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Abstract

The unicellar green alga Chlamydomonas Reinhardtii has two flagella with which it performs
a ’breaststroke’ like movement to propel itself. This alga is currently investigated for indus-
trial purposes on the macroscale, and has recently drawn attention by physical experiments on
the microscale of a single organism. This thesis aims to give an insight in both the swimming
behaviour of a single alga and the influence of swimming at the macroscopic properties of suspen-
sions of many algae. The simple analytic three-point-force model and a qualitative analysis of
the flagellar stroke reproduces the experimentally obtained flow fields of Guasto et al. [23]. Two
new derivations are presented for the effective viscosity of a dilute suspension of Chlamydomonas
cells. Both are in agreement with previous theoretical results. The effective viscosity depends
on the average swimming direction of the algae. A literature study on the ordering of active
suspensions leads to the conclusion that swimming results in an increase of the viscosity for
small shear rates, for higher shear rates it is undistinguishable compared to a passive suspension.
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Chapter 1

Introduction in the
microswimmer world

There is an abundancy of life on almost every part of our planet, from penguins on the icy south
pole to cactuses in the dry hot deserts and fish in the deepest oceans. This diversity is not limited
to the macroscopic world, visible to our naked eye. When one takes a look with a microscope
in the micrometer world, one finds countless fungi, algae, viruses, bacteria, etc. Within our
own body spermatozoa can be regarded as independent acting ’microorganisms’. Many of these
microscopic unicellular life forms propel themself in search for a better environment. They may
seek the ovum (egg cell), look for the right light intensity or try to get rid of toxic chemicals
in their neighbourhood. There are several propelling mechanisms, which all have in common
that they are neither coordinated nor regulated by a brain. Although a lot is known about
genetics and cell architecture of microorganisms, the motility of eukaryotes1 is not yet fully
understood. All animals, plants, fungi and protists are eukaryotes. We owe our existence to
microswimming, without a beating flagellum a sperm cell will never reach the ovum. On the
other hand microswimmers can cause lethal effects in humans, the African Tripanosome (figure
1.1) swimming in the blood stream causes a feared disease known as sleeping sickness.

The extensively studied Chlamydomonas Reinhardti, see figure 1.1, is an eukaryote. This
green unicellular alga has two flagella protruding at the front of its body performing a ’breast-
stroke’. Its swimming movement was already recorded in detail 25 years ago [61], but has recently
drawn attention by experiments conducted on the flow fields induced by swimming on microm-
eter length and millisecond time scales [23, 18]. On macroscopic length and timescales viscosity
measurements on suspensions of Chlamydomonas have been performed [59]. There are currently
many research projects on algae (among which Chlamydomonas ), e.g. as a biofuel producer
[48], as a basis for coating [32] and as a basis for feed [31]. Over the last 40 years, theoret-
ical research has succesfully treated microswimming in a general way, describing its influence
on macroscopic length scales [63, 26], or by using theoretical swimmers on small length scales
[47, 33, 43, 50]. Nonetheless, existing theories do not explain the recent experimental findings
on Chlamydomonas on both small and large length scales. The recent experimental observations
and various emerging industrial applications of Chlamydomonas require a more thorough and
species specific treatment of microswimming.

Microswimming is a fairly new field of physics, which is generally unknown to most physicists.
Therefore a general introduction in this topic is provided as background material in the next

1Eukaryotic cells have a membrane and a nucleus.
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Figure 1.1: a) Chlamydomonas Reinhardtii, a green alga with two flagella [65]. b) The bacteria
Escheria Coli, which can cause food poisoning, rotates a bundle of passive flagella [53]. c)
Amoebes propel themself by altering their bodyshape [65]. d) African Tripanosomes between
red blood cells [65].

chapter. It is based on the inspiring work ”Life at low Reynolds number“ by Purcell [58] and
the recent review paper by Lauga et al. [42]. For those readers familiar with the field of low
Reynolds number swimming, you might want to start reading chapter 3.

The major part of this thesis is divided into two parts. In chapter 3 the swimming motion
of a single cell is considered on a length scale of micrometers, in chapter 4 the properties of
suspensions of many cells is considered at large, laboratory length scales. The research questions
which are addressed in this thesis are:

• How can the flow fields induced by swimming of Chlamydomonas be modeled?

• What effect does microswimming have on the viscosity of a suspension of Chlamydomonas
cells?

The first question is addressed in chapter 3 by qualitative analysis of the movement of the
flagellum and employing the analytic three-point-force model, it is especially motivated by the
experiments of Drescher et al. [18] and Guasto et al. [23]. The simple model reproduces the not
yet understood experimental flow fields. Chapter 4 is devoted to the last question, where two new
derivations are presented for the effective viscosity of suspensions of swimming Chlamydomonas,
which turns out to depend on the orientation of the cells. Furthermore, a review of theoretical
and numerical work is provided on orientation mechanisms for passive and active suspensions.
Finally, the theoretical results are compared to the experimental data of Rafai et al. [59].
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Chapter 2

General physics of
microswimming

2.1 Hydrodynamics at low Reynolds number

Although the size of the extensively studied 2µm long E. Coli [65] bacterium and the 400µm
long Volvox [18] differs by two orders of magnitude, they are both considered microswimmers in
literature. Throughout this work we consider Chlamydomonas as our typical model microswim-
mer. It has a spherical cell body with a radius a ∼ 10µm and swims with a speed U ∼ 100µm/s.
For comparison, the thickness of a human hair is about 100µm and the thickness of food foil
is typically 15µm. Although we could swim in the same pool as Chlamydomonas1, we would
encounter a very different environment. This can be illustrated with the Reynolds number, which
is the ratio of inertial over viscous forces. For a suspended body of size L and swimming with
speed U it is given by

Re =
Finertial
Fviscous

=
LUρ

η
, (2.1)

where ρ and η are the mass density and viscosity of the fluid. Reynolds numbers for different
organisms and objects are listed in figure 2.1. Swimming humans have a Reynolds number of
Re ∼ 104. Once we stop swimming in the pool, we coast for several meters [42]. However
for a microswimmer (Re ∼ 10−3) to stop swimming in the pool means coming to a stand still
within ts = 0.5 ms covering a distance of only 0.01µm or 10−3 body length. To imagine what
swimming under these conditions would be, you should think of floating around in a pool filled
with molasses and being allowed to move any part of your body with a speed of less than a
centimer per minute [58].

For small Reynolds numbers (Re � 1) the inertial terms in the Navier-Stokes equation can
be neglected and fluid motion is described by the Stokes equation (see appendix C)

∇p+ η∇2~u = ~F , (2.2)

with p the pressure, ~F the external forces per unit volume and ~u the velocity of the fluid.
There is no time dependency in (2.2), the fluid motion at any time is fully determined by the
boundary conditions at that exact moment, i.e. there is no history dependence and there exists
a linear relation between friction force and velocity. The absence of diffusive, convective and

1An experiment many of us have done unknowingly
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Figure 2.1: The ratio of inertial forces and viscous forces (Reynolds number) for different swim-
ming creatures and objects.

time dependent terms in (2.2) allows us to describe the flow as a superposition of elementary
solutions, or Green’s functions, of the Stokes equation.

Let us consider an infinitely small particle submerged in an unbound fluid, with the density of
the particle exceeding the fluid density, thus gravity exerting a net force ~F . Due to this force the
particle translates in the direction of the gravitational field. The flow field created by this motion
is the stokeslet, and is obtained by solving eq. (2.2) for a point force or force monopole, see figure
2.2 (left). Let us now consider a small torque-free and force-free, neutrally buoyant swimmer. It
exerts two forces in opposite directions on the fluid e.g. a spermatozoa exerts a force on the fluid
opposite to the swimming direction and an equal force is exerted by the cell body on the fluid
along the swimming direction. In a coarse grained way it can be considered as a force dipole.
Solving again eq. (2.2) for vanishing swimmer size yields the stresslet solution due to a pure
dipole, as displayed in figure 2.2 (middle). Pullers are swimmers where the forces point inwards,
like Chlamydomonas, for pushers like E. Coli the forces point outwards. The resulting flow field
is the same, except for a sign change. The stokeslet and stresslet are the first two contributions
of a multipole expansion, which can be extended by taking into account quadrupoles, octopoles,
etc. Any flow field at low Reynolds number can be written as a superposition of stokeslets,
stresslets, source doublets [56], etc.

~u(~r) = ~ustokeslet + ~ustresslet + ~usource doublet + ... . (2.3)

The source doublet is the leading term in the flow field for a force quadrupole, see figure 2.3.
It is for example created by Chlamydomonas in the configuration shown in figure 2.2(right). A
mathematical description of the velocity fields and multipole expansion is presented in appendix
C.

Flow at the dimensions of microorganisms is fully determined by the boundary conditions,
inertia plays no role and flow fields can be described by a superposition of elementary flow fields.
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Figure 2.3: A source doublet with a sink (left) and a source (right).
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gradient

Figure 2.4: A gradient in left-right direction (nutrients, toxic chemicals, etc.) creates a preferred
swimming direction. Darker color indicates a more favorable condition for the organism. When
the organism swims in the direction of the gradient, it continues swimming in this direction for
a longer period of time (red lines).

2.2 Scallop theorem

The time indepencence of the Stokes equation restricts the possible swimming motions. This
was elucidated by Purcell [58] with the so-called scallop theorem: a scallop opens its clam slowly
and closes it fast, squirting out water. In the high Reynolds number environment this leads to a
net displacement after one opening/closing cycle, but at low Reynolds number it would end up
at its exact starting position. This is due to the reciprocal motion of the scallop, a movie of one
cycle played backwards looks the same as the movie itself. The time independence of the Stokes
equation implies that no matter how fast or slow you move, as long as the Reynolds number
remains small, a reciprocal motion does not result in a net displacement. The micro scallop with
one degree of freedom (open/close) is not capable of performing a non-reciprocal motion. All
microswimmers perform a non-reciprocal movement, for Chlamydomonas this will be elucidated
in chapter 3.

2.3 Brownian motion, diffusion and random walks

Fluid particles are in constant motion, whereby the average velocity increases with temperature.
These fluid particles collide with suspended objects, creating a random movement of the (small)
suspended particles, this is called Brownian motion. Brownian motion results in diffusion of the
suspended particle and is described by a diffusion constant for a spherical particle with radius R
given by the Stokes-Einstein relation [19]

D =
kT

6πηR
, (2.4)

with T the temperature and k the Boltzmann constant. The Peclet number is the ratio of times
a particle needs to diffuse a distance L compared to travel the same distance by ballistic motion
Pe = RU/D. At room temperature (T = 300 K) in water (ηwater = 1 mPa · s ·m) the Peclet
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number for the typical microswimmer is Pe ' 108, which makes clear that diffusive motion is
negligible for the typical microswimmer. This is no surprise, if you would travel as fast by doing
nothing as you would by actively swimming, then why would you swim? The rotary diffusion
constant for a sphere is given by the Stokes-Einstein relation

Dr =
kBT

8πηR3
. (2.5)

The reciprocal rotary diffusion constant for a typical microswimmer is 1/Dr ∼ 8 · 102 s, where
again water is used as a suspending medium at room temperature. This indicates that at lab
timescales (0.001− 10)s the swimmer (rotary) diffusion is negligible. Many microswimmers use
a simple algorithm to ’scan’ their environment. They swim in a straight line for a time ts and
after this time decide to:

• 1. Randomly change direction if conditions have not improved 2

• 2. Remain swimming in the same direction if conditions have improved

This results in a biased random walk [28], see figure 2.4. In this way the organism probes its
vicinity for food, toxic chemicals etc. On longer time scales, i.e. after many reorientation events,
a random walk can be described as effective diffusion. For suspensions of Chlamydomonas the
effective diffusion constant was obtained experimentally as Deff = 7 · 10−8 m/s2 and Deff/D ∼
106 [55]. The effective rotary diffusion is Dr,eff = 0.4 rad2/s [35] and Dr,eff/Dr ∼ 400.

Microswimmers search for food molecules. The typical size of these biological molecules
soluted in water is ∼ 10 nm. To out-swim diffusion microswimmers have to travel a length scale
ldiff = Dbio/U ∼ 100µm [58], where Dbio is the diffusion constant of the biological molecules.
This is the typical length after which Chlamydomonas changes its direction.

The diffusion of a microswimmer is negligible compared to the swimming speed. They scan
their environment via a simple random walk algorithm, whereby they outrun diffusion of nutri-
ents, chemicals, etc.

2.4 Flagellar propulsion

Amoebes change their body shape and bacteria use a motor to rotate a passive bacterial flagellum
to propel themselves [42]. But all eukaryotic microswimmers use one or more active flagella for
the propulsion of their body, see figure 2.5. These flagella have the same basic structure as
displayed in figure 2.6 which is thought to originate from the mutual eukaryotic ancestor about
1-2 billion years ago [52].

The flagellum consists of 2 central microtubuli and 9 outer microtubuli doublets, covered
by a flagellar membrane. The central pair is surrounded by a structure called the central pair
apparatus, it is connected with the outer microtubuli doublets via radial spokes which seem to
play a role in altering and regulating the flagellar beat [25]. The dynein motors are connected
to the A microtubulus and reach out to the B microtubulus of the next doublet. Within a
single flagellum over 16 different motors have been reported and the total number of motors in a
Chlamydomonas flagellum is about 10.000 [25]. The microtubuli are hollow tubes with a diameter
of 25 nm, their bending rigidity is about km = 3 · 10−23 Nm2 [1]. In multicellular organisms like
humans, one finds flagella in the spermatozoa, in lungs and throat for dust removal and even
the left-right asymmetry of our body is caused by the beating of flagella on the surface of the

2The reorientation is not perfectly random: their usually exists a correlation between consecutive swimming
directions which is species dependent.
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Figure 2.5: a) Spermatozoa have a flagellum attached to their back (with respect to the swimming
direction). b) Chlamydomonas has two flagella protruding from the front of its body, c) African
Tripanosomes have a flagellum which is over the full length of its body attached to the cell.
d) An array of cilia which can be found in the respiratory tract of the human body and other
mammals.
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56
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Figure 2.6: Schematic overview of a 9+2 flagellum. The central pair microtubuli (inner blue
circles) are surrounded by the central pair apparatus (ellipse). 9 outer microtubuli doublets form
a ring, they are numbered 1-9 by convention. The dark and light blue parts are the A and B
microtubulus respectively. The dynein motors (red) originate at the A microtubulus and extend
towards the B microtubulus of the next doublet. The radial spokes (orange) originate at the A
microtubulus too, they are connected with the central pair apparatus.
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Figure 2.7: Schematic 3D overview of a segment of 96 nm of the axoneme. The flagellum consists
of 1-10000 of these connected segments.

