
 Eindhoven University of Technology

MASTER

Identity matching and geographical movement of open-source software mailing list
participants

Kouters, E.T.M.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b9fa7744-f8ff-4386-aaaa-05d29c40c35c

Identity Matching and Geographical
Movement of Open-Source Software Mailing

List Participants

Erik Kouters

February 2014

Eindhoven University of Technology
Department of Mathematics and Computer Science

Identity Matching and
Geographical Movement of

Open-Source Software Mailing List
Participants

Erik Kouters

in partial fulfilment of the requirements for the degree of
Master of Science in Computer Science and Engineering

Supervisor: dr. Alexander Serebrenik

Tutor: ir. Bogdan Vasilescu

Examination Committee:
prof. dr. Mark G. J. van den Brand

dr. Mykola Pechenizkiy
dr. Alexander Serebrenik
ir. Bogdan Vasilescu

Eindhoven, February 2014

Acknowledgements

I would like to thank my supervisor Alexander Serebrenik and my tutor
Bogdan Vasilescu for their enthusiastic and inspiring guidance throughout
my time at the research group. The ideas we shared during the weekly
progress meetings have grown into the work described in this report; work
that allowed me to visit a number of international conferences which were
truly a rich experience.

I am very grateful towards my friends and family. Thank you Myrthe
van Wijk for your support throughout the whole process and your company
during the conferences. I would like to thank my parents, Tom Kouters and
Ilse Kouters, for their support and making my education and all experiences
possible.

You have all helped me very much to where I am now. Thank you!

Erik Kouters

2

Abstract

Human mobility and migration are popular topics in social sciences research.
Traditional sources of information are expensive in terms of data collection
or potentially unavailable. We propose an approach to obtain the geograph-
ical location history of open-source software mailing list participants using
publicly available data. These mailing list participants occasionally use mul-
tiple identities and/or email addresses, making it difficult to reconstruct the
geographical location history from an individual, rather than for each iden-
tity. To resolve this issue, the process of identity matching matches identities
and email addresses that belong to the same individual. Our main contri-
bution includes the proposal of an identity matching algorithm that is able
to handle data sets of different orders of magnitude, and is robust to noisy
data.

In the first part of this report, we discuss the process of identity match-
ing. We introduce an algorithm that was designed to perform well on large,
noisy data sets. To show its performance, we have evaluated the algorithm
together with three existing identity matching algorithms on two different
data sets. The first data set originates from the software repository logs and
is considered the smaller and less noisy data set. The second data set was
extracted from the mailing list archives and is much larger and noisier than
the first data set. We show that the algorithm we introduced performs well
on both data sets, as well as one other existing identity matching algorithm.
The two remaining algorithms only perform well on the smaller, less noisy
data set.

Throughout the second part of this report, we present an approach to
obtain the geographical location history of mailing list participants. By
extracting and parsing public mailing list archives, we are able to collect
the IP addresses belonging to the sender of each email. In turn, these IP
addresses are resolved to a geographical location, which is aggregated into a
geographical location history for each mailing list participant using the data
extracted from the mailing list archives. Finally, we present a number of
smaller case studies that are able to provide insight in the accuracy of our
approach.

4

Contents

Abstract 4

List of Figures 9

List of Tables 11

1 Introduction 13
1.1 Outline . 15
1.2 Publications arisen from this report 15

2 Case Study – Gnome 17

I Identity Matching 18

3 Introduction 19
3.1 General Context . 19
3.2 Software Engineering Context 19

4 Types of Differences in Aliases 21

5 Related Work 23
5.1 General Context . 23
5.2 Software Engineering Context 24

6 Existing Algorithms 26
6.1 Simple Algorithm . 26
6.2 Bird et al.’s Algorithm . 27
6.3 Bird et al.’s Original Algorithm 28

7 The Algorithm 30
7.1 Methodology . 30

7.1.1 Normalisation . 30
7.1.2 Term-document Matrix 31
7.1.3 Edit Distance Augmentation 32

6

7.1.4 tf–idf . 32
7.1.5 Singular Value Decomposition and Rank Reduction . 33
7.1.6 Cosine Similarity . 34

7.2 Simplified Algorithm . 34
7.3 Optimisation and Scalability 34

7.3.1 Singular Value Decomposition and Rank Reduction . 36

8 Empirical Evaluation 37
8.1 Software Repository Logs . 38

8.1.1 Cross Validation . 38
8.1.2 Full Data Set . 42

8.2 Mailing List Archives . 46

9 Threats to Validity 55
9.1 Construct Validity . 55
9.2 Internal Validity . 55
9.3 External Validity . 56

10 Conclusions 57

11 Future Work 58
11.1 Scalability of Singular Value Decomposition and Rank Re-

duction . 58
11.1.1 QUIC-SVD-GPU . 59
11.1.2 Libflame . 59
11.1.3 ScaLAPACK . 59
11.1.4 SVDLIBC . 60

II Human Migration of Open-Source Contributors 61

12 Introduction 62

13 Related Work 64

14 Data Extraction 66
14.1 Extracting and Parsing Mailing List Archives 66
14.2 Resolving IP Address To Location 71
14.3 Computing Migrations . 72

15 Evaluation 74
15.1 Pilot Evaluation . 74
15.2 Going On A Business Trip . 75
15.3 Finding Skilled Migration . 76
15.4 Meeting Individual Gnome Developers 77

7

15.5 Doing Business With Corporate Email Addresses 80

16 Threats to Validity 82
16.1 Construct Validity . 82
16.2 Internal Validity . 83
16.3 External Validity . 83

17 Conclusions 84

18 Future Work 86

8

List of Figures

8.1 The sensitivity analysis for the parameters for our algorithms
before doing cross-validation on the software repository logs. 40

8.2 The F-measures for the different algorithms from the ten-fold
cross-validation for the average and worst case. Note that
both y-axes start at 0.75. 41

8.3 The precision and recall for the different algorithms from the
ten-fold cross-validation in the average case. Note that both
y-axes start at 0.9. 41

8.4 The precision and recall for the different algorithms from the
ten-fold cross-validation in the worst case. Note that both
y-axes start at 0.6. 41

8.5 The F-measures (left) and precision and recall values (right)
for the Simple Algorithm run on the full software repository
logs data set. 42

8.6 The F-measures (left) and precision and recall values (right)
for Bird’s Algorithm run on the full software repository logs
data set. 43

8.7 The sensitivity analysis for the parameters running the sim-
plified algorithm on the full software repository logs data set,
showing the precision and recall. Fixed values: minLen = 2;
levThr = 0.75; cosThr = 0.75 44

8.8 The F-measures for the combinations of parameters for the
Simplified Algorithm having different minLen values for each
plot, run on the full software repository logs data set. 47

8.9 The precision and recall for the simplified algorithm with
minLen = 2 on the full software repository logs. 47

8.10 The precision and recall for the simplified algorithm with
minLen = 3 on the full software repository logs. 48

8.11 The precision and recall for the simplified algorithm with
minLen = 4 on the full software repository logs. 48

8.12 The precision and recall for the simplified algorithm with
minLen = 5 on the full software repository logs. 48

9

8.13 The F-measures (left) and precision and recall values (right)
for the Simple Algorithm run on the full mailing list archives
data set. 49

8.14 The F-measures (left) and precision and recall values (right)
for Bird’s Algorithm run on the full mailing list archives data
set. 50

8.15 The F-measures for the combinations of parameters for the
Simplified Algorithm having different minLen values for each
plot, run on the full mailing list archives data set. 52

8.16 The precision and recall for the Simplified Algorithm with
minLen = 2 on the full mailing list archives data set. 53

8.17 The precision and recall for the Simplified Algorithm with
minLen = 4 on the full mailing list archives data set. 53

8.18 The precision and recall for the Simplified Algorithm with
minLen = 6 on the full mailing list archives data set. 53

8.19 The precision and recall for the Simplified Algorithm with
minLen = 8 on the full mailing list archives data set. 54

8.20 The precision and recall for the Simplified Algorithm with
minLen = 10 on the full mailing list archives data set. 54

14.1 An example of an unparsed email that hopped through a com-
pany domain. The contents of this email have been anonymised
for privacy reasons. 67

14.2 A visual representation of the email hops from source to des-
tination. 70

15.1 An example of the sliding window algorithm. 77
15.2 Migrations between countries identified from the mailing list

archives. To filter on interesting countries, we filtered on
edges with weight ≥ 2. 78

15.3 Timeline representations of the manually verified Gnome mail-
ing list participants in two different versions. In Subfigure 15.3a
colour-coded lines for each email on a certain location, grouped
by week; in Subfigure 15.3b colour-coded bars for consecutive
mails on a certain location. 79

10

List of Tables

7.1 The running times of computing the term-document matrix
augmented with edit-distance before and after optimising the
code. 35

8.1 The four possibilities of matching two aliases. 38
8.2 Best F-measure scores on the full software repository logs

data set. 46
8.3 Best F-measure scores on the full mailing list archives data set. 51

11.1 Overview of the packages/libraries able to compute the Sin-
gular Value Decomposition. 60

14.1 Blacklisted values when parsing the raw emails. 69

15.1 The number of mailing list participants whose name was on
the website, and who visited multiple conferences. 76

15.2 Emails sent from company office locations 81

11

Chapter 1

Introduction

Large-scale software projects are developed by large groups of individuals.
Open-source software (OSS) projects (e.g. JBoss, Gnome, Kde) are usually
developed by individuals residing in many different geographical areas [36].
Typically, individuals that contribute to an OSS project communicate using
electronic mailing lists due to the groups of individuals being decentralised.

A mailing list is a collection of names and email addresses used by an
individual or an organization to send material to multiple recipients. Dif-
ferent project stakeholders can subscribe to the mailing list, adding them
to the recipients of the mailing list. Popular OSS projects such as JBoss,
Gnome and Kde use Mailman1, the Gnu mailing list manager. Mailman
also handles the archiving of the mails, which makes processing the mailing
list archives easier as it is universal for all OSS projects that use Mailman.

OSS projects that use mailing lists, which are accessible through the
internet, allow the OSS contributors to communicate with fellow OSS con-
tributors, while migrating or travelling (e.g. migrate to a different country,
or go to a conference). According to a survey performed among OSS de-
velopers [13], 10% of the OSS developers live in a country different from
the country they were born in. The Gnome User and Developer European
Conference2 (GUADEC) attracts more than 350 Gnome contributors every
year. As the conference is held at a different country every year, the con-
tributors need to travel. These Gnome contributors temporarily reside at
the location of the conference, after which they will return to their everyday
home and work locations. During this conference, the Gnome contributors
also use mailing lists to communicate, as multiple mailing lists have been set-
up for the conference (e.g. guadec-list, guadec-local, guadec-organization,
guadec-papers). Moreover, we confirmed a number of mails that were sent
from GUADEC itself, having the exact location and time of the conference.

1http://www.gnu.org/software/mailman/
2http://www.guadec.org/

13

http://www.gnu.org/software/mailman/
http://www.guadec.org/

The mailing lists are used for multiple purposes such as discussing com-
plex design choices for the software, but also to ask simple questions about
the software usage. This means the mailing list archives will contain emails
sent by various individuals; from core developers sending an average of 10
emails per day, to simple users who have sent only 1 or 2 emails.

We have used a technique that allows us to identify the approximate
location from which an email was sent [43]. Each email also contains a
timestamp, which indicates when the email was sent. This means we can
find a when and where for each email. As we have an archive of emails, we
are able to identify the when and where at different points in time for each
individual, which basically shows us the migration flows of the individual.

We will use the archives of these mailing lists to uncover migration flows
of OSS mailing list participants. Analysis of the data shows that mailing
list participants tend to use multiple email addresses throughout the mailing
lists. As we are interested in the migration flows of individuals, the email
addresses that belong to the same individual need to be matched. The
process of identifying which email addresses belong to the same individual,
based on the names used in the emails, is called identity matching.

Our main contribution in this report is focused on identity matching;
we have developed an algorithm that is based on the use of Latent Seman-
tic Analysis (LSA) [26] (also called Latent Semantic Indexing (LSI)). The
algorithm performs just as well as existing algorithms when the data set
contains little noise and is not too large (i.e. up to 10, 000). When the size
of the data grows, the difficulty of correctly matching grows. The bigger
the data set gets, the more variants of names are found, and different peo-
ple with similar names occur more often. Additionally, when the data set
grows, the data will contain more noise. Existing algorithms perform worse
on these characteristics of a bigger data set. The techniques applied using
the algorithm we developed are more robust to these characteristics and
thus performs much better than existing algorithms on bigger data sets [25].

We have evaluated the performance of our algorithm by comparing it
with two existing identity matching algorithms, simple algorithm, Bird et
al.’s algorithm. After comparing our algorithm with Bird’s algorithm we
received the original code used by Bird et al. This code was ported to fit
our data and was adopted as Bird et al.’s Original Algorithm, which was
also compared to our algorithm.

To show the scalability and robustness to noise of the existing algorithms,
we have evaluated the algorithms using two different data sets, which consist
of tuples containing a name and email address. Both data sets originate
from Gnome; Gnome’s software repository logs and Gnome’s mailing list
archives, having sizes 8, 618 and 77, 081, respectively.

14

1.1 Outline

In Chapter 2 we introduce Gnome, the OSS project we have chosen for
our case study, followed by Part I that focuses on identity matching. In
this part, we introduce the problem of identity matching in more detail
(Chapter 3) and describe the domain analysis (Chapter 4). Furthermore,
we discuss related work (Chapter 5), existing algorithms (Chapter 6) and
the algorithm we developed (Chapter 7). Subsequently, in Chapter 8 we
evaluate the algorithms, followed by threats to validity in Chapter 9. We
conclude in Chapter 10, and discuss a number of ideas for future work in
Chapter 11.

In Part II we focus on the mobility of OSS mailing list participants. We
motivate our approach on uncovering migration flows of OSS mailing list
participants (Chapter 12), followed by Chapter 13 in which related work is
discussed. We describe the process of extracting all mails from Gnome’s
mailing list archives, and resolving the locations of these mails in Chapter 14.
Subsequently, we verify the accuracy of the data using a number of case
studies in Chapter 15. The threats to validity are described in Chapter 16,
followed by the conclusions in Chapter 17. Finally, we discuss future work
in Chapter 18.

1.2 Publications arisen from this report

The following publications have arisen from the work described in this re-
port:

1. Erik Kouters, Bogdan Vasilescu, Alexander Serebrenik, and Mark G. J.
van den Brand. Who’s who in Gnome: using LSA to merge software
repository identities. International Conference on Software Mainte-
nance – Early Research Achievements (ICSM 2012), IEEE, pages 592-
595, Trento, Italy, 2012.

2. Erik Kouters, Bogdan Vasilescu, Alexander Serebrenik. Who’s Who
on Gnome Mailing Lists: Identity Merging on a Large Data Set. 12th
Belgian-Netherlands Software Evolution Seminar (BeNeVol 2013), pages
33-34, Mons, Belgium, 2013.

The work in this report is presented in a linear manner incorporating the
above publications. The first publication is the paper that describes the use
of the algorithm introduced in this report for the first time. At the time we
had a single data set to our disposal, namely the Gnome software repository
logs data set containing 8, 618 tuples of name and email address values. This
data set is considered small and contains little noise. At a later stage we
managed to get the data to evaluate the algorithm on a larger, noisier data

15

set, namely the Gnome mailing list archives data set, containing 77, 081
tuples of name and email address values. The second publication focuses
on applying identity matching on the larger and noisier data set, evaluating
both our algorithm and the existing identity matching algorithms, showing
that our algorithm scales well on a large, noisy data set.

16

Chapter 2

Case Study – Gnome

We have selected Gnome, a popular free and open-source desktop environ-
ment for GNU/Linux, for our case study. Gnome has a long development
history (i.e. Gnome was started in August 1997), and is still evolving today.
Moreover, the software repository logs and mailing list archives, which we
used for our case study, are publicly available on the web. Additionally,
Gnome is well-known among researchers [12,24].

GUADEC, the Gnome Users And Developers European Conference, is
the annual conference of the Gnome community, held in Europe since 2000.
The first GUADEC attracted around 70 Gnome contributors. Since the
first time the conference was held, the size has increased fivefold. As we are
interested in the human migration of the Gnome mailing list participants,
GUADEC is the perfect example to find participants that have visited the
conference, as the time and location of each conference is public.

We have extracted two data sets from Gnome for the identity matching,
namely the software repository logs and the mailing list archives. These
data sets contain 8, 618 and 77, 081 different combinations of name and
email address tuples, respectively.

The mailing list archives have also been used to obtain insight into the
human migration of the mailing list participants. Using the mailing list
archives, we were able to collect 929, 880 mails, 73, 290 different email ad-
dresses and 195, 152 IP addresses that resolved to 10, 448 different locations.

