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Abstract

This research presents a grammar-based approach to random testing of the mCRL2 toolset in
order to find previously undiscovered errors. The testing method is black-box and we design test
cases where other tools from the toolset are used for verification. This approach avoids the re-
implementation of the specification of the tools to serve as a testing oracle. The input and output
of the tools adhere to context-free grammars. We enhance these grammars with attributes in
order to ensure the generation of strings that are correct with respect to various static semantics.
We investigate how we can model semantic constraints using these attribute grammars. To this
end, we take a random string generation algorithm and modify it to incorporate these attributes.
The presented method is applied to find errors in the mCRL2 tools. The method is successful in
finding known errors in older versions. The method has not yet been successful in discovering new
errors.
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1 Introduction

The purpose and importance of software testing is widely known. There are several flavors of
software testing like the basic unit testing and regression testing, where previously occurred er-
rors serve as test cases for future versions of the software. For large software systems where
correctness is critical, like the mCRL2 toolset, testing is an important aspect of the development
and maintenance of the system. Ideally, the system is tested for every possible input, by which
the system can be made error-free. However, the input domain can be too large to make this
feasible. This is where random testing poses a solution: if the domain is large and we have an effi-
cient way to generate (a lot of) random input, random testing is an effective testing approach ([4]).

The mCRL2 toolset1 consists of algorithms (tools) that work with the mCRL2 formal specifica-
tion and modeling language ([3]). The language consists of a process algebra with which behaviour
of systems and protocols can be modelled. The toolset allows for formal modeling, analysis and
verification of systems and protocols. Furthermore, it can be used to simulate concurrent processes
and visualize the state space. Specifications can be extended with data, i.e. abstract data types
and higher order functions.

The mCRL2 toolset employs six formalisms: Boolean equation systems (BESs), parameterized
Boolean equation systems (PBESs), mCRL2 process specifications, linear process specifications
(LPSs), labelled transition systems (LTSs) and mu-calculus formulas. The tools in the toolset
operate on various types of input, which is a term from the language of these formalisms. There is
for example a tool that can transform an mCRL2 specification into a linear process specification.
Likewise, there are tools that operate on Boolean equation systems, labelled transition systems,
etc. These tools consist of implementations of various algorithms and most have undergone years
of development. However, partly due to the size of the system and the amount of code, these tools
are not error-free. Errors are encountered every now and then through usage of the toolset, when
a user receives unexpected output for their input.

The main goal of this research is to find errors in the tools of the mCRL2 toolset. We can
identify three subgoals:

1. provide a method to design test cases for the black-box testing of tools from the mCRL2
toolset

2. provide a method to generate valid input for the tools

3. apply the methods to the mCRL2 toolset to find errors

The language of the formalisms are defined through context-free grammars and because of
this a grammar-based approach is justified. This grammar-based approach provides an efficient
way to generate a large amount of random terms, which motivates the choice for random testing.
Moreover, we are interested in black box testing: we either have a specification or an invariant
of the functionality of each tool, but assume no knowledge on the implementation. So we will
randomly generate input and verify the output of a tool using its specification or an invariant.

It is infeasible and sometimes impossible to re-implement the specifications of the tools to serve
as test oracles. To overcome this, static, stand-alone test cases are devised in which other tools
from the mCRL2 tool set are used to verify the results of a test. As a general example, assume
tool A that doubles a natural number and B that decides whether a natural number is even. If
we run B on the output of A, then B should always say yes. So a test case would be to randomly
generate input for A and use B on the output. If B ever says no, there is an error in either of the
tools and we have the inputs to serve as a counter-example.

1http://mcrl2.org
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To generate input for test cases, we choose an algorithm that operates on context-free gram-
mars to produce random terms from these grammars. However, a lot of input that we generate
directly from a context-free grammar is not useful. Semantic requirements like well-typedness will
render most generated terms useless. There are several types of static semantics that an input
term is required to adhere to and a randomly generated syntactically correct string only has a
small chance to be semantically correct. To force the generation of meaningful strings we impose
constraints on the generation algorithm by enhancing the context-free grammar with attributes.
Attribute grammars are commonly used in compiler technology and we will use it in a similar
manner, although the generation of semantically correct strings differs from recognizing them,
which is the common application of attribute grammars in compilers.

To determine the effectiveness of the presented method, we apply it to previous versions of
the toolset of which several errors have been identified by previous random testing. The random
testing method should be able to find these errors.

This thesis will start off by discussing literature that relates to this research. Some background
information on context-free grammars will be presented, leading to an algorithm that produces
a term from this grammar. The subsequent section will describe and define attribute grammars,
after which they are used to design constraints. Constraints are presented for several semantic
requirements. Directed testing will be described and the thesis continues with a description of
how test cases are designed and executed. The implementation is discussed after which the setup
for the experiments is described. The results of the experiments are presented and followed with
the conclusions and future work.
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2 Related work

The research described in this thesis relates to concepts involving the automatic generation of
test data. In [5], several approaches to the automatic generation of test data are described and
compared. Random testing is discussed along with grammar based testing. These approaches are
considered useful in cases where there is no knowledge of the programs under test, except for their
input language.

Ralph Lämmel ([8]) presents an algorithm that features full combinatorial coverage. This
means that from a context-free grammar, all strings in the grammar’s language are generated. To
prevent the generation of the entire (possibly infinite) language, control mechanisms can be used
to limit the set of strings generated. However the main purpose is still the generation of a set
of terms and this differs from our goal in employing an algorithm that in fact generates a single
string from the language at random. Furthermore, the method does not provide means to add
constraints to fulfill semantic requirements.

We aim to generate strings that are valid with respect to various static semantics. For this
reason, we consider related work involving string generation using context-sensitive grammars.
Several domain specific languages (DSL) are designed that use attribute grammars for string gen-
eration. One of the most powerful DSLs is the Data Generation Language (DGL) from Peter
Maurer ([9]). Grammar rules are written directly in this language and variables can be used to
store context in order for generated strings to adhere to certain semantic requirements. The DGL
also facilitates weighting of production rules. Unfortunately, the production rules and constraints
have to be combined, decreasing the usability.

Duncan and Hutchinson present a DSL in [2] for the generation of strings using attribute gram-
mars. One of the advantages to this DSL is the support for EBNF notation in the grammars. The
authors combine the notions of inherited and synthesized attributes into hybrid attributes. This
is a useful simplification when both types are used. However, in the case where e.g. only inherited
attributes are needed, this combination is redundant and arguably more complex. Furthermore, it
forces a certain traversal strategy which means certain semantic requirements cannot be fulfilled.
The authors present the concept of guards, similar to conditions in compiler technology, which
guide the selection of production rules. We will use the same concept of guards in the definitions
and algorithms pertaining to attribute grammars.

Lava ([16]) is another DSL that facilitates string generation with attributes. One downside to
Lava is that it features no generic approach to add constraints to a grammar under test. However,
the modularity and separation between grammar and constraints are very useful from a tester’s
perspective. We will use a similar approach when implementing the presented method, labelling
production rules in the grammar and letting constraints refer to these productions using the labels.

Norman Paterson’s work ([11]) is an attribute grammar-based approach to genetic program-
ming. It contains a useful comparison between two common context-sensitive grammars, namely
two-level grammars and attribute grammars, for use in string generation. Furthermore, it does
not force a certain traversal strategy but does not provide a method to design constraints.

In [1] presents an approach similar to this research. This research presents a method for the
random generation of Erlang programs for use in random testing. The approach is attribute
grammar-based and is implemented in a DSL style format. One downside is the mixing of con-
straints and context-free grammars in the same notation. When a user wants to reuse a constraint
for different grammar rules, this constraint has to be added to both sets of rules separately.
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3 Background

3.1 Context-free Grammars

The input and output of tools from the mCRL2 toolset are strings from languages defined by
context-free grammars. A grammar is a set of rules that specify how sentences or phrases can be
formed by applying these rules to the symbols in the grammar. In context-free grammars there is
no context, which means the rules can be applied to the symbols regardless of the context. From
the book of Michael Sipser [15] we can get a formal definition for a context-free grammar, which
will be used to explain the concepts of a context-free grammar as they are used in the remainder
of this document.