(a) (b)

Figure 2.8: Schematic overview of dynein activity. a) Two microtubuli (blue) are parallel to
each other. When the dynein motors are switched on, the two microtubuli start sliding in the
direction depicted by the two orange arrows. b) The dynein motors have induced sliding, but no
bending has occurred.

embryo [25]. Within the body flagella, when they come in arrays and when they are relatively
short, are called cilia, but their design is the same except for the non-existing central pair, the
9+0 flagella/cilia. The length of flagella ranges from 1µm for the smallest cilia to 58000µm [52]
in the spermatozoa of fruit flies3. The diameter of the flagellum is constant along the flagellum
(200µm). For Chlamydomonas the flagella consist of repeating segments of 96 nm as displayed
in figure 2.7.

The dynein motors which are located on all 9 microtubuli doublets are most probably unidi-
rectional [25, 12]. The motors on microtubuli i can push microtubuli i− 1 in the direction of the
cell body. The dynein activity on itself does not create a bend but merely results in sliding, as
illustrated in figure 2.8. Geometrical constraints, created by the attachment to the cell body and
the flagellar structure, are necessary to turn this sliding movement into a bend. This is illustrated
in figure 2.9. The organisms considered are unicellular and may have more than 100.000 dynein
units, but still manage to create complex and sustainable beating patterns. Camalet et al. [14]
treated the motors as oscillators and showed that regardless of the microscopic architecture and
switching mechanism a series of oscillators is able to create a sustainable beating pattern. Several
motor control mechanisms have been proposed [45, 11], succesfully reproducing beating patterns

3it exceeds their bodylength of 1mm
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(a) (b)

Figure 2.9: a) Two microtubuli (blue) are connected to a wall (green sheet) and additional
geometrical constraints (green rings) apply. b) The dynein motors (red) are switched on and
exert a force, due to the rigid connection to the wall and the geometrical constraints, the motor
activity creates a bend. The length of the microtubuli and the distance between the centerlines
of both tubes is conserved.

for a limited number of organisms. Until now the exact mechanism remains a mystery, as con-
cluded by several recent reviews [25, 12, 66, 46]. Many organisms perform a random walk which
is biased by chemicals, nutrients, light intensity etc. This indicates that these organisms have
chemical and light sensors which influence the flagellar movement. Eukaryotic microswimmers
propel themselves with flagella, containing many internal motor units. The control mechanism
for the motors is yet unknown.

2.5 Theoretical models

Several theoretical microswimmers have been proposed, which give insight in swimming at low
Reynolds number. Investigations range from swim efficiency [44, 8], wall interactions [47], to
influence of phase difference of cyclic swimmers [2] and swimmer-swimmer interaction of a few
[34] or many swimmers [33]. The most important microswimmer models are:

• Taylor sheet An oscillating sheet was shown to move by Taylor [64] as early as 1951.

• Najafi-Golestanian swimmer [50] Three spheres in a row are connected by two linkers,
hence it is also known as a two link swimmer. The two links create two degrees of freedom,
allowing for non reciprocal movement.

• Squirmer Introduced by Lighthill in 1952 [44] and later developed by Blake [8], it was
used to model spherical swimmers which move by slightly altering their body shape, or for
swimming bodies covered by arrays of beating cilia. The induced flow field is a superposition
of the flow induced by a dipole force (stresslet) of strength B2 and the flow induced by a
force quadrupole of strength B1. It is discussed in appendix F.
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Chapter 3

The motion and induced flows of
Chlamydomonas Reinhardtii

This chapter addresses the swimming motion and induced flows of a single Chlamydomonas
cell on the micrometer length scale. First the cell characteristics and different motility modes
are discussed in section 3.1 and 3.2. In section 3.3 the synchronisation of the two flagella is
discussed and a new alternative hypothesis for the mechanism of synchronisation is presented.
The experiments on the swimming induced flows are discussed in section 3.4. Finally I apply the
three-point-force model to fully reproduce the experimentally obtained flows in section 3.5.

Figure 3.1: Electron microscopy images of Chlamydomonas Reinhardtii. Taken from [65].

3.1 Introducing Chlamydomonas - history and character-
istics

The genus Chlamydomonas was already discovered in 1786 by Ehrenberg [25]. The different
varieties discovered afterwards populate virtually every part of our planet. According to the

14



Table 3.1: Cell characteristic [37]

Chlamydomonas standard value used here
Cell aspect ratio 1− 1.5 1.3
Cell diameter 4− 20µm 10µm
Flagellar length 4− 20µm 12µm
Flagellar diameter 0.2µm
Flagellar angle 0.6− 1.5 rad 0.7 rad
Flagellar bending rigidity 6 · 10−22 Nm2

Beat frequency 40− 60 Hz 50 Hz
Cell density 1.01− 1.10 gcm−3 1.10 gcm−3

Centre of gravity offset 0− 0.05 body diameters 0.05 body diameters
Swimming speed 0− 200µms−1 40µms−1

Chlamydomonas Sourcebook [25]:
”Collection sites include temperate, tropical, and polar regions. Chlamydomonas species have

been isolated from freshwater ponds and lakes, sewage ponds, marine and brackish waters, snow,
garden and agricultural soil, forests, deserts, peat bogs, damp walls, sap on a wounded elm tree,
an artificial pond on a volcanic island, mattress dust in the Netherlands, roof tiles in India, and
a Nicaraguan hog wallow. A petri plate exposed for 1 minute from an airplane flying at 1100m
altitude produced Chlamydomonas among other algae.“

Although more than 500 species of Chlamydomonas have been described, Chlamydomonas
Reinhardtii has gained the most interest by researchers. This green unicellar alga is non-lethal
for humans. It can grow both in the light (whereby they use photosynthesis), and in the dark
(when provided with acetate). Many different strains are available and can even be ordered
online [15]. Cell size and other characteristics vary among different strains, see table 3.1, so one
has to be cautious when comparing experiments.

A typical Chlamydomonas has an almost spherical cell body with a diameter of ∼ 10µm, and
two flagella (length 12µm and diameter 0.2µm) protruding at the front of its cell body. The
side of the cell body where the flagella are attached is called the posterior side, the opposite side
is the called the anterior side. The flagella extend 0.4µm into the cell, and are anchored in the
basal body. The latter will be discussed in section 3.3.

Chlamydomonas has a slightly higher density (5%) than water, which leads to sedimentation
for dead cells. It is bottom heavy, so that gravity aligns the cells in the upward direction.
Chlamydomonas uses photosynthesis as an energy source, it thus will look for the optimal light
intensity. For this purpose it has a rudimentary photosensitive sensor called the eyespot at the
front of its body. It is connected with the central pair of the flagellum.

3.2 The Chlamydomonas flagellum & motility modes

The bending rigidity of a single microtubulus has been measured: 30× 10−24 Nm2 [30]. We take
the bending rigidity of the flagellum 20 times that of a single microtubulus: A = 6.0×10−22 Nm2,
like in [14]. The persistence length of a flagellum is lp = A/(kBT ) = 0.14 m. As lp � L a passive
flagellum behaves like a rigid rod and thermal fluctuations in the flagellum are negligible. The
viscosity, length of the flagellum and bending rigidity define a characteristic relaxation time
tbend = ηL4

A = 0.03 s. This is the typical time it takes for a bent rod to relax to its straight
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equilibrium configuration in a viscous environment. Note that it is longer than the beat cycle
time tbeat ∼ 0.02 s, during the beating cycle the flagellum is not able to relax to an equilibrium
state. Chlamydomonas displays several motility modes:

• In the dark it swims the majority of the time along a tight helical path [55] between
consecutive tumbling events. The distribution of the latter can be described by a Poisson
process with an average time between tumbling events tt = 11 s [55]. The beat cycle
consists of an effective stroke, where the cell body moves forward, and a recovery stroke,
where the cell body moves backwards. These strokes differ in shape, thereby fullfilling the
non-reciprocal constraint of low Reynolds number swimming. A schematic overview of the
strokes is given in figure 3.2. Rueffer and Nultsch [61] and more recently Polin [55] have
recorded the beating pattern. During the effective stroke the two flagella beat in plane.
During the recovery stroke they beat partially out of plane. The latter is responsible for
the rotation of the cell body with a frequency of 2 Hz [18] and the helical swimming path.

• After running straight for a certain period of time, Chlamydomonas reorientates or tumbles
for a short period of time. It dephases its flagella, creating an irregular beating pattern.
After ∼ 0.3 s the flagella are synchronised again. The asynchronous beating causes a
random rotation of the cell body. On average in the dark cells swim straight for 95% of
the time, the tumbling makes up for the remaining 5% of the time.

• An intense light flash or mechanical stimulus results in a photoshock response. After a
short immotile period the flagella start beating in a different manner, it swims backwards
instead of forwards.

• It can also use its flagella to creep or glide along surfaces of solid media [25], with an
average speed of 1.6µm/s. A useful property in the desert.

10 μm 10 μm

Figure 3.2: Schematic overview of the swimming stroke. The effective stroke where the cell body
moves forward (left) and the distal part of the flagellum is almost straight. The recovery stroke
(right) in which the flagellum is strongly bend.

Chlamydomonas displays four distinct motility modes. The actual mode depends on time
and environmental conditions. In this work the emphasis lays on the first, ’normal’ mode.
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3.3 Basal body and flagellar synchronisation

The flagella are attached to the cytoskeleton via the so-called basal body, see figure 3.3. The
part of the flagellum closest to the cell body is called the basal part, the other side the distal
part. Four bundles of microtubuli connect the basal parts of the flagella to the cytoskeleton.
The flagella are connected to each other at their very end via the bundles of microtubuli, but
also via the distal striated fiber. The angle between the flagella at their base has been studied
by Brokaw [13] and Ringo [60] yielding an angle of 0.6 − 0.8 rad and 1 − 1.5 rad respectively.
This discrepancy might be due to the different measurement techniques [13], the difference in
growing conditions and/or type of strain used. The big range within both data sets suggests that
it might vary among individiual cells. But it is not unlikely that the angle is not fixed, but has
a certain degree of freedom. The forces the flagella exert on the cell body change periodically,
which could result in a periodically varying angle. The flagella mostly beat in synchrony with
slips occuring every ∼ 0.2 s or 10 cycles [22], and can be regarded as two coupled oscillators.
One of the first observations of this phenomenon was by Huygens in the 17th century [6]. He
observed two pendulum clocks, both attached to the same beam. He noticed that within half
an hour the clocks were ticking in anit-phase (the phase difference was π ), regardless of the
initial phase difference. At first he thought the air flow created by the pendula was responsible
for this behaviour, but later he realised that the attachment to the same beam provided the
necessary coupling. He called this behaviour odd sympathy. The flagella have been modeled as
two noisy coupled oscillators [22, 51], where hydrodynamic interactions were used as the coupling
mechanism. But similar to the clocks of Huygens, maybe not the medium but the anchoring
provides the strongest coupling? The influence of the flexibility of the anchoring in combination
with the distal striated fiber is not yet considered in any studies, nor is the coupling through
the translation and rotation of the cell body. Hydrodynamics creates a coupling but it is weak
and long-ranged. Moreover the theory adresses synchronisation of two cilia a distance d apart,
whereas the flagella of Chlamydomomnas are connected at their base.

The flagella are connected via the distal striated fiber, see figure 3.3, which contains the
protein centrin. The latter forms calcium sensitive, contractile fibers about which the sourcebook
notes: ”Several lines of evidence suggest that centrin fibers contract in vivo with changes in
calcium concentration.“ The passive influence of the distal striated fiber for synchronisation is
an interesting topic for future research. It is not unlikely that active movement of this fiber plays
a role in the tumbling events.

3.4 Experimental flows

The flow near a Chlamydomonas cell obtained by Drescher et al. [18], see figure 3.4, is an
average over several seconds, thereby averaging over several beat cycles and rotations about the
swimming axis. It was noticed that the flow can be reproduced by a simple model of three point
forces. One located at the center of the cell body, the other two at the ’average’ flagellar position.
Taking the average over a rotation reproduced the measured fields. Only for r > 7R, with R the
body radius, the field starts resembling a stresslet field.

For the theoretical squirmer the flow is known exactly, see appendix F. In figure 3.5, flows
for different dipole strengths are displayed. The first mode is a pure source doublet term, the
leading term in the second mode is a stresslet but the squirmer model does not capture the near
field well.

The velocity of a single cell during a stroke with period T is shown in figure 3.6. The effective
stroke lasts 60% of the cycle time, where it reaches a top speed of 500µm/s. At this top speed it
creates the strongest flow, similar to the time averaged flow. The flows during the effective and
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Figure 3.3: The basal parts (bb) of the flagella are attached to the cytoskeleton via four bundles
of microtubuli (MTR). The distal striated fiber (DSF) creates a second intra flagellar connection.
Taken from [25].

recovery stroke show a strong time-dependence and have been obtained by Guasto et al. [23],
see figure 3.10 and 3.11. This highly time-dependent flow field was not yet understood, in the
next section I present a simple model which reproduces the flow fields in full detail.

