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Abstract

The study presented in this thesis is made to explain the Feshbach resonance spectrum of
the ultracold ?3NaSLi system with the use of the Asymptotic Bound-state Model (ABM). This
work was done in collaboration with the university of Heidelberg, where the group of prof.
Oberthaler studied the system experimentally.

Earlier publications of the ?*Na®Li mixture show an interpretation of the spectrum based
on three magnetically induced Feshbach resonances.™? The interpretation was proven to
be incorrect, when the measured spectrum was increased to 24 resonances. The large set of
measured resonances gives the opportunity to firmly analyze the system.

Magnetically induced Feshbach resonances are collisional resonances caused by bound
states in the interatomic potential, which can be made resonant with the collision thresh-
old by changing the magnetic field. These resonances give the opportunity to control the
atomic interactions in an ultracold quantum gas. One of the great properties of Feshbach
resonances is the tune-ability of the interaction strength. The system can be magnetically
tuned to be attractive, repulsive or even non-interacting and it is even possible to control the
conversion of atoms to ultracold molecules and vice versa.

The measured Feshbach resonance spectrum is analyzed based on the Asymptotic Bound-
state Model, with this model the resonance positions can be determined by only using the
least bound state energies, instead of full radial potential curves.

The analysis of the system is made as follows: first the internal energy of the two atoms
is determined as function of an external magnetic field, and second, this is complemented
by adding the interatomic interaction, which in principle is a function of the internuclear
separation. An accurate description of the central interatomic potential was not available.
However a publication by Fellows et al.3, gives the values for the potential curve at long
range and data from which a not very accurately potential at short range could be obtained.
The information was used to construct the whole potential curve.

In order to improve the accuracy of the interactions, free parameters have been introduced.
These parameters shift the bound state energies in the interatomic potential.

In the end, the model has three free input parameters for which we determine the corre-
sponding resonance positions. The main task was to find those three input parameters for
which the model calculates the resonances at the same location as is measured. Not only
the positions are described by the system, also the width of the resonances can be obtained
from the total Hamiltonian.



After writing the model for the 23Na®Li system, the influence of the input parameters
was examined on the resonance position output. As a result the solution space could be
reduced. In the reduced solution space, two sets of measured resonances were carefully
examined and their results combined.

Finally, two different scenario’s were obtained, which both can explain the measured reso-
nance spectrum. In both cases the results could be improved by using additional correction
factors which are related to the long-range part of the potential. Both the solutions have
pro’s and con’s in explaining the spectrum, therefore it is hard to determine to which one
describes reality best.

Some resonances are identified by the scenario’s originating from partial p-waves. So far the
experiment has not been able to discriminate between s- and p-wave Feshbach resonances.
However, a careful experimental investigation should be able to see the difference. If this is
possible, the results could be compared and it would be easy to verify which scenario is best.
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Chapter 1

Introduction: Feshbach resonances
in a nutshell

The study presented in this thesis is made in collaboration with the university of Heidelberg.
In the group of Prof. Oberthaler, magnetically induced Feshbach resonances were observed
in the ultracold 2*NaSLi system. The measured resonances do not match the predictions
made in the earlier publications by Gacesa et al.? and Stan et al™. These predictions were
based on the observation of three resonances. The group of Prof. Oberthaler was able to in-
crease the spectrum to 24 resonances, which disagrees with the earlier predictions but also
gives a new opportunity to analyze the system. This analyze is the aim of my graduation
project.

The interpretation of the data and predictions of new resonances are based on the Asymp-
totic Bound-state model (ABM)4, which has several advantages with respect to the numeri-
cal Coupled-Channels calculation of Gacesa et al.

1.1 Feshbach resonances

Before turning to the 23NaLi system, we focus first on the phenomenon Feshbach res-
onances. Magnetically induced Feshbach resonances are collision resonances caused by
bound states in the interatomic potential, which can be made resonant with the collision
threshold by changing the magnetic field.
Feshbach resonances occur under ultracold circumstances, typically by temperatures in the
range of nanokelvin to microkelvin with densities between the 10'? and 10! atoms cm 3.
Under these circumstances the thermal de Broglie wavelength will exceed the typical inter-
particle distance. Consequently the system can no longer be described by classical physics
and should be treated wave-like, according to quantum mechanics.5©

The potential energy of the two atoms can be divided into an interatomic interaction and
an internal single-atom part. The interatomic (or central) interaction potential depends on
the atomic separation r. At short range a potential well arises, which makes the existence of
bound states possible.
The internal energy of the atoms is the sum of hyperfine and Zeeman interactions, de-
termined by their set of spin quantum numbers and an eventual external magnetic field,
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Figure 1.1: Schematic overview of a Feshbach resonance; the scatter state with energy F
of the open channel (black curve) can be resonantly coupled to the bound state (energy
Ey) of the closed channel as both energies approach the same value. The Ej can be
vertically shifted with respect to the threshold of the open channel (black dashed line)
by tuning the external magnetic field.

however it is independent of . Due to the discrete set of possible quantum numbers, the
internal energy has only a discrete set of possible energies. As result, the summation of
the internal part with the interaction potential gives rise to a discrete set of potential energy
curves as function of r. Each of those potential curves correspond to a channel, which is
indicated by the spin quantum numbers of the atoms. Two potential curves corresponding
to two different channels are drawn in figure|1.1} The relative vertical distance between the
channels can be tuned by the presence of a magnetic field.

The asymptotic behavior of the potential curves, r to infinity, is defined as the threshold
and is the minimum energy of two free particles in the corresponding channel (the black
dashed line in the figure). The total energy of the two atoms E divides the channels into two
categories. The channels which have their threshold below E are called the open channels
and the channels which have their threshold above E are said to be energetically closed.

A Feshbach resonance occurs as the two particles scatter in the open (or entrance) channel
and couple resonantly to a bound state of the closed channel. In other words, the system
becomes resonant as the energy of the scattering atoms F is close to the molecular bound
state energy Ej,. The system can be tuned to resonant or non-resonant, by adjusting the
external magnetic field and hence the position of the closed bound state with respect to the
open channel.

As the system becomes resonant the scattering length will diverge and goes to infinity,
this is shown in figure The scattering length a is a measure of the interaction strength.

Its value can be magnetically tuned in such a way, that the interaction is repulsive (a > 0),
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Figure 1.2: The scattering length versus the external magnetic field. As the external
magnetic field approaches a Feshbach resonance (By), the scattering length will diverge.
The width of the resonance AB is given by the blue arrow.

attractive (@ < 0) or non-interactive (¢ = 0).4 This gives a large control over the atomic
interactions, and practically any value for a can be obtained.

The development of the scattering length around a resonance is characterized by the mag-
netic field width A B (indicated by the blue arrow). The field width is defined as the distance
between By and the magnetic field at a(B) = 0.2 The broader the width the more spread out
the resonance development over the magnetic field range. In other words, the field width is
a measure for the Feshbach resonance width.

Observing Feshbach resonances

In the group of prof. Oberthaler, the ultracold 2*NaSLi atomic gas is prepared in a particular
entrance channel. The atomic loss is then carefully recorded as function of the magnetic
field. If the magnetic field crosses a Feshbach resonance, the atomic gas is in resonant
with the molecular state and therefore the number of atoms reduces. Near a resonance the
atom loss is enhanced by inelastic losses, mainly the three-body recombination which scales
strongly with a. The three-body recombination is the three body collision which results in
one free atom and a diatomic molecule.>Z

The atomic loss is determined, by ramping the magnetic field to a certain value B, where
the magnetic field is held constant over a hold time. The system is then ramped back to
zero magnetic field, after which the remaining atoms are measured. The ramp times are
taken much shorter then the hold times. By repeating this process, the whole channel can
be scanned for resonances.

The position of the Feshbach resonances can also be determined theoretically by the



Figure 1.3: The resonances of two body SLi*“K system. The measured resonances are
shown by the black dots. The black line represents the threshold, the red and blue dashed
lines are the bound state energies. The resonances gained by ABM, are predicted where
the bound state energies cross the threshold. This figure is obtained from a publication
by E. Wille et al.®.

Coupled Channels (CC) method. The results of this method are numerically very accurate.
However this method makes use of the full interaction potentials, which are in most cases
not very precisely known. One needs, in order to get better potentials, to improve them
with suitably chosen potential parameters. This method can be very time consuming, in
particular when the interaction potentials are bad.”l Another drawback of this method is its
complexity, through which the overview is easily lost and features of the resonance spec-
trum could be missed. Therefore this method is often used to only verify the final results of
a simplified model.

In the case of the 23Na%Li system, the interatomic potential is not accurately known. There-
fore it is desired to use a more simplified model than the CC method. In this research the
Asymptotic Bound-state model is used. In the model, only the least bound states of the po-
tentials are taken into account. This model allows a clear insight in the resonance spectrum
with fast computational times."

The ABM model has proven itself to be very useful in many cases. One example is the °Li*'K
system, where 13 measured resonances where successful interpreted. Due to the elegant
simplicity of the model, the assignments of experimental to theoretically resonances was
done with only three parameters. The result is shown in figure|r.3|obtained from E.Wille et
al.® where the black dots represent the measured resonances and the blue en red crossings
with the black threshold, give the theoretically resonances.

1.2 Why the interest?

When the magnetic field is swept across a Feshbach resonance, the atoms can be converted
to molecules. This is shown in figure[r.4} where free atoms in the entrance channel adiabat-
ically turn into a molecular bound state by sweeping down the external magnetic field. The
molecules formed by Feshbach resonances are called Feshbach molecules.©
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Figure 1.4: The adiabatically conversion from an atomic state into a moleculair bound

state. Based on a figure shown in Ultracold atoms, theory, Experiment, Applications®.

The particles that make up the Feshbach molecules can be divided into two species, the

bosons and the fermions. The two species have different degenerate statistics. The bosons
are allowed to be all in the same state, however fermions are forbidden to share states due
to the Pauli exclusion principle. Under the ultracold circumstances the atoms will be in the
lowest energy state possible, the bosons degenerate to the lowest energy state (Bose Ein-
stein Condensation) and the fermions fill all the lowest available energy states one by one
(according to the Fermi-Dirac distribution).®™ If we stick to the two-particle physics there
are three possible combinations for the atomic mixtures, namely boson-boson, fermion-
fermion and boson-fermion. The first two atomic combinations lead to molecular bosons,
the third combination encounters for molecular fermions.2 As result the ultracold atomic
gas containing a boson-boson or fermion-fermion mixture could lead to a molecular BEC.
In the first case one is able to switch between atomic and molecular BEC. In the second
case, the atomic fermi gas has an other property, the system is able to switch between BSC
(Bardeen- Cooper-Schrieffer) paring of fermions to the molecular Bose Einstein Conden-
sate.
So far, a lot of scientific attention was directed to the Feshbach resonances induced by the
same species. More recently the attention is turned to the Bose-Fermi mixtures. These
mixtures could lead to new phenomena, predictions are recorded such as boson-mediated
Cooper pairing, phase separation and supersolid order.™ This study is made to contribute to
the scientific exploring of the properties Bose-Fermi mixtures.

The switching between the molecular and atomic state is not the only fascinating prop-
erty of the Feshbach resonances, there is also tune ability of the interaction strength. For
example it is possible to tune an unstable BEC to stable and vice versa. The first stable
molecular BEC was obtained by the use of Feshbach resonances.® Another advantage of
Feshbach resonances is due to the comparison between experiment and theory, which can
lead to a more accurate description of the interatomic potential.™b



In short the great properties of Feshbach resonances give the opportunity to couple and
even switch between atom and molecular condensates, tuning the interaction strength of a
quantum gas and fine-tune the interactomic potential.

1.3 Outline

The main goal of this thesis is to analyze and understand the measured Li*3Na Feshbach
resonances from Heidelberg. The basis of interpreting the data is set by the Asymptotic
Bound-state model. In order to use this model, the potential energy of the system as func-
tion of the magnetic field is required. The potential energy can be divided by the internal
and atomic interaction part. The internal energy is studied in chapter 2, where the total
internal energy is the sum of the individual energies of the two non-interacting atoms. The
next step is to examine the interatomic interaction, which are the potential curves that rise
to the presence of bound states. The construction of the singlet potential and the relation
between relative bound states is described in chapter 3. As the available interaction poten-
tial is not very accurate, we discuss two free potential parameters which vary the positions
of the bound states in the potential. In this chapter also the background scattering length as
function of these two free parameters is discussed.

So in chapter 2 and 3, all the necessary ingredients to obtain the Feshbach resonance posi-
tions are given. In chapter 4 all this information is combined. First the total Hamiltonian is
examined, from which the binding energies of the system can be determined. The interac-
tion of the binding energies and the threshold, result in the theoretical resonance positions
as function of the free fit parameters. In the end we obtain three free parameters, with
which the model can be adjusted to fit the measured resonance spectrum. In order to make
the assignment of the theoretical to the measured resonances more manageable, one can
divide the system according to its conserved quantum numbers (section 4.2). Together with
the positions, the field width AB can also be obtained from the total Hamiltonian. The
field width is discussed in the last section of chapter 4, where an expression for the AB is
derived.

In chapter 5, the theoretical values are fitted to the measured values in order to understand
the °Li?*Na interactions and finally we will discuss the results of this thesis.



Chapter 2

The non-interacting particles

Feshbach resonances occur at the border between bound and unbound particles. In this
chapter the unbound or free particles are discussed when infinitely far separated from one
another, which are therefore effectively non-interacting particles.

Both 5Li and ?®Na are alkali-metal atoms, which are both considered to be in their electronic
ground state. The atoms have one valence electron which has a spin s = 1/2 and a nucleus
spin 7 with the value i = 1 for ®Li and i = 3/2 for 2*Na. The total angular momentum of
an atom is given by f = 3+ 1, where 3is the quantized intrinsic angular momentum of the
valence electron and 7 of the nucleus.

Each intrinsic angular momentum results in a magnetic dipole, which sets up a mag-
netic field. The interaction between the spin of the electron or nucleus and the induced
magnetic field is called the spin-spin coupling. The potential energy caused by the spin-
spin interaction of an atom labeled by j can be written as

Lo
Ejf — 7,;2 S‘]’..ij, (21)
a?f h? L
TR ?(fj(fj—Fl)—zj(zj—i—l)—sj(sj"‘l))a (2.2)

where a;-lf /h is the hyperfine constant and has the value 152.1368407 MHz for Li and
885.813 MHz for ?*Na.? For alkali atoms f; has two possible values, namely f; = i; & 1/2.
As a consequence the potential energy due to the spin-spin interaction results into two dis-
crete values, the hyperfine splitting.

In a closed system the total angular momentum is conserved, because there is no net force.
In this case, the internal state of the atom is defined by | f, m). Each hyperfine manifold is
(2f; + 1)-fold degenerate due to m . The magnetic quantum number m is the quantized
projection of f for any given direction. However if there is an external magnetic field, the
| f,my) combinations are not adequate anymore to label the eigenstates. ™"

If an atom is placed into an uniform magnetic field, the interaction of the spins with the
external magnetic field results in the Zeeman energy. The Zeeman energy is given by[2.3|
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EJZ = (’Ye,jS; - 'Vn,ji;) - B, (2:3)
= N (Ye,jMs,j — Yn,jMi;) B, (2.4)

where 7, j and v, ; are the electron and nuclear gyromagnetic ratios of atom j, which have
the values Ve ng = Ve, i = 1.760859770 - 101, ~,, 1; = 3.9367 - 107 and 7, o = 7.075 - 107
rad S—l T—1.107 12

The internal energies for different external magnetic fields are given by the eigenvalues
of internal Hamiltonian, which for 5Li and ?*Na are shown in figure 2| The total internal
Hamiltonian is the combination of the hyperfine and the Zeeman interactions given by the
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Figure 2.1: The eigenvalues of the internal Hamiltonian for the non-interacting particles

61 and 23Na l@]



equations [2.1and [2.3] The eigenstates are labeled with | f, m ) which as mentioned before
is only correct at B = 0, however these labels still indicate where the eigenvalues originates

from.
To obtain the total internal energy of the two non-interacting particles, the separate in-

ternal energies can be simply added.



