepreneurship, infrastructure,
cultural assets, technology transfer and market quality as factors supporting innovation.
These rankings make visible and highlight cities’ strengths and weaknesses regarding
innovation that provide valuable information for policymakers in charge of developing
public policies that help improve weak aspects of the city.

2.2. Data-Driven Policy-Making Using Digital Traces

Recent literature has shown the potential of multiple data sources to characterize the
interaction between humans and their environments. This research uses social media geo-
tagged digital trace data sources to describe individuals’ behavior. In order to understand
their ability to identify novel human behavioral patterns, it is important to distinguish
how ubiquitous social media platforms are. Mobile phones are the technology with the
fastest adoption rate in history, even in developing countries, where ownership spans more
than 91% of the population [22,23]. Over 60% of mobile phone users access social media
platforms [24]. This percentage is rising in developed countries; for instance, 90% of the US
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population is actively engaged in social media [25]. Mobile phone and social media data
can characterize activities such as transportation habits or the practice of outdoor sports.

Studies have used geo-crowdsourced data from multiple resources, such as Foursquare [26],
geotagged tweets [27–29], cell phone records [30–34], geotagged Flickr photos [35] and geo-
tagged Chinese social media messages [36], to understand complex human activity pat-
terns. These patterns are important for public policy decisions related to urban phenomena
such as public transport [37], traffic flow [38], flood risk management [39] and urban plan-
ning [40,41]. Human behavioral patterns have also been used to measure the effectiveness
of pandemic policies [42,43].

However, there are methodological challenges in translating massive data sets into
valuable insights, such as aggregating raw data into mobility patterns to monitor quarantine
policies [43]. Despite these challenges, the potential of using these data sources to support
policy-making is tremendous.

3. Data Description

This study uses city activity patterns from the social media dataset described in
a recent PhD dissertation [44]. Table 1 gives details of the dataset. It contains over 32 million
geotagged urban activity records (tweets, images, check-ins) from various social activity
platforms collected over 17 years from 127 cities all over the world. Although each source
dataset has a different schema, the available fields are used to avoid duplicate urban
activities. The collated data used in this paper are available from the open data repository
https://doi.org/10.5281/zenodo.7949307 (accessed on 22 May 2023).

City activity patterns were defined as the count of activity events in a period of a week
with a time resolution of one hour; hence, each city has 17× 54 weekly activity pattern
vectors of size 7× 24. Topic analysis has been applied [44] to obtain topic representative
activity patterns. Via optimal topic analysis, three such topic representative activity patterns
were found for each time slice of 3 years. Each city was characterized by the mean and
standard deviation of the parameters, distributing the linear decomposition of its activity
patterns into the topic representative activity patterns. In this way, each city is characterized
for a k× s matrix, where k = 3 is the number of city activity patterns per time slice and s = 7
corresponds to the number of time slices.

Table 1. Description of the geotagged digital traces dataset. The Source column provides information
about the origin of the geotagged digital traces. The dataset references indicate the sources from
which the data were obtained and the Events column shows the total number of records.

Source Dataset Reference Events

Brightkite checkins [45] 1,639,399

Foursquare checkins
[46] 7,515,201

[47] 1,099,826

Geotagged Images [48] 4,998,865

Geotagged Tweets

[49] 2,041,262

[50] 187,802

[51] 47,337

[50] (Exact Location) 184,547

[50] (Inferred Location) 2,604,233

Gowalla checkins [45] 1,992,082

Weeplaces checkins [45] 4,176,673

Yelp checkins [52] 5,695,209

https://doi.org/10.5281/zenodo.7949307
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Additionally, this study uses the City Innovation Index [12], an annual quantitative
index to rank the most innovative cities worldwide. The quantitative index is based on
cities’ cultural assets, human infrastructure and networked markets. Cultural assets refer
to how culture is experienced within cities and considers arts districts, civic institutions,
museums, music events, galleries, political protests, books, media, availability of infor-
mation and sports. Human infrastructure includes the infrastructure deployed in the
city for mass transit, finance, universities, hospitals, rail, roads, law, commerce, start-ups,
healthcare and telecommunications. Finally, networked markets measure a city’s influence
and connections in global markets, considering geography, economics, exports and imports,
technology, market size, geo-political aspects and diplomacy.

