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Abstract

Recommender systems have become increasingly important in web systems as a tool to overcome
the information overload problem. Research has and will be an important factor in the development
of recommender systems, focusing on opportunities to provide more personalized recommendations
to the user. Incorporating contextual information from the users in the recommendation process
has been one of the recent research directions, resulting in Context-Aware Recommender Systems
(CARS). In the future acquisition, representation and evaluation of contextual information will remain
an active research direction, as shown in recent literature [VMO+11].

Recommender systems are often specifically built towards a domain, or serving web system. These
systems often adhere to the identified requirements and threats towards the recommendation quality.
Unforeseen problems in these recommender systems can be hard to solve when the implementation is
too specific. Moreover, one of the requirements of CARS is having a general strategy enabling the
availability of context throughout the system. This is required in order to be able to optimal use the
available contextual information in all the processing tasks of the CARS. In both cases flexibility and
adaptability in the recommendation processes is required. In this thesis a Reference Architecture (RA)
for CARS is described that provides a general system outline which adheres to these requirements.
This is done by identifying the main components and providing separation between core processing
and recommendation deriving tasks.

A literature analysis has been conducted to obtain main references and components so that a state
of the art RA could be constructed. In this analysis requirements and components of recommender
systems are inventoried. Furthermore active research in the recommender system field is referenced in
order to be able to adhere to these requirements as well.
The literature analysis is supported by a system review of the Masters Portal web system from Study
Portals. In this way practical information of an actual live web system is used as well. In the system
review the opportunities of context application and CARS are inventoried, generalized and used in
the RA.

The evaluation of quality, correctness and effectiveness of the RA is done by implementing parts of
the RA. The evaluation resulted in feedback on the completeness of the objects and components
in the RA. Additionally, the implementations are used in practice in an exploratory data analysis
with the Context-Aware Recommendation Adjustment (CARA) algorithm. This algorithm composes
a new ranking of a recommendation based on usage behavior. Contextual information is used to
provide separation in the usage data and to capture similar preferences of users having corresponding
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contextual information.

The results consist of the RA and the experiment with the CARA algorithm. The RA provides a
general guideline to implement CARS. However, in order to obtain a more detailed architecture and an
improved evaluation, a complete implementation of the system is required. Additionally, a complete
implementation enables the opportunity to test various use cases based on system requirements.
Furthermore, scheduling and collaboration between various components would be enforced which will
yield insight in the complexity of the required scheduling in the recommender system.
The experiment results consist of the implementations and evaluation of the CARA algorithm. It
is shown that the majority of the produced rankings show expected improvement. Nevertheless,
an improved data processing strategy is necessary since the evaluation metrics show sensitivities
towards anomalies in the data. This sensitivity is also shown when there is too less interaction data
available, which causes that the potential improvement is hard to evaluate for these cases. Additionally,
experimentation on the live environment of a web system is required to evaluate how the user values
the quality of the algorithm.
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1
Introduction

1.1 Motivation

Recommender systems have been an active research area since the mid-90’s [AT05]. This has lead to
increased adoption and usage of these systems. Therefore recommender systems will also remain an
active research area in the future focused on improving the overall quality [BOHG13]. Recommender
systems have and will become more important in web systems in order to solve the information
overload problem; nowadays users are overwhelmed with information and hence there is need of a
system which is able to provided them only with relevant objects.
One important aspect in improving the performance of recommender systems is incorporating of the
contextual situation of users in the recommendation process, which is often referred to as Context-
Aware Recommender Systems (CARS) [AT11, VMO+11]. Incorporating context complicates data-
and recommendation processing tasks, because of the additional resolving of contextual information
and the introduced complexity in deriving recommendations. Therefore, with the addition of CARS,
recommender systems are becoming complex systems which are required to be maintainable and
adaptable to new requirements or threats to recommendation quality.

Currently recommender systems are specifically built towards a domain, or system. These systems do
not have the required flexibility and adaptability towards changing recommendation requirements,
resource management, scheduling of processing tasks and threats against the overall quality of the
recommendations.
Moreover, one of the requirements of CARS is having a general strategy enabling the availability
of contextual information. Besides the recommendation process also user profiling and monitoring
can benefit of access to contextual information, allowing for more insight in the preferences of users.
Currently, research is focused on defining and proposing general contextual frameworks that are able
to provide context to any demanding system [HLGZ12]. In this work the focus is on resolving the
context available for web systems, opposed to the general notion of context often outlined in other
frameworks.

In order to adhere to the described requirements a Reference Architecture (RA) for CARS is
constructed. The goal of the RA is to be used as a guideline when constructing CARS. In order to
construct the RA a literature analysis and a system review are conducted. In the literature analysis
main requirements and components, as well as relevant latest research are referenced in order to
adhere to latest requirements. Furthermore a system review of the Masters Portal web system is
conducted to have practical information from an actual live web system.

1



CHAPTER 1. INTRODUCTION

Furthermore, evaluation is an important step in the RA design process [GA11]. In this step the
quality, effectiveness and correctness of the RA are assessed. The RA has been partially implemented
in order to evaluate the architecture. The goal is to evaluate how well parts of the architecture can
be instantiated and whether the required flexibility and adaptability can be ensured. Additionally, the
implementations are used in the experiment with the Context-Aware Recommendation Adjustment
(CARA) algorithm. This algorithm composes a new ranking based on the interaction data of users
and the assigned contextual information. This new ranking, or re-ranking, should be able to capture
preferences of groups of users characterized by particular contextual information and therefore improve
the quality of the recommendations.

1.2 Objectives and methodologies

1.2.1 The reference architecture

A RA captures the essence of the architecture of a collection of similar systems in a certain technology-,
application- or problem domain [GA11]. In this case the RA captures the essence of CARS in the
recommender system domain.

The RA serves the following objective:

To propose a complete reference architecture having minimal interference with the serving system,
offers flexibility and adaptability in its core components, and functions as a guideline to implement
CARS.

Minimal interference means that there is as less communication channels and shared objects between
the web system and the recommender system as possible. Furthermore, it is required to have a
separate physical environment for each system in order to not interfere with the operational processes
of the web system. This requirement is necessary in order to avoid that the recommender system can
disrupt the operational processes of the web system, and therefore compromises the availability of the
system. An example of an interfering recommender system is data storage is shared or when various
algorithms are performed on the operational environment of the web system.

Completeness means that the essential components of recommender systems are available in order to
have a complete and implementable RA. This requirement is achieved by inventory and include the
components of referenced recommender systems in the RA.

The flexibility and adaptability requirements impose that core functionality can be changed and
scheduled in order to be adaptable to changes in the recommender system. These requirements are
guaranteed by separating functionality of the various processes in the RA.

The RA part is organized as a case study containing a literature analysis, system review and partial
implementation of the RA. The literature analysis is conducted in order to obtain documentation
which can serve as input for RA design process. The obtained literature contains an overview of
components and requirements of recommender systems. The literature analysis is supported by a
system review of the Masters Portal web system as described in Chapter 4. In this system review the
data sources, process flow and available recommendations are examined. This results in an overview
how recommender systems can improve the system. These findings are generalized and applied in the
RA design process.

Evaluation of the quality, correctness and effectiveness of the reference architecture is supported by
partial implementation of the RA. The correctness is assessed by evaluating whether the implementation
adheres to the RA. If this is not the case then there is no support for effective instantiation which
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motivates changes in the RA. Evaluation of the actual quality and effectiveness of the partial
implementation is done in the experiment with the CARA algorithm. In this experiment a subset of
the partial implementation is used in practice on data sources from the Masters Portal web system.
The next section outlines experiment specific objectives as well as the contribution towards the
evaluation of the RA.

1.2.2 The CARA algorithm experiment

Context-aware re-ranking can also be applied in other ranked lists. An example is re-ranking a Search
Engine Results Page (SERP) based on contextual information. The SERP can be more personalized
towards user groups having the same contextual information and preferences. The starting point of
the CARA algorithm is in fact the re-ranking of SERP.

Furthermore, in recommender systems composing a new recommendation based on one or more existing
ones is not new. Examples are tuning an recommendation based on user feedback, or blending multiple
recommendation with for example weighting, adjusting the recommendation scores of recommended
items, or mixing, combining multiple recommendations to obtain a single recommendation. These
strategies cause problems like duplicate elimination that are required to be solved in order to obtain a
useful new recommendation. In this experiment these problems are not relevant since the re-ranking is
performed on a single recommendation. Instead, it must be determined whether the CARA algorithm
actually can improve recommendations. The reason for this focus is that it is currently not known
what the effect of the CARA algorithm is on recommendations. Hence, the algorithm is first tested in
an offline setting on history data prior in order to evaluate expected improvement, prior to test in the
live environment of an actual system. This requirement is contained in the following objective:

To show that the CARA algorithm has the potential to effectively re-rank and improve the quality of
existing recommendations.

Effective re-ranking means that the algorithm is able to compose a different ranking of the existing
recommendation. The degree of difference between the original and re-ranked recommendations is
measured with the Kendall tau Rank Correlation Coefficient (Kendall correlation) as elaborated in
Section 2.6.3. Quality improvement means that the re-ranked recommendation is expected to have a
higher quality than the existing recommendation. Potential quality improvement is measured by the
Ratio of Improvement (ROI) as described in Section 2.6.5.

The experiment is organized as an exploratory data analysis. The exploratory nature of the experiment
is in the search to a suitable contextual feature that can provide separation between groups of users
with matching preferences. The data sources of the Masters Portal web system as outlined in Section 4
are used to perform the experiment. The required computations are done on the offline environment
as described in Section 8.1.

This experiment also contributes to the evaluation step of the RA. This is defined as the following
sub-objective:

To evaluate the quality and effectiveness of the partial implementation of components of the reference
architecture.

The quality and effectiveness of the partial implementation is evaluated by the practical usage in this
experiment. This usage provides feedback regarding the adaptability by evaluating how changes can
be processed and clarity of the code can be maintained. The flexibility is evaluated by obtaining an
insight in the resource allocation, scheduling and execution times for the various processing tasks.
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1.3 Evaluation and construction challenges

1.3.1 The reference architecture

Generalization/specialization trade-off

When constructing a reference architecture one of the main challenges is that there is a trade-off
between generalization and specialization. A RA that is too general will fit every system specification,
which will make the architecture not useful for implementation. A RA that is too specialized will be
limited on flexibility and adaptability of its components. Hence the challenge is finding a solution that
is in the middle of the described cases. This challenge is addressed in the case study. The construction
of the RA is defined as an iterative process that switches between obtaining referencing literature
in the literature analysis regarding components or architectural views of the recommender systems
and the actual design of the architecture. Additionally, the system review is expected to provide
more practical information about the usage of recommender systems which can provide more detailed
information beneficial to the specialization of the RA.

Reference architecture evaluation

An important aspect in the design and construction of a reference architecture is how to assess its
quality. The implementation of the architecture is an important aspect in the evaluation process,
especially when the architecture is built from scratch [GA11].

Given the limited amount of resources to do a full implementation the challenge is to still have a
sound evaluation of the RA. This challenge is addressed by involving the architectural properties of
the used HADOOP framework in the evaluation as well. The framework is evaluated as a candidate
for implementation of the complete system, and therefore possibilities of implementing the remaining
components are considered as well.

1.3.2 The CARA algorithm experiment

Flexibility in the implementations

The exploratory nature of the experiment causes that the implementations are subject to changes.
The challenge is keeping the clarity in the code and processing scripts when applying modifications.
In order to address this challenge the user defined functions of the used PIG framework as described
in Section 2.4.2 are used. These functions can be used to develop custom processing functions in
Java. In this way functionality can be separated from the scripts, which improves clarity of the code.
Furthermore, this separation allows for modification an testing of processing independent parts of
the implementation. Additionally, each processing task has a library containing these processing
functions. This is done to prevent that two processing tasks needs to utilize the same user defined
function with a different amount of parameters.

Raw data transformations

The experiment implementations contain a series of intensive data processing tasks where datasets
originating from various data sources are combined and transformed into new datasets. The quality
and validity of these datasets is hard to evaluate due to the large volumes of the data. In order to
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address this challenge intermediate datasets are generated that also give an insight in data which
could not be combined, as well as intermediate results in case of transforming data.

Offline evaluation of recommendation quality

Evaluation of the quality of a recommendation in an offline environment, because the interaction with
users is missing. Also it is necessary to obtain the most recent data sources else the captured user
behavior might be outdated by system changes for example. In order to address this challenge the
experiment the ROI metric as described in Section 2.6.5 is used to evaluate expected improvement
based on the interaction data of users with from the recommendations.

1.4 Results

The results of this thesis consist of reference architecture and experiment specific parts. In the
reference architecture part the main result is the constructed RA for CARS. The minimal interference
requirement is addressed by only allowing communication when the serving system is requesting
recommendations and in case of required logging and profiling. Furthermore, separation of data
sources is obtained by including a data storage component of the RA and also minimizes interference
between the two systems. In order to address the flexibility and adaptability requirements a separation
between core processing other recommendation deriving is available in the RA, enabling scheduling
and re-usage of the core functionality of the system.

The evaluation is done by partial implementation of the RA. This implementation is done with the
HADOOP and PIG frameworks as described in Section 2.4.2. The correctness of the RA is shown by
the ability to adhere to the architectural structure.
Furthermore, the partial implementations have contributed to other experiments in the research group.
The session data processing as described in Section 8.5 has contributed to a data analysis experiment
giving insight in the division of contextual information over the user base of the Masters Portal web
system. The web service as described in Section 8.6 has been used in an experiment that evaluates
the use of contextual information to modify search results the Masters Portal web system.

The experiment with the CARA algorithm results in the evaluation of the expected improvement
of the re-ranked recommendations of Masters Portal. Three datasets have been composed of the
recommendation interaction data: The top-100 dataset containing the 100 recommendations having
the most interaction, the random-100 dataset containing 100 randomly selected recommendations
and the whole dataset which consist of the complete interaction data. These dataset represent the
optimal, average and complete cases when applying the CARA algorithm on recommendations. The
contextual feature browser is used to re-rank the recommendations based on an evaluation of the
distribution of its contextual elements over the data.

The results of the Kendall correlation shows that the CARA algorithm produces a significant degree
of difference in the re-ranked recommendations. This degree of change is the most significant in the
top-100 datasets, while the random-100 and whole datasets show a lesser degree of difference. This
is as expected by the selection of these datasets, where the top-100 dataset represents the optimal
case containing the recommendations having the most interaction, while the random-100 and whole
datasets represent the average and overall cases. Hence, the results show that the CARA algorithm is
able to effectively re-rank the input recommendations.

The results of the ROI show that the metric evaluates re-ranked recommendations from browsers having
less interaction and a lower data volume as improvements. As a result these browsers show higher
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expected improvement scores than browser having better interaction and data volumes. Therefore,
it is expected that these browsers show a fair ROI score, which indicate potential improvement of
the recommendations in the optimal case of the top-100. However, in order to have a better insight
in the potential improvement the ROI must take into the number of items which are re-ranked by
the CARA algorithm in order to normalize the scores and obtain a better insight in the potential
improvement. Therefore, the expected improvement requirement cannot be completely evaluated.

Finally, the a subset of the partial implementation of the RA is used in this experiment in order to
evaluate the quality and effectiveness of the RA. The PIG framework allows a separation between the
processing function and actual executed scripts, which improves the adaptability of the implementation
since changes towards these functions can be implemented and tested without being required to
run the complete functionality on a data source. Furthermore, the HADOOP framework allows for
flexible scheduling and resource allocation of processing tasks which also adheres to the required
flexibility of these functions. Therefore, it is shown that the implementations have the required quality
and effectiveness and that the HADOOP and PIG frameworks are suitable candidates for complete
implementation.

1.5 Thesis structure

This thesis is composed of a CARA algorithm experiment part and a reference architecture part. The
reason for this separation is the experiment part also serves objectives which are independent from
the objectives of the reference architecture part.