Chapter 3

The central interaction between the
23Na and YLi particles

3.1 The central interatomic interaction

As the separate atoms are able to approach each other, it is no longer correct to consider
them as non-interacting particles; therefore the interatomic interaction needs to be con-
sidered as well. For structureless atoms this interaction will depend only on the relative
distance r between atoms, which is described by the central potential Vi (r) and will be later
further explored.

The relative two-body system can be represented by the radial wavefunction R(r). The wave-
function can be obtained by solving the time-independent radial Schrédinger equation. The
radial wavefunction R(r) can be replaced by ¢(r) = r R(r); for which the Schrédinger equa-
tion holds,

n? sy
2 dr?
where the quantum numbers S and [ are respectively the total electron spin and the or-
bital angular momentum, p the reduced mass and eg; the relative energy. The expression
between the square brackets defines the effective potential which consists of the central po-
tential and the centrifugal term. The reduced radial wavefunction v (r) will from now on
simply referred to as the wavefunction.

The central potential is crucial in solving the Schrédinger equation, which is examined
in this section and forms the basis for the rest of this chapter. The potential energy curve
of two interacting particles can be divided into a short and a long range part. Dependent on
the internuclear separation, different physical interactions dominate. For the short range
the most dominant are the coulomb interaction between the nuclei of the atoms and the ex-
change interaction between the electron spins. When the internuclear separation becomes
larger, the coulomb interaction will have less influence and the overlap between the electron
clouds will reduce. Then the electric dipole/multipole moment of each atom induced by the
other becomes of large importance, also known as the dispersion forces. As a result the po-
tential energy curve at small internuclear distances is repulsive, as the separation becomes
larger the attractive forces dominate and for even larger distances the interaction between

21+ 1
+ | Vo(r) + o ( 2 ) Vs = €1, (3.1)
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the particles becomes negligible.

In short, as function of the relative distance r the potential curve switches from repulsive to
attractive and from attractive to none interacting, forming a potential well in the attractive
range.*% 5

The potential curve of the two-body 23NaSLi system is not 'ready-made’ available. How-
ever the information to gain the curve was published by C.E. Fellows3. C.E. Fellows recon-
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Figure 3.1: Energy levels of different vibrational quantum numbers in the electronic
ground state in combination with their maximum and minimum classical turning points
@ and the interpolated data points from left side of the potential well @

structs the potential using the energy levels of different vibrational quantum numbers in

the electronic ground state. The classical turning points, belonging to each energy level,
give shape to the potential curve which is shown in figure [3.1)[(a)} Through this data a fit
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was made, from which the potential at long range was obtained (r > 11.5 ag). The infor-
mation of the long range potential was published, however a description of the short range
(r < 11.5 ag) was not.

For this research the whole potential is needed and not, as first participated, only the
long range part; the reason for this will be discussed in the last section of this chapter. The
long range potential fit made by C.E. Fellows needs to be expanded for short internuclear
distances. The short range is to be constructed by an interpolation curve through the vi-
brational data points, which make up the potential well and is extrapolated for even smaller
distances where no data points were obtained. In the end the extrapolation (short distances),
the interpolation (potential well) and the long range fit needs to be 'glued’ together.

The short range

Figure shows the vibrational data points that make up the potential well. The lowest
potential energy value in the well is set to zero. The second graph, figure [3.§(b)} shows the
(joined) data points for small values of r, i.e. the left side of the well. Those data points do
not form a nice smooth curve and one should therefore be cautious when constructing the
potential curve for even smaller values of . The fluctuation is examined using the gradient
of the inner potential side, which is shown in figure[3.2(a)] The gradient increases gradually
for internuclear distances larger than 4.15 ag, for smaller values of r a fluctuation in the
gradient appears. The fluctuation is probably caused by the inaccuracy of the measurement.
In order to avoid the influence of the fluctuation on the potential curve, the data points till
4.15 ag do not qualify for the reconstruction of the short range potential. Through all the
remaining data points a fit is made, which is extrapolated to construct the left side of the
potential well for r smaller than 4.15 ag. Figure [3.2b)] shows the result, the purple data
points are the ones used for the fit and the red line is the resulting short range potential
curve. Probably one would wonder if it is legal to simply erase data points and insert new
ones. The influence of alternating the curve is checked and presented in appendix[A] In this
appendix it is justified that for the purpose of this report, the made corrections are valid.

The long range

The short range potential is now constructed and only needs to be coupled to the long range
part. In the paper of C.E. FellowsB, two long range fit scenarios are examined, case a and
b. The difference between the two cases, is the internuclear separation range used for the
fits. For the purpose of this report both cases will do, however case b leaves room for the
possibility that exchange energy term is mixed with the higher-order van der Waals terms.
As a result, case a is chosen to be used as it would give a better description of the different
fit terms. For the long range potential fit the dispersion and the exchange interaction are
taken into account, the last interaction needs to be taken negative as the potential is fitted
by the singlet spin configuration. The long range potential is given by

C6 €8 €10

VLong = De + T‘T 7"8 rlo - Cexeiar (32)

with the terms given in table

12
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Figure 3.2: @ Gradient from the interpolated data point that make up the left side of
the potential well.@ To eliminate the fluctuation only the purple data points are used
to make a short range potential fit (red curve).

D. [GHz] | €6 [GHz a§] | C8 [GHz a§] | C10 [GHz al°] | Ces [GHz] [ a [ag ']
213020 9.407x10° 6.479x 1011 1.866x 1014 44519 0.494

Table 3.1: The D,, the van der Waals C), coefficients and the exchange energy constants
obtained from Fellow et al®.

The full range
The two functions are combined by a switch-function, which enables a smooth transition.
Equation [3.3| shows the full potential in which the switch function is incorporated. At the
internuclear separation R* the function is switched from short range to long range. A small
vertical shift in the short range potential is given by A. The third variable, w, is the width
over which the switching is smoothed. The best coupling is made between the curves as

13



R* =12.1638 ag and A = 0.020456 GHz. The width is set at 0.5 ag.

1-— tanh(r_wR*)
2

—R*
1 + tanh(™—*)

: (3.3)

Vs=0,=0(r) = [Vsnhort(r) + A]

+ VLong(T)

The result of the coupling between the two potential functions, as described by equation
3.3} is shown in figure|3.3] (left side). The dotted curve is the long range potential, the dashed
curve the short range potential (which after 15.74 ag extrapolates) and the red curve is the
combined potential. The gradient of the combined potential is presented in figure[3.3| (right
side).
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Figure 3.3: The transition between the short and long range potential. The red curve
is the Vg—q=0(r), the long range potential is indicated by the dotted curve and the the
short range potential by the dashed (left side). The gradient of the Vs—g;—o(r) is given
in the right graph.

The reconstructed full potential is only valid in case of a singlet spin configuration
(S = 0) with an azimuthal quantum number [ = 0 (also referred to as s-waves). To ex-
pand the potential for other quantum numbers certain adjustments have to be made.
The potential difference between the singlet and triplet spin configuration is twice the ex-
change energy. In the long range potential the contribution of exchange energy is labeled,
which makes it easy to convert the potential to the triplet scenario (S = 1) just by adding
two times the +V, ., (1) = Cere™ . However this simple correction is not true for small
values of r. As the inner potential will already be treated as less precise, we will leave it for
Now.
In the situation of I # 0 an other contribution to the potential has to be made to gain the
effective potential (equation [3.1); from literature it is known that the angular momentum
adds a so-called centrifugal barrier term to the total potential, namely 3—2 l(l;;l) 1o

The last step to adjust the full effective potential is to redefine the zero value. The zero
value of the function is still defined at the lowest point of the curve. To redefine the zero
of the potential at V' (oc0), the dissociation energy D.-value needs to be subtracted form the
function. So, the full effective potential can be written as

Rl +1)
2u 12

Vﬁ,{f(r) = Vs—o,=0(r) + 25 - Ceze™ " + — D.. (3.4)
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3.2 The relative energy

3.2.1 Accumulated phase method

The central interatomic potential is constructed in the previous section. The short range
part is determined by extrapolation and as a result it is not very accurate. However, the in-
teraction between the two atoms is extremely sensitive to the precise form of the interaction
potential. Therefore even the smallest changes in the short range potential can have large
effects on the interaction. To get around this obstruction and still use equation we turn
to the accumulated phase method. ™

The main idea behind the accumulated phase method is the following. In the potential
well bound states exist, but the corresponding energy levels are hard to determine due to the
inaccurate inner-range potential. However say the energy level of one bound state is known,
the potential can be altered in such a way that it gives a bound state at this corresponding
energy level. With this correction other energy levels can be obtained. The same result is
obtained with the accumulated phase method, however now by altering the wavefunction
itself instead of the potential.
The method is demonstrated in the simplified picture of figure When a bound state
is forced upon a certain energy value, then the corresponding wave function is determined
twice. Once with the boundary conditions set in the short range potential and once for
proper boundary conditions at long range. At a point ry in the potential well, the phases of
the two wave functions are compared to one another. The difference between these phases
can be expressed in the accumulated phase difference. The next bound state can then be
found, by the search for an energy level which enables the same accumulated phase differ-
ence.
So the wavefunction of forced energy level does satisfy the boundary conditions, however
is altered at 7y by adding an accumulated phase shift. Other energy levels are found by the
search for those wavefunctions which have the same accumulated phase shift.

Criteria for r¢
The internuclear separation r(, where the accumulated phase difference is determined, has
to be chosen carefully and is subjected to four general conditions.
1) The generated wave functions at ry needs to be in terms of pure singlet and triplet waves.
The coupling between singlet and triplet states is enabled by the hyperfine interaction. As
result ro must be sufficient small, so that this interaction becomes negligible.
2) On the other hand, the ¢ needs to be so large that the singlet and triplet potentials for r
> r( are precisely known or to be expressed in a small set of parameters.
3) The determination of the accumulated phases relies on the WKB approximation. In order
for this approximation to be valid a certain condition should be met, where is stated that the
amplitude and the wavelength changes slowly with 7.
4) The relative energy £ with respect to the threshold and the angular momentum [ need to
be so small that the accumulated phase can be written as the first order Taylor expansion of
Eand (4 1).10H

To satisty the first condition, two times the exchange energy needs to be larger then the
hyperfine potential energy at . In figure 3.5} twice the exchange energy and the hyperfine
potential energy as function of r are shown; from this graph can be concluded that the rg
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Figure 3.4: Simplified figure of the accumulated phase difference determined at r¢, where
the red wave function is calculated with the boundary conditions set on the left side of
the potential well and the blue wave function with the boundary conditions set on the
right.

needs to be smaller than 24 ay. The second condition is satisfied if rg > R*, so rg needs to
be larger than 12.16 ag. The fourth condition requires that £ ~ 0 with respect to the dept of
the potential at 79 and [ should be maximum 4. For r( to be between the 12.16 ay and the 24
ap and [ is at most 3, the fourth condition is also met. The third condition will be examined
later on in this section, as the wave numbers are required.

Determination of the phase shift
The criteria for the location of 7y was examined. Now the determination of the phase dif-
terence will be highlighted. The first step is to determine the two wavefunctions at a forced
bound state energy level ¢,. The wavefunction is determined by solving the Schrédinger
equation for the two different sets of boundary conditions. The boundary conditions are cho-
sen in such a way that the amplitude of the wave is not too large or too small. Also the point
at which the boundary conditions are set should, by changing its position slightly, not influ-
ence the logarithmic derivative (¢’ /1) inside the well. The boundary conditions of the inner
wave are set on the left side of the potential well at 7, = 3.30 ag with ¥ [rin] /0™ [rin] =
—0.1 and 9™ [r;,] = 1073, For the outer wave, the boundary conditions are set on the right
side of the well at 75,y = 135 ag. The conditions are 1/ [r,,;] = 10~% and ¥ [r o] /1" [rous] =

—7V2;;|6b| with p the reduced mass.

The Schrodinger equation with the above boundary conditions is numerically solved with
Mathematica. From this result the accumulated phase can be extracted. In the range of r
the wavefunction can be approximated with a real sine. Rewriting then the approximated
wavefunction, the equation to gain the accumulated phase with the numerically solved wave-
function at r( is obtained.
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Figure 3.5: The hyperfine energy (red) and twice the exchange energy (black) as function
of r.

The real part of radial wavefunction can be written as

Y(r) = A(r) sing(r), (3.5)

where A(r) is the amplitude and ¢(r) is the accumulated phase. As for the moment the
S and [ dependence of the equations is only important for defining the potential curve.
Therefore as matter of convenience when writing the equations we simply ignore the S and
[-dependence.

The WKB (Wentzel, Kramers, Brillouin) approximation is the basis to determine the ac-
cumulated phase. The method approximates the solutions of the time-independent Schrédinger
equation in one dimension. The WKB approximation assumes a slow changing amplitude
and phase with r.™@

Rewriting the Schrodinger equation with the above wavefunction, the amplitude and the
phase functions are defined. The amplitude and phase can be written in terms of the local
wave number k(r):

k(r) = z , (3.6)
(r) = IS(T), (3.7)
o(r) = :I:/k:(r)dr (3.8)

where C'is a constant.™? This approximation is valid by the assumption that |dk(r) /dr| <<
|k(r)[. The third condition for ro, which still needs to be met, results from this assump-
tion. Calculating the wave number and its derivative for several bound state energies, this
condition is satisfied for ¢ smaller then roughly 14 ay.

The accumulated phase is determined by integrating the local wave number over r
(equation [3.8). However WKB approximation is valid for a limited set of . To avoid the
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integration, the accumulated phase can also be gained by only using the wave information
at one specific r. The first step is to determine the logarithmic derivative of 1 (r).

Y'(r) _ K (r)
o) k(r)cot (¢(r)) — 2h(r) (3.9)
The second step is to rewrite equation 3.9} the accumulated phase can be determined by
_ L (¢(r)  K(r)
¢(r) = arccot (k(r) (1,/1(7") + 2k(7“)>> . (3.10)

Now all the required information is obtained to calculated the phase mismatch at r, which
is

Agg,(ro, ) = mod[¢§(ro, &), 7] — mod[¢G (ro, Ep), 7] (3.11)

for the position of ry between 12.16 ay and 14 ay. The accumulated phase is taken modulo
7 cause every vibrational bound state differs one 7 in total phase with the next state.

In the next sections the accumulated phase mismatch is used to determine the bound
state energy shift due to the centrifugal barrier and to determine the scattering length.

3.2.2 The centrifugal barrier induced energy shift

The angular momentum alters the effective potential for different values of | with the cen-
trifugal barrier term. Due to this term, the position of the bound states in the potential
shifts as function of [. To explain the resonance positions measured in Heidelberg, the en-
ergy levels of the bound states are necessary with [ = 0,1 and 2 (correspond to respectively
the partial s-, p-, and d-waves). These can all be taken as free fit parameters, however it is
desirable to reduce the number of variables as much as possible.

The accumulated phase method is used to calculate the energy shift in the bound state
levels due to the change in [. In other words as the singlet and triplet bound state energy of
the s-waves (I = 0) are known, the corresponding bound states for the p- and d-waves can
calculated with the accumulated phase method. The number of free fit parameters reduces
then from six to two.

The s-wave bound states

First the vibrational bound states of the singlet and triplet spin configuration are examined
for I = 0. As described in the previous section, a bound state forced upon the potential
results in an accumulated phase difference. All corresponding vibrational energy levels are
then found by the searching for those bound state energies that result in the same accumu-
lated phase difference in the same potential.