17

Part I

Identity Matching

18

Chapter 3

Introduction

3.1 General Context

Identity matching is the process of finding multiple identities that belong to
the same individual. This process is used in numerous fields of research.

In law enforcement, it is not uncommon for criminals to lie about the
details of their identity (e.g. name, date of birth, address) [46]. Only the
slightest difference in a falsified identity will eliminate the use of an exact-
match query, which is where an identity matching algorithm fits in. These
falsified identities are often intentional, and therefore require the approach
to take this into account.

The records in genealogy are typically collected from historical docu-
mentation. Parsing the unstructured textual records for names and the
relation with their relatives (e.g. Willem-Alexander is the son of Beatrix)
is a labour-intensive task, which can be partially automated using identity
matching [33]. As historical documentation is often handwritten, errors may
be introduced when digitising the documents. These errors might be caused
by illegible handwriting or lacking knowledge of the language, potentially
introducing misspelling.

We apply identity matching in the context of software engineering on
information systems in an open-source software project (e.g. version con-
trol systems, mailing lists, bug tracker), finding duplicate identities across
multiple information systems.

3.2 Software Engineering Context

In our application, identity matching is the process of identifying which
aliases belong to the same individual. Aliases are values identifying an in-
dividual. In mailing lists and version control systems, aliases are commonly
found in the form of different 〈name, emailAddress〉 tuples. By using an
identity matching algorithm, two aliases will be matched as positive or nega-

19

tive, based on the similarity determined by the algorithm. When two aliases
are matched positive, they are considered as belonging to the same individ-
ual.

We have introduced an identity matching algorithm that is designed to
handle large and noisy data sets. The algorithm was inspired by Latent
Semantic Analysis (LSA) which originates from information retrieval. The
introduced algorithm’s performance is evaluated and compared to two exist-
ing identity matching algorithms, simple algorithm, Bird et al.’s algorithm.
After comparing our algorithm with Bird’s algorithm we received the origi-
nal code used by Bird et al. This code was ported to fit our data and was
adopted as Bird et al.’s Original Algorithm, which was also compared to our
algorithm.

Evaluation of the algorithms is performed on two different data sets,
originating from Gnome’s version control system and Gnome’s mailing list
archives. The first data set, extracted from the software repository logs,
contains 8, 618 aliases and is known to contain little noise. This data set
is the smaller data set; the second data set, extracted from Gnome’s mail-
ing list archives, contains 77, 081 aliases and is much more noisy than the
software repository logs data set.

Chapter 4 shows the types of differences in the aliases we encountered
in our data sets. To successfully perform identity matching, the algorithms
need to be able to handle all of these types of differences correctly. Re-
lated work and additional approaches on identity matching are discussed
in Chapter 5. The existing identity matching algorithms that are evalu-
ated and compared to the introduced algorithm are explained in detail in
Chapter 6. The introduced identity matching algorithm’s methodology and
the details on its optimisation are discussed in Chapter 7. As we targeted
commodity hardware, the algorithm was optimised considerably. The eval-
uation of the identity matching algorithms is described in Chapter 8. Based
on the results on the different data sets, we discuss the algorithms’ overall
performance and scalability when applied to the larger data set. Limitations
and threats to validity are described in Chapter 9. Finally, we discuss the
conclusions in Chapter 10 and ideas for future work in Chapter 11.

20

Chapter 4

Types of Differences in
Aliases

To solve a problem, we first need to identify what the problem is, and
what it looks like. Therefore we have analysed the different data sources
(i.e. Gnome’s software repository logs and mailing list archives) to identify
occurring cases and examples of names and email addresses used in the
information systems. Using the analysis, we have been able to categorise
the types of differences.

We have identified differences in name values for the same emailAddress
value. Differences in names corresponding to the same email address can be
categorised as follows:

• ordering: Rajesh Sola, Sola Rajesh;

• misspelling/spacing: Rene Engelhard, Fene Engelhard ;

• diacritics: Démurget, Demurget ;

• transliteration: Γιωργoς, Giorgios;

• nicknames: Jacob “Ulysses” Berkman, Jacob Berkman;

• punctuation: J. A. M. Carneiro, J A M Carneiro;

• middle initials: Daniel M. Mueth, Daniel Mueth;

• middle names/patronyms: Alexander Alexandrov Shopov, Alexander
Shopov ;

• additional surnames: Carlos Garnacho Parro, Carlos Garnacho;

• incomplete names: A S Alam, Amanpreet Singh Alam;

• diminutives/variants: Mike Gratton, Michael Gratton;

• irrelevant information incorporated in the name: e.g. the name of the
project, Arturo Tena/libole2, Arturo Tena;

• username instead of name: mrhappypants, Aaron Brown;

21

• artifacts of the tooling used by developers when committing/storing/migrating
data: e.g. timestamps, (16:06) Alex Roberts, or commit messages in
addition to names, Fixed a wrong translation in ja.po. T.Aihana;

• mixed: combinations of the above.

Additionally, differences in email address prefix naming – assuming an
email address is in the format prefix@domain – have been identified. These
can be caused by organisational policies (e.g. a.serebrenik and aserebre),
unavailability of a prefix at free mail services (e.g. ankit644), personal choice
(e.g. kaffeetisch), or (lack of) sensitivity for punctuation (e.g. john.smith
and johnsmith).

22

Chapter 5

Related Work

5.1 General Context

Wang et al. presented the use of a pattern matching algorithm in law en-
forcement to identify falsified identities [46]. Criminals that intentionally
falsify given information tend to make only small changes: 96% of the falsi-
fied social security numbers had no more than two digits different from the
corresponding correct ones, which is easy to detect using edit-distance.

An identity matching algorithm using Hidden Markov Models (HMM)
was used in genealogy by Perrow and Barber [33]. Their model is trained
manually by classifying new names as first name or surname. When the
model sees a name for the second time, it will be able to tell apart the
first and last names. This approach is inapplicable in our situation, as our
data set is significantly larger and is not limited to a single family history
(e.g. Jones and George are common names used for both first name and last
name).

Multiple approaches on identity matching solely based on names have
been researched. The two main approaches for matching names are phonetic
encoding and pattern matching. Phonetic encoding converts a string into a
code according to the pronunciation of that string. Naturally, this phonetic
encoded version of a string depends on the language and/or dialect. This
makes identity matching using phonetic encoding very challenging when
the data set contains multi-cultural names (e.g. the mailing list data set
includes names from 171 different countries). Soundex [19], Phonex [27] and
Phonix [11] are among the popular phonetic encoding techniques to match
names.

In Chapter 4 we have seen the types of differences in aliases. Most of
these differences are difficult to be matched using phonetic encoding (e.g.
misspelling is a slight difference in terms of keyboard layout, but likely
a large difference in terms of pronunciation). Moreover, an earlier study
by Christen [6] has shown that pattern matching techniques outperform

23

phonetic encoding techniques. Therefore we have chosen to focus on pattern
matching.

A study by Cohen et al. [7] compares different identity matching tech-
niques that use edit-distance, token-based distance, hybrid distance and
blocking to match names. This study relates to our work by comparing dif-
ferent techniques for matching names, while our work focuses on the com-
bination of name and email address.

Work done by On et al. [32] has introduced a two-step method to match
authors that have published an article. The first step used blocking, which
groups names together based on different techniques (e.g. spelling-based,
token-based, N -gram, sampling). The second step is to identify the top-
k coauthors. Based on the coauthors, a number of techniques (e.g. naive
bayes model, string-based distance, vector-based cosine distance) are used
to find the different names used by an individual. A somewhat similar study
by Hölzer et al. [21] identifies which aliases belong to the same individuals
using different ranking functions on a network graph. Increasing likelihood
of matching identities when two aliases are in close proximity in terms of
mail recipients is considered future work.

Similarly, DBLP [29], a computer science bibliography website, applies
identity matching using a co-author index [30]. By creating a list of co-
authors for different identities, the authors are able to find matching iden-
tities with higher confidence. In turn, DBLP is used as a data source by
Shen et al. for constraint-based identity matching [38]. An example of such
a constraint is when two researchers with similar names are mentioned in
the same document, they are likely to match.

5.2 Software Engineering Context

In the software engineering context, we can classify existing identity match-
ing algorithms into two groups: endogenous and exogenous algorithms. En-
dogenous algorithms [1, 6, 14] try to match full names or email addresses
shared by different aliases, or use heuristics to “guess” email prefixes based
on combinations of name parts (e.g. jsmith and John Smith). Endogenous
algorithms operate under the “closed world” assumption, i.e. they only use
the information available in the repositories the aliases come from. In con-
trast, exogenous algorithms [34,35] also use external information in addition
to heuristics to aid in the matching process, e.g. GPG key servers1 to de-
termine couplings between email addresses [35]. Many open-source projects
do not use GPG servers. In this report we focus on endogenous algorithms,
as we focus on data sets originating from a single system (e.g. software

1GNU Privacy Guard, a free implementation of the OpenPGP standard for public key
encryption.

24

repository, mailing list archives) instead of interlinking between multiple
systems.

Robles and Gonzalez-Barahona have developed a technique [35] to match
identities from different sources (e.g. mailing lists, software repositories, bug
trackers). They consider real-life names, usernames and email addresses as
identities to assign to an actor, which we refer to as an individual. Similarly,
Iqbal and Hausenblas [22] have introduced a simple yet effective approach
to interlink identities of the same developer between different data sources.
They have transformed identities found on Github, Ohloh and Apache Soft-
ware Foundation into the Resource Description Framework (RDF) model.
When all identities are in this RDF model, they are interlinked using string
similarity measures in order to generate links between them. Unfortunately,
they do not mention which string similarity measures they have used. These
techniques are related to our work, but are considered as exogenous algo-
rithm and thus focus on multiple systems instead of a single system.

Prior research done by Bird et al. [1] has led to a technique to iden-
tify unique individuals which might use multiple email addresses. This
technique uses name normalisation and looks at the similarity between the
names (e.g. John Doe vs jdoe) and email address prefix (e.g. jdoe from
jdoe@domainA.com) using the Levenshtein (edit) distance. Another algo-
rithm, called the simple algorithm was described by Goeminne and Mens [14]
which matches full names without any edit distance. A more advanced tech-
nique developed by Goeminne and Mens [14] uses, like Robles and Gonzalez-
Barahona, multiple data sources to merge identities and improve complete-
ness of data. An example of incomplete data is when an individual uses
a nickname instead of their actual name as display name when sending an
email. This incompleteness can be corrected if another data source has
their actual name in combination with the email address. The improved al-
gorithm, as Goeminne and Mens called it, combines ideas taken from Bird ’s
and Robles’ approach.

In Chapter 6 we will discuss the best-performing simple algorithm by
Goeminne and Mens [14] and a more advanced one proposed by Bird et
al. [1]. Evaluation of these algorithms, including our identity matching al-
gorithm, is discussed in Chapter 8.

25

Chapter 6

Existing Algorithms

As part of the empirical evaluation, we have evaluated the best-performing
simple algorithm by Goeminne and Mens and a more advanced algorithm,
namely Bird et al.’s algorithm. After evaluation of Bird’s algorithm, we
received the original code used by Bird et al. This original code was ported
to fit our data and was also evaluated. This algorithm, which is similar in
heuristics, was named Bird’s original algorithm. These three algorithms are
explained in this chapter. To further clarify the mechanics of the algorithms,
we will use the following examples:

1. John Travolta, john.travolta@domainA

2. John Travolta, john@domainB

3. John ”Bone” Trabolta, travolta@domainC

4. John F. Kennedy, john@domainD

6.1 Simple Algorithm

A string can be normalised (denoted string) by removing accents, convert-
ing uppercase into lowercase, replacing multiple whitespace characters by a
single space, and removing leading and trailing whitespace.

Individuals with tuples 〈name1, emailaddress1〉 and 〈name2, emailaddress2〉
are merged by the simple algorithm [14] if

{
name1, prefix1

}
and

{
name2, prefix2

}
share at least one element, and at least one shared element has length of at
least a certain threshold minLen:

• name1 = name2 and len(name1) ≥ minLen;

• or name1 = prefix2 and len(name1) ≥ minLen;

• or prefix1 = name2 and len(prefix1) ≥ minLen;

• or prefix1 = prefix2 and len(prefix1) ≥ minLen.

26

For example, if minLen = 3, Example 1 would be merged with Example 2
because both share the same name John Travolta of length 13.

The approach is robust against noisy name and prefix values as long as
the

{
name, prefix

}
sets are not disjoint. However, it is not uncommon for

Gnome developers to use disjoint name and prefix values (e.g. Example 1
and Example 3), resulting in missing results. Moreover, even though two
tuples may have the same email address prefix (in which case they would
be merged), these may belong to different contributors (e.g. when prefixes
consist of common first names, like in Example 2 and Example 4, resulting
in false results).

6.2 Bird et al.’s Algorithm

A more advanced algorithm was proposed by Bird et al. [1], who compute
approximate rather than perfect matches using the normalised Levenshtein
similarity [14]:

sim(l1, l2) = 1− LevenshteinDistance(l1, l2)

max(len(l1), len(l2))

After a normalisation and cleaning preprocessing step, names are split into
two parts (first and last) using whitespace and commas as separators. Then,
given a similarity threshold t (ranging from 0 to 1), two tuples 〈name1, emailaddress1〉
and 〈name2, emailaddress2〉 are merged if:

• sim(name1,name2) ≥ t;

• or sim(first1,first2) ≥ t and sim(last1, last2) ≥ t;

• or prefix2(1) contains first1(2) and last1(2);

• or prefix2(1) contains the initial of first1(2) and the entire last1(2);

• or prefix2(1) contains the entire first1(2) and the initial of last1(2);

• or sim(prefix1, prefix2) ≥ t.

This approach is more robust to misspelling or punctuation than the
simple algorithm (due to the Levenshtein distance). However, it is still
sensitive to ordering of name parts (e.g. John Travolta and Travolta John
would probably not meet the similarity threshold since the first and last
names are switched), as well as different alphabets (e.g. Cyrillic, Greek)
or names with more than two parts, potentially leading to missing results.
Moreover, individuals with email address prefixes consisting of popular first
names will be merged, which, similarly to the simple algorithm, may result
in false results.

27

Assume t = 0.8. In contrary to the simple algorithm, Example 1 and
Example 3 would be merged because both have an equal first, and the last
would pass the similarity threshold: sim(travolta, trabolta) = 0.875 and
0.875 ≥ t.

Furthermore, Example 2 and Example 4 would be merged because they
both have an equal prefix. This behaviour, which is similar to simple algo-
rithm’s, is incorrect, as John Travolta and John F. Kennedy are two different
people. This type of incorrect matching will likely happen with any common
first name that is used as a prefix.

6.3 Bird et al.’s Original Algorithm

After comparing our algorithm with Bird’s algorithm described in Sec-
tion 6.2, we received the original code used in [1]. This code was ported
to fit our data and was adopted as Bird et al.’s Original Algorithm. For the
sake of completeness, we will include both versions of the algorithm in our
empirical evaluation, as the implementation and behaviour are different.

The original code contains hard-coded scoring values and thresholds.
Not only are scores set to 0 or 1 for certain rules, scoring is set to 0.93, 0.94,
0.95, 0.98 or 0.99 depending on the situation. It is unknown where these
values are based on, and therefore have not been touched when porting the
code to be used with our data set. As a result, the algorithm does not
accept a parameter, but uses the values from the original code. Different
combinations of parameters are therefore impossible to test, and a single
run of the algorithm will test its performance.

After a normalisation and cleaning preprocessing step, names are split
into multiple parts (retaining only first and last) using whitespace and com-
mas as separators, and numWords as the number of words the name consists
of. Then, two tuples 〈name1, emailaddress1〉 and 〈name2, emailaddress2〉 are
merged if:

• name1 = name2;

• or len(first1(2)) > 0 and len(last1(2)) > 0 and len(name1(2)) ≥ 10 and
name2(1) contains name1(2);

• or len(first1(2)) > 0 and len(last1(2)) > 0 and max(sim(name1(2),

name2(1)),min(sim(first1(2),first2(1)), sim(last1(2), last2(1)))) > 0.93;

• or first1 = first2 and last1 = last2 and numWords1 6= numWords2;

• or len(first1(2)) > 1 and len(last1(2)) > 1 and prefix2(1) contains first1(2)
and prefix2(1) contains last1(2);

• or len(first1(2)) > 2 and prefix2(1) contains the entire first1(2) and the

initial of last1(2);

28

• or len(first1(2)) > 2 and prefix2(1) contains the initial of last1(2) and

the entire first1(2);

• or len(last1(2)) > 2 and prefix2(1) contains the initial of first1(2) and

the entire last1(2);

• or len(last1(2)) > 2 and prefix2(1) contains the entire last1(2) and the

initial of first1(2);

• or prefix1 = prefix2.