3.5 Three-point-force model

During the beating cycle both the flagella exert a force on the fluid, and the cell body also exerts
a force on the fluid. The three-point-force model reduces a Chlamydomonas cell to these three
forces, see figure 3.7. The magnitude of the force a flagellum exerts is calculated by integrating
the force density ~f per unit length of the flagellum:

~Fi =
∫
S

~fidsi , i = 1, 2 , (3.1)

where s is the distance of a point on the flagellum measured along the flagellum, see figure 3.8.
As the cell is force-free (

∑ ~Fi = 0), the cell body exerts a force ~Fc = −(~Ff,1 + ~Ff,2) on the fluid.
Regarding Chlamydomonas as a sphere, the force ~Fc = 6πηRUp̂ on the cell body is calculated
using the velocity of the cell, see figure 3.6, with p̂ the unit vector along the swimming direction.
The cell body force is exerted at the center of the cell body, the positions where the flagellar
forces are exerted change during the beating cycle. I introduce the flagellar force positions as:

sf,i =

∫
S
si ~fdsi∫
S
~fdsi

, (3.2)

whereby the curve S changes during the beating cycle. The force densities can be estimated
using video analysis of the stroke, as has been done for spermatozoa [21]. However, I assume
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Figure 3.4: Flow field measurements (left) averaged over several seconds and averaged three-
point-force model (right). Taken from [55].
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Figure 3.5: Squirmer flows for three different ratios of first B1 and second mode B2: β = B2/B1 >
0 for a puller type squirmer. The second mode creates a source doublet field in leading order,
the first mode is a pure stresslet.
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Figure 3.6: The velocity profile of the cell body during a beat cycle (T = 0.02s) in a quasi
2D environment. During the effective stroke the cell body moves forwards, during the recovery
stroke the cell body moves backwards. Taken from [23].
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Figure 3.7: Chlamydomonas is modeled as three-point-forces. The flagella both exert a force in
equal direction, the cell body exerts a force in the opposite direction of twice the magnitude of
a single flagellar force.

the flagellar forces to be of equal strength ~Ff,1 = ~Ff,1 = −~Fc/2 and parallel to the swimming
direction. During the effective stroke the flagellum moves backward, thus the flagellar forces
point backwards. The flagellum is only slightly bent during the effective stroke which leads to
an average force position relatively far away from the cell body. At the beginning of the effective
stroke the complete flagellum is moving, during the last part of the effective stroke only the
distal part moves and continues moving until the flagellum is almost fully stretched backwards.
The average force position for the effective stroke moves from the posterior to the anterior side.
During the recovery stroke the flagellum is strongly bend, leading to an average force position
closer to the cell body. For the recovery stroke the average force position is located at the bend of
the flagellum, therefore being only on the posterior side, and not extending as far forwards as the
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S

Figure 3.8: Schematic overview of flagellar forces during effective stroke. The distance from the
cell body measured along the cell body is s. The flagellum moves backwards, exerting a force
density per unit length of flagellum ~f on the fluid.

effective stroke. I assume that the flagellar force position only moves parallel to the swimming
direction and makes a jump between the effective and recovery stroke when the speed of the cell
body is zero. This leads to a beat cycle as shown in figure 3.9. A single point force exerted at
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Figure 3.9: The schematic swimming stroke. The point at which the flagellar point force is
exerted during the effective stroke (blue) and recovery stroke (red). All distances in µm with the
center of the cell body as the origin. the green semi-circle denotes half of the cell body. During
the effective stroke the flagellum are almost stretched, thus resulting in a flagellar point force
position further away from the cell body compared to the effective stroke in which the flagellum
is strongly bent.

the origin creates a stokeslet flow:

~uSto,3D(~r) = T(~r) · ~F , T(~r) =
1

8πηr

(
I +

~r ⊗ ~r
r2

)
, (3.3)

where bold symbols denote tensors, I is the identity matrix. As the Stokes equation is linear,
the complete flow is assumed to be a superposition of three stokeslets:

~u(~r) =
∑
i

T(~r − ~ri) · ~Fi , i = 1, 2, c , (3.4)

with ~ri the force positions which change during the beating cycle. In figure 3.10 and 3.11 my
calculations are compared to experimentally obtained flows [23]. During the part of the effective
stroke, where the flagella are on the posterior side (3.10a-c) two vortices occur at the anterior side
of the cell body. When the tips of the flagella are in line with the center of the cell body (3.11d),
the dipole field vanishes and a quadrupole-like field occurs. In the last part of the effective stroke,
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where the flagella are at the anterior side (3.11e), the two vertices occur on the posterior side of
the cell body. For the recovery stroke (3.11f) the field is similar to that of the first part of the
effective stroke except for a sign change. The simple 3D model shows good agreement with the
experiments. The experiments of Guasto et al. [23] were performed in a thin liquid film bounded
by two liquid-air interfaces. The diameter of the cell body of the Chlamydomonas used in this
experiment was 7−10µm and the width of the film 15±2µm. Only cells where the flagella were
beating in a plane parallel to the interfaces were tracked. For soap films with suspended particles
a transition occurs between three dimensional and two dimensional behaviour. By comparing
the diffusion of particles of size d in a film with a thickness h the self diffusion showed a 2D-3D
transition at a ratio h/d = 7 ± 3 [57]. For the Chlamydomonas experiments h/d = 2, clearly
below this empirical limit. In the Chlamydomonas thin film experiments it was noted that the
far field scaled like u ∼ 1/r which is a clear 2D effect, a dipole field in 3D decays like u ∼ 1/r2,
see appendix C. A two dimensional stokeslet due to a point force exists [56]

~uSto2D(~r) = T(~r) · ~F , T(~r) =
1

4πη

(
−ln

(
r

r0

)
I +

~r ⊗ ~r
r2

)
, (3.5)

where r0 is a length scale, it is an undetermined constant as there is no typical length scale in an
infinite 2D liquid. For a superposition of point forces like in the 3D model the flow is independent
of r0 as long as

∑
i
~Fi = 0, see appendix C.

Substituting the 2D Stokeslet in the three-point-force model creates even better agreement
with experiments, see figure 3.10 and 3.11. Although the 2D Stokeslet can be deduced mathe-
matically, the physical interpretation is not clear. The 2D problem of a point force is equivalent
to an infinitely line in 3D where a constant force density per unit of length is exerted. A solution
of the Stokes equation for this problem does not exist, the infinite long line force results in an
infinite Reynolds number, regardless of the magnitude of the force density. This is known as
the Stokes paradox. Nonetheless using a 3D Stokeslet for a thin film is a gross approximation
too, and the 2D stokeslet model shows better agreement. A solution would be to use the 3D
stokeslet and incorporate the reflections at the interfaces. Analytic solutions for the flow induced
by a point force between two rigid walls exist, but is complex [38]. Simpler approximations exist
for a point force near a single wall [7], but they only predict the flow well for relatively large
separations, which is not the case for the experimental set-up. Besides, the fluid-air interface
is not actually a rigid wall, as only the normal component of the fluid velocity is zero at the
interface, which is a strong motivation to describe the system as a 2D fluid.

The time-averaged flow field in figure 3.4 can be obtained by a weighted average of the time
dependent three-point-force model, thereby also averaging about a rotation about its swimming
direction. The weighting factor is the magnitude of the force obtained from the swimming speed,
see figure 3.6.

The simple three point model does not incorporate interactions between the flagella, cell body
nor with externally applied flows. A more detailed description of average positions during the
beat cycle and taking into account the transverse forces exerted by the flagella might improve
the results, but the simple model presented here explains the experiments within experimental
errors. Also the flow around the cell body due to the no-slip boundaries is already more complex
than a simple Stokeslet, there is a source doublet contribution. But zooming in this much the
asphericity and visco elasticity of the cell body might affect the flow field too.
In this chapter I have presented a new hypothesis for the synchronisation of the flagella, it might
not be due to the hydrodynamic interactions between the flagella but due to the connection of
the flagella both at their base and via the distal striated fiber. Using a schematic analysis of the
swimming stroke of Chlamydomonas I have presented a simple three-point-force model which
reproduces the full details of the highly time dependent swimming induced flow fields, whereby
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speed decreases rapidly near the hyperbolic stagnation
point 7–8 radii from the swimmer.

The time-averaged velocity field in Fig. 2(a) shows the
limitations of some current swimmer models, as also noted
in [6], and raises several important questions. For example,
how does the velocity field evolve throughout the oscilla-
tory flagellar beat cycle? Using high-speed imaging
(500 fps), we measure the instantaneous swimmer phase,
and identify tracer particles at corresponding times in the
beat cycle. Velocity fields (resulting from 170 cell tracks)
are constructed from tracer velocities at each phase of the
oscillation with resolution T=15.

A time series of the velocity field during the beat cycle is
shown in Fig. 3 (see video [15]). Insets show swimmer
speed and phase (lower left) and approximate flagellar
position (lower right). At the beginning of the power stroke
[Fig. 3(a)], the velocity field is neatly divided into four
symmetric quadrants with the hyperbolic stagnation point
located slightly forward from the body, in line with con-
ventional force dipole swimmer models [1]. As the flagella
move toward the posterior and the power stroke peaks, the
vortices lateral to the organism strengthen [Fig. 3(b)], then

shift across the body to the anterior side [Fig. 3(c)–3(e)].
After the power stroke ends and the recovery stroke begins,
the flagella extend out in front of the organism, and the cell
velocity becomes negative. The flow shown in Fig. 3(f) is
qualitatively reversed from Fig. 3(a), changing the sign of
the dipole. The instantaneous flow field generated by an
oscillatory swimmer such as C. reinhardtii is complex and
highly time dependent.
In Stokes flows, all of the mechanical energy generated

by a swimmer for locomotion is rapidly dissipated by the
fluid. The power transferred to the fluid by the organism is
calculated from the velocity field gradient through the
viscous dissipation P ¼ R

2�ð�:�ÞhdA, where � is the

fluid viscosity, � ¼ 1
2 ½ruþ ðruÞT� is the rate of strain

tensor, and dA is a differential area element of the film
[15]. The instantaneous mechanical power output, PoscðtÞ,
is calculated from the velocity fields [Fig. 3] throughout the
beat cycle and shown in Fig. 4(a). The peak power output
(�15 fW) occurs during the power stroke and corresponds
to the maximum instantaneous speed of the cell body. A
secondary local maximum also occurs at the peak speed of
the recovery stroke [see Fig. 4(b) (inset)]. Because of the

FIG. 3 (color online). Time sequence of the velocity field evolution throughout the beat cycle (period T ¼ 18:9 ms) of C. reinhardtii
(oriented to the right) including the hyperbolic stagnation point position (green diamond). Insets show cell speed and beat cycle phase
[lower left, see Fig. 4(b) for details], and approximate flagellar shape (lower right, measured separately). (a) Early in the power stroke,
the velocity field resembles a (negative) force dipole. (b) At the peak of the power stroke, the vortices lateral to the organism strengthen
and sweep toward the posterior. (c)–(e) The vortices then shift to the anterior as the power stroke is completed. (f) At the peak of the
recovery stroke, the flow field again takes the shape of a dipole, but with opposite sign. The recovery stroke velocity field (f) is weaker
than the forward stroke, but is enhanced by the log scaling [20].
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Figure 3.10: The experimental flows during the first half of the beating cycle [23]. The insets
show the velocity as a function of time and the flagellar configuration. The second and third row
are the analytic flows of three-point-force model using 2D and 3D stokeslets respectively. The
green diamond (exp.) and orange dot (3D & 2D) denotes the stagnation point of the fluid, i.e.
the point at which the fluid velocity is zero. All lengths are in µm.

the geometry of the experimental set-up is taken into account by modelling the fluid as a 2D
liquid.

23



speed decreases rapidly near the hyperbolic stagnation
point 7–8 radii from the swimmer.

The time-averaged velocity field in Fig. 2(a) shows the
limitations of some current swimmer models, as also noted
in [6], and raises several important questions. For example,
how does the velocity field evolve throughout the oscilla-
tory flagellar beat cycle? Using high-speed imaging
(500 fps), we measure the instantaneous swimmer phase,
and identify tracer particles at corresponding times in the
beat cycle. Velocity fields (resulting from 170 cell tracks)
are constructed from tracer velocities at each phase of the
oscillation with resolution T=15.

A time series of the velocity field during the beat cycle is
shown in Fig. 3 (see video [15]). Insets show swimmer
speed and phase (lower left) and approximate flagellar
position (lower right). At the beginning of the power stroke
[Fig. 3(a)], the velocity field is neatly divided into four
symmetric quadrants with the hyperbolic stagnation point
located slightly forward from the body, in line with con-
ventional force dipole swimmer models [1]. As the flagella
move toward the posterior and the power stroke peaks, the
vortices lateral to the organism strengthen [Fig. 3(b)], then

shift across the body to the anterior side [Fig. 3(c)–3(e)].
After the power stroke ends and the recovery stroke begins,
the flagella extend out in front of the organism, and the cell
velocity becomes negative. The flow shown in Fig. 3(f) is
qualitatively reversed from Fig. 3(a), changing the sign of
the dipole. The instantaneous flow field generated by an
oscillatory swimmer such as C. reinhardtii is complex and
highly time dependent.
In Stokes flows, all of the mechanical energy generated

by a swimmer for locomotion is rapidly dissipated by the
fluid. The power transferred to the fluid by the organism is
calculated from the velocity field gradient through the
viscous dissipation P ¼ R

2�ð�:�ÞhdA, where � is the

fluid viscosity, � ¼ 1
2 ½ruþ ðruÞT� is the rate of strain

tensor, and dA is a differential area element of the film
[15]. The instantaneous mechanical power output, PoscðtÞ,
is calculated from the velocity fields [Fig. 3] throughout the
beat cycle and shown in Fig. 4(a). The peak power output
(�15 fW) occurs during the power stroke and corresponds
to the maximum instantaneous speed of the cell body. A
secondary local maximum also occurs at the peak speed of
the recovery stroke [see Fig. 4(b) (inset)]. Because of the

FIG. 3 (color online). Time sequence of the velocity field evolution throughout the beat cycle (period T ¼ 18:9 ms) of C. reinhardtii
(oriented to the right) including the hyperbolic stagnation point position (green diamond). Insets show cell speed and beat cycle phase
[lower left, see Fig. 4(b) for details], and approximate flagellar shape (lower right, measured separately). (a) Early in the power stroke,
the velocity field resembles a (negative) force dipole. (b) At the peak of the power stroke, the vortices lateral to the organism strengthen
and sweep toward the posterior. (c)–(e) The vortices then shift to the anterior as the power stroke is completed. (f) At the peak of the
recovery stroke, the flow field again takes the shape of a dipole, but with opposite sign. The recovery stroke velocity field (f) is weaker
than the forward stroke, but is enhanced by the log scaling [20].

PRL 105, 168102 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

15 OCTOBER 2010

168102-3

speed decreases rapidly near the hyperbolic stagnation
point 7–8 radii from the swimmer.

