
 Eindhoven University of Technology

MASTER

Diagnostics in compliance checking

Gromov, V.V.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/da7ceab8-da04-43e2-9048-a426ae007828

Diagnostics in compliance
checking

Master Thesis

Vladimir Gromov

Department of Mathematics and Computer Science
Architecture of Information Systems Research Group

Supervisors:
Prof.dr.ir. Wil M.P. van der Aalst

Dr. Martijn C. Schut
Elham Ramezani Taghiabadi MSc

Public version
(some sections were excluded due to confidentiality issues)

Eindhoven, January 2014

Abstract

Nowadays, information systems in organizations are recording nearly all actions performed by
users in the form of event logs. Event logs can be analyzed using process mining techniques. The
techniques allow to check compliance of an event log to a specified behavior. A specification may
include control-flow, data, organization and time perspectives. Unfortunately, the output of such
checking does not provide enough insight to understand if there is a meaningful relation between
violations and the context. User would have to inspect the log manually, or using different means
to discover it.

In this master thesis we developed an approach to investigate the context information of the
violations discovered in event logs during the compliance checking. The approach takes two steps.
First, a general overview of the problems in the log is obtained. Second, a specific problem is
examined in detail in order to provide deeper insights. These steps were implemented as two
plugins. Both plugins have been implemented using the process mining framework, ProM.

Our approach was evaluated through artificial and real-life data. The evaluation outcomes
confirm that the approach allows us to identify the context related to the violations and the
implemented software presents it in clear way.

Diagnostics in compliance checking iii

Preface

This master thesis is the result of my graduation project which completes the master Computer
Science & Engineering at the Eindhoven University of Technology. The project was performed
under the supervision of members of the the Architecture of Information Systems group of the
Mathematics and Computer Science department of Eindhoven University of Technology and
conducted within the Forensics group of PricewaterhouseCoopers Advisory N.V.

First of all I would like to thank professor Wil van der Aalst and Martijn Schut for their
guidance, advices and supports during my master project.

I would also like to thank Dr. Eric Verbeek and Dr. Massimiliano de Leoni for guidance with
ProM Framework and Conformance Checking. Besides, I am grateful to Joos Buijs for creating a
template for this thesis. Furthermore, I would specially thank Elham Ramezani Taghiabadi, for
her patience during our discussions. Finally, my thanks go out to my parents for the huge support
they gave me throughout my education.

Vladimir Gromov January, 2014

Diagnostics in compliance checking v

Contents

Contents vii

1 Introduction 1
1.1 Thesis Context . 1
1.2 Project Objective . 3
1.3 Research Scope and Methodology . 5
1.4 Thesis Structure . 6

2 Preliminaries 7
2.1 Process Mining . 7

2.1.1 Event Log . 9
2.1.2 Specified Behavior . 10
2.1.3 Alignments . 11
2.1.4 Violations . 13

2.2 Support and Conditional-Probability Increment Ratio 14
2.3 Related Work . 15

3 Obtaining Alignments to Identify Violations 19
3.1 Motivating Example . 20
3.2 Control-flow Compliance Checking . 22
3.3 Data and Resource Compliance Checking . 23
3.4 Temporal Compliance Checking . 25

4 Identifying and Ranking Problems 31
4.1 Obtaining Aggregations . 32

4.1.1 Aggregating Multisets . 32
4.2 Obtaining Violation Statistics . 37
4.3 Obtaining Problem List . 39

4.3.1 Problem List . 39
4.3.2 Sorting List . 42
4.3.3 Refining the List . 43

5 Investigating specific problems 47
5.1 Input . 48
5.2 Comparing Steps Within Sets . 48
5.3 Output . 49

6 Design and implementation 51
6.1 Compliance Dashboard Plugin . 52

6.1.1 Integration into the Existing ProM Environment 52
6.1.2 Graphical User Interface . 52

6.2 Problem insight plugin . 58
6.2.1 Integration into the Existing ProM Environment 58

Diagnostics in compliance checking vii

CONTENTS

6.2.2 Graphical User Interface . 59

7 Evaluation 63
7.1 Evaluation using Artificial Data . 63

7.1.1 Log Description . 63
7.1.2 Applying the Compliance Framework . 66
7.1.3 User Evaluation . 70

7.2 Evaluation Using Real-Life Data (removed) . 74

8 Conclusions 75
8.1 Summary of Contributions . 75
8.2 Limitations and Future Work . 76

8.2.1 Compliance Checking and Obtaining Violation Data 76
8.2.2 Identifying the Relation Between Context Info and Violation 76
8.2.3 Visualizing Results for Business Users . 76

Bibliography 79

A Description of C4.5 Algorithm 81

B Compliance Framework Evaluation Questionnaire 83

viii Diagnostics in compliance checking

Chapter 1

Introduction

This master thesis is the result of a graduation project conducted as part of the Computer Science
and Engineering master program at Eindhoven University of Technology (TU/e). The project
was carried out within the Forensics group of PricewaterhouseCoopers (PwC) under supervision
of members of the Architecture of Information Systems (AIS) group of the Mathematics and
Computer Science department of TU/e.

In this thesis we investigate the problem of obtaining and visualizing diagnostics that give
insights into violations in business process executions recorded in the form of event logs. To
achieve this, we specify compliance requirements in terms of a process model that also describes
data flow (a Petri Net with Data [18] to be precise). To check if business processes are executed in
accordance with the specified requirements, we apply conformance checking techniques. We use
the result of compliance analysis to provide diagnostic information about the discovered violations
to business users. A violation can be about different perspectives of a business process, including
control-flow, time, data, and resource.

In this chapter we introduce the problem in more detail. In Section 1.1 we give the context of
this thesis. Section 1.2 describes the addressed problem. Section 1.3 defines the scope of the thesis.
Finally, Section 1.4 outlines structure of the thesis.

This is the public version of the thesis: some sections were removed due to confidentiality
issues.

1.1 Thesis Context

Contemporary businesses are becoming more and more dependent on information technology.
Companies are increasingly introducing information systems in order to support their business
processes. Such systems help in managing all aspects of companies’ performance, including finance,
procurement, sales, production, human resources or customer relationship management. Despite
this increase in automation, most processes are still to a great extent manual and error prone.
Organizations must comply with a continuously increasing set of regulations and laws. Therefore,
it is becoming harder to monitor errors, while their cost might be considerable, due to either loss
of income, or penalties. ISO 9001 is an example of regulation. Non-compliance with this standard
does not lead to penalties, but some customers might require it from their suppliers. Generally
speaking, non-compliance to some specific rules might indicate fraud, which in turn can have
considerable negative financial impact. According to PwC Crime Survey 2011 [3] involving 250
Dutch companies, antitrust (cartel) agreements or financial fraud caused a direct loss of more than
e500,000 in a quarter of cases.

Enterprise information systems, like SAP Business Suite, Oracle E-Business Suite and Microsoft
Dynamics NAV, are recording all kinds of actions performed by users. Regardless of the system
used, the recorded information can usually be represented in form of a unified event log. The fact
that event logs are usually readily available allows automated compliance checking to be performed

Diagnostics in compliance checking 1

CHAPTER 1. INTRODUCTION

and provides the possibility for further analysis to give more insight and diagnostics if something
is wrong.

An event log may include for each event the following data: event name, originator (responsible
person or system), time of occurrence and optionally context information, such as purchased
amount (in a procurement process), produced goods for production, client ID for sales, etc. This
information provides the possibility to analyze a business process from different angles.

Relations between events (like ordering and (non-)coexistence) reflect the Control-Flow per-
spective of the process; time of their occurrence and the delay between them represent the time
perspective; information about the originators determines organizational perspective, while all
other context information shows the data perspective of a process [5]. Such event logs can serve as
the starting point for analyzing compliance of a recorded process to specific regulations.

Compliance requirements may restrict different perspectives of business processes. Hence, it
is necessary to check compliance of a business process from different perspectives and provide
comprehensive diagnostics. Furthermore, to analyze a violation in deep, we need to consider the
context where the violation occurred.

Assume we are observing a procurement process of some company. According to its regulations,
a payment should be sent to a supplier only after receipt of purchased goods. If, after checking
this rule we identify a number of cases where payment is performed before goods have been
received, their context might allow us to understand the violation better. If such payment is always
performed by the same person, it is likely to indicate fraud or the incompetence of this person.
If such violations occur for the same supplier, it might be due to peculiarity of the supplier. It
is possible that there are no dependencies between the violations and their context. In this case,
the reason may be lack of communication or enforcement of the company’s regulations. Thus,
comparing the context of a violating event to that of a non-violating one allows us to understand
the root cause of the problem or find out the direction for further investigation.

Auditors and compliance experts are usually less familiar with formal process mining methods
and techniques, so the diagnostics must be presented to them in an intuitive way. Also, since
software is unable to justify whether a violation indicates fraud or a simple error, it should
provide means for deeper analysis of critical in order to allow experts to obtain a complete picture.
Unfortunately, software is not capable of determining the cause of a violation. However, detailed
diagnostics would help analysts to perform an investigation and discover it.

2 Diagnostics in compliance checking

CHAPTER 1. INTRODUCTION

Figure 1.1: Example log excerpt

1.2 Project Objective

In Section 1.1, we have introduced the thesis context elaborating on the challenges that modern
businesses are facing. In this section, we define the objective of this thesis.

We discussed that ensuring compliance is becoming more and more important for modern
businesses. In the area of process mining, different techniques [5] have been developed for compliance
checking of business processes. These techniques check the compliance of a business process recorded
in the form of an event log with different types of compliance rules. Existing compliance checking
techniques are capable of verifying all perspectives of a process, but the output does not integrate
results from checking different perspectives, forcing the user to observe them separately. Besides,
they are not aimed at identifying dependencies between discovered problems and the context.
This makes it much harder for the user to understand why violations occur and where a deeper
investigation should be directed.

As was mentioned, people responsible for examining business processes usually do not have a
strong technical background. This raises a critical need for a comprehensible representation of
compliance diagnostics, which is generally not provided.

The described problems motivate the following research objective:
Develop a systematic approach to get insights about the violations detected during compliance

checking through the analysis of context-related information available in the business process and
present the obtained results in a way understandable for users not having deep technical knowledge.

Our research problem can be divided into four sub-problems:

Diagnostics in compliance checking 3

CHAPTER 1. INTRODUCTION

1. Given an event log of a process and a set of compliance rules, obtain data about present
violations using previously developed compliance checking techniques.

2. Given information about violations in the process, provide a list of discovered problems and
related diagnostics as well as statistics aggregated for each activity or context element.

3. Given a specific problem, discover a way to obtain deep insights into the connected context
and provide detailed diagnostics.

4. Develop a way to visualize the resulting diagnostics in a way understandable for users without
a technical background.

In order to illustrate our research objectives, we describe an example. In Figure 1.1, an excerpt
of a dotted chart is shown, which demonstrates an event log of a procurement process. According to
a compliance rule, ‘Goods receipt’ can be performed only by users with ID: resource71, resource72,
. . . ,resource100.

After applying our approach and tools to this event log, we obtained the compliance report,
shown in Figure 1.2. The report shows that there are multiple occurrences of the a problem
being ‘Goods receipt is performed by a wrong user’. Besides, it briefly lists other context elements
available in the event log that were related to the problem.

Figure 1.2: List of discovered problems.

If we further analyze the identified problem in order to discover the root cause of it, we would
obtain the report shown in Figure 1.3. It shows that the problem is most likely to occur when
specific users are in charge (resource125, resource126,resource127 to be precise).

4 Diagnostics in compliance checking

CHAPTER 1. INTRODUCTION

Figure 1.3: Root cause of the violation. Users resource125, resource126, resource127 are responsible
for the violating events

1.3 Research Scope and Methodology

Figure 1.4: Research methodology

We have defined the research problem and divided it into four sub-problems. In this section
we define the research scope of the thesis and the steps we have to carry out (Figure 1.4).

It is assumed that event logs are available as an input. Besides, compliance requirements
should also be provided. These are considered as input for compliance checking techniques we
deploy, used for obtaining violation data present in the log. We need to choose best compliance
checking techniques available in order to discover violations. Since compliance requirements may

Diagnostics in compliance checking 5

CHAPTER 1. INTRODUCTION

restrict different perspectives of a business process, we need to identify violations in all process
perspectives including: control-flow, time, resource, and data perspectives.

The violation data serve as a starting point for obtaining the list of problems and aggregating
violations. Such a list reports on the discovered problems along with brief diagnostic information
regarding the context of the problems. In order to provide the list of all violations with diagnostic
information about them, we need to explore the information available in the log. Moreover, it is
necessary to investigate how well the diagnostics explain the violations by quantifying the relation
between violations and identified diagnostics.

Using the description of a single problem as input, a deeper analysis is performed in the
obtain insight step, in order to provide detailed diagnostics regarding the specified problem. This
information helps in understanding the root cause of the problem. To fulfill this, occurrences of
a violating event where the problem is present should be compared to compliant events where
the problem is absent. The comparison is done by finding the best estimator of a function, where
observed input consists of attributes of the compared event and observed output is an indication
whether the event experienced the analyzed problem.

Finally, the obtained information should be visualized in an appropriate way for users without
technical knowledge. Obviously, the visualization of this information should be intuitive and
compact. Moreover, in order to allow users to gain most from the approach, the visualization
should provide the option to adjust the output. In this way, users would be able to emphasize the
information most important in their opinion.

The scope of this research is bounded by retrieving the list of violations, obtaining insights into
a single problem, and visualizing the results.

1.4 Thesis Structure

The thesis is structured as follows:
Basic terms and concepts used throughout the thesis are introduced and literature

study on related work is described (Chapter 2).
Concepts from process mining with focus on compliance checking are introduced. Also, some
concepts required for quantifying relations between violations and underlying context are described.
Finally, an overview of related work on each part of the thesis is given.

Describing compliance checking techniques required for obtaining alignments to
identify violations (Chapter 3).
Since compliance requirements may restrict different perspectives of a business process, in this
chapter we discuss the compliance checking techniques we deployed for analysis of all process
perspectives including: control-flow, time, resource, and data. In this chapter we show how we
integrate all compliance results from different perspectives.

Explaining ways of identifying and ranking problems discovered during compliance
checking (Chapter 4).
After identifying all violations, we need to summarize all discovered problems and define a way to
rank them.

Investigating specific problems (Chapter 5).
Once a list of problems is obtained, we investigate the root cause of a single problem from the list.

Implementation in ProM (Chapter 6).
The architecture of our analysis software and the design decisions made are described.

Evaluating the implementation and demonstrating experimental results (Chap-
ter 7).
Correctness of the approach is verified using an artificial event log. Furthermore understandability
and applicability of the tools are evaluated by users. We applied our technique to a real-life event
log. We will discuss the results of our analysis in this chapter.

Conclusion (Chapter 8).
The entire approach is summarized in this chapter. We will discuss whether project goals were
achieved. Also, limitations of the developed approach along with future work are explained.

6 Diagnostics in compliance checking

Chapter 2

Preliminaries

We have defined our research goal and scope in the previous chapter. Before describing our
approach in more detail, we would like to discuss the concepts that our work is built on.

In Section 2.1 we are describing process mining notions used in the approach. First, a general
overview of process mining is given, after which we describe event logs, specified behavior and
alignments in detail. In Section 2.2 we introduce the notion of conditional-probability increment
ratio, using the notions of itemsets and transactions. Section 2.3 gives an overview of the related
work.

2.1 Process Mining

The idea of process mining is to discover, monitor and improve real processes (i.e., not assumed
processes) by extracting knowledge from event logs readily available in today’s systems [5].

Figure 2.1: Positioning of the three main types of process mining: discovery, conformance, and
enhancement [5].

In Figure 2.1, the three main types of process mining are positioned. According to the figure,

Diagnostics in compliance checking 7

CHAPTER 2. PRELIMINARIES

information about processes is collected by software systems into event logs, which are in turn
analyzed with process mining techniques.

Figure 2.2: Structure of event logs [5].

According to [5], there are three types of process mining. The first type is discovery. A
discovery technique takes an event log and produces some kind of process model that describes the
observed behavior without using any a-priori information. If the event log contains information
about resources, one can also discover resource-related models, e.g., a social network showing how
people work together in an organization [8].

The second type of process mining is conformance checking. Here, an existing process model
is compared with an event log of the same process. For instance, there may be a process model
indicating that purchase orders of more than one million euros require two checks. Analysis of an
event log would show whether this rule has been followed or not. Another example is checking the
so-called ‘‘four-eyes” principle: particular activities should not be executed by one and the same
person. By scanning an event log using a model specifying these requirements, one can discover
potential cases of fraud. Hence, conformance checking may be used to detect, locate and explain
violations, and to measure their severity. In this thesis the focus is on conformance checking, i.e.
the second type of process mining in Figure 2.1.

8 Diagnostics in compliance checking

CHAPTER 2. PRELIMINARIES

The third type of process mining is enhancement. Here, the idea is to extend or improve an
existing process model using information about the actual process recorded in some event log.

Any of the process mining techniques takes an event log as an input, which is expected to
have a certain structure. The structure is depicted in Figure 2.2. Generally, event data from an
event log corresponds to a process. A process is composed of cases or completed process instances.
In turn, a case consists of sequence of events, called a trace. An event has a name and various
attributes. A formal definition of event log is given in Section 2.1.1.

Event data is not usually recorded for process mining purposes and thus may have varying
formats. Therefore, a standard format is required to perform analysis. One such format is XES1.
This format is selected as the standard format for event logs by the IEEE Task Force on Process
Mining. Besides, it has support from popular process mining tools such as ProM2 and Disco3.

2.1.1 Event Log

Let E be the finite set of all event names E = {ename1, . . . , enamen}. Let E� be a set of event
names including the explicit no event, denoted as �, i.e. E� = E ∪ {�}.
Let VL be a set of all attributes of an event (including timestamp and resource), excluding the
event name.
We distinguish a set V time

L ⊆ VL of attributes bearing time information and a V context
L ⊆ VL of

all other attributes, such that V context
L = VL \V time

L .
Let Gv be a set of all possible values for an attribute v ∈ VL

Let UL be a superset of all Gv , i.e. UL =
⋃

v∈V
Gv .

Each event e is a tuple (ename, ((v1, u1), . . . , (vm , um))), where:

• (vi , ui) is a pair describing an attribute and its value, called attribute assignment, where
vi ∈ VL is an attribute, ui ∈ Gvi , is a value of attribute vi

• ename is an event name, ename ∈ E .

σL is a trace, a sequence of events 〈e1, . . . , en〉.
Let L be an event log, a multiset of traces, i.e. L ∈ B((E × (VL × UL)m)∗)4. All events in the log
are supposed to have the same number of attributes.
Let X be a multiset of all events in L, i.e. X ∈ B(E × (VL × UL)m). Let X� be a multiset of all
events in L including an explicit no event, i.e. X� ∈ B(E� × (VL ×UL)m). This notion will used
further in Section 2.1.3.
Let valL : X� ×VL → Gv be a function that maps an event and attribute to the attribute’s value.
Given an event x with attribute v and its value u, valL(x , v) = u

Example 1. In order to illustrate the above mentioned notions, let us consider a simplified
example. An insurance company has activated a process to deal with compensations requested
by clients. The process starts with a request initiated by any of the employees. After that the
documents are checked in any order and the request is examined. Requests for an amount above or
equal to e5000 should be examined thoroughly, while those for lower amounts should be examined
casually. The casual examination can be done either by Mike or by Ellen, while a thorough
examination is done by Sara. The documents can be checked either by Pete or by Sean. After that
the decision is made by Sara and the request can be either re-initiated, payed or declined. An
example of a log trace for such process could be:
〈e1 = (initiate request , ((AR, 3000), (Ex ,Pete), (TS , 0))),
e2 = (examine casually , ((AR, 3000), (Ex ,Ellen), (TS , 1000))),
e3 = (check documents, ((AR, 3000), (Ex ,Pete), (TS , 2000))),
e4 = (decide, ((AR, 3000), (Ex ,Sara), (TS , 3000))),

1A detailed description of the XES format can be found on http://www.xes-standard.org/
2http://www.promtools.org/prom6/
3http://fluxicon.com/disco/
4B(A) is the set of all multisets over A

Diagnostics in compliance checking 9

http://www.xes-standard.org/
http://www.promtools.org/prom6/
http://fluxicon.com/disco/

CHAPTER 2. PRELIMINARIES

e5 = (pay compensation, ((AR, 3000), (Ex ,Pete), (TS , 4000)))〉
The set of event names E = {initiate request , examine thoroughly , examine casually , check

documents, decide, pay compensation}. Each event has 3 attributes: AR, which denotes the size
of the requested compensation, Ex , which stands for Executor and denotes the activity executor,
and TS which shows time of the event relative to the first event of the case in seconds, i.e.
VL = {AR,Ex ,TS}, V context

L = {AR,Ex}, V time
L = {TS}. The possible values for AR are

GAR = Q+, where Q+ = {q ∈ Q | q > 0}. GEx = {Pete,Ellen,Sara,Sean,Mike}. GTS = N0 (N0

is the set of natural numbers including 0). Thus, UL = Q+ ∪ {Pete,Ellen, Sara, Sean,Mike} ∪ N0.
The values of the function valL for the event e1 are: valL(e1,AR) = 3000; valL(e1,Ex) = Pete.