Definition 3.1.1 (Context-free grammar). A context-free grammar is a four-tuple G =
(V,Σ, R, S) where

• V is the set of non-terminals

• Σ is the set of terminals

• R is the set of production rules of the form V → (Σ ∪ V )∗

• S ∈ V is the start symbol

The ∗ symbol is the Kleene star, so an element out of the set (Σ ∪ V )∗ is any sequence of
elements from Σ and V . For example, if a, b ∈ Σ and N ∈ V , then abNba ∈ (Σ ∪ V )∗. If there
are multiple production rules with the same left-hand side non-terminal, we can use a shorthand
notation using | to separate the alternatives, i.e.

S → a
S → b

and S → a | b (3.1)

represent the same set of production rules.

Given a context-free grammar G = (V,Σ, R, S), we want to say that a term v ∈ (Σ ∪ V )∗ can
be derived from another term u ∈ (Σ∪V )∗ if there is a production rule α→ β ∈ R, that if applied
to u, yields v. The application of a production rule α → β to u involves replacing an occurrence
of α in u by β. Formally, we can define the binary relation ⇒G on elements of (Σ∪V )∗ as follows

(u⇒G v)⇔ (∃α→ β ∈ R : (∃u1, u2 ∈ (Σ ∪ V )∗ : u = u1αu2 ∧ v = u1βu2)) (3.2)

If a term u ∈ (Σ ∪ V )∗ can be derived in one or more steps from the start symbol, then it is a
so called sentential form. A string is a sequence of terminal symbols, so an element σ ∈ Σ∗. The
language of a context-free grammar is all sentential forms that are strings. So the language is a
set of strings that can be derived from the start symbol, formally defined as follows.

Definition 3.1.2 (Language). The language of grammar G, denoted as L(G) is the set

{w ∈ Σ∗ | S ⇒∗G w} (3.3)

where ⇒∗G is the reflexive transitive closure of ⇒G.

For the remainder of this document the subscript G is omitted when there is no confusion
about the grammar used. Example 3.1.1 shows how a context-free grammar defines a language.

Example 3.1.1. The context-free language {anbn | n ≥ 1} can be made through the following two
grammar rules.

S → aSb | ab (3.4)
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With start symbol S, we can apply the first production rule n − 1 times for a given n, after
which we can apply the second production rule.

S
⇒
aSb
⇒

aaSbb
⇒

aaabbb

(3.5)

If we take n = 3, the above derivation results in the string aaabbb or a3b3.

A leftmost derivation is a derivation in which each production rule is applied to the left-most
non-terminal. A parse tree or derivation tree ([13]) is a tree-like representation of a derivation of
a string. In a derivation tree, the root is the start symbol, the leaves are terminal symbols and
each node represents the application of a production rule. Figure 3.1 shows the derivation tree for
example 3.1.1.

S

S

S

a ba bab

Figure 3.1: Derivation tree for example 3.1.1

The leaves of a derivation tree represent the terminal string if the symbols from the leaves are
put in sequence, in the order in which they are encountered in a left-to-right traversal of the tree.

3.1.1 Ambiguity

A different (order of) application of production rules can produce the same terminal string. A
string is called ambiguous when there are two different leftmost derivations. This means there
exists two different sequences of production rules that, when continuously applied to the left-most
non-terminal, produce the same terminal string.

Example 3.1.2. Consider a context-free grammar with production rules S → S + S | S − S | a.
The string a+ a− a is ambiguous in this grammar as it has two different derivation trees.

S

−

SS

+

SS

aaa

S

+

S S

−

S S

a a a
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Ambiguity can pose a problem when considering the semantics of a string from a language
as an ambiguous string can have different interpretations. When grammars containing ambigui-
ties are used in practice, they are usually extended with a notion of rule precedence. With rule
precedence, priorities are assigned to production rules in order to resolve ambiguities. When two
production rules can be applied, the highest priority gets precedence, so there is no ambiguity.

The context-free grammars in mCRL2 contain these precedence rules. For generating a string
from a context-free grammar ambiguities can be ignored. For the semantic requirements that are
defined using the grammars, we assume the existence of these precedence rules in the definitions,
such that there are no ambiguities. In 6.3 we will see a constraint that disambiguates a context-free
grammar using rule precedence.

3.1.2 Tokens

Context-free grammars often contain a notion of variable names or other alphanumeric constants.
For example, a natural number can be represented in a context-free grammar with a recursive
production rule that produces one or more digits. However, we would like to abstract from these
constants, which we designate as tokens. Tokens are non-terminals for which we do not include
any production rules. Instead, we opt to define the set of allowed string values for each token
separate from the grammar.

3.1.3 Extended BNF

Definition 3.1.1 is in Backus-Naur form. There is an extension to BNF (Extended BNF or EBNF
[20]), that allows for explicit descriptions of repetitions and choices of production rules, as well as
nesting right-hand side alternatives. The relation between EBNF and BNF is described in [20] and
there is a straightforward transformation from EBNF to BNF which involves replacing repetitions
by recursions and choices by two alternative production rules where one of them is the empty string.

The context-free grammars in mCRL2 are in EBNF. We require a preprocessing step transform-
ing the grammars into BNF, before applying the string generation algorithm to these grammars.
The following section describes the approach for generating a string from a context-free grammar.

The following section illustrates the concepts of the context-free grammar as used in this
research in a formalism used in mCRL2, namely Boolean equation systems. An example use of a
token is also described.

3.2 Boolean Equation Systems

One of the formalisms defined by a context-free grammar used in the mCRL2 set is the formalism
of Boolean equation systems. A model checking problem can be translated to a Boolean equation
system (BES) [18] which is a series of fix-point equations ranging over the Boolean lattice. Example
3.2.1 shows a BES consisting of two fix-point equations.

Example 3.2.1. The following BES contains two propositional variables and two fix-point equa-
tions with fix-point operators µ and ν, the least- and greatest fix-point respectively.

(µX1 = X1 ∧X2)
(νX2 = true)

(3.6)

Boolean equation systems will serve as a primary example in this document when explaining the
concepts and methods used. The BES language can be defined through the following context-free
grammar.

9



Definition 3.2.1 (CFG Boolean equation systems).

BES → E
E → (σX = φ) | (σX = φ)E
φ → φ⇒ φ | φ ∧ φ | φ ∨ φ | ¬φ | true | false | X
σ → µ | ν

(3.7)

In this grammar, X is a token for propositional variables. We consider the set {Xi | i ≥ 1}
as possible token values for X. The following example illustrates how a terminal string from the
language defined through the context-free grammar can be built using production rules. Every
application of a production rule on a sentential form produces a new sentential form and eventually
a terminal string.

10



Example 3.2.2. Starting with the start symbol BES, we can apply production rules from the
BES grammar to produce the BES from example 3.2.1 as follows:

BES
⇒
E
⇒

(σX1 = φ)E
⇒

(µX1 = φ)E
⇒

(µX1 = φ ∧ φ)E
⇒

(µX1 = X1 ∧ φ)E
⇒

(µX1 = X1 ∧X2)E
⇒

(µX1 = X1 ∧X2)(σX2 = φ)
⇒

(µX1 = X1 ∧X2)(νX2 = φ)
⇒

(µX1 = X1 ∧X2)(νX2 = true)

(3.8)

Here, production rules are applied continuously to the left-most non-terminal.

Several tools from the mCRL2 tool set under test operate on Boolean equation systems. These
tools contain implementations of various algorithm for solving or manipulating a BES. To test
these implementations we will generate random BESs as input for these tools.

11



4 String Generation

The tools in the mCRL2 tool set that we aim to test all require a term from one of the mCRL2
formalisms as input. Since these formalisms are defined through context-free grammars, we can
use a generic approach to generating a string from a context-free grammar and apply this to the
context-free grammars in mCRL2.

Given a context-free grammar G, we seek an algorithm that produces a string σ ∈ L(G) at
random. A naive top-down approach to generate a string from G = (V,Σ, R, S) would be the
following.

Algorithm NaiveTopDown(V,Σ, R, S)

1 u← S
2 while there are non-terminals in u
3 do take the leftmost non-terminal N
4 choose production rule with N as its left-hand side
5 apply this production rule to u
6 return u

So starting with the start symbol, the naive top-down generation algorithm will choose ran-
dom production rules to apply until it ends up with a terminal string. However, there is an issue
with this naive approach: the algorithm has the potential to go on indefinitely. If the continuous
application of production rules does not eventually reduce the number of non-terminals to zero,
the algorithm will not terminate. So the choice of production rules has to be guided such that we
eventually end up with a terminal string.