The time-averaged velocity field in Fig. 2(a) shows the
limitations of some current swimmer models, as also noted
in [6], and raises several important questions. For example,
how does the velocity field evolve throughout the oscilla-
tory flagellar beat cycle? Using high-speed imaging
(500 fps), we measure the instantaneous swimmer phase,
and identify tracer particles at corresponding times in the
beat cycle. Velocity fields (resulting from 170 cell tracks)
are constructed from tracer velocities at each phase of the
oscillation with resolution T=15.

A time series of the velocity field during the beat cycle is
shown in Fig. 3 (see video [15]). Insets show swimmer
speed and phase (lower left) and approximate flagellar
position (lower right). At the beginning of the power stroke
[Fig. 3(a)], the velocity field is neatly divided into four
symmetric quadrants with the hyperbolic stagnation point
located slightly forward from the body, in line with con-
ventional force dipole swimmer models [1]. As the flagella
move toward the posterior and the power stroke peaks, the
vortices lateral to the organism strengthen [Fig. 3(b)], then

shift across the body to the anterior side [Fig. 3(c)–3(e)].
After the power stroke ends and the recovery stroke begins,
the flagella extend out in front of the organism, and the cell
velocity becomes negative. The flow shown in Fig. 3(f) is
qualitatively reversed from Fig. 3(a), changing the sign of
the dipole. The instantaneous flow field generated by an
oscillatory swimmer such as C. reinhardtii is complex and
highly time dependent.
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[15]. The instantaneous mechanical power output, PoscðtÞ,
is calculated from the velocity fields [Fig. 3] throughout the
beat cycle and shown in Fig. 4(a). The peak power output
(�15 fW) occurs during the power stroke and corresponds
to the maximum instantaneous speed of the cell body. A
secondary local maximum also occurs at the peak speed of
the recovery stroke [see Fig. 4(b) (inset)]. Because of the

FIG. 3 (color online). Time sequence of the velocity field evolution throughout the beat cycle (period T ¼ 18:9 ms) of C. reinhardtii
(oriented to the right) including the hyperbolic stagnation point position (green diamond). Insets show cell speed and beat cycle phase
[lower left, see Fig. 4(b) for details], and approximate flagellar shape (lower right, measured separately). (a) Early in the power stroke,
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and sweep toward the posterior. (c)–(e) The vortices then shift to the anterior as the power stroke is completed. (f) At the peak of the
recovery stroke, the flow field again takes the shape of a dipole, but with opposite sign. The recovery stroke velocity field (f) is weaker
than the forward stroke, but is enhanced by the log scaling [20].
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Figure 3.11: The experimental flows during the second half of the beating cycle [23]. The insets
show the velocity as a function of time and the flagellar configuration. The second and third row
are the analytic flows of three-point-force model using 2D and 3D stokeslets respectively. The
green diamond (exp.) and orange dot (3D & 2D) denotes the stagnation point of the fluid, i.e.
the point at which the fluid velocity is zero. All lengths are in µm.
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Chapter 4

Rheology of a suspension of
Chlamydomonas Reinhardtii

The previous chapter addressed the swimming motion and induced flows on the micrometer
scale, this chapter focuses on the macroscopic influence of swimming of Chlamydomonas. After
a short introduction of viscosity and the cone-plate rheometer in sections 4.1 & 4.2, I continue
with presenting an overview of theory on the effective viscosity of dilute passive suspensions
in section 4.3 treating both gravitational and shape effects. In section 4.4 two new derivations
are provided for the effect of swimming on the viscosity of dilute suspensions by application of
the three-point-force model. The viscosity will turn out to depend on the average swimming
direction. A literature study on the latter is presented incorporating both shape and gravity
as well as rotary diffusion. A comparison is made between theory and experiments in section
4.6, and numerical results are discussed in 4.7. Finally in section 4.8 non-dilute suspensions are
briefly addressed. My contribution consists of two new derivations for the effective viscosity of a
suspension of Chlamydomonas cells and a review of existing literature on this topic.

4.1 What is viscosity?

The viscosity of a fluid describes the resistance of a fluid to applied shear stresses. Let us consider
the experiment of section 2.1 of swimming in molasses. It will be much harder to move your
limbs in molasses than in a regular swimming pool filled with water, due to the higher viscosity of
molasses. The viscosity is a measure of the microscopic interactions and the momentum transfer
at the molecular level. Macroscopically, it relates the strain rate to the stress tensor. For a
Newtonian fluid the latter is

σ = −pI + 2ηe , (4.1)

with p the pressure, η the viscosity and the strain rate tensor is given by

e =
1
2

(∇~u+ (∇~u)T ) . (4.2)

The area of physics considering the behaviour of complex fluids under shear deformations is
called “rheology”.
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4.2 Cone-plate rheometer and simple shear flow

cone

plate

fluid

ω

θ
r

z

Figure 4.1: A schematic overview of a cone-plate rheometer.

There exists a variety of viscosity mesurement instruments, but one of the widely used is the
cone-plate rheometer. It consists of a flat stationary disk and a downwards pointing, rotatable
cone (angle θ = 2 ◦) with the same radius. The fluid is located between the cone and the plate,
see figure 4.1. The cone rotates with angular velocity ω due to a torque τ . We use a cylindrical
coordinate system with the tip of the cone as the origin. The azimuthal velocity at the surface
of the cone is uφ = ωr. The distance between cone and plate is h = tan(θ)r ∼ θr. By solving
the Stokes equation (2.2) the fluid velocity is obtained as (ur, uz, uφ) = (0, 0, zω/θ), and the
vorticitiy of the flow is

∇× ~u = −∂uφ
∂z

r̂ +
∂(ruφ)
r∂r

ẑ

= − ω

tan θ
r̂ +

z

r

ω

tan θ
ẑ . (4.3)

The maximum value for z/r = tan(θ) ∼ 0.03, so that the latter term in eq. (4.3) is negligible.
Thus in good approximation the flow can be treated as a simple shear flow with constant shear
rate ω/ tan(θ), which can be created by translating a plate with a velocity Uplate relative to a
stationary parallel plate, see figure 4.2. Instead of cylindrical coordinates a cartesian coordinate
system is used for the simple shear flow, with the axes as shown in figure 4.2. Only the x-
component of the flow is nonzero

ux =
Uplate
H

y = 2exyy = γ̇y . (4.4)

To sustain the fluid motion, a force in the y-direction on the surface with normal in the x
direction is exerted per unit area. This is the xy component of the stress tensor: σxy. The shear
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Figure 4.2: A simple shear flow is created by two parallel plates sliding with relative velocity V .
The plates are a distance H apart with the fluid in between. To sustain the shear flow a stress
σxy is exerted.

viscosity in the cone-plate rheometer is measured via the relation η = σxy/γ̇ = 1
2V

τ
ω . With V

the fluid volume in the cone-plate rheometer V = tan(θ)πR3/3 ∼ 1ml. There are ∼ 107 cells
in a single experiment for a suspension with a volume fraction φ = 1% of suspended cells of
size 10µm. The experiments on suspensions of Chlamydomonas which are discussed in 4.6 were
performed with a cone-plate rheometer as described in this section. In the vicinity of a small
particle at position ~r0 = (x0, y0, z0) the flow can be expanded in a linear, a rotational and a
dilatation (or straining) flow, by a Taylor expansion

~u(~x) = ~u~x0 +
1
2

(∇~u− (∇~u)T )~x0 · (~x− ~x0) +
1
2

(∇~u+ (∇~u)T )~x0 · (~x− ~x0)

= ~u~x0 + ~ω~x0 × (~x− ~x0) + e~x0 · (~x− ~x0) (4.5)

with ~ω~x0 = (0, 0, γ̇/2) and the dilatational tensor

e~x0 =
γ̇

2

0 1 0
1 0 0
0 0 0

 =
γ̇

2
R45 ◦

1 0 0
0 −1 0
0 0 0

 , (4.6)

where R45 ◦ is a rotation matrix, rotating the coordinate frame over an angle 45 ◦ about the
z-direction. Choosing Re = 0.1 as the limit where this expansion is valid, a limiting length scale
can be defined. For a volume of size l the typical velocity difference is γ̇l. The Reynolds number
for this volume is: Re = ρUL/η = ργ̇l2/η, susbtituting typical experimental values (γ̇ = 5/s)
yields l ∼ 0.14mm. This is more than an order of magnitude bigger than the size of the cells.

4.3 Rheology of dilute suspensions of passive particles

Chlamydomonas has an almost spherical cell body, therefore I start with the effective viscosity
of a suspension of rigid spheres as a first approximation for non-swimming cells. In the following
subsections the influence of the gravitiational torque and the asphericity of the cell body are
discussed separately.

4.3.1 Spherical particles

For a suspension of rigid spheres Einstein introduced [19, 20] the effective viscosity, which de-
scribes a suspension as a homogeneous Newtonian liquid, see figure 4.3. It incorporates the
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η0 ηeff

Figure 4.3: The fluid with viscosity η0 containing many tiny particles (a) is replaced with a
homogeneous fluid (b) with an effective viscosity ηeff .

viscosity of the suspending medium and the interaction of the suspended particles with the fluid
and each other. In the dilute limit particle interactions are negligible, which reduces the many
particle problem to a single particle problem of a rigid sphere in an unbounded fluid volume. In
appendix G the full derivation of the effective viscosity by Einstein is presented, here I give a
brief summary.

Figure 4.4: (top) Decomposition of an arbitrary flow. (bottom) The behaviour of a rigid sphere
in the different flow components.

The Reynolds number in the vicinity of a tiny particle is small (Re� 1) up to a mesoscopic
length scale L � r, where r is the size of the particle. Within this volume any arbitrary flow
can be (Taylor-)expanded, see figure 4.4. The spherical particle instantaneously translates and
rotates with the linear and rotational flow. The linear and rotational flows are thus not affected
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Figure 4.5: A small particle of radius r suspended in a big fluid volume V with radius R bounded
by the surface S. The green lines depict the dilatational flow.

by the presence of the particle. The dilatational flow does not exert a net force nor a torque on
the sphere, but the particle does reflect the dilatational flow as we demonstrate now. Without
loss of generality the calculations are restricted to a pure dilatational or straining flow. We choose
a coordinate system with the center of the sphere as the origin, the three axes are parallel to the
dilatational axes. In the absence of a particle the undisturbed dilatational flow ~u0 is described
by

~u0 = e0 · ~r , (4.7)

with the strain rate tensor

e0 =

A 0 0
0 B 0
0 0 C

 . (4.8)

Suspending a small rigid sphere disturbs the flow field in the vicinity of the particle. Solving the
Stokes equation (2.2) for a small rigid sphere with no slip boundary conditions and the fluid flow
at infinity given by eq. (4.7) yields the disturbance flow [19]

~u1 = −5
2

(
a3

r3
− a5

r5

)
~r · (e0 · ~r)

r2
~r − a5

r5
e0 · ~r . (4.9)

The total field outside the particle is then a superposition

~u = ~u0 + ~u1 . (4.10)

Let us consider a concentric sphere with a radius R � r of volume V , see figure 4.5. The
work done on the outside of this large sphere, to sustain the fluid motion is

W =
∫
~u · (σ · n̂)dS = 2η0

(
1 +

5
2
φ

)
e : e , (4.11)

where S is the surface boundary of the volume V and n̂ the surface normal and (σ · n̂) is the force
exerted on the surface. The double dot product of two tensors is defined as a : b =

∑
i,j aijbij .

The first term in (4.11) occurs too in the absence of the suspended particle, the 5
2φ part is due
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to the presence of the particle. The suspension can now be described as a Newtonian fluid with
an effective viscosity

ηeff =
(

1 +
5
2
φ

)
η0 . (4.12)

The effective viscosity of a suspension is higher than that of the intrinsic medium. In the case of
suspensions of passive particles, as considered here, the work done on the outer sphere is equal
to the dissipated energy in the volume V . The dilute regime, where this expression is valid and
where particle interactions are negligible is φ < 2% [4, 41]. The semi dilute regime is defined
as 2% < φ < 25% where terms in φ2 become relevant. For small shear rates the spherical cell
body is not expected to deform, therefore a suspension of passive Chlamydomonas is expected
to behave like a suspension of rigid spheres. In the rest of this document the viscosity is denoted
as ηeff = (1 +Bφ) η0, for rigid spheres B = 5/2. The effective viscosity in the dilute limit was
first derived by Einstein, it is a function only of the intrinsic viscosity of the suspending medium
and the volume fraction of suspended particles.

4.3.2 Gyrotactic particles

h

g

β

C
M

Figure 4.6: A spherical particle with the center of mass (M) and geometric center (C) a distance
h apart in an ambient flow with a vorticity ω (red arrow). For small shear rates the line joining
the geometrical center and center of mass makes a constant angle β with gravity.

Gravity exerts a force on Chlamydomonas, with their density excess over water being 5%. The
sedimentation velocity is about ∼ 2µm/s which is negligible compared to their swimming speed
(40 − 200µm/s). The mass within the Chlamydomonas cell is not homogeneously distributed,
the cells are bottom heavy. Gravity exerts a torque on the cell, which is not negligible. It
can be employed to create hydrodynamic focusing [39] in a cylindrical channel. The maximum
gravitational torque for a spherical particle with a center of mass offset h is τg = 4/3π∆ρa3hg,
and the maximum viscous torque a fluid rotating with vorticity ω can exert on a sphere is:
τf = 8πηa3ω. The ratio of these torques is
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λ =
τg
τf

=
∆ρgh
6ηω

. (4.13)

Brenner [9] derived an effective viscosity for spherical gyrotactic particles as a function of this
ratio in the absence of rotary diffusion

ηeff
η0

= 1 + (5/2 + 3/2 sin2 θs(λ))︸ ︷︷ ︸
B

φ , (4.14)

with

sin θs(λ) =

√
1
2

(1 + λ2)−
√

1
4

(1 + λ2)2 − λ2 sin2 α , (4.15)

where α is the angle between the vorticity vector and gravity. B of eq. (4.14) is plotted in figure
4.7 as a function of the dimensionless, inverse shear rate λ and as a function of the shear rate
using Chlamydomonas specific values for the parameters. If gravity and vorticity are parallel,
then the gravitational torque has no effect on the effective viscosity and the Einstein formula
(4.12) is obtained. Here I consider the case that the angle between vorticity and gravity is
α = π/2 and sinα = 1, like in a cone-plate rheometer.
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Figure 4.7: (left) Linear viscosity constant as a function of non-dimensionalised gravitational
torque. (right) Linear viscosity constant as a function of shear rate using Chlamydomonas specific
parameters from [5] & [54]. Gravity is perpendicular to the vorticity of the flow α = π/2).