2.1.2 Specified Behavior

Let VM be the set of attributes defined in the specification.
Let A be the finite set of all activity names {aname1, . . . , anamen}. Let A� be a set of activity
names including explicit no activity, denoted as �, i.e. A� = A ∪ {�}
Similarly to an event, an activity a is a tuple a = (name, ((v1,H1), . . . , (vl ,Hl))), where:

• (vi ,Hi) is a pair of context attribute and a set of admissible values for this activity, including
time and resource attributes, where

• vi ∈ VM is an attribute,

• Hi is the set of allowed values for attribute vi ,

• aname is an activity name, aname ∈ A.

Let UM be a set of all Hi , i.e. UM = {H1, ...,Hl}, where l is the total number of data attributes.
Let σS be a sequence of activities 〈a1, . . . , ak 〉 which is compliant with a certain compliance rule.
We define S as the set of all sequences which are compliant with a certain compliance rule,
S ⊆ (A× (VM ×UM)l)∗.
Let Y be a set of all activities in S , i.e. Y ⊆ (A× (VM × UM)l) and Y 6= ∅. Let Y� be a set of
all activities, including explicit no activity, Y� ⊆ (A� × (VM ×UM)l) and Y� 6= ∅.
Let Yinv be a set of invisible activities, Yinv ⊆ Y . The difference between the invisible activity
and visible will be explained further in Section 2.1.3
Let dom(a, v) be a function that assigns the values admissible for attribute v ∈ VM allowed by
activity a, dom(a, v) = H a

v . H a
v is the domain of v for activity a.

The specification S is normally very large varying over all admissible sequences of activities in
combination with admissible attribute values. The set S is the semantic collection of all compliant
traces. We use a Petri Net with Data N to specify the admissible behavior S in a compact form,
such that S is the set of all terminating runs of N .

Definition (DP-net). A Petri Net with Data (DP-net) N = (P ,T ,F ,VM ,R,W ,G) consists of:

• P is a set of places;

• T is a set of transitions;

• Tinv is a set of invisible transitions, Tinv ⊆ T ;

• F ⊆ (P×T)∪(T×P) is the follow relation describing the arcs between places and transitions
(and between transitions and places);

• a set VM of attributes;

• a guard function G : T → GVM
that associates a guard to a transition. Guards restrict log

attributes. Based on them, admissible values for combination of activities and attributes are
defined.

10 Diagnostics in compliance checking

CHAPTER 2. PRELIMINARIES

Figure 2.3: Petri Net with Data NS example

An example of a Petri Net with Data NS describing a simplified compensation application
process is shown in Figure 2.3.

In the example:

• the set of places P = {start , c1, c2, c3, c4, c5, end};

• the set of transitions T = {a, b, c, d , e, f , g , h, f , τ};

• the set of invisible transitions Tinv = {τ};

• the set of arcs F = ((start , a), (a, c1), (a, c2), (c1, b), (c1, c), (c2, d), (b, c3), (c, c3),
(d , c4), (c3, e), (c4, e), (e, c5), (c5, g), (c5, h), (c5, f), (g , end), (h, end), (f , c1), (f , c2));

• the set of attributes VM = {AR,Ex};

• function G(b) = [(AR >= 5000) & (Ex = Sara)],G(c) = [(AR > 0 &AR < 5000) & (Ex =
Mike || Ex = Ellen)],G(e) = [Ex = Sara],G(d) = [(Ex = Pete || Ex = Sean)]

One of the possible traces is σS = 〈(a, ((AR,Q+), (Ex ,U))),
(c, ((AR, {q ∈ Q+ | q < 5000}), (Ex , {Mike,Ellen}))), (d , ((AR,Q+), (Ex , {Pete,Sean})))
(e, ((AR,Q+), (Ex , {Sara}))), (g , ((AR,Q+), (Ex ,U)))〉, where U is a universal set.
If a DP-net does not define a guard in some transition for an attribute vi , then its allowed

values set is considered to be any for the corresponding activity.

2.1.3 Alignments

Let em : E 9 A be a mapping function that maps an event name ename ∈ E to an activity name
aname ∈ A so that em(ename) = aname.
An alignment γ is a sequence of Data-Aware Steps, γ = 〈z1, . . . , zn〉 such that the projection on
the first element (ignoring events with ename =�) yields σL ∈ L and the projection on the second
element yields σS ∈ S (ignoring activities with aname =�).
A Data-Aware Replay Result DR that relates events in the log to activities in the specification, is
a multiset of alignments. DR is a multi-set because an event log may contain the same log trace
σL multiple times, potentially resulting in multiple identical alignments.

Diagnostics in compliance checking 11

CHAPTER 2. PRELIMINARIES

An alignment is built by relating all traces σL in event log L to a specification trace σS by pairing
events in σL to activities in σS ∈ S .
A data aware replay step z is a pair (x , y), x ∈ X�, y ∈ Y�, z ∈ X�×Y� \{(x , y) | x .ename =�
∧y .aname =�}. An alignment is built such that for each z = (x , y) em(x .ename) = y .aname if:
x .ename 6=� and y .aname 6=�
Or
x .ename =� if y ∈ Yinv ,
i.e. invisible activities do not have corresponding events in the log. If z = (x , y) and x .ename =�,
x attribute values are the same as for the previous event.
Let Z be a multiset of all Data-Aware Steps in the Data-Aware Replay Result DR of log L to
specification S . Z ∈ B((E� × (VL ×UL)m)× (A� × (VM ×UM)l)).

Let us consider an example trace of a log of the above mentioned compensation handling
process. Hereafter we do not include the TS attribute in the examples, since it is insignificant
for explanation of the concepts. The event names are encoded with the corresponding transition
names:

σL1 = 〈(a, ((AR, 3000), (Ex ,Pete))), (c, ((AR, 3000), (Ex ,Mike))),
(d , ((AR, 3000), (Ex ,Pete))), (e, ((AR, 3000), (Ex ,Sara)))〉,

and a specification is described by the Petri Net NS in Figure 2.3. This trace corresponds to the
specified trace σS1 perfectly. The alignment γ1 between them contains the step with ename = no
event (�), but this is not considered to be a violation, since activity τ is invisible, i.e. τ ∈ Yinv .
The presence of this activity in the alignment indicates that the case is not yet finished, i.e. action
has not yet been taken and the request is pending. The obtained alignment is shown in Table 2.1.
Please note that events with ename =� derive attribute values from the one previous to it or, if
such event is the first in a trace, from the nearest event with ename 6=�.

Table 2.1: Alignment γ1

γ1

σL1 σS1

a, ((AR, 3000), (Ex ,Pete)) a, ((AR,Q+), (Ex ,U))

c, ((AR, 3000), (Ex ,Mike)) c, ((AR, {q ∈ Q+ | q < 5000}}), (Ex , {Mike,Ellen}))
d , ((AR, 3000), (Ex ,Pete)) d , ((AR,Q+), (Ex , {Pete,Sean}))
e, ((AR, 3000), (Ex ,Sara)) e, ((AR,Q+), (Ex , {Sara}))
�, ((AR, 3000), (Ex ,Sara)) τ, ((AR,Q+), (Ex ,U))

However, an observed trace in a log may deviate from specified behavior. For example, let us
consider another log trace of the same process:

σL2 = 〈(a, ((AR, 6000), (Ex ,Pete))), (c, ((AR, 6000), (Ex ,Pete))),
(b, ((AR, 6000), (Ex ,Ellen))), (d , ((AR, 6000), (Ex ,Mike))), (g , ((AR, 6000), (Ex ,Pete)))〉
This trace is not specified by NS . The closest trace to σL2 is σS2 chosen in the alignment γ2,

shown in Table 2.2.
The specified trace σS2 is chosen in order to minimize the number of violations.
In comparing a trace in an event log with a specification, the possible violations are:

• A move on log is a Data-Aware Step z = (x , y), where x .ename 6=� and y .aname =�;

• A move on model, which is considered a violation only for visible activities, is a Data-Aware
Step z = (x , y), where x .ename =� and y .aname 6=� and y 6∈ Yinv ;

• A move with incorrect w is a Data-Aware Step z = (x , y), where y .aname 6=�, x .v = y .w ,
and valL(x .v) 6∈ dom(y .w).

12 Diagnostics in compliance checking

CHAPTER 2. PRELIMINARIES

Table 2.2: Alignment γ2

γ2

σL2 σS2

a, ((AR, 6000), (Ex ,Pete)) a, ((AR,Q+), (Ex ,U))

c, ((AR, 6000), (Ex ,Pete)) �, ((AR,Q+), (Ex ,U))

b, ((AR, 6000), (Ex ,Ellen)) b, ((AR, {q ∈ Q+ | q >= 5000}), (Ex , {Sara}))
d , ((AR, 6000), (Ex ,Mike)) d , ((AR,Q+), (Ex , {Pete,Sean}))
�, ((AR, 6000), (Ex ,Mike)) e, ((AR,Q+), (Ex , {Sara}))
g , ((AR, 6000), (Ex ,Pete)) g , ((AR,Q+), (Ex ,U))

Apart from the violations, we distinguish synchronous moves. A synchronous move is a Data-
Aware Step, that is neither a move on log, nor a move on model. It might still appear to be a
move with incorrect w .

In our example γ2 has 3 violations:

• Move on log for activity c;

• Move on model for activity e;

• Move with incorrect Ex for activities b and d ;

2.1.4 Violations

We define several functions that indicate the presence of each type of violation, but first we have
to define functions relating a Data-Aware Step to its components. The functions assume a given
Data-Aware Replay Result DR, all Data-Aware Steps of which are contained in Z .
Given z = (x , y) ∈ Z :
snameL : Z 9 A - is a function which relates a move on log step to activity name, i.e. for z = (x , y)
and y .aname =�, snameL(z) = x .ename
snameM : Z 9 A is a function, that relates non-move on log step in a replay result to an activity
name, i.e. for z = (x , y) and y .aname 6=� snameM (z) = y .aname
sname(z) : Z → A

sname(z) =

{
snameL(z), if y .aname =�
snameM (z), otherwise

Given z = (x , y), log attribute v ∈ VL and its value u ∈ Gv so that valL(x , v) = u we define
function:
val : Z × VL → UL is a function that maps a step in a replay result to the value of the given
attribute v in the log,

val(z , v) = u

Given z = (x , y) ∈ Z , specification attribute w ∈ VM with allowed values set H y
w , so that

dom(y ,w) = H y
w , in the specification we define the function:

valM : Z × VM → UM is a function that maps a step in a replay result to its allowed values
according to the specification.

valM (z ,w) = H y
w

Diagnostics in compliance checking 13

CHAPTER 2. PRELIMINARIES

We identify the following functions indicating the presence of problems given a Data-Aware
Step z = (x , y):
Plog.only : Z → {true, false} function, that indicates if there was a move on log

Plog.only(z) =

{
true, if y .aname =�
false, otherwise

Pmodel.only : Z → {true, false} function, that indicates if there was a move on model

Pmodel.only(z) =

{
true, if x .ename =�
false, otherwise

Pincorrect.attr : Z ×VM → {true, false} function, that indicates if there was a move with incorrect
attribute w .

Pincorrect.attr (z ,w) =

{
true, if ∃ v [v ∈ VL : v = w ∧ val(z , v) 6∈ valM (z ,w)]

false, otherwise

2.2 Support and Conditional-Probability Increment Ratio

In this section we introduce itemsets and use them to define CPIR metric. We will modify this
metric and use the modified version later on to relate and quantify the relation between violations
and context data (in Section 4.3.3). Let I = {i1, i2, . . . , iN } be a set of N distinct literals called
items. I is called an itemset. Each item can be an activity name, or a pair of an event log attribute
and its value, or a specification attribute, which indicates its violation, or an indication of move on
log or move on model, i.e. I = A ∪ (VL ×UL) ∪ {log .only ,model .only} ∪VM .

Considering the example from Section 2.1.1 of the compensation handling process, our itemset
could be I = {a, b, c, d , e, f , g , (Ex , Sara), (Ex , Sean), (Ex ,Pete), (Ex ,Ellen), (Ex ,Mike), (AR, 5000),
(AR, 6000), (AR, 3000), log .only ,model .only ,Ex ,AR} i.e. i1 = a, . . . , i8 = (Ex ,Sara), etc. Then
for each event the corresponding subset of our itemset can be found, e.g. for an event e1 =
((a, ((Ex , Sara), (AR, 5000))) the corresponding subset of the itemset would contain 3 items: event
name a, (Ex ,Sara) and (AR, 5000).

Given a Data-Aware Step z = (x , y), where x = (ename, ((v1, u1), . . . , (vl , ul))), it is possible to
find the corresponding subset Tz of the itemset I , Tz ⊆ I . The items of such set are:

{y .aname, (x .v1, x .u1), . . . , (x .vl , x .ul),w1,w2, . . . ,wm}, if x .ename 6=� &y .aname 6=�
{em(x .ename), (x .v1, x .u1), . . . , (x .vl , x .ul), log .only}, if x .ename 6=� &y .aname =�
{y .aname, (x .v1, x .u1), . . . , (x .vl , x .ul),model .only}, if x .ename =� &y .aname 6=�

where wi ∈ VM - is a violated attribute. In other words, such itemset consists of:

1. activity name, which is:

• y .aname, if y .aname 6=�
• or the activity name to which the event name is mapped, i.e. em(x .ename) otherwise

2. all the event’s attribute assignments

3. if the step is a violation, indicator of this violation:

• a list of violated attributes w1,w2, . . . ,wm ∈ VM if (y .aname 6=�) ∧ (x .ename 6=�)

• or item log .only , if (y .aname =�) ∧ (x .ename 6=�)

• or item model .only if (y .aname 6=�) ∧ (x .ename =�)

14 Diagnostics in compliance checking

CHAPTER 2. PRELIMINARIES

Given a Data-Aware Replay Result DR, all Data-Aware Steps of which are contained in Z , a
transaction is a subset of I that corresponds to a Data-Aware Step z ∈ Z .
Let D be a multiset of transactions over I corresponding to all Data-Aware Steps in Z , i.e.
D ∈ B(2I).

As an example let us consider alignment γ2 from Table 2.2. The first step z1 is not a violation,
thus the corresponding transaction Tz1 = {a, (AR, 6000), (Ex ,Pete)}, or, recalling our item names
from I , Tz1 = {i1, i14, i10}. The step z2 is a move on log. Thus, the transaction corresponding to it
is Tz2 = {c, (AR, 6000), (Ex ,Pete), log .only}, or Tz2 = {i3, i14, i10, i16}. The step z3 is a move with
incorrect Ex ; Tz3 = {b, (AR, 6000), (Ex ,Ellen),Ex}, or Tz3 = {i2, i14, i11, i16}. The step z4 is also a
move with incorrect Ex ; Tz4 = {d , (AR, 6000), (Ex ,Mike),Ex}, or Tz4 = {i4, i14, i11, i16}. The step
z5 is a move on model; Tz5 = {e, (AR, 6000), (Ex ,Mike),model .only}, or Tz5 = {i5, i14, i11, i17}.
Tz6 = {g , (AR, 6000), (Ex ,Pete)), or Tz6 = {i7, i14, i10}.

Each subset of I has an associated statistical measure called support, denoted as supp. For
an itemset A ⊆ I , supp(A) = s, if the fraction of transactions in D containing all items that are
contained in A equals s. Please, note that not all possible subsets of I are included in D , only
those corresponding to the Data-Aware Steps in Z .

For example, we consider a set D = {Tz1 ,Tz2 ,Tz3 ,Tz4 ,Tz5 ,Tz6 ,T} of 6 transactions defined
above and a transaction T = {i10, i14}, its support supp(T) = 4

7 , since 4 out of 7 transactions
contain both items included in T .

An association rule is an implication of the form A⇒ B , where A,B are subsets of I , A,B ⊆ I
, and A ∩B = ∅. A is called the antecedent of the rule, and B is called the consequent of the rule.

Wu et al. in [29] proposed the conditional-probability increment ratio (CPIR) as the confidence
measure of association rules. It can be utilized for quantifying the significance of association rules
between violations, activities and attribute values. CPIR is a measure, aiming to quantify the
rule’s strength. Given A,B ⊆ I ,A ∩ B = ∅, A,B 6= ∅:

CPIR(A⇒ B) = supp(A∪B)−supp(A)supp(B)
supp(A)(1−supp(B))

.
CPIR’s value varies between -1 and 1, with negative values indicating negative relation. The

closer the absolute value of the measure to 1, the stronger the relation and vice versa, the closer
the value to 0, the weaker the relation.

As an example, we will calculate CPIR for the rule {i10} ⇒ {i16} for our transactions in D ,
shown in the example above. supp({i10}) = 4

7 , supp({i16}) = 1
7 , supp({i10, i16}) = 1

7 .

CPIR({i10} ⇒ {i16}) =
1
7−

4
7∗

1
7

4
7∗(1−

1
7)

= 0.125

As the CPIR value shows, the relation {i10} ⇒ {i16} is quite weak.

2.3 Related Work

The approach proposed in this thesis can be decomposed into three basic parts: compliance checking
and analysis, identifying relations between violation and underlying context information, and
visualizing results for users without a strong technical background. In this section, we discuss
literature related to each of the subjects.

Compliance Checking and Analysis

Our techniques are built upon violation data which is obtained during compliance checking. As
stated in [25], there are two basic types of compliance checking: (1) forward compliance checking
aims to design and implement processes where conformant behavior is enforced and (2) backward
compliance checking aims to detect and localize non-conformant behavior. This thesis focuses on
backward compliance checking based on event data.

Diagnostics in compliance checking 15

CHAPTER 2. PRELIMINARIES

In [5], four process perspectives are described: control-flow, organizational, case (also referred
to as data) and time. The control-flow perspective considers existence relations between events (e.g.
if event A occurred, event B must also occur) and order in which events occur (e.g. event A must
occur before event B). The data, resource and time perspectives are the context attributes linked
to each event. The resource perspective is tied to users or systems responsible for the occurrence of
events and information about their department, positions, etc. The time perspective is related to
the time of event occurrence. Finally, the data perspective considers all other context information,
e.g. location, or purchased amount for procurement, or client ID, etc. Compliance requirements
are often associated with multiple perspectives. Hence, we perform compliance analysis involving
all of these perspectives.

Several techniques have been proposed for checking control-flow compliance and conformance.
One of them is Declare-based checking, proposed in [20]. Similar to that, a LTL-based approach
has been described in [6]. State-of-the-art techniques perform conformance checking by computing
optimal alignments [9, 26] between traces in the event log and ‘‘best fitting” paths in the model.
A compliance checking technique, aimed at providing diagnostic information for all deviations
from compliant behavior, is proposed in [24]. This technique is based on the conformance checking
techniques described in [9] and [11].

De Leoni et al. extend conformance checking to include also the data and resource perspectives
in [19, 17]. The approaches employ checking not only the control-flow perspective, but also the
data and resource perspectives of a process. This includes checking whether guards and conditions
for execution paths employing attributes defined in the log are met. In [17] it is stated that a Petri
Net with Data (defined in [18]) can be used to define the required perspectives.

In [12], modeling primitives for expressing time constraints between activities are proposed,
which allow computing internal activity deadlines such that externally assigned deadlines are
met. The technique presented in [25], focuses on backwards checking of temporal constraints in
execution logs. It adopts the data-aware conformance approach described in [19] to check temporal
rules. This allows expressing all temporal constraints discussed in previous works ([28, 21, 13, 10])
and above that, it allows checking cyclic temporal constraints.

For our approach, we employ a unified way of defining constraints using a Petri Net with Data.
This allows to define and check control-flow rules as described in [24], data and resource rules as
described in [18] and temporal constraints as described in [25].

Identifying Relations between a Violation and the Underlying Context Information

Our approach can be used to obtain compliance diagnostics. In order to provide diagnostic
information, we need to discover relations between violations and the underlying context. The Data-
Aware Replay Result described in Section 2.1.3 already has context information for all violations
discovered. Nevertheless, examining each single step of each single alignment is enormously time-
consuming for datasets larger than ten or a hand full of cases. Thus, context should be aggregated
for each type of violation. However real processes are likely to contain a big number of violations
with varying context. This creates (1) the need to measure the strength of the relationship between
a violation and the underlying context, which is used for providing a general overview of compliance
diagnostics. In order to obtain (2) the root cause of a specific problem, we need to find a way to
discover what distinguishes violating steps from non-violating ones.

Both problems are solved using data-mining approaches. The approach proposed in [27] also
uses decision trees to identify the root cause of problems, but it classifies process instances, while
the approach in this thesis works with steps in alignments. Also, it does not employ any way of
discovering association rules to measure the strength of the relationship between a violation and
the underlying context. In this thesis, the approach proposed in [29] is utilized for this purpose.