The RA part is organized as follows: Chapter 4 contains background information about the company
and web system of which the data is used in both the experiment and reference architecture parts.
Chapter 5 contains a literature analysis consisting of related work on context application in CARS and
architectural work on recommender systems. A system review is outlined in Chapter 6. The proposed
reference architecture is elaborated in Chapter 7, and Chapter 8 describes the implementations and
obtained feedback. Finally Chapter 9 contains the conclusions, limitations and future work on the
RA.

The CARA algorithm experiment part is organized as follows: Chapter 11 contains the implementations
used in the experiment. Chapter 12 describes the results of the experiment. Finally, Chapter 13
contains conclusions and limitations, and future work.
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2
Preliminaries

In this Chapter the used concepts, definitions and metrics are described. The general settings Section
formally defines the main objects used in this thesis. The concepts applicable to both the Context-
Aware Recommendation Adjustment (CARA) algorithm experiment and the Reference Architecture
(RA) are elaborated.

2.1 General settings

Let W denote the web system, which is instantiated as the Masters Portal web system. U is defined
as the user space of W . Let O = {o1, . . . , on} be the collection of content objects defined in W .
The collection is defined according to the available content object on Masters Portal as described
in [Wis12], O = {program, university,country,discipline,scholarship,
provider,search,banner,link}. P = {p1, . . . , pn} denotes the pages of W where each page holds at
least one object of O. Then pi can be defined as a pair (o,R), where o ∈ O represents the content
object and R the list of recommendations. Let R be defined as a collection of triples of a page, a
rank and a recommendation score, R = {(p, r, s) : p ∈ P ′ ∧ r ∈ N ∧ s ∈ R}, with 1 ≤ |R| ≤ 10.
Let V = {(u, p) : u ∈ U, p ∈ P} be the collection of visits on W . The definition the page, content
object and the list of recommendations adheres to the setup on the Masters Portal page as shown in
Figure 2.1.

2.1.1 Events of interest

The click and view events on a recommendation are considered in the evaluation metrics as shown in
Section 2.6 and the CARA algorithm as described in Section 2.5.2. Formally these events are defined
as follows: Let click ∈ {0, 1} denote the click event on the list of recommended programs. The click
on a recommendation is defined as follows:

click =
{

1 If the user clicks on a program in the list of recommendations
0 If the user views the list and no further interaction takes place

Let V ′ = {(u, p′, click) : u ∈ U, p′ ∈ P ′, (u, p′) ∈ V } be an extension of the visit collection such that
the click event is recorded. Let Vclick be defined as the subset of V ′ such that click = 1, and Vview as
the subset of V ′ such that click = 0. In this thesis the former collection will be addressed as clicks
and the latter as views.
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Figure 2.1: An example of a master study page of Masters Portal. The considered recommendation list (A)
and the content objects (B) are highlighted.

Note that clicks are defined as a visit to a program page that was in the recommendation of the
previously visited page. Hence it cannot be guaranteed that this visit is initiated by clicking on
the program in the list of recommendations or that the user generated this view otherwise (e.g. by
manually navigating to the page). The reason for using this definition is that the actual click on a
recommendation is not logged in Masters Portal web system outlined in Chapter 4, and hence the
event has to be approximated.

2.2 Context awareness

Context awareness can be defined in various ways depending on the application. A common sense
definition can be found in [SAT+99] where context awareness is defined as knowledge about the users
and IT devices state, including surroundings, situation, and, to a lesser extent, location. Also more
generalized definitions are used as in [ADB+99] where context awareness is defined as the use of
context to provide task-relevant information and/or services to a user with context defined as any
information that can be used to characterize the situation of an entity, where an entity can be a person,
place, or physical or computational object. The latter definitions of context and context awareness
apply to this thesis.

The used contexts can be defined according to the requirements of the system. In [CK+00] and [SAW94],
Schilit and Kotz define four categories1of context:

• Computing context which includes network and device information as contextual situation of a
physical machine.

• Physical context which considers the external situation in an examined area such as lighting,
noise and traffic conditions.

1Despite the fact that these references are tuned towards mobile computing, they apply to web system and
recommender systems settings as well. This is because generalization of context is required in all systems.
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Contextual 
categories

Context

Contextual 
features

Contextual 
elements

Computing context

Device

Type

{mobile, laptop, 
desktop}

Figure 2.2: The way context is perceived in this thesis. Context is considered to be a cloud of available
information. This information is categorized into the contextual categories and features. The contextual features
provide the actual context in the form of contextual elements. The dotted arrows denote the inheritance of
contextual information. On the right side an example is given of obtaining device type information from the
computing context.

• User context as the umbrella term for the location, (social) situation and (possibly inferred)
user profile state.

• Time context which is the usage of various time frames.

In order to enable the usage of context a hierarchy is proposed as shown in Figure 2.2. The contextual
information is categorized in the contextual categories in order to provide structure and overview
to the available contextual information. The contextual features are able to obtain the required
information from the required contextual category in order to resolve contextual elements to the input
data. This strategy enables freedom in defining, combining and applying context by enabling custom
defining of objects on each level in the hierarchy. An example is given in the right side of the figure:
From the computing context device related information is captured in the contextual category device.
From the device category the contextual feature type is constructed which determines whether the
user utilizes a mobile device, laptop or desktop. As an alternative the mobile and non-mobile can be
defined as contextual elements for the type feature. Furthermore, the device category also can offer
contextual features like operating system or browser. The computing context can also offer contextual
information regarding the network for example. The contextual feature bandwidth for example can
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be used to infer the quality of the connection of the user with the system. This information can be
used determine the level of compression necessary in the server response.

2.2.1 Contextual categories

The contextual categories inventory the context into objects such that contextual information belonging
to the same entity is available in the same object. In this way the usage of contextual categories
improves as well as the freedom to define the contextual category as required. The contextual category
is the resource for the contextual features as described in the next section. The following three
categories are used in this thesis:

• Device: Identification of device and software such as type of device (e.g. mobile or desktop) or
the web browser.

• Location: Geographical location like country or city.

• Time: Temporal characteristics like the timezone of the user or server.

Note that this categorization does not imply completeness. For example, the contextual category
activity could be used to infer what kind of tasks, appointments or other activities the user has
scheduled. This can be done by inferring information from a planning or scheduling system.

2.2.2 Contextual features and elements

Contextual features are used to map the input data to the contextual elements. The contextual
information provided by the contextual category is used to establish map the input data to a
corresponding contextual element, which can be considered to be the actual contextual value. The
separation between mapping contextual data and the contextual elements enables extension and
overloading of contextual features. This allows the required flexibility in the contextual features.
Another advantage of the current setup is that defining of the contextual elements takes place in the
features. In this way the contextual elements can be adapted to the requirements of the system.

In the context library as described in Section 8.2 temporal and locational context is inferred by the
user characteristics, while device context is inferred by the actual request of the page. In order to
maintain simplicity it is assumed that the user space can provide the required information.

Formally contextual features and elements are defined as follows: Let Cs = {c1, c2, ..., cn} denote the
contextual space of contextual elements. Let Fx be a contextual feature. Then Fx is a mapping from
the user space U to the contextual space:

Fx : U → Cs

An example of a contextual feature is the continents feature. This contextual feature maps the IP
address of a user to the continent the user resides. The contextual category location is used to do the
mapping and the continents are defined as contextual elements.

2.3 Recommender Systems and CARS

In this thesis the recommender system is defined as a system that produces individualized recommen-
dations or guides the user in a personalized way to interesting or useful objects in a large space of
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possible options [Bur02]. A recommendation can be considered as a set of objects which are matched
to the preferences of the user that are captured by the recommender system.

The word system denotes independence between the recommender system and the serving system.
This is necessary because of the complexity of the various processing tasks that are required in order
to obtain a recommendation. Furthermore, various software artifacts are often present which are not
used by the serving system, which also infers independence.

From the user’s perspective, the recommender system is a solution for the experienced information
overload; while the amount of content on systems is expanding it becomes harder to find the items
which meet the requirements of the user. From a business perspective, the recommender system can
enhance e-commerce sales in three ways: persuade users to do a purchase by leading them to items
similar to previously preferred once to enforce extra sales, suggesting additional items to accomplish
a cross-sell and by attempting to have users returning to the system by learning the preferences and
contextual parameters [SKR99]. Hence the recommender systems can be a valuable addition to a
system.

Recommender systems attempt to incorporate the preferences of the user in the recommendation
process in order to get a suitable and personalized recommendation. Initially, only users and content
of the system were involved, however the context of the user has become an important aspect in
recommender systems in the form of Context-Aware Recommender Systems (CARS). In this type of
recommender system contextual information is used to obtain a more personalized recommendation.
Several ways of incorporating are proposed by Adomavicius and Alexander in [AT11]. Filtering the
input or output of the recommendation process based on contextual information are the main options
described. In this way context adds a third dimension to the recommendation process allowing for a
more fine-grained personalized recommendation.

Recommender system

{i1,i2,i3}

{i4,i5,i6}

CARS

{i1,i2,i3}, morning, 
mobile

{i7,i8,i9}

Figure 2.3: An example of a recommender system and CARS: The recommender system recommends items
based on the session of the user. The CARS obtains the contextual time of day and device having mourning
and mobile as contextual category. Therefore, the CARS is able to derive a more specific recommendation.

Figure 2.3 shows examples of a recommender system and CARS. Suppose that the items represent
articles on a news website. The recommender system provides a recommendation containing items
that are similar towards the content of the items in the session of the user. The CARS also obtains the
contextual features time of day and device from the user. Suppose that this user is a regular visitor,
then the CARS can determine the preferences of the user belonging to the contextual categories.
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For example, the user likes to read sports related items in the mourning and financial items when
using the mobile device. Then based on the contextual information along with the current session
the CARS is able to recommend items that are similar to the visited items and are related to the
sports or financial categories. Hence the recommendation of the CARS is more personalized than the
recommender system.

2.3.1 Hybridization

Hybrid recommender systems combine collaborative filtering and content-based recommendations
in order to improve the quality of the system. Additionally, knowledge-based strategies are often
incorporated, where user’s requirements are matched to items based on information how the items
can satisfy these requirements [Bur02].

Hybridization is defined as the process that combines various recommendation strategies. This
combining, also called blending, can be done with weighting, adjusting the recommendation scores of
recommended items, or mixing, combining multiple recommendations into a single recommendation
for example. Hence hybridization is an important part of the recommender systems since it is the last
processing step of the recommendations.

2.3.2 User feedback

Feedback on recommendations is defined as information regarding the usefulness and quality as
perceived by the user. Two types of user feedback are considered:

• Explicit feedback: When users have the opportunity to apply ratings to recommended items.

• Implicit feedback: When the interaction with recommended items is used to obtain information
about the quality of the recommendation.

Feedback provides valuable information about the quality of the recommendations. This information
can be used in the recommendation process for example to change the ranking of recommended items
based on the average rating score.

2.3.3 Ranking function

Let M be defined as the ranking function for R. Then M is a mapping from web system objects to R:

M : W → R

In this document two ranking models are instantiated: Collaborative filtering which utilizes visits
data from the users in the ranking process, and the content-based recommendation which uses item
similarity in the ranking process. Formally collaborative filtering is defined as a mapping from the
visit collection V to R, and the content-based recommendation is defined as a mapping from the
object collection O to R.

2.3.4 The long tail in item popularity

The popularity of items in web systems often follows a power law distribution: the popularity of items
can vary a power of the number of visitors [And06]. Therefore, a common phenomena observed in
the visit data of web systems is that there is a small subset of items are very popular and have high
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visit rates, while the remaining set of items form a long tail having lower visit rates. Recommender
systems have difficulties to derive recommendations for the items from the long tail because of this
limited popularity. This problem occurs when collaborative filtering approaches are used in the
recommendation process.

Popularity prediction can be used to identify a power law in the popularity of items. The information
can be used as input in the recommendation process as well [MBN+13, SH10]. Popularity correction
is an approach to reduce the long tail effect [Ste11]. In this correct the difference in popularity is
dampened in order to reduce the popularity difference. In the viewpoint of recommender systems and
especially collaborative filtering, popularity correction can be applied by normalizing the scores of
the popular recommended items to reduce the difference with average popular items. The expected
results would be that the the recommendations are not heavily dominated by popular items.

In the Masters Portal web system this long tail is also showing in the visit data from the system.
This is shown in the results of the experiment as shown in Section 13.2.1.

2.3.5 Anomaly detection

In this thesis anomaly detection is defined as the problem of finding patterns in visit data that do
not conform to expected behavior, as taken verbatim from [CBK09]. With expected behavior it is
designated that average visit numbers are expected. Furthermore average user behavior is expected
with respect to the rate pages are visited and clicking of links. So anomaly detection also focuses on
finding patterns in the visit data which do not adhere to average behavior.

Anomalies can be caused by fraudulent behavior like automatic processes boosting visits numbers on
particular pages. But also popularity outbursts can be considered to be anomalies. Hence anomaly
detection takes also into account whether the anomaly is caused to harm the system or not. When
collaborative approaches are used in the recommendation process, then bots and other automatic
processes can be used to massively visit particular pages in the web system in an attempt to influence
the ranking of these items. These anomalies can be removed from the recommendation data, however
popularity correction can be used in the case of outbursts to dampen the effect and make sure fair
recommendations are derived [Ste11].

2.3.6 The cold-start problem

The cold-start problem refers to the fact that recommender systems have difficulties to recommend
items to a new user or to find similar items from a newly introduced item [SKR99]. The cold-start
problem for newly introduced users in the system is considered to be a specific period of time where
certain characteristics, preferences and contextual features of the user cannot be established. For new
items it is the time before this item is included in recommender processes.

The scope of the cold-start problem is restricted to the introduction of new user in the system and
unknown profiling information to recommender systems, monitoring and profiling. Obtaining and
using contextual information can also help to reduce the cold-start problem. Hence the cold-start
problem is intrinsically used throughout this thesis.

2.3.7 Concept drift

Concept drift is defined as the problem that user attributes change over the course of interaction with
a system, as taken verbatim from [SWSY06]. With respect to recommender systems concept drift
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causes problems when recommendation data differs from the actual preferences of the user.
There are four types of drift: sudden, gradual, incremental and reoccurring [Koy00], which all could
require different strategies to correct or overcome concept drift. Learner adaptivity, where the base
learners, parameterization or training set selection can be made adaptive can be a solution of handling
concept drift. Also model selection and evaluation can be involved to handle concept drift. In this
case the focus lies on assumptions about the future data source rather than the type of concept drift
detected [Zli09]. Concept drift is intrinsically used in the design and construction of the RA.

2.3.8 Monitoring

Monitoring of recommender systems consists of collecting and visualizing information of components
of the recommender system with respect to determined periods of time. The goal of monitoring is to
get insight in the performance and quality of the various components of the recommender system. In
this thesis the following monitoring tasks are of interest:

• Resources

• Cold-start

• Concept drift

• Anomaly detection

• User intention

Resource monitoring consists of collecting various measures like running time and allocation of
resources like main memory and CPU time. Resource monitoring is important because recommender
systems can change over time; data volumes will become larger and more algorithms and processes
will be necessary and be dependent on each other, and hence scheduling everything with respect to
available resources will be harder. Therefore monitoring can be used to get insight in the performance
of various components of the system which can help discovering and repairing emerging problems.

Cold-start monitoring concerns the introduction of a new user to the recommender systems, as
described in the previous section. Having a new item in a recommender systems will be considered
as a trigger for re-computation of recommendations. In cold-start monitoring it is examined how
long users experience cold-start and how and when are the required parameters resolved. Having
this monitoring of cold-start is important because it gives insight in the current situation, allows to
validate new approaches of overcoming cold-start and can serve as a warning system when parameters
are not resolved anymore.

Monitoring concept drift is measuring the difference between current user preferences and logging
and profiling data. Furthermore, detection and identification of concept drift is monitored. Concept
drift monitoring serves as input in decision process how to handle concept drift.