At small shear rates λ > 1 the gravitational torque balances the viscous torque, see figure
4.6. The particles do not rotate at all, the line joining the center of mass and the geometric
center makes a constant angle with gravity (β). In this limit eq. (4.14) becomes B = 5/2 + 3/2.
The first part is due to the reflection of the dilatational field, the 3/2 is due to the reflection
of the rotational field. At higher shear rates λ < 1, the gravitational torque is too small to
balance the viscous torque, and the particles start to rotate with the ambient fluid. For high
shear rates λ � 1 the gravitational torque becomes negligible compared to the viscous torque
and the Einstein result eq. (4.12) is obtained.

In this case the (effective) diffusion is neglected. It will turn out that compared to the effective
rotary difussion of swimmin suspension the gravitational effect becomes negligible.
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Figure 4.8: An ellipsoid oriented in the plane of shear. The shear flow is decomposed in the
dilatational flow (green) and the vorticity (red). In the absence of vorticity the ellipsoid would
align along the major dilatational axis, as depicted in this figure.
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Figure 4.9: Jeffery orbits for several orbit constants C for a prolate spheroid with aspect ratio
κ = 10, induced by a shear flow in the xy-plane.

4.3.3 Ellipsoidal particles

Although Chlamydomonas has an almost spherical cell body, it is best described as a prolate
spheroid with aspect ratio κ ∼ 1.3. The motion of small ellipsoidal particles in a fluid was
addressed by Jeffery [36] in 1922. Similar to Einstein he expanded an arbitrary flow into a
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Figure 4.10: The angles φ and θ for the spherical reference frame of the particle. The straining
flow with the two dilatational axes (green lines), and the vorticity (red arrow).
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Figure 4.11: Normalised probability density as a function of the azimuthal angle φ. For aspect
ratios κ = 1(blue), 1.25(red), 1.5(green), 2(orange), 2.5(black).

rotational, translational and dilatational component. The linear and rotational part of the flows
again cause an instant translation and rotation of the particle, but the dilatational flow now
exerts a torque depending on the orientation too. The anisotropy of the particle allows us to
define an orientation p̂ of the particle along the major axis. Instead of simply rotating with
the fluid, the particle performs a closed Jeffery orbit. Several orbits for different orbit numbers
C are shown in figure 4.9. We use a spherical coordinate system as depicted in figure 4.10 to
parametrise the orbit. The angle θ is given by [49]
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tan(θ) =
Cκ√

κ2 cos2 φ+ sin2 φ
, (4.16)

with C the orbit constant, defined by the initial orientation of the particle. The angular velocity
of the azimuthal angle, measured in the plane of shear, is

φ̇ =
γ̇

κ2 + 1
(
κ2 cos2 φ+ sin2 φ

)
. (4.17)

Integrating the latter yields a period of rotation

T =
2π
γ̇

(κ+ 1/κ) . (4.18)

The probability of finding a particle with an angle φ is inversely proportional to the angular
velocity: p(φ) = 1/(T φ̇). For the deterministic case the probability density for several aspect
ratios is given in figure 4.11. Note that due to the fore-aft symmetry of an ellipsoid the probability
density function is π periodic. The combination of dilatational flow and vorticity creates an
average value 〈φ〉 = π/2, 3π/2. In the absence of vorticity an ellipsoid aligns as depicted in figure
4.8 along one of the dilatational axis. The linear constant B has a lower bound for all aspect
ratios, the upper bound diverges for infinite aspect ratios: 2 < B <∞ [36].
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Figure 4.12: Linear viscosity constant as a function of aspect ratio for prolate sheroids. The
lower limit corresponds with the ellipsoids being aligned along the z-axis. The upper limit is for
particles oriented perpendicular to the z-axis.

An ellipsoid oriented in the z direction rotates with the surrounding fluid and will only
distort the dilatational flow. The reflected field is less than for a sphere with the same volume,
this corresponds to the lower limit of B. A sphere oriented in the xy-plane has an angular velocity
which differs from the vorticity of the flow, thereby not only distorting the dilatational part but
also the rotational part of the flow, corresponding to the upper limit of B. Every axisymmetric,
and fore-aft symmetric particle performs a Jeffery orbit as if it were a spheroid with an effective
aspect ratio [10]. The asphericity of the cell body of Chlamydomonas creates a viscosity range
which only slightly differs from that of spheres, see figure 4.12. The flagella of Chlamydomonas
might create a higher effective aspect ratio, but for passive particles this effect will be small, as
the cells were observed to rotate uniformly with the flow [59]. Swimming cells behave differently,
they align for two third of the time in the x-direction and rotate for the other one third of time.
For an ellipsoid I define
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τ =
t(φ = π

4 →
3π
4 )

t(φ = 3π
4 →

5π
4 )

(4.19)

as the ratio of alignment time and tumbling time, where φ denotes the angle as in eq. 4.17.

τ =
π − 2ArcCot(κ)

2ArcCot(κ)
. (4.20)

The experimental value τ ∼ 2 corresponds to an effective aspect ratio κe = 1.7. In section 4.4.2
the theoretical work of Jones et al. [37] is discussed who showed that the beating flagella in com-
bination with a spherical cell body creates an effective ratio of κe = 1.1. The actual value of B
depends on the average orientation of the particles, this is addressed in section 4.5. The aspher-
ical cell body of Chlamydomonas creates a small deviation in the effective viscosity compared
to perfect spheres: B = 2.5 ± 0.1, the effective aspect ratio of swimming cells creates a slightly
bigger deviation: B = 2.5 ± 0.3. The shape of the particle has a small effect on the effective
viscosity, which depends on the average orientation of the particles. The latter is addressed in
section 4.5.

Based on the separate analysis of the influence of asphericity and gravity, the viscosity of a
suspension of non-swimming Chlamydomonas is best described as the viscosity of a suspension
of rigid spheres. At small shear rates (λ� 0) gravity enhances the viscosity.

4.4 Rheology of dilute suspensions of swimming Chlamy-
domonas

In this section I present two new derivations of the influence of swimming of Chlamydomonas on
the effective viscosity of the suspension.

4.4.1 Three-point-force model

Chlamydomonas has an almost spherical cell body, which serves as a motivation to model it as a
rigid spherical particle with radius a which creates an additional flow due to swimming. Recall
that the latter is described by a superposition of three stokeslets, see eq. (3.3). Using the same
approach as in section 4.3 for passive spheres, the work done on the surface of a large spherical
volume containing the particle is compared to the same fluid volume containing a homogeneous
fluid. This volume is large compared to the size of the particle. A surface integral over this volume
or a volume average will not depend on the near field, but rather on the far field behaviour. Here
a brief summary of the derivation of the effective viscosity is given, the full derivation is provided
in appendix G. By substituting the multipole expansion

1
|~r − ~r1|

=
1
r

+
~r1 · ~r
r3

+O(r−5) . (4.21)

in equation (3.4) the far field is obtained as (see appendix D)

~us = − 3
8πη

r̂
S : (r̂ ⊗ r̂)

r2
. (4.22)

with the stresslet tensor being
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S = S (p̂⊗ p̂− I/3) , (4.23)

where p̂ denotes the swimming direction of the cell. The stresslet strength S = bF
2 depends on

position and magnitude of the point forces, see figure 4.13, and it changes during the swimming
stroke. During the major part of the stroke Chlamydomonas is a puller (S > 0), for the minor
part of the effective stroke, where the effective flagellar forces are behind the centerline of the cell
body, it is a pusher (S < 0). As viscosity experiments typically last several seconds, the stresslet
strength denotes the average over a beat cyce S = 〈S〉t. The magnitude of S can be derived
from the flows and swimming speed. The positions of the point forces in the flows of figure 3.4
provide the dipole length b. With the linear relation between force and velocity for low Reynolds
numbers and considering the cell as a sphere with radius a, the dipole force is calculated from
F = 6πηa〈U〉. Throughout this chapter a value 〈U〉 = 40µm/s is used [59]. The total flow is a
superposition of the applied flow, the reflected flow and the swimming induced flow:

~u = ~u0 + ~u1 + ~us . (4.24)

Evaluating the work done on a big sphere containing the microswimmer in order to sustain the
motion (G.5) yields

W

V η0
=
(

1 +
5
2
φ

)
e : e +

n

V
S : e . (4.25)

with n the number density of swimmers. By substituting S = bF/2 = 3bπηrU this is recasted as

W

V η0
=
(

1 +
5
2
φ

)
e : e +

9
4
φ
b

a

U

a
(< p̂⊗ p̂ > −I/3) : e . (4.26)

where 〈...〉 denotes the ensemble average over both particle orientation and time and φ is the
volume fraction of suspended particles. The ⊗ symbol denotes the dyadic, tensor or Kronecker
product. In this case the work done on the outer sphere is not equal to the dissipated energy
within the fluid volume. The dissipation in the system is given by eq. (4.25) with an additional
term ∼ S : S. The the cell metabolism leads to a dissipation too, but it is not taken into account
here. The liquid crystal order parameter Q = 〈p̂⊗ p̂〉 − I/3 is used in the rest of the document.
A cone-plate rheometer measures the viscosity as η = σxy/exy. The effective viscosity is given
by

ηeff
η0

= 1 +
5
2
φ+

9
4
φ
b

a

U

aγ̇
Qxy , (4.27)

where is used that exy = γ̇/2, see eq. (4.6). This is in agreement with literature[54]. The
disadvantage of this derivation is that it is mathematically laborious. It does not provide any
new information therefore it is better to use a volume average approach. Using the volume
average approach of Landau and Lifschitz [41] another new derivation of the effective viscosity
of a suspension of Chlamydomonas is derived. The full derivation is presented in appendix H,
here again a brief summary. The stress tensor is averaged over a large volume

〈σ〉 =
1
V

∫
σdV , (4.28)

which is decomposed in a pressure, strain and particle dependent term as

〈σ〉 = −〈p〉I + 2η0〈e〉+ n〈Sparticle〉 , (4.29)
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Figure 4.13: Top: Spermatozoa generate their thrust at the back of their body inducing a pusher
type stresslet S < 0. Bottom: The far field of Chlamydomonas is a puller stresslet with S > 0,
the dipole length is twice that of the distance between the flagellar and cell body point forces
measured along the swimming direction.

the latter term is recasted as a surface integral using Gauss theorem

〈Sparticle〉 =
∫

((σ ⊗ ~r) · n̂− η(~u⊗ n̂+ n̂⊗ ~u)) dS . (4.30)

By substituting in eq. (4.22) the particle stress tensor due to swimming is deduced

〈Ssparticle〉 =
1
V

S . (4.31)

Combining with the passive result for a sphere, and multiplying with the number density n,
one obtains the same result as eq. (4.27). It is the same result as obtained by Batchelor [3],
who showed that the stress tensor for a dipole field is: σa = S/V , and was along different lines
obtained by Haines et al. [24] and Simha et al. [63].
Now we discuss the result: the first two terms in eq. (4.27) are the intrinsic viscosity and the
passive contribution for spheres, respectively, the last term is the contribution due to swimming.
It depends on the non-dimensionalised dipole length b/a ∼ 3 (obtained from figure 3.4), the vol-
ume fraction of suspended particles and the swimming speed. The latter is non-dimensionalised
with the velocity difference (aγ̇) the particle observes due to the shear flow. The viscosity is
not a scalar but rather a tensor, the measurement device defines which element of the tensor
is measured. Without a detailed understanding of the orientation of the particles, qualitative
conclusions can be drawn about the effective viscosity of active suspensions. Therefore, I write
the viscosity as a sum over the intrinsic, passive and active contributions
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ηeff = η0 + ηp + ηa . (4.32)

The passive contribution is independent of shear rate, whereas the active contribution decays with
the inverse of the shear rate, see figure 4.14. Thus, for small shear rates the active contribution
dominates, for high shear rates the passive behaviour dominates (ηa ' 0).

For small shear rates γ̇ < 9bU
20a2 , the effective viscosity can even be smaller than the intrinsic

viscosity (−ηa > ηp). For an isotropic distribution of swimming directions Qxy = 0 and ηa = 0,
thus an anisotropic distribution is necessary for swimming to contribute to the viscosity. In figure
4.15 two limiting cases for the swimmer, one for which Qxy = 1/2 and one for which Qxy = −1/2.
In the first case a maximum increase in the effective viscosity is achieved, in the latter case a
maximum decrease in the effective viscosity is achieved.

γ̇

η

Figure 4.14: The effective passive viscosity ηp (red), the effective active viscosity assuming a
constant Qxy > 0 (blue) and the sum ηp + ηa (yellow).

The far field of a force-free swimming object is that of a dipole of strength S. The sign
determines whether the microswimmer is a puller (S > 0) like Chlamydomonas or a pusher
(S < 0). The dipole creates an orientation-dependent contribution to the stress tensor called
the stresslet which can be both positive and negative, resulting in an increase or decrease of the
effective viscosity.

4.4.2 Incorporating flagella

Using resistive force theory Jones et al. [37] studied the effect of the flagella for Chlamydomonas.
The cell body was modeled as a rigid sphere, reflecting the external flow. Using a simple effective
and recovery stroke they reproduced the swimming speed well. Although the flagella are highly
anisotropic, the torque exerted by the straining flow via the flagella on the cell body is small
compared to the torque exerted by the rotational flow. According to the model of Jones et al.
the spherical cell body in combination with the beating flagella leads to an effective aspect ratio
r ∼ 1.1 [37]. The visual microscopic observations of Pedley [54] showed that the cells in their
experiments were best described as an ellipsoid with an aspect ratio of κ = 1.38.

The flagella of Chlamydomonas only slightly influence the effective viscosity, as they create
a small effective ratio. The major contribution of the swimming movement to the effective
viscosity is due to the induced flow field. Thus swimming of Chlamydomonas can both increase
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Figure 4.15: Right: the dilatational part of the shear flow. Left upper: a swimming Chlamy-
domonas cell enhances the viscosity. Left lower: a swimming Chlamydomonas cell decreases the
viscosity.

or decrease the effective viscosity depending on the average orientation of the cells, the latter
will be addressed in the next section.