From the second rule we can conclude that the algorithm was designed
for a certain data set. The reason to include this rule is unknown, and is
suspected to have been used to filter some type of noise.

Furthermore, we notice that Bird’s original algorithm uses four cases of
matching using the first and last names in combination with an initial or
full name. It is not uncommon for first names to be used as last names and
vice versa (e.g. Boy George, George Michael, Michael Jackson). This might
cause the algorithm to produce false results when people occur in the data
set where a certain name is used as first name for one person, and last name
for a different person.

29

Chapter 7

The Algorithm

The introduced algorithm was designed with robustness to noise and scaling
with larger data sets in mind. Inspired by information retrieval, the algo-
rithm basically applies Latent Semantic Analysis (LSA) (also referred to as
Latent Semantic Indexing (LSI)) on the data, with a few adjustments to fit
the characteristics of the data for identity matching [26].

How the algorithm works is explained in the methodology (Section 7.1).
To get the algorithm to work on a larger data set using commodity hard-
ware, a single step from the algorithm was omitted. This is explained in
more detail in Section 7.2. The details surrounding the optimisation of the
algorithm are described in Section 7.3.

7.1 Methodology

The algorithm consists of five steps:

1. Create term-document matrix

2. Augment term-document matrix with Levenshtein distance

3. Apply tf-idf to term-document matrix

4. Apply singular value decomposition on term-document matrix

5. Compute cosine similarity between documents

Data is assumed to be in the format of 〈name, emailaddress〉 aliases.

7.1.1 Normalisation

We have seen in different case studies that data can have inconsistencies and
noise. To remove most of these inconsistencies/noise, we apply normalisation
on the names.

• Ignore any of the following characters:

30

?,;:’\"!\/-_#~‘&%$@*-+()_=

• Remove accents

• Convert to lowercase

• Trimming of whitespace

• Replace multiple whitespaces with a single whitespace

• Remove numbers

7.1.2 Term-document Matrix

To build the term-document matrix A, we convert the normalised data to
VSM (Vector Space Model). Computing the documents starts by grouping
together aliases that share a full email address (the underlying assumption
is that email addresses are private, i.e. the same email address is not used
by different individuals). Next, for each email address a document is created
containing the set of normalised name parts of the names associated with
that email address. Each document consists of a set of words, where each
word is represented by a single term.

Let A be a matrix where element ai,j describes the occurrence of term
ti in document dj :

A =


d1 d2 · · · dn

t1 a1,1 a1,2 · · · a1,n
t2 a2,1 a2,2 · · · a2,n
...

...
...

. . .
...

tm am,1 am,2 · · · am,n


ai,j =

{
1 if ti ∈ dj
0 if ti /∈ dj

A column in this matrix A is a vector which represents a document (i.e.
email address), giving its relation to each term:

dj =

a1,j
...

am,j


Similarly, a row in matrix A is a vector corresponding to a term (i.e. name
part), giving its relation to each document:

ti =
(
ai,1 · · · ai,n

)

31

7.1.3 Edit Distance Augmentation

To improve robustness with respect to misspelling, transliteration and pho-
netic rendering, we augment the previously constructed term-document ma-
trix with a normalised edit-distance similarity, the normalised Levenshtein
similarity. We define the normalised Levenshtein similarity between terms
t1 and t2 as:

sim(l1, l2) = 1− levenshteinDistance(l1, l2)

max(len(l1), len(l2))

Before augmenting the term-document matrix with the normalised Lev-
enshtein similarity, the term-document matrix consists of elements which
are either 0 or 1. We only apply the Levenshtein augmentation to elements
which are 0. The similarity between a document dj and a term ti, which
does not occur in dj , is the maximum similarity between the non-occurring
term ti and all terms td occurring in the document dj :

docSim(ti, dj) = max({td ∈ dj : sim(ti, td)})

We add a threshold, levThr, to ensure only terms that exceed the thresh-
old are considered similar. By replacing an element ai,j , which is 0, by the
similarity obtained from docSim(ti, dj), we say that the document dj in-
cludes term ti with value docSim(ti, dj), if docSim(ti, dj) ≥ levThr (note
that docSim(ti, dj) < 1):

ai,j =

{
docSim(ti, dj) if ai,j = 0 ∧ ti /∈ dj ∧ docSim(ti, dj) ≥ levThr
0 otherwise

By augmenting the term-document matrix with the normalised Leven-
shtein similarity, we are able to create a relation between two mutually
exclusive documents who share terms that are very similar (e.g. caused by
misspelling).

7.1.4 tf–idf

tf–idf stands for term frequency – inverse document frequency and is the
most commonly used model for weighting terms. As the data set grows,
different people with the same name will occur in the data. To prevent all
documents containing these names to be matched together, tf–idf computes
a weight for each term (i.e. name part). Common terms will have a reduced
value, while rare terms will have an increased value. tf–idf is defined as
follows:

tf · idf = term frequency · inverse document frequency

32

The term frequency is the number of times a term occurs in a document.
The term frequency for a term ti in document dj is element ai,j :

tf(ti, dj) = ai,j

The inverse document frequency is a measure of whether the term is
common or rare across all documents. The default definition of the inverse
document frequency for a term is by dividing the total number of documents
by the number of documents containing the term. As the inverse document
frequency scales linearly to the data, the logarithm is taken:

idf(ti, D) = log
|D|

|{dj ∈ D : ti ∈ dj}|

This model scales to the number of documents, not to the most frequent
term. The most occurring name might still be rare among all documents,
yielding an increased weighted value for the most frequent term. Instead, we
decided to scale to the most frequent term by implementing the following
model by replacing the inverse document frequency with the inverse max
term frequency :

tfmax = max({ti ∈ T : |{dj ∈ D : ti ∈ dj}|})

itfmax(ti, D) = log
tfmax

|{dj ∈ D : ti ∈ dj}|

7.1.5 Singular Value Decomposition and Rank Reduction

The Singular Value Decomposition (SVD) decomposes the term-document
matrix A into three matrices, U , S and V , that exposes the underlying
structure of the matrix A:

A = USV T

S is a diagonal matrix containing the singular values of A. By applying a
rank-k reduction on S, the rank of the singular value matrix S is reduced
(i.e. truncated) such that rank(S) = k. The SVD operation, along with
this reduction, has the effect of reducing noise, while preserving the most im-
portant semantic information (i.e. similarity relations between documents).
Including the reduction in the SVD operation, the formula is as follows:

A ≈ Ak = UkSkV
T
k

Related work by Bradford [4] has shown that the optimal value of k lies
somewhere between 100 and 500. However, these values were based on
English documents which is not comparable to our application: artificial
creation of documents based on names extracted from software repository
logs and emails (e.g. the average document length for the mailing list data
is 2.70).

33

7.1.6 Cosine Similarity

The cosine similarity is a measure that computes the cosine of the angle be-
tween two vectors, and uses it as a similarity measure; The smaller the angle,
the higher the similarity. The cosine similarity between two documents, d1
and d2, is defined as follows:

cosSim(d1, d2) =
d1 · d2
|d1||d2|

We consider a pair of documents to be matched (i.e. flagged as positive),
when the cosine similarity exceeds a certain threshold cosThr.

7.2 Simplified Algorithm

In early stage, our algorithm was evaluated using a ten-fold cross-validation
(See Section 8.1.1). This technique applies the algorithm on randomly par-
titioned sub-samples, each having a size of one tenth of the original data
set size. This approach was used as it is a commonly used technique, and
because the full data set caused the algorithm to fail due to memory issues.
As we did not want our algorithm to be limited by data set size, we mod-
ified the implementation to be able to handle much larger data sets (See
Section 7.3).

We were able to optimise almost all steps of the algorithm to support
much larger data sets, except for the Singular Value Decomposition (SVD)
and Rank Reduction (RR) (See Section 7.3.1). As a result, we decided to
omit this step when applying the algorithm on larger data sets. Omitting
the SVD and RR step essentially creates a different algorithm, which we will
refer to as Simplified Algorithm throughout the rest of this report.

7.3 Optimisation and Scalability

One of our main focuses was scalability and speed while using ordinary
commodity hardware. The Gnome mailing list data set consists of 99, 012
unique terms and 76, 580 unique documents. Building a term-document
matrix would yield 7, 582, 338, 960 elements in the matrix. We have used
Python for our implementation which uses 64 bits for a default float data
type. Holding the term-document matrix in memory using Python float
values would require ≈ 60GB, which is clearly too big for the targeted com-
modity hardware; At the time of writing, new high-end desktop computers
have 8 to 16GB of internal memory.

Using the sparseness of the term-document matrix to our advantage,
we only save the non-zero values. Keeping only non-zero elements in the
memory was sufficient for the term-document matrix, but became too large

34

Running Time (hh:mm)

Removed memory limit 31:04
Precomputed edit-distance 02:40
Optimised code 01:25

Table 7.1: The running times of computing the term-document matrix aug-
mented with edit-distance before and after optimising the code.

when augmented with the edit-distance similarity. Therefore, an out-of-
core (i.e. outside of memory) approach was required; We write the term-
document matrix to a file in MatrixMarket format, which only stores the
non-zero values. The MatrixMarket format stores for each non-zero value
the row index, column index and the non-zero value itself. As we are not able
to augment the term-document matrix with the edit-distance similarity in
memory, we have done this in iterations of separate documents. We load one
document (i.e. column) into memory, and perform the process of augmenting
the document with the edit-distance similarities, one document at a time.
This approach removes the limitation of the matrix size due to memory use,
and allows us to augment the term-document matrix with the edit-distance
similarities for the full Gnome mailing list data set.

By processing one column at a time, we have not only removed the limi-
tation of the matrix size due to memory use, we also created the possibility
of parallelising the process. We added multi-core support by distributing a
column to each core, until all columns have been processed. This allows for a
speed-up scaling linearly to the number of CPU cores available. The time to
create the term-document matrix augmented with edit-distance similarities
is displayed in Table 7.1 under “Removed memory limit”.

Computing the edit-distance similarity is the heaviest operation in terms
of computation time. For each 0 in a column, we are computing the edit-
distance similarity with every term in the document (i.e. every 1 in the col-
umn). The edit-distance similarity between two terms are often computed
numerous times: If a term occurs in multiple documents, that term has the
edit-distance similarity with all other terms computed multiple times. To
remove these redundant edit-distance similarity computations, we created
a term-term matrix. Similar to the term-document matrix, the term-term
matrix will not fit into memory. In order to remove the memory limita-
tion and introduce the possibility of parallelisation, the term-term matrix is
computed in the same way as the term-document matrix.

When a matrix (e.g. term-document, term-term) is computed, a separate
index file keeps track of the column offsets of the file storing the matrix. As
the MatrixMarket format only stores non-zero elements, we do not know
how many values are stored in each column. If we want to read an arbitrary

35

column, we can jump to the offset in the MatrixMarket formatted file where
the first value for that column is found. Using this index file, the lookup
time for a value in the matrix is O(1), despite being saved in a file having
only non-zero elements.

Having the term-term matrix, we can augment the term-document ma-
trix by looking up the edit-distance similarities from the precomputed term-
term matrix. The speed-up achieved from this optimisation is displayed in
Table 7.1 under “Precomputed edit-distance”.

In addition to the previous optimisations, a profiler visualised the inside
mechanics of the code that take up most of the computation time. After a
number of optimisations to the code (e.g. pre-allocation of memory, remov-
ing redundant string length computations) we have been able to bring down
the computation time of the with edit-distance augmented term-document
matrix by another 47%, displayed in Table 7.1 under “Optimised code”.

7.3.1 Singular Value Decomposition and Rank Reduction

The Singular Value Decomposition (SVD) and Rank Reduction (RR) is
the most computationally intensive task. As computing the singular value
decomposition exists solely out of matrix operations, we want to migrate
the computation of the singular value decomposition to the GPU. GPUs are
often used to speed up the computation of the singular value decomposition
[10].

In addition to speeding up the algorithm, we want to run the singular
value decomposition on much larger data sets with dimensions ranging up
to 100, 000. A matrix of this size does not fit into memory. To resolve this
issue, we need an out-of-core version of an algorithm that computes the
singular value decomposition. Out-of-core algorithms are algorithms that
are designed to process data that is too large to fit into memory. These
algorithms have been optimised to efficiently process data in small chunks,
typically accessed from the machine’s hard drive.

Existing out-of-core algorithms are able to compute the singular value
decomposition of large matrices with similar dimensions. However, they
assume the rank-reduced matrix fits into memory. Traditional applications
of LSA/LSI reduce the rank to an order of magnitude smaller than the
original dataset (e.g. rank reduced to 200 from 80, 000 [23]). Our data set is
not like any other; we create the documents from names and email prefixes.
In Section 8.1.1 we will show that when reducing the rank below half of the
original size, the performance drops, showing that empirical studies on rank
reduction (often referred to as dimensionality reduction) are not applicable
on our data set.

We have not been able to compute the singular value decomposition on
the large matrix, and is therefore considered as future work. More details
on research concerning this subject can be found in Section 11.1.

36

Chapter 8

Empirical Evaluation

To evaluate our algorithm and compare it with existing identity matching
algorithms, we used the measures precision and recall, which are combined
to form the F-measure to express how well the algorithm performs. When
matching two aliases, i.e. two 〈name, emailAddress〉 tuples, there are four
possibilities (summarised in Table 8.1):

• A true positive (tp) denotes that the two aliases are correctly matched.
(Correct result)

• A false positive (fp) denotes that the two aliases are matched, but
should not have been. (Unexpected result)

• A true negative (tn) denotes that the two aliases have not been matched,
which is correct. (Correct absence of result)

• A false negative (fn) denotes that the two aliases have not been matched,
but should have been. (Missing result)

Based on the tp, fp, tn and fn values, we can compute the precision
and recall. The precision is the proportion of positive results that are true
positives (correct results). The recall measures the proportion of actual
positives which are correctly identified. A low recall means a lot of matches
are missing. Precision and recall are defined as follows:

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn

The goal is to have an algorithm with both a high precision and a high
recall. The F-measure provides a harmonic mean of precision and recall:

F = 2 · Precision · Recall

Precision + Recall

37

observation
true false

expectation
true tp fn
false fp tn

Table 8.1: The four possibilities of matching two aliases.

The F-measure is used as it considers the precision and recall with an equal
weight. Additionally we try to discuss the precision and recall indepen-
dently as these metrics are considered of different importance based on the
application/situation.

We have access to two different data sets; The first was created by min-
ing Gnome’s software repository logs on Git, and the second by parsing
Gnome’s mailing list archives. For each data set we have created an oracle,
that decides whether two aliases should be matched, for all pairs of aliases.
Construction of such an oracle can be only partly automated (e.g. two
aliases with a common email address should be matched), and is essentially
a manual, labour-intensive, error-prone process.

8.1 Software Repository Logs

The first data set was obtained from Gnome’s software repository logs and
contains 8, 618 different aliases. The oracle was computed by one person
and manually inspected by two others, and appears free of evident errors.
It contains a total of 4, 989 unique identities, i.e., on average each Gnome
contributor uses approximately 1.73 aliases.

We have performed two types of evaluation on the software repository
logs. The first is a ten-fold cross-validation, where each round involves
partitioning the data into complementary subsets. One subset is used as
training set to determine the best combination of parameters, which is then
applied on the remaining data, the testing set.

For the second type of evaluation, we used the full data set. Because our
default algorithm was not able to handle the full data set, this algorithm is
omitted during this type of evaluation. Therefore, we will evaluate the sim-
ple algorithm, Bird’s algorithm, Bird’s original algorithm and our simplified
algorithm. Instead of doing a cross-validation we used different parameter
combinations on the full data set.

8.1.1 Cross Validation

We treat two cases: an average-case, containing random samples of the set
of 8, 618 aliases, and a worst-case, consisting of a subset of 673 “noisy”

38

aliases, expected to cause false negatives in the simple algorithm. We have
obtained this dataset by removing contributors with only one alias, as well
as contributors with intersecting

{
name, prefix

}
sets. It is a priori not clear

how the algorithms by Bird et al. will behave on the worst-case dataset.
For each algorithm/scenario we performed training/testing steps and re-

peated the process ten times (i.e. ten-fold cross-validation). Training deter-
mines optimal parameter values: for the simple algorithm we varied minLen
(1, . . . , 10); for the algorithm by Bird et al. we varied the Levenshtein simi-
larity threshold t (0.05, . . . , 1); for Bird et al.’s original algorithm we do not
use parameters as it does not use any; for our algorithms, to avoid training
on all combinations of the 4 parameters, we first performed a sensitivity
analysis by fixing three parameters and varying the remaining parameters.
The minimum word length was fixed to 4, Levenshtein similarity to 0.75,
rank reduction to 0.5, and the cosine similarity to 0.75. The results from
this sensitivity analysis are shown in Figure 8.1. The results from this sen-
sitivity analysis are used for both the default and simplified algorithms (i.e.
with and without omitting the SVD and RR).