Finally, this study use the definition of city/town provided by Simplemaps [53], which
considers a city/town any inhabited place as determined by U.S. government agencies.
The location of cities and their respective centers were obtained from the World Cities
Database provided by the same company. We include cities with more than 1 million
inhabitants or country capitals in the study. In addition, we define a limit of the ten
most populated cities in the country for countries where many cities meet the above-
mentioned conditions.

4. Methodology and Experimental Setup
Data Preprocessing

The main steps of the computational process leading to the city clustering and inter-
pretation are graphically depicted in Figure 1. The process starts with the integration of
real-world data from open data sources described above. A painfully careful and time-
consuming effort has been devoted to curating the data, assessing non-duplicate records of
events and transforming them into the weekly activity patterns that are the data used in the
topic analysis that is used to identify topic representative activity patterns. Here, topics are
equated to generic latent activity patterns which can be interpreted as modeling the behav-
ior of some segment of the population. In this computational exploration, we found topic
representative activity patterns for business/office work, leisure activities and shopping
time. Figure 2 shows the topic representative activity patterns identified in this process in
seven time slices of the data, accounting for time variability of the citizens’ behaviors. After
the identification of the topic representative activity patterns, each weekly activity pattern
can be expressed as a linear combination of them. The coefficients of this linear combination
are the features in the latent space describing the weekly activity patterns. The aggregated
city features are computed as the means and standard deviations of the weekly activity
pattern features. This methodological approach is discussed in detail elsewhere [44]; here,
we focus on the last steps of the process, namely the clustering of the cities on the basis of
the aggregated city features.

Figure 1. Proposed methodology for discovering city activity patterns and then interpreting the
results through city clustering.
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Figure 2. Topic representative activity patterns obtained using Dynamic Topic Models [44] over
virtual sensors of digital traces of people activities. Each row corresponds to a time slice of the
data; the years are indicated in brackets. Each column corresponds to a topic that has consistent
interpretation over time.

5. Experimental Setup

The clustering stage seeks to find groups of cities based on their multi-temporal city
activity patterns. State-of-the-art clustering models are evaluated based on multiple model
training using bootstrap samples in order to select the best model based on its Silhouette
Score [54]. In order to provide an interpretation for the identified city clusters, we study
the distribution of the City Innovation Index for each cluster discussing the links between
individual-level urban activities and large-scale urban characteristics. The sequence of
computational processes is as follows.

• The first step computes city features as the average and standard deviation of the
coefficients of the linear decomposition of the weekly activity patterns and sorts them
into the topic representative activity patterns extracted from each time slice of the
dataset; thus, each city would be described by 2× k × s features, where k = 3 is
the optimal number of topics selected as described elsewhere [44] and s = 7 is the
number of time slices. These features are further compressed by averaging over
the time slices. Therefore, each city is described by 2× k features for the ensuing
clustering experiments.

• The second step is the comparison among state-of-the-art clustering algorithms,
namely K-Means, Mini Batch K-Means, Agglomerative Clustering, Spectral Clus-
tering, BIRCH and Gaussian Mixture model. Clustering is repeated 30 time with each
algorithm and the number of clusters is set in the range between 2 and 20. The best
clustering algorithm and optimal number of clusters are selected using the Silhouette
Score over the 30 repetitions. The optimal number of clusters corresponds to the maxi-
mum of the average Silhouette Score. The best clustering algorithm is selected based
on paired comparisons using the non-parametric Wilcoxon test over the Silhouette
Scores achieved along the number of cluster explorations.

• The third step is the computation of the distribution of the City Innovation Index and
other large-scale urban indices over the cities included in each cluster of the optimal
clustering solution found above. The boxplot visualization of the distribution per
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cluster shows that the clusters effectively discriminate between cities according to
large-scale city indices.

6. Results

The presentation of results begins in Section 6.1 with an exploratory analysis of the
geotagged digital traces discussing how they represent the human activity in the cities.
Then, Section 6.2 reports clustering results based on city features discussed above. This
section compares multiple clustering models, selecting the optimal one as discussed above.
In Section 6.3, the optimal clusters are characterized based on their geographic location.
Finally, Section 6.4 discusses the discrimination of large-scale city indices between the
identified optimal clusters.