In figure[3.6]the accumulated phase difference as function of the forced bound state for sin-
glet and triplet electron spin configuration is shown. The position of 7 is carefully chosen
at 12.5 ag.

The accumulated phase difference of 0 rad corresponds to energy levels of the "eigen’ vibra-
tional bound states in the potential; i.e. under the assumption that the potential is accurate
its bound states are positioned at the energy levels which result in a zero phase difference.
The position of the zero phase difference gives an indication where the bound states are
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Figure 3.6: Accumulated phase difference at rg = 12.5 ag for S = 0 and | = and
S =1 and | = 0[(b) as a function of the binding energy.

positioned and the number of bound states in the potential.

The sought-after singlet and triplet bound states do not only differ in vibrational quantum
numbers, the inner potential of the triplet spin configuration is less precise than of the sin-
glet. This discrepancy could result in an additional phase difference between the singlet and
triplet bound states. Therefore accumulated phase method is not used to reduce these two
free fit parameters into one, but treats them separately.

In figure [3.6] for low values of the accumulated phase mismatch a bound state appears
between the —0.2 GHz and 0 GHz. For the purpose of this report, these low-lying bound
states are neglected. In comparison with a paper of Gacesa et al* in which they try to explain
only three 2*Na®Li resonances, they do use this low-lying state as the singlet bound state.
However in order to explain the increased set of resonances this vibrational singlet bound
state will not suffice and one additional deeper lying state is required.
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The p- and d-wave bound states

The s-wave singlet and triplet bound states, which are needed to explain the measurements
from Heidelberg, are most likely to be found between the —9.5 and —1 GHz. The cor-
responding p- and d-wave energy levels are searched for in the same energy regime. As
function of the singlet and triplet s-wave bound state energy, the energy shift of the p- and
d-waves with respect to the s-waves is shown in figure From these figures one can con-
clude that the energy shift due to the centrifugal barrier, is for the triplet and singlet case
almost the same.

So with figure[3.7]the energy levels of p- and/or d-wave bound states can be obtained when
the s-wave bound state is known.
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(a) Singlet centrifugal barrier induced energy shift
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(b) Triplet centrifugal barrier induced energy shift

Figure 3.7: The red and black curve correspond to the bound state energy shift of
respectively the p- and d-waves relative to the energy levels of the s-wave for singlet @
and triplet [(b)] electron spin configuration.
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3.2.3 The scattering length due to direct scattering

The interaction of the particles described by the potential could lead to a bound state or the
scattering of the particles with one another. In this section the scattering between the parti-
cles is highlighted. For now we will only discuss the interaction of the particles within one
channel without the coupling to others, which is called direct scattering. Later we will refer
to this contribution to the scattering length as the background scattering length.

For the scattering process with ultracold particles only the s-wave scattering are considered,
as higher partial waves are less likely to cross the centrifugal barrier in the ultracold case.
A measure for this scattering interaction strength is given by the scattering length. Pos-
itive values represent a repulsive interaction and negative scattering lengths an attractive
interaction. The scattering length a is defined as

a = —lim , (3.12)

where &) is the phase shift of the wavefunction induced by the scattering.®™ Equation
requires the scattering induced phase shift as function of the wave number k. The
phase shift is to be extracted from the numerical determined scattering wavefunction. For
the translation from scattering wave to phase shift, we turn to the solutions of the radial
Schrodinger equation.

The Schrédinger equation reduces to the form of two free particles if the internuclear
separation r is sufficiently large, for the sake of argument the r from which the problem
reduces to free particles we shall call r. The radial solutions of this free particle equation
is a linear combination of the spherical Bessel function j;(kr) and the spherical Neumann
function n;(kr). The search for the necessary scattering waves is limited to s-waves, with as
result that the radial wavefunction R(r) reduces to form

Ro(k,r) = B(k)jo(kr) + C(k)no(kr), r >y (3.13)

where B(k) and C(k) are real and independent of r and with the Bessel and Neumann
functions,

sin kr
io(kr) = 3.14
jolkr) = 2 (3.14)
cos kr
kr) = — 3.15
no(kr) o (3.15)

To gain a better inside of the information carried by B(k) and C(k), the wavefunction is
written in exponential functions:

Yo(k,r) =rRo(k,7) (3.16)
eikr _ e—ikr eik’r + e—ikr

=Bk R — (3.17)

= ﬁ((B(k) —iC(k))e™* — (B(k) + iC(k))e‘“‘“"), >y (3.18)
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where the ¢*" represents the outgoing wave and the e~**" the incoming one. From these
equations, it is clear that one can make a useful substitution for B(k) and C(k) with the

following relations,

A(k) = /B(k)? + C(k)? (3.19)
tan 6o(k) = —ggg (3.20)

and that the radial wavefunction can be written as a sine with an additional phase of dy.

Yolk,r) = Alik) sin(kr + dg), 7 > ry (3.21)

The next step is to gain the scattering length from the wavefunction. The logarithmic
derivative of the s-wave function 1y (k,r) at r¢ is determined first:

_ ¢6(k7 rf)
Yo = 71#0(16,7”]6) (3.22)
_ A(k)k cos(kry + do) k
B k A(k)sin(kry + do) (3:23)
K (3.24)

- tan(kry + do)

By rewriting these equations and with the assumption that kr goes to zero, the following
relations are obtained:

tan (kry + do) = K (3.25)
70

sin (kr¢ + do)

p— -2
tan (kry + do) cos (k7 + 50) (3.26)
_sin (kry) cos (do) + cos (kry) sin (Jo) (3.27)
~ cos (krg) cos (0g) — sin (kry) sin (8) '
kr s cos (60) + sin (dg)
= 2
cos (0g) — krysin (dp) (3:28)
kry 4+ tan (o)
p— -2
1 — krytan (o) (3:29)
Combining the above equations and tan(dp) can be written as
1—
tan(do) = k— 0L (3.30)

Yo + kzrf.

The combination of this result with equation gives in an expression for the scattering
length of
1
= — lim[— —ry]. 3.31
==l =l (3.31)
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Equation requires the numerical determined scattering wavefunction. Recall that the
wavefunctions of the bound states were determined for two boundary conditions, once in
the inner potential and once in the outer potential. Then for a presumed singlet (or triplet)
binding energy, the difference in the bound state waves resulted in an accumulated phase
difference. Corresponding to the bound state, the scattering wavefunction can be calculated
by adding the same accumulated phase to the scattering wave, which has its boundary con-
ditions set only in the inner potential.

The scattering length as function of the forced bound state, is shown in figure
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Figure 3.8: The scattering length as function of the bound state energy for the singlet
case[(a)] and triplet [(b)] electron spin configuration.

3.3 The long range potential sufficient enough?

In the begin stage of this project, it was thought that the centrifugal energy shift could be
obtained with only the long range potential. During the project it became clear, that this was
not the case. The error which has been made is the main topic of this section. Reason for
discussing it in the main part of this report, is to avoid the same mistake in future research.
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As the short range potential was unknown only the accumulated phase was sought after
and not the accumulated phase difference as we discussed before. The accumulated phase
was gained by solving the Schrédinger equation with its boundary conditions set in the long
range potential. Then the phase at a 7y was determined by a forced s-wave energy of €, and
the corresponding p-wave bound state with energy €, was found by the search for the same
accumulated phase.

To see which mistakes this would lead to, recall the WKB approximation with the equa-
tions [3.6|and The difference between in the phase of the s- and p-wave can be written

" b — 6y = % ( /OO Uy (r)dr — /OO i kp(r)dr> (3.32)

The chosen position of ry should not have an influence on the centrifugal barrier energy
shift and meet the four criteria mentioned in subsection Therefore the phase differ-
ence should be independent of y. To see if this is the case, the dependence of the phase
difference at rq is to be further examined and can be written as:

d (¢s B ¢p)

dre = ks(ro) — kp(r0) (3.33)

2
= %\/2u (es + Vi(ro)) — ;\/% <ep + Vi(ro) + hl;/i:%”) (3.34)

This derivative would be zero, if the centrifugal term and the bound state energy levels are
small with respect the long range potential. However this is not the case. It is illustrated in
table 3.2 where €, chosen at —8 GHz and ¢, —6.9 GHz. In the table, the o dependence of
the phase difference is given for three different long range potential situations: only the C6
part, the full long range potential and the complete potential. The derivative does converges,
but in order to use this method, we needed it to be very close to zero. Taken the long range
part of the potential into consideration, it does give better results than only using the C6-part
of it; however switching from long range to the full potential the result does not improve.
So even by taking the full potential this method does not improve.

To give an indication, a phase shift of 0.002 rad in the accumulated p-wave phase corre-
sponds to a rough difference in the bound state energy of 0.015 GHz. So back to the table, a
change of one ag in the position of ry corresponds to a roughly change in phase of 0.00135
rad. So changing the position of 7y with a couple ag, the influence on the central barrier
shift is in the order of 1072 GHz.

So by assuming that the accumulated phases should be the same, the r-dependence of
the difference between the two phases is not taken into consideration. This could lead to a
crucial error in the calculated barrier shift.
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ro [aol || 2822 rad /ao] | X% [rad /aq] | L% [rad/a|
%(T) = % %(T) = VLong(r) Vt;(’l”) = VS:OJ:O
12 0.00190663 0.00121133 0.00121227
12,5 0.00194215 0.00128168 0.00128135
13 0.00197239 0.00134673 0.0013467
135 0.00199715 0.00140595 0.00140596
14 0.00201623 0.00145890 0.00145891

Table 3.2: The rg dependence of the phase difference between partial waves.
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Chapter 4

The #Na’Li two-body system with
the Asymptotic Bound-state Model

Feshbach resonances are caused by two colliding particles in the open channel, interacting
with a bound state of the closed space. The interaction will be best if the energy of the two
colliding particles is equal to the bound state energy.

The Feshbach resonance positions are obtained at the magnetic field for which the bound
state energy of a closed channel is equal to the threshold of the open channel. Recall that
the threshold energy is equal to the internal energy of two particles, i.e. the lowest energy
possible for free particles in a channel. So the two-body system in the open channel is
assumed to have an energy equal to the threshold. This assumption is based on the ultracold
circumstances, for which the kinetic energy is neglected.

The bound state energy was studied in the previous chapter, where energies were ob-
tained relative to the central potential at r = co. However the relative bound state energy
of the two-body system is not sufficient and needs to be expanded with the internal energy
of the system. In this way the bound state energy and the threshold have the same zero-
reference point.

The internal energy of the non-interacting particles, which define the thresholds, was
examined in chapter 2. So all the ingredients to determine the resonance properties have
been studied and now only need to be combined. The properties of the resonances obtained
with ABM is the topic of this chapter. First the total Hamiltonian of the two-body system
is required. This will be discussed in the first section, after which the method to find the
Feshbach resonance positions will be studied and finally the resonance widths.

4.1 Total Hamiltonian

The Hamiltonian which describes the two-body system is given by equation the sum
of the internal and relative Hamiltonian. The relative energy is characterized by the wave-
function of the two-body system and quantum numbers S,/ and v. The internal energy is
defined by its spin combination and its projection on the magnetic axis. Consequently the
total basis in which the H”°! needs to be written, can be split into a wave and a spin part.
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HTOt — HITLt 4 HRel (41)

The relative Hamiltonian depends on the effective central potential. From equation
it is known that the bound state wavefunctions 5! (r) have a relative energy of €>!. Conse-
quently, the relative Hamiltonian is diagonal in the 15 (r) basis (equation .

H = gyt (4.2)

The extrinsic orbital angular momentum is given by quantum number /, which quantizes
the angular part of the Schrodinger equation. The central interaction is isotropic, which
means that it has no influence on the angular equation and hence on [. Therefore [ is a
good quantum number under collisions.

This means that the partial waves do not couple with one another and are therefore treated
separately.©

The internal Hamiltonian H/™ consists out of the hyperfine and the Zeeman contribu-
tions (H"/ and H?%), which depend on the electron and nuclear spins of both the 2>Na and
SLi atoms:

H™ = gM + HZ (4.3)
ah! at

H' = =025 ina + 25 511 i (4.4)

H” = (%g - 'Yn,NaZNa - %,LﬁLi) - B. (4.5)

Consider the magnetic quantum number m to be the projection of angular momentum on
the axis parallel to B. Then the Zeeman Hamiltonian is diagonal in the |o) = |SMgm; no™mi 1i)-
basis. This is shown by equations[4.6]and [4.7]

E? = (o ‘HZ‘ o) (4.6)

g
=l (YeMs — Yn,NaMNa — Vn,LiMLi) Bog o (4.7)
Consequently, the combination of the above wave and spin basis makes a good candidate
for the ABM-basis, {’w§l> |o) }. The total Hamiltonian can then be written as in equation
4.8] This basis is orthonormal, with (c|o’) = ¢, and <¢§ l|¢§/ll> = 77;9 ’5,/ (also known as
the Frank-Condon factors). When o = ¢’ it means that S = S’ and from the Frank-Condon

factors it is known that ny’s 555 resulting in an orthonormal set.©

;) =
vV

HEg = (o |(ust [ w5 o) (4.8)
= Eflfsya,u’a’ + Engsya,u’a’ + 775:5 <0’| th }O’l> (49)

V/

In this ABM- basis, the Zeeman and the relative bound state energy only contribute to the
diagonal of the Hamiltonian matrix (equation [4.9). The third contribution is made by the
hyperfine energy.
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The hyperfine Hamiltonian can be rewritten as function of the total electron spin, namely
HM = Hﬁf + H" with Hﬁf and H"/ given by equation In case of Hﬁf the total
electron spin S is conserved. The hyperfine part H "7 does not conserve the total electron
spin, but couples the singlet to triplet spin configuration and the other way around.

So the hyperfine Hamiltonian written in the ABM-basis has a diagonal part H _]]Lf and an
off-diagonal part caused by H hi @

ni _ Ohf -, Ay -
HY = o7 (§Na £5Li) - iNg £ o2 (SNa £ 5Li) - L (4.10)

The eigenvalues of the total Hamiltonian give the discrete set of bound state energies.
The eigenvalues are obtained by evaluating the det ‘H ggt — Byl ’ = 0, with I the identity

matrix. This is shown in equation where E, is the eigenvalue of the system and is to
be subtracted of the diagonal in the determinant calculations.

det

(5! + BZ = By) buuror + 155 (0| HY |o)

/
[ Z8%

=0 (4.11)

Free parameters
For this ®Li?3Na-research not all required parameters in equation are known. The un-
known parameters are the relative bound state energies {¢;' } and the Frank-Condon factors
S,s’

(s}

As discussed in chapter 3, the set of 5! can be reduced into two free parameters, from
which the other partial bound state energies can be calculated using the accumulated phase
method. The two remaining unknown energies are the singlet and triplet s-wave bound
state energies.

The Frank-Condon factors can be approximated for weakly bound states. In that case the
overlap between the wavefunctions is mainly determined by the bound state energies in-
stead of the potential shape. The weakly bound states are also called halo states4, for which
their outer classical turning point . is much larger than the van der Waals range of the
potential 7,4y As a result, the largest probability to find the particle is outside the classical
turning point r.. Therefore the wavefunction can be approximated by ¢(r) ~ e~ *" where

K = 1/ —2ue/h%. With this approximation and normalization, we obtain 1(r) = X/%fne_’“".
Consequently the Frank-Condon factors can be written as,#

(i) = 2L (4.12)

For our two-body system the van der Waals range is equal to 35.3 ap, which is equal to the
r. if the relative bound state energy has the value —5.19 GHz. So for a relative bound state
with an energy much larger than —5.19 GHz, equation[4.12]can be used to obtain the Frank-

!
Condon factors. In other cases, {775 5 } is taken as one free parameter in case S # 5’, since

for S = S’ itis a Kronecker delta §,, .
Thus in short, to find the resonance spectrum of 5Li 23Na system there are only three free
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parameters needed to be considered, namely the relative singlet and triplet s-wave bound
state energies and the Frank-Condon factor n’

1/1/"

4.2 Feshbach resonance positions

A Feshbach resonance position is defined as the magnetic field By at which a resonance
occurs. At this magnetic field the bound state energy of the system equals the threshold
(Eb(Bo) = Etnres(Bo)), according to ABM. A fictitious case is shown in ﬁgure where the
threshold is plotted as function of the magnetic field as well as the bound state energy levels.
The dots represent the location where the theoretically obtained resonances are found.