Anomaly detection monitoring should bring insight in the number of detected anomalies, whether
they are caused by fraudulent behavior and whether they occur in particular parts of the system.
This monitoring can support decision processes for correcting or removing anomalies, correcting for
popularity or otherwise deal with anomalies in data.

Finally user intention monitoring is used to identify what the user’s goal is in the system. When the
user has as purpose to explore possibilities in the system or wants to find the one matching item it has
influence on the way recommender systems should behave. Furthermore, it is important to know the
statistics of these users so that recommender systems can be tuned towards the purpose of the visit.
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2.3.9 User session

The session of a user is defined as the subset of visit data selected with respect to a temporal interval.
The notion of a session is used in the data processing as described in Section 8.5, when the data is
divided in session windows in order to allow individual user session processing. Furthermore, the
notion of a session is intrinsically when describing various tasks and components of recommender
systems in part I.

2.3.10 Computation environments

The notions online, semi-online and offline are used to denote computational environments where
operational processes take place. These processes belong to the recommender systems or the web
system. The online environment is defined as the operational environment of the web system. The
processes necessary for the web system take place in the online environment. The offline environment
is defined as a separate computation environment where operational processes cannot interfere in
any way with the online environment. The offline environment can be a HADOOP cluster where the
recommendation data is processed for example. The term semi-online denotes a process of which
the tasks are divided between the online and offline environment. An example of a semi-online task
is the recommendation process; the processing in order to obtain recommendations is done on the
offline environment while the appropriate recommendations are selected and displayed in the online
environment.

2.4 Scalability and used frameworks

This section contains the frameworks used in the various implementations.

2.4.1 Map-Reduce

Map-Reduce is a programming paradigm for distributed and parallel processing of large datasets
proposed by Dean and Ghemawat in [DG08]. It is designed to processes sets of key-value pairs.
Map-Reduce consists of two functions: the Map function and the Reduce function. The Map function
is used to transform the input into a p̨air. Internally pairs with the same key are grouped together in
a set. The reduce function applies processing on each set of pairs having the same key. The result is
again in key-value format, ranging from a single value to a complete dataset.

Formally the Map-Reduce function is defined as follows:

map (k1, v1) → list(k2, v2)
reduce (k2, list(v2)) → list(v2)

An example of a Map-Reduce program is given in Figure 2.4. The word count program counts the
number of occurrences of each word in a document. First the input document is split into separate
pieces. Then the map function M maps each word to a key and its count to the value. In the shuffle
stage S the matching keys are grouped. In the reduce function R the words are counted and the
resulting dataset is produced.

In this example it can be seen that the Map and Reduce functions operate independent from each
other. Also in the shuffle stage each Map function just sends the output to the correct reducer.
Therefore Map-Reduce allows to execute each Map or Reduce function on separate processor cores or
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even physical machines. This allows for distributed and parallel processing of the data2, which can
result in shorter execution times with respect to single core or single machine processing.

apple orange

grapes orange

pear orange

apple grapes

apple orange

grapes orange

pear orange

apple grapes

apple,1 
orange,1 

grapes,1 
orange,1 

orange,1 
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apple,1

grapes,1
grapes,1

orange,1
orange,1
orange,1

pear,1 

apple,2
grapes,2
orange,3
pear,1

M S R

Figure 2.4: An word count example of a Map-Reduce program. The input dataset is first split into separate
pieces. Then the Map function M maps the word to a key with value 1. In the shuffle stage S the matching
keys are grouped. Finally the Reduce function R counts the number of words and outputs their occurrences.

2.4.2 The HADOOP and PIG frameworks

HADOOP is an open-source framework for scalable distributed computing. HADOOP allows for
the distributed processing of large data sets across clusters of computers using the Map-Reduce
programming paradigm. The framework is scalable in the number of used processing cores and
machines. Furthermore HADOOP can detect and handle failures at the application layers, and hence
there is less need to have high-availability, fault tolerant and therefore expensive fault hardware.

In order to use HADOOP tasks must be constructed which can do the preferred processing by
utilizing the Map-Reduce paradigm. The PIG framework has been chosen to implement the required
functionality in. PIG is a high-level framework that allows the user to construct Map-Reduce imple-
mentations by utilizing PIG latin as scripting language. PIG latin has similarities in implementation
with commonly known relational languages like SQL. Therefore it requires less effort to get familiar
with the framework. Furthermore the user is not required to construct the actual Map and Reduce
functions; a library of built-in functionality is available along with the opportunity to construct
custom functionality when required. Therefore the focus lies on implementing the processing function,
rather than implementing the actual map and reduce functions.

2.4.3 MAHOUT

MAHOUT is a machine learning library that offers various algorithms focused on machine learning,
statistics and mathematics. A part of these algorithms has been implemented in HADOOP as described
in Section 2.4.2 allowing for distributed processing of large amounts of data. The recommendation
algorithms of MAHOUT are used in the implementations as elaborated in Section 8.3.

2.5 The algorithms

This section contains the algorithms used in the experiment with the CARA algorithm as described
in Part II.

2In the remainder of this thesis distributed computing is mentioned as the umbrella term denoting distributed and
parallel processing.
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UserID Fx Clicked program
u1 1 p1
u2 1 p2
u3 0 p3
u4 1 −
u5 0 p3
u6 0 p2
u7 1 p1
u8 0 p2
u9 0 −
u10 1 p1

Table 2.1: A collection of visit data for 10 users (UserID) with a binary contextual feature (Fx) on the pages
p1, p2 and p3. The clicked recommended program (Clicked program) is recorded where px denotes the click
event on master study program px and - the view event of the recommendation.

2.5.1 The visibility function

When a recommendation is shown a page, the user is more eager to interact with the top rec-
ommendations than the bottom ones. The reason for this behavior is that the top recommended
items are the most similar to the current content object. Moreover, recommendations are often not
completely visible and the user might be required to scroll down the page to examine the complete
recommendation. Because of this behavior and the page setup there can be a difference in interaction
between the top ranked recommended items and lower ranked ones. In the case of limited exposure of
lower ranked recommendation items to the user this interaction difference can be unfair especially
when the differences in similarity between the recommended items is very small.

To correct this interaction difference, the visibility function can be applied. This function corrects the
score of recommended items based on their rank which results in a new ranking list. In this way the
interaction difference based on visibility only is corrected.
In the case of Masters Portal the visibility function is not known. A simple function is proposed to
approximate the visibility of the recommendations on the Masters Portal web system.

The visibility function of the Masters Portal recommendations is defined as follows: Let S denote the
visibility of pi ∈ R. Then S is a mapping from ri ∈ R to a scoring interval:

Sri = 1− (i−1)
10 , 1 ≤ i ≤ 10.

2.5.2 The Context-Aware Recommendation Adjustment algorithm

The user’s interaction with a recommendation is of importance because it provides information about
the perceived quality. It is expected that the majority of interaction will take place with the top
ranked items of the recommendation. Interaction patterns showing other usage behavior can indicate
that the recommended items valuable to the users are not ranked at the top.

Moreover, the recommendation can be too general to serve the general population of a web system. In
the view of the Masters Portal web system an example can be that users located in countries having
an active oil industry are more interested Oil Engineering and similar master studies, while users
located in countries that do not have an oil industry could be more interested in Sustainable Energy.
This example provides two types of master studies on the same Energy Engineering discipline. Hence
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a recommendation which takes into account the contextual feature geographical location can be tuned
towards more specific user groups than a general recommendation like a content-based one.

The CARA algorithm can overcome the two described problems. The algorithm ranks the items of
a recommendation based on the interaction of the user with the recommendation. This is called
re-ranking. This re-ranking is done based on the contextual feature of the processed usage information.
In this way for each contextual element a re-ranked recommendation is constructed that is tuned
towards the usage behavior of the belonging users.
The CARA algorithm generates a new score for each recommended item and the contextual elements
belonging to the selected contextual feature. The usage data consists of the click and view events as
described in Section 2.1.1 of the recommendation under processing. The new score is the the fraction
of recorded click events on the recommended item divided by the total number of view and click
events for events generated with a particular contextual element. Then the recommended items are
ranked based on the re-ranking scores. The result is a re-ranked recommendation.

Consider a practical example: Assume that Table 2.1 is the collected usage data for pages p1, p2, p3 data
from 10 users, u1...u10 ∈ U . Suppose current ranking modelM returnsR = {(p1, 1, s1), (p2, 2, s2), (p3, 3, s3)}
with si ∈ R and si > 0. Let Fx be a contextual feature with Ce = {0, 1} being the collection of
contextual elements. Let the visibility of the recommended items be defined by the visibility function;
Sp1 = 0.9, Sp2 = 0.8, Sp3 = 0.7. Then the probability that a u ∈ U with Fu = 1 has clicked on a
program in R can be calculated as follows:

Pr(Fx = 1, p1, R) = 3
5 = 0.6

Pr(Fx = 1, p2, R) = 1
5 = 0.2

Pr(Fx = 1, p3, R) = 0
5 = 0

The visibility function is applied to correct for the difference in interaction between top and bottom
ranked items. Let v = {0, 1} denote that the page has been visited. Then by definition of the click
event v = 1. So then the visibility score is as follows:

Pr(Fx = 1, p1, R|v = 1) = Pr(Fx = 1, p1, R)
Sp1

= 0.6
1.0 = 0.6

Pr(Fx = 1, p2, R|v = 1) = Pr(Fx = 1, p2, R)
Sp2

= 0.2
0.9 = 0.2

Pr(Fx = 1, p3, R|v = 1) = Pr(Fx = 1, p3, R)
Sp3

= 0
0.8 = 0

Now calculate the click probability and visibility correction for Fx = 0;
The probability that a user with Fx = 0 has clicked on a program in R can be calculated as follows:

Pr(Fx = 0, p2, R) = 2
5 = 0.4

Pr(Fx = 0, p3, R) = 2
5 = 0.4

Pr(Fx = 0, p1, R) = 0
5 = 0
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When two items have the same probability the ordering of the items defines the rank. By inferring
the visibility function, the following probabilities are obtained:

Pr(Fx = 0, p3, R|s = 1) = Pr(Fx = 1, p3, R)
Sp3

= 0.4
0.9 = 0.4

Pr(Fx = 0, p2, R|s = 1) = Pr(Fx = 1, p2, R)
Sp2

= 0.4
1.0 = 0.4

Pr(Fx = 0, p1, R) = Pr(Fx = 1, p1, R)
Sp1

= 0
0.8 = 0

The CARA algorithm provides the following re-ranking of the recommendation:

R1 = {(p1, 1, 0.6), (p2, 2, 0.2), (p3, 3, 0)} for {u ∈ U : Fx = 1}
R2 = {(p3, 1, 0.4), (p2, 2, 0.4), (p1, 3, 0)} for {u ∈ U : Fx = 0}

For users with Fx = 1 the ranking does not change. However, for users having Fx = 1, p3 is ranked
first, p2 second and p1 third. So the CARA algorithm can be considered as a special case of ranking
model, which we define as the re-ranking model. Let M∗ be defined as the re-ranking function. Let
R∗ = {R1, ..., Rn} denote the collection of re-ranked recommendations. Then M∗ is defined as a
mapping from V and R to R∗:

M∗ : (V,R)→ R∗

Recommendation data usage

Table 2.2 shows two recommendations with different lengths. The left recommendation contains 10
items which are all visible. The right recommendation contains at least 15 items of which ten are
visible. For the left recommendation the users can interact with all recommended items. This does
not hold for the right recommendation as a part is not visible. However, when visible items obtain
low re-ranking scores because the interaction is low, items previously ranked in the invisible part can
enter the visible part of the recommendation. Hence the application of the CARA algorithm enables
to parsing options for the recommendations.

In the experiment as described in part II a set of recommendations is used which consists of 30
recommended items. The first 10 of the recommended items are visible to the user. It is chosen to
only consider the visible part of the recommendation because the actual data is available for these
items. When items appear in the visible part of the recommendation of which no data is available
then it cannot be decided whether the recommendation is improved because the previous interaction
from users with this item is missing. The recommendation the CARA algorithm is applied is described
in Section 4.2.3.

2.6 Evaluation metrics

This section contains the used evaluation metrics of the experiment with the CARA algorithm.
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Rank Item
1 R1
2 R2
3 R3
4 R4
5 R5
6 R6
7 R7
8 R8
9 R9
10 R10

Rank Item
1 R1
2 R2
3 R3
4 R4
5 R5
6 R6
7 R7
8 R8
9 R9
10 R10
11 R11
12 R12
13 R13
14 R14
15 R15
. .
. .
. .

Table 2.2: A representation of the two options for the recommendations in conjunction with the CARA
algorithm. The left recommendation is completely visible for the user. From the right recommendation only
the first ten items are visible, while the lower ranked and underlined items are not visible for the user.

2.6.1 The Click-Through Rate

The Click-through Rate (CTR) is used as a way to measure the effectiveness of an online advertising
campaign for a particular web system. It gives the percentage of users which clicked on the advertise-
ment. In this thesis the CTR is used to justify how representable the recommendation data is by
showing the percentage of the user base which utilized the recommendations. The CTR is used in the
results of the experiment as outlined in Chapter 12.

The CTR is defined using the events of interest as described in Section 2.1.1. The CTR is defined as
follows:

Definition 1 CTR(R, Vclick, Vview) = |Vclick|
|Vview| × 100

Contextual Click-trough rate

The Contextual Click-Through Rate (CCTR) provides the CTR of a recommendation for each
contextual element of a preferred contextual feature. It is used to obtain insight the proportion of the
CTR per contextual element. The CCTR is applied in the experiment as outlined in Section 12.2.

Suppose F1 is the contextual feature of interest, and let c1 ∈ Cs be the contextual category of interest.
Let V ′

click = {v ∈ Vclick : F1(u) = c1} be the subset of Vclick containing visits of users which have the
contextual category c1. V

′
view = {v ∈ Vview : F1(u) = c1} is defined as the subset of Vview containing

visits of users which have the contextual category c1.The CCTR is defined as follows:
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Definition 2 CCTR(R, V ′click, V
′

view) = |V ′
click|
|V ′

view|
× 100

2.6.2 Contextual coverage

The Contextual Coverage (COV) is used to see the distribution of the contextual elements of a
contextual feature among the CTR; It shows how much coverage a particular contextual category
has in the CTR. The COV is used to get insight in how well contextual elements of a feature are
distributed. The application of COV is described in Section 12.2.

Let F1 be the contextual feature of interest, and let c1 ∈ Cs be the contextual category of interest.
Let V ′

click = {v ∈ Vclick : F1(u) = c1} be the subset of Vclick containing visits of users which have the
contextual category c1. The COV is defined as follows:

Definition 3 COV (R, c1, V
′

click, Vview) = |V ′
click|
|Vview| × 100

2.6.3 The Kendall tau Rank Correlation Coefficient

The Kendall tau Rank Correlation Coefficient (Kendall correlation) is used to measure the similarity
between two different rankings [Ken38]. In this thesis this metric is used to measure the degree of
difference between the input recommendation and re-ranked recommendation produces by the CARA.
This is described in Section 12.3.

Let R be the input recommendation and let R∗ be the recommendation re-ranked by the CARA
algorithm. Then |R| = |R∗| and both recommendations contain the same elements.
The Kendall correlation compares each pair of rankings, the input recommendation rank and the
re-ranked recommendation rank, against each other. These pairs are defined as (xi, yi) and (xj , yj),
xi, xj ∈ R and xj , yj ∈ R∗ and i 6= j. The set of concordant pairs Pcon is defined as Pcon =
{((xi, yi), (xj , yj))|(xi > xj ∧ yi > yj) ∨ (xi < xj ∧ yi < yj)}. The set of dis-concordant pairs Pdis

is defined as Pdis = {((xi, yi), (xj , yj))|(xi > xj ∧ yi < yj) ∨ (xi < xj ∧ yi > yj)}. Then the Kendall
correlation is defined as follows:

Definition 4 τ = |Pcon|−|Pdis|
1
2 |R|(|R|−1)

The range of the coefficient is −1 ≤ τ ≤ 1. If R∗ is exactly the same as R then τ = 1. If R∗ is the
reversed order of R then τ = −1. R∗ and R are said to be independent when τ ≈ 0. When evaluating
the degree of difference between the input and re-ranked recommendations the intervals [−1, 0), (0, 1]
and [0.5, 1] are examined. When the Kendall correlation score is in the interval (0, 1] it is considered
to show a degree of difference between input and re-ranked recommendation, while the interval [0.5, 1]
is considered to slight to no difference. When the Kendall correlation score is in the interval [−1, 0) it
is considered to show the most difference as the re-ranked recommendation then resembles the inverse
of the input recommendation.