Visualizing Results

Our aim in this thesis and the tools we have developed is to provide diagnostic information
that is perceived easily by business users who are less familiar with technical knowledge. Hence

16 Diagnostics in compliance checking

CHAPTER 2. PRELIMINARIES

visualization of diagnostics has been an important part of this work. Visualization in the context
of process mining is not widely covered in literature, however there is a number of works worth
mentioning.

In [16], the author proposes a technique to get insights into context-related information of event
logs. Although, the proposed approach allows users to get useful context information, it does not
focus on violating events or cases. Instead it aims to present the context data of an event log in
general. Another paper involving visualization is [7] which, similarly to [15], focuses on visualizing
the execution of event logs rather than the diagnostics.

Unlike the previously listed papers, [27] describes visualization of compliance diagnostics. In
the mentioned paper, the implementation displays list of activities for each rule that can be drilled
further down to context level. At the bottom level the user can observe various context data
regarding the violation. In this thesis the implementation allows the user to explore not only
violations related to a specific activity, but also violations related to specific values of context
attributes. This lets user discover common context patterns across different violations and hence
get better understanding of the observed problems.

Diagnostics in compliance checking 17

Chapter 3

Obtaining Alignments to Identify
Violations

In Chapter 1, we defined our research problem: obtaining insights about the violations detected in
an event log. However, before we are able to provide such insights, we need to realize a way to
detect violations. Violations are detected using a combination of compliance checking techniques
for different process perspectives. The process of obtaining violation data is depicted in Figure 3.1.

Figure 3.1: Obtaining violation data

A process is decomposed into four perspectives: control-flow, data, organizational and time.
The control-flow perspective focuses on the ordering of activities and their presence or absence

in process instances. If we recall our definition of log, provided in Section 2.1.1, this perspective is
captured in event names and the sequence of events. Compliance rules restricting this perspective
are captured in the specified behavior through the specified activity names and the specified
sequence of activities.

The organizational perspective focuses on information about resources shown in the log, i.e.,
which actors (e.g., people, systems, roles, and departments) are involved and how they are related.

The time perspective is concerned with the timing of events. When events bear timestamps, it
is possible to identify if an event met its deadline relative to some other event in the log.

The data perspective is concerned with all other information that is related to an event and
may differ based on the context of the process. This perspective as well as the organizational and
time perspectives are captured in event attributes and their values in the event log. The rules
regarding this perspective are captured in admissible values sets for the attributes.

Diagnostics in compliance checking 19

CHAPTER 3. OBTAINING ALIGNMENTS TO IDENTIFY VIOLATIONS

The input for obtaining log alignment (described in Figure 3.1) includes an event log and a
Petri Net with Data. Such an event log is represented in the way described in Section 2.1.1. A
Petri Net with Data is represented in the way described in Section 2.1.2. It contains information
about control-flow, data, resource and time constraints regarding the analyzed process.

First of all, the event log along with the control-flow compliance rules serve as input for
abstracting the log for compliance checking. This means replacing all event names, for which there
are no corresponding activity names, with Ω. Thus all such events will be aligned to an activity
named Ω. After that control-flow rules and the abstracted log are used as input for checking the
control-flow compliance and obtain a control-flow replay result.

The obtained control-flow replay result, and data rules, are then used as an input for checking
data and resource compliance and obtaining a corresponding Data-Aware Replay Result.

Independently from data and resource compliance, temporal compliance is checked as follows.
First of all, the control-flow alignment, temporal constrains and abstracted log are utilized to
obtain an enriched log. This log differs from the original abstracted log in a way that it has separate
attributes with a timestamp for each event, for which a time constraint is defined. E.g. if we have
a rule, restricting an event named Goods Receipt in the abstracted log, the enriched log would
contain Goods Receipt Time attribute bearing timestamp of the last occurred Goods Receipt
event. Finally, temporal constraints are checked using the corresponding techniques and all three
alignments are united into a resulting Data-Aware Replay Result.

The rest of this chapter is organized as follows. The example that is going to be used during the
explanation is described in Section 3.1. Checking control-flow compliance is covered in Section 3.2.
Data and resource compliance checking are described in Section 3.3 and temporal compliance
checking is described in Section 3.4.

3.1 Motivating Example

Before describing how we detect violations, we introduce an example log and a rule specifica-
tion. They will serve to illustrate the concepts throughout this thesis. The log is assumed to be
recorded during execution of the process, described in Section 2.1.1. Let L be the analyzed event log.

L = (〈(initiale request , ((AR, 3000), (Ex ,Pete), (TS , 0))),
(check documents, ((AR, 3000), (Ex ,Pete), (TS , 1800))),
(examine casually , ((AR, 3000), (Ex ,Ellen), (TS , 3600))),
(decide, ((AR, 3000), (Ex ,Sara), (TS , 7200))),
(pay compensation, ((AR, 3000), (Ex ,Pete), (TS , 10000)))〉,

〈(initiale request , ((AR, 5000), (Ex ,Pete), (TS , 0))),
(examine casually , ((AR, 5000), (Ex ,Mike), (TS , 1000))),
(check documents, ((AR, 5000), (Ex ,Sean), (TS , 2000))),
(decide, ((AR, 5000), (Ex ,Mike), (TS , 2200))),
(pay compensation, ((AR, 5000), (Ex ,Pete), (TS , 2600)))〉,

〈(initiale request , ((AR, 6000), (Ex ,Pete), (TS , 0))),
(check documents, ((AR, 6000), (Ex ,Pete), (TS , 2000))),
(examine thoroughly , ((AR, 6000), (Ex ,Sara), (TS , 7200))),
(decide, ((AR, 6000), (Ex ,Sara), (TS , 8000))),
(reject request , ((AR, 6000), (Ex ,Pete), (TS , 8200)))〉)

The following attributes are included in the log:

• AR is a number, denoting the requested amount in Euros

• Ex is a person, responsible for the occurred event

20 Diagnostics in compliance checking

CHAPTER 3. OBTAINING ALIGNMENTS TO IDENTIFY VIOLATIONS

• TS is a timestamp relative to start of the case in seconds

The specification is in terms of the Petri Net with Data depicted in Figure 3.2. The specification
should satisfy the constraints described in [24]:

• Each pattern has a dedicated place Initial and a place Final

• A token in the final place defines the final marking of the pattern. When a pattern reaches its
final marking, the pattern is properly completed (i.e., all other places of the net are empty).

• Every compliance pattern has a Pattern Instance corresponding to an instance of its com-
pliance rule. The Pattern Instance starts as soon as an event occurs which triggers the
Compliance Rule Instance. The Pattern Instance completes as soon as the condition of the
Compliance Rule Instance is satisfied.

• The I st-labeled transition in Petri-net pattern indicates the start of an instance of a control
flow pattern (Pattern Instance) and the I cmp-labeled transition in every pattern indicates
the completion of an instance of the same control flow pattern.

Figure 3.2: Petri Net with Data

In this Petri Net with Data we use the following set of invisible transitions Tinv = {Start , I st , I cmp, τ}.
This Petri Net with Data expresses constraints regarding different perspectives.

For the control-flow perspective, the following constraints are expressed:

• Either activity Examine casually or Examine thoroughly should be executed, but not both;

• Activity Decide should eventually follow Examine casually or Examine thoroughly ;

• Either of activities Action pending, Reject request, or Pay compensation should eventually
be executed after Decide. Since activity Action pending is invisible, this rule would hold
even if the other two are never performed;

• Sequence of one of the examining activities (either Examine casually or Examine thoroughly)
and Decide activity can be repeated only after execution of some activity;

• All other activities execution is not restricted.

For the data perspective, the following constraints are expressed:

Diagnostics in compliance checking 21

CHAPTER 3. OBTAINING ALIGNMENTS TO IDENTIFY VIOLATIONS

• Activity Examine casually can occur only when requested amount (AR) is below e5,000 and
above e0;

• Activity Examine thoroughly can occur only when requested amount (AR) is above or equal
e5,000.

For the resource perspective, the following constraints are expressed:

• Activity Examine casually can only be executed by Mike and Ellen;

• Activity Examine thoroughly can only be executed by Sara.

For the time perspective, the following constraints are expressed:

• If the request is rejected, the activity Reject request should be performed within 1800 seconds
(i.e. 30 minutes) after activity Decide;

• If the request is approved, the activity Pay compensation should be performed after at least
1800 seconds (i.e. 30 minutes) after the activity Decide.

3.2 Control-flow Compliance Checking

For control-flow compliance checking we use the approach described in [25]. The first step is to
abstract the log for compliance checking. During the abstraction, occurrences of any other events
than the event(s) specified in the compliance rule are mapped onto the activity labeled Ω. For the
sake of readability, we keep the log short and replace all event names with names of the transitions
they correspond to. The result of abstracting our log is:

Labstracted = (〈(Ω, ((AR, 3000), (Ex ,Pete), (TS , 0))),
(Ω, ((AR, 3000), (Ex ,Pete), (TS , 1800))),
(c, ((AR, 3000), (Ex ,Ellen), (TS , 3600))),
(e, ((AR, 3000), (Ex ,Sara), (TS , 7200))),
(h, ((AR, 3000), (Ex ,Pete), (TS , 10000)))〉,

〈(Ω, ((AR, 5000), (Ex ,Pete), (TS , 0))),
(c, ((AR, 5000), (Ex ,Mike), (TS , 1000))),
(Ω, ((AR, 5000), (Ex ,Sean), (TS , 2000))),
(e, ((AR, 5000), (Ex ,Mike), (TS , 2200))),
(h, ((AR, 5000), (Ex ,Pete), (TS , 2600)))〉,

〈(Ω, ((AR, 6000), (Ex ,Pete), (TS , 0))),
(Ω, ((AR, 6000), (Ex ,Pete), (TS , 2000))),
(b, ((AR, 6000), (Ex ,Sara), (TS , 7200))),
(e, ((AR, 6000), (Ex ,Sara), (TS , 8000))),
(g , ((AR, 6000), (Ex ,Pete), (TS , 8200)))〉)

After that, we can map events from the log to activities in the specification.
A control-flow replay result is a set of alignments (described in Section 2.1.3) with the difference
that activities do not specify admissible values for any of the attributes, i.e. set of activity attributes
VM = ∅.

The control flow replay result for our example is shown in Table 3.1.
As mentioned in Section 2.1.3, events with name � derive their attributes from the ones before

them. When event with name � occurs before any real event, there are no events to derive from,
so all the attributes are derived from the first real event.

22 Diagnostics in compliance checking

CHAPTER 3. OBTAINING ALIGNMENTS TO IDENTIFY VIOLATIONS

Table 3.1: Control flow replay result DRcf of log Labstracted

γcf1

z# σL1 σS1

z11 �, ((AR, 3000), (Ex ,Pete), (TS , 0)) Start

z12 �, ((AR, 3000), (Ex ,Pete), (TS , 0)) I st

z13 Ω, ((AR, 3000), (Ex ,Pete), (TS , 0)) Ω

z14 Ω, ((AR, 3000), (Ex ,Pete), (TS , 1800)) Ω

z15 c, ((AR, 3000), (Ex ,Ellen), (TS , 3600)) c

z16 e, ((AR, 3000), (Ex ,Sara), (TS , 7200)) e

z17 h, ((AR, 3000), (Ex ,Pete), (TS , 10000)) h

z18 �, ((AR, 3000), (Ex ,Ellen), (TS , 10000)) I cmp

z19 �, ((AR, 3000), (Ex ,Ellen), (TS , 10000)) End

γcf2

z# σL2 σS2

z21 �, ((AR, 5000), (Ex ,Pete), (TS , 0)) Start

z22 �, ((AR, 5000), (Ex ,Pete), (TS , 0)) I st

z23 Ω, ((AR, 5000), (Ex ,Pete), (TS , 0)) Ω

z24 c, ((AR, 5000), (Ex ,Mike), (TS , 1000)) c

z25 Ω, ((AR, 5000), (Ex ,Sean), (TS , 2000)) Ω

z26 e, ((AR, 5000), (Ex ,Mike), (TS , 2200)) e

z27 h, ((AR, 5000), (Ex ,Pete), (TS , 2600)) h

z28 �, ((AR, 5000), (Ex ,Pete), (TS , 2600)) I cmp

z29 �, ((AR, 5000), (Ex ,Pete), (TS , 2600)) End

γcf3

z# σL3 σS3

z31 �, ((AR, 6000), (Ex ,Pete), (TS , 0)) Start

z32 �, ((AR, 6000), (Ex ,Pete), (TS , 0)) I st

z33 Ω, ((AR, 6000), (Ex ,Pete), (TS , 0)) Ω

z34 Ω, ((AR, 6000), (Ex ,Pete), (TS , 2000)) Ω

z35 b, ((AR, 6000), (Ex ,Sara), (TS , 7200)) b

z36 e, ((AR, 6000), (Ex ,Sara), (TS , 8000)) e

z37 g , ((AR, 6000), (Ex ,Pete), (TS , 8200)) g

z38 �, ((AR, 6000), (Ex ,Pete), (TS , 8200)) I cmp

z39 �, ((AR, 6000), (Ex ,Pete), (TS , 8200)) End

3.3 Data and Resource Compliance Checking

The approach described in this section is based on the one introduced in [19].

Input for this step is a control-flow replay result and data and resource constraints from a Petri
Net with Data. As a result, a Data-Aware Replay Result of the form introduced in Section 2.1.3,
can be computed. It is demonstrated in Table 3.2.

As shown in Table 3.2, alignment γd2 contains a move with incorrect AR (See step z24). There
is also a move with incorrect Ex (See step z26), i.e. there are both a data violation and a resource

Diagnostics in compliance checking 23

CHAPTER 3. OBTAINING ALIGNMENTS TO IDENTIFY VIOLATIONS

Table 3.2: Data and resource alignment of log Labstracted

γd1

z# σL1 σS1

z11 �, ((AR, 3000), (Ex ,Pete), (TS , 0)) Start , ((AR,Q+), (Ex ,U))

z12 �, ((AR, 3000), (Ex ,Pete), (TS , 0)) I st , ((AR,Q+), (Ex ,U))

z13 Ω, ((AR, 3000), (Ex ,Pete), (TS , 0)) Ω, ((AR,Q+), (Ex ,U))

z14 Ω, ((AR, 3000), (Ex ,Pete), (TS , 1800)) Ω, ((AR,Q+), (Ex ,U))

z15 c, ((AR, 3000), (Ex ,Ellen), (TS , 3600)) c, ((AR, {q ∈ Q+ | (q > 0) ∧ (q <
5000))), (Ex , {Mike,Ellen}))

z16 e, ((AR, 3000), (Ex ,Sara), (TS , 7200)) e, ((AR,Q+), (Ex , {Sara}))
z17 h, ((AR, 3000), (Ex ,Pete), (TS , 10000)) h, ((AR,Q+), (Ex ,U))

z18 �, ((AR, 3000), (Ex ,Ellen), (TS , 10000)) I cmp, ((AR,Q+), (Ex ,U))

z19 �, ((AR, 3000), (Ex ,Ellen), (TS , 10000)) End , ((AR,Q+), (Ex ,U))

γd2

z# σL2 σS2

z21 �, ((AR, 5000), (Ex ,Pete), (TS , 0)) Start , ((AR,Q+), (Ex ,U))

z22 �, ((AR, 5000), (Ex ,Pete), (TS , 0)) I st , ((AR,Q+), (Ex ,U))

z23 Ω, ((AR, 5000), (Ex ,Pete), (TS , 0)) Ω, ((AR,Q+), (Ex ,U))

z24 c, ((AR, 5000), (Ex ,Mike), (TS , 1000)) c, ((AR, {q ∈ Q+ | (q > 0) ∧ (q <
5000)}), (Ex , {Mike,Ellen}))

z25 Ω, ((AR, 5000), (Ex ,Sean), (TS , 2000)) Ω, ((AR,Q+), (Ex ,U))

z26 e, ((AR, 5000), (Ex ,Mike), (TS , 2200)) e, ((AR,Q+), (Ex , {Sara}))
z27 h, ((AR, 5000), (Ex ,Pete), (TS , 2600)) h, ((AR,Q+), (Ex ,U))

z28 �, ((AR, 5000), (Ex ,Pete), (TS , 2600)) I cmp, ((AR,Q+), (Ex ,U))

z29 �, ((AR, 5000), (Ex ,Pete), (TS , 2600)) End , ((AR,Q+), (Ex ,U))

γd3

z# σL3 σS3

z31 �, ((AR, 6000), (Ex ,Pete), (TS , 0)) Start , ((AR,Q+), (Ex ,U))

z32 �, ((AR, 6000), (Ex ,Pete), (TS , 0)) I st , ((AR,Q+), (Ex ,U))

z33 Ω, ((AR, 6000), (Ex ,Pete), (TS , 0)) Ω, ((AR,Q+), (Ex ,U))

z34 Ω, ((AR, 6000), (Ex ,Pete), (TS , 2000)) Ω, ((AR,Q+), (Ex ,U))

z35 b, ((AR, 6000), (Ex ,Sara), (TS , 7200)) b, ((AR, {q ∈ Q+ | q >=
5000}), (Ex , {Sara}))

z36 e, ((AR, 6000), (Ex ,Sara), (TS , 8000)) e((AR,Q+), (Ex ,Sara))

z37 g , ((AR, 6000), (Ex ,Pete), (TS , 8200)) g , ((AR,Q+), (Ex ,U))

z38 �, ((AR, 6000), (Ex ,Pete), (TS , 8200)) I cmp, ((AR,Q+), (Ex ,U))

z39 �, ((AR, 6000), (Ex ,Pete), (TS , 8200)) End , ((AR,Q+), (Ex ,U))

violation.

24 Diagnostics in compliance checking

CHAPTER 3. OBTAINING ALIGNMENTS TO IDENTIFY VIOLATIONS

3.4 Temporal Compliance Checking

The approach described in this Section is based on the Temporal Compliance Checking approach
introduced in [25]. In order to perform the checking, the following actions are taken. First, the
abstracted event log is enriched with timing information. During this process, for all events, whose
time is restricted by temporal constraints, special attributes bearing the value of their timestamps
are created. Since all events are needed to have an equal set of attributes, these time attributes
are added to every event. The name pattern of these attributes follows: [activity name] Time,
where [activity name] is replaced with the actual name of the activity and all spaces () in the
activity name are replaced with .

In our example, the following activities are considered by time restrictions: Decide, Pay Com-
pensation, Reject request. Thus, the attributes, with which we enrich the log are: Decide Time,
Pay Compensation Time, and Reject request Time. This results in the following enriched log

for our example:

Lenriched =
(〈(Ω, ((AR, 3000), (Ex ,Pete), (TS , 0), (Decide Time, 0),
(Pay Compensation Time, 0), (Reject request Time, 0))),
(Ω, ((AR, 3000), (Ex ,Pete), (TS , 1800), (Decide Time, 0),
(Pay Compensation Time, 0), (Reject request Time, 0))),
(c, ((AR, 3000), (Ex ,Ellen), (TS , 3600), (Decide Time, 0),
(Pay Compensation Time, 0), (Reject request Time, 0))),
(e, ((AR, 3000), (Ex ,Sara), (TS , 7200), (Decide Time, 7200),
(Pay Compensation Time, 0), (Reject request Time, 0))),
(h, ((AR, 3000), (Ex ,Pete), (TS , 10000), (Decide Time, 7200),
(Pay Compensation Time, 10000), (Reject request Time, 0)))〉,

〈(Ω, ((AR, 5000), (Ex ,Pete), (TS , 0), (Decide Time, 0),
(Pay Compensation Time, 0), (Reject request Time, 0))),
(c, ((AR, 5000), (Ex ,Mike), (TS , 1000), (Decide Time, 0),
(Pay Compensation Time, 0), (Reject request Time, 0))),
(Ω, ((AR, 5000), (Ex ,Sean), (TS , 2000), (Decide Time, 0),
(Pay Compensation Time, 0), (Reject request Time, 0))),
(e, ((AR, 5000), (Ex ,Mike), (TS , 2200), (Decide Time, 2200),
(Pay Compensation Time, 0), (Reject request Time, 0))),
(h, ((AR, 5000), (Ex ,Pete), (TS , 2600), (Decide Time, 2200),
(Pay Compensation Time, 2600), (Reject request Time, 0)))〉,

〈(Ω, ((AR, 6000), (Ex ,Pete), (TS , 0), (Decide Time, 0),
(Pay Compensation Time, 0), (Reject request Time, 0))),
(Ω, ((AR, 6000), (Ex ,Pete), (TS , 2000), (Decide Time, 0),
(Pay Compensation Time, 0), (Reject request Time, 0))),
(b, ((AR, 6000), (Ex ,Ellen), (TS , 7200), (Decide Time, 0),
(Pay Compensation Time, 0), (Reject request Time, 0))),
(e, ((AR, 6000), (Ex ,Sara), (TS , 8000), (Decide Time, 8000),
(Pay Compensation Time, 0), (Reject request Time, 0))),
(g , ((AR, 6000), (Ex ,Pete), (TS , 8200), (Decide Time, 8000),
(Pay Compensation Time, 0), (Reject request Time, 8200)))〉)

Second, control-flow replay result is enriched with those attributes for log events and restrictions
based on actual attribute values for specification activities. The resulting temporal alignment is
shown in Table 3.3.