-20 T T T T T

-3.0 i

E/h [GHZ]

-35F E

_40 L L L L L
0.050 0.055 0.060 0.065 0.070 0.075 0.080

B[T]

Figure 4.1: Feshbach resonances positions (red dots) of a fictitious case, which occur
at the crossing of the bound state energy levels (red curves) with the threshold (black
curve).

The eigenvalues of the total Hamiltonian (equation gives all the possible bound
state energies (Ej) as function of the magnetic field. A simple comparison of those energies
with all the possible thresholds as function of B, would give the complete set of resonance
positions. However this would lead to more resonances than possible, as the criteria of con-
serving the good quantum numbers is not taken into account. Also the opportunity arises
to classify the resonances in independent sets according to their good quantum numbers.
This is makes the problem of comparing the correct measured and calculated resonances
more manageable.

Therefore we focus first on the conservation of quantum numbers during a collision in the
presence of a magnetic field.

The interactions between the two atoms is described by the isotropic central potential.
This potential does not couple the total spin angular momentum F = fi + f to the orbital
angular momentum I, therefore the system is invariant under independent rotations of F
and [ in the absence of a magnetic field. In this case there is no net force exerting on the
two-body system during collisions and hence the F and [ are conserved.

In the presence of an external magnetic field, the induced torque would lead to rotations of
the angular momentum F around the axis through the center of mass and parallel to the
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magnetic field. Therefore the projections on the axis will be conserved. As already stated
| is a good quantum number under collisions and as it is not coupled to F, it will also
be conserved in the presence of a magnetic field. Consequently My, m; and [ are good
quantum numbers under collisions in external magnetic field. As a result the calculated
resonances can be subdivided according to these good quantum numbers.™

As earlier mentioned, not all parameters in the determinant of equation are known.
This leaves room for many possible sets of Ej, and hence resonance positions. To obtain the
unknown parameters it is necessary that theory and experiment reinforce one another. The
unknown parameters must be first found in order to describe the whole system. This search
is done by evaluating a (not complete) set of measured resonances. The key factor in this
search, is to correctly link the measured to the calculated resonances and vice versa; this is
difficult as it is not known which partial wave and spin combination should correspond to a
measured resonance. However what can be identified is the entrance channel in which the
two-body system is prepared, and this fixes already the value of M. The entrance channel
of the |f1,my,) | f2, my,)-state and does not reveal any information about the partial wave
of a resonance. Consequently only one good quantum number is known from measured
resonances, which is the total projection of angular momentum Mpr = my, + my,. As a
result the resonances can only be subdivided by their Mp-value.

NOTE: The interaction between the atoms does not only consists out of the central inter-
action; the spins also interact via a magnetic dipole-dipole interaction V>, This additional
contribution is in general very small, and we have quietly neglected this term. We won't
go into much detail, however this potential contribution is anisotropic and does couple F
to [. Hence if this contribution is not to be neglected, M £, my and [ aren’t good quantum
numbers anymore but sum of the projections My + m; is.©

4.3 Widths of the resonances

The field width is an important property of a resonance, as it determines the chance of
detection and its usability in applications. For s-waves the width is defined by the coupling
strength between the bound state and the continuum. However for other partial waves
tunneling through the centrifugal barrier is the dominant process. Only the widths of the
s-wave resonances can be determined by ABM; this is due to the fact that for [ # 0 other
physical process have to be taken into account.

The s-wave widths will be studied in this chapter, as they can be obtained with ABM and we
expect that those waves will be the most measured. The field width AB can be defined via
the dispersive behavior of the scattering length near a resonance position By

a(B) = ay, (1 - BAf;)) , (4.13)

where a4 is the background scattering length, which is caused by the direct scattering pro-
cesses in the open channel without coupling to the closed channels. In other words close
to a resonance, the dispersive behavior of the scattering length is characterized by ay,, the
field width A B and the resonance position By.

One must be careful when comparing the obtained field widths with experiments, as they
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are not necessarily the same. The experimental widths are usually defined as the width of
the experimental loss feature. However one would expect the same hierarchy; as a broad
field width causes the loss feature to be smeared out over a broader magnetic field range.

According to literaturebl the energy of a bound state near the threshold can be written as
function of the scattering length, if the two channels are strongly coupled and hence result
into large scattering lengths. In that case the binding energy of the system goes as,

h2

E=——"_
2102

(4.14)
The energy can also be obtained from the poles of the scattering matrix, in which the thresh-
old behavior is incorporated. If then both formulations of the energy are compared, an ex-
pression for the scattering length near a resonance point can be obtained. The width AB is
then just to be gained from this expression in combination with equation[4.13]

In this section it will be shown that the field width can be determined without knowledge of
the continuum states. This is based on the scattering behavior in the zero-energy limit close
to resonances and is then closely related to the threshold behavior of the bound state.

This section is divided into two subsections. In the first subsection, AB is obtained by
the execution of the above steps. To gain a feeling where the field width originates from, the
scattering or S matrix and its poles are firmly discussed. In the second subsection the focus
will be on how to obtain the field width by the use of the coupling between the least bound
state in the open channel and the resonant level in the closed channel.

4.3.1 Scattering length close to a resonance

The scattering length near a resonance is to be obtained from the equality of the closed
bound state energy with equation In ABM we determine the bound state energy by
neglecting the coupling to the threshold or continuum states. However for the comparison
with equation it is crucial to incorporate the coupling. The states for which this cou-
pling is taken into account, are called the dressed states.

To obtain the dressed bound state energies, we first need to turn to the scattering matrix.
The scattering matrix contains two process, namely the direct (or background) scattering
caused by the interaction with the potential of the open channel and the second by the inter-
action with a closed channel bound state (causing the Feshbach resonances); an indication
of an open and closed channel is given in[r.1 The S-matrix will diverge as the energy of the
two-body system is equal to the dressed bound state energy and consequently the dressed
bound state energies can be obtained by poles of the S-matrix.

So first we will turn to the origin of the S-matrix, after which the scattering length and the
expression for A B will be discussed.

S-matrix
The whole derivation of the scattering matrix is based on two papers published by Marcelis
et al.™s and Moerdijk et al.”®. The two particle system can be divided into two orthonormal
subspaces, the closed and open space. The particles are prepared in the open channel space
P and will return to it after the collision. The closed channel space Q, is the space where
the particles from P interact with the bound states of the closed channels. The projection
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operators P and () project respectively to the subspaces P and Q.
As a result, the total Hamiltonian can be divided into four parts

HTot — < Hpp Hpo ) , (4.15)
Hqop Hgq

where Hpp = PHP and Hpg = QHQ are the Hamiltonians within each subspace and
Hpg = PHQ and Hop = QH P the components which enable the coupling between the
subspaces. Consequently the Schrédinger equation H7°! |¥) = E |¥) can also be divided
into two coupled equations, namely

(E — Hpp) [Vp) = Hpq [¥q) (4.16)
(B — Hqq) Vo) = Hor |¥p), (4.17)

where [¥p) = P|¥), [¥g) = Q|¥) and E defined relative to the threshold of the open
channel and equal to #2k? /2. To write the scattering process as function of the incoming
and outgoing waves, |¥) needs to be eliminated from equation[4.16] Equation [4.17]can be
rewritten as

1
V) = ——Hopr|¥p), (4.18)
E+ — Hgq

where is the resolvent or Green’s operator GZSQ and E* = F+id with § approach-

1
ing zero from positive values. The imaginary part is added to F in case there are open
channels included into Q.7 This expression for |¥q) can be substituted in equation

which results in (E — Hcsf) |V p) = 0, where

1
Heff :HPP+HPQE,+_7HQP' (419)

Hqq
In words the effective Hamiltonian H,.ys is devided into two parts, the first term results
from the direct scattering process in P and the second term describes the journey from P
to Q, propagating through Q, and finally returning back to P.
The next step is to rewrite the resolvent operator in terms of discrete and continuum eigen-

states of Hpg, : 6 (& e
= o 4.2
E* — Hoq Z s / E+ —e % (4.20)

where |¢;) and |¢(¢)) are the eigenstates of the Hq respectively the discrete (bound) and

continuum (scattering) states with the eigenvalues ¢; and e.

Equation can be simplified, under the assumption that one bound state of Q with

energy € is so close to I, that the other discrete and continuum states can be neglected. It

|¢Q> (¢al
—€Q

follows that the resolvent operator GaQ can be written as and equation as4.16

|9q) (dq| Hor [V p)
E—¢€g ’

(E — Hpp) |¥p) = Hpg (4.21)

The solution to this relation has a homogeneous and a particular part and is given by equa-
. 1 . + . +
tion ‘ where =7 is the resolvent operator G, . The homogeneous solution N\23)
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is the uncoupled solution in P space according to Hpp and satisfies the outgoing wave
boundary conditions (after the collision the system will be in P again without interaction to
the closed channels).

1 |9q) (¢q| Hor [Vp)
|x1/p>:\\11;>+E+_HPPHpQ Q EQ_:; (4.22)

The next step is to write | ¥ p) as function of only |¥},), as it represents the influence of the
collision on the incoming wave ’\IJ;> This can be done by multiplying equation with
(pq| Hgp, from which an expression for (¢g| Hop |V p) is to be obtained. This leads to the

solution 60) (b0l ‘ +>
1 ¢Q) (Pel Hop |V
_ |yt
Wp) = |U}) + o HPPHPQ B o A(E) (4.23)
were A(FE) is defined as
1
A(E) = (¢ql HQPmHPQ [9Q) - (4.24)

To obtain the scattering matrix, the incoming (+) and outgoing (-) wavefunctions “l’ﬁ)
needs to defined. The Lippmann-Schwinger equation™ dictates that

[W5) = Ixp) + PVPP Ixp) (4.25)

1
E+ — Hp
where |y p) are the unscattered states, so the states where the particles are prepared in and
finally return to. The Hamiltonian of subspace P, can be divided into HY , which is the
internal energy Hamiltonian and Vpp the interatomic interactions. Thus in other words
|xp) is an eigenstate of HYp.

From the transition or 7- matrix the S-matrix can be obtain with S = 1 — 27¢7T, where
S = (xp|S|xp) and T = (xp|T |xp). So lets turn to the transition matrix first. The
transition matrix gives the transition probability from one state to another. The transition
operator 7 is defined™ as

1
PEY — Heyy

1
e eff <1 + Mf%ff) 5 (427)

T=Vi+V Vors, (4.26)

where Vosy = Hepp — Hpp and G:f ;= : ;- Hence the transition matrix becomes,

Et—H,
T = (xp| Vers (1+ijfVeff) Ixp) - (4.28)

Part of the right side can be substituted by |¥p) = (1 + G:f neg; f) |xp), the relation is ob-
tain by inserting the Lippmann-Schwinger into equation The transition matrix results
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in

T = {xp| |Vpp + Hqp QHQP Wp), (4.29)

1
E+ — H

= (xp|Vrp |¥}) + (V5| Hgp QHQP Wp), (4.30)

1
E+ — H

where |V p) is replaced by equation The expression for the S-matrix can be then be
written as

2m.<\111§\ Hpq |6q) (bq| Hor [V p)

S(k) = Sp(k) - e

: (4.31)
where Sp(k) = (V5(E)|¥5(E)) and originates from the direct scattering process. Just
as before, (¢g| Hop |V p) can be substituted (the substitution originates from multiplying
equation[4.22| with (¢q| Hgp). The scattering matrix finally results into,

_ |(do| Hor |W5)|”
S(k) = Sp(k) (1—2m E_EQ_A(%) .

(4.32)

The Sp(k) contribution originates from the eigenstates from Hpp. Those states are often
referred to as the Gamow states |(2,,), which have an energy ep, = h%k2/(2u), with k,, = iry,
and k,, is real.

Lets assume that we only need to consider one single bound state of the open channel. The
direct scattering contribution to the S-matrix can therefore be written as,

Sp(k) = e~ 2ikavg (4.33)
2iaf, Kp — 1k (4.34)
kp + ik

where ap, = afg + a®’. The scattering length abz is caused by non resonant scattering and
is in the order of the van der Waals potential range. The second term a? is the scattering
length caused by a resonance of the direct scattering and has the value 1/xp.

Scattering length
The poles of the S-matrix indicate the values of E of the dressed (quasi) bound state ener-
gies of the system. The poles are given by equation which hold under the condition
that E is near the threshold, where one open and one closed bound state are dominant.

(k —irp) [E — eq — A(E)] = 0. (4.35)

The term A(F) is determined by the propagator m%HHD (equation |4.24). This propa-
gator can be written in Gamow resonance states and as a summation of its poles, the Mittag
Leffler expansion'™

1 ’ 00
S S L 4.36
E+t — Hpp h2zkn(7€—kn)7 ( )
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where |QF) is a dual state of |(2,) and defined as |2,)". The assumption that only one
bound state of the open channel dominates, reduces the equation [4.30] to situation of only
one state |(2p). Then A(FE) can be written as
w —iA
F)=——F——— 4.37
AB) = £y s (4.37)

with A = (¢g| Hop [2p) (8] Hpg |¢q). The A(E) can be split into a real and imaginary
part (equation [4.40). The real part shifts the unperturbed value ¢ of equation [4.35| with A,
caused by the coupling. The imaginary part I'(F) /2, the energy decay width, determines the
lifetime 7 = R /T of the bound state above the threshold and the coupling to the continuum
states. If F < 0, then FE is below the threshold of the open channel and the bound state in
the Q space cannot couple to the continuum states of the P space. As a result the imaginary

part of A(E) is zero, for E > 0 it is non-zero, and defines a decay width that describes the
decay of the bound state into continuum states of P.©"15

p —iA(k + ikp)

AF) = = 4.38

(E) h? kp(k? + k%) (4.38)
7 A iy Ak

= = — i 4.39

n? (k? + K%) 52 kp(k? + K%) (4.39)

:A+%F (4.40)

In the low energy limit, & — 0, the real and imaginary components of A(FE) result into
A = A/(2|ep|) and I' = 2Ck with C = A/(2kp |ep|). Near the threshold eg + A can be
linearly approximated by fi.¢;(B — Bp) with pi,.¢ = %e—g and By is the field at which the
dressed state crosses the threshold.© Near the threshold, the dressed state energy is almost
zero. Therefore the S-matrix diverges as the relation holds,

1
:urel(B - BO) + §F =0, (441)
1Ak
(B — Bo) + A g (1.42)
2I<cp ’€P‘

Now k can be substituted by \/2uE/h?, which leaves the expression for the dressed bound

state energy as
2
2|ep|*? rer(B — B
E—_<|@“X( w) (4.43)

The dressed bound state energy as function of the magnetic field for a fictitious two-body
system, is given in figure The figure is obtained from the PhD thesis of M. Goosen®.
In this figure, the uncoupled open and closed bound states are given by respectively ep
and €. The pure ABM energy levels, which we use to determine the resonance positions
throughout this thesis, are given by the dotted gray curves. In the inset one can see that the
dressed energy levels go quadratically with the magnetic field and that the coupling to the
threshold shifts the ABM resonance positions.
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Energy (arb. units)

Magnetic field (arb. units)

Figure 4.2: The energy levels, relative to the threshold, for a fictitious two-body system.
The dressed ABM energy levels are given by black solid curves. The dressed resonance
position is given by By. Near the resonance the dressed energy level goes quadratically
with the magnetic field, as shown in the inset. The gray dotted line is the ABM bound
state energy level, which is of course without coupling to the threshold, and its resonance
position is given by Bj. The two uncoupled open and closed energy levels are respectively
given by the blue ep and red €g curves. This figure is reproduced from the PhD thesis
of M. Goosen.©

The next step is to set equation[4.43|equal to equation and as a result the scattering
length near the resonance goes as
B A
2kp |ep| prer(B — Bo)

Near a resonance equationbecomes a(B) = ayg BA—igo' Consequently A B can be written

as
AB = A . (4.45)

bg26p [€P fhrel
Under the assumption that only one bound state is dominant in the open, and one is dom-
inant in the closed subspace, the field width can be written without the actual use of the

continuum states.

a(B) (4.44)

4.3.2 To obtain the field width AB

In this thesis a variation of equation @ is used to obtain the field width, as a substitution
is made for parameter A.