2.6.4 The Probability of Click

The Probability of Click (POC) is the expected probability that the user will click an item of a
recommendation. The POC is used in the Ratio of Improvement (ROI) as described in the next
section. The POC is used as a baseline to determine whether the CARA shows expected improvement.
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UserID R Clicked program
u1 1 p1
u2 1 p2
u3 1 p3
u4 1 −
u5 1 p3
u6 1 p2
u7 1 p1
u8 1 p2
u9 1 −
u10 1 p1

Table 2.3: A collection of visit data for 10 users (UserID) on a recommendation (R) on pages p1, p2 and
p3. The clicked recommended program (Clicked program) is recorded where px denotes the click events on
master program page px and - denotes the view event of the recommendation.

Consider an example: Table 2.3 shows collected visit data of ten individual users. The probability of
click is defined as the number of clicks per page divided by the total number of log entries:

Pr(p1, R = 1) = 3
10 = 0.3

Pr(p2, R = 1) = 3
10 = 0.3

Pr(p2, R = 1) = 2
10 = 0.2

In this example p1 and p2 have an equal chance to be clicked by the user, while p3 has less chance to
be clicked.

2.6.5 The Ratio of Improvement

The ROI is used to determine whether the re-ranked recommendation produced by the CARA
algorithm show potential improvement. This potential improvement is measured by comparing the
score of each item in the re-ranked recommendation with the POC as described in the previous section.
The re-ranking scores are essentially the probability a user characterized by particular contextual
information will click on a recommendation. The POC represents the probability that the user will
click on an item of a recommendation. When the re-ranked items have a higher score than the POC of
the recommendation then the re-ranking shows potential improvement. Formally the ROI is defined
as follows:

Definition 5 ROI(R, px, cx) = pr(px,R)
P r(Cs,p1,R)

The resulting score is interpreted as follows:

ROI =


< 1 The CARA algorithm shows expected regression

1 The CARA algorithm shows nor regression or improvement
> 1 The CARA algorithm shows expected improvement

The ROI is used in the result of the experiment as outlined in Section 12.3.
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The reference architecture
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3
Introduction

This first part of the thesis contains the case study that is performed in order to construct a
Reference Architecture (RA) for Context-Aware Recommender Systems (CARS). The goal is to
provide a RA that offers independence from the online environment as outlined in Section 2.3.10,
completeness by incorporating main components identified in recommender systems and can function
as a guideline when constructing CARS. In order to inventory and fulfill these requirements, a literature
analysis has been conducted. The analysis focuses on obtaining architectural views, requirements and
implementation details of related recommender systems. Moreover, the literature analysis concentrates
on identifying and incorporating context in a flexible way in CARS.

Furthermore, a system review of the Masters Portal web system as described in Chapter 4 has been
conducted. The goal of this review is to obtain an insight in the way CARS can improve the quality of
the system, and to generalize these findings in order to use them as input for construction of the RA.

Additionally various parts of the RA are implemented in order to provide a partial validation of
the architecture and to serve the experiment with the Context-Aware Recommendation Adjustment
(CARA) algorithm as outlined in Chapter 11. The obtained feedback of the implementations is used
to outline extensive work on the RA.

The main result of the case study is the proposed RA as elaborated in Chapter 7. Secondly, various
implementations and collected feedback as described in Chapter 8 are also part of the results. Currently
the main limitation of the RA is the absence specialization of various components. Further limitations
are described in Section 9.2.
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4
Background

This Chapter contains additional information about the Masters Portal web system of which the data
sources are used in both reference architecture and experiment parts. Study Portals is the company
behind Masters Portal. In the remainder of this chapter company information as well as available
data sources, recommendations and environments of Masters Portal are described.

4.1 Study Portals

Study Portals is a company that focuses on international study choice by providing web systems which
offer information about various European study options. The company started in 2007 as Masters
Portal, named after the first web system, and was renamed in 2009 to Study Portals. Currently,
Study Portals holds various web systems containing study information about master studies, short
courses, PhDs, bachelors and scholarships. STeXX, Student Experience Exchange, is the latest web
system of Study Portals. In this system users can write reviews of their study experiences in European
countries.

4.2 The Masters Portal web system

Masters Portal is the main web system of Study Portals. The goal of the system is to connect users
interested in masters eduction in Europe to universities. Currently the system holds 21, 000+ master
studies, along with information about the country and university they are located. An extensive
search engine allows the users of the system to find the most suitable master study with respect to
geographical, financial, temporal and various other requirements.

The Masters Portal web system is the system of interest this thesis. The system is subject of a review
in Chapter 6. The data sources available data sources are used in both implementations contributing
to both reference architecture and experiment parts.
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4.2.1 Content objects

Figure 4.1: An example master study page available on the Masters Portal web system.

Currently Masters Portal holds the following content objects:

• Study: description about a particular master study.

• Discipline: the discipline a master study belongs to.

• University: practical information of an university.

• Country: information about studying and living in a particular country.

In addition to these content objects the search object is defined, which holds information about
search queries from the user. In the session data processing as described in Section 8.5 this object
instantiated.

These content objects are instantiated as web pages in the system. Figure 4.1 shows the master study
page. Typically each page on Masters Portal contains the same separation between recommendation
(if available) and content object. Appendix A contains screen shots of the remaining pages of Masters
Portal.

4.2.2 Log systems

Log systems are able to capture usage information and system events. This information is stored for
usage in various processes like validation of the performance of the system. Currently Masters Portal
holds two main log systems which are of importance in this thesis; the Apache log system and the
statistics log system.

Apache access log system

The Apache access log system logs the traffic processed by the web system. The system produces access
log files which are highly configurable and therefore are able to log a variety of logging information.
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A common log line consists of IP-address, the time and type of the request, the status code, the user
agent, requested path and returned object size without response headers [Fou13].
The access log data of the Masters Portal web system is transformed to the session data processing
outlined in Section 8.5.

Statistics log system

The statistics log system captures user and system events of the Masters Portal web system. Besides
visits of pages, user events also contain clicks on promoted items and search actions. System events
consist displaying recommended and promoted items on various pages visited by the user. An item
is defined as any possible object on a portal of Study Portals which are master study-, university-,
country- and discipline items [Wis12].
From the resulting log data the relevant recommendation interaction data is extracted and used as
described in Section 4.2.4.

4.2.3 Available recommendations

Masters Portal holds a recommender system which derives recommendations for the master study,
university and discipline pages. Furthermore the recommendation part of pages is often used to
show factual lists like Masters in United Kingdom for example. The following recommendations are
presented on Masters Portal:

• Related studies: A content based recommendation of master studies visible on the majority of
master study pages.

• Featured studies: Although unclear whether promoted or recommended, this list holds an
enumeration of master studies related to the visited university page.

• Suggested studies: A recommendation of master studies on the discipline page.

Each recommendation consists of 30 items. About 10 recommended items are shown on each page.
The related studies recommendation is used in the experiment outlined in part II.

4.2.4 Data sources

Recommendation interaction data

A subset of logging data is used which are the impressions of recommendations on master study pages
and the views of master study pages. From this data the click and view events on the recommendation
as described in Section 2.1.1 are generated and selected, hence this data represents the interaction
of the user with the recommendation. This data is used in the Context-Aware Recommendation
Adjustment (CARA) algorithm experiment as described in Part II.

Session data

The Apache access logs are filtered, cleaned, semi-structured and extended with contextual features
in order to transform them into session data. This data processing is described in Section 8.5. The
session data is used in practice in the CARA algorithm experiment to provide contextual features to
the recommendation interaction data. This is outlined in Section 11.2.
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Figure 4.2: An overview of the online environment. The thickness of the horizontal arrows denotes the
difference in traffic amount. The vertical arrows indicate which object is shown to the user.

4.2.5 The online environment

In the online environment is the operational environment of Masters Portal and is mainly considered
to be the source of the logging data in this thesis. Moreover this environment contains an A/B
testing environment that can be utilized to test variants of various objects available on the system
like advertisement blocks, recommendations or search engines. In A/B testing the daily traffic of
the system is divided between the object available on the web system and an experiment containing
variations of this object. The user interaction on the object and variants is logged and compared to
each other. In this way the quality of the variants can be evaluated. In case a variant has a better
quality than the current used object in the web system, it can be chosen to replace the object of the
web system with this variant. Figure 4.2 shows an overview of this A/B test system.
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5
Literature analysis

The literature analysis is described in this chapter. The analysis serves as input for the Reference
Architecture (RA) construction process. The approach, scope and main references are elaborated in
the remainder of this chapter.

5.1 Approach, scope and focus

The goal of the literature analysis is to obtain main requirements and architectural components of
current and future recommender systems in order to use the findings as input in the RA construction
process. First important components such as web usage mining and personalization [MCS00],
user monitoring and profiling [MSDR04, MDG+09] and popularity prediction and correction in
web systems [SH10, Ste11] are considered. Then analysis has been expanded towards context
awareness [ADB+99], one of the main components in Context-Aware Recommender Systems (CARS).
Architectural views and information of recommender systems are important in order to obtain insight
in the way these systems are designed and constructed. Aa overview of CARS containing context and
important recommender systems components has been explored in this literature analysis.

5.1.1 Main focus

The literature analysis is focused on multiple area’s: First the focus lies on gaining insight in the active
research area’s in the recommender systems field in order to be able to adhere to additional requirements.
Second application of contextual information in CARS is of importance. This information gives
insight in how contextual information is used and available. Finally the focus lies on generalizing the
components of the found architectural material and process flows for incorporation in the RA. In this
way the components adhere to the required flexibility and adaptability requirements.

Highlighted components are parts of the recommender systems that require more depth and insight
because of their indispensability to the system or lack of detailed information. The highlighted
components identified context awareness, monitoring, learners and processors.

There is extra focus on context awareness because a CARS requires that context can used in all
processes of the recommender systems. The goal is to obtain insight in how similar systems incorporate
context. The acquired information is then incorporated in the context component of the RA.
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Monitoring is an important component of the recommender system. It allows insight in the quality
and performance of the system. Therefore various aspects such as monitoring of the recommendation
process, concept drift and anomaly detection are examined in order to outline the required connections
to other components.

Finally a separation of functionality is enforced by the learner and processor components. Learners
are instantiations of recommendation algorithms while the processors are the agents performing
the remaining processing. This separation has been made since the pre-processing steps like raw
data processing often require a different computation strategy and computation environment than
recommendation algorithms. Additionally, the separation enables more flexibility and adaptability
towards the scheduling and resource allocation of these components.

5.2 Related architectural work

The related work outlined in this section contains architectural views and information used in the
construction of the RA. Unfortunately in most of the work on recommender systems, architectural
information is usually described very briefly or is not mentioned at all. Furthermore, in the majority
of cases only the high level views are given and implementation details are omitted. For example, in
most of the references processing agents and data stores are provided and only the main components
can be identified. Therefore important details that could be beneficial to the RA are often missing in
literature.

Furthermore, a reference on empirical work on RA has been obtained as well. The reference is used to
validate the envisioned process and to ensure that the proper steps were taken to construct the RA.

5.2.1 Architectural work on recommender systems

Cho, Kyeong Kim and Hie Kim utilize a recommender system in the field of e-commerce in [CKK02].
This system is required to incorporate possible associations between the purchase of products and
customer preferences. The architectural overview of the system shows the required data stores, entry
points of the system and the various processing agents.

Tran and Cohen propose a hybrid recommender system architecture in [TC00]. The system combines
collaborative filtering with a knowledge based system; a system which recommends items based on
explicit feedback the user provided. Interfaces, agents and data stores are the main components us in
the architecture. The architectural views show these general building blocks of components in the
architecture for example in deriving the recommendations. Also the ability to combine data sources
is displayed.

Middleton, Shadbolt et al. introduce an ontological approach to user profiling for recommender
systems in [MSDR04]. Two systems are instantiated, of which the Quickstep recommender system is
of interest. This is a hybrid recommender system in which content-based and collaborative approaches
are used. Architectural views of the ontological approach and the Quickstep system are given. .

Mobasher, Colley and Srivastava also focus on user profiling, web usage- and association rule mining
by proposing a general process flow in [MCS00]. The notions of online and offline are introduced
to denote the used computation environment. Additionally a data pre-processing strategy is given
allowing insight in the envisioned data processing for the recommender system. The fact that the
recommendation process is actually continuous is important; the process should be adaptable and
flexible in order to be able to quickly correct threats to the recommendation accuracy.
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Abbar, Bouzeghoub and Lopez first show a global architecture of CARS in [ABL09]. The focus of
their work lies in acquiring contextual information for user profiling. An architectural overview of a
collaborative filtering based CARS is shown. The reference architecture shows the process of matching
users to contextual profiles. This work, although not taken into account in the RA construction
process, can serve as a starting point for detailing the user profiling part of the RA.

Berkovsky, Kuflik and Ricci show the notion of having remote systems accessible by a mediator server
in their architecture in [BKR08]. This mediator is responsible for the user modeling functionality.
Furthermore technical storage aspects of various used matrices for computations are outlined and
elaborated. This work shows the importance of architectural aspects like system division, as well
as the importance of data storage and handling in user modeling. Although not applied in the
construction process of the RA, these concepts can support the physical view of the architecture.

Amatriain and Basilico elaborate the general system architecture of recommendations of Netflix
in [AB13]. Netflix is a provider of on-demand media available in a variety of countries. In additionally
to the previously introduced notion of online and offline computation environments the architecture
introduces the semi-online environment1. The semi-online computation environment is a compromise
between online and offline computations. Essentially offline computations are performed on the online
environment and presented asynchronously to the user. An example is updating recommendations to
reflect that a movie has been watched. This update computation then would start when the user
starts to watch the movie in order to have updated recommendations when the user stops or finishes
watching the movie. This architecture shows the incorporation of various computation environments
and frameworks in the recommender system, as well as the need to schedule computations according
to demand of the data and the availability of resources.

5.2.2 Reference architecture work

In [GA11] Galster and Avgeriou present an approach to empirically ground the validity and re-
usability of a reference architecture (RA). Six steps are proposed to offer a guideline that can take
RA construction from type selecting to design strategy to construction and evaluation. Having a
RA construction guideline this is important in order to ensure of the completeness of the RA and to
crosscheck with the envisioned design process.

5.3 Related work on application of context

In [AT05, AT11] Adomavicius and Tuzhillin outline three algorithmic paradigms to apply context
in recommendations: Pre-filtering, post-filtering and modeling. Contextual pre-filtering means that
the input data of the recommendation is selected based on the the relevant context. Contextual
post-filtering uses context to filter irrelevant items or to adjust the ranking of items, which can be
done by using heuristics or model-based techniques. The ranking adjustment strategy is similar to
the Context-Aware Recommendation Adjustment (CARA) algorithm, especially the variant using
weighting based on predicted relevance. The modeling strategy adds a third dimension to the
recommendation space of users and items. Heuristics or model-based approaches can be applied.
In case of contextual modeling, the context of the user should be available in order to retrieve the
appropriate recommendation.