Diagnostics in compliance checking 25

CHAPTER 3. OBTAINING ALIGNMENTS TO IDENTIFY VIOLATIONS

Table 3.3: Temporal alignment of log Lenriched

γt1
z# σL1 σS1

z11

�, ((AR, 3000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Start , ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z12

�, ((AR, 3000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

I st , ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z13

Ω, ((AR, 3000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Ω, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z14

Ω, ((AR, 3000), (Ex ,Pete), (TS , 1800),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Ω, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z15

c, ((AR, 3000), (Ex ,Ellen), (TS , 3600),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

c, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z16

e, ((AR, 3000), (Ex ,Sara), (TS , 7200),
(Decide Time, 7200),
(Pay Compensation Time, 0),
(Reject request Time, 0))

e, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z17

h, ((AR, 3000), (Ex ,Pete), (TS , 10000),
(Decide Time, 7200),
(Pay Compensation Time, 10000),
(Reject request Time, 0))

h, ((Decide Time,Q),
(Pay Compensation Time,
{q ∈ Q+ | q >= 9000}),
(Reject request Time,Q))

z18

�, ((AR, 3000), (Ex ,Pete), (TS , 10000),
(Decide Time, 7200),
(Pay Compensation Time, 10000),
(Reject request Time, 0))

I cmp, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z19

�, ((AR, 3000), (Ex ,Pete), (TS , 10000),
(Decide Time, 7200),
(Pay Compensation Time, 10000),
(Reject request Time, 0))

End , ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

γt2
z# σL2 σS2

z21

�, ((AR, 5000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Start , ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z22

�, ((AR, 5000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

I st , ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

26 Diagnostics in compliance checking

CHAPTER 3. OBTAINING ALIGNMENTS TO IDENTIFY VIOLATIONS

z23

Ω, ((AR, 5000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Ω, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z24

c, ((AR, 5000), (Ex ,Mike), (TS , 1000),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

c, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z25

Ω, ((AR, 5000), (Ex ,Sean), (TS , 2000),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Ω, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z26

e, ((AR, 5000), (Ex ,Mike), (TS , 2200),
(Decide Time, 2200),
(Pay Compensation Time, 2600),
(Reject request Time, 0))

e, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z27

h, ((AR, 5000), (Ex ,Pete), (TS , 2600),
(Decide Time, 2200),
(Pay Compensation Time, 2600),
(Reject request Time, 0))

h, ((Decide Time,Q),
(Pay Compensation Time,
{q ∈ Q+ | q >= 4000}),
(Reject request Time,Q))

z28

�, ((AR, 5000), (Ex ,Pete), (TS , 2600),
(Decide Time, 2200),
(Pay Compensation Time, 2600),
(Reject request Time, 0))

I cmp, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z29

�, ((AR, 5000), (Ex ,Pete), (TS , 2600),
(Decide Time, 2200),
(Pay Compensation Time, 2600),
(Reject request Time, 0))

End , ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

γt3
z# σL3 σS3

z31

�, ((AR, 6000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Start , ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z32

�, ((AR, 6000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

I st , ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z33

Ω, ((AR, 6000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Ω, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z34

Ω, ((AR, 6000), (Ex ,Pete), (TS , 2000),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Ω, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z35

b, ((AR, 6000), (Ex ,Sara), (TS , 7200),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

b, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

Diagnostics in compliance checking 27

CHAPTER 3. OBTAINING ALIGNMENTS TO IDENTIFY VIOLATIONS

z36

e, ((AR, 6000), (Ex ,Sara), (TS , 8000),
(Decide Time, 8000),
(Pay Compensation Time, 0),
(Reject request Time, 0))

e, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z37

g , ((AR, 6000), (Ex ,Pete), (TS , 8200),
(Decide Time, 8000),
(Pay Compensation Time, 0),
(Reject request Time, 8200))

g , ((Decide Time,Q),
(Pay Compensation Time,
{q ∈ Q+ | q <= 9800}),
(Reject request Time,Q))

z38

�, ((AR, 6000), (Ex ,Pete), (TS , 8200),
(Decide Time, 7200),
(Pay Compensation Time, 0),
(Reject request Time, 8200))

I cmp, ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z39

�, ((AR, 6000), (Ex ,Pete), (TS , 8200),
(Decide Time, 7200),
(Pay Compensation Time, 0),
(Reject request Time, 8200))

End , ((Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

As can be seen in the table, there is a single violation of a temporal rule: step z27 in alignment
γt2 is performed with incorrect time.

Finally, after obtaining alignments for all perspectives, the resulting alignment is compiled. It is
composed of merged information from all other perspectives. The result is shown in the Table 3.4.

Table 3.4: Resulting Data-Aware Replay Result of log Lenriched

γ1
z# σL1 σS1

z11

�, ((AR, 3000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Start , ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z12

�, ((AR, 3000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

I st , ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z13

Ω, ((AR, 3000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Ω, ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z14

Ω, ((AR, 3000), (Ex ,Pete), (TS , 1800),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Ω, ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z15

c, ((AR, 3000), (Ex ,Ellen), (TS , 3600),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

c, ((AR, {q ∈ Q+ | (q > 0) ∧ (q < 5000))),
(Ex , {Mike,Ellen}),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z16

e, ((AR, 3000), (Ex ,Sara), (TS , 7200),
(Decide Time, 7200),
(Pay Compensation Time, 0),
(Reject request Time, 0))

e, ((AR,Q+), (Ex , {Sara}),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

28 Diagnostics in compliance checking

CHAPTER 3. OBTAINING ALIGNMENTS TO IDENTIFY VIOLATIONS

z17

h, ((AR, 3000), (Ex ,Pete), (TS , 10000),
(Decide Time, 7200),
(Pay Compensation Time, 10000),
(Reject request Time, 0))

h, ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,
{q ∈ Q+ | q >= 9000}),
(Reject request Time,Q))

z18

�, ((AR, 3000), (Ex ,Pete), (TS , 10000),
(Decide Time, 7200),
(Pay Compensation Time, 10000),
(Reject request Time, 0))

I cmp, ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z19

�, ((AR, 3000), (Ex ,Pete), (TS , 10000),
(Decide Time, 7200),
(Pay Compensation Time, 10000),
(Reject request Time, 0))

End , ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

γ2
z# σL2 σS2

z21

�, ((AR, 5000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Start , ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z22

�, ((AR, 5000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

I st , ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z23

Ω, ((AR, 5000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Ω, ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z24

c, ((AR, 5000), (Ex ,Mike), (TS , 1000),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

c, ((AR, {q ∈ Q+ | (q > 0) ∧ (q < 5000))),
(Ex , {Mike,Ellen}),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z25

Ω, ((AR, 5000), (Ex ,Sean), (TS , 2000),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Ω, ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z26

e, ((AR, 5000), (Ex ,Mike), (TS , 2200),
(Decide Time, 2200),
(Pay Compensation Time, 2600),
(Reject request Time, 0))

e, ((AR,Q+), (Ex , {Sara}),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z27

h, ((AR, 5000), (Ex ,Pete), (TS , 2600),
(Decide Time, 2200),
(Pay Compensation Time, 2600),
(Reject request Time, 0))

h, ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,
{q ∈ Q+ | q >= 4000}),
(Reject request Time,Q))

z28

�, ((AR, 5000), (Ex ,Pete), (TS , 2600),
(Decide Time, 2200),
(Pay Compensation Time, 2600),
(Reject request Time, 0))

I cmp, ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

Diagnostics in compliance checking 29

CHAPTER 3. OBTAINING ALIGNMENTS TO IDENTIFY VIOLATIONS

z29

�, ((AR, 5000), (Ex ,Pete), (TS , 2600),
(Decide Time, 2200),
(Pay Compensation Time, 2600),
(Reject request Time, 0))

End , ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

γ3
z# σL3 σS3

z31

�, ((AR, 6000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Start , ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z32

�, ((AR, 6000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

I st , ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z33

Ω, ((AR, 6000), (Ex ,Pete), (TS , 0),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Ω, ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z34

Ω, ((AR, 6000), (Ex ,Pete), (TS , 2000),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

Ω, ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z35

b, ((AR, 6000), (Ex ,Sara), (TS , 7200),
(Decide Time, 0),
(Pay Compensation Time, 0),
(Reject request Time, 0))

b, ((AR, {q ∈ Q+ | q >= 5000}),
(Ex , {Sara}), (Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z36

e, ((AR, 6000), (Ex ,Sara), (TS , 8000),
(Decide Time, 8000),
(Pay Compensation Time, 0),
(Reject request Time, 0))

e, ((AR,Q+), (Ex ,Sara),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z37

g , ((AR, 6000), (Ex ,Pete), (TS , 8200),
(Decide Time, 8000),
(Pay Compensation Time, 0),
(Reject request Time, 8200))

g , ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,
{q ∈ Q+ | q <= 9800}),
(Reject request Time,Q))

z38

�, ((AR, 6000), (Ex ,Pete), (TS , 8200),
(Decide Time, 7200),
(Pay Compensation Time, 0),
(Reject request Time, 8200))

I cmp, ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

z39

�, ((AR, 6000), (Ex ,Pete), (TS , 8200),
(Decide Time, 7200),
(Pay Compensation Time, 0),
(Reject request Time, 8200))

End , ((AR,Q+), (Ex ,U),
(Decide Time,Q),
(Pay Compensation Time,Q),
(Reject request Time,Q))

In this way a Data-Aware Replay Result containing information about violations from all
process perspectives is obtained. The replay result will be analyzed in the way described in the
following chapters.

30 Diagnostics in compliance checking

Chapter 4

Identifying and Ranking Problems

In Chapter 3, we described how we obtain Data-Aware Replay Result containing the violation data.
In this chapter, we describe how we identify problems in the given Data-Aware Replay Result.
This results include violation statistics and a ranked list of problems.

As stated in Section 2.1.3, Data-Aware Replay Result consists of alignments. Each alignment
corresponds to a single case. Thus, in order to understand what problems are present in the
process, a user would have to examine the alignments for an entire log. Moreover, in order to get
the idea of the context corresponding to each problem, it is required to study every single step of
the alignments and manually relate the violating steps to the underlying context.

Figure 4.1: Approach step 1 details

This phase of the approach is depicted in Figure 4.1. It is aimed at obtaining the general
overview of the violations present in the process and the underlying diagnostics. The input is a
result of compliance checking in the form of Data-Aware Replay Result. The Replay Result is
utilized to obtain aggregations, which will be explained in Section 4.1. The aggregations serve as
the input for obtaining violation statistics and a list of problems. Each item of the list has an
assigned relevance metric and a rank.

The statistics include number of violations of each kind for each attribute value and activity.
They are described in Section 4.2.

The list of problems is shown to the user as a report containing textual description of discovered

Diagnostics in compliance checking 31

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

problems. Each item of the list has an assigned relevance value and a rank value. Using the rank
value, the list is sorted such that most important or severe violations appear at the top. Using the
relevance value, the list can be refined in order to keep only the most relevant violations for each
specific activity, or the most relevant context for each specific violation. The structure of the list
and the way the metrics are computed are described in Section 4.3.

4.1 Obtaining Aggregations

The aggregations consist of problematic subsets. Basically, each problematic subset is a subset
of the multiset of Data-Aware Steps Z , where each step represents a violation and has one or
more specific features, be it bearing a specific activity name, or an attribute value or representing
a specific kind of violation. These subsets allow us to relate the discovered violations to the
underlying context.

4.1.1 Aggregating Multisets

In this section we describe which multisets of Data-aware-steps are chosen for aggregation.
We assume the given Data-Aware Replay Result DR in the form, defined in Section 2.1.3, all

Data-Aware Steps of which are contained in Z . In order to define the multisets, we use functions
defined in Section 2.1.4. Table 4.1 defines the multisets and shows examples for each subset, using
the example Data-Aware Replay Result described in Table 3.4.

32 Diagnostics in compliance checking

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

T
a
b

le
4
.1

:
A

g
g
re

g
a
ti

n
g

m
u

lt
is

et
s

M
u

lt
is

et
d

ef
in

it
io

n
In

p
u

t
p

a
ra

m
et

er
s

D
es

cr
ip

ti
o
n

E
x
a
m

p
le

R
n
a
m
e
(a
n
a
m
e
)

=
{z
∈
Z
|s
n
a
m
e
(z

)
=

a
n
a
m
e
}

a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
∈
A

a
su

b
se

t
of

al
l

D
at

a-
A

w
ar

e
S
te

p
s

w
it

h
th

e
gi

v
en

ac
ti

v
-

it
y

n
a
m

e
a
n
a
m
e

R
n
a
m
e
(c

)
=
{z

1
5
,z

2
4
}

R
v
a
l(
v
,u

)
=

{z
∈
Z
|v

a
l(
z
,v

)
=

u
}

a
tt

ri
b
u
te

v
∈

V
L

,
it

s
v
al

u
e
u
∈

G
v

a
su

b
se

t
of

al
l

D
at

a-
A

w
ar

e
S
te

p
s

w
it

h
th

e
p
ro

v
id

ed
at

-
tr

ib
u
te

v
al

u
e
u
∈
G

v
of

th
e

g
iv

en
a
tt

ri
b

u
te

v
∈
V

L
.

R
v
a
l(
E
x
,S

a
ra

)
=
{z

1
6
,z

3
5
,z

3
6
}

R
m
o
d
e
l.
o
n
ly

=
{z
∈
Z
|P

m
o
d
e
l.
o
n
ly

(z
)}

-
a

su
b
se

t
of

al
l

D
at

a-
A

w
ar

e
S
te

p
s,

w
h
ic

h
ar

e
m

ov
es

on
m

o
d

el
.

R
m
o
d
e
l.
o
n
ly

=
∅

R
lo
g
.o
n
ly

=
{z
∈
Z
|P

lo
g
.o
n
ly

(z
)}

-
a

su
b
se

t
of

al
l

D
at

a-
A

w
ar

e
S
te

p
s,

w
h
ic

h
ar

e
m

ov
es

on
lo

g
.

R
lo
g
.o
n
ly

=
∅

R
in

c
o
r
r
e
c
t.
a
tt
r
(w

)
=

{z
∈
Z
|P

w
r
o
n
g
.v

(z
,v

)}
sp

ec
if

ic
a
ti

o
n

a
t-

tr
ib

u
te

w
∈
V

M

a
su

b
se

t
of

al
l

D
at

a-
A

w
ar

e
S
te

p
s,

w
h
ic

h
a
re

m
o
v
es

w
it

h
in

co
rr

ec
t
w

.

R
in

c
o
r
r
e
c
t.
a
tt
r
(E

x
)

=
{z

2
6
}

R
in

c
o
r
r
e
c
t.
d
a
ta

=
{z
∈
Z
|∃

w
[w
∈
V

M
:

P
in

c
o
r
r
e
c
t.
a
tt
r
(z
,w

)]
}

-
a

su
b
se

t
of

al
l

D
at

a-
A

w
ar

e
S
te

p
s,

w
h
ic

h
a
re

m
o
v
es

w
it

h
in

co
rr

ec
t

at
tr

ib
u
te

fo
r

a
n

y
o
f

th
e

a
tt

ri
b

u
te

s.

R
in

c
o
r
r
e
c
t.
d
a
ta

=
{z

2
4
,z

2
6
,z

2
7
}

R
v
io
la
ti
o
n

=
R

m
o
d
e
l.
o
n
ly
∪
R

lo
g
.o
n
ly
∪
R

in
c
o
r
r
e
c
t.
d
a
ta

-
a

su
b
se

t
of

al
l

D
at

a-
A

w
ar

e
S
te

p
s,

w
h
ic

h
h
a
v
e

a
n
y

k
in

d
o
f

v
io

la
ti

o
n

.

R
v
io
la
ti
o
n

=
{z

2
4
,z

2
6
,z

2
7
}

S
m
o
d
e
l.
o
n
ly

(a
n
a
m
e
)

=
R

n
a
m
e
(a
n
a
m
e
)
∩
R

m
o
d
e
l.
o
n
ly

a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
∈
A

a
su

b
se

t
of

al
l

D
at

a-
A

w
ar

e
S
te

p
s,

w
h
ic

h
h
av

e
gi

v
en

ac
-

ti
v
it

y
n
am

e
an

d
ar

e
m
o
ve
s

o
n
m
o
d
el

.

S
m
o
d
e
l.
o
n
ly

(c
)

=
∅

Diagnostics in compliance checking 33

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

T
ab

le
4
.1

:
A

g
g
re

g
a
ti

n
g

m
u

lt
is

et
s

(c
o
n
ti

n
u

ed
)

M
u

lt
is

et
d

ef
in

it
io

n
In

p
u

t
p

a
ra

m
et

er
s

D
es

cr
ip

ti
o
n

E
x
a
m

p
le

S
lo
g
.o
n
ly

(a
n
a
m
e
)

=
R

n
a
m
e
(a
n
a
m
e
)
∩
R

lo
g
.o
n
ly

a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
∈
A

a
su

b
se

t
of

al
l

D
at

a-
A

w
ar

e
S
te

p
s,

w
h
ic

h
h
av

e
gi

v
en

ac
-

ti
v
it

y
n
am

e
an

d
ar

e
m
o
ve
s

o
n
lo
g.

S
lo
g
.o
n
ly

(c
)

=
∅

S
d
a
ta

v
io
la
ti
o
n

(a
n
a
m
e
,w

)
=

{z
∈
Z
|s
n
a
m
e
(z

)
=

a
n
a
m
e
∧

P
in

c
o
r
r
e
c
t.
a
tt
r
(z
,w

)}
a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
∈

A
,

sp
ec

if
ic

a
ti

o
n

a
t-

tr
ib

u
te

w
∈
V

M

a
su

b
se

t
of

al
l

D
at

a-
A

w
ar

e
S
te

p
s,

w
h
ic

h
h
av

e
gi

v
en

ac
-

ti
v
it

y
n
a
m

e
a
n
d

h
a
v
e
in
-

co
rr
ec
t
va
lu
e

o
f

g
iv

en
a
t-

tr
ib

u
te

w
.

S
d
a
ta

v
io
la
ti
o
n

(c
,A

R
)

=
∅

S
d
a
ta

v
io
la
ti
o
n

(c
,E

x
)

=
{z

2
4
}

S
a
n
y
v
io
la
ti
o
n

(a
n
a
m
e
)

=
R

n
a
m
e
(a
n
a
m
e
)
∩
R

v
io
la
ti
o
n

a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
∈
A

a
su

b
se

t
of

al
l

D
at

a-
A

w
ar

e
S
te

p
s,

w
h
ic

h
h
av

e
gi

v
en

ac
-

ti
v
it

y
n
a
m

e
a
n
d

b
ea

r
a
n
y

k
in

d
o
f

v
io

la
ti

o
n

.

S
a
n
y
v
io
la
ti
o
n

(h
)

=
{z

2
7
}

S
a
ss
ig
n
m
e
n
t
(v
,u

)
=

S
v
a
l(
v
,u

)
∩
R

v
io
la
ti
o
n

a
tt

ri
b
u
te

v
∈

V
L

,
it

s
v
al

u
e
u
∈

G
v

a
su

b
se

t
of

al
l

D
at

a-
A

w
ar

e
S
te

p
s,

w
h
ic

h
h
a
v
e

th
e

gi
v
en

v
al

u
e
u

fo
r

th
e

gi
v
en

a
tt

ri
b
u
te

v
a
n
d

b
ea

r
a
n
y

k
in

d
o
f

v
io

la
ti

o
n

S
a
ss
ig
n
m
e
n
t
(A

R
,5

0
0
0
)

=
{z

2
4
,z

2
6
,z

2
7
}

S
m
o
d
e
l.
o
n
ly
.a
ss
ig
n
m
e
n
t
(a
n
a
m
e
,v
,u

)
=

S
m
o
d
e
l.
o
n
ly

(a
n
a
m
e
)
∩
S
a
ss
ig
n
m
e
n
t
(v
,u

)
a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
∈

A
,

a
t-

tr
ib

u
te

v
∈

V
L
,

it
s

v
al

u
e
u
∈
G

v

a
su

b
se

t
o
f

a
ll

D
a
ta

-
A

w
a
re

S
te

p
s,

w
h
ic

h
h
a
v
e

th
e

g
iv

en
a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
,

th
e

g
iv

en
v
a
lu

e
u

o
f

th
e

g
iv

en
a
tt

ri
b
u
te

v
a
n

d
a
re

m
o
ve
s
o
n
m
o
d
el

S
m
o
d
e
l.
o
n
ly
.a
ss
ig
n
m
e
n
t
(c
,A

R
,3

0
0
0
)

=
∅

34 Diagnostics in compliance checking

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

T
ab

le
4
.1

:
A

g
g
re

g
a
ti

n
g

m
u

lt
is

et
s

(c
o
n
ti

n
u

ed
)

M
u

lt
is

et
d

ef
in

it
io

n
In

p
u

t
p

a
ra

m
et

er
s

D
es

cr
ip

ti
o
n

E
x
a
m

p
le

S
a
ss
ig
n
m
e
n
t.
m
o
d
e
l.
o
n
ly

(a
n
a
m
e
,v
,u

)
=

S
a
ss
ig
n
m
e
n
t
(v
,u

)∩
S
m
o
d
e
l.
o
n
ly

(a
n
a
m
e
)

a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
∈

A
,

a
t-

tr
ib

u
te

v
∈

V
L
,

it
s

v
al

u
e
u
∈
G

v

th
e

se
t

is
th

e
sa

m
e

a
s

th
e

p
re

v
io

u
s

o
n
e,

b
u
t

li
st

it
em

s
to

w
h
ic

h
th

ey
co

rr
e-

sp
on

d
b
ea

r
d
if

fe
re

n
t

m
ea

n
-

in
gs

.
T

h
e

li
st

it
em

s
ar

e
in

-
tr

o
d

u
ce

d
in

S
ec

ti
o
n

4
.3

.1
.