Recall that A is equal to (¢q| Hop [2p) (28| Hpq |¢q), which represents coupling be-
tween an eigenstate of Hpp and Hgg by Hpg and Hgp. To obtain its value, we need to
return to the total Hamiltonian.

The total Hamiltonian written in the pair basis of the internal Hamiltonian, allows the dif-
ferent open and closed channels to be identified.® Hence H7°" can be easily divided into its
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four parts (equation[4.15). At the diagonal the "bare’ bound states are positioned, the binding
energies in the absence of coupling between the channels. The energies are defined relative
to the threshold of the entrance channel.

It is assumed that in P only one channel exists, from which one single bound state needs to
be considered. As a result Hpp has only one single element, which is equal to ep with bare
bound state |Q2p).

Parameter A is a function of (amongst others) the eigenstates of Q. Therefore Hgq is
written in its eigenstate basis {|¢q,),|#q,) ,- ..} and as consequence has the eigenvalues
{€Q,,€Q,, - ..} on its diagonal. This diagonalisation is to be done without affecting the P

subspace. After the basis transitions, Hpp and Hgg are diagonal in the {|Q2p) , |60, ) , [¢Q,) s - - -}-

basis. The coupling strength between the open and closed eigenstates is then given by Hpg
and H, QP-

The field width is determined under the assumption that only one open and one closed
bound state are near the threshold. This means that if we identify the bound state of closed
channel |¢q,), (¢q,| Hop |Q2p) is equal to the ith entry of Hgp which is defined as K.

In short, H7° has to be written in the pair basis of the internal Hamiltonian to identify
the open and closed subspaces. Then by rewriting H”° in such a way that independent
from one another Hpp and Hg are diagonal in the basis of their eigenstates, the coupling
elements of Hpg and Hgp give the value for A, namely A = K2 A

The dressed bound state crosses the threshold at By, at the threshold £ = 0 and equa-
tion[4.35|results into
IC2
6P6Q = 7 (446)

By substituting this relation into the expression for AB (equation|4.45), one can rewrite the
equation as

AB = —_2rfQ (4.47)
apg26p |€p| firel
P _

S (4.48)
Qbg Mrel
al’ ~

=2 (BO - Bo) : (4.49)
Apg

where o = 1/kp and By is the magnetic field at which ¢ crosses the threshold.

So instead of using equation|[4.45|to determine the field width, equation is used. At
the threshold one can search the magnetic field for which the relation of equation[4.46|holds
and the resulting magnetic field is By. This is done by evaluating H* ! as stated above, the
KC element is obtained from the Hgp or Hpg and ep and ¢g are gained at the diagonal of
the matrix. The magnetic field at which eg crosses the threshold, results in the value for
By. The bound state of the open channel is the only element of Hpp from which a’” can be
obtained. So all information to obtain the field width is included in the Hamiltonian, it is
just a matter of finding it.

37



Chapter 5

Towards solving the puzzle

The search for the right values of the three free parameters is presented in this chapter.
A consistent set of values should give resonance positions which agree with the measured
resonances. Before the analysis is presented, the experimental results are introduced in the
first section of this chapter.

In the next section, the solution space of the three free parameters is identified and
reduced. These three free parameters are the relative singlet and triplet s-wave bound state
energies (es and er) and the Frank-Condon factor n) for which S # S’. The Frank-Condon
factor will be left to fine-tune the system and hence the reduction of the solution space
focuses on the values of eg and er.

The reduction of the triplet parameter is based on the analysis of one resonance, which
gives a discrete set of possible values. For the singlet parameter an upper and lower bound
is found.

The resonances are then studied in the reduced solution space. Each measured reso-
nance can be explained by a bound-state energy curve for which its intersection with the
threshold corresponds to the resonance. Therefore all possibilities will be studied for which
a selected set of resonances is represented by a combination of bound-state energy curves.
The selected set of resonances is first divided into two subsets according to the magnetic
field range, for which the results are later combined. In the end several possible assign-
ments are found, each describes a different scenario.

In the third section the different scenarios are further explored. First the best values for
the free parameters are found, for each scenario. The best scenarios are then explored in
the light of the remaining resonance spectrum (for which only the resonances in the lowest
energetically channels are considered). Then for each final scenario the parameter values
are found, for which most of the spectrum can be explained.

Finally the final scenarios are tested using the field width description, and the obtained
width information for each case is compared to experimental information.

5.1 Measured resonances
To analyze the 2NaCLi system, experimental data is crucial. Due to the inaccurate potentials,

reliable predictions can only be made with the use of experimental determined resonances.
Two earlier publications were based on the analysis of only three resonances by Gacesa et
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al.# and Stan et al.”. When in Heidelberg more resonances were measured, it became clear
that the predictions from these analyses were incorrect. However, these newly measured
resonances also give us the opportunity to do a better analysis of the interaction parameters,
which are consistent with all measurements.

The three resonances on which the two earlier publications rely on are given in table

My 3/2
I1,1)[1/2,1/2)

By [G] | Ramp speed [G/s]
746.0 15
759.6 0.3
795.6 10

Table 5.1: The three resonances obtained from Stan et al.l

These resonances where found by sweeping the magnetic field across a resonance. The
atomic loss was recorded and the sweep rate was chosen in such a way that 50% of the
atoms was converted into molecules. The faster the sweep rate the stronger the interaction
strength, hence the broader the field width (equation [4.45). Therefore this sweep-rate can
be taken as a measure to determine the hierarchy of field widths, the faster the sweep-rate
the broader the width.

In the group of Prof. Oberthaler, they were able to measure up to 24 resonances, di-
vided over several entrance channels. An overview of those resonances is shown in figure
Each curve represents the threshold of an entrance channel as function of the magnetic

E/h [GHZz]

BI[T]

Figure 5.1: The entrance channels (curves) with the corresponding measured Feshbach
resonances (dots) as function of the magnetic field. The different colors indicate different
Mp-values (blue Mp = 1/2, red Mp = 3/2 and purple Mpr = 5/2). The line styles
distinguishes the different Mg channels of the different two particle states (the purple
solid |1,1)[3/2,3/2), the red solid |1,1)[1/2,1/2), the red dashed [1,0)|3/2,3/2), the
blue solid |1,1) |1/2,—1/2) and the blue dashed |1, —1) |3/2,3/2)).
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field. The measured resonances are represented by the dots. The channels have been di-
vided by their good quantum number My and every My has been subdivided by their two
particle representation, | fxa, My, ) | frismy,,)-

The data of the figure is also given in table In this table the position By and the hold
time 7 of each resonance is given. The hold time is basically equivalent to the decay time
on resonance. The value of 7 gives an indication of the broadness of the field width. As the
hold time is large it indicates a small interaction strength (and vice versa), the smaller the
interaction strength the smaller AB, hence AB ~ L. This relation will not give the exact
value of AB, but it does point out the hierarchy of resonances according to their field width.

When this work was going on, more and more resonances were measured. The three
most recently measured resonances are not yet completely characterized. They are therefore
not as accurate as the other measurements. These three points are only used to verify the
predictions based on the other resonances. These three resonances are given in the table
by in a bold font representation.

Note that, both tables give the same results for the three resonances in position and width
hierarchy.

Mp 1/2 Mp 3/2 Mp 5/2
11,1)1/2,-1/2) | |1,-1)[3/2,3/2) | [1,1)]1/2,1/2) [ [1,0)[3/2,3/2) | |1,1)]3/2,3/2)
By |G] | 7 |ms| | Bo[G] | 7 |ms] | Bo|[G] | 7 |ms|| Bo|[G] |7 [ms|| By |G| | T [ms]
771.8 100 -852.0 1000 745.2 25 -913.2 190 | 1575.8 | 500
822.9 1000 | -1566.3 | 1000 759.0 2000 | -1720
1596.75 100 -1597 795.2 90

1716 -1717.3 750 1510.4 250
-1002.3 50 1596.5 25
-1088.5 o0 1715.6 250

1908.9 1500
2046.9 50
-1031.69 50
-1117.3 150
-1902.4 750

Table 5.2: The 24 resonances measured in the group by Prof. Oberthaler.
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5.2 Exploring and reducing the solution space

As stated before, the focus of this study is to find the values of the three free fit parameters
with which the whole system can be described. Those free fit parameters are the relative
singlet and triplet s-wave bound state energies (es and e7) and the Frank-Condon factor (1)
when S # ', respectively referred to as singlet and triplet energy and the overlap.
Resonances caused by bound-states with partial waves with [ > 2 are not taken into
consideration while analyzing the system. They are neglected as their chance to be detected
is very small due to the presence of the centrifugal barrier. Hence the system is examined
considering only s-, p- and d-wave molecular states. Each partial wave leads to a spectrum
of bound-state energy curves as a function of the magnetic field. The curve spectrum is in
essence the same for all three partial waves, only energetically shifted (due to centrifugal
barrier).
When the three parameters are correctly determined, the intersection of the energy curves
with the threshold should agree to the measured resonances. In the search for this correct
set, the many energy curves and measured resonances would lead to a case of numerous of
possible situations which all need to be considered. It would be hard to keep an overview
while evaluating the system. Therefore it is necessary to reduce the solution space of the
three free parameters as much as possible, and hence the number of possible situations.
This will be the purpose of the first subsection after which the assignment of the energy
curves to the measured resonances will be studied.

5.2.1 Systematically reducing the solution space

First the solution space needs to be defined. From figure [3.6|one can see that if the bound
states are lower than —13 GHz in the potential well, a 'new’ bound state enters the well and
is thereby the least bound state. As a result the least bound states will be positioned in the
relative energy region between 0 and —13 GHz.

The overlap or Frank Condon factor lies between —1 and 1. The overlap value is necessary to
solve the determinant of equation however a positive or negative overlap value results
in the same determinant. Therefore to solve the resonance spectrum, the absolute value of
the overlap is sufficient.

However the solution space gives room for a large set of possible parameter combina-
tions and hence should be minimized. The solution space can be systematically reduced by
evaluating several resonances, from which an overall conclusion can be drawn. It appears
that the options for the triplet parameter can be reduced to six discrete values due to a single
resonance in the Mp = 5/2 channel. The measured resonances of the Mr = 3/2 channel
are also a dominant factor in reducing values for the singlet parameter. This process will
now be evaluated.

The overlap value will be left as fit parameter between 0 and 1.
The road map of this subsection in reducing the solution space will be:

e A) Reducing the triplet parameter to a limited set of values.
e B) Set the upper bound for the singlet parameter.

e C) Gain a lower bound for the singlet parameter.
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Step A: Reducing the triplet parameter to a limited set of values.

In the Mrp = 5/2 channel, there is only one resonance measured at 1575.8 G. In this
channel each partial wave has two bound-state energy curves which cross the threshold by
positive magnetic fields. This is shown in the left graph of figure the different colors
resemble different partial waves, blue for s-waves, green for p-waves and pink for d-waves.
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Figure 5.2: The Mp = 5/2 channel with one measured resonance at 1575.8 G. The left
graph shows the bound state energy curves and the threshold; blue for s-waves, green for
p-waves, pink for d-waves and black for the threshold. The right figure shows the energy
curves of one partial wave and their dependence on €g and ep, which is indicated by the
different colors given in the legend. (The graphs are made by the parameter combination
es = —6.73 GHz, ep = —6.0 GHz and n = 0.74.)

The right graph of figure shows the fraction of €5 and er to each energy curve,
as each coupled bound-state is a superposition of the eg and ep-states. This singlet and
triplet parameter distribution over the curves has the same behavior for all three the partial
waves. The right graph demonstrates that if the singlet parameter has a low enough value,
then the energy curves passing the threshold are only determined by the triplet parameter
(only positive magnetic fields are considered). Hence the positions of intersection will be
mainly defined by e7. Note that the graphs just give an indication of the bound-state energy
landscape, as their parameter combination is chosen more or less arbitrary.

In total there are six energy curves which could explain the resonance. Hence the triplet
parameter could reduce to six discrete possibilities. This is shown in figure 5.3, where the
singlet and triplet parameter span the solution space. Since the overlap parameter is of
lesser importance than the two other parameters, we don’t put this third parameter explicitly
in the solution space with a third axis. However, we keep in mind that the curves in the
solution space are connected to a certain value of the overlap, where the latter is in between
0 and 1. The figure is obtained by evaluating the system for three different values of the
overlap, namely n = 0.4, 0.7 and 1. By each overlap value, the combination of €5 and er is
determined for which an energy curve intersects the threshold at 1575.8 G.

The six different lines are labeled according to their partial wave and order of bound-state
crossing with the threshold.

The different overlap values give an indication of its influence on the system. The overlap
value only matters as the singlet energy approaches —0.7 GHz.
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Figure 5.3: The singlet and triplet parameter combinations for which one resonance is
obtained at 1575.8 G. The combinations are made for three fixed values of the n =
0.4, 0.7 and 1, where the most curved lines have the largest overlap value. As smaller
overlap values, result in less interaction between eg and er. The sets are labeled by the
energy curve that accounts for the measured resonance. The energy curve is given by
the combination of partial wave (black s-waves, blue p-waves and brown d-waves) and a
number, which indicates the order of crossing the threshold (from low to high magnetic

fields).

The combinations resulting from the d-waves (the brown sets) seems to behave strange for
the smallest singlet energies in the plot. However, this is caused by the horizontal energy
curves approaching the threshold as the singlet energy approaches —0.7 GHz.

So there are six possible scenarios which can explain the resonance in the Mr = 5/2
channel and are mainly characterized by the value of ep. From figure [5.3]it is found that
three scenarios are almost independent of €5 and overlap and result into the triplet energies
of —5.78 GHz, —6.82 GHz and —9.18 GHz. The error bar in these triplet values will be
mainly determined by the measurement uncertainty and the interaction with the threshold.
If there is for instance a 10 G deviation in the measurement and/or calculation, the error
will be at max 0.05 GHz. The other three go asymptotically to —5.47 GHz, —6.50 GHz and
—8.83 GHz for low values of the singlet energy. The maximum deviation which needs to be
considered with respect to these asymptotic values depends mainly on how far the singlet
parameter can be reduced.

An additional channel needs to be considered in order to excluded at least one of the six
triplet scenarios. Therefore the next step is to review the Mr = 3/2 channel.
The bound-state energy landscape in the M = 3/2 channel is indicated by the curves of
figure[s.4} At first glance it may look like spaghetti, but do not get discouraged. The color
coding is the same as the previous representation of the Mr = 5/2 channel. For positive
magnetic field, there are eight resonances measured and each partial wave has seven bound-
state energy curves which are able to cross the threshold.