After the sensitivity analysis we restricted the range ofminLen to {2, 3, 4},
levThr to {0.5, 0.75}, cosThr to {0.65, 0.70, 0.75}, and k was fixed to half
of the number of terms. In the average case, for each of the ten repetitions,
training was performed on one tenth of the aliases (' 860), and testing on
ten random subsets with the same size from the remaining aliases. In the
worst case, because of fewer aliases in the dataset (673), for each of the ten
repetitions, training was performed on one third of the data and testing on
the other two thirds.

Figure 8.2 displays the results of the cross-validation. In the average
case (left) we observe that our algorithms perform as well as Bird’s original
algorithm (median=0.986), closely followed by the simple algorithm (me-
dian=0.982). The least performing algorithm is our interpretation of Bird’s
algorithm (median=0.975).

Recall that the worst case, shown in Figure 8.2 (right), was created such
that the simple algorithm would match as false negatives. You can see
this clearly, as the simple algorithm is the least performing algorithm (me-
dian=0.779) for the worst case. Surprisingly, the second least performing
algorithm is Bird’s original algorithm (median=0.877), which was expected
to perform well due to its complex heuristics. The best performing algo-
rithms are our interpretation of Bird’s algorithm (median=0.930), and our
default (median=0.937) and simplified (median=0.937) algorithms.

Interestingly enough we see that both of our algorithms have comparable
results for both the average and worst case. This suggests that applying the
Singular Value Decomposition, followed by a Rank Reduction of half the
number of terms is not relevant for the results. The sensitivity analysis
in Figure 8.1 suggests that the rank reduction will make a difference when

39

● ● ● ● ●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Word length

Min word length

F
−

m
ea

su
re

1 2 3 4 5 6 7 8 9 10

● ●
●

●

● ● ● ●
●

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Levenshtein similarity

Threshold

F
−

m
ea

su
re

●

●

● ● ● ● ● ●

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rank of document−term matrix

Rank

F
−

m
ea

su
re

●

●

●

●

●
● ●

● ●

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cosine similarity

Threshold

F
−

m
ea

su
re

Figure 8.1: The sensitivity analysis for the parameters for our algorithms
before doing cross-validation on the software repository logs.

reduced to below 0.5. This shows that applying the SVD and RR is an
unnecessary step, as omitting the step gives equal results.

Figure 8.3 illustrates the precision and recall for the average case. Simple
algorithm is not one of the best performing algorithms in terms of precision
(median=0.984) or recall (median=0.981), but not the worst either. Bird’s
algorithm has the highest recall (median=0.987), but a much worse precision
(median=0.963) than all other algorithms. We have seen that Bird’s original
algorithm yields results equally good as our algorithms based on the F-
measure. However, there is a clear difference in precision and recall. We see
that Bird’s original algorithm has a lower precision (median=0.989) than
our algorithms (median=0.995), but a higher recall (median=0.984) than
our algorithms (median=0.977).

Figure 8.4 displays the precision and recall for the worst case. Simple
algorithm has the highest precision (median=0.992) and the lowest recall
(median=0.640), as a result of the worst case data set that was designed to

40

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Simple Bird BirdOrig Kouters KouSimp

Average case
F

−
m

ea
su

re

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Simple Bird BirdOrig Kouters KouSimp

Worst case

F
−

m
ea

su
re

Figure 8.2: The F-measures for the different algorithms from the ten-fold
cross-validation for the average and worst case. Note that both y-axes start
at 0.75.

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Simple Bird BirdOrig Kouters KouSimp

Average case

P
re

ci
si

on

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Simple Bird BirdOrig Kouters KouSimp

Average case

R
ec

al
l

Figure 8.3: The precision and recall for the different algorithms from the
ten-fold cross-validation in the average case. Note that both y-axes start at
0.9.

0.
6

0.
7

0.
8

0.
9

1.
0

Simple Bird BirdOrig Kouters KouSimp

Worst case

P
re

ci
si

on

0.
6

0.
7

0.
8

0.
9

1.
0

Simple Bird BirdOrig Kouters KouSimp

Worst case

R
ec

al
l

Figure 8.4: The precision and recall for the different algorithms from the
ten-fold cross-validation in the worst case. Note that both y-axes start at
0.6.

41

● ● ● ●

●

●

● ●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Simple Algorithm

Min word length

F
−

M
ea

su
re

1 2 3 4 5 6 7 8 9 10

● ● ● ●
● ● ●

● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Simple Algorithm

Min word length

P
re

ci
si

on
/R

ec
al

l

1 2 3 4 5 6 7 8 9 10

● Precision
Recall

Figure 8.5: The F-measures (left) and precision and recall values (right) for
the Simple Algorithm run on the full software repository logs data set.

cause these results on the simple algorithm. In contrary, Bird’s algorithm
has the lowest precision (median=0.950) and highest recall (median=0.916).
Bird’s original algorithm has one of the highest precision (median=0.993)
which is at the same level as simple algorithm and our algorithms. How-
ever, Bird’s original algorithm does not perform very well on the recall (me-
dian=0.783). In the worst case, our algorithms do not perform best in
precision (median=0.991) or recall (median=0.890) but are among the best
of both metrics.

8.1.2 Full Data Set

The full software repository logs data set was used to evaluate the Simple
Algorithm, Bird’s Algorithm, Bird’s Original Algorithm and the Simplified
Algorithm. We have performed evaluation on the full data set by running
the algorithms with a wide range of combinations of parameters.

The results from the simple algorithm are displayed in Figure 8.5. Pre-
cision and recall have high values for minLen 1, 2, 3 and 4. We see the recall
drops when minLen exceeds 4, while the precision slightly increases. The
highest score achieved by the simple algorithm is by using minLen = 1 with
an F-measure of 0.938.

Bird’s algorithm has a very good recall for all tested values, displayed
in Figure 8.6. When choosing the threshold to be 0, by definition every
alias will be matched with every other alias, resulting in the worst possible
precision, but a recall of 1.0. We observe this scenario at a threshold of 0.2.
By raising the threshold, we see an increasing climb of precision. On the
other hand, we observe a small decrease in recall. Bird’s algorithm’s best
score is achieved with levThr = 0.90 with an F-measure of 0.936.

42

●
●

●

●

●

●

●

●

●

●
●

●
● ● ● ●

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bird's Algorithm

Threshold

F
−

M
ea

su
re

● ●
●

●

●
●

●

●

●

●

●

●
● ● ● ●

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bird's Algorithm

Threshold

P
re

ci
si

on
/R

ec
al

l

● Precision
Recall

Figure 8.6: The F-measures (left) and precision and recall values (right) for
Bird’s Algorithm run on the full software repository logs data set.

Bird’s original algorithm, that was ported from the original code, does
not use parameters. Hence, a single run was performed. With a precision of
0.969 and a recall of 0.953, the algorithm was able to achieve an F-measure
of 0.961.

The Simplified Algorithm uses three different parameters. Similarly to
the evaluation using the cross validation, we have performed a sensitivity
analysis to restrict the range of parameters to test on. Figure 8.7 shows the
results (i.e. precision and recall) from this sensitivity analysis. Note that
the edit distance similarity and cosine similarity start at a threshold of 0.2.
Lower thresholds created enormous result files which indicates a very low
precision, and were therefore skipped in the sensitivity analysis.

Figure 8.7a shows that both the precision and recall drop after minLen
exceeds 4. We see at minLen = 10 that precision suddenly increases. This is
explained by the name Christian which caused a lot of false positives for the
lower minLen values, but was ignored for minLen = 10, as len(Christian) =
9. Note that the y-axis starts at 0.7.

Figure 8.7b displays the sensitivity analysis for levThr which is necessary
to achieve a high recall by matching aliases that should be matched but are
mutually exclusive (e.g. as a result of misspelling). By choosing levThr =
1.0, we basically omit the edit distance similarity as terms have to be fully
equal to match. We can see the recall is much lower for levThr = 1.0
than, for example, levThr = 0.75. The lower levThr is, the more dense the
augmented term-document matrix will get. This raises the recall, but hurts
the precision. We see that, as the threshold increases, the precision softly
grows, while the recall slowly decreases. We see a big decrease in recall
between levThr = 0.80 and levThr = 0.85. Note that the y-axis starts at
0.7.

43

● ● ●
●

●

●

●

●

●

●

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Word length

Min word length

P
re

ci
si

on
/R

ec
al

l

1 2 3 4 5 6 7 8 9 10

● Precision

Recall

(a) Sensitivity analysis for minLen

●

●

●

●
●

● ●
● ● ● ● ● ● ●

● ● ●

0.2 0.4 0.6 0.8 1.0

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Levenshtein similarity

Threshold

P
re

ci
si

on
/R

ec
al

l

● Precision

Recall

(b) Sensitivity analysis for levThr

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ●

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Cosine similarity

Threshold

P
re

ci
si

on
/R

ec
al

l

● Precision
Recall

(c) Sensitivity analysis for cosThr

Figure 8.7: The sensitivity analysis for the parameters running the simplified
algorithm on the full software repository logs data set, showing the precision
and recall. Fixed values: minLen = 2; levThr = 0.75; cosThr = 0.75

Finally, Figure 8.7c shows the largest influence on the precision and
recall. cosThr is the threshold which makes the final decision whether two
aliases will be matched. A low threshold means that two aliases which are
slightly similar will be matched. A high threshold requires two aliases to
be very similar to be matched. Naturally, the choice for the value of the
threshold is a trade-off between precision and recall, which is clearly seen in
the figure. Note that the y-axis starts at 0.2.

Not all sensitivity analyses were useful for deciding upon a good thresh-
old. The edit distance similarity threshold, levThr, made an unexpected
dive in recall which might have a connection with the other (fixed) parame-

44

ters. Furthermore, choosing a good threshold is a trade-off between precision
and recall, while we prefer the best of both. The cosine similarity threshold,
cosThr, is similar to the edit distance threshold in terms of trade-off between
precision and recall. Again, the actual values might be closely related to the
other (fixed) parameters. That leaves the minimum word length, minLen,
which is the only threshold that shows a significant decrease in both preci-
sion and recall past a certain value. By fixing only minLen to {2, 3, 4, 5},
we decided to do a wide range of combinations on the remaining parame-
ters to discover a possible relation between the edit distance similarity and
cosine similarity thresholds. We included minLen = 5 to see if the results
are comparable to the sensitivity analysis of minLen, as minLen = 5 has a
negative effect on the results as seen in Figure 8.7a.

The F-measure values from this wide range of combinations are displayed
in Figure 8.8. We see a pattern that is similar for the minLen values 2,
3, 4 and 5. Also, we see a clear relation between the levThr and cosThr
parameters: Low values for both thresholds result in a low F-measure; High
values for both thresholds yield a low F-measure; One high and one low
threshold gives a high F-measure.

Figure 8.9, Figure 8.10, Figure 8.11 and Figure 8.12 display the precision
and recall values for the wide range of combinations of levThr and cosThr
for minLen values 2, 3, 4 and 5, respectively.

Simplified Algorithm’s best score was obtained using minLen = 3, levThr =
0.7 and cosThr = 0.7, having an F-measure of 0.959.

The best scores of all algorithms are displayed in Table 8.2. We see that
the values are very close to each other; the F-measures vary between 0.94
and 0.96. This means either that all algorithms perform really good, or that
the data set contains little noise (see Section 4).

Simple algorithm has shown to have a high precision for the full range
of parameters tested. The recall scored good for the lower minLen values,
but not very good for higher minLen values. Although simple algorithm
performed well on this data set, we expect it to perform bad on a much larger
data set. A larger data set is likely to have multiple people using only their
first name. Based on the simple heuristics of the simple algorithm, these
people with the same name will cause false positives, and thus reducing the
precision.

Bird’s algorithm is one of the best performing algorithms in terms of
recall. Starting with a very low precision at levThr = 0.2, the precision
shows a strong growth up to levThr = 0.8. Similar to the simple algorithm,
we expect Bird’s algorithm to scale badly with a larger data set.

Bird’s original algorithm does not use parameters. Running the algo-
rithm achieved a score comparable to the best run of the other algorithms.
After analysing Bird’s original code, we expect Bird’s original algorithm
was specifically “tuned” to perform best on data sets similar to the software

45

Algorithm Precision Recall F-measure

Simple Algorithm 0.931 0.946 0.938
Bird’s Algorithm 0.912 0.962 0.936
Bird’s Original Algorithm 0.969 0.953 0.961
Simplified Algorithm 0.977 0.941 0.959

Table 8.2: Best F-measure scores on the full software repository logs data
set.

repository logs containing little noise. It is a priori unknown how Bird’s
original algorithm will perform on a larger and noisier data set.

The simplified algorithm has shown varying results as a result of the
multiple parameters used in the algorithm. Although it was designed to
scale well with large and noisy data sets, it also needs to perform well on
smaller data sets containing little noise. The algorithm offers versatile re-
sults, shaped by the combination of parameters that are used to run the
algorithm. Table 8.2 shows the algorithm performs as well as the other
algorithms on the software repository logs data set.

8.2 Mailing List Archives

The second data set was obtained by extracting all of Gnome’s mailing list
archives and contains 77, 081 aliases, an order of magnitude larger than the
first data set. The oracle was computed by the author of this report, and
was based on the results of the simplified algorithm using a combination of
parameters known for having a high recall. The false positive matches were
then corrected manually, increasing the precision while retaining a high re-
call. Constructing the oracle for a data set this large was not only a manual,
labour-intensive task, it also introduced uncertainty to the data. For exam-
ple, there are 37 different email addresses whose owner is named “Dave”.
From these 37 email addresses, 6 have the prefix dave@domain.com. Al-
though unlikely, these could all belong to the same person. If it is uncertain
whether two email addresses belong to the same individual, they are con-
sidered as having two different owners.

Furthermore, the mailing list archives data set is known to be more
noisy than the software repository logs data set. A priori it is unknown how
the different algorithms will perform. Looking at the heuristics of simple
algorithm, Bird’s algorithm and Bird’s original algorithm, we expect the
results to be worse than on the software repository logs data set, as the
algorithm have not taken noisy data and scalability into account.

We have performed one type of evaluation of the mailing list archives
data set, namely by testing a wide range of parameters on the full data
set. Similar to the software repository logs full data set tests, we evaluated

46

levThr

0.3
0.4

0.5
0.6

0.7
0.8

0.9
co

sT
hr

0.5

0.6

0.7

0.8

0.9

F
−M

easure

0.4
0.5

0.6
0.7

0.8

0.9

1.0

Simplified Algorithm, minLen=2

(a) F-measures with minLen = 2.

levThr

0.3
0.4

0.5
0.6

0.7
0.8

0.9

co
sT

hr

0.5

0.6

0.7

0.8

0.9

F
−M

easure

0.4
0.5

0.6
0.7

0.8

0.9

1.0

Simplified Algorithm, minLen=3

(b) F-measures with minLen = 3.

levThr

0.3
0.4

0.5
0.6

0.7
0.8

0.9

co
sT

hr

0.5

0.6

0.7

0.8

0.9

F
−M

easure

0.4
0.5

0.6
0.7

0.8

0.9

1.0

Simplified Algorithm, minLen=4

(c) F-measures with minLen = 4.

levThr

0.3
0.4

0.5
0.6

0.7
0.8

0.9

co
sT

hr

0.5

0.6

0.7

0.8

0.9

F
−M

easure

0.4
0.5

0.6
0.7

0.8

0.9

1.0

Simplified Algorithm, minLen=5

(d) F-measures with minLen = 5.

Figure 8.8: The F-measures for the combinations of parameters for the
Simplified Algorithm having different minLen values for each plot, run on
the full software repository logs data set.

levThr

0.3
0.4

0.5
0.6

0.7
0.8

0.9

co
sT

hr

0.5

0.6

0.7

0.8

0.9

P
recision

0.4
0.5

0.6
0.7

0.8

0.9

1.0

Simplified Algorithm, minLen=2

levThr

0.3
0.4

0.5
0.6

0.7
0.8

0.9

co
sT

hr

0.5

0.6

0.7

0.8

0.9

R
ecall

0.4
0.5

0.6
0.7

0.8

0.9

1.0

Simplified Algorithm, minLen=2

Figure 8.9: The precision and recall for the simplified algorithm with
minLen = 2 on the full software repository logs.