Example 4.0.3. Consider a context-free grammar with start symbol S and the following produc-
tion rules:

S → bSS | a (4.1)

Using the naive algorithm with this grammar and assuming the algorithm chooses uniformly
at random among the alternatives, the probability that u is a terminal string after applying one
of the production rules is 1/2, in which case the result is a. The probability that u is a terminal
string after any number of applications is 1/2 + 1/8 + 1/16 + ... which converges to approximately
0.874. This shows that termination is not guaranteed for this naive algorithm.

There is need for a control mechanism: a certain metric of strings that can be set to a limit and
an algorithm that chooses production rules such that this limit is not exceeded. Several control
mechanisms are identified and defined in [21]. The most commonly used mechanism is depth con-
trol, which is a limit to the height of the resulting derivation tree. Depth is a simple and intuitive
metric.

Another simple metric is the length of a string. The length of a sentential form u is the amount
of symbols in u: non-terminals, tokens and terminal symbols have a length of one, so the length
of a terminal string is the amount of terminal symbols in that string. The algorithm from Bruce
McKenzie [10] can generate a string of length n from a context-free grammar uniformly at ran-
dom, meaning every string of length n in the language is equally likely to be generated. Having
an algorithm for which the coverage is known is a motivation for length based control.

The algorithm with length control will make sure the length of the generated string is equal to
a certain length limit. For a given length n, the algorithm will only apply production rules that
can produce an n-length string. Given a length n and a sentential form u, we choose lengths for
every non-terminal in u, dividing n among the non-terminals. This guarantees termination. In
the following sections a more detailed description of the algorithm and its limitations will be given.
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4.1 Length-based Algorithm

This section describes the algorithm from Bruce McKenzie ([10]), which can be used to generate
a string from a context-free grammar while imposing length control. We use index notation used
in [10] for the elements of a context-free grammar. So we denote the set of non-terminals as
V = {N1, N2, ..., Nr} where r is the number of non-terminals. The set of production rules R is a
mapping from non-terminals to terms from (Σ ∪ V )∗. The set R can be written as follows.

R = {πij : Ni → xij1xij2...xijtij | 1 ≤ i ≤ r ∧ 1 ≤ j ≤ si} (4.2)

Here, si is the amount of production rules with Ni as the left-hand side and tij is the amount
of symbols in the right-hand side of production rule πij . We use πij as a shorthand notation or
’name’ for the production rule Ni → xij1xij2...xijtij . The right-hand side xij1xij2...xijtij is an
element from (Σ ∪ V )∗.

The algorithm will always produce a string of length n, by disallowing production rules with
which no string of length n can be built. This control mechanism ensures termination. Further-
more, the algorithm makes choices in production rules irrespective of the grammar structure. So
for two different grammars that define the same language, the same string has the same probability
of being generated. This is true for an unambiguous grammar. This limitation is described in
section 4.1.1.

The algorithm uses a few helper functions that return the amount of strings of certain length
a production rule can generate. These functions are used to calculate the ’weights’ that will be
assigned to each production rule. The function fi(n) is a list of integers, which represents the
number of strings of length n that can be built using production rules with Ni as the left hand
side non-terminal.

fi(n) = [ sum(f ′ij1(n)) | 1 ≤ j ≤ si ] (4.3)

For every production rule with Ni as the left hand side non-terminal, there is a list entry in
fi(n). The sum function is a straightforward summation on the list elements.

sum([l1, l2, ...lm]) =

m∑
i=1

li (4.4)

The function f ′ijk(n) returns the number of strings of length n that can be made out of the
symbols xij1...xijtij , which make up the right hand side of the production rule Ni → xij1...xijtij .
So we have tij as the amount of symbols in αij , the right hand side of the production rule πij .
The function can be recursively defined, processing the first symbol continuously. For k < tij , the
function is defined as follows.

For n = 0:

f ′ijk(0) = [] (4.5)

For k 6= tij ∧ n 6= 0:

f ′ijk(n) =

{
[sum(f ′ij(k+1)(n− 1))] if xijk ∈ T
[sum(fxijk

(l))× sum(f ′ij(k+1)(n− l)) | 1 ≤ l ≤ n− tij + k] otherwise
(4.6)

For k = tij ∧ n 6= 0:
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f ′ijtij (n) =


[sum(fxijtij

(n))] if xijtij /∈ T ∧ n > 1

[1] if xijtij ∈ T ∧ n = 1

[0] otherwise

(4.7)

The complete algorithm is listed below, rewritten slightly from [10] to make it more compact.
In the algorithm we abstract from the grammar as a parameter. The algorithm operates on a
symbol xijk from production rule πij and returns a terminal string. The variable u holds the
string for symbol xijk which is returned along with the string that results from a recursive call
which processes the rest of the rule πij . In case of a token, the symbol is replaced with a string
value which is chosen at random from the allowed token values. If xijk is a non-terminal, a length
l and production rule πxijkr is chosen and applied in a recursive call.

Algorithm Generate(i, j, k, n))

1 l← 1
2 if xijk ∈ Σ
3 then u← xijk
4 else if xijk is a token
5 then u← random value for xijk
6 else l← choose(f ′ijk(n)) � xijk is a non-terminal

7 r ← choose(fxijk
(l))

8 u← Generate(l, xijk, r, k + 1)
9 if k = tij

10 then return u
11 return u •Generate(i, j, k + 1, n− l)

In this algorithm • represents string concatenation, i.e. a•b = ab. The function choose([l1, l2, ..., lm])
returns an integer i between 1 and m at random with probability li/

∑m
j=1 lj .

If we assume the first non-terminal is the start symbol, so N1 = S, then the algorithm can be
employed by calling Generate(1, choose(f1(n)), 1, n).

The generation of a string of length n has a time complexity of O(n), provided that fi(n) and
fijk(n) are calculated in a preprocessing step. Calculating tables for f and f ′ can be done using
dynamic programming techniques in O(n2) time.

4.1.1 Limitations

The algorithm Generate(i, j, k, n)) has several requirements and limitations pertaining to its
usage that are described in this section. It is crucial to have no cycles in the grammar. If there is
a cycle, eventually functions f or f ′ are called repeatedly with the same arguments and termination
will be prevented. For non-terminal S, s cycle is a derivation of the following form.

S ⇒∗ S (4.8)

Having no cycles is the only hard requirement for a grammar when it is used with the algorithm.
A soft requirement is the absence of empty productions. Empty productions are productions of
the form N → ε. Empty productions can be used since ε can be regarded as a symbol from the
alphabet, but that will cause it to be counted as having a length of one, which is inconsistent with
the concept of the empty string.
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There is a fairly straightforward method that removes the empty productions from a grammar
in [14], assuming the empty string is not in the language. This method involves rewriting the
production rules by replacing all non-terminals S on the right-hand sides for which S → ε is in
the grammar, by ε. This is done until there are no empty productions left in the grammar.

Ambiguous grammars pose a problem for the algorithm as the uniform coverage does not hold
for ambiguous strings. In the algorithm, whenever a terminal symbol or string is ambiguous, it
will be counted an amount that corresponds to the amount of different leftmost derivations. So
this string will also be generated with an increased probability, corresponding to the amount of
different derivations. This means if there are two different derivations of a string, the probability
of that string being generated gets doubled.

The algorithm Generate that we use for string generation uses the string length metric to
guarantee termination. Additionally, the length is used such that every string of length n has
equal probability of being generated. This uniform coverage based on the length can be undesired
in some cases. Example 4.1.1 shows a case where this feature can actually make the probability
of generating certain grammatical structures very small.

Example 4.1.1. Consider the following grammar where S can produce a T or S surrounded with
parentheses.

S → T | ( S ) (4.9)

The symbols ( and ) have a length of 1. The choice that the algorithm makes between either
of these production rules depends on the number of terms of length n that can be made through T
versus the sum of the number of terms of length n − 2, n − 4, ... that can be made through T . If
the number of terms of length n is far greater than the number of terms of length n − 2 that can
be made through T , the probability of generating through the second production rule is very small.