S
a
ss
ig
n
m
e
n
t.
m
o
d
e
l.
o
n
ly

(c
,A

R
,3

0
0
0
)

=
∅

S
lo
g
.o
n
ly
.a
ss
ig
n
m
e
n
t
(a
n
a
m
e
,v
,u

)
=

S
lo
g
.o
n
ly

(a
n
a
m
e
)∩

S
a
ss
ig
n
m
e
n
t
(v
,u

)
a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
∈

A
,

a
t-

tr
ib

u
te

v
∈

V
L
,

it
s

v
al

u
e
u
∈
G

v

a
su

b
se

t
o
f

a
ll

D
a
ta

-
A

w
a
re

S
te

p
s,

w
h
ic

h
h
a
v
e

th
e

g
iv

en
a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
,

th
e

g
iv

en
v
a
lu

e
u

o
f

th
e

g
iv

en
a
tt

ri
b
u
te

v
a
n

d
a
re

m
o
ve
s
o
n
lo
g

S
lo
g
.o
n
ly
.a
ss
ig
n
m
e
n
t
(c
,A

R
,3

0
0
0
)

=
∅

S
a
ss
ig
n
m
e
n
t.
lo
g
.o
n
ly

(a
n
a
m
e
,v
,u

)
=

S
a
ss
ig
n
m
e
n
t
(v
,u

)
∩
S
lo
g
.o
n
ly

(a
n
a
m
e
)

a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
∈

A
,

a
t-

tr
ib

u
te

v
∈

V
L
,

it
s

v
al

u
e
u
∈
G

v

th
e

se
t

is
th

e
sa

m
e

a
s

th
e

p
re

v
io

u
s

o
n
e,

b
u
t

li
st

it
em

s
to

w
h
ic

h
th

ey
co

rr
e-

sp
on

d
b
ea

r
d
if

fe
re

n
t

m
ea

n
-

in
gs

.
T

h
e

li
st

it
em

s
ar

e
in

-
tr

o
d

u
ce

d
in

S
ec

ti
o
n

4
.3

.1
.

S
a
ss
ig
n
m
e
n
t.
lo
g
.o
n
ly

(c
,A

R
,3

0
0
0
)

=
∅

S
d
a
ta

v
io
la
ti
o
n
.a
ss
ig
n
m
e
n
t
(a
n
a
m
e
,v
,u
,w

)
=

S
d
a
ta

v
io
la
ti
o
n

(a
n
a
m
e
,w

)∩
S
a
ss
ig
n
m
e
n
t
(v
,u

)
a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
,

a
t-

tr
ib

u
te

v
∈

V
L
,

it
s

v
al

u
e
u
∈
G

v
,

sp
ec

if
ic

a
ti

o
n

a
t-

tr
ib

u
te

w
∈
V

M

a
su

b
se

t
o
f

a
ll

D
a
ta

-
A

w
a
re

S
te

p
s,

w
h
ic

h
h
a
v
e

th
e

g
iv

en
a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
,

th
e

g
iv

en
v
a
lu

e
u

o
f

th
e

g
iv

en
a
tt

ri
b
u
te

v
a
n
d

a
re

m
o
v
es

w
it

h
in

co
r-

re
ct

a
tt

ri
b

u
te

w

S
d
a
ta

v
io
la
ti
o
n
.a
ss
ig
n
m
e
n
t
(c
,A

R
,3

0
0
0,
A
R

)
=

∅

Diagnostics in compliance checking 35

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

T
ab

le
4
.1

:
A

g
g
re

g
a
ti

n
g

m
u

lt
is

et
s

(c
o
n
ti

n
u

ed
)

M
u

lt
is

et
d

ef
in

it
io

n
In

p
u

t
p

a
ra

m
et

er
s

D
es

cr
ip

ti
o
n

E
x
a
m

p
le

S
a
ss
ig
n
m
e
n
t.
d
a
ta

v
io
la
ti
o
n

(a
n
a
m
e
,v
,u
,w

)
=

S
a
ss
ig
n
m
e
n
t
(v
,u

)∩
S
d
a
ta

v
io
la
ti
o
n

(a
n
a
m
e
,w

)
a
ct

iv
it

y
n
a
m

e
a
n
a
m
e
,

a
t-

tr
ib

u
te

v
∈

V
L
,

it
s

v
al

u
e
u
∈
G

v
,

sp
ec

if
ic

a
ti

o
n

a
t-

tr
ib

u
te

w
∈
V

M

th
e

se
t

is
th

e
sa

m
e

a
s

th
e

p
re

v
io

u
s

o
n
e,

b
u
t

li
st

it
em

s
to

w
h
ic

h
th

ey
co

rr
e-

sp
on

d
b
ea

r
d
if

fe
re

n
t

m
ea

n
-

in
gs

.
T

h
e

li
st

it
em

s
ar

e
in

-
tr

o
d

u
ce

d
in

S
ec

ti
o
n

4
.3

.1
.

S
a
ss
ig
n
m
e
n
t.
d
a
ta

v
io
la
ti
o
n

(c
,A

R
,5

0
0
0,
A
R

)
=
{z

2
4
}

36 Diagnostics in compliance checking

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

4.2 Obtaining Violation Statistics

Violation statistics allow to get impression of the severity of the violations present in the analyzed
process. The idea is to show number of violations of each kind for each element of the Data-Aware
Replay Result (activity names and attribute values). This includes number of Data-Aware Steps
with violation and number of cases with violation.

For each activity aname ∈ A the statistics include the following:

• Number of moves on log (cardinality of multiset Slog.only(aname))

• Number of moves on model (| Smodel.only(aname) |)

• For each w ∈ VM , number of moves with incorrect w (| Sdataviolation(aname,w) |)

• Number of synchronous moves (| Rname(aname) | − | Smodel.only(aname)∪Slog.only(aname) |)

• For each w ∈ VM , number of moves with correct w (| Rname(aname) | − | Sdataviolation(aname,w) |)

Similarly, for each attribute v ∈ V context
L and its value u ∈ Gv the statistics include the

following:

• Number of moves on log (| Rval(v , u) ∩ Rlog.only |)

• Number of moves on model (| Rval(v , u) ∩ Rmodel.only |)

• For each w ∈ VM , number of moves with incorrect w (| Rval(v , u) ∩ Rincorrect.attr (w) |)

• Number of synchronous moves (| Rval(v , u) | − | Rval(v , u) ∩ (Rlog.only ∪ Rmodel.only) |)

• For each w ∈ VM , number of moves with correct w (| Rval(v , u) | − | Rval(v , u) ∩
Rincorrect.attr (w) |)

Please note that the statistics are not produced for the time attributes. The reason is that cases
might occur within huge timespan and timestamps might be incomparable and including them
might bias the report. This restriction only considers the default timestamp and the attributes
with which the log is enriched during temporal compliance checking.

To illustrate the obtained result we show the statistics obtained from the example Data-Aware
Replay Result in Table 4.2. The table rows correspond to activities, while similar figures can be
provided for values of any attribute. Please note that if an attribute is numeric, the statistics are
presented not for each single value, but for value intervals. Since in the demonstrated example the
numeric attribute AR has only three different values, it is not split into intervals.

Diagnostics in compliance checking 37

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

T
a
b

le
4
.2

:
V

io
la

ti
o
n

st
a
ti

st
ic

s
L

A
c
ti
v
it
y

n
a
m
e

M
o
v
e
s

o
n

lo
g

M
o
v
e
s

o
n

m
o
d
e
l

In
c
o
rr
e
c
t

E
x

In
c
o
rr
e
c
t

A
r

In
c
o
rr
e
c
t

D
ec
id
e
T
im

e

In
c
o
rr
e
c
t

P
a
y

C
o
m
p
a
n
sa
ti
o
n

T
im

e
In

c
o
rr
e
c
t

R
ej
ec
t
re
qu
es
t
T
im

e
b

0
0

0
0

0
0

0

c
0

0
0

1
0

0
0

e
0

0
1

0
0

0
0

h
0

0
0

0
0

0
1

g
0

0
0

0
0

0
0

Ω
0

0
0

0
0

0
0

S
ta
rt

0
0

0
0

0
0

0

E
n
d

0
0

0
0

0
0

0

I
st

0
0

0
0

0
0

0

I
cm

p
0

0
0

0
0

0
0

A
c
ti
v
it
y

n
a
m
e

S
y
n
c
h
ro

n
o
u
s

m
o
v
e
s

C
o
rr
e
c
t

E
x

C
o
rr
e
c
t

A
r

C
o
rr
e
c
t

D
ec
id
e
T
im

e

C
o
rr
e
c
t

P
a
y

C
o
m
p
a
n
sa
ti
o
n

T
im

e
C
o
rr
e
c
t

R
ej
ec
t
re
qu
es
t
T
im

e
b

1
1

1
1

1
1

c
2

2
1

2
2

2

e
3

2
3

3
3

3

h
2

2
2

2
2

1

g
1

1
1

1
1

1

Ω
6

6
6

6
6

6

S
ta
rt

3
3

3
3

3
3

E
n
d

3
3

3
3

3
3

I
st

3
3

3
3

3
3

I
cm

p
3

3
3

3
3

3

38 Diagnostics in compliance checking

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

4.3 Obtaining Problem List

In order to obtain a problem list, the approach requires several inputs. The inputs are: aggregated
multisets, importance function (explained in Section 4.3.2) and relevance thresholds (explained in
Section 4.3.3) for including items into the list. The aggregations are obtained from Data-Aware
Replay Result as it is described above, while the other inputs are provided by the user. The inputs
are summarized in Figure 4.2.

Figure 4.2: Obtaining list of problems inputs

4.3.1 Problem List

Let PL be a problem list. PL is a tuple, PL = (plianame1 , . . . , plianamen , pli(v1,uv1
1), . . . , pli(vm ,uvm

k)),
where:

• anamei ∈ A for i = 1, . . . , | A | is an activity name;

• vi ∈ V context
L for i = 1, . . . , | V context

L | is an attribute;

• uvi
j ∈ Gvi for i = 1, . . . , | V context

L |, j = 1, . . . , | Gvi | is an attribute value

As shown, there are two types of items in the list: plianame and pli(v ,u). Both of them are tuples,
consisting of a textual description desc, and a number of sub-items.

The list items, their textual descriptions, and hierarchy are described in Table 4.3. Each item
corresponds to a specific activity name, attribute assignment, and a violation type. These determine
to which of the problematic multisets defined in Table 4.1 the item corresponds. The triangular
brackets in the textual description of an item means that their content should be replaced with an
actual name of an activity, or an attribute or its value.

Diagnostics in compliance checking 39

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

T
a
b

le
4
.3

:
P

ro
b

le
m

li
st

st
ru

ct
u

re

It
em

le
v
el

It
em

d
ef

in
it

io
n

T
ex

tu
a
l

re
p

re
se

n
ta

ti
o
n

C
o
rr

es
p

o
n

d
in

g
m

u
lt

is
et

1

p
li
a
n
a
m
e

=
(d
es
c
,

p
li
a
n
a
m
e

m
o
d
e
l.
o
n
ly
,p
li
a
n
a
m
e

lo
g
.o
n
ly
,

p
li
a
n
a
m
e

w
r
o
n
g
.w

1
,.
..
,p
li
a
n
a
m
e

w
r
o
n
g
.w

m
)

<
a
n
a
m
e
>

S
a
n
y
v
io
la
ti
o
n

(a
n
a
m
e
)

2

p
li
a
n
a
m
e

m
o
d
e
l.
o
n
ly

=
(d
es
c
,

p
li
a
n
a
m
e
,(
v
1
,u

v
1

1
)

m
o
d
e
l.
o
n
ly

,.
..
,

p
li
a
n
a
m
e
,(
v
m
,u

v
m

k
)

m
o
d
e
l.
o
n
ly

)

A
ct

iv
it

y
<
a
n
a
m
e
>

is
sk

ip
p

ed
S
m
o
d
e
l.
o
n
ly

(a
n
a
m
e
)

3
p
li
a
n
a
m
e
,(
v
,u

)
m
o
d
e
l.
o
n
ly

=
(d
es
c
)

A
ct

iv
it

y
<
a
n
a
m
e
>

is
sk

ip
p
ed

,
w

h
en

<
v
>

=
<
u
>

S
m
o
d
e
l.
o
n
ly
.a
ss
ig
n
m
e
n
t
(a
n
a
m
e
,v
,u

)

2

p
li
a
n
a
m
e

lo
g
.o
n
ly

=
(d
es
c
,

p
li
a
n
a
m
e
,(
v
1
,u

v
1

1
)

lo
g
.o
n
ly

,.
..
,

p
li
a
n
a
m
e
,(
v
m
,u

v
m

k
)

lo
g
.o
n
ly

)

A
ct

iv
it

y
<
a
n
a
m
e
>

is
p
er

fo
rm

ed
w

h
er

e
it

sh
o
u

ld
n

’t
S
lo
g
d
e
l.
o
n
ly

(a
n
a
m
e
)

3
p
li
a
n
a
m
e
,(
v
,u

)
lo
g
.o
n
ly

=
(d
es
c
)

A
ct

iv
it

y
<
a
n
a
m
e
>

is
p
er

fo
rm

ed
w

h
er

e
it

sh
o
u

ld
n

’t
,

w
h

en
<
v
>

=
<
u
>

S
lo
g
.o
n
ly
.a
ss
ig
n
m
e
n
t
(a
n
a
m
e
,v
,u

)

2

p
li
a
n
a
m
e

w
r
o
n
g
.w

=
(d
es
c
,

p
li
a
n
a
m
e
,(
v
1
,u

v
1

1
)

w
r
o
n
g
.w

,.
..
,

p
li
a
n
a
m
e
,(
v
m
,u

v
m

k
)

w
r
o
n
g
.w

)

A
ct

iv
it

y
<
a
n
a
m
e
>

is
p
er

fo
rm

ed
w

it
h

in
-

co
rr

ec
t

S
d
a
ta

v
io
la
ti
o
n

(a
n
a
m
e
,w

)

3
p
li
a
n
a
m
e
,(
v
,u

)
w
r
o
n
g
.w

=
(d
es
c
)

A
ct

iv
it

y
<
a
n
a
m
e
>

is
p
er

fo
rm

ed
w

it
h

in
-

co
rr

ec
t
<
w
>

,
w

h
en

<
v
>

=
<
u
>

S
d
a
ta

v
io
la
ti
o
n
.a
ss
ig
n
m
e
n
t
(a
n
a
m
e
,v
,u
,w

)

40 Diagnostics in compliance checking

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

T
ab

le
4
.3

:
P

ro
b

le
m

li
st

st
ru

ct
u

re
(c

o
n

ti
n

u
ed

)

It
em

le
v
el

It
em

d
ef

in
it

io
n

T
ex

tu
a
l

re
p

re
se

n
ta

ti
o
n

C
o
rr

es
p

o
n

d
in

g
m

u
lt

is
et

1

p
li
(v

,u
)

=
(d
es
c
,

p
li
(v

,u
),
a
n
a
m
e

m
o
d
e
l.
o
n
ly

,

p
li
(v

,u
),
a
n
a
m
e

lo
g
.o
n
ly

,

p
li
(v

,u
),
a
n
a
m
e

w
r
o
n
g
.w

1
,.
..
,

p
li
(v

,u
),
a
n
a
m
e

w
r
o
n
g
.w

m
)

W
h

en
<
v
>

=
<
u
>

S
a
ss
ig
n
m
e
n
t
(v
,u

)

2
p
li
(v

,u
),
a
n
a
m
e

m
o
d
e
l.
o
n
ly

=
(d
es
c
)

W
h
en

<
v
>

=
<
u
>

,
a
ct

iv
it

y
<
a
n
a
m
e
>

is
sk

ip
p

ed
S
a
ss
ig
n
m
e
n
t.
m
o
d
e
l.
o
n
ly

(a
n
a
m
e
,v
,u

)

2
p
li
(v

,u
),
a
n
a
m
e

lo
g
.o
n
ly

=
(d
es
c
)

W
h
en
<
v
>

=
<
u
>

ac
ti

v
it

y
,
<
a
n
a
m
e
>

is
p

er
fo

rm
ed

w
h

er
e

it
sh

o
u

ld
n

’t
S
a
ss
ig
n
m
e
n
t.
lo
g
.o
n
ly

(a
n
a
m
e
,v
,u

)

2
p
li
(v

,u
),
a
n
a
m
e

w
r
o
n
g
.w

=
(d
es
c
)

W
h
en

<
v
>

=
<
u
>

,
a
ct

iv
it

y
<
a
n
a
m
e
>

is
p
er

fo
rm

ed
w

it
h

in
co

r-
re

ct
<
w
>

S
a
ss
ig
n
m
e
n
t.
d
a
ta

v
io
la
ti
o
n

(a
n
a
m
e
,v
,u
,w

)

Diagnostics in compliance checking 41

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

In order to illustrate our approach, we demonstrate the example list of problems, obtained
from the example Data-Aware Replay Result shown in Table 3.4.

The example shows textual description of every item and lists its sub-items as a nested list.

• pli(AR,5000): When AR = 5000 ;

– pli
(AR,5000),c
wrong.AR : When AR = 5000, activity c is performed with incorrect AR;

– pli
(AR,5000),e
wrong.Ex : When AR = 5000, activity e is performed with incorrect Ex ;

– pli
(AR,5000),h
wrong.Time : When AR = 5000, activity h is performed with incorrect Time;

• plic : c

– plicwrong.AR: Activity c is performed with incorrect AR;

∗ pli
c,(Ex ,Mike)
wrong.AR : Activity c is performed with incorrect AR, when Ex = Mike;

∗ pli
c,(AR,5000)
wrong.AR : Activity c is performed with incorrect AR, when AR = 5000 ;

• plie : e

– pliewrong.Ex : Activity e is performed with incorrect Ex ;

∗ pli
e,(Ex ,Mike)
wrong.Ex : Activity e is performed with incorrect Ex , when Ex = Mike;

∗ pli
e,(AR,5000)
wrong.Ex : Activity e is performed with incorrect Ex , when AR = 5000 ;

• plih : h

– plihwrong.Time : Activity h is performed with incorrect Time;

∗ pli
h,(Ex ,Pete)
wrong.Time : Activity h is performed with incorrect Time, when Ex = Pete;

∗ pli
h,(AR,5000)
wrong.Time : Activity h is performed with incorrect Time, when AR = 5000 ;

• pli(Ex ,Mike): When Ex = Mike;

– pli
(Ex ,Mike),c
wrong.AR : When Ex = Mike, activity c is performed with incorrect AR;

– pli
(Ex ,Mike),e
wrong.Ex : When Ex = Mike, activity e is performed with incorrect Ex ;

• pli(Ex ,Pete): When Ex = Pete;

– pli
(Ex ,Pete),h
wrong.Time : When Ex = Pete, activity h is performed with incorrect Time;

4.3.2 Sorting List

The list items are sorted within their level in descending order using a severity metric. In order
to produce the metric value, an importance function is required.

Let impA : A → {q ∈ Q | 0 ≤ q ≤ 1} be a function, that returns importance of the given
activity. Let impV : VL → {q ∈ Q | 0 ≤ q ≤ 1} be a function, that returns the importance of the
given attribute. This importance is an empirical value between 0 and 1, which allows to influence
position of specific problems in the list (the higher the value, the higher the position). It is assumed
to be the part of the input.

The general formula for calculation severity of any item is severity = factor ∗ cardinality , where
factor is a specific factor, calculated in the way described in Table 4.4 and cardinality is the
cardinality of the multiset, corresponding to the item. In other words, severity of an item, is the
cardinality of the corresponding set, weighted by the importance of the activity and the attribute
defining the set.

42 Diagnostics in compliance checking

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

Items pli(v ,u) have slightly more complicated way of calculating the factor . In order to
calculate it, we need to define an additional function. Given an activity name aname ∈ A, an
attribute v ∈ V context

L , and its value u ∈ Gv , let occur : A× V context
L × UL → N be a function,

assigning number of occurrences of steps with given activity name in the set Sassignment(v , u), i.e.
occur(aname, v , u) =| {z ∈ Sassignment(v , u) | sname(z) = aname} |.