47

levThr

0.3
0.4

0.5
0.6

0.7
0.8

0.9
co

sT
hr

0.5

0.6

0.7

0.8

0.9

P
recision

0.4
0.5

0.6
0.7

0.8

0.9

1.0

Simplified Algorithm, minLen=3

levThr

0.3
0.4

0.5
0.6

0.7
0.8

0.9

co
sT

hr

0.5

0.6

0.7

0.8

0.9

R
ecall

0.4
0.5

0.6
0.7

0.8

0.9

1.0

Simplified Algorithm, minLen=3

Figure 8.10: The precision and recall for the simplified algorithm with
minLen = 3 on the full software repository logs.

levThr

0.3
0.4

0.5
0.6

0.7
0.8

0.9

co
sT

hr

0.5

0.6

0.7

0.8

0.9

P
recision

0.4
0.5

0.6
0.7

0.8

0.9

1.0

Simplified Algorithm, minLen=4

levThr

0.3
0.4

0.5
0.6

0.7
0.8

0.9
co

sT
hr

0.5

0.6

0.7

0.8

0.9

R
ecall

0.4
0.5

0.6
0.7

0.8

0.9

1.0

Simplified Algorithm, minLen=4

Figure 8.11: The precision and recall for the simplified algorithm with
minLen = 4 on the full software repository logs.

levThr

0.3
0.4

0.5
0.6

0.7
0.8

0.9

co
sT

hr

0.5

0.6

0.7

0.8

0.9

P
recision

0.4
0.5

0.6
0.7

0.8

0.9

1.0

Simplified Algorithm, minLen=5

levThr

0.3
0.4

0.5
0.6

0.7
0.8

0.9

co
sT

hr

0.5

0.6

0.7

0.8

0.9

R
ecall

0.4
0.5

0.6
0.7

0.8

0.9

1.0

Simplified Algorithm, minLen=5

Figure 8.12: The precision and recall for the simplified algorithm with
minLen = 5 on the full software repository logs.

48

● ● ●
●

●

●

●

● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Simple Algorithm

Min word length

F
−

M
ea

su
re

1 2 3 4 5 6 7 8 9 10

● ● ●
●

●

●

●

● ●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Simple Algorithm

Min word length

P
re

ci
si

on
/R

ec
al

l

1 2 3 4 5 6 7 8 9 10

● Precision
Recall

Figure 8.13: The F-measures (left) and precision and recall values (right)
for the Simple Algorithm run on the full mailing list archives data set.

the simple algorithm, Bird’s algorithm, Bird’s original algorithm and the
simplified algorithm.

The results of running the simple algorithm on the full mailing list
archives data set is displayed in Figure 8.13. We note the precision is very
low (around 0.35) for the lower minLen values 1 to 4. Exceeding minLen = 5,
the precision grows rapidly up to 0.92 at minLen = 8, after which the pre-
cision increases slightly up to 0.96 at minLen = 10. In contrary to the
precision, the recall is very consistent throughout the range of minLen val-
ues. It starts with an average recall of 0.89 at minLen = 1, and slowly
decreases to a recall of 0.86 at minLen = 10. Overall, the simple algorithm
is able to achieve a high precision, but average recall. The highest F-measure
achieved by the simple algorithm is with minLen = 10, having an F-measure
of 0.915.

The results from Bird’s algorithm on the full mailing list archives data
set, displayed in Figure 8.14, show little potential. Starting with a levThr of
0.5, the precision is near 0. Increasing the levThr also increases the precision
slightly, reaching its highest value at levThr = 0.9 with a precision of 0.22.
The recall for Bird’s algorithm is high at levThr = 0.5, having a value of
0.92. The threshold does not seem to have much influence on the recall, as
the value is 0.91 at its highest threshold with a levThr of 1.0. We see that
Bird’s algorithm is sensitive to noisy data and/or scalability of the data set,
as the precision is very low for any threshold values. The algorithm is able
to achieve a high recall, but at the cost of precision. The highest F-measure
achieved by Bird’s algorithm is with levThr = 1.0, having an F-measure of
0.362.

Bird’s original algorithm was ported from Bird’s original code. This code
was complex in a sense that it does not accept parameters. Therefore, the

49

●

●

●

●

● ●

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bird's Algorithm

Threshold

F
−

M
ea

su
re

●
●

●

●

● ●

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bird's Algorithm

Threshold

P
re

ci
si

on
/R

ec
al

l

● Precision
Recall

Figure 8.14: The F-measures (left) and precision and recall values (right)
for Bird’s Algorithm run on the full mailing list archives data set.

results from Bird’s original code include a single run of the algorithm. The
algorithm, which is similar in spirit to Bird’s algorithm, is able to achieve a
higher precision: 0.41. In addition, the recall of Bird’s original algorithm is
similar to Bird’s algorithm: 0.90. This shows that Bird’s original algorithm
is more fine-tuned for a higher precision (i.e. causing less false positives)
without the use of a range of parameters. The algorithm achieves a mediocre
precision, and a high recall. Bird’s original algorithm achieved an F-measure
of 0.562.

In contrary to the software repository logs data set, we have not per-
formed a sensitivity analysis on the mailing list archives data set to restrict
the range of parameters to test using the simplified algorithm. Instead, we
have tested a full range for all combinations of parameters. Similarly to the
previous tests using the simplified algorithm, we have split the results from
different minLen values into separate graphs. The F-measure plots for the
different minLen values are displayed in Figure 8.15.

Figure 8.16, Figure 8.17, Figure 8.18, Figure 8.19 and Figure 8.20 dis-
play the precision and recall values for the range of combinations of levThr
and cosThr split into separate graphs for minLen values 2, 4, 6, 8 and 10,
respectively.

We notice for the lower minLen values that the cosThr values have a
lot of influence on the precision. As the minLen increases, we observe that
the precision graph flattens out and eventually obtains a precision of 0.4
at minLen = 10 using levThr = 0.4 and cosThr = 0.4. A higher precision
for the higher minLen values using these levThr and cosThr values can be
explained by only allowing words with minimum length of 10 to match. This
means that people using only their first name will not cause false positives.
The recall for the lower minLen values is very high. Especially for the

50

Algorithm Precision Recall F-measure

Simple Algorithm 0.966 0.868 0.915
Bird’s Algorithm 0.226 0.914 0.362
Bird’s Original Algorithm 0.408 0.903 0.562
Simplified Algorithm 0.969 0.912 0.940

Table 8.3: Best F-measure scores on the full mailing list archives data set.

lower cosThr values; we measure a recall of 0.999, one of the highest values
recorded. As the minLen increases, we see the recall decrease down to 0.78
for minLen = 10.

Simplified algorithm’s best F-measure was obtained using minLen = 2,
levThr = 0.6 and cosThr = 0.9, having an F-measure of 0.940.

An overview of the best F-measure scores of all algorithms are displayed
in Table 8.3. The values obtained are a lot more diverse compared to the
best F-measure scores from the software repository logs data set in Table 8.2.
We observe that the values obtained for the precision vary between 0.226
and 0.969. The recall values are less varying having values between 0.868
and 0.914.

The simple algorithm has shown to perform better with the higher
minLen values, at the cost of recall. However, it is still able to achieve
relatively high. This shows that the simple algorithm scales well with a
larger and noisy data set, despite its simplicity in terms of heuristics.

Bird’s algorithm has complex heuristics that was designed to match a
number of types of difference in aliases. But, as the data set grows, these
complex heuristics backfire and cause lots of false positives, leaving Bird’s
algorithm with a precision of 0.226 for the best score. Surprisingly, the recall
does not exceed the recall from the different algorithms much. We see that
Bird’s algorithm does not scale well with a larger and noisy data set.

Similarly to Bird’s algorithm, Bird’s original algorithm does not achieve
a high precision. As this was the original algorithm introduced by Bird et
al., it is clear it was not designed for such a large and noisy data set, as
it performs well on a smaller, less noisy data set. Hence, Bird’s original
algorithm does not scale well with a larger and noisy data set.

The simplified algorithm is able to achieve the best F-measure of all
algorithms. It has obtained the highest precision, sacrificing little recall. In
addition, with a different combination of parameters, it is able to score the
highest recall of all algorithms. This shows that the simplified algorithm is
one of the most versatile algorithms, being able to obtain a high precision
with a good recall, or an average precision with a high recall.

51

levThr

0.4
0.5

0.6
0.7

0.8

0.9

co
sT

hr
0.4

0.5

0.6

0.7

0.8
0.9

F
−M

easure

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=2

(a) F-measures with minLen = 2.

levThr

0.4
0.5

0.6
0.7

0.8

0.9

co
sT

hr

0.4

0.5

0.6

0.7

0.8
0.9

F
−M

easure

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=4

(b) F-measures with minLen = 4.

levThr

0.4
0.5

0.6
0.7

0.8

0.9

co
sT

hr

0.4

0.5

0.6

0.7

0.8
0.9

F
−M

easure

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=6

(c) F-measures with minLen = 6.

levThr

0.4
0.5

0.6
0.7

0.8

0.9
co

sT
hr

0.4

0.5

0.6

0.7

0.8
0.9

F
−M

easure

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=8

(d) F-measures with minLen = 8.

levThr

0.4
0.5

0.6
0.7

0.8

0.9

co
sT

hr

0.4

0.5

0.6

0.7

0.8
0.9

F
−M

easure

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=10

(e) F-measures with minLen = 10.

Figure 8.15: The F-measures for the combinations of parameters for the
Simplified Algorithm having different minLen values for each plot, run on
the full mailing list archives data set.

52

levThr

0.4
0.5

0.6
0.7

0.8

0.9
co

sT
hr

0.4

0.5

0.6

0.7

0.8
0.9

P
recision

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=2

levThr

0.4
0.5

0.6
0.7

0.8

0.9

co
sT

hr

0.4

0.5

0.6

0.7

0.8
0.9

R
ecall

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=2

Figure 8.16: The precision and recall for the Simplified Algorithm with
minLen = 2 on the full mailing list archives data set.

levThr

0.4
0.5

0.6
0.7

0.8

0.9

co
sT

hr

0.4

0.5

0.6

0.7

0.8
0.9

P
recision

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=4

levThr

0.4
0.5

0.6
0.7

0.8

0.9

co
sT

hr

0.4

0.5

0.6

0.7

0.8
0.9

R
ecall

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=4

Figure 8.17: The precision and recall for the Simplified Algorithm with
minLen = 4 on the full mailing list archives data set.

levThr

0.4
0.5

0.6
0.7

0.8

0.9

co
sT

hr

0.4

0.5

0.6

0.7

0.8
0.9

P
recision

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=6

levThr

0.4
0.5

0.6
0.7

0.8

0.9

co
sT

hr

0.4

0.5

0.6

0.7

0.8
0.9

R
ecall

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=6

Figure 8.18: The precision and recall for the Simplified Algorithm with
minLen = 6 on the full mailing list archives data set.

53

levThr

0.4
0.5

0.6
0.7

0.8

0.9

co
sT

hr

0.4

0.5

0.6

0.7

0.8
0.9

P
recision

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=8

levThr

0.4
0.5

0.6
0.7

0.8

0.9

co
sT

hr

0.4

0.5

0.6

0.7

0.8
0.9

R
ecall

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=8

Figure 8.19: The precision and recall for the Simplified Algorithm with
minLen = 8 on the full mailing list archives data set.

levThr

0.4
0.5

0.6
0.7

0.8

0.9

co
sT

hr

0.4

0.5

0.6

0.7

0.8
0.9

P
recision

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=10

levThr

0.4
0.5

0.6
0.7

0.8

0.9

co
sT

hr

0.4

0.5

0.6

0.7

0.8
0.9

R
ecall

0.0

0.2

0.4

0.6

0.8

1.0

Simplified Algorithm, minLen=10

Figure 8.20: The precision and recall for the Simplified Algorithm with
minLen = 10 on the full mailing list archives data set.

54

Chapter 9

Threats to Validity

In this chapter we present the limitations and threats to validity for our
approach on identity matching.

9.1 Construct Validity

The ideal identity matching algorithm is able to achieve a precision and recall
of 1.0. Although highly unlikely, this is not impossible, and mostly depends
on the data. Aliases occurring in the software repository logs tend to use
real-life names instead of nicknames, resulting in more consistent naming
conventions for each individual, and thus making it easier for the identity
matching algorithm to find correct matches. The data set originating from
the mailing list archives on the other hand, is known to be more noisy and
nicknames are not uncommon. If a person uses a corporate email address
using their real-life name, and another personal email address with their
nickname, it is impossible for the identity matching algorithm to perform
correct matching, possibly even using human judgement.

9.2 Internal Validity

The oracle of the software repository logs was created by one person and
verified by two others and appears free of evident errors. This does not
guarantee the oracle is error-free, and might still contain errors. Moreover,
these errors in the oracle might either increase or decrease the performance
of the algorithms.

The oracle of the mailing list archives was produced based on the re-
sults from the simplified algorithm using a combination of parameters that
is known to yield a high recall but a low precision. Based on these match-
ings, the author of this report manually verified every match. Incorrect
matchings (low precision) were split into multiple individuals. Basically the

55

process started off with a low precision and high recall, and by manual ver-
ification the precision was perfected while retaining the same recall value.
Furthermore, the oracle was created by a single person. Considering the size
of the data, errors are easily made, potentially leaving incorrect or missing
matches in the data.

9.3 External Validity

The results from the empirical evaluation are generally not transferable to
another data set. We have evaluated the algorithms on two types of data
sets (i.e. software repository logs and mailing list archives) and have seen
the data sets require different parameters to perform well. Each of these
data sets have different characteristics such as types of differences in aliases
(See Chapter 4), level of noise and data set size. All of these characteristics
play an important role when deciding upon the parameters used in the
algorithms. We have seen that the different parameters are not transferable
between just any data set, but expect that the parameters are transferable
to different data sets that have similar characteristics.

56

Chapter 10

Conclusions

We presented an identity matching algorithm in Chapter 7 that is designed
to perform well on large data sets, and is robust to noisy aliases (Chapter 4).
This algorithm was compared to three existing identity matching algorithms,
simple algorithm (Section 6.1), Bird’s algorithm (Section 6.2) and Bird’s
original algorithm (Section 6.3).

The algorithm we presented was specifically designed for large data sets.
As we targeted commodity hardware, we were unable to compute the sin-
gular value decomposition (Section 7.3.1), which is part of the algorithm.
As a result, we decided to skip this step. The algorithm, while skipping
the computation of the singular value decomposition, is referred to as the
simplified algorithm.

The algorithms have been evaluated using two data sets. The first data
set originates from Gnome’s software repository logs, and contains 8, 618
different aliases. The software repository logs data set is the smaller, less
noisy data set. We have evaluated this data set using a cross validation
(Section 8.1.1) and by testing a wide range of parameters on the full data
set (Section 8.1.2). The algorithm we presented was only evaluated by cross
validation, as it is limited by the data set size. The simplified algorithm was
used for all types of evaluation. We have seen that all algorithms perform
equally good in the cross validation’s average case and on the full data set.
The simple algorithm and Bird’s original algorithm perform less good on
the cross validation’s worst case.

The second data set, which was extracted from Gnome’s mailing list
archives, contains 77, 081 different aliases and is more noisy than the software
repository logs data set. We have evaluated the algorithms on this data set
using a wide range of parameters (Section 8.2). Due to the size of the data
set, Bird’s algorithm and Bird’s original algorithm scale badly at the cost of
precision. Simple algorithm and the simplified algorithm scale well with a
large and noisy data set, and perform similar on both the software repository
logs data set and the mailing list archives data set.

57

Chapter 11

Future Work

The identity matching algorithm we introduced uses a number of widely
used techniques (e.g. Levenshtein distance, cosine similarity). For most of
these techniques, numerous alternatives exist. As shown by Christen [6],
the performance of different techniques varies (e.g. Jaro-Winkler distance
outperforms Levenshtein distance). A priori it is unknown how the usage of
the different techniques will influence the results. Implementing and eval-
uating the algorithm with combinations of these alternative techniques is
considered future work:

• Replacing Levenshtein distance with Hamming distance or
Jaro-Winkler distance

• Replacing cosine similarity with Okapi BM25, Bray-Curtis dissimilar-
ity or Sørensen–Dice coefficient

In addition to experimenting with different techniques, more information
can be added to the term-document matrix to aid the algorithm. An example
of such extra information is adding diminutives to the term-document matrix
(e.g. Andrew ⇒ Andy, David ⇒ Dave). Occurrences of these diminutives
have been spotted in the actual mailing list data.

Additionally, we can collect even more data to help improve matching.
By creating a network graph from the mailing list archives, where each
node in the graph represents an email address and each edge connects email
recipients, we can increase confidence of matching when two email addresses
are in close proximity of each other (i.e. have similar recipients).