We encounter this problem in the BES grammar, not only when parentheses are used but
also with repetitions. The probability of generating one or two fix-point equations is higher than
generating more than two. From a tester’s perspective, we want to influence these probabilities
such that we can cancel the fact that certain grammatical structures have low probabilities of
being generated. Because of the fact that algorithms implemented in tools under test operate on
specific parts or grammatical structures of strings from the language, it is desired to be able to
increase the probability of generating these grammatical structures.

4.1.2 Weighting

We choose to add the possibility of assigning weights to production rules in the context-free gram-
mar. These weights are then used by the algorithm to make a weighted choice between production
rules. So instead of a length based choice the algorithm makes a weighted choice, i.e. the produc-
tion rule with the highest weight has the highest probability of being chosen by the algorithm to
apply to a symbol.

The length is still used. In fact, the function f ′ is used to choose a length for which a string
can be produced and f is used to determine which production rule can produce a string from the
chosen length. For a non-terminal symbol N , we can build a list with an entry for each production
rule with N as its left-hand side. For rules that cannot build a string of the chosen length, this
entry is zero. For all others, this entry is the weight that is assigned to each production rule.

Consider Wπ to be the weight of production rule π, then we can modify line 8 of Generate
as follows.
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r ← choose

([{
Wπij if fxijk

[h] > 0
0 otherwise

∣∣∣∣ 1 ≤ h ≤ si]) (4.10)

So we have a list of weights and zeros, where function choose will return an index for a non-zero
entry at random using a weighted selection. The returned index r will gives us production rule
πxijkr that we can apply to xijk.

Weighting is useful in cases where there are several alternatives that are similar to eachother.
Consider for example the following three production rules.

S → E + E | E ∗ E | E − E (4.11)

Using weights, the probability of generating one of the operators can be increased or decreased.
In the case of a repetition, weights are less useful.

S → A | AS (4.12)

In the above two production rules, weights have little influence on the number of times a re-
cursion is done. Section 7 describes a constraint with which the number of repetitions can be
explicitly set.
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5 Context

5.1 Meaningful Terms

The algorithm from section 4 generates strings for which we know that they are grammatically
correct. However, a randomly generated string can be meaningless or semantically incorrect.
Suppose we generate an if-statement where a variable A is used as a guard. The guard of an
if-statement has to be a Boolean expression. So this if-statement only makes sense if A is of the
Boolean type. If this is not the case, e.g. A is an integer, then the if-statement can be considered
meaningless.

if A then:
...

else:
...

There are several static semantics that can be associated to strings from a language defined
by a context-free grammar. In practice some of these semantics can be fulfilled by rewriting the
grammar but for many semantic requirements this cannot be done.

In the mCRL2 formalisms there are several semantic requirements that deal with e.g. variable
binding and typing. For any randomly generated string, we can only use it as test input if these
semantic requirements are valid for this string. Depending on the sematic requirement, the chance
of a randomly generated string fulfilling that requirement can be small. In fact, for any randomly
generated string of the mCRL2 formalisms, the chance that it is meaningful is very small, making
it infeasible to just discard incorrect strings. We need a solution that increases the probability of
a single randomly generated string being semantically correct.

We need to add context to the context-free grammars, so that our algorithm is able to determine
if the context is valid when making certain decisions in generating a string. Formally, a context-
sensitive grammar differs from a context-free grammar in that production rules can have ’context’
on the left-hand side.

xNiy → xαijy (5.1)

So Ni → αij can be applied if it is in the context defined by x and y. We opt to extend the
context-free grammars used in mCRL2 to make them context-sensitive. The two most common
context-sensitive grammars are the two-level grammars and attribute grammars. Norman Paterson
[11] has determined that two-level grammars are not suitable for string generation, so we pertain
to attribute grammars.

5.2 Attribute Grammars

An attribute grammar is an extension to a context-free grammar where symbols can have sev-
eral attributes, and the values of those attributes represent a semantic context. Context-sensitive
grammars like attribute grammars are widely used in practice in compiler technology as a means
to check static semantics during parsing and for usage in code generation [17] [13]. However,
we are interested in using attribute grammars to force constraints on the string generator as to
only produce strings that are semantically correct. There are several papers that describe such
an approach in the form of domain specific languages where production rules and non-terminals
of a context-free grammar are enhanced with attributes that will keep track of context-sensitive
information during string generation [16] [12].
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There are two types of attributes: inherited and synthesized attributes. Every non-terminal
has a set of inherited and synthesized attributes. These sets can be empty, e.g. the start symbol
does not have any inherited attributes. The values for inherited attributes are used when a pro-
duction rule is applied, while values for synthesized attributes are returned after the production
rule has been applied.

Every production rule is associated with a set attribute rules, that define the values for the at-
tributes per symbol. This means every attribute has a value domain, which can be anything from
integers and strings to sets and functions. One attribute rule defines the value for one attribute
(inherited or synthesized). Alternatively, an attribute rule can define the string value of a token.
This enables us to let the context to determine the value for a token.

Duncan and Hutchinson [2] let attribute values guide production rule selection using guards.
With guards, we can influence the choice of production rules in the generation algorithm based
on the values of the attributes. So if there are multiple choices for a production rule, guards can
exclude certain production rules from being chosen. A guard pertaining to production rule π is a
Boolean expression over inherited attributes of the left-hand side non-terminal of π. The notion of
guards is similar to the notion of conditions of production rules as used in [17] and [19], however
conditions are used in parsing to determine if a string is semantically correct, while guards are
used to constrain the choice of production rules in the generator.

We can get a formal definition of an attribute grammar from Compiler Construction ([19]).

Definition 5.2.1 (Attribute grammar). An attribute grammar is a 4-tuple (G,A, F,G), where

• G = (V,Σ, R, S) is a context-free grammar per definition 3.1.1

• every non-terminal N ∈ V has a possibly empty set of attributes A(N) which consists of
two disjoint sets synthesized attributes S(N) and inherited attributes I(N)

– A(N) = S(N) ∪ I(N)

– I(S) = ∅

• each attribute a ∈ A(N) has a domain (dom(a)) of possible values (integers, strings, sets,
functions, etc.)

• each production rule π : X0 → X1X2...Xn ∈ R has a possibly empty set of attribute rules

– an attribute rule Fπ((X0, 0), a) for a ∈ S(X0) is a dom(a)-typed expression over ele-
ments in I(X0) ∪A(X1) ∪A(X2) ∪ ... ∪A(Xn)

– an attribute rule Fπ((Xi, i), a) for Xi ∈ V and a ∈ I(Xi) is a dom(a)-typed expression
over elements in A(X0) ∪ S(X1) ∪ S(X2) ∪ ... ∪ S(Xn)− S(Xi)

– for token Xi, an attribute rule Fπ((Xi, i)) is a string valued expression over elements
in A(X0) ∪ S(X1) ∪ S(X2) ∪ ... ∪ S(Xn)

• each production rule π : X0 → X1X2...Xn ∈ R has a guard Gπ which is a Boolean expression
over elements in I(X0)

A single attribute rule for production rule π defines the value for a single attribute of a symbol
in the left- or right-hand side of π. An attribute rule is an expressions over attributes from other
symbols. For tokens, there is a single attribute rule that defines the string value for that token.
This is again an expression over attributes from other symbols.

The position of a symbol (the second i in (Xi, i)) is used to distinguish two symbols that are
the same non-terminal in a production rule from eachother. They have the same sets of attributes
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since they are the same non-terminal, but they can have different values for these attributes at
any point. Therefore we combine the non-terminal and its position into an occurrence tuple.

To evaluate the expressions of the attribute rules and guards, we can use an environment
mapping occurrence tuples to values. So we can formalize a context, which contains values for
attributes, which we can use to evaluate an attribute rule and subsequently add this value to the
context. We define Z ⊆ (N,N) for N ∈ V as the set containing tuples of non-terminals and their
positions. For all production rules X0 → X1, X2...Xn, (Xi, i) ∈ Z if Xi is a non-terminal. Further-
more, we define A = A(N) for N ∈ V as the set containing all attributes and ζ = {dom(a) | a ∈ A}
as the set of all attribute domains.