Table 4.4: Severity metric

Item Factor Corresponding multiset

plianame impA(aname) Sanyviolation(aname)

plianame
model.only impA(aname) Smodel.only(aname)

pli
aname,(v ,u)
model.only impA(aname) ∗ impV (v) Smodel.only.assignment(aname, v , u)

plianame
log.only impA(aname) Slog.only(aname)

pli
aname,(v ,u)
log.only impA(aname) ∗ impV (v) Slog.only.assignment(aname, v , u)

plianame
wrong.w impA(aname) Sdataviolation(aname,w)

pli
aname,(v ,u)
wrong.w impA(aname) ∗ impV (v) Sdataviolation.assignment(aname, v , u)

pli(v ,u)

impV (v) ∗∑
aname∈A

(occur(aname, v , u) ∗

impA(aname))

Sassignment(v , u)

pli
(v ,u),aname
model.only impA(aname) ∗ impV (v) Sassignment.model.only(aname, v , u)

pli
(v ,u),aname
log.only impA(aname) ∗ impV (v) Sassignment.log.only(aname, v , u)

pli
(v ,u),aname
wrong.w impA(aname) ∗ impV (v) Sassignment.dataviolation(aname, v , u,w)

The resulting list is sorted using the severity values of each item in descending order. Please
note that the items are sorted independently within each tuple.

4.3.3 Refining the List

The obtained list might appear to have a considerable size and become incomprehensible. In order
to overcome this, the list is refined. First, all items corresponding to the empty sets are removed.
Second, all items, which have CPIRCF < CPIRmin

CF and CPIRCF > CPIRmax
CF , i.e. items whose

relevance is not within the specified bounds, are removed. As was mentioned, the bounds CPIRmin
CF

and CPIRmax
CF are specified by the user.

In this section we describe how relevance metric is calculated. The metric is named CPIRCF

and is based on the CPIR metric described in Section 2.2. We are also going to define suppCF as
an adaptation of supp for our approach. The metrics allow us to quantify how context attribute
values, like purchased amount name or executor are connected to the observed violations. The
closer the absolute value of CPIRCF to 1, the more it is likely that the context is connected to the
violation and vice versa the closer the value to 0, the more likely it is that there is no connection
between the violation and the attribute assignment.

In order to define the metrics, we assume the given multiset of Data-Aware Steps Z , the itemset
I based on Z and the multiset of transactions D based on the steps in Z .

We define suppCF (K), K ⊆ Z as suppCF (K) = |K |
|Z | . For example, suppCF (Rviolation) =

|Rviolation |
|Z | .

We define CPIRCF individually for all types of items and sub-items of our list. Given an
activity name aname ∈ A we compute strength of the relation between presence of the activity
name and:

• any kind of violation:

Diagnostics in compliance checking 43

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

CPIRCF (plianame) =

suppCF (Sanyviolation(aname))−(suppCF (Rname(aname))∗suppCF (Rviolation))
suppCF (Rname(aname))∗(1−suppCF (Rviolation))

• move on model:
CPIRCF (plianame

model.only) =

suppCF (Smodel.only(aname))−(suppCF (Rname(aname))∗suppCF (Rmodel.only(aname)))
suppCF (Rname(aname))∗(1−suppCF (Rmodel.only(aname)))

• move on log:
CPIRCF (plianame

log.only) =

suppCF (Slog.only(aname))−(suppCF (Rname(aname))∗suppCF (Rlog.only(aname)))
suppCF (Rname(aname))∗(1−suppCF (Rlog.only(aname)))

Given an activity name aname ∈ A and a specification attribute w ∈ VM , we compute the strength
of the relation between presence of the activity name and move with incorrect w :
CPIRCF (plianame

wrong.w) =

suppCF (Sdataviolation(aname,w))−(suppCF (Rname(aname))∗suppCF (Rlog.only(aname)))
suppCF (Rname(aname))∗(1−suppCF (Rincorrect.attr (w)))

Given an attribute v ∈ V context
L and its value u ∈ Gv , we compute the strength of the relation

between the attribute assignment and violations of any type:
CPIRCF (pli(v ,u)) =

suppCF (Sassignment (v ,u))−(suppCF (Rval (v ,u))∗suppCF (Rviolation))
suppCF (Rval (v ,u))∗(1−suppCF (Rviolation))

Given an activity name aname ∈ A, an attribute v ∈ V context
L , its value u ∈ Gv we compute

strength the following (the higher the value, the more likely it is that the presence of the violation
implies the attribute value):

• Strength of the relation between the presence of a move on model for the activity aname
and the attribute assignment (v , u):

CPIRCF (pli
aname,(v ,u)
model.only) =

suppCF (Smodel.only.assignment (aname,v ,u))−(suppCF (Rval (v ,u))∗suppCF (Rmodel.only(aname)))
suppCF (Rmodel.only(aname))∗(1−suppCF (Rval (v ,u)))

• Strength of the relation between the presence of a move on log for the activity aname and
the attribute assignment (v , u):

CPIRCF (pli
aname,(v ,u)
log.only) =

suppCF (Slog.only.assignment (aname,v ,u))−(suppCF (Rval (v ,u))∗suppCF (Rlog.only(aname)))
suppCF (Rlog.only(aname))∗(1−suppCF (Rval (v ,u)))

• Strength of the relation between the presence of a move on with incorrect w (given a
specification attribute w ∈ VM) for the activity aname and the attribute assignment (v , u):

CPIRCF (pli
aname,(v ,u)
wrong.w) =

suppCF (Sdataviolation.assignment (aname,v ,u,w))−(suppCF (Rval (v ,u))∗suppCF (Rincorrect.attr (aname,w)))
suppCF (Rincorrect.attr (aname,w))∗(1−suppCF (Rval (v ,u)))

Given the same input, we compute strength of the opposite relations (the higher the value, the
more likely it is that the attribute value implies the presence of the violation):

44 Diagnostics in compliance checking

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

• Strength of the relation between the presence of the attribute assignment (v , u) and a move
on model for the activity aname:

CPIRCF (pli
(v ,u),aname
model.only) =

suppCF (Sassignment.model.onlY (aname,v ,u))−(suppCF (Rmodel.only(aname))∗suppCF (Rval (v ,u)))
suppCF (Rval (v ,u))∗(1−suppCF (Rmodel.only(aname)))

• Strength of the relation between the presence of the attribute assignment (v , u) and a move
on log for the activity aname:

CPIRCF (pli
(v ,u),aname
log.only) =

suppCF (Sassignment.log.only(aname,v ,u))−(suppCF (Rlog.only(aname))∗suppCF (Rval (v ,u)))
suppCF (Rval (v ,u))∗(1−suppCF (Rlog.only(aname)))

• Strength of the relation between the presence of the attribute assignment (v , u) and a move
on with incorrect w (given a specification attribute w ∈ VM) for the activity aname:

CPIRCF (pli
(v ,u),aname
wrong.w) =

suppCF (Sassignment.dataviolation(aname,v ,u,w))−(suppCF (Rincorrect.attr (aname,w))∗suppCF (Rval (v ,u)))
suppCF (Rval (v ,u))∗(1−suppCF (Rincorrect.attr (aname,w)))

To demonstrate the described metrics (CPIRCF and severity), we show their values for the
previously introduced example. The severity values are computed assuming importance of every
activity and attribute is 0.5. Please note that the CPIRCF values are not reliable since the dataset
is extremely small. Yet, the example is able to illustrate the way the values are obtained.

• When AR = 5000 (CPIRCF = 0.25; severity = 0.75);

– When AR = 5000, activity c is performed with incorrect AR (CPIRCF = 0.077;
severity = 0.25);

– When AR = 5000, activity e is performed with incorrect Ex (CPIRCF = 0.077;
severity = 0.25);

– When AR = 5000, activity h is performed with incorrect Time (CPIRCF = 0.077
severity = 0.25);

• c (CPIRCF ≈ 0.4375; severity = 0.5);

– Activity c is performed with incorrect AR (CPIRCF ≈ 0.4375; severity : 0.5);

∗ Activity c is performed with incorrect AR, when Ex = Mike (CPIRCF = 1.0;
severity : 0.25);

∗ Activity c is performed with incorrect AR, when AR = 5000 (CPIRCF = 1.0;
severity : 0.25);

• e (CPIRCF ≈ 0.25; severity = 0.5);

– Activity e is performed with incorrect Ex (CPIRCF ≈ 0.25; severity = 0.5);

∗ Activity e is performed with incorrect Ex , when Ex = Mike (CPIRCF = 1.0;
severity : 0.25);

∗ Activity e is performed with incorrect Ex , when AR = 5000 (CPIRCF = 1.0;
severity : 0.25);

• h (CPIRCF ≈ 0.4375; severity = 0.5);

– Activity h is performed with incorrect Time (CPIRCF ≈ 0.4375; severity = 0.5);

∗ Activity h is performed with incorrect Time, when Ex = Pete (CPIRCF ≈ 1.0;
severity = 0.25);

Diagnostics in compliance checking 45

CHAPTER 4. IDENTIFYING AND RANKING PROBLEMS

∗ Activity h is performed with incorrect Time, when AR = 5000 (CPIRCF ≈ 1.0;
severity : 0.25);

• When Ex = Mike (CPIRCF = 1.0; severity = 0.5);

– When Ex = Mike, activity c is performed with incorrect AR (CPIRCF ≈ 0.48; severity =
0.25);

– When Ex = Mike, activity e is performed with incorrect Ex (CPIRCF ≈ 0.48; severity =
0.25);

• When Ex = Pete (CPIRCF ≈ 0.069; severity = 0.25);

– When Ex = Pete, activity h is performed with incorrect Time (CPIRCF ≈ 0.0135;
severity = 0.25);

46 Diagnostics in compliance checking

Chapter 5

Investigating specific problems

In Chapter, 4 we presented our approach for obtaining violation statistics and a list of problems.
In this chapter we illustrate how we obtain detailed insight into a single problem from a previously
obtained list. This step (Figure 5.1) offers a deeper analysis of the root cause of a particular problem.
This is achieved by analyzing all aspects of the Data-Aware Steps where the problem occurs and
comparing them to those where the problem does not occur. The inputs for this approach phase are
the Data-Aware Replay Result, the list of considered attributes and the problem description from
the list obtained from the previous step. The output is a list of the root causes of the analyzed
problem.

Figure 5.1: Approach step 2

The input consists of several parts. First, a specific item from the problem list is provided as
an input. Thus, the specific violation type is always present in the description.

Another input is a set of attributes that we want to include in second phase analysis (root-cause
investigation). It can only be a subset of those present in the analyzed event log.

Finally, the Data-Aware Replay Result contains Data-Aware Steps based on which three
different instance sets from the Data-Aware Steps are produced. There are up to 3 instance sets
created (based on the information present in problem description):

• instances corresponding to Data-Aware Steps with given activity name aname ∈ A;

• instances corresponding to Data-Aware Steps with given attribute assignment v ∈ V context
L ,

u ∈ Gv ;

Diagnostics in compliance checking 47

CHAPTER 5. INVESTIGATING SPECIFIC PROBLEMS

• instances corresponding to Data-Aware Steps with both given activity name aname ∈ A and
attribute assignment v ∈ V context

L , u ∈ Gv .

If either an activity name or an attribute assignment is not present in the problem description,
only one set of instances is built. Each set of instances is used to build a separate function estimator
and obtain a list of problem prerequisites.

Further in this chapter we explain the approach phase in more detail. Section 5.1 gives detailed
information about the input. Section 5.2 explains how instance sets and function estimators are
obtained and Section 5.3 explains what is produced as a result.

5.1 Input

In this section, we describe the input for the approach phase in more detail.
The first input is a list of problems, described in Section 4.3.1. From this list a single item is

selected for the analysis. List items of the first level cannot be an input for the approach phase,
since they do not refer to a specific problem. Instead, they refer to all problems, that occur with
the corresponding activity name or attribute assignment. Basically, each list item and sub-item
in the list has up to 3 variable parts: an activity name aname ∈ A, an attribute assignment
(v , u) ∈ (V context

L × Gv) and a violation type, which is either move on log, move on model, or
move with incorrect w , where w ∈ VM . The problem description corresponding to the item is
used for identifying the subset of data aware replay steps to analyze. Since input item must not
belong the first level of the list, violation type and activity name are always present in the problem
description, while attribute assignment is optionally present.

For example, let us consider the item pli
(Ex ,Mike),c
wrong.AR , which is described as: When Ex = Mike,

activity c is performed with incorrect AR. This description has the following variable parts: the
activity name c, the attribute assignment (Ex ,Mike) and the violation type move with incorrect
AR.

The second input is a Data-Aware Replay Result DR in the form described in Section 2.1.3 as
well as a set Z , containing all the Data-Aware Steps from DR. For the demonstration, we are
going to use the Data-Aware Replay Result, shown in Table 3.4.

5.2 Comparing Steps Within Sets

Based on activity name and attribute value, up to 3 subsets of the Data-Aware Steps are identified.

The examples assume that the selected item is pli
(Ex ,Mike),c
wrong.AR , described as ‘When Ex = Mike,

activity c is performed with incorrect AR’.

1. steps with the given activity name, i.e. {z ∈ Z | sname(z) = aname}, if aname is defined for
the problem. For our example, aname = c and the subset will be: {z15, z24};

2. steps with the given attribute assignment, i.e. {z ∈ Z | val(z , v) = u}, if v and u are defined
for the problem. For our example, v = Ex and u = Mike and the subset will be: {z24, z26};

3. steps with both the given activity name and attribute assignment, i.e. {z ∈ Z | sname(z) =
aname ∧ val(z , v) = u} if aname, v and u are defined for the problem. For our example the
subset will be: {z24}.

These subsets will serve as a basis for creation sets of observation instances, described further.
Discovery of the root causes of the problem can be translated into the problem of finding the

best estimator of a function.
Let f : A1 ×A2 × . . .×An → B be a function having a finite domain B . Similarly to [18], we

define estimator of function f as a function ψf : B → 2A1×A2×...×An , such that, for each b ∈ B ,
ψf (b) returns all input domain tuples for which the expected output is b.

48 Diagnostics in compliance checking

CHAPTER 5. INVESTIGATING SPECIFIC PROBLEMS

Function estimator can be found using a decision tree algorithm. There is a number of decision
tree algorithms available. The most popular include: CHAID, ID3, CART, MARS, C4.5 [1]. The
decision tree building algorithm C4.5 [23] is used to build the function estimator in our approach.
Choosing this algorithm is motivated by the fact that the input is likely to contain errors (e.g.
wrong timestamps) and missing values (e.g. if log does not contain information about ID of a user,
responsible for some events). Besides, some of the input attribute domains are very likely to be
continuous. The brief description of the algorithm is provided in Appendix A.

The decision tree will be trained through a set of observations. An observation instance is a
pair oi = (~a, b), where ~a ∈ A1 ×A2 × . . .×An is the observed input, b is the observed output. The
instance is based on a single step in an alignment.

In order to derive the observation instance from the Data-Aware Step, a set of considered
features Vconsidered should be selected. The set determines what values comprise the observed input
of the instance. Vconsidered ⊆ V context

L ∪{activity name}∪TF , where activity name is an indication,
whether the activity name of the step is considered. TF = {tIgnore, tFirst , tPrevious, taname1 , . . . ,
tanamen}, where anamei ∈ A. Exactly one member of TF must be included into Vconsidered , which
determines the way the time feature is considered.

In order to define the time feature, we introduce the notion of instance step. The instance step
is a Data-Aware Step z from which the instance oiz is derived. Let tz be the time of occurrence
of z (i.e. tz is the timestamp value of z). Let ta be the time of occurrence of anchor step. Then,
the time feature value for the instance oiz is tf = tz − ta . The anchor step is determined by the
element of TF , which is included into Vconsidered .

If tIgnore ∈ Vconsidered , the time feature is ignored. Otherwise, the anchor step is one of the
following:

• the first step in the alignment, if tFirst ∈ Vconsidered ;

• the step, previous to the instance step, if tPrevious ∈ Vconsidered ;

• the latest occurrence of the step with the specified activity name aname, that happened
before the instance step, if taname ∈ Vconsidered .

Assuming Vconsidered = V context
L ∪{activity name}∪{tFirst}, ~a ∈ A×Gv1×Gv2×. . .×Gvn×Q+

0
1,

where vi ∈ V context
L , i = 1, 2, . . . , | V context

L |.
Our observed output b is an indicator, whether the step, corresponding to the instance is a viola-

tion of the type, described in the input problem description. Thus, b ∈ {problematic, nonproblematic}.
We show the example, assuming the Data-Aware Replay Result shown in Table 3.4, the selected

item pli
(Ex ,Mike),c
wrong.AR from the example list shown in Section 4.3.3, and the set of considered features

Vconsidered = {activity name,AR,Ex , tPrevious}

1. Instances, corresponding to the steps with the given activity name:
{(c, 3000,Ellen, 1800,nonproblematic)(c, 5000,Mike, 1000, problematic)}

2. Instances, corresponding to the steps with the given attribute assignment:
{(c, 5000,Mike, 1000, problematic), (e, 5000,Mike, 200,nonproblematic)}

3. Instances, corresponding to the steps with the given activity name and attribute assignment:
{(c, 5000,Mike, 1000, problematic)}

5.3 Output

As described in [18], decision trees classify instances by sorting them down in a tree from the root
to some leaf node. Each non-leaf node specifies a test of some attribute v1, . . . , vn and each branch
descending from that node corresponds to a range of possible values for this attribute. In general,
a decision tree represents a disjunction of conjunctions of expressions: each path from the tree root

1Q+
0 = {q ∈ Q | q ≥ 0}.

Diagnostics in compliance checking 49

CHAPTER 5. INVESTIGATING SPECIFIC PROBLEMS

to a leaf corresponds to an expression that is, in fact, a conjunction of attribute tests. Each leaf
node is associated with one of the possible output values: if an expression e is associated with a
path to a leaf node b, every input tuple for which e evaluates to true is expected to return y as
output.

The output of this step is a decision tree, with leaves corresponding either to the subset with
selected problem, or without it.

If we use the example from the previous section, we would obtain the following trees:

1. The tree, based on instances, corresponding to the steps with the given activity name

• Ex = Mike

– problematic

• Ex = Ellen

– nonroblematic

2. The tree, based on instances, corresponding to the steps with the given attribute assignment

• Activity name = c

– problematic

• Activity name = e

– nonproblematic

3. The tree, based on instances, corresponding to the steps with both the given activity name
and the given attribute assignment. is not very informative, since the example set of instances
consists of a single instance and there are no other instances to compare with.

50 Diagnostics in compliance checking

Chapter 6

Design and implementation

In chapters 3, 4 and 5 we described how we detect violations, produce a list of problems with
diagnostics and get a detailed insight into selected problems from the list. In this chapter, we
explain the architecture of our analysis software and the design decisions made. This chapter also
covers the question raised in Chapter 1: visualizing the resulting diagnostics in a way understandable
for users without a technical background.

The approach is implemented as a number of plugins for the process mining tool ProM1.
Figure 6.1 shows correspondence between the parts of the approach and the implemented plugins.

Figure 6.1: Implementation of the parts of the approach

As is seen in the figure, the input Petri Net with Data is implemented within the DataPetriNets
package, while the event log is provided by the OpenXES library. Obtaining alignments and
retrieving list of problems is implemented within the ‘Get compliance dashboard’ plugin, while
obtaining insight of a specific problem is implemented within the ‘Get problem insight’ plugin.
Outputs of the two mentioned plugins are visualized by the ’Compliance dashboard visualizer’ and
the ’Problem insight visualizer’ plugins respectively. The remainder of this chapter is organized
as follows. The ‘Get compliance dashboard’ plugin will be introduced in Section 6.1. Section 6.2
introduces the ‘Get problem insight’.

1ProM is an extensible framework that supports a wide variety of process mining techniques in the form of
plugins (http://www.promtools.org/prom6/)

Diagnostics in compliance checking 51

http://www.promtools.org/prom6/

CHAPTER 6. DESIGN AND IMPLEMENTATION

6.1 Compliance Dashboard Plugin

The plugin implements the first two steps of the approach, described in chapters 3 and 4. In
general, inputs and outputs are shown in the Table 6.1.

Table 6.1: ‘Get compliance dashboard’ inputs and outputs

Feature Description

Plug-in Name Get Compliance dashboard

Input (1) Event log

(2) Compliance rule, represented as a Petri Net with Data

Output Compliance dashboard with violation statistics and report

An event log should be represented in XES format. The rules are specified in terms of a Petri
Net with Data. One of the possible ways to define a Petri Net with Data so that it can be used in
ProM is to follow the listed steps:

1. First, Control-Flow rules should be defined in the form of a Petri Net. It can be represented
in the form of a PNML2 file, which is supported, among other tools, by YASPER3.

2. After that, data and resource rules should be added to the Petri Net, which would result in
a Petri Net with Data. This can be done using ’Create/edit PetriNet with Data’ plugin in
ProM.

3. The temporal constraints are defined separately using the ‘Get compliance dashboard’ plugin.

6.1.1 Integration into the Existing ProM Environment

The implementation of the plugin involves interaction between multiple modules. These are shown
in Figure 6.2, as well as steps of the approach implemented within each module.

Since control flow compliance checking techniques are already implemented within the ’Check
compliance using conformance checking’ plugin mentioned in [25], it is reused in our approach for
the corresponding part.