11.1 Scalability of Singular Value Decomposition
and Rank Reduction

As described in Section 7.3.1 we want to speed-up the computation of the
singular value decomposition, and be able to compute the singular value

58

decomposition of a large matrix with dimensions of up to 100, 000. GPUs
are often used to speed-up algorithms consisting of matrix operations, and
computing the singular value decomposition of a large matrix requires the
use of an out-of-core algorithm. As part of solving these challenges we tried
several software packages claiming to be out-of-core and/or GPU-based.
For the following descriptions, we use n as the rank of the matrix before the
rank reduction, and k as the rank of the matrix after the rank reduction.
An overview of the different packages/libraries tested and its characteristics
is displayed in Table 11.1.

11.1.1 QUIC-SVD-GPU

This software is the implementation from the paper “A GPU-Based Ap-
proximate SVD Algorithm” [10] which has extended the QUIC-SVD algo-
rithm [20] to GPU and introduced out-of-core computation of the singular
value decomposition. The implementation was on the website of the author
Sridhar Mahadevan without any sample data attached. Moreover, the au-
thors have made a version of the CPU-based functions for the GPU, without
adding a single line of comment. After sequentially reading the code which
values were read from the input file, we wrote a function which transforms
the data from our sparse data format (i.e. MatrixMarket format) to the
library’s input, which only accepts a dense format (i.e. not storing only
non-zero values, but all values). When trying to compute the SVD of the
full matrix, the software failed due to memory errors. As a result of reading
the code we were able to compute the memory footprint, realising it tries to
allocate a matrix in memory of size k by k, which does not fit into memory.

11.1.2 Libflame

After having used QUIC-SVD-GPU with its lack of documentation, this li-
brary seemed perfect with its extensive documentation. Libflame is very
structured and introduces extensions for splitting the data, essentially in-
troducing out-of-core, and for computing on the GPU. However, the im-
plementation for computing the SVD has not been extended for out-of-core
computation. Moreover, the input data accepts only dense data. Despite the
lack of out-of-core SVD computation, the library does have a lot of potential
because of the extensive documentation and modularisation.

11.1.3 ScaLAPACK

ScaLAPACK (or Scalable Linear Algebra PACKage) is a library that focuses
on performing linear algebra routines using scalable approaches. The pack-
age uses BLAS (Basic Linear Algebra Subroutines) which is very fast and
efficient, and advertises the use of block-partitioned algorithms. However,

59

Package Input Memory Footprint Computation

QUIC-SVD-GPU Dense k × k GPU
Libflame Dense n× n CPU
ScaLAPACK Dense n× n CPU
SVDLIBC Sparse k × k CPU

Table 11.1: Overview of the packages/libraries able to compute the Singular
Value Decomposition.

computing the SVD requires the full matrix to be passed to the function,
which does not fit into memory.

11.1.4 SVDLIBC

After having tested all previous libraries, we decided to test this library
which accepts sparse data instead of dense data. Having learned from the
previous libraries, finding the memory footprint was the first priority. Sim-
ilar to QUIC-SVD-GPU, this library allocates a k by k matrix in memory,
which does not fit into memory.

60

Part II

Human Migration of
Open-Source Contributors

61

Chapter 12

Introduction

Human mobility and migration are popular topics in social sciences research,
where notable studies assumed historical [31, 37], environmental [17] and
social transformation [5] perspectives. In particular, highly skilled workers
have been the focus of numerous studies [3,9,47], and are known to exhibit
different migration behaviour than general population. However, traditional
sources of information about human mobility and migration are expensive in
terms of data collection (e.g. surveys [3,17], census data [28]), or potentially
unavailable (e.g. mobile phone usage [15]).

We focus on a specific group of skilled workers, namely open-source soft-
ware (OSS) contributors, and propose a methodology to study their mobil-
ity and migration patterns. Instead of relying on expensive data collection
methods, our focus on OSS contributors allows us to consider publicly avail-
able artefacts created as a by-product of communication between members
of virtual (online) OSS communities through mailing lists.

Historically, mailing lists were considered the preferred medium for coor-
dinating development and user support activities [18,39,40]. Usually, in OSS
all messages delivered via mailing lists are stored in publicly-available mail-
ing list archives, e.g. to allow OSS developers to reconsider design decisions
made during earlier discussions, or to provide new users of the software with
an accessible learning resource. The wealth of information available in OSS
mailing list archives has triggered a significant amount of attention from the
research community [41]. However, to the best of our knowledge, human
mobility and migration of mailing list participants have not been considered
so far.

To illustrate our approach, we performed a case study on Gnome, a
popular OSS desktop environment and graphical user interface for various
Unix-like operating systems. Using more than fifteen years of archived com-
munication from Gnome mailing lists, we uncovered both regular mobility
(e.g. daily work-home commute, business trips) as well as migration (e.g.
relocating to a different country).

62

Work related to this area of research is described in Chapter 13. We de-
scribe the process of extracting and parsing the Gnome mailing list archives
in Chapter 14, followed by a number of smaller case studies to evaluate our
approach in Chapter 15. The threats to validity are explained in Chapter 16.
Finally, we conclude in Chapter 17, followed by a number of ideas for future
work in Chapter 18.

63

Chapter 13

Related Work

A prerequisite for studying the mobility and migration patterns of OSS
contributors is determining their locations at different moments in time.

Prior work by Takhteyev and Hilts [42] mined GitHub profile pages (since
one of the fields GitHub users can record on their profile pages is their loca-
tion) to determine the location of developers, using a recursive procedure.
They used GitHub’s public API to collect the data from one of the founder’s
accounts, then recursively mined the accounts connected to the founder’s ac-
count, until closure was reached. Profile pages are not typically available for
OSS contributors, and the information recorded there may be incomplete or
unreliable (e.g. on StackOverflow, a popular Q&A site, some users describe
their location as The Matrix, or the Third Rock from the Sun).

Alternatively, more accurate estimates of an OSS contributor’s location
can be made by manually searching the Internet (e.g. social networking
sites, blogs, or company websites) for traces of their activity. In a recent
study, Bird and Nagappan [2] used this technique to identify the location
of the top contributors responsible for 95% of the changes in two large OSS
projects, Firefox and Eclipse. Although accurate, this approach is infeasible
on a larger scale.

Other approaches involve determining the geographic origin of OSS de-
velopers based on their email addresses. Robles and Gonzalez-Barahona [16,
36] extract the top-level domain (TLD) from an email address and assign
developers to a country of origin if their email address has a country-code
TLD (e.g. .nl to The Netherlands). Otherwise, for the remaining individuals
with a non country-code TLD (such as .com, .org, .net), they infer the coun-
try of origin based on their time zone. However, Tang et al. state that “the
analysis of the time zone can only derive the origins of participants to spe-
cific time zone regions instead of particular countries” [43] (p.2). Moreover,
this approach lacks the discriminatory power to reveal in-country mobility,
such as daily work-home commute.

64

Finally, in addition to determining the country of origin by analysing an
email address’ TLD, Tang et al. also developed a different approach, which
uses IP addresses extracted from the email headers. By resolving the IP
address to a geographic location using an IP-based geolocation service, they
were able to assign almost all email addresses to a country. This technique
provides the most promises for human mobility studies, since IP addresses
can typically be resolved to individual cities rather than entire countries,
with high accuracy.

We use the technique described by Tang et al. to reconstruct the ge-
ographical location history of Gnome mailing list participants up to an
accuracy of city-level.

65

Chapter 14

Data Extraction

To be able to research the geographical location history of Gnome mailing
list participants, we need to extract and parse the full mailing list archives,
which is described in Section 14.1. The mailing list archives do not directly
contain the geographical location of the mailing list participants. This is
done by resolving IP addresses to location, which is explained in Section 14.2.
Finally, in Section 14.3 we describe how we are able to reconstruct the
geographical location history of the Gnome mailing list participants using
the data we extracted, parsed and resolved.

14.1 Extracting and Parsing Mailing List Archives

Not all data from emails and email headers is necessary for human mo-
bility studies. To obtain the geographical location history of mailing list
participants, we downloaded and parsed all mailing list archives listed on
the Gnome webpage1. Each parsed email yields:

• name of the sender;

• email address of the sender;

• date and time when the email was sent;

• IP address belonging to the sender.

An example of an unparsed email is shown in Figure 14.1 and is stored
by Mailman in mbox format. The anatomy of an unparsed email consists of
email headers, displayed in italics, and the body, which contains the email
message. Unrelated email headers have been removed from the example.
The data to be extracted from the unparsed email has been underlined.

For each email we extract the email address and name, creating a 〈emailAddress, name〉
tuple. Ideally, every email address has exactly one tuple with one name.

1https://mail.gnome.org/archives/

66

https://mail.gnome.org/archives/

From janedoe@avtechpulse.com Thu Oct 7 12:42:17 2010

Received : from localhost (localhost.localdomain [127.0.0.1])

by menubar.gnome.org (Postfix) with ESMTP id C2932750BDC

for <academia-list@gnome.org>; Thu, 7 Oct 2010 12:42:17+0000 (UTC)

Received : from menubar.gnome.org ([127.0.0.1])

by localhost (menubar.gnome.org [127.0.0.1]) (amavisd-new,

port 10024) with ESMTP id b3u25TvSJFJh for

<academia-list@gnome.org>; Thu, 7 Oct 2010 12:42:15+0000 (UTC)

Received : from storm.avtechpulse.com (storm.avtechpulse.com

[209.87.255.169]) by menubar.gnome.org (Postfix) with ESMTP

id EA574750219 for <academia-list@gnome.org>;

Thu, 7 Oct 2010 12:42:06+0000 (UTC)

Received : from localhost (localhost.localdomain [127.0.0.1])

by storm.avtechpulse.com (Postfix) with ESMTP id BFA5412F8029;

Thu, 7 Oct 2010 08:33:54-0400 (EDT)

Received : from storm.avtechpulse.com ([127.0.0.1])

by localhost (server2.domain.avtechpulse.com [127.0.0.1])

(amavisd-new, port 10024)

with ESMTP id afJUQtWiEqKx; Thu, 7 Oct 2010 08:33:50-0400 (EDT)

Received : from [192.168.0.221] (xena.domain.avtechpulse.com

[192.168.0.221]) by storm.avtechpulse.com (Postfix) with ESMTP

id 3568D12F8028; Thu, 7 Oct 2010 08:33:50-0400 (EDT)

Date : Thu, 07 Oct 2010 08:33:50-0400

From : "Jane Doe" <janedoe@avtechpulse.com>

To : <gdm-list@gnome.org>

Subject : MySQL dump of GNOME bugzilla database?

Hi There!

[...]

- Jane Doe

Figure 14.1: An example of an unparsed email that hopped through a com-
pany domain. The contents of this email have been anonymised for privacy
reasons.

The case study has shown that mailing lists are also used by automated
systems (e.g. a mail for every commit to the version control system or
uploading of new tarballs to the FTP site). Such automated emails are
usually sent on behalf of the person responsible for the action performed.
As these emails are sent on behalf of a person, the “From” email ad-
dress might be the individual’s email address, but it might also be the
email address of the automated system (e.g. noreply@gnome.org, install-
module@master.gnome.org). The tuples belonging to this automated email
address will contain different names, thus not belonging to a single person.
As we are interested in the emails sent by individuals, the emails sent by
an automated system are not interesting. To avoid these email addresses,
we have aggregated the tuples on the emailAddress, creating a list of name
values for each emailAddress. Ordering the list of emailAddress values by
number of different name values, we were able to filter the email addresses

67

having different name values manually, as the email addresses with the most
distinct name values will be shown on top when ordered in descending order.

The name of the sender of the email can be found in the “From” header.
There are many inconsistencies in the mailing list archives due to the use of
different mail clients. Some mail clients violate2 RFC-20473 which describes
email headers containing non-ASCII text. Non-ASCII text (e.g. Ernesto
Jiménez Caballero) is encoded in an ASCII representation (e.g. Ernesto
=?ISO-8859-1?Q?Jim=E9nez?= Caballero) when used in an email header.
These ASCII representations need to be decoded to find the unique name
because a name can have different representations when using different en-
codings.

An unparsed email does not contain a single email address. There is one
email address in the first line, from here on referred to as “FromTop”, and
one in the “From” header, which we will refer to with “FromHeader”. The
headers of an email can have only one “From” header. The mbox format
states that the FromTop is the return path email address. Depending on
how the email is sent (i.e. automated, webmail, mail client), the FromTop
and FromHeader may differ. Based on our analysis of the data, we can not
rely solely on the FromTop, nor can we rely solely on the FromHeader. For
this reason, we extract both email addresses.

To filter the uninteresting (automated) email addresses, we introduce
a blacklist. By adding the uninteresting email addresses to the blacklist
manually, we make sure we do not blacklist any interesting email addresses.
Blacklisting an email address means we do not accept the value parsed from
FromTop or FromHeader. When either the FromTop or FromHeader appears
in the blacklist, the email is ignored. When FromTop 6= FromHeader and
both do not appear on the blacklist, we default to FromHeader as the email
address. We have chosen to default to FromHeader because the FromTop
is determined by the SMTP server, and the FromHeader by the user. It is
very common to use multiple email addresses while only having access to
only one SMTP server. Therefore, the logical email address to reply to is
the FromHeader value.

The following email addresses have been manually added to the blacklist:

• membership-committee@gnome.org

• membership-applications@gnome.org

• gnome-membership@gnome.org

• member@linkedin.com

• install-module@master.gnome.org

2https://bugs.launchpad.net/mailman/+bug/266370
3http://www.ietf.org/rfc/rfc2047.txt

68

https://bugs.launchpad.net/mailman/+bug/266370
http://www.ietf.org/rfc/rfc2047.txt

Word Prefix Domain

noreply mailer-daemon @widget.gnome.org
bounce bugzilla-daemon
gmane

Table 14.1: Blacklisted values when parsing the raw emails.

• bugzilla@gnome.org

• forums@gimpusers.com

• apache@gnome.org

Additionally, we found a number of email address prefixes and domains
which span multiple automated email addresses. Finally, three words were
added to the blacklist; if an email address contains one of the words, the
email address is considered blacklisted. A summary of these blacklisted
values is found in Table 14.1.

The word bounce was seen only in email addresses that sent bounce
messages, an email from a mail system informing the sender of another
message about a delivery problem. An email may bounce for several reasons,
e.g. the email address no longer exists or the email address’ mailbox is
full. Thus the bounce message is automated and blacklisted. Gmane4 is a
gateway to multiple mailing lists, allowing access through a variety of web
interfaces. In addition to incoming mail, Gmane can also be used to post
to mailing lists. When posting to Gnome’s mailing list archives through
Gmane, the email traces back to Gmane’s servers and is therefore semi-
automated. Hence, Gmane’s emails are blacklisted.

The date and time when an email was sent can be parsed from the “Date”
header in the email. Most popular languages have a string to date parser
available, similar to the datetime class from Python, which we used.

Extracting the IP address belonging to the email sender is not straight-
forward. The IP addresses displayed in Figure 14.1 are all in the Received
headers. A received header is added for each mail hop by the mail server,
at the top of the list. Therefore the bottommost received header is the one
closest to the email sender. Since we are interested in the IP address of the
email sender, it is required to extract the correct IP address. To extract the
correct IP address, we separated the received headers into two partitions;
The from and by partitions. As each received header is added at each mail
hop, the from partition contains the domain or hostname, and, optionally,
the IP address the email originated from. Similarly, the by partition contains
the domain or hostname the email was received by, optionally including the
IP address. As IP addresses are optional in the from and by partitions, not
all emails can be resolved to a location.

4http://gmane.org/

69

http://gmane.org/

xena

storm

“localhost”

gnome

1

2 3

4

Figure 14.2: A visual representation of the email hops from source to desti-
nation.

IP addresses used in a local network can not be resolved to a location.
Therefore we ignore all local IP addresses when parsing an email. The
following IP address ranges are considered local based on RFC-19185 and
RFC-57356:

10.0.0.0 - 10.255.255.255
172.16.0.0 - 172.31.255.255
192.168.0.0 - 192.168.255.255
127.0.0.0 - 127.255.255.255
192.0.0.0 - 192.0.0.255
192.0.2.0 - 192.0.2.255

Figure 14.2 displays a visual representation of the path the unparsed
email in Figure 14.1 has followed. When hopping within a local network, IP
addresses in the corresponding received headers will be local IP addresses
only. Therefore we are interested in the IP address as soon as the email
hops to a mail server outside the local network. In Figure 14.2 the hop
that goes outside the local network is represented by the arrow with number
4. In turn, the fourth received header (i.e. fourth from the bottom) in
the unparsed email in Figure 14.1 contains the IP address of the company
domain (i.e. 209.87.255.169).

As a result, we are able to parse the emails from the mailing list archives,
yielding a name, email address, date and IP address for each email. To
create a geographical location history, we need to resolve each IP address to
a location.