4.5 Statistical description

In this section I present my literature study on the statistical description of a suspension of
many cells. The experimental volume in a cone-plate rheometer contains 107 particles. This high
number allows us to describe orientation of the particles with the probability density function
ψ(p̂), which obeys the Fokker-Planck equation

Dr∇2ψ −∇ · (ṗψ) = 0 , (4.33)

whereby ∇ the gradient operator over the surface of the unit sphere, and Dr is the rotational
diffusion constant. In the second term the deterministic rate of change of the orientation ṗ is
given as [54]

ṗ = (I− p̂⊗ p̂) · (βe + W) · p̂+B−1
g (I− p̂⊗ p̂)k̂ . (4.34)

The first part is the Jeffery orbit, with β = (κ2 − 1)/(κ2 + 1) depending on aspect ratio, the
latter part is due to the gravitational couple, with gravity acting in the −k̂ direction. Bg = η0α⊥

2hρg
is the gyrotactic orientation time, with α⊥ ' 1.08. For particles with an homogeneous mass
distribution the latter term is omitted. Particle interactions are not taken into account, thereby
restricting the validity to the dilute limit φ < 2%. The active swimming is either introduced
as an effective higher rotational diffusion, or by modeling tumbling as a Poisson process [62].
For ellipsoidal swimmers in general, distribution functions have been obtained for infinitely long,
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Figure 4.16: A bottom-heavy Chlamydomonas cell with an ellipsoidal cell body with a center of
mass offset h.

non-gyrotactic tumbling rods [62], for non gyrotactic, high aspect ratio particles applying liquid
crystal theory [27], for non-gyrotactic ellipsoids by introducing white noise in the orientation of
the force dipole [24], etc. The general result is 1/2 > Qxy > 0 for ellipsoidal particles. This
leads to an increase of the viscosity due to swimming for elongated pullers and a decrease for
elongated pushers. In the absence of rotary diffusion and gravity the particles perform a Jeffery
orbit, yielding a probability density function as in figure 4.11, which is symmetric in φ = π/2.
Rotary diffusion does not only flatten this distribution but also skews it. This is illustrated with
a small Gedanken experiment of two ellipsoidal particles. They rotate in the +φ direction and
at a certain time are at an angle φ = π/2. At that instant rotary diffusion rotates the particles
by δφ and −δφ respectively. Also, symmetrically distributed about π/2. The initial angular
velocity after randomisation of both particles is the same, but for φ < π/2 the velocity will
decrease during a timestep δt, and the velocity of the other particle will increase. For our system
of two particles the (unnormalised) probability density for the timestep δt is given by the red
shaded areas, in figure 4.17. It is not symmetric about π/2 like the initial distribution. Many of
these randomisation processes skew the probability density function in the φ < π/2 direction.

In the absence of gravity eq. (4.34) reduces to

ṗ = (I− p̂⊗ p̂) · (βe + W) · p̂ . (4.35)

Hinch and Leal [29] solved eq. (4.33) with eq. (4.35) for almost spherical particles. This result
was used by Haines et al. [24] to calculate the effective viscosity in the first order of the particle
aspect ratio ε

ηeff
η0

= 1 +
5
2
φ+

9
4
b

a

U

aγ̇
φ · 1

5
ζ

1 + ζ2︸ ︷︷ ︸
Qxy

κN(κ) , (4.36)

with ζ = γ̇/(6Dr) the non-dimensionalised shear rate, κ the aspect ratio and N(ε) ' 0.5 a
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Figure 4.17: Left: Deterministc probability density for a prolate spheroid (black line). The red
area is the not normalised probability density function of two particles. Right: Deterministic
probability density for a prolate spheroid (black line) and the probability density incorporating
rotary diffusion.

geometric function. An aspect ratio r = 1.3 is used throughout this section. The avera ge
orientation of the particles is due to competition between the applied flow and rotary diffusion.
In figure 4.18 eq. (4.36) is plotted using both the passive Dr = 0.001/s and two values for the
active rotary diffusion Dr = 0.4/s [35] & Dr = 0.13/s [54]. For γ̇ > γ̇c the passive contribution
dominates, for lower shear rates the viscosity is enhanced, reaching a plateau for small shear rates.
γ̇ < Dr. The zero shear rate limit for the active part of the viscosity is limγ̇→0 ηa/η0 ∼ U

aDr
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Figure 4.18: The effective viscosity as a function of shear rate in a log-linear plot for three values
of the rotary diffusion constant and the assymptotic behaviour for high shear rates (purple line).

A general analytic solution for eqs. (4.33) & (4.34) is not known, but for weak flows γ̇ �
1/Bg ∼ 0.3 /s a solution was obtained analytically by Pedley et al. [54] in the first order of
ε = Bgω. They calculated the stress tensor incorporating all possible shape, gravitational and
flow influences, see appendix E, which is linear in the applied shear flow. This results in shear-
independent viscosity for small shear rates, which is in good approximation given by

lim
γ̇�1/Bg

ηeff
η0

= 1 + 2.6φ+
9BgU

4a
φf(Dr, Bg) , (4.37)
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Figure 4.19: Effective viscosity versus volume fraction. Non-gyrotactic swimmers with Dr =
0.13 /s (blue) and Dr = 0.4 /s (green). Gyrotactic swimmers with λ = 2.2 (red).

with f(Dr, Bg) ∼ 0.4, depending on the gravitational orientation time Bg. In consecutive work
Bees & Pedley et al. [5] obtained the tensor Q by using a spherical harmonics expansion for a
single value of λ = 1/(2BDr) = 2.2. Substituting their result in (4.27) yields a viscosity which
is plotted as the red line in figure 4.19. As a comparison two curves are shown of eq. (4.36), as
already plotted in figure 4.18. All three curves are qualitatively similar, but with the zero shear
rate viscosity depending on the graviational orientation time Bg, instead of rotary diffusion when
taking into account gravity.

Due to the many parameters (a, b, ε,Dr, Bg, U) of the theory as presented here it is hard to
draw any quantitative conclusions. Nonetheless qualitatively three regimes can be distinghuised.
For high shear rates γ̇ > γ̇c the swimming speed of the cells becomes negligible to the ambient
flow and passive behaviour is expected limγ̇�γ̇c

ηeff

η0
= 1 + 5

2φ. For small shear rates 1/Bg �
γ̇ or Dr � γ̇ the viscosity is given by the zero-shear rate viscosity of the form:

lim
γ̇�1/Bg

ηeff
η0

= lim
γ̇�γ̇c

ηeff
η0

+ CB
BgU

a
or

lim
γ̇�Dr

ηeff
η0

= lim
γ̇�γ̇c

ηeff
η0

+ CD
U

aDr
, (4.38)

where CB and CD dimensionless constants of order unity. For intermediate shear rates γ̇c > γ̇ >
1/Bg or γ̇c > γ̇ > Dr an increase of the effective viscosity occurs with decreasing shear rate and

lim
γ̇�γ̇c

ηeff > ηeff > lim
γ̇�(Dr,1/Bg)

ηeff . (4.39)

A literature study on the statistical description of the orientation of Chlamydomonas, whereby
it is modeled as prolate spheroid, leads to the conclusion that the swimming motion increases
the effective viscosity. The magnitude of the increase depends on the applied shear rate.

4.6 Rheological experiments on Chlamydomonas

Rafai et al. [59] measured the effective viscosity for suspensions of Chlamydomonas Reinhardtii
with a cone-plate rheometer. Shear thinnning occurs for active suspensions, see figure 4.20a . For
small shear rates γ̇ < 10 /s a clear increase is observed which qualitatively agrees with theory.
The linear theory underestimates the high shear behaviour, but the volume fractions are in the
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Figure 4.20: a) The effective viscosity as a function of the shear rate for 4 different volume
fractions of living Chlamydomonas and the suspending medium. b) The effective viscosity of
a suspension of active (living) and inactive (dead) Chlamydomonas, as a function of volume
fraction. Taken from [59].

Table 4.1

Linear effective viscosity constant B for γ̇ = 5 /s
rigid spheres 2.5
ellipsoid r=1.3 2.4-2.6
ellispoid r=1.7 2.2-2.8
gyrotactic spheres 2.6
Haines 2.8
Pedley 2.9

semi-dilute regime in which the theory is not expected to be valid anymore. Both suspensions
of active and inactive particles show an increase of the viscosity with respect to the viscosity of
the suspending medium η0 for a shear rate γ̇ = 5 /s see figure 4.20b . Theoretical predictions for
the linear coefficient at this shear rate are listed in table 4.1.

Only small deviations of the spherical value are to be expected. Due to the high scattering
and very few data points for active and passive suspensions for low volume fractions φ < 5%,
no conclusion can be drawn about the difference between active and passive suspensions. The
theory as presented in the last section can thus not be tested.

For higher volume fractions the difference between active and passive suspensions is clear,
both displaying a nonlinear increase. The active suspension shows the biggest increase. The
results were fitted using the Krieger-Dougherty relation [40]

ηeff
η0

=
(

1− φ

φmax

)−φmaxB

, (4.40)

where φmax the maximum packing fraction set to the maximum random packing fraction 0.62
[59]. B is used as a fitting parameter giving B = 2.5 ± 0.1 and B = 4.5 ± 0.2 for inactive and
active suspensions respectively. Linear theory underestimates the experimental results for non-
dilute volume fractions. The big difference for higher volume fractions indicates that higher order
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Figure 4.21: The effective viscosity as function of the volume fraction, for passive spheres (blue),
the prediction for the active spheres (purple) and the maximum possible viscosity for the active
suspensions (yellow).

terms ∼ φn, n > 1 play a significant role. This non-linearity will be discussed in the last two
sections of this chapter. The maximum volume fraction of active suspensions in the experiments
is 20%. Which is smaller than the onset of collective behaviour which is φ ∼ 30% [35] for
Chlamydomonas. For small aspect ratio particles like Chlamydomonas nematic ordering does
not occur for low volume fractions < 30%. Hence liquid crystal theory and collective behaviour
will not be discussed here.

4.7 Numerical modelling of swimmer suspensions

Ishikawa and Pedley [33] modeled a semi-dilute suspension of squirmers (see appendix F). The
experimental set-up of Rafai et al. with γ̇ = 5/s corresponds to their dimensionless gravity,
swimming speed and stresslet strength being Gbh = 2.5, Sq = 1.5 and β = 3. Without gravity
the suspension of swimming spheres with a volume fraction φ = 10% is undistinguishable from
that of a suspension of passive spheres. Gravity has little effect at high shear rates Gbh < 10,
like for the passive spheres of section 4.3.2. However, for low shear rates Gbh ≥ 10 the viscosity
starts to deviate from that of passive particles. Figure 27 shows in [33] shows that for Gbh = 3
the squirming (=stresslet) stress is negligible. A suspension of the spherical microswimmers in
absence of gravitational effects is undistinghuisable from that of passive spheres, regardless of
swimming speed. No preferred swimming direction is observed.

4.8 Rheology of non-dilute suspensions of Chlamydomonas

Theories of the form
ηeff
η0

= 1 + 2.5φ+ κφ2 , (4.41)

incorporating particle interactions, (rotary) diffusion etc. are ubiqitious. They result in a range
of second-order coefficients κ = 2.5− 14.1, for an overview see [16, 49]. Experimental data show
a range of second-order terms too: κ = 4± 2 [17].

In this chapter two new derivations for the effective viscosity were presented, which both
agree with literature. Furthermore a review was provided of the available theoretical work
for the effective viscosity of suspensions of both swimming and non-swimming Chlamydomonas
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cells. The only available experimental results were conducted at a high shear rate at which the
difference in effective viscosity of active and inactive suspensions is negligible.
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Chapter 5

Conclusion & discussion

Microscopic behaviour of a single cell: Based on an analysis of the cell architecture a
new hypothesis for the flagellar synchronisation was formulated. The two flagella are connected
both via the basal body and the distal striated fiber. It is not unlikely that this coupling has
a bigger effect on synchronisation than hydrodynamic interactions. This might be investigated
by modelling the flagella as two driven oscillators connected by a Hookean spring. Also, the
coupling through the mutual connection to the cell body, which can rotate and translate, could
be responsible for the observed synchronisation. Again, this might be modeled by using two
driven oscillators which are connected to a spherical cell body which can rotate and translate, a
starting point could be the analysis of the coupled clocks of Huygens [6].

On the microscopic scale of a single Chlamydomonas cell the analytic three-point-force model
was extended with a qualitative analysis of the flagellar stroke to incorporate the movement of
the flagella. A simple effective and recovery stroke was derived, where the forces are exerted
parallel to the swimming direction. The flow field is a superposition of three stokeslets. A com-
parision was made with the experiments of Guasto et al. [23] on Chlamydomonas swimming in
a thin film. The latter is best described as a 2D fluid, therefore the 2D stokeslet was used. The
full details of the flow field are reproduced during both the effective and recovery stroke.

Macroscopic rheology: On a macroscopic scale the effective viscosity of a dilute suspen-
sion of Chlamydomonas has been addressed. For immotile cells the almost spherical cell body
leads to a viscosity like for a suspension of passive rigid spheres. At low shear rates (> 1/s) the
gravitational couple increases the viscosity. Two new derivations have been presented for the ef-
fective viscosity of a dilute suspension of swimming Chlamydomonas cells. One along the theory
of Einstein, the other based on the volume average approach of Landau & Lifshitz. Both results
are in agreement with literature. The effective viscosity depends on the average orientation of
the cells. Based on a literature study, three regimes can be determined. For low shear rates the
viscosity is described by the zero shear rate viscosity which is higher than for a suspension of
passive particles due to the puller type swimming and the elongated body shape. For intermedi-
ate shear rates the viscosity decreases with shear rate. For high shear rates an active suspension
behaves like a passive suspension of rigid spheres. This theory is valid for dilute suspensions
φ < 2% where particle interactions are negligible. The high number of parameters of the theory
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requires simultaneous analysis of the following cell properties:

• Size and aspect ratio of the particles;

• Swimming speed;

• Dipole length;

• Rotational diffusion;

• Centre of mass offset.

Many of these parameters not only differ among different strains, but also among cells of the
same population. The swimming speed, dipole length and rotational diffusion depend on the
environmental conditions too.