Definition 5.2.2 (Context). Let the context C : Z × A → ζ be an environment mapping
symbol/attribute tuples to a value from the attribute’s domain, where

• ∀(X, i) ∈ Z, a ∈ I(X) ∪ S(X) : C((X, i), a) ∈ dom(a)

• for attribute rule Fπ((X, i), a), and context C, the evaluation Fπ((X, i), a) with respect
to context C, is denoted JFπ((X, i)a)KC and involves calculating the value for expression
Fπ((X, i), a) by substituting its variables by their values from C

– JFπ((X, i), a)KC ∈ dom(a)

For the evaluation of guards we can use a context as well. So we have a guard Gπ of production
rule π : X0 → X1X2...Xn and context C for which it holds that C((X0, 0), a) is defined for all
a ∈ I(X0). Then JGπKC evaluates to true or false.

Now we can design an algorithm that builds a string while evaluating attribute rules and guards
and choosing production rules for which the guard is true. We can start with an algorithm that
applies a production rule, after which we add length and length control back while dealing with
termination.

The ApplyProductionRule algorithm listed below takes a production rule π and context
C and returns a string u and context C′. The algorithm processes the non-terminals in the right-
hand side of the given production rule and recursively applies the algorithm to produce a terminal
string. For every non-terminal Xi, first its inherited attribute values are calculated and put into
context C′. Then a production rule is chosen based on the evaluation of the guard, after which a
recursive call is made which will result in a terminal string w and new context C′′. Context C is
updated with values of the synthesized attributes of Xi from C′′. Tokens are assigned their string
values through their attribute rules and finally u, now being a terminal string, is returned as well
as context C′ containing values for the synthesized attributes ofX0, the left-hand side non-terminal.

If S is the start symbol of our attribute grammar, we can apply the algorithm by choosing a
production rule π : S → α and do (u, C) ← ApplyProductionRule(π, ∅). Now u is our gener-
ated terminal string and C is the resulting context. Since the resulting context is not relevant we
can discard it.
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ApplyProductionRule(π : X0 → X1X2...Xn, C)
1 u← X1X2...Xn

2 while there are non-terminals in u
3 do take non-terminal Xi

4 C′ ← ∅
5 for a ∈ I(Xi)
6 do C′((Xi, i), a)← JFπ((Xi, i), a)KC
7 choose new production rule π′ with left-hand side Xi for which JGπ′KC′ is true
8 (w, C′′)← ApplyProductionRule(π′, C′)
9 replace Xi by w in u

10 for a ∈ S(Xi)
11 do C((Xi, i), a)← C′′((Xi, i), a)
12 for tokens Xi in u
13 do replace Xi with JFπ((Xi, i))KC in u
14 C′ ← ∅
15 for a ∈ S(X0)
16 do C′((X0, 0), a)← JFπ((X0, 0), a)KC
17 return (u, C′)

Lines 2 and 3 of the algorithm imply an arbitrary order in which the non-terminals are pro-
cessed. However, the order of processing or traversal order is important due to the dependence of
attributes. The attribute rules for a symbol are expressions over attributes from other symbols, so
an attribute can depend on several other attributes. Any traversal of symbols in a production rule
should respect these dependencies in order to prevent undefined behaviour. Section 5.4 describes
several traversal strategies and the cases in which they are applicable.

The following example shows an attribute grammar that defines a language that cannot be
defined using a context-free grammar. The example illustrates how attributes can be used for
context and how a string is generated using the algorithm.

Example 5.2.1. Consider the following attribute grammar that defines the non-context-free lan-
guage {anbncn | n ≥ 1}.

Production rules Attribute rules Guards

π11 : S → ABC
B.nI ← A.nS

C.nI ← A.nS

π21 : A0 → a A0.nS ← 1

π22 : A0 → aA1 A0.nS ← A1.nS + 1

π31 : B0 → b B0.nI = 1

π32 : B0 → bB1 B1.nI ← B0.nI − 1 B0.nI > 1

π41 : C0 → c C0.nI = 1

π42 : C0 → cC1 C1.nI ← C0.nI − 1 C0.nI > 1

Here, n is an attribute that holds the number of occurrences. The attribute n is synthesized for
non-terminal A, denoted nS and inherited for symbols B and C, denoted nI .

Starting with symbol S, the first production rule is applied giving us the sentential form ABC.
The symbols are processed from left to right and for A there are no inherited attributes to evaluate
attribute rules for. If π22 and subsequently π21 are applied we have the following sentential form
and context.

term context

aaBC ((A.nS , 1), 2)
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Here, (A.nS , 1) is the attribute of A with the position 1 of A in the production rule and the
value of the attribute is 2. Now for B, the algorithm assigns the value for inherited attribute nI to
the value of A.nS. The guards will limit the choice of production rules to π32. Rule π32 is applied
once, producing bB. Now B.nI = 1, so π31 is applied and we get the following sentential form and
context.

term context

aabbC
((A.n, 1), 2)

((B.n, 2), 2)

Now we have produced two as and two bs. For non-terminal C, the same is done as with B,
which results in the following terminal string and context.

term context

aabbcc

((A.nS , 1), 2)

((B.nI , 2), 2)

((C.nI , 3), 2)

Of course, the context is irrelevant after the final result is returned. However, this shows how
the context is updated after applications of production rules.
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5.3 Length

Until now we have abstracted from the length control used in the string generation algorithm for
context-free grammars to enforce termination. Since we still want termination we can add the
length control back. We can combine Generate from section 4 and ApplyProductionRule
from section 5.2 into a single algorithm. This algorithm generates a string from an attribute
grammar, while imposing length control.

Recall the index notation used in section 4 to describe the elements of a grammar. For example,
we can denote the production rules as follows.

R = {πij : Ni → xij1xij2...xijtij | 1 ≤ i ≤ r ∧ 1 ≤ j ≤ si} (5.2)

Where r is the amount of non-terminals, si is the amount of production rules with left-hand
side Ni and tij is the amount of symbols in the right-hand side of πij . Due to the recursive nature
of Generate, the resulting algorithm employs the left-right strategy by iterating k from 1 to tij ,
which effectively means iterating through the symbols of the right-hand side of a production rule
from left to right.

Listed below is the resulting algorithm. For production rule πij : Ni → xij1xij2...xijk,
GenerateII(i, j, k, n, C) generates a string starting at symbol xijk using context C.

GenerateII(i, j, k, n, C)
1 l← 1
2 if xijk ∈ Σ
3 then u← xijk
4 else if xijk is a token
5 then u← JFπij

((xijk, k))KC
6 else C′ ← ∅
7 for all a ∈ I(Nxijk

)
8 do C′((xijk, k), a)← JFπij

((xijk, k), a)KC
9 l← choose(f ′ijk(n))

10 r ← choose(h(xijk, l, C′))
11 (u, C′′)← GenerateII(xijk, r, 1, l, C′)
12 for a ∈ S(Nxijk

)
13 do C((xijk, k), a)← C′′((xijk, k), a)
14 if k = tij
15 then C′ ← ∅
16 for all a ∈ S(Ni)
17 do C′((Ni, 0), a)← JFπij

((Ni, 0), a)KC
18 return (u, C′′)
19 (w, C′′)← GenerateII(i, j, k + 1, n− l, C)
20 return (u • w, C′′)

The choice for r is based on function h that returns a list of weights for rules πxijkr, with
1 ≤ r ≤ si if the guard for that rule evaluates to true and it can build a string of length m and
zero otherwise. So in line 10, a weighted selection is made between all the rules that have valid
lengths and guards.

h(i, n, C) =

[{
Wij if JGπij KC ∧ sum(f ′ij1(m)) > 0
0 otherwise

∣∣∣∣ 1 ≤ j ≤ si
]

After application of πxijkr we have a substring u so we can add u to the resulting string and
continue processing for k+ 1. Finally we calculate values for the synthesized attributes of Ni and
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return them along with string u • w. Basically u is the string representing symbol xijk and w is
the string representing the rest of the production rule.

From example 5.2.1 an issue arises concerning the lengths that will be chosen by the algorithm.
The choice for the lengths of substrings does not take the context into account. If a certain length
is chosen for A when π11 is applied, this indirectly forces B and C to be of the same length,
regardless of the choice the algorithm makes. So there is a conflict on the expected length and the
length that is allowed due to the constraints.

Production rule guards are used to exclude certain production rules from being chosen to be
applied by the algorithm, when the current value for the attributes (context) violates a constraint
imposed on the generation for that production rule. It can be the case that these exclusions make
sure there are no choices to be made anymore. In other words, the string generation algorithm can
block because it cannot generate a string of length n, since the guards disallow any production
rule that can make a string of length n.