Furthermore, Abbar et al. [ABL09] outline a Personal Access Model (PAM), which provides services
ranging from context discovery to binding the contextual properties of the user to a set of profile

1Netflix refers to this as the nearline environment.
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preferences denoted as the operational profile. Together with the known concept of the user profile
the operational profile is used in a contextual modeling strategy in the recommendation process to
obtain contextual top−k similar users of which the item ratings are aggregated in order to derive
a recommendation. This is a different approach to derive recommendations opposed to the CARA
algorithm, yet the contextual profiling and the used data sources overlap.

Baltrunas and Ricci [BR09] experiment with incorporating context in collaborative filtering. The
notion of item splitting is important: Items can be split up in multiple vectors according to various
contextual conditions. This is also the case in the CARA algorithm: Recommended items are re-ranked
differently according to the belonging context.

Finally approaches where users, items and context is represented as matrices and vectors are currently
actively researched [BKR08, ASST05]. The reasons behind this strategy is the combination of local
machine learning methods, a variant on lazy learning where generalization of the query is delayed as
long as possible and multi-dimensional data warehousing systems. The various approaches of finding
similarities are elaborated when utilizing cross-user, -item, -context and -representation, where the
latter one means incorporating user, item and context in the mediation are interesting with respect to
matrix calculation. The strategies in both papers differ from this experiment in calculation perspective
and explore a broader sense of similarity in recommendations.

5.4 Key architectures

Figure 5.1 shows the recommender systems architecture proposed by Cho, Kyeong Kim and Hie
Kim in [CKK02]. This architecture outlines an e-commerce recommender systems tuned towards
association rule mining and deriving recommendations based on customer preference models. The
architecture contains a detailed process flow from raw data to the actual models.
In this architecture two main ingredients of recommender systems are visible: the usage of various data
sources and a process flow from raw data to recommendation lists. Data processing is an indispensable
activity in recommender systems and hence the RA must be able to incorporate these kind of process
flows as well. Furthermore the data processing must flexibility and adaptability in order to be able to
accommodate to changes.

Mobasher, Cooley and Srivastava also provide a recommender system architecture corresponding
to data processing in [MCS00]. Figure 5.2 shows this architecute. Besides association rule mining
usage mining is applied in order to obtain the required preference information from the user. The
architectural view contains a detailed sequential outline of the required data processing, which can be
used to identify and generalize components.
The data processing divided in an online recommendation deriving and offline processing. In recom-
mender systems this separation, often extended with the notion of semi-online processes, is important
because often different environments are used as well.
Moreover, it is shown that the recommendation process is in principle a continuous process. Providing
the recommendations to the user does in principle not depend on the freshness of the data, and
hence besides the separation in computation environment there is also a separation between providing
recommendations and deriving them. This is an important notice which is taken into account in the
recommendation part of the recommender systems.

Figure 5.3 shows the architectural approach Middleton, Shadbolt et al. used to instantiate the two
systems as described in [MSDR04]. In this system usage data is classified towards a database of
research papers in order to recommend similar research articles that have not been visited by the
user. Hence in this approach clustering and classification algorithms and hence ML algorithms can
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Figure 5.1: The recommender system architecture as proposed in [CKK02].

also be of importance in recommender systems.
The ontology object is a container holding relationships, entities, attributes and axioms supporting the
recommendation process. This object is available throughout the recommender system and hence each
component can contribute and benefit from the collected information. Hence the setup of this system
shows the importance of having the required information available to all processes and components of
the recommender system.

Figure 5.4 shows the general architecture used in Netflix as elaborated by Amatriain and Basilico
in [AB13]. The architectural view focuses on showing the various used computation environments
and data storage systems. These notions are important since it shows the requirements of being able
to use various frameworks, environments and data storages. Furthermore, it shows the importance of
being able to schedule the required processing based on demands in the system as well as availability
of resources.
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Figure 5.2: The recommender system architecture as used in [MCS00].

5.5 Missing information

5.5.1 Architectural and implementation details

Most of the architectural view found in the literature only contains the general high-level components
and objects required in recommender systems. Detailed information such as specialization of compo-
nents and types of relationships between objects are not shown. These details are important as input
for a RA, because they can define the relationships amongst objects and components.

Furthermore, in case of an implementation based on the architecture the implementation details and
feedback are often not mentioned. This information can be used to determine the quality of the
architecture and offer an insight in the quality of the used strategies and approaches.

5.5.2 Design choices

In most of the referencing material the design choices of the shown architectural material are often not
motivated. Examples of design choices are usage of architectural patterns, separation of functionality
in various components and how relationships between components and objects are defined. Motivation
of considerations in the design process of the architecture can offer insight in reason to design an
architecture in particular ways, which in turn can be used in the construction process of the RA.
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Figure 5.3: The recommender systems architecture as used in [MSDR04].

5.5.3 Used artifacts

The software artifacts used to construct a recommender systems. Incorporating external software
artifacts can enforce the architecture of a recommender system to adhere to a particular program-
ming paradigm or structure. This information can reveal part of the motivation why a particular
recommender system architecture is designed.

5.5.4 Recommender data storage

In most recommender system architectures a simplification of the data storage mechanism in RA
of recommender systems literate are given, which implies that the data is in the same format and
database in each of the recommender system processes. This is not necessarily the case as frameworks
like HADOOP often require semi-structured key-value data. Either a particular part of the data
is in semi-structured for or the data sources produces the dataset when required. Hence detailed
information about data storage strategies in recommender systems can be used to improve the data
storage component of the RA.

5.5.5 Contextual data sources

In the referenced material about context, the approach of resolving contextual features is often not
revealed. Also the data sources providing contextual information are often not described. The context
library outlined in Section 8.2 shows that contextual data often has uncertain accuracy, especially
when using data that is publicly available. Yet in most of the contextual work this is not mentioned.
Analogous to this question the strategy used to process data in which the contextual features could
not be resolved is often missing or not described. Insight in extensive processing of contextual features
can yield additional detailed information applicable to the RA .
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Figure 5.4: The recommender system architecture as proposed in [AB13].
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6
Masters Portal system review

This chapter outlines the system review conducted on the Masters Portal web system. In this system
review the recommendation and context awareness opportunities of the Masters Portal web system are
outlined by examining data sources and process flow. In the remainder of this chapter the approach,
main focus and results are elaborated.

6.1 Approach

Data sources
identification

Process flow

Context-awareness
approaches

Recommender 
system

approaches

Generalization

Figure 6.1: The outline of the approach of the system review.

The goal of the system review is to analyze the Masters Portal web system in order to inventory
recommender system possibilities and interesting context applications. This goal is achieved by
identifying the available data sources and process flow, analyzing the possible applications context
awareness and recommendations and generalizing the findings in order to use them as input for the
Reference Architecture (RA). The process flow denotes the navigational process of Masters Portal.
Figure 6.1 shows the process outline for the system review. This setup of the system review enables
the identification of data sources and possibilities, along with pitfalls in the process flow of the web
system. Context awareness and recommender system approaches are proposed in order to improve
the quality of the web system. The generalization step allows to obtain generalized components or
strategies which could be applicable in other recommender systems as well.
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6.2 Focus

This system review is focused on the data sources and the process flow of Masters Portal. The data
sources are assessed in order to inventory the recommendation possibilities. The process flow is
examined in order to find pitfalls in the process of the Masters Portal web system for instance when
the user obtains an empty search result. A recommendation could help support the user and prevent
the user from leaving. Also pitfalls caused by the objects on the system for example when the user
lands on the discipline page it is desired to recommend appropriate pages to get the user back to
searching a suitable master study. In this way it is attempted to cover the whole operational process
of the system.

6.3 Key findings

6.3.1 Context awareness

Various contextual features are proposed to incorporate in various recommender system. Examples
are the intention of the user (orienting or searching) or the degree of traveling the user is willing
to make to study abroad. This application of context requires an outline of context which enables
combining of contextual information. An example is combining of information about semesters of
universities in various countries with the geographical location of the user. If the date of the visit in a
particular interval in ending of semester of an university close to the user, then it is expected that
the user visits the system to search for follow up education. Note that semester information would
related to the activity context as outlined in Section 2.2.1.

6.3.2 Raw data processing strategy

An strategy to process the raw data from the identified data sources of the Masters Portal web system
has been proposed. In this strategy data selection, extension with contextual information and anomaly
detection and processing are outlined. This strategy has formed the base of the construction of the
session data processing task as described in Section 8.5. Additionally, this strategy also shows that
it is required to have flexibility and adaptability in the core processing of the raw data, depending
on the application of the resulting dataset. For example, when the dataset is used to identify the
resolved context for anomalies such as bots the data processing must not apply processing to remove
anomalies, while a dataset used for recommendation bots are required to be removed.

6.3.3 Discipline content object

The main obtained finding is that the discipline can be considered as a weaker content object. There
is no strong additional information to be found on the discipline pages. Hence it is more likely that
users land on the discipline page out of curiosity or that a master study has been clicked which falls
into the wrong discipline, rather than that actual information is necessary. Hence the goal on the
discipline page is to guide the user to the search of master studies with the correct discipline. The
latter requirement can be identified using a contextual feature that monitors the various discipline
objects associated with the user and can be used in a recommendation towards the user. In this way
a user can be encouraged to narrow the search towards a single discipline. These kind of contextual
features can also be used in other systems as well, and are considered to be part of the activity context
as considered in the context awareness paragraph in Section 6.3.1.
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6.3.4 Recommender system improvements

Most of the recommendations generated on Masters Portal are content-based and hence do not include
collaborative strategies, let alone the contextual situation of users. In the system review a variety of
recommendation strategies is outlined, which can give Masters Portal an insight in the application of
collaborative and contextual recommendation strategies.

The majority of the proposed improvements combine various recommendation algorithms and strategies.
In order to achieve this the blending object is introduced in the RA, as well as the tuning object
which can be used for regulating the influence of a recommendation algorithm in the resulting
recommendation. These objects are outlined in Section 7.1.4.
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7
The reference architecture

Figure 7.1 shows the proposed recommender systems reference architecture. This Reference Architec-
ture (RA) is based on the literature analysis and system review as described in Chapters 5 and 6.
The components are explained in the remainder of this chapter.
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Figure 7.1: The proposed recommender systems reference architecture. The rounded boxes denote the main
components, the rectangles denote objects and the cylinders represent data storage. The dotted lines denote
that there can be multiple instantiations of objects, while the arrows denote relationships between objects and
components. The actual type of the relations between objects and components is not defined.
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7.1 Reference architecture components

7.1.1 The pool

Recommender systems are incorporate various software artifacts and frameworks. Therefore there is
need for a central place for accessing libraries, frameworks and separate computation environments
like HADOOP. The pool component is instantiated for this purpose.

7.1.2 Processors

The processor contains the actual processing agents; instantiations of software artifacts available
in the pool. The purpose of the processor is to perform the algorithmic work except for the actual
recommendation deriving. This component provides the required instantiations of software artifacts
and implementations to perform the processing tasks in the recommender system. The reason to
have this component is to allow for scheduling and the creation of process flows containing various
processors utilized to complete a particular task in the system. Control flow, having a process
scheduling based on conditional requirements,can be available allowing for setting up predicates
between various processes. This enables the required flexibility and adaptability in the RA.

7.1.3 Learners

The learner component contains the instantiations of recommendation algorithms. The learners are
used for the actual generation of recommendations. Recommendation algorithms from the pool are
instantiated and the required data is available from the data storage component. The blending and
monitoring components are connected to the learner component in order to obtain the required
information for monitoring.

The learner component is used to have a separation between the offline data processing and online or
semi-online recommendation parts of the general recommendation process. Because of the difference
in computation strategy,tuning and incorporation of context awareness, it is required that the learner
component is separate from the processor component. Moreover ensemble learning can be initiated as
well. Hence flexibility and adaptability is ensured in the learner component.

7.1.4 The recommender

The recommender component engages the deriving of the recommendations along with the various
comprehensive processes. A number of objects are available in this component. The blending object
is used to combine various recommendations into one. The separation between blending and learners
enables flexibility and adaptability in the scheduling of these processes. The tuning object is used to
apply tuning on the recommendations. It is required to have flexibility in tuning for application in
the various stages of recommendation processing. The recommendation object is an instantiation of
the final recommendation which allows for easy querying and post-processing. Finally the feedback
object is used to receive explicit feedback of the recommendations from the web system.

44



7.2. COMPARISON WITH OTHER RECOMMENDER SYSTEM ARCHITECTURES

7.1.5 Monitoring

The monitoring component provides an insight in the operational processes of the recommender
systems. Various monitoring possibilities as described in Section 2.3.8 can be applied on virtually any
object in the system. Therefore a complete overview of the performance and quality of the system
can be obtained.

The monitoring component offers a central place to obtain insight in the various monitored properties
of the operational processes of the recommender systems. Comparison, blending and correlating
of various monitor statistics can be performed in this component enabling a detailed insight in the
performance and quality of the operational processes in the system.

7.1.6 Logging and profiling

The logging and profiling components component provides instruments to the web system to process
usage logging and to construct the required user profiles. In this way the acquiring of usage data still
required to be implemented in the web system, but the processing of this data is managed in the
recommender systems. In this way the recommender system controls the data processing. Additionally
the appropriate computation environment can be chosen by the system as well.

7.1.7 Context awareness

The context awareness component is used to provide context throughout each operational process of
the system. It can be considered as a separate subsystem that has separate data sources and imple-
mentation. This enables the administering of the context awareness component without interfering in
the operational process of the recommender system. In this way the user of the recommender systems
can freely incorporate new contexts as well ass constructing and combining contextual features which
can improve the overall quality of the recommendations.

7.1.8 Data processing

The data processing component is used to administer the data processing tasks. Scheduling and
routing of these tasks is the main goal of this component. The data processing tasks require a different
strategy opposed to other operational recommender systems processes because data processing is
time and resource consuming. Furthermore different computation environments like HADOOP can
be used for the data processing and hence other paradigms might be in use which require a different
application in scheduling.

7.2 Comparison with other recommender system architectures

In Section 5.4 three architectures used as main input for the RA are elaborated. The proposed RA is
compared with these architectures in order to inventory the main differences.

The main difference between the RA and the described architectures is that the actual processing tasks
or software agents are centralized in the processor component of the RA. This allows for centralized
instantiation, scheduling and logging of the actual processing tasks. Therefore multiple tasks can
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benefit from the same instantiation of a processing task, which allows for better scheduling and
re-usage of processors.

Furthermore it is attempted to separate the various processing tasks of recommender systems. For
instance there is a separation between recommendation algorithms and complementary processing
tasks. This separation is important since data processing and recommendation deriving require
different scheduling for example. Differences in complexity, computation environments and execution
times require these tasks to be scheduled differently. Hence separation enables better scheduling and
allocation to computation environments.

Complementary to the described architectures, the RA incorporates a subsystem to deal with context
awareness enabling Context-Aware Recommender Systems (CARS). This allows the usage of contextual
features throughout the whole system.
Furthermore the monitoring component is a complementary yet vital part of the RA. Recommender
systems are becoming more complex and insight in the performance of multiple components is required.
Certainly, when using collaborative strategies which require usage data it is important to have insight
in the quality of the data and the performance of the recommendation algorithms.
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Implementation

Figure 8.1 shows the proposed Reference Architecture (RA) as outlined in Chapter 7 and indicates
the implemented components of the architecture. The data processing implementation utilizes the
data sources as described in Section 4.2.4. The remaining implementations use separate data sources.
The described offline HADOOP environment serves as the computational environment.
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Figure 8.1: The proposed RA of Chapter 7. The colored blocks denote components which have been fully or
partially implemented.
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8.1 The offline environment

The offline environment is defined as a separate experimentation environment that does not interfere
with operational environments of web systems. In this case the offline environment is a computational
environment which does not interfere with the Masters Portal web system. The HADOOP framework
is used in order to allow distributed computations enabling the processing of large amounts of data.