5http://tools.ietf.org/html/rfc1918
6http://tools.ietf.org/html/rfc5735

70

14.2 Resolving IP Address To Location

After parsing all emails, the next step is to resolve all IP addresses to
locations. There are multiple organisations, both commercial and non-
commercial, which offer solutions to resolve an IP address to a geographic
location. Because resolving an IP address to a location is not 100% accu-
rate7 (i.e. ≈ 99% at country-level and ≈ 64% at city-level), we have decided
to use multiple IP-based geolocation services:

• IP2Location8, a commercial solution supplying a free database of IP
addresses ranging from 0.0.0.0− 99.255.255.255.

• MaxMind’s GeoLite City9

• hostip.info10

• IPInfoDB11

An IP address that is resolved to a geographic location by an IP-based
geolocation service yields a city, country, longitude and latitude tuple. We
resolved all IP addresses using all of the above mentioned IP-based geoloca-
tion services. Due to lack of accuracy, some IP addresses yielded no results,
and some IP addresses resolved to an incorrect location. By using mul-
tiple IP-based geolocation services, we increased the confidence of the IP
addresses resolving to the correct location. We defined the confidence that
an IP address resolves to location A as the number of IP-based geolocation
services that resolve to location A divided by the total number of IP-based
geolocation services that were able to resolve to a location for that IP ad-
dress:

conf(A) =
#IP-based geolocation services resolving to location A

#IP-based geolocation services that resolved to a location

After computing the confidence for each resolved location for each IP
address, we choose the location with the highest confidence for each IP
address.

Using different data sources to resolve an IP address to location has also
caused inconsistencies in the data. When two different data sources resolve
to the same location, the longitude and latitude values may differ. Moreover,
not all data sources supply a region with their location. To resolve these
issues, all locations were resolved using the Google Maps API to ensure
consistent naming conventions and longitude/latitude values.

7http://www.maxmind.com/en/geolite_city_accuracy
8http://ip2location.com/
9http://dev.maxmind.com/geoip/geolite

10http://www.hostip.info/
11http://ipinfodb.com/

71

http://www.maxmind.com/en/geolite_city_accuracy
http://ip2location.com/
http://dev.maxmind.com/geoip/geolite
http://www.hostip.info/
http://ipinfodb.com/

The parsed data from the mailing list archives contains 227, 751 unique
IP addresses, which were resolved to 10, 448 different locations. A total of
1, 746 IP addresses were unable to be resolved to location using any of the
different IP-based geolocation services that were used.

14.3 Computing Migrations

As a result of performing the steps described in the previous sections, we
collected the following information for each mailing list participant:

• List of names used by the mailing list participant;

• List of email addresses used by the mailing list participant;

• List of locations the mailing list participant sent emails from, including
a date and time for each.

This information can be aggregated to reconstruct the geographical location
history of each mailing list participant, which in turn can serve as basis for
mobility and migration studies.

When aggregated by mailing list participant, we basically create a list of
〈timestamp, location〉 tuples denoting when and where the sender was. Such
tuples can appear redundant when a person resides in the same location for
a longer period:

• 〈2007-05-07,madrid (spain)〉;

• 〈2007-06-02, alcobendas (spain)〉;

• 〈2007-07-03, vienna (austria)〉;

• 〈2007-07-08, vienna (austria)〉;

• 〈2007-08-14, vienna (austria)〉;

• 〈2007-09-12, vienna (austria)〉;

• 〈2007-09-19,madrid (spain)〉;

• 〈2007-09-25,madrid (spain)〉;

• 〈2007-10-02,madrid (spain)〉.

In the geographical location history we are only interested in the first
and last timestamp a person was residing at a location. To remove the
redundant tuples, we make sure they are sorted by timestamp. Next we
scan through the tuples looking for three consecutive tuples with the same
location. The second tuple is removed, as our data shows the sender of the
email has not left that location. We repeat this process until there are no
three consecutive tuples with the same location. As a result, we get a list
of tuples with at most two consecutive tuples with the same location:

72

• 〈2007-05-07,madrid (spain)〉;

• 〈2007-06-02, alcobendas (spain)〉;

• 〈2007-07-03, vienna (austria)〉;

• 〈2007-09-12, vienna (austria)〉;

• 〈2007-09-19,madrid (spain)〉;

• 〈2007-10-02,madrid (spain)〉.

73

Chapter 15

Evaluation

The geographical location history obtained from the public mailing list data
is not perfect, in the sense that not every email resolves to the location of
the sender, or worse, the email was not sent by the email address owner
(i.e. as a result from email spoofing; the creation of email messages with a
forged sender address). To evaluate correctness of the geographical location
history we intend to deploy a questionnaire allowing mailing list participants
to confirm or refute our findings. While deploying this questionnaire is
considered as part of future work, we performed a number of smaller case
studies to evaluate our approach.

15.1 Pilot Evaluation

We have contacted a Gnome developer, Carlos, whom we knew personally
to review the data obtained for him. Carlos participated in a pilot version
of our questionnaire. According to our data, Carlos has sent 333 emails
from six different locations: Carlos has confirmed that he has indeed been
present at five out of six locations. In the dataset, 19 mails have been as-
sociated with the location he never visited, which means the remaining 314
emails have resolved to the correct location of the email sender. Moreover,
Carlos has indicated one of the locations as his work and another one as
his home. These locations correspond to 178 and 103 mails, respectively.
The remaining emails were sent from countries different than the country of
Carlos’s home and work. 32 of these were sent from a foreign country dur-
ing the period of a summer vacation typical for Carlos. The only remaining
mail was sent in August 2011 from Berlin, Germany—the exact time and
location of GUADEC, the Gnome Users And Developers European Confer-
ence. A timeline representation of the mails sent by Carlos are displayed in
Figure 15.3.

74

15.2 Going On A Business Trip

GUADEC, the Gnome Users And Developers European Conference, is the
annual European conference known to attract hundreds of Gnome devel-
opers every year. Given the importance of GUADEC for the Gnome com-
munity and encouraging result of the pilot evaluation, we have chosen to
investigate whether the geographical location history we have obtained can
reveal co-location of multiple mailing list participants at GUADEC sites.

We have focused on five recent editions of GUADEC:

• Birmingham, United Kingdom (2007),

• Istanbul, Turkey (2008),

• Gran Canaria, Spain (2009),

• The Hague, Netherlands (2010),

• and Berlin, Germany (2011).

We crawled websites of these events to obtain the names of the speakers.
Subsequently, we created a list with people that sent an email within the
time frame of the conference, given the emails resolved to the same country
in which the conference was held. Finally, we compared the names from the
GUADEC websites with the list obtained from our data. We stress that
the disparity between the mailing list data and the website data can be
expected: not all GUADEC participants mail to the Gnome mailing lists
while attending a conference, and not all conference participants give talks,
i.e. not all conference participants are “visible” on the websites.

Additionally, we looked at mailing list participants that were sending
emails during multiple conferences. We are interested in the mailing list
participants that have travelled to the location of the conference. To sepa-
rate the mailing list participants that are visiting the conference from the
local mailing list participants, we only confirm a mailing list participant as
visiting the conference if the participant has sent mails during multiple con-
ferences from the location of the conference. Moreover, this approximation
was required due to imperfect accuracy of the IP-based geolocation services:
IPs used by conference participants might not have always been resolved to
the conference city.

Table 15.1 summarises our findings. Website denotes the number of
mailing list participants whose name was present on the GUADEC website;
Total website indicates the total number of names obtained by crawling
the website; Multiple conf. denotes the number of mailing list participants
that sent emails during multiple conferences from the same country the
conference was held; Confirmed mailing list participants are the participants
that came out positive for the website value or for the multiple conferences
value; Total mailers is the number of mailing list participants that sent

75

Year Website Total website Multiple conf. Confirmed Total mailers

2007 10 130 9 14 40
2008 8 75 8 11 15
2009 9 132 12 16 31
2010 18 72 10 25 44
2011 6 137 5 9 39

Total 45 20 51 145

Table 15.1: The number of mailing list participants whose name was on the
website, and who visited multiple conferences.

emails during the conference from the same country the conference was held;
Total denotes the total number of unique mailing list participants among all
conferences. Inspecting the values we have observed that approximately 35%
of the total mailers are “confirmed”, i.e. came out positive for the website
value or for the multiple conferences value. In other words, 35% of the
people that have sent emails during the conference from the same country the
conference was held have been “confirmed” to visit the conference. Either
by having their name on the website (e.g. giving a presentation), or by
sending mails from multiple conferences, i.e. ruling out the local mailing list
participants.

15.3 Finding Skilled Migration

The data we have collected on the mailing list participants contains errors
as the IP addresses found in the emails not always belong to the sender,
and the process of resolving location from an IP address is not completely
accurate. To find the people that have migrated to a different country, we
have applied a number of techniques to reduce the noise from erroneous data
and to find incorrect location resolutions.

Firstly, we apply a filter on the data that filters out the individuals that
have been in only one country. Secondly, we apply the sliding window algo-
rithm – displayed in Figure 15.1 – on the remaining individuals’ migrations
to smooth out data inconsistencies. The sliding window algorithm looks at
one entry from a list, using a window, and decides whether it should be
changed, before moving to the next entry. Whether the entry should be
changed depends on the dominant values on the left or right, if they have
one. Both left and right of the window are three entries which can have a
dominant value. If the entry in the window equals the dominant value from
one of the sides, the entry remains unchanged. If it differs, the entry will be
changed to the dominant value of either side.

76

t0 NL NL NL NL NL ES NL NL NL NL NL

t1 NL NL NL NL NL ES NL NL NL NL NL

t2 NL NL NL NL NL NL NL NL NL NL NL

Figure 15.1: An example of the sliding window algorithm.

After applying the sliding window algorithm, we perform a final consis-
tency check based on the combination of time and location. Having two
consecutive location, we have the time the individual was present at these
locations, and thus the amount of time to travel from one location to the
other. By dividing the distance by the travel time, we are able to compute
the speed at which the individual must have traveled. If the travel time is
less than two hours, we assume a maximum speed of 120km/h, which is the
maximum allowed speed on freeways in most countries. If the travel time is
more than two hours, we allow a maximum speed of 500km/h assuming the
individual takes a plane. Despite these conditions, our data shows people
have traveled at much greater speeds, which is likely a result of incorrect
location resolution.

Finally, we aggregated the data on the migrations between each two
countries. If an individual moves back and forth between locations A and
B multiple times, the migrations A⇒ B and B ⇒ A are only counted once
per individual. The results of these migrations are displayed in Figure 15.2.

Docquier and Marfouk [8] have studied skilled migration that occurred
in 1990 and 2000. From the migrants with tertiary education in 1990, 49.8%
migrated to the USA, 15.1% migrated to Canada and 4.6% migrated to the
UK. These numbers are similar for 2000: 50.7% migrated to the USA, 13.4%
migrated to Canada and 6.2% migrated to the UK. The rates of migration
revealed in Figure 15.2 are similar to the numbers Docquier and Marfouk
have uncovered.

15.4 Meeting Individual Gnome Developers

In addition to the previous case studies, we tried to verify the data for
a number of individuals manually. These individuals were found using a

77

unitedkingdom

germany sweden unitedstates

spain canada

italy russianfederation

switzerland ireland australia

newzealand

argentina

france

Figure 15.2: Migrations between countries identified from the mailing list
archives. To filter on interesting countries, we filtered on edges with
weight ≥ 2.

timeline representation after applying the smoothing algorithm explained in
Section 15.3. By searching the internet manually using only their names
and email addresses, we were able to confirm a number of migrations. The
timeline representation for the individuals mentioned in this section is dis-
played in Figure 15.3. For privacy reasons we do not disclose the cities for
any of the following individuals.

One of the Gnome mailing list participants, named Martin, has a per-
sonal website which describes his previous and current city of residence. Ac-
cording to our data, he sent emails from Denmark from 1998 until September
2001. From November 2001 onwards, the emails have resolved to Canada.
On Martin’s personal website, he states “Before moving to Canada I was
working in Denmark for 5 years ...”, proving our data is able to identify
individuals that move to a different country.

Sergey, who is a member of the Gnome foundation since 2000 according
to his LinkedIn page, has completed his education in Russia. His current
location is Ireland, which coincides with our data. 10 mails were sent from
Russia from January 1999 until July 2000. Starting from September 2000,
mails resolved to Ireland. According to LinkedIn, Sergey worked for a com-
pany that is based in two different cities in Ireland. The 721 mails that were
sent from Ireland mainly resolved to these two cities. After leaving this
company, we see his activity on the Gnome mailing list reduced greatly,
which could mean his work was related to Gnome.

Ronald is a Dutch Gnome developer that has migrated to the USA after
finishing his education in the Netherlands in 2005. Our data shows he sent

78

(a) The timeline representation showing colour-coded lines for each email on a
certain location, grouped by week.

(b) The timeline representation showing colour-coded bars for consecutive mails on
a certain location.

Figure 15.3: Timeline representations of the manually verified Gnome mail-
ing list participants in two different versions. In Subfigure 15.3a colour-
coded lines for each email on a certain location, grouped by week; in Sub-
figure 15.3b colour-coded bars for consecutive mails on a certain location.

mails from the Netherlands from October 2000 until August 2005. Starting
from the end of August 2005, the emails resolved to the USA. Visiting his
personal blog revealed he moved to New York City at the end of August
2005, confirming our data. In this blog post Ronald states he needs to
change his focus from coding to studying. This confirms why his activity on
Gnome’s mailing list reduced after moving to the USA.

Another individual, Mario, has also been active in multiple countries.
Our data shows that he was mostly active in Germany (e.g. 227 emails from

79

the city he has been most active in), but was also active in the Netherlands
(e.g. 125 emails from the city he has been most active in). The website we
found that was able to verify these findings is a profile page which states he
can be contacted in English, German or Dutch.

Another Dutch Gnome mailing list participant, Dirk-Jan has moved to
Finland. On his personal website he states he is Dutch and lives in Finland.
From August 1998 until May 2003, a total of 94 emails were sent from the
Netherlands, followed by two mails from Australia. Looking at Dirk-Jan’s
old blog on the date of these two mails confirms he was indeed in Australia
during that time. After these two mails, the remaining mails mainly (77
emails) resolve to Finland.

Germán, another Gnome developer, has moved from Chile to Canada.
His personal blog states he is currently a PhD student in Canada, which is
likely the reason for the migration. Additional proof of him originating from
Chile is a tweet which states he was at Chile for 5 weeks, and was flying
back to Canada. According to our data, this developer has sent a total of
479 emails from Chile from May 2001 until May 2010. From this point, all
emails (116) resolved to Canada. Verifying the locations with GUADEC,
we have been able to identify that Germán visited GUADEC in 2008, 2009,
2010 and 2011.

Typical migrating Gnome mailing list participants show similar be-
haviour: A number of mails from their home country, followed by a number
of mails from the country they migrated to. In between the mails from the
country they migrated to occasionally occur a few mails from their home
country, showing they still visit their home country after migrating (e.g.
visiting friends, family). The amount of activity before and after migrating
varies. e.g. Ronald’s activity decreased after migrating to the USA, likely
to focus on studying as mentioned in his blog post. In contrast, Sergey’s
activity went up when moving to Ireland. It’s possible Sergey was offered a
position at a company in Ireland that is related to Gnome, explaining the
increased activity when working for that company.

15.5 Doing Business With Corporate Email Ad-
dresses

The final case study we performed focuses on the use of corporate email
addresses. We chose three companies (i.e. Red Hat, Novell, Ximian) whose
employees have been active on the mailing lists. The employees of the com-
panies Red Hat, Novell and Ximian have sent 144,472, 32,931, and 98,787
emails, respectively, between 1997-05-01 and 2012-04-11. Assuming a cor-
porate email address (i.e. @redhat.com, @novell.com, @ximian.com) uses a
mail server which is placed in the office, the emails should resolve to the
location of the offices of the company. With this assumption, we performed

80

%Positive %Negative #Positive #Negative #Total

Red Hat 98.64% 1.36% 142503 1969 144472
Novell 92.65% 7.35% 30509 2422 32931
Ximian 85.95% 14.05% 84903 13884 98787
Overall 93.38% 6.62% 257915 18275 276190

Table 15.2: Emails sent from company office locations

a cross validation between the locations of the companies’ offices, and the
locations resolved from the emails using our technique.

We extracted the list of offices, including address information, from the
company websites of Red Hat and Novell, having a total of 51 and 75 offices,
respectively. Ximian was bought by Novell in 2003, after which it continued
to develop Ximian’s original products. Moreover, Ximian’s email address
alias has been used years after being bought by Novell. Ximian’s website
no longer exists and we have not been able to find proof of existing Ximian
offices, with the exception of the original Ximian headquarters located in
Boston, Massachusetts, United States. Therefore we have assumed that
Ximian employees were sharing offices with Novell employees, and have de-
cided to use the list of Novell office locations, including the original Ximian
headquarters, for both Novell and Ximian. Adding the original Ximian
headquarters to Novell’s offices, the list adds up to a total of 76 offices for
both Novell and Ximian.