6.1. Data Exploration

For visual assessment, Figure 3 shows the density of the geotagged urban activities
gathered in the experimental dataset for a sample of cities. For each city shown in the
figure, only activities within a 30 km radius are considered to be associated with the city. It
can be appreciated that registered activities have a high concentration close to the urban
centers of each city. For example, in Amsterdam, we observe an area of high activity in
the surroundings of the Amsterdam Centraal Railway Station and other locations of high
concentration of people, such as Leidseplein Square, a buzzing nightlife hub surrounded
by bars and restaurants. In the case of Manhattan, although the activities are distributed
throughout practically the entire island, sectors such as Times Square, the Rockefeller
Center and the One World Trade Center stand out as high-activity areas. Less touristic
cities, such as Tampa, also show concentrations of activity in areas of importance to the city,
as seen in the image: Downtown, The Florida Aquarium and Tampa International Airport.

(a) Amsterdam (b) Antalya (c) Barcelona (d) Boston

(e) Buenos Aires (f) Madrid (g) Manhattan (h) Salvador

(i) San Francisco (j) Stockholm (k) Tampa (l) Vienna

Figure 3. Example of cities included in the dataset and their spatial densities of geotagged digital
traces. Yellow indicates a larger activity frequency, while purple indicates a smaller one. Each figure
has an independent scale. Map tiles by Stamen Design are under CC BY 3.0, Data by OpenStreetMap
contributors are under ODbL.
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It is necessary to highlight that the computed weekly activity patterns reflect only the
behavior of the population that generated the digital traces. This research does not have
demographic information on users to profile them. Therefore, it cannot be ensured that the
sample of users is fully representative of the city population.

6.2. City Clustering

The study explored the clustering performance of state-of-the-art algorithms, namely
K-Means, Mini Batch K-Means, Agglomerative Clustering, Spectral Clustering, BIRCH
and Gaussian Mixture model. In order to determine the optimal number of clusters,
clustering was carried out varying the number of clusters between 2 and 20 for each
algorithm. Furthermore, to assess the robustness of the results, 30 repetitions of the
clustering process were carried out for each algorithm and number of clusters.

Figure 4 shows the average and 95% confidence interval of the Silhouette Score ob-
tained for each of the models. These results show that the optimal clustering is achieved
with K-Means when the optimal number of clusters is set to three. Overall, K-Means
showed the highest Silhouette Score values for all settings of the number of clusters. This
result was verified by pairwise comparison against the other models using the Wilcoxon
test, where K-Means showed statistically significant differences with p-values well below
0.05. The details of the comparison using the Wilcoxon test are presented in Table 2. The ta-
ble shows the result of applying the test to compare the Silhouette Score of the K-Means
against the other clustering algorithms. The comparison is presented for models with k = 3
and k = 2 and the rest are omitted because other scenarios are self-evident.

Figure 4. Silhouette Score over groups’ multi-temporal city activity patterns. Each line shows the
average Silhouette Score and its 95% confidence interval.

Additionally, Figure 5 (left) shows the Silhouette Score for each city displayed along
the Y axis in decreasing order for each cluster. The Silhouette Score of a city measures its
similarity to the cluster it belongs to compared to others. The score ranges from −1 to 1,
where 1 indicates that the city is very well fitted to its own cluster and poorly matched to
neighboring clusters. A score of −1 indicates the opposite, with the city poorly matched to
its own cluster and well-matched to neighboring clusters. A score of 0 indicates that the
city is equally similar to its own and neighboring clusters. The optimal K-Means clustering
achieves an average score of 0.38, with only a few cities obtaining a score of zero or below.
These results indicate that, with a few exceptions, the cities were optimally assigned to their
corresponding clusters. On the other hand, Figure 5 (right) shows the spatial embedding
of the cities computed via a two-dimensional t-SNE (t-Distributed Stochastic Neighbor
Embedding) projection from the six-dimensional space of the city features computed from
weekly activity patterns. The separation of the clusters demonstrated in the embedding
visualization confirms the quality of the clustering results.
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Table 2. Comparison of clustering models against the K-Means model with k = 3. Clusters indicate
the number of clusters extracted. The p-value column results from the Wilcoxon test comparing
the Silhouette Scores. The Difference column is the percentage increase in the Silhouette Score of
K-Means against the comparison algorithm.