Two offline environments are used: the CAPA server, a shared server located on the campus of
the university of technology of Eindhoven, and SURFSARA, is a shared server cluster located in
Amsterdam. While the CAPA server is one physical machine with multiple cores, the SURFSARA
cluster consists of 66 machines. The SURFSARA cluster is able process multiple tasks at once on
large volumes of data. The drawback is that the SURFSARA cluster has a large user base as well
and hence the execution times of the processing tasks are the same on both environments.
These computation environment is chosen based on availability; for example the CARA environment
has not been available throughout the whole implementation phase. Being able to use any available
computation environment1 is one of the advantages of using HADOOP.

8.2 The Context library

TimeContext LocationContext

ContextFeature

Time
Processor
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Contextual 
information

DeviceContext
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Processor

Figure 8.2: The general architectural outline of the context library. The double arrow lines indicate
communication between the processor objects and the data source, while the dotted lines indicate usage and
inheritance between various objects.

The context library resolves contextual features based on the characteristics of the user of the web
system. The general specification as described in Section 2.2 is implemented in this library. The
current available contexts are time, location and device. Figure 8.2 shows the general architectural
outline. The processor objects are the implementation of contextual categories and are used to resolve

1Given appropriate version of the HADOOP framework and the availability of used third party software artifacts.
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the contextual information for the context classes, which provide the contextual information to the
ContextFeature objects. The ContextFeature objects are the implementations of the actual contextual
features, which provide define the set of contextual elements.

This architecture allows for dynamic construction of new context and contextual features. Moreover
it allows contextual features to use combinations of different contextual features and and elements.
Hence this architecture allows for flexibility and adaptability in construction of the required contextual
features.

8.2.1 Data sources

In order to provide the required context the library uses a variety of data sources. The following data
sources are used:

• Timezones by country: a dataset containing all countries and their timezones.

• Coordinates to timezone: a dataset containing coordinates of timezones. This dataset originates
from the so-called Olson/timezone database which is commonly used in various software
artifacts [Ols09].

• IP address to country: a dataset which can resolve IP ranges to a country.

• IP address to city: a dataset which can resolve IP ranges to a city constructed by MaxMind,
a company focusing on IP to location resolving. The accuracy varies from 30% correct city
resolving in Ukraine to 95% resolving in Cote D’lvoire [Max13].

• Country to continent: a dataset which can resolve a country to a continent.

Only a few data sources have accuracy number available. Therefore it is difficult to reason about the
quality of resolved contextual features.

8.2.2 Device context resolving

The third party library UserAgentUtils is used to resolve the device context. This library is used to
resolve contextual information about the user’s operating system, web brower and device. The library
already offers a complete device context, which is implemented in the context library.

8.2.3 Limitations

The initial idea was to construct a context library that can be extended and enables inheritance
between contextual features. Currently the library is lacking the required interfacing and typing,
making extending of the code difficult. Also the context resolving part of the library requires more
generalization work in order to be able to have better adaption towards new contextual data sources.
The context library is thus an effective library to use in combination with the data processing for
example, but to use it as a general provider of context, more architectural work is necessary.

8.3 Learners

The learner objects as described in Section 7.1.3 can be instantiated the MAHOUT library. Two
recommendation jobs are available: the ItemSimilarityJob, which computes a set of items similar
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to the preferences of the user, and the RecommenderJob, which an set of recommended items. The
session data as elaborated in Section 4.2.4 is used to derive recommendations.

The output of these jobs can be directly used as a recommendation.Together with their high amount of
configurable options, it is shown that the MAHOUT recommendation jobs are suitable for instantiating
the learner objects.

8.4 Processors

The various PIG and Map-Reduce implementation opportunities can be considered to be instantiations
of the processor objects as described in Section 7.1.2. The main advantage of this is that distributed
processing can be performed, which enables the processing of large amounts of data. Also many
options can be parameterized allowing for flexibility in the configuration of various processor objects.

8.5 Session data processing

Filtering Context extension Session window

Session dataset

Evaluation dataset

Figure 8.3: The session data processing subtasks and resulting datasets.

The data processing component consist of one processing task that processes the Apache access log
data as described in Section 4.2.4. Figure 8.3 shows the subtasks of the data processing. The data
filtering subtask requires that each log line contains a non-empty IP address, user agent and request
fields. This filtering serves as a validity check of the access log under processing. These fields are
required for the context extension task. In this task the data is extended with the available contextual
features as elaborated in Section 8.2.
The result of the session data processing task is the session dataset. This dataset is used in the data
processing task as outlined in Section 11.2. Furthermore, the evaluation dataset consist input, output
and intermediate data volumes. Moreover, the number of entries by IP address and IP address and
category is counted. Also the total session time per IP address is calculated. The evaluation dataset
offers an insight in the performance of the session data processing tasks, as well as an insight in
various characteristics of the data.

8.6 The web service

The web service is an object that enables communication between various servers. This object can
be used in the RA to enable communication between the recommender and web system. The web
service is constructed using JAX-RS, which is an Java based Application Programming Interface
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(API) that allows to bind web requests to code using annotations. JAX-RS uses the Representational
State Transfer (REST) protocol to enable the required communication [PGP13].

The advantage of JAX-RS is that it is easy to implement in existing projects. Basically an object
must be available which contains annotated methods that are able to send and receive the required
information. Often the communication objects are different from the internal data objects. In this
case a transformation is necessary as well.

The web service object has been designed in advance of online experimentation as outlined in Ap-
pendix B to serve as access point for the online environment to request recommendation. Furthermore,
the web service object has been used in practice in another experiment on the Masters Portal web
system were it was used to provide a calculation based on input data. This practical application of
the web service shows that it is suitable to use in the RA.

8.7 Implementation feedback

8.7.1 Interfaces and typing

There is need for specialization of the processors and learners. For example there is a clear difference
between context awareness and data processing processors. This difference is in the type of object; data
processors are HADOOP implementations while context awareness processors can be implemented as
regular classes. For the learners there should be a clear separation in the actual recommendation
algorithm as well as pre- and post- processing for recommendations.

8.7.2 The control mechanism

The scheduling of the various processors and learners is of importance for the functioning of the
recommender system. Various different processes for data processing, recommendation algorithms
and other processing tasks often depend on each other. Therefore a scheduling component needs to
be incorporated in the RA which is able to schedule and control the various processing necessary in
recommender systems.

8.7.3 Component outline

Each of the data processing, logging and profiling, context awareness and monitoring components
needs more specialization. The various objects of these components, like administration entry points
or monitoring tasks, must be outlined in the RA. In this way the RA will contain a more complete
and structured architectural view.
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9
Conclusions

9.1 Results and contributions

A case study has been conducted in order to propose a reference architecture for Context-Aware
Recommender Systems (CARS) consisting of a literature analysis and a system review. The literature
analysis resulted in an overview of architectural work on recommender systems, the application of
context in CARS and specific aspects of recommender systems such as monitoring or user profiling.
The system review contributed to the Reference Architecture (RA) by showing that contextual
information is required to be combinable. For example the experience with installing software can be
estimated by determining whether the user is using the standard installed browser on his operating
system. Furthermore, the system review shows that the core processing is required to be flexible in
scheduling and requires control flow. The outlined process flow for the raw data processing shows
that anomalies detected could require different processing strategies. For example, anomalies caused
by bots are required to be filtered out of the data while a popularity outburst on an item would only
require popularity correction. The data processing work flow has been the base of the session data
processing implementation.

Evaluation of the RA has been performed by constructing a partial implementation. This imple-
mentation consists of the processor, data processing learner and context awareness components.
Additionally, communication between the recommender system and web system has been simulated
with the implementation of the web service. The HADOOP, PIG and MAHOUT frameworks are used
to construct these implementations. The implementations show the correctness of the RA as they fit
in the proposed architecture. Furthermore the separation of processing functions and processing task
adheres to the required flexibility and adaptability, since subtasks can be changed and tested locally
without using the HADOOP environment. Additionally, the HADOOP environment also adheres to
the flexibility requirement as processing tasks can be scheduled and configured in a flexible way. The
environment handles the required resource management to have fair scheduling in the execution of
processing tasks.
Furthermore, the implementations have contributed to experiments conducted on the Masters Portal
web system and data. The session data processing has been used in a data analysis experiment giving
insight in the division of contextual information over the user base of the Masters Portal web system.
The web service has been used as communication component between the Masters Portal web system
and experiment base server in an experiment that uses contextual information to modify search results
the web system.

The evaluation shows the required flexibility and adaptability in the core components of the RA.
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This is supported by the architectural properties of the HADOOP framework. The required minimal
interference between recommender system and serving system is shown by only allowing communication
when the web system requests recommendations and to enable the required logging and profiling.
In the latter communication it is preferred to have the recommender system push the required
information based on opportunities, for example when the system does not have high visitor rates.
Additionally, the recommender system has a separate data storage component which also benefits the
minimal interference requirement.

9.2 Limitations

9.2.1 Generalization trade-off

As stated before in Section 1.3 in each reference architecture there is a trade-off between generalization
and specialization. In the RA this problem arises as well in the absence of incorporating core
components in the monitoring and logging and profiling components such as schedulers that can
schedule core processes or object used to visualize monitoring results. Furthermore, components also
require access points that can be used to administer the system, modify scheduling of core processing
and assess the performance and quality of various components in the system. Incorporating the
described core components and access point in the RA can improve the quality of the system outline.

9.2.2 Evaluation of the reference architecture

Evaluation of the RA has been done by the partial implementation and the used frameworks. Imple-
mentation of the complete system will enable evaluation of the remaining components. Furthermore, in
the current evaluation the required scheduling of the various required processing tasks is not included
in the current evaluation, but is of importance of the overall effectiveness of the system. When too
many processing tasks are executed at the same it can cause increased processing times which can
delay depending tasks in the system. This evaluation can be achieved by simulation scheduling use
cases with a complete implementation.

9.3 Future work

9.3.1 Specialization of the reference architecture

The components outlined in the RA require more detailing and specialization in order to obtain a
complete system outline. Furthermore, access points in the system used for administer the system are
currently not incorporated in the architecture. This also requires incorporation of scheduling objects
usable to provide the required core function scheduling.

Furthermore, the advantages and disadvantages of frameworks and other useful software artifacts
must be outlined much more in order to be able to recommend a preferred setup for the system.
The RA could benefit by incorporating architectural properties of these frameworks. An example is
including a distributed database system in order to support for distributed core processing.
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9.3.2 Complete implementation of the system

A complete implementation of the RA can contribute to the quality and validity of the architecture.
Useful feedback, such as more scoping with respect to frameworks and components, as well as
architectural requirements and interfaces can be yielded by this prototyping. Test cases can be defined
to evaluate requirements such as adapting the process flow of recommendation deriving based on the
results of anomaly detection or automatic tuning of various recommendation based on monitoring of
recommendation quality.
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The CARA algorithm experiment
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10
Introduction

This part contains the experiment that is performed with the Context-Aware Recommendation
Adjustment (CARA) algorithm. The goal of this experiment is twofold: First we want to show
that the CARA algorithm effectively re-ranks and improves the quality of existing recommendations.
Secondly, the experiment is used as a practical case for testing partial implementations constructed to
evaluate the Reference Architecture (RA) as described in part I. The context library and the session
data processing task described in respectively Sections 8.2 and 8.5 are evaluated in order to asses the
quality of the proposed RA for Context-Aware Recommender Systems (CARS).

The data used in this experiment originates from various log systems available on the Masters Portal
web system. The recommendation interaction and session datasets as outlined in Section 4.2.4 are
used. In the recommendation usage the click and view events are used as elaborated in Section 2.1.1.
A delay of five minutes is allowed between the display the recommendation and the actual visit of a
recommended item.

The experiment focuses on the data logged in July 2013. Three datasets are generated from this data:

• Top-100 dataset: the 100 recommendations having the most views and/or clicks

• Random-100 dataset: 100 random recommendations.

• Complete dataset: the whole dataset of available recommendation interaction data.

The top-100 dataset contains the recommendations having the most interaction. Hence this dataset
provides an insight in the expected improvement in the optimal case for the CARA algorithm on the
Masters Portal recommendations. The reason to use this subset is the distribution of the visitor data
as described in Section 13.2.1, which shows the presence of a long tail in the data. Using the 100
recommendations having the most interaction data ensures that the optimal case is selected. The
random-100 set provides an insight in the average expected improvement when applying the CARA
algorithm on random selected recommendations. Finally, the whole dataset is used to determine
the overall expected improvement shown when the CARA algorithm would be used on all available
recommendations.

The experiment is performed on the offline environment as described in Section 4.2. The implement
consists of 9 main tasks, constructed using the HADOOP and PIG frameworks.

Exploratory data analysis approach is used to perform the experiment. The available contextual
features have been explored to obtain a suitable candidate for application in the CARA algorithm. This
exploration is performed by evaluating the distribution of contextual features over the recommendation
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interaction data. This resulted in choosing the contextual feature browser in this experiment. Note
that mobile browsers are grouped together in order to have sufficient data and an improved distribution
over the data. The same strategy is applied on browsers that are not actively used as described
in Section 11.3. The resulting re-ranked recommendations are evaluated using various metrics.
The difference between the original ranking and the re-ranking is measured with the Kendall tau
Rank Correlation Coefficient (Kendall correlation) described in Section 2.6.3. The expected quality
improvement is measured with the ratio of improvement explained in Section 2.6.5. Additionally
the Click-through Rate (CTR), Contextual Click-Through Rate (CCTR) (2.6.1) and Contextual
Coverage (COV) (2.6.1) metrics provide the distribution of the contextual categories among the
recommendation interaction data.

The experimental results are an indication of the potential improvement the re-ranked recommendations
produced by the CARA algorithm. The main limitations of this experiment is that the Ratio of
Improvement (ROI) evaluation is hard because of low interaction with the recommendations in the
majority of cases. This causes that recommendation of which only a few items are re-ranked are
expected to be a huge improvement. Furthermore, offline evaluation of the potential improvement
and quality of recommendations is hard due to the missing interaction with the user. Therefore,
further experimentation on the online environment of Masters Portal is required to have an improved
evaluation of the potential improvement of the re-ranked recommendations produces by the CARA
algorithm.

Finally, the session data processing task and context library of the partial implementation constructed
are used in this experiment in order to evaluate the quality and effectiveness. The implementations
have shown that these requirements are met by having separation between processing function and
task which improves the changing and testing of the code. Furthermore, the resource scheduling
and parameterization possible in HADOOP contributes to the flexibility and adaptability of the
implementation.
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Implementation outline
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Figure 11.1: The implementation outline of the experiment.
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The implementation outline of the experiment consists of 9 processing tasks as shown in Figure 11.1,
which are sequentially performed. The implementation is focused on data processing and deriving
of the various metrics. Furthermore, evaluation datasets containing intermediate results are used in
various tasks to be able to evaluate and monitor the quality and results of the processing tasks.
The implementation uses the HADOOP and PIG frameworks as described in Section 2.4.2. These
frameworks enable distributed computing that is expected to lower the execution times for data
intensive processing tasks.

In the remainder of this section various images are shown outlining the input and output datasets for
each processing task.

11.1 Session data processing

The session data processing task processes the raw input data, as described in Section 4.2.4, to semi-
structured session data extended with contextual features. This data is used to provide the required
contextual features used in the Context-Aware Recommendation Adjustment (CARA) algorithm. The
session data processing is elaborated in Section 8.5. The resulting session data is used in the data
processing to extend the generated click and views data with contextual features.

11.2 Data processing

Data processing

Probability of click 
dataset

Valid clicks and views 
datasets

Evaluation dataset

CTR dataset

Recommendations

Session data

Recommendation 
interaction data

Figure 11.2: The input and output datasets of the data processing task.