The Data-Aware Conformance Checker was implemented as a part of this thesis. It is responsible
for identifying the set of admissible values for each activity based on the assigned guard.

As it is shown, the data-aware conformance checker is responsible for checking compliance of
the data and resource perspectives. It can also be reused for temporal compliance checking, with
the difference that the log should be enriched first.

Finally, after obtaining a Data-Aware Replay Result, the Compliance Dashboard component
does the rest of the job as was described in Chapter 4.

6.1.2 Graphical User Interface

Running the Plugin

After running the plugin, user has to define a mapping between the log and the model (Figure 6.3).
If an event class is not mapped to any activity in the model, the log will be abstracted from it, i.e.
such events will be mapped to an activity named Ω.

If the user defined attributes in the DP-net, they would be offered to setup the variable mapping
the same way as for Conformance checking of Petri Net with Data(Figure 6.4).

2http://www.pnml.org/
3http://www.yasper.org/

52 Diagnostics in compliance checking

http://www.pnml.org/
http://www.yasper.org/

CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.2: Interactions within the ‘Get compliance dashboard’ plugin

Then the user is offered the option to perform temporal compliance checking. If this option is
taken, the temporal pattern needs to be defined, which includes defining guards the same way as
for data rules, with the exception that the rules are defined for timestamps instead (Figure 6.5).
When the plugin completes, user can see the visualization.

Plugin Output Visualization

This visualization consists of 2 tabs (Figure 6.6). In the ’Move statistics’ tab the user can assess
different figures:

• total number of moves,

• number of invisible moves,

• number of moves on log,

Diagnostics in compliance checking 53

CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.3: Log-model mapping

• number of moves on model,

• number of synchronous moves (i.e. where neither activity name, nor event name is �),

• number of synchronous moves with correct attribute for each attribute,

• number of synchronous moves with all attributes correct,

• number of synchronous moves with incorrect attribute for each attribute, and

• number of synchronous moves with all attributes incorrect.

The statistics are represented in the form of a table, where each row corresponds to a single
activity, or a value of an attribute (or an interval for continuous attributes), depending on the
user choice (Figure 6.6). The choice is made using a combobox at the top of the left panel(1).
The panel also allows the user to hide/show table columns. The columns in the table (2) are
color coded: those corresponding to problematic moves/cases are red while those corresponding to
non-problematic moves/cases are green. When the user clicks on a table row, the bar chart (3)
visualizes values in that column.

By clicking on the header of a column it is possible to sort the table by the values in the column.
Repeating the click sorts in the reverse order.

It is possible to hide columns that are not of interest by unchecking a checkbox with the
corresponding column name. The values in the rows are defined by the combobox, whose value
can be either an activity or one of the attributes defined in the Petri Net.

The second tab contains a problem report (Figure 6.7). The report consists of items of the
form described in Section 4.3.1 (1). The items corresponding to activities are marked with the

54 Diagnostics in compliance checking

CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.4: Mapping between log attributes and Petri Net attributes

icon, while those corresponding to attribute assignments are marked with the icon. Each item
can be expanded, enabling the user to learn more context details regarding the problem.

The interface has a number of controls that allow the user to sort and refine items in the
report (2). First, the user can filter out items with assignments of all attributes, except the one
selected using ’attribute filter’. Second, the user can change ranking of the items by changing the
importance of activities and attributes. Finally, the interface allows the user to remove all items,
whose CPIR value does not lie within the defined minimal and maximal boundaries.

Diagnostics in compliance checking 55

CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.5: Defining of the temporal pattern

Figure 6.6: Move statistics visualization: (1) table configuration; (2) statistics table; (3) bar chart
visualizing a table row

56 Diagnostics in compliance checking

CHAPTER 6. DESIGN AND IMPLEMENTATION

Figure 6.7: Problem report: (1) Problem List; (2) list configuration

Diagnostics in compliance checking 57

CHAPTER 6. DESIGN AND IMPLEMENTATION

6.2 Problem insight plugin

This section describes the plugin implementing the second step of the approach described in
Chapter 5.

Table 6.2: ‘Get problem insight’ inputs and outputs

Plug-in Name Get Problem insight

Input ComplianceDashboard object

Output InstanceClassifier object

The plugin uses as input a ’ComplianceDashboard’ object, which is produced by the ‘Get
compliance dashboard’ plugin described in the previous section. This object contains both Problem
List and Data-Aware Replay Result required by the plugin to run.

6.2.1 Integration into the Existing ProM Environment

In this section we discuss interactions with existing software required for the plugin to be executed.
Figure 6.8 answers this question schematically.

Figure 6.8: Interactions of ‘Get problem insight’ plugin

As shown in the figure, the input is provided in the form of ComplianceDashboard object. The
plugin requires that the user chooses a problem from the list and attributes to consider during
building the function estimator based on the attributes present in the analyzed event log (and
hence the Data-Aware Replay Result). The user interface uses some of the interface elements
implemented inside the Widgets package. The problem description is decomposed into three parts:
Activity name, Attribute assignment, and Violation type (attribute assignment may be missing,
depending on the selected problem).

Next, the plugin creates up to three groups of instances from the Data-Aware Replay Result,
using considered attributes:

58 Diagnostics in compliance checking

CHAPTER 6. DESIGN AND IMPLEMENTATION

1. Instances based on Data-Aware Steps bearing the same activity name as specified in the
selected problem. Assume that our problem is related to activity named aname. Then this
group would include all steps from our Data-Aware Replay Result that have the activity
name aname.

2. Instances based on Data-Aware Steps that have the same value of the attribute, as specified
in the selected problem. Assume that our problem is related to attribute assignment (v , u),
where v ∈ VL is a log attribute and u ∈ Dv is its value. Then this group would include all
steps from our Data-Aware Replay Result that assign value u for attribute v .

3. Instances based on Data-Aware Steps that have both the same attribute assignment and
activity name, as specified in the selected problem. Basically, an intersection of sets 1 and 2.

Finally, the obtained groups of instances are used to create a function estimator for each of the
groups. This is done using C4.5 classification tree, implemented within Weka4. The resulting trees
are stored within the InstanceClassifier object, which is provided to the ProM framework as an
output.

6.2.2 Graphical User Interface

Running the Plugin

After starting the plugin, the user is presented a deviation report similar to the visualization of
Compliance Dashboard. The user has to select a single node, covering the problem of interest
(Figure 6.9). Since the node has to correspond to a certain problem, the user is unable to choose a
top level node. It is also possible to manipulate the tree with the confidence threshold slider in
the same way as it is described in Section 6.1.2. The problem is used to select Data-Aware Steps
which will be included into the instance set to run a classification on.

Figure 6.9: Choosing a problem for further investigation: (1) Problem list; (2) list configuration

4Weka is an open source suite for machine learning (http://www.cs.waikato.ac.nz/ml/weka/)

Diagnostics in compliance checking 59

http://www.cs.waikato.ac.nz/ml/weka/

CHAPTER 6. DESIGN AND IMPLEMENTATION

After choosing the problem, the user is offered to configure the classification tree (Figure 6.10).
The plugin will offer to choose attributes, which should be considered during the comparing of
problematic events and non-problematic ones. The user has to configure the way the Data-Aware
Steps within instance groups are compared separately for each group. They should specify attributes
that are considered during comparison and configure the classification problem. The plugin offers
to consider the time of a Data-Aware Step occurrence. It can be considered in one of the following
ways:

• not considered,

• time between the instance step and the start of the case,

• time between the instance step and the previous step or

• time between the instance step and the latest occurrence of a step with a specified activity
name.

If the user decides to use the last option, they are offered to select the activity name using a
combobox.

Figure 6.10: Tree configuration

Plugin Output Visualization

The visualization (Figure 6.11) will list both the preconditions which lead to the presence of the
specified problem and to its absence. The preconditions will be listed separately for events with
specified activity, events with the specified attribute assignment and events that have both.

Another way of visualization (Figure 6.12) shows the preconditions attached to the corresponding
parts of the Venn diagram, where the red areas correspond to the problematic parts and the green
areas correspond to the non-problematic parts.

60 Diagnostics in compliance checking

Figure 6.11: Tree visualization: (1) instances description; (2) root cause analysis of the instances
without the problem; (3) analysis of the instances with the problem

Figure 6.12: Venn diagram: (1) instance sets visualization; (2) root cause analysis of the sets

Chapter 7

Evaluation

In Chapter 6, we described how the approach proposed in this thesis was implemented. In this
chapter, we describe the evaluation of the approach.

The evaluation serves multiple purposes. First, the correctness of the approach is verified
using an artificial log with inserted violations. In this way, we make sure that we are able to
judge whether the approach is indeed able to detect the violations and identify related diagnostics.
Second, we address one of the objectives set in Chapter 1: visualizing obtained diagnostics in a
way understandable for users without a technical background. Here, we verify that this objective is
fulfilled by asking users to answer a questionnaire regarding violations in the analyzed event log.
Third, we evaluate whether the developed approach is applicable for real-life scenarios by using a
real-life dataset.

7.1 Evaluation using Artificial Data

In this section, we describe the evaluation of the developed approach using artificial data. To
ensure that violations can be identified by the implemented software, an event log was adapted by
inserting several violations. In order to see whether the provided output is really understandable, a
user evaluation was performed. Users were asked to fill in a questionnaire, with questions regarding
the output. In the latter study we would like to check whether the output of analysis (diagnostics)
are visualized in a way which is comprehensible by users with less technical knowledge.

This section is organized as follows. Section 7.1.1 introduces the event log, the attributes it
contains, the underlying process, and the inserted violations. Section 7.1.2 describes application
of the proposed approach to the created log. Finally, Section 7.1.3 describes the results of the
evaluation with users.

7.1.1 Log Description

This section describes an artificially generated event log that was created in order to perform the
evaluation. It was generated using CPN tools1. This toolset is developed to create and record
behavior of Petri nets. We created a model and recorded its executions. The purpose was to create
a process as similar to a real one as possible.

Underlying process

A process model in Petri Net notation is shown in Figure 7.1. The model describes an example
procurement process in a company, expressed as a sequence of events related to a single purchase
entry. Please note that the figure shows only the control-flow of the process. Each entry corresponds
to a certain number of units of some purchased product. A purchase order can have multiple

1http://cpntools.org/

Diagnostics in compliance checking 63

http://cpntools.org/

CHAPTER 7. EVALUATION

entries. Also, there is an amount of money corresponding to each entry, which is the total cost of
the purchased product.

Figure 7.1: Artificial process

The process starts with a purchase requisition entry (PReqEntry), which may be updated
(PReqUpdate) an arbitrary number of times. After that, the requisition is either rejected (PReqRe-
ject) or released (PReqRelease). In the former case the process instance ends. If the requisition is
released, a purchase order is created based on it. Similarly to the requisition, the purchase order
can be updated (POUpdate) several times and rejected (POReject). An approval of a purchase
order consists of one step (PORelease1) for orders with amounts below e200,000 and of two steps
(PORelease1 and PORelease2) done by separate persons for orders with amounts above e200,000.
Also, the release can be reverted after the first step, after which the order has to be either released
again or rejected. If it is rejected, the case ends.

After all approvals are passed, the supplier sends the goods, and their receipt (GoodsReceipt1)
is recorded in the system. Each purchase order has to have at least one Goods Receipt (unless it was
rejected). Then, the Invoice Receipt (InvoiceReceipt) occurs and is paid (OutgoingPayment) after-
wards. If the amount of purchase order is above e200,000, multiple Goods Receipts (GoodsReceipt)
as well as sequences of Invoice Receipts (InvoiceReceipt) and payments (OutgoingPayment) occur.
After all goods related to a purchase order are received and respective payments are completed,
the case finishes.

Table 7.1: The Artificial Log attributes

Attributes with fixed values within case

Name Description

ENTRY AMOUNT Total amount of the given purchase order entry, i.e. entry to
which the case corresponds

PO AMOUNT Total amount of a purchase order, which contains the given entry

MATERIAL Product, which is being purchased

Attributes with values that may change as the case progresses

Name Description

concept:name Name of the event

time:timestamp Timestamp of the event

USER ID ID of the user who is responsible for event

64 Diagnostics in compliance checking

CHAPTER 7. EVALUATION

Log attributes

Each event has a number of attributes. Some of them are unchanged within single trace: MA-
TERIAL, which is the purchased item name; ENTRY AMOUNT, which is the amount of money
corresponding to the current entry and PO AMOUNT, which is the amount of money corresponding
to the entire purchase order. The others are individual for each event: USER ID, which is the
system name of the user responsible for the event; event name and timestamp. All attributes are
summarized in Table 7.1.

Table 7.2: Artificial log violations and underlying context

Rule # Violated rule # of
cases/
events

Attributes Values

1

All orders (except
rejected) are a subject to
at least a single
PORelease.

237/237

Material material607

PO AMOUNT e0 - e200,000

ENTRY AMOUNT e40,000 - e50,000

2

GoodsReceipt (GR),
InvoiceReceipt (IR) and
OutgoingPayment
(Payment) are allowed to
occur multiple times only
for cases with a total
amount of purchase order
above e200,000

.

237/711

Material material607

USER ID for GR resource80

USER ID for IR resource120

USER ID for Pay-
ment

resource121

PO AMOUNT e0 - e200,000

ENTRY AMOUNT e40,000 - e50,000

3

Activity GoodsReceipt
(GR) can be performed
only by the users with IDs
resource71, resource72,
. . . , resource100

237/608

Material

material611,
material612,
material613,
material614,
material615

USER ID for GR
resource125,
resource126,
resource127

ENTRY AMOUNT e0 - e10,000

4

Invoice cannot be paid
(OutgoingPayment) by
the same user who
received it
(InvoiceReceipt), though
both OutgoingPayment
and InvoiceReceipt are
performed by users from
the same department with
the same responsibilities.

237/237

USER ID for Pay-
ment

resource128,
resource129

ENTRY AMOUNT e55,000 - e65,000

Time between IR
and Payment

0 - 0.5hr

Diagnostics in compliance checking 65

CHAPTER 7. EVALUATION

Inserted violations

Several cases with violations were inserted into the event log in order to verify the implementations
ability to identify the violations and the underlying context. The related information is summarized
in Table 7.2. The table lists the 4 rules that were checked during the evaluation. For each of the
rules, the specified number of cases were added to the log with violating events. These events have
the attribute values listed in the table. For the attributes with a range or a list of values, the
values are distributed randomly.

The first rule states that activity PORelease1 must be executed within each case, unless
PReqReject or POReject occur. As seen in Table 7.2, 237 cases were added to the log, where
neither any of the rejects is present, nor PORelease1 is present. Since the rule restricts only
a single occurrence of the activity, 237 moves on model for the activity PORelease1 should be
detected.

According to the next rule, the activities GoodsReceipt, InvoiceReceipt and OutgoingPayment
are allowed to occur more than once only for purchase orders with amount (PO AMOUNT) above
e200,000. There are 237 cases in the log where PO AMOUNT is below e200,000 while all of the
mentioned activities are performed more than once (totally 711 times each).

Another rule restricts users who are allowed to accept purchased products to users with
specific IDs. These users are assumed to belong to a single department. There are 237 cases
where this operation was performed by non-eligible users (namely, resource125, resource126, and
resource127).

The final rule is an example of segregation of duties.The rule is violated 237 times within 237
cases, i.e. OutgoingPayment was performed by the same person as InvoiceReceipt.

7.1.2 Applying the Compliance Framework

In this section, we describe obtaining diagnostic information about the inserted violations using
the developed plugin.

Scenario 1

Figure 7.2: Rules 1 and 2 specified in the form of a Petri Net with Data

The rule, specified as a Petri Net with Data corresponding to this scenario is shown in Figure 7.2.
This Petri Net expresses rules 1 and 2 from Table 7.2 and thus we should be able to discover the
attribute values corresponding to violations of the mentioned rules.

We are going to start the analysis by starting the ’Get Compliance Dashboard’ plugin and
examining the deviations statistics. The number of violations per MATERIAL value is shown in

66 Diagnostics in compliance checking

CHAPTER 7. EVALUATION

Figure 7.3. According to the figure, the checked rule is violated only when the MATERIAL value
is material607 and the number of violations corresponds to that given in Table 7.2.

Figure 7.3: Number of violations per MATERIAL value (violation occur only for events with
MATERIAL = material607)

Figure 7.4: Violations corresponding to material607 (PORelease1 is skipped and GoodsReceipt,
InvoiceReceipt, and OutgoingPayment are performed with incorrect PO AMOUNT)

If we switch to the deviations report, we can see, what are the exact violations, in which
material607 is involved (Figure 7.4). As shown in the figure, the value occurs in violations of
both rules: PORelease1 is skipped (violation of the rule 1) and GoodsReceipt, InvoiceReceipt, and
OutgoingPayment are performed with incorrect PO AMOUNT (violation of the rule 2). The report
also shows users who violate the rule 2 by performing the activities with incorrect PO AMOUNT
(Figure 7.5). The discovered context matches the information given in Table 7.2. The USER ID
information for PORelease1 violations is irrelevant, since the event is actually skipped, thus there
is no way to find out the responsible person with only event log information. It could be that
there is a dependency between a person who performed the step previous to the violation and the
violation itself, but there is no such relation, since different users are uniformly distributed in this
artificial dataset (Figure 7.5).

Finally, in order to identify the ENTRY AMOUNT, we run the ‘Get Problem Insight’ plugin
on the item ‘Activity OutgoingPayment is performed with incorrect PO AMOUNT’. As it is shown

Diagnostics in compliance checking 67

CHAPTER 7. EVALUATION

Figure 7.5: Top: users, involved in violation of rule 2 (resource120, resource80, resource121).
Bottom: users who executed the activity previous to PORelease1 in violating cases

in Figure 7.6, the bounds are e39,955.0 - e49,999.0, which (approximately) matches the data in
Table 7.2.

Scenario 2

The rule, specified as a Petri Net with Data corresponding to this scenario is shown in Figure 7.7.
This Petri Net expresses rule 3 from Table 7.2.

In Figure 7.8 it is shown that activity GoodsReceipt occurs 608 times in moves with in-
correct USER ID. The report in Figure 7.9 provides additional insight into the problem: the
ENTRY AMOUNT interval is e0.0 - e10,434.5. It is also clear that the expected number of 608
violating steps are detected.

In order to identify which users are responsible for the violations, the ‘Get problem insight’
plugin is run on the item ‘Activity GoodsReceipt is performed with incorrect USER ID’, whose
output confirms that all the responsible users are identified, namely resource125, reosurce126,
and resource127 (Figure 7.10). The same is true for MATERIAL attribute, which is shown in
Figure 7.11.

Scenario 3

This scenario focuses on checking rule 4 from Table 7.2. The rule, specified as a Petri Net with
Data corresponding to this scenario, is shown in Figure 7.12.

By observing the violation report (Figure 7.13), we are able to identify that users resource128
and resource129 are responsible for the violations. It however does not show precise bounds for
ENTRY AMOUNT. We run the ‘Get Problem Insight’ plugin on the item ‘Activity OutgoingPay-

68 Diagnostics in compliance checking

CHAPTER 7. EVALUATION

Figure 7.6: ENTRY AMOUNT bounds (e39,955.0 - e49,999.0)

Figure 7.7: Rule 2 specified in Petri Net with Data

Figure 7.8: Scenario 2 violation statistics: GoodsReceipt occurs 608 time with incorrect USER ID

ment is performed with incorrect USER ID’ in order to discover them. This allows us to reveal that
the bounds for the attribute are e54,855.0 - e56,735.5 and e56,905.0 - e64,866.0 (Figure 7.14).

Besides the data- and organizational-related context, the time-related context is also involved in
the violations. It can be discovered by running the ‘Get Problem Insight’ plugin on the same item
as previously, with the difference that we enable considering the time between OutgoingPayment
and InvoiceReceipt. This allows us to identify that the usual time interval between them for

Diagnostics in compliance checking 69

CHAPTER 7. EVALUATION

Figure 7.9: ENTRY AMOUNT involved in scenario 2 (e0.0 - e10,434.5)

Figure 7.10: Users involved in scenario 2 (resource125, reosurce126, resource127)

violating cases is below 30 minutes (Figure 7.15).

As can be seen from the results presented, all the inserted context was discovered using the
plugins.

7.1.3 User Evaluation

In this section, we aim to evaluate the understandability of the output of the implemented plugins
for end users. In order to perform an evaluation, a number of workshops was held. The structure
of these workshops was the following:

70 Diagnostics in compliance checking

CHAPTER 7. EVALUATION

Figure 7.11: MATERIAL values involved in scenario 2 (material611,. . . ,material615)

Figure 7.12: Rule 3 specified in Petri Net with Data

1. First, users were given a general presentation of the approach. This allowed to make them
familiar with the key notions and understand how the approach works;

2. Second, users were given a demonstration of the developed plugins in order to familiarize

Diagnostics in compliance checking 71

CHAPTER 7. EVALUATION

Figure 7.13: Users involved in scenario 3 (resource128, resource129)

Figure 7.14: ENTRY AMOUNT involved in scenario 3 (e54,855.0 - e56,735.5 and e56,905.0 -
e64,866.0)

them with the interface;

3. Third, users were asked to run scenarios based on the artificial data and answer a number of
questions regarding the obtained output. The correctness of the answers would show their

72 Diagnostics in compliance checking

CHAPTER 7. EVALUATION

Figure 7.15: Time context of scenario 3 (all the violations (confidence 100 %) occur when
OutgoingPayment is performed within 30 minutes after InvoiceReceipt)

comprehension of the obtained results.