Algorithm k p-Value Difference (%)

Mini Batch K-Means 3 4.16× 10−4 12.0%

Agglomerative Clustering 3 1.83× 10−3 4.3%

Spectral Clustering 3 3.72× 10−5 17.4%

BIRCH 3 3.88× 10−4 15.3%

Gaussian Mixture 3 1.73× 10−6 19.8%

K-Means 2 9.71× 10−5 5.2%

Mini Batch K-Means 2 3.16× 10−3 8.7%

Agglomerative Clustering 2 5.71× 10−2 2.7%

Spectral Clustering 2 1.40× 10−2 3.7%

BIRCH 2 2.16× 10−4 9.0%

Gaussian Mixture 2 2.41× 10−4 12.1%

Figure 5. Silhouette analysis for K-Means clustering results with k = 3. The left figure plots the
Silhouette Score for each city in each city in each cluster. The right figure is the t-SNE embedding of
the clusters.

6.3. City Clusters

Figure 6 visualizes the plot of the cities in the convex region defined by three of the city
features, namely the averages of the linear decomposition coefficients of activity patterns,
discarding the standard deviations for this visualization. Each color indicates a different
cluster. In addition, the names of some cities within each cluster are shown. Thus, it can
be seen in Figure 6a that Cluster 0 (C0) includes cities such as Campinas (Brazil), Lahore
(Pakistan), Jeddah (Saudi Arabia) and Lagos (Nigeria). Cluster 1 (C1) includes cities such
as Porto Alegre (Brazil), Athens (Greece), Ecatepec (Mexico) and Atlanta and Boston (USA).
In Cluster 2 (C2), we find cities such as Seoul (South Korea), Santo Domingo (Dominica
Republic), Nairobi (Kenya), Stockholm (Sweden), Washington (USA) and Birstall (England).
In this figure, separation of the red-colored cluster is clearer than the separation of green
and blue clusters.

Enhanced cluster separation is shown in Figure 6b. In this figure, cities were filtered
based on their Silhouette Score, leaving only those with a score higher than the median
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score of each cluster. Thus, we visualize the central core of each cluster, enhancing the
separation between them.

(a) All cities (b) Cities with Silhouette Score above cluster median

Figure 6. Visualization of city clusters on the convex space determined via the average linear
coefficients of each topic representative activity pattern.

A geographical representation of the clusters in Figure 7 shows the spatial distribution
of the cities that belong to each cluster. The geographical location of Cluster 0 stands out,
whose 20 cities are located mainly in the Middle East, South Asia and Africa. The cities
corresponding to Cluster 1 and Cluster 2 are distributed in practically the same territories,
except that we did not find any of the 32 cities of Cluster 1 in East Asia and Oceania. Finally,
Cluster 2 stands out because many of its 92 cities are in central Europe. Cluster 1 appears
to include big administrative centers, many of them the country’s capital city.

Figure 7. Geographical representation of city clusters.

6.4. City Clusters and The City Innovation Index

Figure 8 shows the distributions of the City Innovation Index ranking for the year
2021 according to the clusters found in our analysis. Figure 8 (left) is a boxplot where each
data point corresponds to a city, indicating the position in the innovation ranking (lower
is better). Figure 8 (right) corresponds to the cumulative distribution where population
percentage is equated to probability. In this figure, the difference between the cities that
form Cluster 0 and the rest of the cities stands out. The cities in Cluster 0 are systematically
in the last positions of the innovation ranking and half of the cities in this cluster are in the
last quintile of the innovation ranking. Concerning the rest of the clusters, no significant
differences between them are observed in the location of their cities in the ranking. In both
groups, half of the cities are within the first 150 most innovative cities. Our conclusion from
this analysis is that it is possible to discriminate poorly from highly performing cities in the
City Innovation Index on the basis of the information provided by the activity patterns of
the city.
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Figure 8. City Innovation Index 2021 distribution over the optimal clusters found via K-Means.

Additionally, we present the distribution of the factors that make up the City Innova-
tion Index for the cities under study. Figure 9 shows how the Cultural Assets (a), Human
Infrastructure (b) and Networked Market (c) indexes are distributed. This disaggregation
does not offer variations in interpretation. The cities of Cluster 0 are easily discriminated
from the rest in relation to those indices. In this case, these cities have less cultural capital,
their infrastructure is also far from world standards and their markets need improvement
in order to be sufficiently connected and integrated with the rest of the world. On the other
hand, Clusters 1 and 2 show little differences between them when compared based on any
of these three indicators.

Finally, Table 3 shows the list of the core cities of each cluster (those with Silhouette
Score above the median) ranked by their City Innovation Index. The Table shows the name
and country for each city, its rank according to the City Innovation Index and the clustering
features given by the average linear decomposition of city weekly activity patterns into
topics (Columns T0, T1 and T2).