The data processing task is used to combine the recommendation interaction data with the session
dataset. Figure 11.2 shows the outline of this task. The valid click and views data is generated
from the recommendation interaction data as described in Section 2.1. Furthermore, this dataset is
extended with the session data in order to have the contextual features available. Based on this data
the Probability of Click (POC) as described in Section 2.6.4 is calculated. This dataset is used in
the ratio of improvement processing task as described in Section 11.6. Also the Click-through Rate
(CTR) as elaborated in Section 2.6.1 is calculated based on the filtered clicks and views dataset.
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The evaluation dataset contains data used to evaluate the performance of the processing task and the
quality of the data. The difference data consists of the clicks and views are not included in the output
dataset, for example when extension with the session data did not succeed. This dataset is used to
check whether there are problems in the process of generating click and views data and extending
with session data. Additionally, the data volumes of the input and output datasets are calculated
contributing to the evaluation of produced output datasets.

11.3 Data selection

Top-100

Selected clicks and 
views datasets

CCTR dataset

COV dataset

Whole

Random-100

Evaluation dataset

Valid clicks and views 
datasets

Figure 11.3: The input and output datasets of the data selection tasks.

The selection processing task consists of the clicks and views data selection for the top-100, random-100
and complete datasets as described in Section 10. Furthermore, the Contextual Click-Through Rate
(CCTR) and Contextual Coverage (COV) metrics as described in respectively Sections 2.6.1 and 2.6.2
are calculated in this task since these metrics are depending on the selected data. Finally, the
evaluation dataset consists of the distributions of the available contextual features over the data. This
dataset has been used in order to obtain an insight in the suitability of features to be used in the
CARA algorithm.

Moreover, the mapping of contextual elements is can also be performed in this task. In the contextual
feature browser used in this experiment all mobile browsers are represented by the contextual element
Mobile. Browsers having too less interaction data are represented by the contextual element Other.
An example is Konqueror which is the default browser of Linux. This mapping can be provided to
the available contextual features in the data by applying a processing function in which the mapping
is specified. In this way the contextual elements of the browser feature contain sufficient data in order
to have decent results in the adjustment recommendation generated by the CARA algorithm.
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11.4 The CARA algorithm

Context adjustment

Adjustment dataset

Evaluation dataset

Selected clicks and 
views datasets

Figure 11.4: The input and output datasets of the context adjustment processing task.

Figure 11.4 shows the outline of the CARA processing task. In this task the CARA algorithm as
elaborated in Section 2.5.2 is applied selected clicks and views datasets from the previous Section.
This results in the context adjustment dataset. The evaluation dataset contains data about the data
volumes of the input and output datasets used in order to obtain information about the number of
actual re-ranked recommendations.

11.5 Visibility function

Visibility function

Adjustment with 
visibility dataset

Adjustment dataset

Visibility dataset

Figure 11.5: The context adjustment processing task and resulting datasets.

Figure 11.5 shows the outline of the visibility function processing task. This processing task applies
the visibility function as outlined in Section 2.5.1 on the adjustment dataset. This is done based on
visibility data that represents the preferred visibility function.

11.6 Ratio of improvement

The ratio of improvement processing task as shown in Figure 11.6 is an evaluation metric of the
potential expected improvement as described in Section 2.6.5. This measure is applied to the
adjustment with visibility dataset in order to only examine the actual re-ranked recommendations.
The statistics dataset contains the mean, variance and standard deviation of the improvement scores.
These statistics datasets are part of the results as described in Section 12. The evaluation data consist
of intermediate datasets used to check whether the calculations are applied correctly.
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Ratio of improvement

Ratio dataset

Statistics dataset
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visibility dataset
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Figure 11.6: The context adjustment processing task and resulting datasets.

11.7 Recommendation data joining

Join task

Merged 
recommendations 

dataset

Evaluation dataset

Adjustment with 
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Figure 11.7: The input and output datasets of the recommendation data joining processing task.

Figure 11.7 shows the resulting datasets for the recommendation data joining processing task. The
resulting dataset of CARA algorithm only contains the recommended items for which clicks and
views are generated and selected. When an input recommendation has too less clicks and views then
the resulting re-ranking produced by the CARA algorithm does not contain all recommended items
from the input recommendation anymore. Therefore the re-ranking is completed with the history
recommendation data in order to obtain the merged recommendations dataset which is used in the
changed recommendations processing task as described in the next section and the Kendall correlation
processing task as described in Section 11.9.
The evaluation dataset contains the ordered output of the merged recommendations used to evaluate
whether the ranking of items is still consistent.

11.8 Changed recommendations

The changed recommendations task is used to get an insight in how many cases the CARA algorithm
actually changes a recommendation. A recommendation is changed if there is a recommended item
which has obtained a different rank in the re-ranking produced by the CARA algorithm. The
degree of change, the amount of difference between the original recommendation and the re-ranked
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Figure 11.8: The input and output datasets of the changed recommendations processing task.

recommendation, is measured with the Kendall correlation in the next section. The outline of the
changed recommendation processing task is displayed in Figure 11.8

11.9 Kendall correlation

Kendall
correlation

Kendall correlation 
dataset

Statistics dataset

Evaluation dataset

Merged 
recommendations 
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Figure 11.9: The input and output dataset of the Kendall correlation processing task.

The Kendall correlation processing task applies the Kendall tau rank correlation as outlined in
Section 2.6.3 to the merged recommendation dataset. Furthermore, the statistics dataset consists
of the mean, variance and standard deviation of the Kendall scores for each contextual element.
These datasets are part of the results as described in Section 12. The evaluation dataset provides
an overview of the Kendall tau Rank Correlation Coefficient (Kendall correlation) by showing the
distribution of the scores in the proposed evaluation intervals. This dataset is assess in order to get
an insight in the degree of change of the re-ranked recommendations of the CARA algorithm.
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Results

This chapter contains the results of the experiment with the Context-Aware Recommendation
Adjustment (CARA) algorithm. The experiment is conducted with the settings outlined in Chapter 10
and the implementation as described in the previous chapter.

12.1 Data volumes and CTR

From the history recommendation data 163, 681 views of Masters Portal study pages and 902, 051
recommendation impressions are extracted. From this data 120, 892 clicks and 428, 750 views are
generated and extended with the contextual features of the session data in the data processing task as
outlined in Section 11.2. The Click-through Rate (CTR) is 18.1%. Note that the CTR is based on the
history recommendation data in order to have an insight in the exact usage of the recommendations
on the Masters Portal web system.

12.2 Recommendation interaction

Figure 12.1 shows the distribution of the contextual elements over the browser feature for the generated
click and views data as described in Section 11.2. The data is selected according to the selection task
as outlined in Section 11.3, and used in the CARA algorithm to re-rank the input recommendations.
It is shown that Chrome, Firefox and Internet Explorer have the most interaction by the distribution
of the whole dataset. Also the Other browsers category is significant in the distribution of the whole
data, however the distribution of the top-100 dataset shows that the interaction is not among the
most used recommendations. In the random-100 dataset the Opera browser is more present in the
distribution than in other datasets. Hence it is expected that in general the browsers Chrome, Firefox
and Internet explorer will show the most interaction in all datasets. The Contextual Click-Through
Rate (CCTR) and Contextual Coverage (COV) as outlined in Sections 2.6.1 and 2.6.2 provide an
insight in the interaction with the recommendation per contextual element. The second column of the
tables 12.4, 12.5 and 12.6 shows the measured CCTR for the three generated datasets. In the top-100
dataset the browsers Mobile, IE, Chrome and Firefox have highest CCTR score. This indicates that
apparently Chrome users have less with the recommendations, considering te distribution of the
browser in all datasets. Also Mobile browser users are actively using the recommendations considering
its share in the distribution over the whole dataset. Furthermore, in the random-100 dataset the
Safari browser shows high interaction. This is due to the selection of the data.
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The third column of the tables 12.4, 12.5 and 12.6 shows the measured COV. The COV can be used
to see how much the clicks of a contextual element are part of the total CTR. The results show that
Chrome, Internet Explorer and Firefox have the largest share in the CTR. So despite the lower CCTR
for the Chrome browser, it shows a lot of coverage. Also the Mobile browsers show high coverage
confirming the findings of the CCTR.

The distribution of contextual elements over the datasets together with the CCTR and COV metrics
indicate that the Chrome, Internet Explore, Firefox and Mobile browsers are expected to show the
most change in the re-ranked recommendations and expected improvement for the CARA algorithm.
The evaluation of this expected improvement is outlined in the next section.

12.3 Improvement evaluation

In order to evaluate the potential quality improvement of the re-ranked recommendations produced by
the CARA algorithm the degree of change between input and re-ranked recommendation, as well as
the expected improvement are evaluated. The degree of the difference is evaluated with the Kendall
tau Rank Correlation Coefficient (Kendall correlation) as described in Section 2.6.3. The Ratio of
Improvement (ROI) as outlined in Section 2.6.5 evaluates the potential improvement of the re-ranked
recommendations.

12.3.1 The Kendall tau rank correlation

The fourth column of the tables 12.4, 12.5 and 12.6 shows the mean, variance and standard deviation
for the Kendall correlation. First, the overall results are assessed. Then, dataset specific results are
elaborated. Furthermore, the Kendall correlation scores are evaluated towards [−1, 0), (0, 1] and
[0.5, 1] intervals in order to obtain an insight in the degree of difference in the general case.

In general the averages range from 0.01 to 0.62 indicating that on average there is difference between
the re-ranked and input recommendations. The standard deviation shows that the values are spread
out from significant to slight improvement.

The top-100 show the most degree of difference between the re-ranked and input recommendations by
having averages close to zero. Furthermore, in 38% of the cases the Kendall correlation score is lower
than 0 indicating a significant difference between re-ranked and input recommendation. Moreover, in
62% of the cases the Kendall correlation score is higher than zero, and in 27% of the cases the score is
between 0.5 and 1, indicating a small to no difference between re-ranked and input recommendation.
Hence 72% of the re-ranked recommendations are indicating a significant degree of change. These
results were expected since this dataset consists of the recommendations having the most interaction.
In the random-100 dataset 23% of the cases have a Kendall correlation score lower than 0, and 72%
has a score higher than 0. In 45% of the cases the Kendall correlation score is between 0.5 and 1.
Therefore, the degree of change in this dataset is not as significant as in the top-100 dataset. Therefore,
the results random-100 show that on average it is expected that the re-ranked recommendation will
have a significant degree of difference with respect to the input recommendation in half of the cases.
In the whole dataset 14% of the cases have a Kendall correlation score lower than 0, and 85% higher
than 0. Moreover, in 60% of the cases the score is between 0.5 and 1. These results shows a slight
overall improvement of the re-ranked recommendations in the general case.

Concluding, the re-ranked recommendations based on the Chrome, Internet Explore, Firefox and
Mobile browsers show the highest degree of difference with respect to the input recommendations
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in all datasets. The top-100 dataset shows the highest degree of difference, as expected since this
dataset represents the optimal case for the CARA algorithm. The random-100 and whole datasets
show lower, but still significant enough degree of change.

12.3.2 The number of changed recommendations

The number of changed recommendations is calculated as described in Section 11.8. Tables 12.1, 12.2
and 12.3 show the number of total, changed and unchanged recommendations for the three datasets.
The changed recommendation results show that the majority of cases the CARA algorithm produces
a re-ranking which is different from the input recommendation, meaning that in the majority of cases
at least one valid click on a recommended item which is not ranked first is recorded. In addition to
the Kendall correlation as discussed in the previous section the results in the degree of difference
show that the top-100 dataset changes the most recommendations while the random-100 and whole
datasets show more not changed recommendations. Additionally, it is remarkable that the ratio of
changed recommendations of the Opera and Safari browsers having a lower share in the distribution
resemble browsers with a high share such as Chrome. This can indicate that for recommendations
having less interaction data equally changes are recorded in the data. In the next section this problem
is elaborated further.

Feature Total Changed Not changed
Opera 26 25 1
Other 31 31 0
Chrome 94 93 1
Mobile 86 85 1
Safari 62 61 1
Firefox 92 92 0

Internet Explorer 83 82 1

Table 12.1: Number of recommendations and changed recommendations per feature for the top-100 dataset.

Feature Total Changed Not changed
Opera 4 4 0
Other 16 15 1
Chrome 66 65 1
Mobile 43 41 2
Safari 19 15 4
Firefox 57 53 4

Internet Explorer 37 37 0

Table 12.2: Number of recommendations and changed recommendations per feature for the random-100.

12.3.3 The ratio of improvement

The fifth column of the tables 12.4, 12.5 and 12.6 shows the mean, variance and standard deviation
for the ROI. The ROI scores smaller than 10 are used in this analysis; The ROI scores are considered
to be caused by anomalies which cause extreme skewness in the data. For example, suppose that a
recommendation has 99 views from users having the browser Internet Explorer and 1 view and click
from a user having Chrome as browser. Then the Probability of Click (POC) is 1

100 and the CARA
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Feature Total Changed Not changed
Opera 310 294 16
Other 3215 3010 205
Chrome 9234 8868 366
Mobile 3724 3569 155
Safari 1509 1413 96
Firefox 6985 6721 264

Internet Explorer 4767 4546 221

Table 12.3: Number of recommendations and changed recommendations per feature for the whole dataset.

algorithm score is 1
2 . So then the ROI score is 0.5

0.01 = 50. Hence anomalies caused by automatic
processes which massively visit the same set of study pages and consequently create a high number of
view events.

Based on the recommendation interaction data and the result of the Kendall correlation it is expected
to have the most potential improvement for the Chrome, Internet Explore, Firefox and Mobile
browsers, especially in the top-100 dataset. However, the Safari, Opera and Other browsers are
among the highest average ROI scores in all datasets. This is caused by the low data volumes as
shown in the distribution of the data and the low interaction by the CCTR and COV. Therefore the
sparse re-ranked items are boosted as potential improvements by the ROI metric. The POC is low in
this recommendations, which results in boosting the improvement of the re-ranked recommendation.
This is essentially the same problem as the skewness described in the previous paragraph, except
that the cause is absence of click data in stead off anomalies. These results show that the ROI
requires interaction data with the complete recommendation per contextual feature in order to obtain
a fair insight in the actual potential improvement. Therefore, the average ROI scores of the Chrome,
Internet Explorer, Firefox and Mobile browsers in the top-100 are considered to be the most fair
results since the most interaction and data volumes are available. These results indicate potential
improvement in the re-ranked recommendations. The standard deviation suggests that not in all cases
a recommendation is improvement. For the Chrome, Internet Explorer, Firefox and Mobile browsers
respectively 5.9%, 1.6%, 4.8% and 1.1% of the cases show a ROI score lower than 1 and therefore
show expected regression. Hence it can be concluded that these browsers show a fair expectation
of the potential improvement the re-ranked recommendation produced by the CARA algorithm can
offer.
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Figure 12.1: The distribution of the generated click and views data over the contextual elements for the
whole, top-100 and random-100 datasets.
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Feature Contextual CTR Contextual coverage Kendall rank correlation Ratio of improvement

E(X) V (X) σ E(X) V (X) σ

Opera 4.0% 0.4% 0.49 0.09 0.30 4.29 5.77 2.40
Other 17.9% 0.3% 0.51 0.09 0.30 3.49 3.52 1.88
Chrome 23.1% 8.0% 0.01 0.12 0.34 1.49 0.54 0.73
Mobile 36.6% 1.8% 0.13 0.14 0.38 2.62 2.30 1.52
Safari 21.4% 0.5% 0.39 0.12 0.35 3.30 3.89 1.97
Firefox 17.7% 4.7% 0.03 0.11 0.33 1.54 0.53 0.73

Internet Explorer 30.2% 3.4% 0.11 0.14 0.37 2.13 1.43 1.20

Table 12.4: Contextual CTR and Coverage, the Kendall correlation and the Ratio of improvement for the top-100 dataset.

Feature Contextual CTR Contextual coverage Kendall rank correlation Ratio of improvement
E(X) V (X) σ E(X) V (X) σ

Opera 4, 7% 0.9% 0.62 0.01 0.11 4, 06 3.60 1.90
Other 20.0% 0.5% 0.58 0.05 0.23 3.36 4.88 2.20
Chrome 14.5% 5.1% 0.24 0.14 0.37 2.19 2.37 1.54
Mobile 41.1% 1.6% 0.34 0.10 0.32 3.84 4.45 2.11
Safari 21.0% 0.5% 0.52 0.19 0.43 4.46 6.84 2.61
Firefox 15.9% 4.3% 0.34 0.17 0.41 2.57 2.56 1.60

Internet Explorer 24.2% 2.3% 0.31 0.14 0.38 2.85 2.92 1.70

Table 12.5: Contextual CTR and Coverage, the Kendall correlation and the Ratio of improvement for the random-100 dataset.