The single experiment on the viscosity of suspensions of swimming Chlamydomonas of Rafai
et al. [59] was conducted at high shear rate where the difference between swimming and non-
swimming suspensions is small. Due to the very few scattered data points in the dilute limit,
no conclusion can be drawn on the validity of the theory at this shear rate. Experiments at low
shear rates should reveal a larger difference. Theories incorporating higher order contributions
(φn) for simple passive systems do exist but show a wide variety of results. It is not to be
expected that for the more complex active systems theories for volume fractions of more than
2% will have any validity.

The interference of the flagellar movement and the applied shear flow not yet clear. It might
affect the swimming orientation of the cells. The underlying problem is that, although the
flagellar movement is well recorded, the internal ’algorithm’ or switching mechanism responsible
for the beating pattern remains a mystery. This is an interesting field of research in itself.
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Appendix B

Technology assessment

With the current focus on algae as a basis for feed, coatings, hydrogen producer, etc. it is evident
that a deeper understanding of both microscopic and macroscopic properties of suspensions of
Chlamydomonas is necessary. An application of the rheological theory would be for motility
measurements. First the number density of swimmers has to be obtained. Chlamydomonas has
a slight density excess over water, by measuring the mass density of the suspension the mass
fraction of Chlamydomonas is obtained. The mass of a single cell is known, thus the number
density can be calculated. The motility can then be measured by measuring the viscosity, for ex-
ample with a rheometer. The viscosity-motility relation can for dilute suspension be determined
analytically, but for higher suspensions a semi-empirical approach will be more usefull. This
technique is not limited to Chlamydomonas, but could also be used in hospitals to determine the
motility quality of human spermatozoa.
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Appendix C

Hydrodynamics

Incompressible fluid dynamics is described by the Navier-Stokes equation

ρ

(
∂~u

∂t
+ ~u · ∇~u

)
= −∇p+ η∇2~u+ ~F , (C.1)

with ~F the external body forces and ρ and η the density and viscosity of the fluid respectively. Let
us consider a submerged object of size L translating with speed U . The Navier-Stokes equation
eq. (C.1) can then be nondimensionalised by using the object speed and size, the viscosity and
the density of the fluid. With

~u = U~u′
∂
∂t = U

L
∂
∂t′

∇ = ∇′
L

p = ηUL
L2 p

′

~F = ηUL
L3

~F ′

(C.2)

eq. (C.1) can be recasted as

ρUL

η

(
∂~u′

∂t′
+ ~u′ · ∇′~u′

)
= −∇′p′ + (∇′)2~u′ + ~F ′ . (C.3)

The prefactor ρUL
η is the Reynolds number (Re). For Re� 1 the Navier-Stokes equation reduces

to the Stokes equation
−∇p+ η∇2~u = ~F . (C.4)

This is a time indepedent equation, the fluid flow at any moment in time is uniquely defined by
the boundary conditions. A force monopole at the origin is mathematically described as

−∇p+ η∇2~u = ~Fδ(r) , (C.5)

which can be solved by using e.g. Greens function theory to give the Stokeslet solution

~uSto(~r) = T(~r) · ~F , T(~r) =
1

8πηr

(
I +

~r ⊗ ~r
r2

)
, (C.6)

with I the unit tensor and ⊗ the tensorial or Kronecker product. A force dipole of strength S is
a superposition of two point forces ~F and −~F a length b apart and induces a stresslet

~us = − 3
8πη

S : (r̂ ⊗ r̂)
r2

r̂ , (C.7)
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with p̂ the unit vector along the line joining the points at which the two point forces are exerted.
The stresslet tensor is

S = S (p̂⊗ p̂− I/3) . (C.8)

Eq. (C.7) can be derived by taking the limit of two stokeslets of strength F for vanishing distance
d between the acting point forces but remaining a constant S = Fd. Eq. (C.7) can be recasted
as

~us = − S

8πη
1− 3(p̂ · r̂)2

r2
r̂ , (C.9)

with 1− 3(p̂ · r̂)2 = 1− 3 cos2 θ = P2(cos θ), where P2(x) is the second Legendre polynom. In the
same manner a quadrupole with direction along the unit vector p̂ at the origin with strength Q
induces (in leading order) a source doublet field

~uSD(~r) =
Q

4πηr3

(
I/3− ~r ⊗ ~r

r2

)
· p̂ . (C.10)

The aforementioned flow fields are obtained for an unbound fluid volume in 3D. Certain thin
films show (quasi-)2D behaviour. Solving eq. (C.4) for a point force in 2D yields the 2D stokeslet

~uSto2D(~r) = T(~r) · ~F , T(~r) =
1

4πη

(
−ln(r/r0)I +

~r ⊗ ~r
r2

)
. (C.11)

where r0 is an arbitrary length scale. Let us consider two point forces exerted in opposite
direction. The first at the origin, the second at a point ~r1. The flow field is then described as

~uSto2D(~r) =
F

4πη

(
[−ln(r/r0) + ln(|r − ~r1|/r0)]I +

~r ⊗ ~r
r2
− (~r − ~r1)⊗ (~r − ~r1)

r2

)
. (C.12)

and can be rewritten as

~uSto2D(~r) =
F

4πη

(
ln(|r − ~r1|/r)I +

~r ⊗ ~r
r2
− (~r − ~r1)⊗ (~r − ~r1)

r2

)
. (C.13)

A derivation of these flow fields is given in the book of Pozrikidis [56]. Along the same lines the
two dimensional stresslet can be derived

~uStr2D =
1

4πηr
(1− 2(p̂ · r̂)2)r̂ . (C.14)

This result can be obtained by a multipole expansion of two stokeslets using

ln(
r

r − r1
) = 0− ~r1 · ~r

r2
. (C.15)

The stresses exerted on a submerged particle can be integrated over the particle surface to give
the total force, dipole strength and quadrupole strength

~F =
∫

σ · n̂dA , (C.16)

p′I + S + R =
∫
~r ⊗ (σ · n̂)dA , (C.17)

Q =
∫
~r ⊗ (~r ⊗ (σ · n̂))dA . (C.18)
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The dipole strength is decomposed in an isotropic p′I, a symmetric stresslet S and an antisym-
metric rotlet or couplet R term

p′I =
∫

1
3
~r · σ · n̂IdA , (C.19)

S =
∫ [

1
2

(~r ⊗ (σ · n̂) + (σ · n̂)⊗ ~r))− 1
3
~r · σ · n̂I− η(~u⊗ n̂+ n̂⊗ ~u)

]
dA , (C.20)

R =
∫

1
2

(~r ⊗ (σ · n̂)− (σ · n̂)⊗ ~r)dA . (C.21)

This decomposition was introduced by Batchelor [3]. The last term in the stresslet is zero for a
rigid particle, but by adding this term the integral can be taken over any fluid volume containing
one particle. The rotlet can be restated as

R =
1
2
ε : τ , (C.22)

with τ the torque on the particle and ε the Levi-Civita permutation tensor. Batchelor [3] showed
that the contribution to the stress by the presence of the particle is as follows

σp =
S + R
V

. (C.23)
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Appendix D

Three-point-force model

The velocity field due to a distribution of point forces is a superposition of stokeslets

~u(~r) =
∑
i

T(~r − ~ri) · ~Fi , (D.1)

where ~Fi being a point force at position ri and

T(~r) =
1

8πηr

(
I +

r ⊗ r
r2

)
, (D.2)

the Oseen tensor. Chlamydomonas with its two flagella is modeled as a superposition of three
point forces, one at its body centre which we define as the origin. (0, 0, F ) at ~r0 = (0, 0, 0)
and two point forces in the xz plane: (0, 0,−F/2) at ~r1,2 = (±a, 0, b/2). The flow due to the
superposition of these forces is given

~u(~r) = ~F ·Tsum(~r) , (D.3)

with

8πη ·Tsum(~r) =
1
r

(
I +

~r ⊗ ~r
r2

)
− 1

2
1

|~r − ~r1|

(
I +

(~r − ~r1)⊗ (~r − ~r1)
|~r − ~r1|2

)
(D.4)

−1
2

1
|~r − ~r2|

(
I +

(~r − ~r2)⊗ (~r − ~r2)
|~r − ~r2|2

)
. (D.5)

The multipole expansion for r1 � r

1
|~r − ~r1|

=
1
r

+
~r1 · ~r
r3

+O(r−5) , (D.6)

is used to deduce the I part of eq. (D.5)

I
(

1
r
− 1

2
1

|~r − ~r1|
− 1

2
1

|~r − ~r2|

)
= −1

2
(~r1 + ~r2) · ~r

r3
I (D.7)

Again by using a multipole expansion

1
|~r − ~r1|3

=
1
r3

+
3~r1 · ~r
r5

+O(r−7) (D.8)
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Figure D.1: Schematic overview of three-point-force model
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the ~r ⊗ ~r part of eq. (D.5) is obtained

~r ⊗ ~r
(

1
r3
− 1

2

(
1

|~r − ~r1|3
+

1
|~r − ~r2|3

))
= −3

2
(~r1 + ~r2) · ~r

r5
~r ⊗ ~r . (D.9)

Finally the last part is the cross terms in the dyadic product, whereby (~r1⊗ ~r1) can be neglected
as it decays like 1/r3

∼
(
−1

2
1
r

−(r ⊗ r1 + r1 ⊗ r)+
r2

− 1
2

1
r

−(r ⊗ r2 + r2 ⊗ r)+
r2

)
∼ 1

2
(r ⊗ (r1 + r2) + (r1 + r2)⊗ r)

r3
. (D.10)

Combining all previous results yields

Tsum(~r) ∼ 1
2

(
(~r ⊗ (~r1 + ~r2) + (~r1 + ~r2)⊗ ~r)

r3
− (~r1 + ~r2) · ~r

r3
(I +

3~r ⊗ ~r
r2

)
)
. (D.11)

Note that only the sum of the vectors ~r1 + ~r2 plays a role, which is restated as a new vector
~r3 = ~r1 + ~r2 = (0, 0, b) so that

Tsum(~r) ∼ 1
2

(
~r ⊗ ~r3 + ~r3 ⊗ ~r

r3
− ~r3 · ~r

r3

(
I +

3~r ⊗ ~r
r2

))
. (D.12)

The far field for the three-point-force model with force positions 0, ~r1, ~r2 is the same as for two
stokeslets at 0, ~r1 +~r2. This result can be generalised. Let’s assume one point force is exerted at
the origin, the second one is positioned at ~r3 = bp̂. The forces are then ~F = ±F p̂, where p̂ the
unit vector along the line joining the point forces.

~u = bF
16πηr2 p̂ · (r̂ ⊗ p̂+ p̂⊗ r̂ − p̂ · r̂ (I + 3r̂ ⊗ r̂))

= bF
16πηr2 (1− 3(p̂ · r̂)2)r̂

(D.13)

This is the second spherical harmonic and is known as the stresslet field. In the notation of
Batchelor [3] this can be written as

~u = − 3
8πη

S : (r̂ ⊗ r̂)
r2

r̂ (D.14)

with the stresslet being

S =
bF

2
(p̂⊗ p̂− I/3) (D.15)
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Appendix E

Stress tensor

For a Newtonian fluid the stress tensor is

σ = −pI + 2ηe . (E.1)

The so called ’Batchelor stresses’ due to the presence of an ellipsoidal particle are [3]

σp = 4ηnv [α1E : 〈p̂p̂p̂p̂〉+ α2(E · 〈p̂p̂〉+ 〈p̂p̂〉 ·E) + α3E + α4E : 〈p̂p̂〉I]

+
n

2

[
ε · 〈~L〉+

1
2
α0〈(p̂× ~L)p̂+ p̂(p̂× ~L)〉

]
, (E.2)

where ~L = −ρvhp̂× ~g is the gravitational torque for a body of volume v, gravity offset h and ~g
gravity acceleration. The functions αi depend the aspect ratio, and ε is the alternating tensor.
The short hand notation for the Kronecker product is used ~a ⊗ ~b = ~a~b and 〈..〉 denotes the
ensemble average. Rotary diffusion leads to a stress given by

σd = 2ηnvDrα5(〈p̂⊗ p̂〉 − I/3) . (E.3)

The swimming of an object yields

σs = S(〈p̂⊗ p̂〉 − I/3) . (E.4)

Combining the previous equations leads to a total stress

σ = −p+ 2ηe + σp + σs + σd . (E.5)

The diffusive and swimming term can be combined [29]

σsd = (S + 2ηnvα5Dr)(〈p̂⊗ p̂〉 − I/3) . (E.6)

The ratio of swimming and diffusion term is

β =
6πηaUb
2ηvDrα5

∼ 103 . (E.7)

For passive rotary diffusion β ∼ 103 and for active rotary diffusion β ∼ 50. At small shear rates
ε = Bω � 1 the stress tensor has been derived analytically [54] in the first order of the strain
rate as

σxy,p + σxy,sd =
η0φγ̇α⊥

8

(
9η0U
hρga

b

a
(J2 − 2α0J5) + 2.6

)
, (E.8)
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where their constant αF = 1. α0 ∼ 0.3 is the aspect ratio minus one and α⊥ ∼ 7 a constant
which depends on aspect ratio. Ji = Ji(λ) are functions of the parameter λ = (2BDr)−1.

The linear viscosity coefficient is then

B =
(
ηeff
η0
− 1
)
/φ =

9η0α⊥U
8hρga

b

a
(J2 − 2α0J5) + 2.6 . (E.9)

The latter term (J2 − 2α0J5) ∼ 0.4 for λ = 2.2 [54].
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Appendix F

Squirmer: a theoretical swimmer

U

p

θ
2r

Puller Pusher

Figure F.1: A puller type squirmer with radius r, director p and swimming with a speed U .