Regarding Cluster 0, the cities that belong to it have the last ranking positions and the
coefficients for topic 0 dominate the other coefficients, i.e., T0 > T1 and T0 > T2. Recalling
Figure 2, topic 0 has two different activity patterns of working days and weekends. During
the week, the activity of this pattern increases as the day progresses and presents two
clearly defined peaks. The first activity peak is observed at noon and then descends to
a local minimum at 15:00 h. Afterward, the activity reaches its maximum peak around
21:00 h. The main cities of this cluster are located in Africa (South Africa and Nigeria)
and India.

Regarding Cluster 1, the first six cities in the table are in the top 100 for innovation.
From the seventh onwards, the cities fall in the center of the innovation ranking. However,
some cities from developed countries and sectors such as Japan, the USA and Scandinavia
already appear as core cities in this cluster. In this cluster, coefficients for topic 1 dominate
the other coefficients, i.e., T1 > T0 and T1 > T2. This topic shows relatively low activity
during the week and the most significant activity occurs during the weekend. During the
week, the activity increases between 09:00 h and 21:00 h without significant variations
in activity during this period. During the weekend, the activity increases from 09:00 h,
peaking at 15:00 h. and then declining. This fall is more abrupt on Sunday, leaving little
activity until dawn the next day.

Finally, Cluster 2 is made up of the world’s greatest cities. This cluster includes Tokyo,
New York, London and Shanghai, among other cities of outstanding global importance.
For this same reason, the main cities in this cluster are in the top places in the innovation
ranking. In this cluster, coefficients for topic 2 dominate the other coefficients, i.e., T2 > T0
and T2 > T1. This topic also shows different activity patterns during the week working
days and on the weekend. During the week, the activity is concentrated between 09:00 h
and 18:00 h, with a slight drop in activity around noon. During the weekend, the pattern
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presents a similar structure. However, after the 09:00 h peak, the activity begins to decline
over the rest of the day.

(a) Cultural Assets

(b) Human Infrastructure

(c) Networked Market

Figure 9. Distribution of innovation disaggregated indices over the optimal clusters found
by K-Means.

To extend the previous analysis, we delve into the relationship between clusters and
city population. Table 4 contains, for each cluster, the joint distribution of population and
innovation ranking. Both variables are split into quartiles fitted using the whole dataset.
The population is shown for thousands of people, while ranking goes from first to last. It is
confirmed that Cluster 0 is mainly composed of cities in the last positions of the ranking,
with 76% of them in the last quartile of the ranking. Notice that 35.3% of these low ranking
cities have between 3 and 8 million inhabitants. On the other hand, Cluster 1 has 66.6% of
its cities positioned in the first two quartiles of the innovation ranking. However, most of
these are medium/small cities. Finally, Cluster 2 contains the largest cities in the world,
encompassing 83% of the cities in the study. Furthermore, although there are no large
concentrations, the mega-cities with the highest level of innovation represent 12.8% of
this cluster.
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Table 3. List of the core cities within each cluster ordered via the ranking established by the City
Innovation Index. Only cities whose Silhouette Score is higher than the cluster median are included.
T0, T1 and T2 columns correspond to clustering features as explained in the text.

CLUSTER C0 CLUSTER C1 CLUSTER C2
City Ranking T0 T1 T2 City Ranking T0 T1 T2 City Ranking T0 T1 T2

Campinas
(Brazil) 134 0.63 0.16 0.19 Saitama

(Japan) 1 0.31 0.40 0.28 Tokyo (Japan) 1 0.32 0.24 0.43

Vereeniging
(South Africa) 372 0.40 0.23 0.35 Boston (USA) 2 0.25 0.47 0.26 New York

(USA) 3 0.32 0.27 0.40

Lahore
(Pakistan) 403 0.60 0.22 0.17 Atlanta (USA) 13 0.28 0.47 0.24 Sydney

(Australia) 4 0.23 0.29 0.46

Pune (India) 436 0.45 0.29 0.24 Oslo (Norway) 25 0.32 0.48 0.19 Dallas (USA) 6 0.28 0.29 0.41

Pretoria
(South Africa) 461 0.41 0.24 0.34 Helsinki

(Finland) 41 0.33 0.43 0.22 Houston
(USA) 8 0.24 0.31 0.44

Lagos
(Nigeria) 468 0.45 0.20 0.33 Copenhagen

(Denmark) 54 0.29 0.42 0.27 Chicago (USA) 9 0.24 0.31 0.44

Jaipur (India) 473 0.50 0.27 0.22 Guarulhos
(Brazil) 134 0.37 0.41 0.20 London (UK) 11 0.24 0.33 0.41