Feature Contextual CTR Contextual coverage Kendall rank correlation Ratio of improvement
E(X) V (X) σ E(X) V (X) σ

Opera 13.8% 0.3% 0.59 0.08 0.28 4.83 4.86 2.20
Other 22.1% 2.4% 0.55 0.10 0.31 3.49 4.15 2.04
Chrome 22.8% 8.9% 0.41 0.14 0.37 2.70 2.40 1.54
Mobile 35.2% 2.8% 0.48 0.11 0.33 4.14 4.80 2.19
Safari 20.9% 1.1% 0.56 0.08 0.29 4.21 4.90 2.21
Firefox 36.0% 7.9% 0.41 0.14 0.37 3.20 3.73 1.93

Internet Explorer 37.6% 4.8% 0.46 0.13 0.36 3.76 4.40 2.10

Table 12.6: Contextual CTR and Coverage, the Kendall correlation and the Ratio of improvement for the whole dataset.
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Conclusions

13.1 Results and contributions

An exploratory data analysis has been conducted in order to evaluate whether the Context-Aware
Recommendation Adjustment (CARA) algorithm has the potential to effectively re-ranks and improve
the quality of existing recommendations. Furthermore, this experiment also contributes to the
evaluation of the Reference Architecture (RA) as described in part I by enabling practical usage the
session data processing task.

The effective re-ranking is evaluated with the Kendall tau Rank Correlation Coefficient (Kendall
correlation) which measures the degree of difference between the input and re-ranked recommendation
produces by the CARA algorithm. The results of the Kendall correlation shows that the algorithm
is able to effectively re-rank the recommendations. It is shown that the re-ranked recommendation
in the top-100 dataset show the highest degree of difference between the input and re-ranked
recommendations, while the random-100 and whole datasets show lesser degrees of difference. This is
as expected since the top-100 dataset represents the optimal case, while the random-100 and whole
datasets represent average and overall improvement cases.

The potential quality improvement is evaluated with the Ratio of Improvement (ROI). The results show
that browsers having less interaction show a higher expected improvement than browsers having high
interaction data. This is caused by the low Probability of Click (POC) value of these browsers, which
boost the improvement score. Hence, the most fair evaluation of the ROI is done with the top-100
dataset on the Chrome, Internet Explorer, Firefox and Mobile browsers since these browser show
the most interaction. It is shown that the recommendations re-ranked based on these browsers show
expected improvement. However, in order to evaluate the expected quality improvement objective the
ROI metric must be improved in order to avoid boosting of recommendation having low interaction
data.

Finally, evaluation of the potential improvement and quality of recommendations in an offline
environment is hard since the interaction with the user is missing. Therefore, further experimentation
with the CARA algorithm in the online environment is necessary in order to evaluate whether the
re-ranked recommendations are perceived as an improvement by the user. Eventually, the users of the
Masters Portal web system decide whether the displayed recommendation is helpful or not.
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13.1.1 Contribution to the reference architecture evaluation

The session data processing task as described in Section 8.5 is used to extend the recommendation
data with contextual features in this experiment. The practical usage of this processing task shows
the required adaptability of the implementation, by the separation of processing functions and scripts.
This allows implementation and testing of required changes in the processing task without using the
HADOOP framework to execute the complete processing task. Furthermore, the practical usage in
shared HADOOP environments shows the required flexibility in scheduling and resource allocation of
processing tasks, showing that the required quality and effectiveness of the RA is achieved.

13.2 Limitations

13.2.1 Data volume
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Figure 13.1: The number of visits on master study pages on the Masters Portal web system.

Figure 13.1 shows a plot of the visit numbers on master study pages on Masters Portal. The data
shows that a small set of master study pages have high visitor rates while the remaining pages have
average to low visitor rates. Consequently, the input data for this experiment shows the same long
tail since this data is based on the visits of pages. As a result, 60% of the recommendations in the
input data contain less than 10 clicks, which means that in these cases CARA algorithm cannot
apply re-ranking to items of the input recommendation. Hence in most of the cases the re-ranking
of the recommendations depends on the availability of a click of the recommended item rather than
differences in click behavior. This is not the intention of the CARA algorithm and influences the
evaluation of the results.

In order to address this issue the experiments can be performed using a higher data volume, for
example using a quarter or a half year of log data. Although the data will still show a long tail, it is
expected that the items in the tail will also have more recommendation click data which will improve
the results obtained with the CARA algorithm.

Nevertheless, it must be investigated whether the data volume actually fetches more clicks on the
recommendations as well. Currently each master study page has its own recommendation and not
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every master study page generates a sufficient amount of traffic. Hence an alternative is to only apply
the re-ranking on recommendations that have sufficient clicks recorded, for example require that every
recommended item has at least one recorded click.

Another alternative is to aggregate click data. Recorded clicks can be aggregated per discipline in
order to obtain the interaction behavior of users visiting master study pages in a particular discipline
for example. A disadvantage is that the click data then represents a general interaction with the
recommendations, which could miss specific preferences of user groups in particular recommendations.

13.2.2 Data impurity

The evaluation metrics in the experiment are sensitive to impurities in the data. Anomalies in the
data can boost the ROI. The Kendall correlation is affected as well, however the effects is less visible
because this metrics considers the re-ranking of the recommended items and does not take rating
scores into account. Improved anomaly detection process can be used to map out the amount of
fraudulent visit data. This data needs to be excluded in the input data sources for the CARA
algorithm.

Furthermore, Masters Portal derives a set of around thirty recommendations for each study program.
Only the top then of these recommendations are visible. In the current setup it can be the case that
a non-visible recommendation is re-ranked and suddenly is visible in the ranking. This is an issue
depending whether the focus remains on re-ranking the visible part of the recommendation.

Finally the current bot filtering process only filters the top-28 known bots. It can be observed
in the data that there are still entries of bots, spiders and other automatic processes in the data
sources. Contextual parameters can often not be resolved completely which causes erroneous results.
A better bot filtering process can exclude more bots and eventually improve the resulting re-ranked
recommendations of the CARA algorithm. This process can also be considered as an implementation
a bot filtering strategy in the RA and support the evaluation of addressing bot filtering.

13.2.3 The ratio of improvement

The ROI measure should incorporate the number of re-ranked items and the rank improvement of
these items in order to normalize the boosting of recommendation having low interaction data and
have a better estimate of the actual improvement, currently visible in all datasets. For example, when
only one item of a recommendation is re-ranked the ROI for this item is high because this item is
automatically ranked first. However the actual improvement of the recommendation is small because
the remaining recommended items are not re-ranked at all. Hence incorporation of the number of
re-ranked items along with rank improvement will provide a better insight in the actual expected
quality the CARA algorithm can provide per recommendation.

13.2.4 Combining of data sources

In some cases the synchronization of the timestamps between the session and the clicks and impressions
datasets is not synchronized due to delays in the processing of the logging of these events. This
causes that a small part of the actual input data is not joined in the processing task as described
in Section 11.7 and hence not taken into account in the remaining processing. The expectation is
that the addition of the missing data does not cause dramatic changes in the resulting re-ranking and
metrics of the CARA algorithm.
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13.2.5 The visibility function

The used visibility function approximates the visibility of the recommendations on the master study
page of Masters Portal much worser than it actually is. If the master study page is visited having a
1024×768 screen resolution then the first four recommendations are fully visible. When the user wants
to see the first paragraphs of content of the page the remaining recommendations will become visible
while the first recommendations become not visible anymore. When this screen resolution is used as
a lower bound, the actual visibility function of the masters study pages of Masters Portal should take
into account the probability that the user wants to see the content of the page, the probability that
the user immediately clicks on one of the top-4 recommended items and the probability that the user
is scrolling up and down the page to see the content.

The visibility function has a high influence on the resulting re-ranking in case of multiple re-ranked
items. Then the visibility function can change the rank of the items produced by the CARA algorithm.
Therefore, when the experiment is performed with a visibility function which is more tuned towards
the actual visibility of the recommendations, it is expected that the visibility function will not boost
the scores of the re-ranked items as in the current situation. It is expected that there will be less
improvement then displayed in the current results.

13.3 Future work

This chapter contains future work on the experiment. Additionally, Appendix B outlines further
experimentation on the online environment of Masters Portal.

13.3.1 Data volume

As described in Section 13.2.1 in some cases the data is too sparse to obtain a usable re-ranking of
a recommendation, let alone obtain a complete re-ranking. The CARA algorithm is most effective
when the data contains at least one click per recommended item and when a difference exists in
clicks between preferred and less popular item. A data volume spanning multiple months can help to
accommodate this sparsity. Nevertheless, it can be the case that seasonal popularity of recommended
items either is dampened. For example, when students having the same geographical location only
visit master study pages having discipline A in one months and visit pages from other disciplines in
the following two months the preferences for discipline A is less clear in the complete dataset. So
the choice data volume depends on experience with this experiment, information about the usage of
Masters Portal and preferences to incorporate popularity information.

13.3.2 Evaluation of alternative contextual features

Contextual category Available features
Locational Continent, country, city
Device Device, device version, OS, OS version, browser, browser version

Temporal Date, time, timezone, time of day

Table 13.1: The available contextual features. The bold features are proposed to be used in experiments with
the CARA algorithm.
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In the CARA algorithm any desired contextual feature can be used. In the case of Masters Portal
there are also other contextual features like operating system (OS), continent and time of day which
have equal distribution over users and are able to capture preferences of particular user groups.
These proposed features could obtain better results in the re-ranking of the recommendations. Other
potential contextual features are displayed in table 13.1.

It is also possible to obtain multidimensional contextual features by combining contextual features.
For example combining the contextual features time of the day and country to be able to catch
preference differences on temporal and locational level. A multidimensional feature will contain more
contextual categories and therefore provide more separation of users. However, the data volume
should be high enough to be able to derive usable recommendations.

13.3.3 Evaluation of hybridizations

In order to be able to reach the objective of showing that the CARA algorithm can improve the quality
of recommender systems, it is required to do apply the algorithm in several recommendation deriving
cases. Hybridizations of recommendation algorithms in combination with the CARA algorithm have
not been examined in this experiment. While hybridization of recommender systems often only
consider the hybridization between content-based and collaborative algorithms [AT05], nowadays
hybridizations include every possible recommender system for example rule-based [AT11], demographic,
utility-based and knowledge-based [Bur02]. Further experiments with hybridizations can adhere to
the experimentation outline as described in Appendix B.
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A
Masters Portal screen shots

This Appendix contains the screen shots of the pages available on the Masters Portal web system.

Figure A.1: The index page of the Masters Portal web system. The search bar is located on the top of the
page, while recommended studies and universities are displayed on the center of the page. Not visible in this
picture is the footer of the page containing additional information such as contact and support information.
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Figure A.2: An example of the master study page. The related studies recommendation recommends master
studies related to the university or discipline.

Figure A.3: An example of the university page. Two recommendations are available: The featured studies
promotes master studies available on the universities, while the nearby universities nearby located universities.
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Figure A.4: An example of the country page. The recommendation shows the available master studies per
degree.
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Figure A.5: A partial example of the discipline page. Besides links to other disciplines and the discipline
description, master studies are recommended in the lower part of the page.
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Figure A.6: A partial example of the search page. The search refine options are located on the left side. The
top of the figure shows country level refinement and sorting options. A search result is visible at the bottom of
the figure.

83





B
Further experimentation

An outline for further experimentations has been part of the initial experiment proposal. The described
experiments are performed on the online environment of Masters Portal. These experiments are
necessary in order to evaluate how the users value the re-ranked recommendations. Together with
proposed algorithms and baselines the experiments outline continues and completes the Context-Aware
Recommendation Adjustment (CARA) algorithm experiment.

B.1 The algorithms

The algorithms used are displayed in Table B.1. Algorithms 1 and 2 are common recommendation
algorithms as described in Section 2.3.3. Apache Mahout offers out of the box processing tasks for
these algorithms. Algorithm 4 is the CARA algorithm applied on Algorithms 2 and 3, which is
described in Section 2.5.2.

Algorithm 3 is a random recommendation generator. A random permutation of recommended items
is generated to serve as a recommendation. This algorithm is used as a baseline for all recommender
systems in this experiment.

Algorithm 5 is a random re-ranking algorithm. It takes an existing recommendation and produces a
random permutation. This algorithm is used as a baseline for the recommender systems with context
adjustment to validate that the CARA algorithm improves quality.

# Type Algorithm
1 Ranking model Content-based recommendation
2 Ranking model Collaborative filtering
3 Ranking model Random recommendation
4 Re-ranking model Context-aware recommendation adjustment
5 Re-ranking model Random re-ranking

Table B.1: The various algorithms and combinations with their type.
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B.2 Experiment 1: Applying re-ranking on collected visit data

In Experiment 1 the CARA algorithm is applied on the online collected usage data from all recom-
mender systems, having the same setup as Experiment 1. As input for this experiment the previously
collected click data is used. The contextual feature used in the CARA algorithm can be chosen based
on an investigation of the distribution of contextual features among the data. It is expected that in
half of the cases a different ranking is produced.

When the context adjustment shows a significant amount of re-ranking then the recommendation
data is prepared for the next online data collecting phase. The random re-ranking of Algorithm 4 is
then applied on the recommendation data.

B.3 Experiment 2: Evaluating the re-ranked recommendations in
the online environment

In Experiment 2 the quality of all recommender systems is evaluated. This is done to get insight which
recommender systems have the best performance. The goal is to validate whether the recommender
systems with context adjustment perform better than the random recommender, random re-ranking
and the recommender systems without adjustment.

Hypothesis 1 Applying adjustment on the content-based recommender system improves the quality
of the recommendation.

H0: The CARA algorithm applied on the content-based recommender yields a higher CTR value
than the content-based recommender without adjustment.

H1: The CARA algorithm applied on the content-based recommender does not yield a higher CTR
value than the content-based recommender without adjustment.

Hypothesis 2 Applying adjustment on the collaborative filtering recommender system improves the
quality of the recommendation.

H0: The CARA algorithm applied on the collaborative filtering recommender yields a higher CTR
value than the collaborative filtering recommender without adjustment.

H1: The CARA algorithm applied on the collaborative filtering recommender does not yield a higher
CTR value than the collaborative filtering recommender without adjustment.

Hypothesis 3 Applying adjustment on the history recommender system improves the quality of the
recommendation.

H0: The CARA algorithm applied on the history recommender yields a higher CTR value than the
history recommender without adjustment.

H1: The CARA algorithm applied on the history recommender does not yield a higher CTR value
than the history recommender without adjustment.

Hypothesis 4 The random recommendation has the worst performance.
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B.3. EXPERIMENT 2: EVALUATING THE RE-RANKED RECOMMENDATIONS IN THE ONLINE
ENVIRONMENT

H0: The random recommendation with and without the application of the CARA algorithm yields
lower CTR values than the other recommender systems.

H1: The random recommendation without application of the CARA algorithm yields lower CTR
values than the other recommender systems, while the random recommendation with adjustment
yields a higher CTR than at least one other recommender system.

H2: The random recommendation with and without application of the CARA algorithm yields
higher CTR values than at least one other recommender system.

Hypothesis 5 Random re-ranking does not improve the performance of a recommender.

H0: A recommender system with random re-ranking applied yields a higher CTR value than the
recommender without random re-ranking

H1: A recommender system without random re-ranking applied yields a higher CTR value than the
recommender with random re-ranking

It is expected that the recommender systems where the CARA algorithm is applied will have a higher
CTR value than the recommender without adjustment, the random recommendation and the random
re-ranking.
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