Alternatively, it was possible to do the evaluation remotely. All instructions and explanations
were distributed to the users who preferred this format. The evaluation was performed with a
group of 7 students at TU/e and with a group of 4 people working in assurance and forensic areas
at PwC.

The questionnaire consisted of 10 questions, and was answered by 11 persons. In order to
answer the questions, a user had to run both ‘Get compliance dashboard’ and ‘Get problem insight’
plugins for each scenario. The questionnaire is shown in Appendix B. Table 7.3 shows which
questions were answered correctly.

As shown in the table, most mistakes among the TU/e students were made while answering
questions 9 and 10. Both questions are related to output of the ‘Get problem insight’ plugin.
Possibly, the reason is the wrong choice of considered attributes for the execution of the plugin.
However, some students who were mistaken in question 9, provided the correct lower bound of
ENTRY AMOUNT values for the violating events, while the question asked to provide the upper
bound.

The PwC users made most mistakes answering the question asking which attribute: PO AMOUNT
or ENTRY AMOUNT had stronger relation to the problem in scenario 2. It is likely that the
confusion was caused by the fact that some of the list items corresponding to the assignments
of PO AMOUNT had higher relevance values than that of ENTRY AMOUNT items, while the
correct answer was the latter.

Besides answering questions, users were given an opportunity to provide their comments
regarding the developed plugins. Some of the comments criticized data representation. This
included the way numerical ranges are expressed and the color scheme.

Another flaw, according to the feedback, is the interface. It was claimed that there is too
much information on the screen and that it was hard to choose the correct attributes for the ’Get
problem insight’ plugin. Besides, it was mentioned that the metric of relevance between violation
and context is not straightforward: increasing the relevance threshold does not guarantee that
most relevant attribute assignments remain.

The users’ input was used to improve the data representation and the interface. Such improve-
ments include changing the way to express numerical ranges or showing IDs of the cases for each

Diagnostics in compliance checking 73

CHAPTER 7. EVALUATION

item in the problem list. Another improvement was to extend the user’s capabilities in refining the
list by adding a filter that allows them to keep only assignments of the selected attribute.

Despite the criticism, it was noted that the concept is promising and should be developed
further. Also, as Table 7.3 shows, there are few incorrect answers, which indicates that the output
is indeed comprehensible.

Table 7.3: Respondents’ performance

Participant Affiliation Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 TU/e + + + 0 + 0 + + - -

2 TU/e + + + 0 + 0 + + - -

3 PwC + + + - + - + + + +

4 TU/e + + ± + + + + + - +

5 TU/e + + ± + + + + + - +

6 PwC + + + + + - + + + +

7 PwC + + + + + - + + + +

8 TU/e + + + + + + + + + -

9 TU/e + + + + + + + + + +

10 TU/e + + + + + + + + + +

11 PwC + + + + + + + + + +

Legend: ’+’ – correct answer; ’-’ – incorrect answer; ’±’ – partially correct answer; ’0’ – omitted
answer

7.2 Evaluation Using Real-Life Data (removed)

The section was removed due to confidentiality issues.

74 Diagnostics in compliance checking

Chapter 8

Conclusions

8.1 Summary of Contributions

In this master thesis, we analyzed problems encountered when trying to obtain context-related
information about violations discovered during compliance checking of event logs. These problems
motivate the research goal stated in Chapter 1:

Develop a systematic approach to get insights about the violations detected during compliance
checking through the analysis of context-related information available in the business process and
present the obtained results in a way understandable for users not having deep technical knowledge.

Before proposing a new approach, we performed a study of the related work on each element
in the research scope: compliance checking, identifying relations between context information
and violations, visualizing results for users without a technical background. First, we selected
approaches for performing compliance checking and used these to obtain violation data. We also
identified a number of limitations in existing approaches. Knowledge of process mining is required
in order to understand the way their output is expressed. Moreover, some of the approaches,
focusing on context visualization, do not allow to explicitly distinguish violating events or cases.
Finally, there is only one approach, introduced in [27] that allows to identify the relation between
violations and the underlying context. However, our approach allows to find context patterns
across different violations easier.

Our main contribution is an approach and tool to provide diagnostics of violations discovered
during compliance checking, described in Chapter 4. To provide diagnostics we propose two phases.
First, a summary of discovered violations is created. The summary consists of statistics and a list
of problems. The list relates problems to the underlying context using CPIRCF measure, defined
for this purpose. Each item in the list corresponds to some subset of the observed violations
bearing a specific activity name, attribute assignment, and violation type. Moreover, Chapter 5
describes the way we discover the root cause of a specific problem, which is selected by the user.
The discovery is based on classifying data tuples, built upon steps in the Data-Aware Replay
Result. The visualization of the result includes describing features that distinguish the problematic
instances from the non-problematic ones.

Another contribution is to visualize the obtained results in a way that does not require a
technical background to be understandable. The visualization is described in Chapter 6. The
data is visualized in different forms. Violation statistics are visualized in the form of a table and
bar chart, where columns and bars are colored depending on whether they represent a number of
violating or non-violating steps. The list of identified problems is represented as a hierarchical
collection of statements, where each level in the hierarchy provides more details than the previous
one. As for a problem’s root cause, it is represented in two forms: first, as a list of conditions
leading to either the occurrence, or non-occurrence of the problem and second, as a number of
preconditions, attached to a certain part of a diagram. Each part of the diagram depicts a certain
subset of the Data-Aware Steps in the log.

Diagnostics in compliance checking 75

CHAPTER 8. CONCLUSIONS

To verify our approach, we analyzed an artificially generated event log with purposefully inserted
violations. Applying our approach allowed us to identify all the violations and underlying context.
In order to verify that the output is comprehensible for business users, evaluation workshops were
held, during which users answered a number of questions regarding the visualization. Correctness
of a majority of the answers showed that the output is indeed understood.

8.2 Limitations and Future Work

To conclude, we discuss the limitations and future work with respect to the following aspects: (1)
compliance checking and obtaining violation data (2) identifying the relation between context info
and deviations, and (3) visualizing results for business users.

Some of the ideas described in this section are based on the feedback obtained during the
evaluations. The limitations concern both the conceptual and the implementation level.

8.2.1 Compliance Checking and Obtaining Violation Data

First, specifying compliance requirements has certain limitations. In order to provide an all-round
analysis, it should be possible to define properties of multiple cases (e.g. At least half of the patients
should be examined twice). Now violations are always considered in isolation.

One of the implementation limitations is the necessity to specify temporal rules after running
the analysis. Ideally, they should be specified in advance within the same Petri Net with Data as
the rest of the requirements. In order to overcome this limitation, the way of defining the Petri
Net with Data should also be changed.

Finally, the way rules have to be specified is complicated for users without knowledge of Petri
Nets. This can be addressed by creating a more comprehensible, yet formal way to define rules,
e.g. by answering a questionnaire. Another way is adapting some of the existing notations, or
combining them.

8.2.2 Identifying the Relation Between Context Info and Violation

Violations concerning one activity might depend on some context information of a completely
different activity. Yet, such a situation might be dealt with by adding a specific attribute,
which would contain the context of the chosen activity into the event log. However, this would
require hypothesizing from user, additional log refinement and would cause an increase in analysis
complexity.

Another limitation is similar to the previous one: the user is forced to hypothesize about
attributes, being relevant for violation and to choose which of them should be considered during
the analysis of a particular problem. If the number of attributes is small, the user might be able to
try different combinations. However, if there are many attributes, the user needs to be supported
in choosing them. This brings another future work direction – guiding the user in selecting the
attributes for comparison.

8.2.3 Visualizing Results for Business Users

Despite the fact that the presented results can be understood by users not having a technical
background, it does need to be improved.

One possible way is changing the representation to be more visual. It might be possible to
visualize a compliance rule using some simple process model notation (e.g. Fuzzy [2, 14] notation,
or Disco1 notation). This would allow the user to understand easily which parts of a process need
to be examined more closely and improve general comprehension.

Another direction for future research is to enrich the obtained output with information about
the consequences of every violation. For example, if an outgoing payment was performed by a

1http://fluxicon.com/disco/

76 Diagnostics in compliance checking

http://fluxicon.com/disco/

CHAPTER 8. CONCLUSIONS

wrong person, data of the amount of payment would help to understand whether the violation was
serious and requires thorough investigation, or it would be sufficient to enforce rules more strictly.

Diagnostics in compliance checking 77

Bibliography

[1] Decision tree learning. http://en.wikipedia.org/wiki/Decision_tree_learning. Ac-
cessed: 01-10-2013. 49

[2] Fuzzy Miner. http://www.processmining.org/online/fuzzyminer. Accessed: 07-11-2013.
76

[3] PwC Crime Survey 2011. http://crimesurvey.pwc.nl/. Accessed: 01-11-2013. 1

[4] SAP Help portal. http://help.sap.com/. Accessed: 10-01-2014.

[5] Wil M.P. van der Aalst. Process mining: discovery, conformance and enhancement of business
processes. Springer, 2011. 2, 3, 7, 8, 16

[6] Wil M.P. van der Aalst, HT de Beer, and F. van Dongen, Boudewijn. Process mining and
verification of properties: An approach based on temporal logic. 2005. 16

[7] Wil M.P. van der Aalst, Massimiliano de Leoni, and Arthur HM ter Hofstede. Process
mining and visual analytics: Breathing life into business process models. BPM Center Report
BPM-11-15, BPMcenter. org, 2011. 17

[8] Wil M.P. van der Aalst, Hajo A Reijers, and Minseok Song. Discovering social networks from
event logs. Computer Supported Cooperative Work (CSCW), 14(6):549–593, 2005. 8

[9] Wil van der Aalst, Arya Adriansyah, and Boudewijn van Dongen. Replaying history on
process models for conformance checking and performance analysis. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 2(2):182–192, 2012. 16

[10] Nouha Abid, Silvano Dal Zilio, and Didier Le Botlan. Real-time specification patterns and
tools. In Formal Methods for Industrial Critical Systems, page 1–15. Springer, 2012. 16

[11] Arya Adriansyah, Boudewijn F. van Dongen, and Wil M.P. van der Aalst. Conformance
checking using cost-based fitness analysis. In Enterprise Distributed Object Computing
Conference (EDOC), 2011 15th IEEE International, page 55–64. IEEE, 2011. 16

[12] Johann Eder, Euthimios Panagos, and Michael Rabinovich. Time constraints in workflow
systems. In Advanced information systems engineering, page 286–300. Springer, 1999. 16

[13] Ning Ge, Marc Pantel, and Xavier Crégut. Formal specification and verification of task time
constraints for real-time systems. In Leveraging Applications of Formal Methods, Verification
and Validation. Applications and Case Studies, page 143–157. Springer, 2012. 16

[14] Christian W Günther and Wil M.P. van der Aalst. Fuzzy mining–adaptive process simplifi-
cation based on multi-perspective metrics. In Business Process Management, page 328–343.
Springer, 2007. 76

[15] Kosmas Hatzidimitris. Using Visual Analytics for Conformance Checking and Compliance
Rules. Master’s thesis, Eindhoven University of Technology, 2013. 17

Diagnostics in compliance checking 79

http://en.wikipedia.org/wiki/Decision_tree_learning
http://www.processmining.org/online/fuzzyminer
http://crimesurvey.pwc.nl/
http://help.sap.com/

BIBLIOGRAPHY

[16] Airlangga Adi Hermawan, M. de Leoni, and B Skoric. Context Analysis of Business Processes
Based on Event Logs. Master’s thesis, 2013. 17

[17] Massimiliano de Leoni and Wil M.P. van der Aalst. Aligning event logs and process models for
multi-perspective conformance checking: An approach based on integer linear programming.
In Business Process Management, page 113–129. Springer, 2013. 16

[18] Massimiliano de Leoni and Wil M.P. van der Aalst. Data-aware process mining: discovering
decisions in processes using alignments. In Proceedings of the 28th Annual ACM Symposium
on Applied Computing, page 1454–1461. ACM, 2013. 1, 16, 48, 49

[19] Massimiliano de Leoni, Wil M.P. van der Aalst, and Boudewijn F. van Dongen. Data-and
Resource-Aware Conformance Checking of Business Processes. In Business Information
Systems, page 48–59. Springer, 2012. 16, 23

[20] Massimiliano de Leoni, Fabrizio Maria Maggi, and Wil M.P. van der Aalst. Aligning event logs
and declarative process models for conformance checking. In Business Process Management,
page 82–97. Springer, 2012. 16

[21] Hongchen Li and Yun Yang. Dynamic checking of temporal constraints for concurrent
workflows. Electronic Commerce Research and Applications, 4(2):124–142, 2005. 16

[22] J. Ross Quinlan. Improved use of continuous attributes in C4.5. arXiv preprint cs/9603103,
1996. 81

[23] John Ross Quinlan. C4.5: programs for machine learning, volume 1. Morgan kaufmann, 1993.
49, 81

[24] Elham Ramezani, Dirk Fahland, and Wil M.P. van der Aalst. Where did i misbehave?
diagnostic information in compliance checking. In Business Process Management, page
262–278. Springer, 2012. 16, 21

[25] Elham Ramezani, Dirk Fahland, Boudewijn van Dongen, and Wil M.P. van der Aalst.
Diagnostic information in temporal compliance checking. Technical report, Tech. rep. BPM
Center Report BPM-12-17, BPMcenter. org, 2012. 15, 16, 22, 25, 52

[26] Anne Rozinat and Wil M.P. van der Aalst. Conformance checking of processes based on
monitoring real behavior. Information Systems, 33(1):64–95, 2008. 16

[27] Patŕıcia Silveira, C Rodrguez, Aliaksandr Birukou, Fabio Casati, Florian Daniel, Vincenzo
DAndrea, Claire Worledge, and Zouhair Taheri. Aiding compliance governance in service-
based business processes. Non-Functional Properties for Service-Oriented Systems: Future
Directions (NFPSLA-BOOK-2011) Edition, IGI Global, 2011. 16, 17, 75

[28] Michael Westergaard and Fabrizio Maria Maggi. Looking into the Future. In On the Move to
Meaningful Internet Systems: OTM 2012, page 250–267. Springer, 2012. 16

[29] Xindong Wu, Chengqi Zhang, and Shichao Zhang. Efficient mining of both positive and
negative association rules. ACM Transactions on Information Systems (TOIS), 22(3):381–405,
2004. 15, 16

80 Diagnostics in compliance checking

Appendix A

Description of C4.5 Algorithm

In this appendix we show description of C4.5 decision tree building algorithm as it is given in [22].
C4.5 uses a divide-and-conquer approach to growing decision trees. Only a brief description of

the method is given here; see [23] for a more complete reference. As described in [22], the following
algorithm generates a decision tree from a set D of cases:

• If D satisfies a stopping criterion, the tree for D is a leaf associated with the most frequent
class in D . One reason for stopping is that D contains only cases of this class, but other
criteria can also be formulated.

• Some test T with mutually exclusive outcomes T1,T2, . . . ,Tk is used to partition D into
subsets D1,D2, . . . ,Dk , where Di contains those cases that have outcome Ti . The tree for D
has test T as its root with one subtree for each outcome Ti that is constructed by applying
the same procedure recursively to the cases in Di .

Provided that there are no cases with identical attribute values that belong to different classes,
any test T that produces a non-trivial partition of D will eventually lead to single-class subsets as
above. However, in the expectation that smaller trees are preferable (being easier to understand
and often more accurate predictors), a family of possible tests is examined and one of them chosen
to maximize the value of some splitting criterion. Here we show only the criterion for discrete
values:
A =? for a discrete attribute A, with one outcome for each value of A. Please refer to the original
article for description of the criterion for a continuous attribute.

The default splitting criterion used by C4.5 is gain ratio, an information-based measure that
takes into account different numbers (and different probabilities) of test outcomes. Let C denote
the number of classes and p(D , j) the proportion of cases in D that belong to the j th class. The
residual uncertainty about the class to which a case in D belongs can be expressed as

Info(D) = −
C∑
j=1

p(D , j)× log2(p(D , j))

and the corresponding information gained by a test T with k outcomes as

Gain(D ,T) = Info(D)−
k∑

i=1

|Di |
D × Info(Di)

The information gained by a test is strongly affected by the number of outcomes and is maximal
when there is one case in each subset Di . On the other hand, the potential information obtained
by partitioning a set of cases is based on knowing the subset Di into which a case falls; this split
information

Split(D ,T) = −
k∑

i=1

|Di |
D × log2(|Di |

D)

Diagnostics in compliance checking 81

APPENDIX A. DESCRIPTION OF C4.5 ALGORITHM

tends to increase with the number of outcomes of a test. The gain ratio criterion assesses the
desirability of a test as the ratio of its information gain to its split information. The gain ratio
of every possible test is determined and, among those with at least average gain, the split with
maximum gain ratio is selected.

In some situations, every possible test splits D into subsets that have the same class distribution.
All tests then have zero gain, and C4.5 uses this as an additional stopping criterion.

82 Diagnostics in compliance checking

Appendix B

Compliance Framework
Evaluation Questionnaire

Summarize you professional experience

Area of expertise Years of experience

Scenario 1

Run the analysis on the data in folder ‘Scenario1’. Leave the default mapping for events and attributes.
Answer questions 1 - 3

 Question Answer

1

List the violated activities

2

Which MATERIAL is likely to have
connection with the violations?

3

What are the common attributes’
values between violations of the 2
checked rules?

Run the problem insight plugin on the problem ‘Activity OutgoingPayment is performed with incorrect
PO_AMOUNT, when MATERIAL = material607’.

In the tab ‘Same attribute value’ uncheck all attributes, except USER_ID.

Answer the question 4.

4 List the users for which events occur
with incorrect PO_AMOUNT

Scenario 2

Run the analysis on the data in folder ‘Scenario2’. Leave the default mapping for events and attributes.
Answer the questions 5 – 6

5
List the MATERIALs involved in the
violation

6
In your opinion, which attribute has
stronger relation to the problem:
PO_AMOUNT, or ENTRY_AMOUNT?

Run the problem insight on ‘Activity GoodsReceipt is performed with incorrect USER_ID’. Leave the
default settings for configuration. Answer the question 7.

7

What are the users involved into the
violations?

Scenario 3

Run the analysis on the data in folder ‘Scenario3’. Leave the default mapping for events and attributes.
Set MATERIAL importance to 0. Answer the question 8.

8

Set MATERIAL importance to 0, so
that it wouldn’t flood the report.

Which users are responsible for the
violations?

Run the ‘Get Problem Insight’ plugin on the problem ‘Activity OutgoungPayment is performed with
incorrect USER_ID’.

Among the attributes, leave only ENTRY_AMOUNT and USER_ID, and set ‘Considering Time’ to
‘Disabled’. Leave the rest as default. Answer the question 9

9
What is the maximal
ENTRY_AMOUNT for which the
problem occurs?

Run the ‘Get Problem Insight’ plugin on the problem ‘Activity OutgoungPayment is performed with
incorrect USER_ID’.

Among the attributes, leave only PO_AMOUNT and USER_ID, and set ‘Considering Time’ to ‘Disabled’.
Leave the rest as default. Answer the question 10.

10

Based on the confidence, which
amount, ENTRY_AMOUNT (from the
previous question) or PO_AMOUNT
has stronger relation to the problem?

General Observations and comments:

	Contents
	Introduction
	Thesis Context
	Project Objective
	Research Scope and Methodology
	Thesis Structure

	Preliminaries
	Process Mining
	Event Log
	Specified Behavior
	Alignments
	Violations

	Support and Conditional-Probability Increment Ratio
	Related Work

	Obtaining Alignments to Identify Violations
	Motivating Example
	Control-flow Compliance Checking
	Data and Resource Compliance Checking
	Temporal Compliance Checking

	Identifying and Ranking Problems
	Obtaining Aggregations
	Aggregating Multisets

	Obtaining Violation Statistics
	Obtaining Problem List
	Problem List
	Sorting List
	Refining the List

	Investigating specific problems
	Input
	Comparing Steps Within Sets
	Output

	Design and implementation
	Compliance Dashboard Plugin
	Integration into the Existing ProM Environment
	Graphical User Interface

	Problem insight plugin
	Integration into the Existing ProM Environment
	Graphical User Interface

	Evaluation
	Evaluation using Artificial Data
	Log Description
	Applying the Compliance Framework
	User Evaluation

	Evaluation Using Real-Life Data (removed)

	Conclusions
	Summary of Contributions
	Limitations and Future Work
	Compliance Checking and Obtaining Violation Data
	Identifying the Relation Between Context Info and Violation
	Visualizing Results for Business Users

	Bibliography
	Description of C4.5 Algorithm
	B Compliance Framework Evaluation Questionnaire