This example of instantiation of propositional variables shows a fundamental problem when
the algorithm is not allowed apply any production rule due to the context and length. A solution
is to stop generation and discard the intermediate result and try again. However, the probability
of generating a string successfully can be very low, so this is not feasible.

We make an assumption that for every possible context there is a production rule for which
the guard evaluates to true. This means that there is always an alternative production rule to
choose from. The problem now arises when the only valid choices cannot generate a string of the
specified length. For specified length n, and chosen production rule πij for which the guard is true,
but f ′ij1(n) = 0, we have to find new length m, such that f ′ij1(m) > 0. We apply the heuristic
where |n−m| is minimal for all m where f ′ij1(m) > 0.

5.3.1 Termination

Theoretically it is possible for ApplyProductionRule and GenerateII to not terminate, for
example in the case where for a symbol S and a context, the guard every production rule with
left-hand side S of every production rule evaluates to false. Furthermore, there can be a cycle
where the choice for length m leads to the same situation with the same length and guard problem.
Consider for example the following attribute grammar.

Example 5.3.1. Consider the following attribute grammar.

Production rules Attribute rules Guards

π11 : A → B

π21 : B → aA

π22 : B → b

I(B)[E]← random([0..1])

I[E] > 0.5

(5.3)

Function random chooses a real valued number uniformly at random from the supplied interval.
If we generate a string of length 1, a real number between 0 and 1 will be assigned to attribute E
of I(B). The guard is only true for a value for E > 0.5. This means every time a production rule
for B is applied, the algorithm has a 0.5 probability of terminating.

Consequently, one can design an attribute grammar that never terminates: it runs into a cycle
where the heuristic of choosing a length has to applied continuously.

Since we choose new lengths in order to satisfy certain language requirements and make sure
the algorithm makes progress, we know that the resulting length differs from given length n.
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Basically, the semantic requirements do not allow for certain length substrings. The algorithm
makes new choices for lengths such that it can generate strings while still maintaining the static
semantics. This means that the resulting length can differ from the given length.

To summarize, termination with GenerateII is only guaranteed whenever there is always a
production rule to choose from, i.e. for every symbol S and context there is a production rule
with left-hand side S for which the guard evaluates to true. Furthermore we assume the absence
of cycles where the heuristic of choosing a new length is continuously applied.
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5.4 Traversal Strategies

When attribute grammars are used in compilers or in our case for string generation, there has to
be a strategy that determines the order in which non-terminals are processed. The reason is that
the attributes of a symbol can depend on another symbol’s attributes. This dependency has to
be respected since we cannot evaluate an attribute rule if the values for the variables in that rule
are unknown. This dependency does not only occur between symbols of a single production rule,
but can occur between symbols from different production rules as well.

BES ⇒∗ (µX = φ)E (5.4)

Consider the building of a BES where we encounter the above sentential form. We want to
allow the usage of propositional variables inside φ, that will be bound as the left-hand side of
fix-point equations in E . Assume we have a synthesized environment attribute for E that holds the
list of bound variables, then φ depends on this attribute. The following (incomplete) derivation
tree visualizes this dependency in a concrete syntax tree.

BES

E0

E1µ X = φ

Compiler technology distinguishes various subsets of attribute grammars that pertain to the
traversal strategy. Well-defined attribute grammars ([7]) are a subset of attribute grammars where
there are no circular dependencies. Commonly in top-down parsing, l-attributed ([6]) grammars
are used. In l-attributed grammars, attributes only depend on other attributes from symbols oc-
curring to the left. This means everything can be processed in one left-to-right traversal.

The attribute grammars used in the toolset are in the class of ordered attribute grammars
[6], a subset of well-defined attribute grammars, where for each symbol a partial order over the
associated attributes can be defined, such that in any context there is a traversal strategy that
respects this order.

The algorithm ApplyProductionRule does support any order of attribute dependencies be-
tween symbols of the same rule. However, dependencies between different rules are not supported.
For the algorithm GenerateII there is even less freedom as only attributes from symbols to the
left can be used, since symbols are processed from left-to-right. In the implementation (section
9) we will allow the postponing of processing symbols whose attributes depend on symbols that
are generated at a later point, until these symbols are generated. This second pass is necessary to
support several static semantics like variable binding.

For the attribute grammars implemented in the testing framework these requirements hold, so
the algorithm terminates when used with these attribute grammars.
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6 Constraints

The semantic requirements for strings we generate are modelled using an attribute grammar. We
can model a single semantic requirement by enhancing a context-free grammar with attributes,
attribute rules and guards. The idea is that every string from the resulting attribute grammar
adheres to this semantic requirement. We introduce constraints, which are attribute grammars
that aim to define only strings adhering to certain semantic requirements.

Definition 6.0.1 (Constraint). A constraint on a context-free grammar G, with respect to a
semantic requirement is an attribute grammar AG = (G,A, F,G) such that this semantic require-
ment is valid for all σ ∈ L(AG).

Multiple constraints can be combined into a single attribute grammar by adding together the
attributes and attribute rules and taking the conjunction of the guards of every production rule.
Combining attribute grammars in this way can be done when the base context-free grammar is
the same for the attribute grammars.

This section describes the semantic requirements that have to be fulfilled and for every language
requirement, we present a constraint that solves this requirement. Because a formal definition of a
semantic requirement is often done using structural definition on a grammar, we use the attribute
grammars to explain the semantic requirements as well.

6.1 Variable Binding

Variable binding or declaration is an important aspect in the formalisms in mCRL2. There
are several types of variables like data variables, propositional variables and process variables.
Commonly, tools from the mCRL2 toolset only accept input terms where every variable is bound
before it is used. So bound-before-usage is a semantic requirement to which our generated strings
must adhere. Consider for example the following BES.

(µX = X ∧ Y ) (6.1)

In this BES, the propositional variable X is bound through the left-hand side of the fix-point
equation. The propositional variable Y is free, it is not bound in any fix-point equation in this
BES. This violates our requirement and we want to prevent our string generation algorithm from
generating such a BES.

For any BES we generate, it is required that every propositional variable is bound before it is
used (no free variables occur, also called closed) and every propositional variable is bound at most
once. We can formalize this as follows. We can define occ(E), for a BES E as the set of variables
occurring on the right-hand side of the fix-point equations in E . We can define bnd(E) as the set
of variables occurring on the left-hand side of the fix-point equations in E and let len(E) be the
amount of fix-point equations in E . Now the requirements can be formalized as occ(E) ⊆ bnd(E)
and #bnd(E) = len(E).

To adhere to these requirements, we have to know for every usage of a variable, if it is al-
lowed by checking what has already been generated. This means we have to be able to check
whether or not it has been declared before and possibly if it has the correct type. To do this, we
add an inherited and synthesized environment attribute EnvI and EnvS to every non-terminal
in the grammar except for the start symbol. The value domain of this attribute is sets of vari-
ables for every type of variable (action, propositional-, data- or process variable, etc.). So for the
PBES grammar, Env consists of a set of data variables and a set of propositional variables, i.e.
EnvI = EnvpropI ∪ EnvdataI .
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A variable in one of the sets of Env has a name and possibly a subtype (in the case of a data
variable). Subtypes are integer, natural number, Boolean, etc., but also more complex types are
possible. We add a variable to Env when we generate a declaration and we draw from Env when
we generate a variable usage.

Production rule Attribute rule

BES → E E .EnvpropI ← ∅

In the first production rule of the BES grammar, with the start symbol on the left-hand side,
we initialize the set of propositional variables EnvpropI to the empty set.

Production rule Attribute rules

E → (σX = φ)

X ← choice(X − E .EnvpropI )

φ.EnvpropI ← E .EnvpropI ∪ {X}
E .EnvpropS ← φ.EnvpropS

When we generate a fix-point equation we also bind a propositional variable. This means
that we can add this variable to our environment. To generate a unique variable name, we take
the set of allowed variable names X and subtract those elements already in our environment and
we choose an element uniformly at random from the resulting set through the external function
choice. So we assign a unique variable name to token X. We can then add X to EnvpropI inherited
by φ and synthesized by E in the second and third attribute rule. After we are done generating
this fix-point equation, the resulting environment will contain X as a bound propositional variable.