The eg,e7-mixing figure (the right plot of figure|s.4) indicates that curves can be divided
into sets, from high energetic to low, the first three are mainly determined by the triplet
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Figure 5.4: The Mp = 3/2 channel which has for positive magnetic fields eight measured
resonances. HEach partial wave has seven bound state energy curves which can cross
the threshold by positive magnetic fields. The left graph shows the distribution of the
different partial energy curves (s-waves blue, p-waves green, d-waves pink and threshold
black), with three measured resonances in the black square. The graph on the right,
demonstrates the eg and er contribution of each curve, obtained for one partial wave
and given by the different colors in the legend. (The graphs are made by the parameter
combination eg = —6.5 GHz, ep = —5.49 GHz and n = 1.)

energy provided that the singlet energy has a low value. The other four come into sets of
two, for which one set is determined mainly by the singlet energy and the other by the triplet
value (the order of appearance depends on the eg and ep-values). These last four states will
be more mixed as the given singlet and triplet parameter approach the same value.

So the six triplet scenarios determine mainly all possible positions of the first three
bound-state energy curves. It turns out that for all six cases, the first three energy curves of
one particular partial wave are near the first three measured resonances. The resonances
are highlighted by the black square in figure|s.4| (left side). The partial wave which describes
one of the six triplet scenarios is also the partial wave which has its energy curves near
the resonances. However in each case, when the threshold crossings are compared to the
measured resonances, the measured resonances are closer to each other than the energy
curves indicate (shown in figure|[s.5|for the d-waves).

Now we consider the resonance of the My = 5/2 channel explained by a d-wave, so ei-
ther d1 or d2, and consequently the first three resonances of the M = 3/2 are surrounded
by d-waves. Figure [5.4|shows that the centrifugal barrier shift, puts the d-wave curves ener-
getically much higher than the s- and p-waves. As a result it is not an option, to combine
this triplet scenario with the presence of other partial waves to explain the three resonances.
(It could do the trick if the singlet energy is positioned high in the potential well around —4
GHz, however as we will show later this value lies outside the singlet solution space.) The
remaining option for this triplet scenario is that the three resonances are caused by only

d-waves, for which the singlet energy enables an avoided crossing of the energy curves near
the threshold.
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Figure 5.5: A zoom-in of the three resonances indicated by the black square in Figure[5.4

The set of three bound-state energy curves as the er is set to —8.86 GHz, as function of
the magnetic field. The threshold is given by the black curve and the first three measured
resonances by the red dots.

It results in two options for which the three resonances are explained by only d-waves
and e7 has a value in the range of —9 GHz. The two possible cases are given by the param-
eter combinations:

€s = —6.406 GHz, ep = —9.387 GHz and n = 0.849,
es = —6.730 GHz, e = —9.077 GHz and n = 0.741.

Both cases are shown in figure 5.6

The triplet energy calculated for both cases does not correspond to one of the earlier found
values (—8.86 GHz and —9.18 GHz). Next to that the two scenarios are also not able to
explain the other five resonances measured in the channel. In appendix the energy
curve distribution in the Mpr = 3/2 channel of both cases is presented, from which we
conclude that these parameter combinations should be excluded from the solution space.
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Figure 5.6: The two options for the first three resonances of the Mp = 3/2 channel to
be explained by the d-waves. Left graph is given for the parameter combination eg =
—6.73 GHz, e = —9.077 GHz and n = 0.741 and the right graph for the combination
es = —6.406 GHz, e = —9.387 GHz and n = 0.849
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Consequently the measured resonance in the My = 5/2 channel can not be explained
by a d-wave, as it leaves no option to explain the resonances measured in the Mpr = 3/2
channel. Therefore the triplet parameter candidates can be limited to four possibilities.

Out of curiosity, the possibility that the first three resonances in the M = 3/2 channel
are caused by pure s- or p-waves is also examined. Those would lead again to two options
per partial wave. However based on the overall picture of the channel, those combinations
would not lead to explanation of the other resonances. The corresponding figures are shown
in Appendix[B.2]and
So the first three resonances of the M = 3/2 channel can only be caused by a combination
of different partial waves.

Step B: The upper bound of the singlet parameter

The triplet parameter is narrowed down to four small energy regions, however the singlet
parameter could be any value between 0 and —13 GHz. Again the My = 3/2 channel could
lead to reduction. Now the last five resonances need to be examined. An indication of the
channel is given in the case of a high value for the singlet energy, by figure |5.7| where the
five resonances are indicated by the black box.
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Figure 5.7: The Mpr = 3/2 channel in case of a low value for the triplet energy and a
high value for the singlet energy. The figure is made with the parameter combination of
€s = —b GHz, e = —6.53 GHz and n = 1.

There are two criteria to be found from these resonances. The first is that the lowest s-wave
energy curve must cross the threshold at or below the last resonance in the channel. If this
is not the case, there are no threshold crossings which are able to explain the last resonance
as they are all positioned at lower magnetic fields. The second results from the scenario that
er has a low value and eg a high value. In that case below the 5" s-wave, there could be at
max six energy curves, namely two s-waves, two p-waves and two d-waves. However due to
the centrifugal barrier shift, the vertical distance between the two d-waves and two s-waves
curves exceeds the size of the black box. As a result there are below the 5 s-wave only
four options to explain the five resonances. Therefore the second criteria states that the 5"
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Figure 5.8: The upper bound for the singlet parameter. The green curve is border based
on the first criteria, all parameter combinations above the green curve (green area) are
excluded from the solution space. The red curve is the upper boundary resulting from
the second criteria; which excludes all combinations in the red area from the solution
space.

s-wave energy curve must be positioned at or below the first resonance of the set of five.
The results of these criteria are indicated in figure[5.8|by exclusion zones, where also the four
options for the triplet energy are shown. The green curve is obtained for those singlet and
triplet energy combinations, which lead to last s-wave crossing at the last resonance by an
overlap of 1. The green area above the curve, contains all the combinations which positions
the last s-wave crossing above the last resonance. Therefore the green area marks the region
which can be ruled out of the solution space, due to criteria one. The overlap value of 1 was
chosen for the boundary criteria as it encloses only the minimal area which can be excluded.
It also shows that if the triplet energy would have a value lower than roughly —6.4 GHz, the
singlet energy is not limited anymore. However for high values of the singlet energy, there
are way too less states to explain the five resonances.

This is covered by the second criteria, given by the red curve. This curve is obtained
by those triplet and singlet combinations that yield in the 5 s-wave crossing at the first
resonance in the set of five. The overlap value is again set to 1, it would give the minimal
criteria as the triplet and singlet values are not too close together. So due to criteria two
all combinations for singlet values lower than —5 GHz, would lead to no solutions for the
system.

In other words, the two criteria give us the upper bound of singlet energy, and it can
safely be said that the singlet energy must be below the —5 GHz.
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Step C: The lower bound of the singlet parameter

The upper bound has been obtained however nothing is said of the lower bound. It is hard
to give a lower bound from which it is clear that a certain solution area is eliminated. How-
ever, when plotting the graphs for the reduced values of the triplet energy and shifting the
singlet energy from —13 GHz to higher values, it becomes clear that just by eye the lowest
values do not make sense for €g. It can not explain the last five measured resonances in the
Mp = 3/2 channel.

So by hand, the singlet energy is shifted upwards from —13 GHz and the result is examined
carefully. As there are no hard borders and examination is done by hand, the lower bound
is drawn at a place where it is safe to say that certainly no solutions can be found. The result
is that for a triplet energy in between —5 and —7 GHz, the singlet energy must be above
—8 GHz by all possible overlap values. This process explained by graphs can be found in

Appendix

Conclusions so far

To summerize, the following conclusion can be drawn from evaluating the initial solution
space:

e The overlap value should be between 0 and 1.

e The triplet energy has four options, namely —5.78 GHz,—6.82 GHz, between the
—5.47 till —=5.52 GHz and —6.50 till —6.57 GHz, all with an error bar of 0.05 GHz.

e The singlet energy lies in the range between the —8 and —5 GHz.

e The first three resonances in the Mp = 3/2 channel can only be caused by a combi-
nation of partial waves.

5.2.2 Assigning the resonances

The measured resonances correspond to bound-state energy curves intersecting the thresh-
old. The solution to the measured resonance spectrum requires therefore the correct as-
signment of the resonances to the energy curves.

Each resonance can be justified with at least one energy curve. In case of the measured
resonances, each of their positions can be explained by several options. Therefore not only
the candidates per resonance must be considered but also their consistency with respect to
the whole resonance spectrum. As a result, it is possible to exclude scenarios as they lead
to inconsistent results with the spectrum. In the ultimate case there would be one expla-
nation left, i.e. only one energy curve combination with which all resonance positions will
be explained and the three free parameters uniquely determined. It is the purpose of this
subsection to find those energy curve combinations that lead to an explanation of a selected
set of resonance positions.
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The analysis is made as follows, first one resonance is selected for which all possible
partial bound states are identified. For each bound state, the intersection with the threshold
is calculated as function of the singlet and triplet energy by a fixed value for the overlap
(0.4, 0.7 or 1). From those results all the singlet and triplet combinations are obtained for
which the intersection at the threshold corresponds to the measured resonance. Due to
the three different overlap values there are three different combination sets per resonance-
energy curve assignment. The solution space enclosed by the three different combination
sets, gives all the possible singlet and triplet combinations for which its overlap value varies
between 0.4 and 1. From working with the system for almost a year, experience tells that the
overlap value should probably be found above the 0.5. Just to be sure, overlap values of 0.4
are even considered.

The possible two parameter combinations (singlet and triplet energy) can be visualized in a
contour plot. The contour plot has on its axis the singlet and triplet energy, the overlap value
is not explicitly given. This means that even though three free parameters are searched af-
ter, the information is translated into a two dimensional plot. In other words, if a parameter
combination is drawn in the contour plot, it says that there is an overlap value for which the
combination explains the resonance but does not define it.

As several resonances are analyzed, the results are combined. The selected resonances can
be explained by those energy curve combinations for which their solution area overlap the
same singlet and triplet energy combination.

In the previous subsection, the solution space has been reduced. The singlet parameter
was found between —8 and —5 GHz. For the triplet value four different options were ob-
tained, based on the one resonance in the My = 5/2 channel. Each of these options result
in a subdivision of solution space. When a solution is found in one of these subspaces, it
determines the energy curve which should explain the resonance in the My = 5/2 channel.
The solution subspaces are visualized as gray area’s in the contour plot. From high to low
triplet energy, the first subspace is characterized by the 2"¢ s-wave in the M = 5/2 chan-
nel, the second subspace by the 1% s-wave, the third by the 2"¢ p-wave and the last subspace

by the 1% p-wave (figure|s.3).

For this analysis only the resonances in the lowest energy channels are considered. The
reason for this is that for resonances in energetically higher entrance channels, the bound-
state energy curves has to intersect at least two thresholds. The influence of the additional
intersection with the lower lying threshold on the calculated resonance positions in the
higher entrance channel is not known.

To consider all the resonances at once it would result in a numerous set of combinations,
and the overview is quickly lost. Therefore a selected set of resonances is analyzed. This set
is divided into two groups, one contains the last five resonances of the M = 3/2 channel
by B > 0 and the other the 1% resonances in the lowest energy channels with Mp = 1/2
and Mp = 3/2 for B < 0.
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The last five resonances in the My = 3/2 channel for B > 0.

The last five resonances in the My = 3/2 channel at positive magnetic field are analyzed
first. It forms a firm basis as there are a good number of resonances measured and there
is a more limited set of energy curves available with respect to the My = 1/2 channel. For
each resonance its options are studied in combination with the four solution subspaces. The
results are then combined and examined in the light of the whole resonance subset.
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Figure 5.9: The Mp = 3/2 channel for B > 0. The left graph shows the energy curve
distribution of one partial wave. The colors indicate the singlet and triplet energy mixing
and are given in the legend. The energy curves are plotted by a parameter combination
€s = —6.5, er = —5.49 and 7 = 1. The right curve shows the numbering of the eight
resonances.

In order to keep an overview the resonances and the energy curves are labeled. Each
energy curve is given the letter of the corresponding partial wave (s, p and d) and a number
obtained from the order of their appearance, from high energy to low. The numbering is
shown in the left graph of figure[5.9] In this graph the energy curves are plotted for one
partial wave with their colors indicating the eg,er-dependence.

The resonances are labeled by "Res" followed by a number, which is determined from the
order of appearance on the threshold from high to low energy and a distinction is made
between positive and negative magnetic fields. The numbering is shown in right graph of
figure[s.g|

All possible energy curves that could explain one of the five last resonances are given by
the table[5.3] The table must be read row for row, so each row gives all the possible energy
curves of the resonance, which is stated in the first column. The color indication is used
later in contour plots.

The resonances and possible energy curves are now identified, and each resonance can
be examined in the solution space. The result of the analysis of these five resonances is
shown in figure page 52. Each graph represents one resonance for which its possi-
ble energy curves are studied in the contour plot for three overlap values (0.4, 0.7 and 1).
Each energy curve is indicated by a color stated in table[s.3] The combinations given by the
lighter colors, are those combinations for which the theoretically determined position and
measured resonance position have a separation of 10 G. It widens the solution area for each
energy curve and hence room for an error in the calculations is incorporated.

These graphs can be combined to gain those energy curve combinations which are able to
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Resonance Bound state energy curve
Res4 sH s4 | p7 pb6 ol p4 d7
Resb sb s4 | p7 pb6 pd p4
Res6 sb s4 p7 p6 p5
Res7 s6 sb s4 p7 p6
Res8 s7 s6 sb s4 p7 p6
color ‘ green ‘ brown ‘ purple ‘ blue ‘ red ‘ orange ‘ magenta ‘ cyan ‘ black ‘

Table 5.3: The last five measured resonances in the Mp = 3/2 channel, and each partial
wave bound-state energy curve which could explain the resonance. The color indication
is used in the following contour plots to indicate the energy curve which is used to explain
a measured resonance.

explain the five resonances. It would be one big mess to show it, however carefully all pos-
sible combinations are compared one by one. The final result is shown in table There
are in total six scenarios obtained based on these five resonances. From these scenarios it is
concluded that the total solution space is reduced from four subspaces into three, as solu-
tions are only found in three of the four subspaces.

Resl Mp =5/2 sl s2 p2

Res8 Mp =3/2 | 87 | s7 | s7 | s7 | s6 | s6
Res7 Mp =3/2 | s6 | s6 | s6 | s6 | sb | s4
Res6 Mp =3/2 | s5 | sb | s4 | p7 | p6 | pb
Resb Mp =3/2 | s4 | p7 | p7 | sb | p5 | p>
Resd Mp =3/2 | p6 | p6 | p6 | s4 | p4d | p4

Table 5.4: All possible explanations for the last five resonances in the Mp = 3/2 channel
by the energy curves. The possibilities have been divided by the solution subspaces.
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Figure 5.10: The contour plots made to explain the last five measured resonances in the
Mp = 3/2 channel. Each singlet and triplet energy combination is made for the overlap
values of 0.4, 0.7 and 1. The lighter curves indicate a theoretical and experimental
mismatch of 10 G. The color coding is explained by table[5.3] The plots are named after

the resonance which is analyzed.
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The 1% resonances in the lowest energy channels with Mp = 1/2 and My = 3/2

The second group of resonances is evaluated along the same line. This group only contains
two resonances, which were measured at negative magnetic fields in the lowest channels of
Mp = 1/2 and Mr = 3/2. During earlier evaluations, it was always hard to explain these
resonances, therefore these resonances are considered for the second group.