In 1952 Lighthill [44] introduced an axisymmetric rigid spherical swimmer by applying the
following boundary conditions on the surface of a sphere

ur =
∞∑
n=1

AnPn(cos θ) , (F.1)

ur being the radial velocity, and the azimuthal velocity component

uθ = B1 sin θ +
B2

2
sin(2θ) +

∞∑
n=3

Bnsin(nθ) , (F.2)

where θ is the azimuthal angle with the director of the squirmer. Blake [8] extended the work of
Lighthill. The B1-term determines the swimming speed U = 2

3B1, the B2 term determines the
type of swimmer (pusher/puller). Without loss of generality we can state B1 > 0. For a puller
B2 > 0 and for a pusher B2 < 0. The higher order terms and the radial boundary conditions do
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not change this general behaviour and are thus neglected (Am = Bn = 0 for n > 2 and m > 0).
For a single squirmer in a non-moving Newtonian fluid the velocity is obtained by solving the
Stokes equation

ur = −2
3
B1 cos(θ) +

2
3
B1

(a
r

)3

P1(cos(θ)) +
((a

r

)4

−
(a
r

)2
)
B2P2(cos(θ)) , (F.3)

where Pn(x) denotes the n-th Legendre polynomial i.e. P1(x) = x, P2(x) = 1
2 (3x2 − 1). The

azimuthal velocity component is

uθ =
2
3
B1 sin(θ) +

B1

3

(a
r

)3

V1(cos(θ)) +
1
2

(a
r

)4

B2V2(cos(θ)) , (F.4)

where V1(cos(θ)) = sin(θ) and V2(cos(θ)) = sin(θ) cos(θ). Setting r = a one easily sees that this
obeys the boundary conditions. The swimming speed is related to the first coefficient U = 2

3B1.
The induced flow field can also be restated as:

~us = B1

(a
r

)3
(
p̂ · ~r
r
r̂ − p̂

3

)
+
((a

r

)4

−
(a
r

)2
)
B2P2

(
p̂ · ~r
r

)
r̂ +

(a
r

)4

B2
p̂ · ~r
r

(
p̂ · ~r
r
− p̂
)

(F.5)
The far field (up to 1/r2) for a squirmer is a stresslet, the radial velocity component is

ur = −2
3
B1 cos(θ)−

(a
r

)2

B2P2(cos(θ)) . (F.6)

and the azimuthal component is

uθ =
2
3
B1 sin(θ) . (F.7)

59



Appendix G

Einstein derivation of the
effective viscosity of a suspension
of Chlamydomonas

For dilute suspensions particle interactions are negligible, the many particle problem thereby
reduces to a single particle problem. Any arbitrary flow can be decomposed in a rotational,
dilatational and linear component. A spherical particle instanteneously rotate and translate
with the ambient fluid, but will affect the dilatational part of the flow. The latter is denoted as

~u0 = e0 · ~r , (G.1)

with the strain rate tensor

e0 =

A 0 0
0 B 0
0 0 C

 . (G.2)

Incompressibility of the flow (∇ · ~u) requires Trace(e0) = 0. The particle reflects the flow via
the no-slip boundary conditions, leading to a distortion field:

~u1 = −5
2

(
a3

r3
− a5

r5

)
~r · (e0 · ~r)

r2
~r +

a5

r5
e0 · ~r . (G.3)

The total field outside the particle is then:

~u = ~u0 + ~u1 . (G.4)

The work done on a large fluid volume containing the particle is compared with the same fluid
volume containing a homogeneous liquid. The work on a sphere in a fluid volume V can be
calculated by taking the following surface integral over the boundary of the fluid volume:

W =
∫

(σ · n̂) · ~udS , (G.5)

where S is the surface boundary of the volume V and n̂ the surface normal and (σ · n̂) is the force
exerted on the surface. The volume V is chosen to be a cocentric infinitely large sphere. With
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σ ∼ U/r,
∫
dS ∼ r2 and u0 ∼ r, in this case only the terms in u1 ∼ 1/r2 give a contribution

in the first order of the volume fraction. To obtain the result for many suspended particles the
integral is evaluated and multiplied with the number density of suspended particles

W

V
= 2η0

(
1 +

1
2
φ

)
e0 : e0 , (G.6)

with φ the volume fraction of suspended particles. The double dot product of two tensors
is defined as a : b =

∑
i,j aibi. Due to the presence of the particles the volume average strain

tensor is modified too. Taking the volume average over the same volume V gives

e =
1
V

∫
1
2

(∇+∇T )~udV = e0 +
1
V

∫
∇~u1dV = (1− φ)e0 . (G.7)

Substituting in eq. (G.6) yields

W

V
= 2η0

1 + 1
2φ

(1− φ)2
e : e . (G.8)

If the volume would contain a homogeneous fluid the work on the sphere would be described by

W

V
= 2ηeffe : e . (G.9)

Introducing the effective viscosity ηeff allows us to treat the suspension as a homogeneous fluid

ηeff
η0

=
1 + 1

2φ

(1− φ)2
' 1 +

5
2
φ , (G.10)

For a microswimmer the effective viscosity will be derived along the same lines as for the passive
sphere. The far field of any swimming force-free organism or object is a stresslet field, of strength

D =
bF

16πη
. (G.11)

~us = −D
r2

(1− 3 cos2 θ)r̂ . (G.12)

The total flow field is a superposition of the applied shear flow, the disturbance flow due to
the presence of the particle and the swimmer stresslet flow

~u = ~ushear + ~usph + ~us(p̂) , (G.13)

The mechanical work on a large fluid volume containing the particle is

W = c

∫
r→∞

(σ · n̂) · ~udS . (G.14)

And the correction in the strain rate is given as

E∗ = E− c
∫
∇ · ~udU = E− c

∫
r→∞

~u

r
· n̂dS . (G.15)

A dilatational flow field with the axis of the cartesian coordinate system coinciding with the 3
dilatational directions is described by ~ushear = E · ~r, with

E =

A 0 0
0 B 0
0 0 C

 . (G.16)
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In leading order the stress tensor of stresslet has two non-zero terms in spherical coordinates

σs =

σs,rr σs,rθ 0
0 0 0
0 0 0

 , (G.17)

whereby σs,rr = ηD 2(1−3 cos2 θ)
r3 and σs,rθ = ηD (−3 sin θ cos θ)

2r3 . The terms in eq. (G.14) involving
only passive contributions were calculated in section 4.4. The only two terms involving the
swimmer flow that give a contriubtion in the first order of φ are

W1 =
n

U

∫
(σs,rrushear,r + σs,θushear,θ)dS , (G.18)

leading to
W1

ηU
=

3
5
Dφ

a

(
~p⊗ ~p− I

3

)
: E . (G.19)

Combining with the Einstein result of eq. (G.6) yields the total work on the sphere

Wtotal

ηU
=
(

1 +
φ

2

)
E : E +

3
5
Dφ

a

(
~p⊗ ~p− I

3

)
: E . (G.20)

The second integral eq. (G.15) involving the correction of the strain rate is given by

E∗ = E(1− φ)−R · φD
a

β ·RT = E(1− φ) +
6
5
Dφ

a

(
~p⊗ ~p− I

3

)
. (G.21)

The double dot product of the strain can then be recasted as

E : E =
E∗ : E∗

(1− φ)2
+

12
5

φD

a(1− φ)2

(
~p⊗ ~p− I

3

)
E∗ +O(φ2) . (G.22)

Substituting this result in eq. (G.20) yields the total work on the sphere as a function of the
actual strain rate

Wtotal

ηV =
(

1 + φ
2

)(
E∗:E∗

(1−φ)2 + 12
5

φD
a(1−φ)2

(
~p⊗ ~p− I

3

))
E∗

+ 3
5

Dφ
a(1−φ)

(
~p⊗ ~p− I

3

)
:
(
E∗ + 6

5
Dφ
a

(
~p⊗ ~p− I

3

))
.

(G.23)

This can be expanded in first order of φ to give

Wtotal

ηV
=
(

1 +
5
2
φ

)
E∗ : E∗ + 3

φD

a

(
~p⊗ ~p− I

3

)
: E∗ . (G.24)

The work on the sphere depends on the swimming orientation with respect to the applied shear
flow. In e.g. a cone-plate rheometer the shear viscosity is measured. For a simple shear flow the
strain rate tensor is:

E∗ =

0 γ̇ 0
0 0 0
0 0 0

 . (G.25)

The measured viscosity is deduced from eq. (G.24)

ηeff
η0

=
(

1 +
5
2
φ

)
+ 3

φD

γ̇a
pxpy . (G.26)

Combining with eq. (G.12) yields the effective viscosity in first order of the volume fraction for
a spherical microswimmer

ηeff
η0

= 1 +
(

5
2

+
9
4
b

a

U

aγ̇
pxpy

)
φ . (G.27)
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Appendix H

Volume average effective viscosity
of a suspension of
Chlamydomonas

The volume average method of Landau & Lifshitz [41] is briefly presented here, first for passive
spheres, later on for microswimmers. In the dilute limit the many particle problem reduces to a
single particle suspended in an unbound dilatational flow ~u = E ·~r. The stress tensor is averaged
over a big sphere V containing the small particle

〈σ〉 =
1
V

∫
σdV , (H.1)

This expression can be restated as

〈σ〉 = −〈p〉I + η0 (∇〈~u〉+ (∇〈~u〉)T )︸ ︷︷ ︸
2〈E〉

+
∫
V

(
σ − η0(∇~u+ (∇~u)T ) + pI

)
dV . (H.2)

The first terms two terms denote the Newtonian behaviour of the fluid outside the particle, the
latter integral is a measure of the internal stress within the rigid sphere. It is strictly zero within
the fluid. The analysis of the internal stresses within the particle is possible, but it is simpler to
convert the volume integral into a surface integral by using the identitie

σ = ∇ · (σ ⊗ ~r) , (H.3)

and the theorem of Gauss ∫
(∇ · F)dV =

∫
F · ndS , (H.4)∫

(∇F)dV =
∫

F⊗ n̂dS . (H.5)

The volume integral in eq. (H.2) is then recasted as∫
S

((σ ⊗ ~r) · n̂− η(~u⊗ n̂+ n̂⊗ ~u)) dS , (H.6)
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where is S the surface boundary of the volume V . The pressure term in the integral drops out.
Note that this equation is linear in the velocity ~u and is the same as the stresslet of Batchelor
(C.20) except for the uninteresting isotropic part. Thus this integral can be calculated over both
the surface of the particle, but it is often easier to choose a large volume containing a small
particle. The solution of the integral for tiny rigid spheres is given in [41], using this result to
calculate the part in eq. (H.2) involving the strain rate yields

〈σ〉 = η0〈E〉+ η0
5
2
φ〈E〉 . (H.7)

Substitution of eq. (G.7) yields

〈σ〉 = η0〈E〉+ η0
5
2

φ

1− φ
〈E〉 ' η0

(
1 +

5
2
φ

)
〈E〉 . (H.8)

This is the same result as obtained by Einstein. Let us now consider the volume average stress
tensor for a microswimmer. As eq. (H.6) is linear in the velocity we can simply add the extra
contribution of the swimmer induced field. From now on the unit vector is denoted as n̂ = r̂.
Any force-free microswimmer induces a stresslet in the far field

~u = − S

4πη0r2
P2(p̂ · r̂)r̂ = −D

r2
P2(p̂ · r̂)r̂ , (H.9)

and the pressure given by

p = −ηD
r3
P2(p̂ · r̂) . (H.10)

Velocity gradients occur in eq. (H.6), using the identities ∇~r = I, ∇r = r̂,∇r̂ = 1/r(I− r̂ ⊗ r̂),
∇(1/r2) = −2r̂/r2 the gradient of the stresslet field is obtained

∇~u = −D
r2

[
−2

P2(p̂ · r̂)
r3

r̂ ⊗ r̂ +
P2(p̂ · r̂)

r3
(I− r̂ ⊗ r̂) + r̂

∇P2(p̂ · r̂)
r2

]
, (H.11)

with
∇P2(p̂ · r̂) =

1
r

3(p̂ · r̂)p̂ · (I− r̂ ⊗ r̂) =
1
r

3(p̂ · r̂)(p̂− (p̂ · r̂)r̂)⊗ r̂ . (H.12)

Combining these expressions to calculate the symmetric gradient

∇~u+(∇~u)T = −D
r2

[
−2r̂ ⊗ r̂ + P2(p̂ · r̂)(I− r̂ ⊗ r̂) + 3(p̂ · r̂)

(
1
2

(p̂⊗ r̂ + p̂⊗ r̂)
)
− 3(p̂ · r̂)r̂ ⊗ r̂

]
.

(H.13)
The first part of eq. (H.6) can thus be written as

−D
r2

[
−2r̂ ⊗ r̂ + 2P2(p̂ · r̂)r̂ ⊗ r̂ +

3
2

(p̂ · r̂)(p̂⊗ r̂ + p̂⊗ r̂)− (p̂ · r̂)r̂ ⊗ r̂
]
, (H.14)

where (I · r̂)⊗ r̂ = r̂ ⊗ r̂ and [(r̂ ⊗ r̂) · r̂]⊗ r̂ = r̂ ⊗ r̂ is used. The second part of the integral in
eq. (H.6) is

−η(~u⊗ n̂+ n̂⊗ ~u) =
Dη0
r2

2P2(p̂ · r̂)r̂ ⊗ r̂ . (H.15)

Combining the latter two expressions eq. (H.6) reads

−Dη0
r2

∫ [
−2r̂ ⊗ r̂ + 3(p̂ · r̂)

(
1
2

(p̂⊗ r̂ + p̂⊗ r̂)
)]

dΩ , (H.16)
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The integral involves the orientation of the microswimmer p̂, it is independent of the applied flow
field. The only second rank tensors that give a non-zero symmetric contribution by averaging
over the unit sphere are I and p̂⊗ p̂. Thus it is clear that

〈σ〉 = AI +Bp̂⊗ p̂ . (H.17)

The trace of the tensor is Trace(σ) = 3A+B. Taking the inproduct with p̂⊗ p̂ yields∫
(AI +Bp̂⊗ p̂) : (p̂⊗ p̂)dΩ = A+B . (H.18)

The latter part of eq. (H.16) is zero when averaged over the unit sphere. With∫
(r̂ ⊗ r̂) : (p̂⊗ p̂)dΩ =

8π
3
. (H.19)

and Trace( ˆr ⊗ r̂) = 0 the two constants A and B can be determined, yielding a contribution to
the stress:

4πη0D(p̂⊗ p̂− I/3) . (H.20)

So that
〈σ〉 = η0〈E〉+ η0

5
2
φ〈E〉+ S(〈p̂⊗ p̂〉 − I/3) . (H.21)

with S the stresslet strength.
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