Production rule Attribute rule

φ→ X
X ← choice(φ.EnvpropI )

φ.EnvpropS ← φ.EnvpropI

In a BES, a variable usage is generated through production rule φ→ X. We can make a selec-
tion uniformly at random, from the inherited attribute value φ.EnvpropI . We assign the selected
variable name to token X which is subsequently generated in the resulting string. By doing this
we make sure that every usage of a variable occurs within a context where it is bound by being
the left-hand side of a fix-point equation.

For formalisms other than BESs, where other types of variables can occur, the constraints are
modeled similar to the constraints for the propositional variable case. For every type of variable
there are production rules that bind these variables and production rules that use these variables.
So for every type of variable we use a set to which we add a variable when we generate a binding
and from which we draw when we generate a usage.

Variable binding is a case where second pass is required. The reason is that the scoping rules
of mCRL2 formalisms allow for forward references of, for example, propositional variables, as
described in section 5.4. We mark the production rules producing an instance of a propositional
variable so that when the algorithm tries to apply this production rule, it will postpone the
application until all production rules that bind variables have been processed.

6.2 Monotonicity

Monotonicity is a property of the right-hand side of a fix-point equation in BESs and PBESs. A
Boolean expression φ is monotonous when it can be rewritten such that a propositional variable is
not inside the scope of a negation. Every BES and PBES we generate is required to be monotonous.
When we take the BES grammar with operator precedence, we can formally define monotonicity as
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follows. Note that without operator precedence this definition is not possible, due to ambiguities
occurring in the grammar.

Definition 6.2.1 (Monotonicity). A BES E is monotonous, if for the right-hand side φ of every
fix point equation in E , m(φ) is true, with m defined as follows.

m(¬b) =def true

m(¬¬φ) =def m(φ)

m(¬(φ0 ⇒ φ1)) =def m(φ0) ∧m(¬φ1)

m(¬(φ0 ∧ φ1)) =def m(¬φ0) ∧m(¬φ1)

m(¬(φ0 ∨ φ1)) =def m(¬φ0) ∧m(¬φ1)

m(¬X) =def false

m(b) =def true

m(φ0 ⇒ φ1) =def m(¬φ0) ∧m(φ1)

m(φ0 ∧ φ1) =def m(φ0) ∧m(φ1)

m(φ0 ∨ φ1) =def m(φ0) ∧m(φ1)

m(X) =def true

(6.2)

Two operators introduce negation, namely implication (⇒) and negation itself (¬). For impli-
cation, negation is applied to the left operand. We can see from the definition that in all other
cases the monotonicity directly depends on the subexpressions.

We model the semantic requirement monotonicity into an attribute grammar, by adding a
single inherited attribute m to the non-terminal φ in the BES grammar. In the case of PBESs
this approach is analogous. The value for m is true if the current scope is monotonous and false
otherwise. When an occurrence of a propositional variable is generated and the inherited value
for m is false, we have to negate this propositional variable.

Production rule Attribute rule

φ→ X X ←

{
choice(φ.EnvpropI ) if φ.m

¬ • choice(φ.EnvpropI ) if ¬φ.m

Basically if we want to insert a propositional variable under the scope of negation, we add an
extra negation such that it does not occur under the scope of negation anymore.

For rules other than implication and negation, we just pass down the inherited value for m.
For example for the conjunction production rule we have the following attribute rules.

Production rule Attribute rules

φ0 → φ1 ∧ φ2
φ1.m← φ0.m

φ2.m← φ0.m

The only modifications done to the value of m are done with implication and negation. For
negation, we can invert the scope as follows.

Production rule Attribute rule

φ0 → ¬φ1 φ1.m← ¬(φ0.m)

For implication, the scope of the left operand is inverted, while for the right operand it is kept
the same.

Production rule Attribute rules

φ0 → φ1 ⇒ φ2
φ1.m← ¬(φ0.m)

φ2.m← φ0.m
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These are the rules needed to enforce monotonicity. Any BES generated using this attribute
grammar is monotonous. As stated before, in the case of PBESs the constraint is analogous.

6.3 Operator Precedence

Recall from section 3.1.1 that we require operator precedence to resolve ambiguities in the gram-
mars we use. Here we describe a way to employ operator precedence in the form of a constraint.
We show the constraint on a BES, but the solution is generic, it can be used with any set of
production rules for which assigning priorities resolves ambiguities.

We assign an inherited attribute P to any non-terminal N that produces an operation and for
which we need to resolve the ambiguities. For each production rule π with left-hand side N , we
define a guard N.P ≤ p, where p ≥ 1 is the priority we want for π. The highest priority operator
has the lowest p value, so the guard for the highest priority operation is N.P ≤ 1.

For a binary operation, if it is left associative, we increase the value for P of the right operand
by 1, while keeping the value for P for the left operand at the current priority level. For right
associativity this is the other way around. The current priority level is in fact the value for p we
have assigned to the production rule. This can differ from the inherited value of P .

In a BES, we have the non-terminal φ for Boolean expressions that requires operator prece-
dence. The highest priority operation is implication (⇒). We can define the guard and attribute
rules for implication as follows.

Production rule Attribute rules Guard

φ0 → φ1 ⇒ φ2
φ1.P ← 2

φ2.P ← 1
φ0.P ≤ 1

Since ⇒ is the highest priority operation, we assign the lowest value for p, namely 1, to it.
Because it is right associative, the left operand is set to lower priority (higher p value). This means
for example that for the right operand another implication cannot be generated directly.

We omit the examples for the other operators since they are analogous, except for the paren-
theses. When parentheses are generated, we can reset the priority level, since parentheses are
inherently disambiguating.

Production rule Attribute rules Guard

φ0 → (φ1)
φ1.P ← 1

φ2.P ← 1
φ0.P ≤ 4

The priority level for parentheses is 4, since in the BES grammar there are three operations
with higher precedence (implication, conjunction and disjunction). For the fix-point generating
production rule we can initialize the priority level to the lowest value.

Production rule Attribute rules

E → (σX = φ) φ.P ← 1

This shows how operator precedence can be explicitly used in an attribute grammar.

6.4 Typing

Variable typing is a common occurrence in programming languages. Often, correct typing is a
semantic requirement for a program for it to able to execute. Several mCRL2 formalisms contain
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the notion of data: variables that have a data type, which can be user-defined or one of the built-in
types integer (Z), rational (R), natural number (N), positive number (P) or Boolean (B). The use
of data in the mCRL2 formalisms has to be such that the typing is correct. When a conjunction
occurs between two data variables, they have to be of the Boolean type.

We can model the semantic requirement of typing into a constraint. We start by adding an
inherited and synthesized attribute TypeI and TypeS to the non-terminal producing data expres-
sions. Every operation on data has a set of expected types for each operand and a resulting type.
The expected types are inherited, while the resulting type is synthesized. We add guards to the
operations such that we prevent operations where the resulting type differs from the expected type.

The value domain for TypeI and TypeS is P(T ) where T is the set of all types and P is the
powerset operator. The expected type can be can be one of many; several operators can work on
different types. The resulting type is usually a singleton.

We can get the semantic requirement from the documentation of mCRL2 where each operation
is defined. For the Boolean type, we have the following type definitions.

Operation Type Semantics

¬ψ B→ B Negation

ψ0 ∧ ψ1 B× B→ B Conjunction

ψ0 ∨ ψ1 B× B→ B Disjunction

ψ0 ⇒ ψ1 B× B→ B Implication

∀D.ψ B→ B Universal quantification

∃D.ψ B→ B Existential quantification

(6.3)

Where D is the non-terminal that produces a binding of a sequence of one or more data
variables. Through these type definitions, we know the type of the operands and the resulting
type. The production rule for the conjunction operator gets the following guard and attribute
rules.

Production rule Attribute rules Guard

ψ0 → ψ1 ∧ ψ2

ψ1.T ypeI ← {B}
ψ2.T ypeI ← {B}
ψ0.T ypeS ← {B}

B ∈ ψ0.T ypeI

Here, ψ1 and ψ2 get the Boolean type assigned to their inherited attributes. Note that the
rule ψ0.T ypeS ← B defines the value for the synthesized attribute TypeS while the guard uses
the value for the inherited attribute TypeI . The guard prevents this production rule from being
applied, when the Boolean type is not one of the expected types.