The overview of the energy curves in each channel and the resonances is given in figure[s.11]
The labeling is done the same way as with the previous resonance group.
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Figure 5.11: The lowest Mr = 1/2 and Mg = 3/2 channel for B < 0. The left graphs
show the energy curve distribution of one partial wave. The colors indicate the singlet
and triplet energy mixing, given in the legend. The energy curves are plotted by a
parameter combination of eg = —6.5, e = —5.49 and n = 1. The right curves show the
numbering of the resonances in the channel.

Each resonance is assigned to a set of energy curves, which are stated in table[5.5] Note
that the two resonances are explained by different energy curves in different channels, the
labels could be the same however they are only valid within a given channel. As the number
of possibilities exceeds the page width for the resonance in the M = 1/2 channel, they are
divided over two rows.
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Resonance Bound state energy curve

Resl Mp =1/2(B < 0) s2 sl p2 pl
color purple blue red | orange
ds8 d7 dé d5 d4 d3
black | magenta | cyan | yellow | brown | green
Resonance Bound state energy curve
Resl Mp =3/2(B<0)| sl | pl d5 d4 d3 d2
color blue | red | orange | purple | green | brown

Table 5.5: The assignment of measured resonances of the second selected group to all
their possible energy curves.

Again each of these resonances are analyzed for the selected energy curves. The results
are shown in the contour plots of figure[s.12] As there are many energy curve candidates for
the resonance in the My = 1/2 channel, the contour plot became overcrowded. Therefore
the results are divided over two plots.

Just as before the results are combined, and the combinations of energy curves are ob-
tained for which both resonances are explained.
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Figure 5.12: The contour plot made to explain the measured 1¢ resonance in the Mp =
3/2 channel for B < 0. Each singlet and triplet energy combination is made for the
overlap values of 0.4, 0.7 and 1. The lighter curves indicate a theoretical and experimental
mismatch of 10 G. The color coding is explained by table [5.5]
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Those results are presented in table[5.6] One of the striking things obtained from this
table is that M = 3/2 resonance can only be explained by d-waves.

Resl Mp =5/2 sl s2
Resl Mp = 1/2(B<0) | dS | d7 | dS | d7 | sl | d8 | d7] sl |d8]d7
Resl My =3/2(B<0) | d5 | d5 | dd | dd | d5 | d5 | d5 | dd | dd | dd

Resl Mp =5/2 pl p2
Resl Mp =1/2(B<0) | d5 | d4 | d3 pl | pl|d5|d4|d3
Resl Mp = 3/2(B <0) | d2 | d2 | 42 43| d2 [ a2 |42 | a2

Table 5.6: All possible energy curve combinations for the resonances of the second group.

The combination of the two subsets

So for the two selected resonance sets all the possible energy curve combinations are ob-
tained. To come one step closer to solution for the whole system, both results are com-
bined. This is shown in table[5.7} In this table all possible energy curve combinations are
given which could explain the position of in total eight resonances (the resonance in the
Mp = 5/2 channel is considered as well). The eight possible scenarios are numbered and
given in table|s.7, where now each row indicates a possible energy curve combination.

nr resonances

Resl Res8 Res7 Resb6 Resb Res4 Resl Resl

Mp=5/2 | Mp=3/2 | Mp=3/2 | Mp=3/2 | Mp=3/2 | Mp=3/2 | Mp =1/2 | Mg =3/2

B>0 B>0 B>0 B>0 B>0 B>0 B <0 B <0
1 sl s7 s6 sb p7 p6 ds d4
2 sl s7 s6 sb p7 p6 d7 d4
3 p2 s6 sH pb6 po p4 pl d2
4 p2 s6 sH p6 po p4 d4 d2
5 p2 s6 sb p6 p5 p4 d3 d2
6 p2 s6 s4 p6 pd p4 pl d2
7 p2 s6 s4 pb6 p5 p4 d4 d2
8 p2 s6 s4 pb6 p5 p4 d3 d2

Table 5.7: All possible energy curve combination, for which the position of eight reso-
nances is explained.
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5.3 The most favorable scenarios

In the previous section, eight energy curve combinations were found for which it could
explain the eight selected resonance positions. Those combinations could be divided into
two sets. The best combination per set is obtained by evaluating the fits made for each curve
combination to the corresponding resonances.

It is expected that the answer to the resonance spectrum, results in the best fit with the
smallest x2. As a result in the first subsection the eight energy combinations are analyzed
by fitting. The best solution(s) are then complemented with the remaining resonances in
the lowest entrance channels (section|[5.3.2). At last the calculated widths will be compared
to the inverse of the measured hold times.

5.3.1 Fitting

The results of the last section can be divided into two sets, as both sets are located in differ-
ent subspaces. The energy curve combinations in each set is very similar, there is a maximal
difference of two resonances in the assignment of the eight resonances. As a result from
each set one ultimate combination can be obtained by evaluating the best fit values for each
scenario. The fit gives the best values for the three free parameters to explain the resonances
for each combination.

The fitting has been done twice. Once for which the eight resonances are fitted by the three
free fit parameters and for which two additional parameters are included. Those additional
parameters are introduced to incorporated a possible error in the centrifugal barrier shift.
The centrifugal barrier shift is determined by the assumption that the long range potential
is sufficiently accurate. However, errors could result in a small difference in the barrier
shift. To avoid that a possible error, would prohibit the finding of the best solution to the
system these additional terms are added. They are indicated by ¢, and J4, respectively the
change in the centrifugal barrier shift in case of p-waves and d-waves. The easiest way to
incorporate these terms into the system, is by adding the ¢ to the centrifugal barrier shift
function. The shift is given as function of the s-wave bound state energy, however with the
additional terms the shift is now determined by the s-wave energy corrected by the J-term.

The eight scenarios of table|5.7| are fitted with the three free fit parameters. The results
are presented in the table[s.8] for which the numbers directly link to the scenario numbers
in table For each fit parameter the standard error is obtained and for every fit scenario
the x? of the system. The x? is the sum of the squared difference between the theoretical
and experimental resonance positions, that are considered for the fit. The value of the y?
gives an indication how well the fit could be made.

The first two combinations differ in one resonance assignment. This means that these sce-
narios are almost the same, only the assignment of one resonance is not decided yet. The
best fit was found for scenario two.

The fit scenarios 3 till 8 have only differ on the assignment of two resonances. One can see
that the fit scenarios 3, 4 and 6 are best. For which the x? of the scenario 6 is slightly better.

The same scenario’s are fitted for the second time, now with the additional parameters.
The results are presented in table as the table would exceed the page width the parame-
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nr ‘ es |GHz] ‘ Aeg [GHz] ‘ er |GHz| ‘ Aer |GHz] ‘ n ‘ An ‘ 2 [G? ‘

1 -5.92 0.20 -5.77 0.14 0.70 | 0.19 | 14939.6
2 -5.89 0.18 -5.78 0.12 0.75 | 0.16 | 10494.6
3 -6.35 0.09 -6.51 0.06 0.57 | 0.10 | 3691.17
4 -6.35 0.09 -6.51 0.06 0.58 | 0.10 | 3703.8
) -6.32 0.10 -6.53 0.07 0.49 | 0.11 | 5556.92
6 -6.45 0.11 -6.49 0.07 0.56 | 0.08 | 3402.14
7 -6.44 0.12 -6.49 0.08 0.57 | 0.08 | 3929.29
8 -6.44 0.13 -6.50 0.08 0.52 | 0.08 | 4477.68

Table 5.8: The fit results for the eight scenarios of table [5.7] for the three free fit param-
eters.

ters of each case are divided over two rows.

The smallest x? were obtained for the resonances with the nr 2 and nr 4. Those two fit cases
are further analyzed in the following subsection, in which the result is generalized for the
whole resonance spectrum. The fit scenario 4 is chosen above scenario 6 as, the x? in the
latest fit is much better for scenario 4.

| nr [ g [GHz] | Aeg [GHz] | ep [GHz] | Aep [GHz] | 1 | Ap

1 -6.11 0.09 -5.74 0.06 0.70 | 0.10
2 -6.07 0.08 -5.76 0.05 0.75 ] 0.09
3 -6.34 0.05 -6.43 0.05 0.57 | 0.06
4 -6.34 0.04 -6.40 0.05 0.61 | 0.05
) -6.33 0.13 -6.40 0.13 0.59 | 0.15
6 -6.44 0.08 -6.49 0.06 0.50 | 0.06
7 -6.44 0.08 -6.49 0.07 0.50 | 0.07
8 -6.43 0.16 -6.50 0.13 0.48 | 0.13
| nr [ 6, [GHz] | Ad, [GHz] | 64 [GHz] | Ay [GHz] || X* [G?] |
1 0.14 0.08 0.29 0.09 2234.75
2 0.13 0.06 0.23 0.07 1488.87
3 -0.10 0.04 0.03 0.07 568.49
4 -0.13 0.03 -0.03 0.05 403.54
) -0.13 0.10 -0.12 0.16 3494.7
6 -0.01 0.05 0.17 0.07 991.67
7 -0.02 0.05 0.14 0.06 1130.19
8 -0.02 0.09 0.06 0.13 3934.44

Table 5.9: The fit results in case the eight combinations of table [5.7] with the two addi-
tional fit parameters 6, and d4.
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5.3.2 Results of the fits

The two best parameter solutions are first plotted into the E, B-graphs. The graphs show
nicely that several energy curves intersect with the measured resonance positions. With the
help of these figures the remaining resonances in the lowest entrance channel are assigned.
The figures on which the assignments are based, are placed into appendix[C|

There are two possible scenarios which explain the resonance spectrum. The first best sce-
nario is based on case of fit number 2 and second on fit number 4 of the previous subsection;
respectively they will be referred to as final scenario one and two.

Final scenario one

The identification of the resonance spectrum in the lowest energy channels is shown in
table which are based on the E, B-graphs of fit case nr 2 (appendix[C). The obtained
assignment of resonances is fitted twice, once without and once with adding the correction
parameters for the centrifugal barrier shift. However the latest three obtained resonances
(indicated by the bold representation) are not considered for the fit, as their position is not
determined as accurate as the others.

The results are shown in table and For the values of the last fit, the background
scattering length of the singlet and triplet potentials are determined as ag = —3.03 £0.66a,
and ar = 0.53 £ 0.41ay.

Mp 12 My 3/2 Mr 52
By |G] ‘ energy curve | By [G] ‘ energy curve | By [G] ‘ energy curve
771.8 d7 745.2 sl 1575.8 sl
822.9 sl 759.0 d6
1596.75 4s 795.2 s2
1716 58 1510.4 pb6
-852.0 d7 1596.5 p7
-1566.3 p7 1715.6 5]
-1597 p8 1908.9 s6
-1717.3 s4 2046.9 s7
-913.2 d4
-1720 pb

Table 5.10: The assignment of energy curves to the resonances measured in the lowest
entrance channels, in case of final scenario one.

es |GHz| | Aeg |GHz| | er [GHz| | Aer [GHz| | 7 An | x? [G?]
-5.86 0.10 -5.75 0.07 0.73 | 0.07 | 18242.7

Table 5.11: Resonance fit of final scenario one for the three fit parameters.

The best parameter values to describe the system are given by table The system is
plotted in the E, B-graphs figure in which the final result of this scenario is presented.
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es |GHz] | Aeg |[GHz] | er [GHz| | Aer [GHz| | n | An
-6.06 0.06 -5.71 0.04 0.77 ] 0.05

dp |GHz| | AS, |GHz| | 64 |[GHz| | Ady [GHz] X [G?]
0.14 0.06 0.24 0.06 5684.59

Table 5.12: Resonance fit of final scenario one with the additional fit parameters

0
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Figure 5.13: The E, B-graphs for the best fit parameters of final scenario one (table|5.12)



Final scenario two

Based on the fit nr. 4, the identification of the resonance spectrum can be made for the final
second scenario. This is shown for the resonances in the lowest entrance channels by table
which is based on the F, B-graphs of fit case nr 4 (appendix|C).

Again the resonances are fitted twice, the results of both fits are shown in table and
For the values of the last fit, the background scattering length of the singlet and triplet
bound-state was obtained at ag = —6.17 4= 0.35a¢ and ar = —7.34 £ 0.36ag.

My 1/2 My 3/2 Mp 5/2
By |G] ‘ energy curve | By [G] ‘ energy curve | By [G] ‘ energy curve
771.8 pl 745.2 d4 1575.8 p2

822.9 p2 759.0 p2
1596.75 p5 795.2 p3
1716 p7 1510.4 p4
2852.0 a4 15965 D5
-1566.3 p3 1715.6 p6
-1597 p4 1908.9 SO
-1717.3 pb6 2046.9 s6
-913.2 d2
1720 D2

Table 5.13: The assignment of energy curves to the resonances measured in the lowest
entrance channels, in case of final scenario two

es |GHz| | Aeg [GHz| | er [GHz| | Aer [GHz| | 7 An | x? [G?]
-6.35 0.06 -6.52 0.03 0.56 | 0.06 | 6090.92

Table 5.14: Resonance fit of final scenario two for the three fit parameters.

es |GHz| | Aeg [GHz| | e [GHz| | Aep [GHz| | n | An
-6.34 0.03 -6.42 0.03 0.55 | 0.04

dp |GHz| | Ad, |GHz| | §q |[GHz| | Ady [GHz] X [G?]
-0.1 0.03 0.04 0.04 1435.81

Table 5.15: Resonance fit of final scenario two with the additional fit parameters.

The final result given in table of this scenario is plotted for each channel. Those
graphs are shown in figure
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Figure 5.14: The E, B-graphs for the best fit parameters of final scenario two (table|5.15)
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Comparison

The figures of final scenario one show a nice explanation for the measured resonances in
the energetically higher positioned entrance channels. However the drawback of this sce-
nario is that the positions of the 2"¢ and 8" resonance in the M = 3/2 channel by positive
magnetic fields are not well described.

The second scenario does not well explain the resonances measured in the higher entrance
channels. However a better fit result, smaller 2, was obtained for this scenario than that of
the first.

5.3.3 Comparison of the calculated and measured widths

The field width of the resonances are determined as described in section This method
is only valid in case of s-waves. Both final solutions use s-waves to explain the resonance
spectrum. It is expected that the resonances with the broadest widths are most easily mea-
sured.

The different channels are scanned for resonances by different range of magnetic fields. It
is only expected that a broad resonance is measured as it is positioned into the scanned field
range. This can be compared to the experimental results. Another approach to evaluate the
two scenarios is to compare the resonance hierarchy according to the field width and the
inverse hold time (stated in table5.2). They should lead to the same result.

Final scenario one

The absolute values for the field width in case of scenario one are shown in table The
resonance positions that do fall into the measured magnetic field areas are underlined. The
measured area in the My = 5/2 for positive magnetic fields was not stated in data sheets
from Heidelberg. Therefore we will leave this channel (B > 0) for what is and do not in-
corporate it further in the field width analysis.

So lets examine the channel of Mr = 1/2, the scenario predicts three measured s-wave
resonances by positive magnetic fields and one by negative fields. Those would be caused
by the energy curves: s1, s4 and s5 for B > 0 and s4 in case B < 0. The inverse hold times
would suggests a hierarchy in the field width from high to low: s4 (B > 0), s4 (B < 0) and
sl (B < 0). The hold time of the resonance assigned to the s5 is not known.

The field width of the resonances positioned in the measured areas are calculated and stated
in table The hierarchy in those resonances according to their field width from high to
low, is: s4 (B < 0), s5 (B > 0),s2 (B > 0),s4 (B > 0), s1 (B < 0),s1 (B > 0), s5 (B < 0), s3
(B <0),s2 (B < 0)and s3 (B > 0). This hierarchy does not correspond to a ranking of the
inverse holding time. The 4 measured resonances belong to the broadest five resonances,
however the question arises why the s2 (B > 0) is not measured.