Emails that resolve to a location which coincides with the location of a
company office will be flagged as “positive”. In turn, emails that resolve to
a location which does not coincide with the location of a company office,
will be flagged as “negative”.

In Table 15.2 we see that the accuracy of the inferred locations is rela-
tively high. For Red Hat, we were able to verify that one of the employees
was present at a GUADEC, and the emails sent from that location resolved
to the office of Red Hat. For the remaining companies, we have not been
able to find such an example.

81

Chapter 16

Threats to Validity

In this chapter we present the limitations and threats to validity for our
approach on reconstructing the geographical location history of Gnome’s
mailing list participants.

16.1 Construct Validity

As part of parsing the extracted mailing list archives in Section 14, a black-
list prevents automated messages to be parsed and considered as emails
sent by actual people. The process of assembling the blacklist is manual
and a manner of trial and error and is therefore prone to errors, especially
considering the size of the data set: 73, 920 unique email addresses.

Including an IP address when the Received header is added by a mail
server when the email hops between servers is optional. Additionally, not all
mail servers and email clients comply to the RFC standard, likely increas-
ing the chance for incorrectly parsing an email. Moreover, corporate virus
scanners (e.g. amavisd-new1) act as a mail server located on “localhost”
that add additional Received headers. These inconsistencies were identified
by manually looking at the data before and after parsing. Additionally, we
have found a number of emails that were spoofed, i.e. sent with a forged
sender address, and included a virus as attachment. These emails were sent
from an infected system different from the email address owner, yielding
erroneous emails, and thus erroneous locations for the owner of the email
address. We have eye-balled the mailing archive messages and found only a
limited period of spoofing, suggesting that for the lion’s share of time our
data is reliable. It is possible that more of these inconsistencies exist in the
data.

As the mailing list archives are very large, it is possible to have different
people with the same name in the data set (e.g. David Smith, which is a
common name in the USA). Especially as a result of the identity matching,

1http://www.ijs.si/software/amavisd/

82

 http://www.ijs.si/software/amavisd/

it is possible that a number of email addresses were matched as having the
same owner, while they actually have different owners. These false positives
are aggregated by individual to reconstruct the geographical location history
and are likely to create false migrations.

16.2 Internal Validity

Resolving a geographic location from an IP address at city level is not 100%
accurate. We have used multiple IP-based geolocation services to increase
the confidence an IP address resolves to a certain location, but this will not
make the results perfect. During the case study in Section 15.4 we found
a number of IP addresses which resolved to an incorrect city. One of the
data sources resolved to the correct location, but the majority of the data
sources resolved to the incorrect location. Hence, the incorrect location was
chosen as location for the IP address.

16.3 External Validity

We have extracted Gnome’s mailing list archives, which are managed by
Mailman, the GNU mailing list manager. This makes the process described
in this report universal for all open-source software projects that use Mail-
man. However, the blacklisted values that filter automated mails are dif-
ferent for any mailing list. This makes the process partially transferable
between different data sets.

83

Chapter 17

Conclusions

Using public mailing lists, we have been able to uncover locations and mobil-
ity of mailing list participants. We have described the process in Chapter 14
that extracts mails from a mailing list archive, parses the mails, and finds
mailing list participants that have migrated throughout the history of using
the mailing list archive by resolving IP addresses to location.

We extract the name, email address, timestamp and IP address from each
mail in Section 14.1. We presented the pitfalls when parsing a raw email ex-
tracted from the mailing list archive, and a blacklist to ban automated email
addresses that do not resolve to actual mailing list participants. Using iden-
tity matching we find all email addresses that belong to the same individual,
essentially aggregating the mails by individual people. The IP addresses are
resolved to location using multiple IP-based geolocation services to increase
the confidence of resolving the correct location (Section 14.2). Finally, we
compute the migrations by removing redundant consecutive locations in Sec-
tion 14.3, which gives us the geographical location history for each mailing
list participant.

These migrations were verified using a pilot questionnaire in Section 15.1
that was entered by a single person, which shows the data can be accurate:
314 out of 333 emails resolved to the correct location on city-level. Addition-
ally, we have validated the presence of a number of mailing list participants
at GUADEC, the Gnome Users And Developers European Conference, in
Section 15.2, which shows that 51 out of 145 mailing list participants have
been confirmed to visit the conference. Furthermore, after applying smooth-
ing and a consistency check, we created a graph showing the amount of
mailing list participants migrating between countries in Section 15.3. This
graph shows similar migration rates as the numbers presented in earlier stud-
ies on skilled migration. By searching the internet manually we were able
to verify the locations of additional mailing list participants in Section 15.4.
We have shown and verified the data we collected on a number of mail-
ing list participants; we have confirmed that Martin moved from Denmark

84

to Canada, Sergey finished his education in Russia and moved to Ireland,
Ronald migrated to the USA after completing his education in the Nether-
lands, Mario often travels between Germany and the Netherlands, Dirk-Jan
moved from the Netherlands to Finland, and finally Germán moved from
Chile to Canada for a PhD position and visited GUADEC in 2008, 2009,
2010 and 2011. As final case study, we compared the locations from corpo-
rate email addresses to the location of the company offices, showing that the
majority of the emails were sent from the actual company (Section 15.5).

85

Chapter 18

Future Work

Instead of a small pilot evaluation (Section 15.1), we consider a full-scale
questionnaire as future work. The results from this questionnaire will lead
us toward unforeseen errors and will expose the accuracy and reliability of
our approach.

After doing a full questionnaire, we can perform more extensive pattern
mining to discover mobility patterns among Gnome mailing list partici-
pants. Furthermore, we can combine different aspects with mobility patterns
(e.g. activity before and after moving).

In addition to large-scale detection of mobility patterns or coinciding
mobility patterns, one can think about investigation at the level of smaller
developer groups: are translators more likely to attend GUADEC-like meet-
ings than coders (cf. [45]) or are women more mobile than men (cf. [44])?
Furthermore, one can study whether the mobility and migration patterns
observed for Gnome developers are similar to those described for skilled
workers in earlier studies [3, 9, 47].

Using the timeline representation in Figure 15.3 we have identified and
verified a number of Gnome mailing list participants that have migrated.
However, this timeline representation does not give any insight on the amount
of activity. For example, in Figure 15.3a a single line means that one or more
emails were sent during a certain week. Combining the timeline represen-
tation with the characteristics of a bean plot (i.e. thickness of the line/bar
is determined by the number of emails), we might get a better insight in
correlation between migration and activity of the Gnome mailing list par-
ticipant.

We have only extracted, parsed and evaluated the mailing list archives
from a single project (i.e. Gnome). To discover the generalisability of our ap-
proach, we will need to perform this study on multiple mailing list archives.

86

Bibliography

[1] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Min-
ing Email Social Networks. In Proceedings of the 2006 international
workshop on Mining software repositories, MSR ’06, pages 137–143,
New York, NY, USA, 2006. ACM.

[2] C. Bird and N. Nagappan. Who? Where? What? Examining Dis-
tributed Development in Two Large Open Source Projects. In Mining
Software Repositories (MSR), 2012 9th IEEE Working Conference on,
pages 237–246. IEEE, 2012.

[3] G. J. Borjas, S. G. Bronars, and S. J. Trejo. Self-selection and internal
migration in the united states. Journal of Urban Economics, 32(2):159–
185, 1992.

[4] R. B. Bradford. An Empirical Study of Required Dimensionality for
Large-scale Latent Semantic Indexing Applications. In Proceedings of
the 17th ACM conference on Information and knowledge management,
pages 153–162. ACM, 2008.

[5] S. Castles. Understanding global migration: A social transformation
perspective. Journal of Ethnic and Migration Studies, 36(10):1565–
1586, 2010.

[6] P. Christen. A Comparison of Personal Name Matching: Techniques
and Practical Issues. In Data Mining Workshops, 2006. ICDM Work-
shops 2006. Sixth IEEE International Conference on, pages 290–294.
IEEE, 2006.

[7] W. Cohen, P. Ravikumar, and S. Fienberg. A Comparison of String Dis-
tance Metrics for Name-Matching Tasks. In Proceedings of the IJCAI-
2003 Workshop on Information Integration on the Web (IIWeb-03),
pages 73–78, 2003.

[8] F. Docquier and A. Marfouk. International Migration by Educational
Attainment (1990-2000)-Release 1.1. database, 1990:16, 2000.

88

[9] F. Docquier, A. Marfouk, S. Salomone, and K. Sekkat. Are skilled
women more migratory than skilled men? World Development,
40(2):251–265, 2012.

[10] B. Foster, S. Mahadevan, and R. Wang. A GPU-based approximate
SVD algorithm. In Parallel Processing and Applied Mathematics, pages
569–578. Springer, 2012.

[11] T. Gadd. PHONIX: The Algorithm. Program: electronic library and
information systems, 24(4):363–366, 1990.

[12] D. German. The GNOME project: a case study of open source, global
software development. Software Process, 8(4):201–215, 2003.

[13] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles. Free/libre and open
source software: Survey and study, 2002.

[14] M. Goeminne and T. Mens. A Comparison of Identity Merge Algo-
rithms for Software Repositories. Science of Computer Programming,
2011.

[15] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. Understanding
individual human mobility patterns. Nature, 453:779–782, 2008.

[16] J. M. Gonzalez-Barahona, G. Robles, R. Andradas-Izquierdo, and R. A.
Ghosh. Geographic Origin of Libre Software Developers. Information
Economics and Policy, 20(4):356 – 363, 2008. Empirical Issues in Open
Source Software.

[17] C. Gray and R. Bilsborrow. Environmental influences on human mi-
gration in rural ecuador. Demography, 50(4):1217–1241, 2013.

[18] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen.
Communication in open source software development mailing lists. In
Mining Software Repositories, pages 277–286. IEEE, 2013.

[19] D. Holmes and M. C. McCabe. Improving Precision and Recall for
Soundex Retrieval. In Information Technology: Coding and Computing,
2002. Proceedings. International Conference on, pages 22–26. IEEE,
2002.

[20] M. P. Holmes, J. Isbell, C. Lee, and A. G. Gray. QUIC-SVD: Fast SVD
Using Cosine Trees. In Advances in Neural Information Processing
Systems, pages 673–680, 2008.

[21] R. Hölzer, B. Malin, and L. Sweeney. Email Alias Detection using Social
Network Analysis. In Proceedings of the 3rd international workshop on
Link discovery, pages 52–57. ACM, 2005.

89

[22] A. Iqbal and M. Hausenblas. Integrating Developer-related information
across Open Source Repositories. In Information Reuse and Integra-
tion (IRI), 2012 IEEE 13th International Conference on, pages 69–76.
IEEE, 2012.

[23] Y.-S. Kim, J.-H. Chang, and B.-T. Zhang. An empirical study on
dimensionality optimization in text mining for linguistic knowledge ac-
quisition. In Advances in Knowledge Discovery and Data Mining, pages
111–116. Springer, 2003.

[24] S. Koch and G. Schneider. Effort, co-operation and co-ordination in an
open source software project: GNOME. Information Systems Journal,
12(1):27–42, 2002.

[25] E. Kouters, B. Vasilescu, and A. Serebrenik. Who’s Who on GNOME
Mailing Lists: Identity Merging on a Large Data Set. 12th Belgian-
Netherlands Software Evolution Seminar (BeNeVol 2013), pages 33–34,
dec. 2013.

[26] E. Kouters, B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand.
Who’s who in GNOME: Using LSA to merge software repository iden-
tities. In Software Maintenance (ICSM), 2012 28th IEEE International
Conference on, pages 592 –595, sept. 2012.

[27] A. Lait and B. Randell. An Assessment of Name Matching Algorithms.
Technical Report Series-University of Newcastle Upon Tyne Computing
Science, 1996.

[28] M. Levy. Scale-free human migration and the geography of so-
cial networks. Physica A: Statistical Mechanics and its Applications,
389(21):4913–4917, 2010.

[29] M. Ley. The DBLP Computer Science Bibliography: Evolution, Re-
search Issues, Perspectives. In String Processing and Information Re-
trieval, pages 1–10. Springer, 2002.

[30] M. Ley. DBLP: Some Lessons Learned. Proceedings of the VLDB
Endowment, 2(2):1493–1500, 2009.

[31] W. H. McNeill. Human migration in historical perspective. Population
and Development Review, 10(1):1–18, 1984.

[32] B.-W. On, D. Lee, J. Kang, and P. Mitra. Comparative Study of Name
Disambiguation Problem using a Scalable Blocking-based Framework.
In Proceedings of the 5th ACM/IEEE-CS joint conference on Digital
libraries, pages 344–353. ACM, 2005.

90

[33] M. Perrow and D. Barber. Tagging of Name Records for Genealogical
Data Browsing. In Digital Libraries, 2006. JCDL’06. Proceedings of the
6th ACM/IEEE-CS Joint Conference on, pages 316–325. IEEE, 2006.

[34] W. Poncin, A. Serebrenik, and M. G. J. van den Brand. Process Min-
ing Software Repositories. In Software Maintenance and Reengineering
(CSMR), 2011 15th European Conference on, pages 5 –14, march 2011.

[35] G. Robles and J. M. Gonzalez-Barahona. Developer identification meth-
ods for integrated data from various sources. In Proceedings of the 2005
international workshop on Mining software repositories, MSR ’05, pages
1–5, New York, NY, USA, 2005. ACM.

[36] G. Robles and J. M. Gonzalez-Barahona. Geographic Location of Devel-
opers at SourceForge. In Proceedings of the 2006 international workshop
on Mining software repositories, MSR ’06, pages 144–150, New York,
NY, USA, 2006. ACM.

[37] W. Scheidel. Human mobility in Roman Italy, I: The free population.
The Journal of Roman Studies, 94:1–26, 2004.

[38] W. Shen, X. Li, and A. Doan. Constraint-Based Entity Matching. In
AAAI, pages 862–867, 2005.

[39] V. Singh, M. B. Twidale, and D. M. Nichols. Users of open source
software - How do they get help? In HICSS, pages 1–10. IEEE, 2009.

[40] S. K. Sowe, I. Stamelos, and L. Angelis. Understanding knowledge
sharing activities in free/open source software projects: An empirical
study. JSS, 81(3):431–446, 2008.

[41] M. Squire. How the floss research community uses email archives.
IJOSSP, 4(1):37–59, 2012.

[42] Y. Takhteyev and A. Hilts. Investigating the geography of open source
software through GitHub, 2010.

[43] R. Tang, A. E. Hassan, and Y. Zou. Techniques for Identifying the
Country Origin of Mailing List Participants. In Reverse Engineering,
2009. WCRE ’09. 16th Working Conference on, pages 36 –40, oct. 2009.

[44] B. Vasilescu, A. Capiluppi, and A. Serebrenik. Gender, representation
and online participation: A quantitative study of StackOverflow. In
ASE International Conference on Social Informatics, pages 332–338.
IEEE, 2012.

[45] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens. On the varia-
tion and specialisation of workload–A case study of the Gnome ecosys-
tem community. Empirical Software Engineering, pages 1–54, 2013.

91

[46] G. Wang, H. Chen, and H. Atabakhsh. Automatically Detecting De-
ceptive Criminal Identities. Communications of the ACM, 47(3):70–76,
2004.

[47] A. M. Williams. Listen to me, learn with me: International migra-
tion and knowledge transfer. British Journal of Industrial Relations,
45(2):361–382, 2007.

92

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Outline
	Publications arisen from this report

	Case Study – Gnome
	I Identity Matching
	Introduction
	General Context
	Software Engineering Context

	Types of Differences in Aliases
	Related Work
	General Context
	Software Engineering Context

	Existing Algorithms
	Simple Algorithm
	Bird et al.'s Algorithm
	Bird et al.'s Original Algorithm

	The Algorithm
	Methodology
	Normalisation
	Term-document Matrix
	Edit Distance Augmentation
	tf–idf
	Singular Value Decomposition and Rank Reduction
	Cosine Similarity

	Simplified Algorithm
	Optimisation and Scalability
	Singular Value Decomposition and Rank Reduction

	Empirical Evaluation
	Software Repository Logs
	Cross Validation
	Full Data Set

	Mailing List Archives

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions
	Future Work
	Scalability of Singular Value Decomposition and Rank Reduction
	QUIC-SVD-GPU
	Libflame
	ScaLAPACK
	SVDLIBC

	II Human Migration of Open-Source Contributors
	Introduction
	Related Work
	Data Extraction
	Extracting and Parsing Mailing List Archives
	Resolving IP Address To Location
	Computing Migrations

	Evaluation
	Pilot Evaluation
	Going On A Business Trip
	Finding Skilled Migration
	Meeting Individual Gnome Developers
	Doing Business With Corporate Email Addresses

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions
	Future Work