Lucknow
(India) 487 0.44 0.28 0.27 Lisbon

(Portugal) 158 0.33 0.42 0.23 Shanghai
(China) 15 0.30 0.30 0.39

Cawnpore
(India) 495 0.44 0.27 0.27 Ecatepec

(Mexico) 161 0.35 0.50 0.13 Los Angeles
(USA) 20 0.23 0.33 0.42

Table 4. City distribution by population and innovation ranking. Each entry within each cluster row
shows the distribution by population and innovation ranking quartiles.

City Innovation Ranking
Cluster City Population (0, 41] (41, 161] (161, 311] (311, 500]

C0

(0–1508] - 5.9% 5.9% 11.8%

(1508–3002] 5.9% - - 17.6%

(3002–8154] - 5.9% - 35.3%

(8154–37,977] - - - 11.8%

C1

(0–1508] 11.1% 25.9% 7.4% 3.7%

(1508–3002] - 7.4% 7.4% -

(3002–8154] 18.5% - 3.7% -

(8154–37,977] 3.7% - 7.4% 3.7%

C2

(0–1508] 3.2% 6.4% 7.4% 2.1%

(1508–3002] 2.1% 10.6% 5.3% 9.6%

(3002–8154] 8.5% 5.3% 5.3% 3.2%

(8154–37,977] 12.8% 4.3% 7.4% 6.4%

7. Discussion

The identification of urban features that can have an impact on the potential for
innovation generation as a source for wealth and the general wellbeing of citizens and the
financial support of city structures is a matter of concern for city managers, regardless of
political affiliation labels [55,56]. The relation of the generation of patents and city wealth
measured as the GDP per capita has been established [57] via careful geolocalization of the
published patents and fine spatial grid GDP that allows one to compute the metropolitan
area GDP with some accuracy. The strong interdependence of scientific production, patent
generation and technological productions has already been shown [58,59]; hence, predicting
innovation potential from citizen behavior patterns gives additional insights into city
potential for sustained growth. The work reported in this paper is in line with works that
relate the city innovation value (measured by number of patents) with the activity of people,
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specifically the mobility of researchers [60] in between companies and the cities that host
them. However, we must emphasize that our work does not use information about patents,
scientific publications or company localizations in order to produce a prediction of the
innovation ranking of the city. As a secondary result, we find that population size induces
further discrimination between cities’ innovation rankings in agreement with the literature
that recognizes that large cities concentrate innovation resources and results [61,62]. Recent
reflections [63] on the sources for sustainable urban innovation point to the salient role of
social relation factors, which are indirectly modeled by the activity patterns analyzed in
our study that capture the time structure of interactions.

8. Conclusions and Further Research

Understanding the interaction between micro-level urban activity patterns and large-
scale city characteristics is crucial for policymakers and researchers in designing effective
and adequate public policies. The availability of digital data sources, such as social media
and mobile phones, has opened up new opportunities for the quantitative analysis of this
relationship. This paper reports the clustering of cities on the basis of activity features
extracted from topic analyses of micro-level activity data coming from multiple virtual
sensors. The study uses a worldwide city dataset containing spatiotemporal activity
patterns obtained from geotagged social media data. The Silhouette Score was used to
select the optimal clustering results from the comparison of state-of-the-art clustering
algorithms. The selected model found three well-defined clusters, achieving a 2.7% greater
Silhouette Score than the next-best model. Finally, the paper explores the relation between
the identified city clusters and large-scale city characteristics, i.e., the City Innovation Index.

The examination of the distribution of the City Innovation Index for each cluster
reveals that it is possible to discriminate low performing cities for middle/top performing
cities by their cluster assignment. Therefore, the study establishes a link between micro-
level activity patterns and large-scale city characteristics that can be further exploited in
order to improve discrimination accuracy and sort the items into finer categories of the city
innovation ranking. These findings contribute to the growing literature on using digital
traces to support urban planning and public policy, providing insights into the relationship
between individual-level urban activities and large-scale city characteristics, such as the
city ranking in the City Innovation Index. Future work will refine this study by using
different areas within the city as the spatial analysis level instead of the entire city.
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