In the channel of My = 3/2 all the calculated s-wave resonances are positioned in the
measured area by positive magnetic fields (table [s.16). In case of negative magnetic field
there is only one s-wave resonance which qualifies to be measured. Scenario one, identifies
five resonances to be caused by s-waves in this channel, those are the s1, s2, s5, s6 and s7
for B > 0.
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The field width hierarchy form high to low values is given by the series, s6 (B > 0), s5
(B> 0),s7(B>0),s1(B<0),s3(B>0),s4(B>0),s2(B>0)andsl (B > 0). From
the widths ranking it would be most likely that the first five would have been found. The
first do correspond to the measured resonances. However resonances are also measured for
which the smallest width is obtained and some with a broader width are not found.
However in case those broader widths were missed the ranking of the resonances according
to their inverse hold time should at least correspond to the field width series. The ranking
from large to small values for the inverse hold times gives the series s1, s7, s3, s5 and s6.
However one must conclude that the field width hierarchy does also not correspond to the
hierarchy of resonances obtained by the inverse hold times.

As last the M = 5/2 channel is evaluated. In this channel is one resonance measured
by positive magnetic fields, it is assumed to be caused by the first s-wave. The measured area

Mp 1/2
B <0 B>0
nr | By [G] AB|G] nr | By |G] ABIG]
sl | -895.95 0.000271 sl | 814.94 0.000032
s2 | -965.29 | 7.883 %1077 || s2 | 866.53 0.000307
s3 | -1635.58 | 3.516 %1076 || s3 | 936.42 | 5.329% 10”7
s4 | -1729.09 0.008167 s4 | 1613.38 0.000272
sh | -1785.24 | 4.082% 1076 || s5 | 1719.73 0.007633
s6 | -1919.48 | 1.123 %1077 || s6 | 1748.1 | 1.138 %10~
s7 | -1991.07 | 0.037746 | s7 | 1901.4 | 6.122 %1076
s8 | -2038.95 | 4.925 %« 1078 || s8 | 1945.16 0.039415
s9 | 2065.83 0.001066
Mp 3/2
B <0 B>0
ur | By [G] AB|G] ur | By [G] AB[G]
sl | -1044.8 0.000439 sl | 746.63 | 3.736 % 10~
s2 | -1796.58 | 5.170 %1078 || s2 | 786.75 0.000031
s3 | -1931.29 0.000044 s3 | 838.65 0.000339
s4 | -2059.35 0.070020 s4 | 1606.93 0.000271
sh | -2165.88 | 9.065 % 1076 || s5 | 1709.61 0.006610
s6 | 1901.62 0.041625
s7 | 2018.40 0.001030
Mrp 5/2
B <0 B>0
nr | By [G] AB|G] nr | By |G] ABIG]
sl | -1984.6 0.010403 sl | 1550.13 0.001210
s2 | -2315.15 0.050831 s2 | 1653.62 0.045344

Table 5.16: The calculated resonance positions By for the s-waves with corresponding

field widths AB of final scenario one. The underlined values for By, indicate those

resonances which are positioned in the measured magnetic field range.
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by positive magnetic field was not listed, however for negative magnetic fields it was. One
resonance in the measured area was found with a field width larger than the s1. Therefore
this resonance was expected to be measured if this scenario describes the 2*Na®Li system.

Final scenario two

Again all the s-wave resonances are underlined for which their position is stated in the
measured magnetic field range (table [5.17). In total there are only six s-waves resonances
which could have been measured. From those six, two resonances have a large magnetic
field width. Those are the 5 and the 6" s-wave in the My = 3/2 channel.

These two partial waves are the only s-waves which scenario two predicts that have been
measured. So far this scenario corresponds to the field width picture.

However when comparing the ranking of the resonances according to the field width, it

Mrp 1/2
B <0 B >0
ur | By |G] AB|G] nr | By |G| AB[G]
sl | -1034.22 0.000138 sl | 949.84 0.000019
s2 | -1104.55 | 2.870 % 1078 | s2 | 1005.48 0.000153
s3 | -1884.27 | 5.710x 1077 | s3 | 1076.29 | 3.191 % 107
s4 | -1956.74 0.152547 s4 | 1859.72 0.003623
s5 | -2009.03 | 2.332% 1076 | s5 | 1943.63 0.165839
s6 | -2056.06 | 2.156 % 1076 | s6 | 1968.13 | 7.496 x 10~7
s7 | -2122.88 0.130167 S7 | 2041.34 | 7.394 %1076
s8 | -2158.54 | 1.303 % 1076 | s8 | 2080.42 0.12353
s9 | 2173.71 0.004522
My 3/2
B <0 B >0
nr | By [G] AB|G]| nr | By [G] AB|G]|
sl | -1185.01 0.000181 s1 | 876.88 |2.114x10~"
s2 | -2042.86 | 3.210% 1076 || s2 | 922.00 0.000019
s3 | -2164.75 | 0.404625 s3 | 978.00 0.000167
s4 | -2191.58 0.026423 s4 | 1847.61 0.003631
s5 | -2290.3 | 7.568 %107 | s5 | 1930.69 0.182622
s6 | -2039.25 0.113698
s7 | -2131.57 0.004275
My 5/2
B <0 B >0
ur | By |G] AB|G] nr | By |G| AB[G]
sl | -2226.44 0.169075 sl | 1808.23 0.002321
s2 | -2444.00 0.205086 s2 | 1918.66 0.098112

Table 5.17: The calculated resonance positions By for the s-waves with corresponding

field widths AB of final scenario two. The highligthed values for By, indicate those

resonances which are positioned in the measured magnetic field range.
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is not consistent with the inverse of the hold times. The hold times predict that the 7¢h
resonance has a smaller field width than the 8! resonance in the channel. Table shows
that the 7! resonance has a broader width than the 8" resonance (caused by relatively s5
and s6).
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Chapter 6

Discussion and Conclusion

In this thesis the Feshbach resonance spectrum of the 23NaSLi system is examined. In the
group of prof. Oberthaler at the university of Heidelberg, 24 Feshbach resonances in this
system were measured.

Our approach was to analyze these Feshbach resonances by using the Asymptotic Bound-
state model (ABM). Due to the inaccurate inner range potentials, the model has three free
input parameters namely: the relative s-wave bound state energy with a singlet electron spin
configuration (e5) and a triplet electron spin configuration (er) and the Frank-Condon factor
nfor S’ # S. The goal was to find these three parameters which make the model consistent
with the measured resonance positions.

The system has been analyzed for the resonances found in the energetically lowest entrance
channels. Resonances in other channels were also measured, however, we excluded these
since the ABM does not anticipate on possible threshold effects when a bound state is ac-
tually unbound. This happens an ABM solution passes a second threshold. In the end
two possible solutions have been found. The best results were obtained if an error in the
centrifugal barrier shift was incorporated. It suggests that the energy shift between partial
waves induced by the centrifugal barrier, is not precise enough determined. The reason
for this is probably that the long range potential is not yet accurate enough available. The
best fit results for the two scenarios, for the three parameters combined with two additional
barrier shift parameters (d, for p-waves and d4 for d-waves):

Final scenario one: eg = —6.06, ez = —5.71, 7 = 0.77, 6, = 0.14 and 64 = 0.24
Final scenario two: eg = —6.34, ep = —6.42, n = 0.55, §, = —0.1 and §4 = 0.04

The two scenario’s, each have their pro’s and con’s. In final scenario one the resonances
in the energetically higher positioned entrance channels are nicely explained, even though
they were not considered in the analysis. However the fit values have a relative large \?,
almost four times larger than scenario two. Next to that, the calculated field width for the
predicted s-wave resonances does not give a consistent story when compared to the mea-
surement. One would expect that in the scanned magnetic field range, the resonances with
the broadest field width would have been observed. However this scenario states, that a few
of those resonances are missed. However, this is inconsistent with that some resonances
with smaller widths are measured and in general when the hierarchy in field width of the
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measured resonances is compared to the hierarchy based on the inverse measured hold
times no consistency is found.

The resonances obtained with final scenario two, describe the measured resonance posi-

tions better which is reflected in a smaller y2. However this scenario does not explain the
resonances measured in the energetically higher positioned channels.
For these free parameters only six s-wave resonances are positioned in the scanned magnetic
field range. This scenario states that only two measured resonances are caused by s-waves
and the other resonances are caused by p- and d-waves. These two resonances correspond
to the calculated resonances with the broadest field width of the six. So far the resonance
spectrum totally agrees with scenario two. However when evaluating the hierarchy of the
field width in comparison with the inverse hold time of the two resonances the results do
not agree.

It is interesting to compare these two scenarios to other experimental results found in
Heidelberg for the °Li?*Na mixture, which are not connected to Feshbach resonances. From
the overlap between the clouds of Li and ?*Na, an off-resonant scattering length equal to
apg = —7 ap was found. Also, from the non-resonant background losses, a value for the
difference between the singlet and triplet scattering lengths could be estimated: |ag — ar| =
3 £ 1 ap. This information, in combination with the Feshbach resonance analysis, allows
us to make some statements on the accuracy of the long-range part of the potential, in
particular on the long-range Cg coefficient. In table|6.1/the values of the 51i**Na singlet and
scattering length, and the change of the p-wave barrier shift compared to the default value
C{ are given, for a 25% variation of this value.

06 H as (a()) ‘ art (a()) ‘ (5p (GHZ)
0.75CY 6 8 +0.07

Cy -3 1 0
1.25C§ | -13 -8 -0.05

Table 6.1: Singlet and triplet scattering length ag and ar and correction to the p-wave
barrier shift d,, calculated for three different values of Cs. The interaction parameters are
chosen from final scenario one, and the calculation is done following the lines in chapter
3.

For final scenario one, we find ag = —3.03 ag and a7 = 0.53 ag. The difference is con-
sistent with the measured value, however, the values are more than a factor of two different
from the background value. From table 6.1 we can see that a 25% larger value of Cy brings
the scattering lengths to the measured value of a;,. However, this change in Cg results in
a shift of the barrier shift which is not consistent with the fitted §, in final scenario one, as a
positive shift is required. However the shift is consistent with the fitted 6, in final scenario
two.

For final scenario two, we find ag = —6.17 ag and ar = —7.34 ag. The difference is now not
consistent with the measured value, however, the two values are consistent with the mea-
sured background value. Therefore, for this scenario a change of Cs would not be needed.

Although a 25% variation of C does not yet give a fully consistent picture between measure-
ments and the analysis, it can be concluded that within these variations, the from analysis
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obtained values of scattering lengths and barrier shifts could be obtained. However, it does
not yield yet a preference for one of the two final scenarios.

Outlook

Recently, coupled channels calculations for the s-wave Feshbach resonances have been per-
formed by Eberhard Tiemann. He concluded that it is hard to explain the five last resonances
in the Mr = 3/2 channel (B > 0). Also he suggested that the long range potential was not
very accurate and more work should be done to obtain better long-range coefficients.

The most promising thing what could now be done is to search experimentally for a broad p-
wave splitting. This p-wave splitting originates from the weak magnetic dipole-dipole inter-
action which splits the p-wave resonance position according to its two projections m; = +1
and m; = 0. Within a coupled channels calculation, this interaction is incorporated and
one can search for the broadest p-wave splitting in both scenarios. All resonances should
again be carefully measured in search for this duplicate structure. This way some reso-
nances can be identified as p-waves and could confirm one of the two scenario’s.
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Appendix A

Justification of inner potential
adjustment

The fitted inner potential does not correspond to the data points for small values of r. To
see if these adjustments in the potential are permitted, the influence of the adjustments on
the barrier shift is studied. For this five different inner potential candidates are used:

e Extrapolation of the interpolation function through all data points (P1)
e The potential curve which was fitted through the data points for r > 4.15 ag (P2)

e A linear potential curve with gradient (-237500, -250000 and -275000 GHz/ ay) till
4.15 ap and beyond this distance the interpolation function is used (P3)

The obtained inner potentials are shown in figure Al The barrier shift found for the five
scenarios, is shown below.

The maximum difference in the barrier shift with Swave Energy of -8 GHz is 7 MHz.
So the adjustments to the inner potential do not have a great influence on the shift barrier,
therefore the P2 potential is used without much concern in further calculations.
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Figure A.1: The five different variations for the inner potential, with purple P1, Red P2
and the three Blue P3.
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Figure A.2: The energy barrier shift for the p-waves as function of the singlet bound
state energy.
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Appendix B

Additional information of chapter 5

B.1 D-waves solutions for the first three resonances of the
Mp = 3/2 channel

E/h [GHZ]

BI[T]

Figure B.1: The Mp = 3/2 channel with the parameter combination eg = —6.73 GHz,
er = —9.077 GHz and n = 0.741.
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Figure B.2: The Mp = 3/2 channel with the parameter combination eg = —6.73 GHz,
er = —9.077 GHz and n = 0.741.

B.2 S-waves solutions for first three resonances of the Mp =
3/2 channel
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Figure B.3: The Mp = 3/2 channel with the parameter combination eg = —3.429 GHz,
er = —5.767 GHz, n = 0.686.
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Figure B.4: The M = 3/2 channel with the parameter combination eg = —3.273 GHz,
er = —5.926 GHz, n = 0.680.

B.3 P-waves solutions for the first three resonances of the
Mp = 3/2 channel

E/h [GHZ]
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Figure B.5: The Mp = 3/2 channel with the parameter combination eg = —4.440 GHz,
er = —6.86 GHz, overlap = 0.767.

73



E/h [GHZ]
E/h [GHz]

BIT]

Figure B.6: The Mg = 3/2 channel with the parameter combination eg = —4.254 GHz,
er = —6.985 GHz, n = 0.773.

B.4 Lower border of the singlet energy

The lower bound is created by shifting the singlet energy from —13 GHz upwards by the
four options of the triplet energy (overlap 1). By eye one can see that till —8 GHz it is safe to
say, no solutions can be found. This is shown in the figures below, for each triplet case the
singlet case of —13 GHz and —8 GHz are plotted.
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Figure B.7: The Mp = 3/2 channel with the parameter combinations, with left eg = —13
GHz, er = —5.47 GHz, overlap = 1 and for the right graph eg = —8 GHz, ep = —5.47
GHz, n =1.
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Figure B.8: The Mp = 3/2 channel with the parameter combinations, with left eg = —13
GHz, ep = —5.78 GHz, overlap = 1 and for the right graph eg = —8 GHz, ey = —5.78
GHz, n=1.
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Figure B.9: The Mr = 3/2 channel with the parameter combinations, with left eg = —13
GHz, er = —6.50 GHz, overlap = 1 and for the right graph eg = —8 GHz, ez = —6.50
GHz, n=1.
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Figure B.10: The Mg = 3/2 channel with the parameter combinations, with left eg =
—13 GHz, e = —6.82 GHgz, overlap = 1 and for the right graph eg = —8 GHz, e = —6.82
GHz, n=1.
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Appendix C

The assignment of the resonance
spectrum

There are two final fit scenarios gained for a selected set of resonances. The key question is
how does the result looks like in the light of the whole resonance spectrum. This is shown
in figure The left graphs are those graphs obtained by fit scenario one and the right
column of graphs by fit scenario two.
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Figure C.2: M F = 3/2 channel
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Figure C.3: MF = 5/2 channel

Figure C.4: The channel overviews for the two fit scenarios based on eight resonances.
The left column is obtained by scenario one the right column by scenario two. In each row
the same Mp channel is viewed. Scenario one has the parameter combination eg = —6.07
GHz, er = —5.76 GHz, overlap = 0.75, 0, = 0.13 GHz and 64 = 0.23 and scenario two
es = —6.34 GHz, e = —6.40 GHz, overlap = 0.61, §,, = —0.13 GHz and 64 = —0.03.
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