Comparison operations can work on any type for which two values can be compared. We have
the following type definition for the comparison operators, with S being any type.

Operation Type Semantics

ψ0 = ψ1 S × S → B Equality

ψ0 6= ψ1 S × S → B Inequality

ψ0 < ψ1 S × S → B Less than

ψ0 > ψ1 S × S → B Greater than

ψ0 ≤ ψ1 S × S → B Less than or equal to

ψ0 ≥ ψ1 S × S → B Greater than or equal to

(6.4)
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We can show the attributes and guard for the equality operation. For the rest of the operations
this is analogous, since they all have the same typing definition.

Production rule Attribute rules Guard

ψ0 → ψ1 = ψ2

ψ1.T ypeI ← T
ψ2.T ypeI ← ψ1.T ypeS

ψ0.T ypeS ← {B}
B ∈ ψ0.T ypeI

The guard results from the type definition: the equality operator is of the Boolean type. From
the type definition we know that the operands can be any type (T ), but the left operand is re-
quired to be of the same type as the right operand. This means we can use the value for TypeS
for the left operand as the value for TypeI for the right operand. The choice for the left operand
is made due to the left-right traversal strategy that is employed. We first need to generate the left
operand to know the type of the right operand.

For numeric types there are a multitude of operations with more complex type definitions.
Listed below is the type definition for the addition operator and it shows that the resulting type
depends on the type of the operands. Also, for the type P (positive number) the left and right
operand is allowed to differ in type.

Operation Type Semantics

ψ0 + ψ1

P× P→ P
P× N→ P
N× P→ P
N× N→ N
Z× Z→ Z
R× R→ R

Addition
(6.5)

In our attribute rules we have to take into account the different attribute types possible per
operand. Again, since we employ the left-right strategy, we let the left operand determine the
type of the right operand.

Production rule Attribute rules Guard

ψ0 → ψ1 = ψ2

ψ1.T ypeI ← {P,N,Z,R}

ψ2.T ypeI ←


{P,N} if P ∈ ψ1.T ypeS

{P,N} if N ∈ ψ1.T ypeS

ψ1.T ypeS otherwise

ψ0.T ypeS ←

{
{P} if P ∈ ψ1.T ypeS

ψ2.T ypeS otherwise

{P,N,Z,R} ∩ ψ0.T ypeI 6= ∅

These examples show that there is a straightforward correspondence between the type defi-
nition and the attribute rules and guards. Therefore we omit the examples for the other operations.

6.5 Guarded Processes

This constraint is only applicable to mCRL2 process specifications. The context-free grammar
for mCRL2 process specifications is listed in appendix A. In mCRL2 process specifications every
process is required to be guarded. Guarded means that there is no left recursion for processes
expressions. Formally we structurally define the notion of guardedness with a definition for the
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Boolean function g(p) for process expressions as follows. In this definition and constraint we ab-
stract from data. Actions and processes can contain data parameters, but they have no influence
on the guardedness of a process.

Definition 6.5.1 (Guardedness). A process expression p is guarded if g(p) is true, with g defined
as follows.

g(p) =def g(p, ∅)
g(α, V ) =def true

g(δ, V ) =def true

g(τ, V ) =def true

g(P, V ) =def

{
false if P ∈ V
g(p, V ∪ {P}) if P /∈ V

where p is the equation for P

g(p0 + p1, V ) =def g(p0, V ) ∧ g(p1, V )

g(p0 · p1, V ) =def g(p0, V )

g(c→ p, V ) =def g(p, V )

(6.6)

We add synthesized attribute GS and inherited attributes GI and PI to the non-terminals in
the grammar except for the start symbol. The attributes GS and GI keep track of the processes
that are unguarded in the current scope. The attribute PI represents the name of the process that
is being bound by the current expression. When a process variable is used, it has to be in the
scope where it is guarded. If this is not the case, we choose to prefix the process variable with an
action. Actions are stored in the EnvactI attribute.

Production rule Attribute rules

p→ P
P ←

{
P ′ if P ′ /∈ GI
choice(p.EnvactI ) • P ′ if P ′ ∈ GI

where P ′ = choice(p.EnvprocI )

So we choose a process variable P ′, after which we consult the set of unguarded processes. If
P ′ ∈ GI , we have to guard it with an action which is chosen randomly from the set p.EnvactI . This
shows how the usage of a process variable fulfills the guardedness requirement. The grammar is
such that there is always at least one process and one action, so p.EnvprocI and EnvactI are not
empty.

An action guards the current process p.PI , so we can remove it from the set of unguarded
processes.

Production rule Attribute rules

p→ α
α← p.EnvactI

p.GS ← p.GI − {p.PI}

This is analogous for the actions δ and τ . When a sequence (·) is generated, the current process
can become unguarded in the left operand. Therefore we use the set of unguarded processes of
the left operand for the right operand. Likewise, the current process can become unguarded in
the right operand, so we return the final set of unguarded processes through the right operand.

Production rule Attribute rules

p0 → p1 · p2
p1.GI ← p0.GI

p2.GI ← p1.GS

p0.GS ← p2.GS
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With the choice operator (+), anything that becomes guarded in p1 is still unguarded in p2.
So both operands inherit the set of unguarded processes from p0. The union for p0.GS is done
because when a process becomes guarded in p1 it is still unguarded in p2 as well as for the complete
process expression. Only if in both subexpressions the same process becomes guarded, it will not
exist in the resulting value for p0.GS .

Production rule Attribute rules

p0 → p1 + p2

p1.GI ← p0.GI

p2.GI ← p0.GI

p0.GS ← p1.GS ∪ p2.GS

The attribute rules for the other production rules of p can be determined through the definition
of guardedness, similar to the above examples. For the production rule that binds a process
variable, we can consider the following attribute rules.

Production rule Attribute rules

E → P = p

P ← choice(P − E .EnvprocI )

p.GI ← E .GI ∪ {P}
p.PI ← P

E .GS ← p.GS

Here we use P as the set of allowed process names from which the existing set is subtracted
and a random choice is made and assigned to P . This ensures unique process variable names. The
variable P is added to the set of unguarded processes. Finally, after p is generated, we take the
resulting set of guarded processes and return it.

It is important to note the dependencies of the attributes. The occurrence of a process variable
depends on the value for GS for its binding equation. This means the generation of occurrences
of process variable names is postponed until everything but the occurrences are generated in the
process expressions.
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7 Directed Testing

In general and specifically in the mCRL2 toolset, tools consist of the implementation of one or
more algorithms that operate on certain input. Commonly, these algorithms operate of specific
parts of this input. For example, tools for PBESs contain algorithms that operate on parts of
this PBES like the fix-point equations, quantification operators, parameter names, etc. So these
algorithms are designed to work on parts of the input string, possibly on specific grammatical
structures.

If these algorithms are to be tested, it can be useful to put emphasis on the particular grammat-
ical structures. If an algorithm is specified to reduce the number of parameters, a parameterless
input string will not serve as useful test input for this algorithm. If this algorithm contains an
error, i.e. incorrect reduction of the number of parameters, a parameterless input string will not
reproduce this error. Furthermore, it is possible that the probability of the reproduction of the
error is related to the amount of parameters in the input string.

In directed testing, we guide the generation of strings such that the resulting strings have
a higher probability of having certain language patterns, e.g. by taking away some of the non-
determinism in production rule choices. For this we have introduced weights, but we can also do
this using constraints: we can specify attribute rules and guards that ensure the choice of certain
production rules. We can also use constraints to force a specific amount of a structure, described
in the following section, and even directly produce certain language patterns.

In section 4.1.2 we have used weights to influence the generation of certain grammatical struc-
tures. However, weights have in fact little influence on the number of applications of a repetition.
To accommodate for this, we can design a constraint where this structure frequency can be ma-
nipulated.

Consider the following production rules that produce a sequence of one or more as. The
constraint we will define resembles example 5.2.1: we count the amount of repetitions we still need
to reach a predefined amount.

S → T

T0 → aT1 | a
(7.1)

Non-terminal T will be assigned an inherited attribute Number. We set the initial value for
Number through the first production rule. Guards will force the choice of a single a if the value
is 1. If the value is greater than 1 the guards will force a recursion through T .

Production rule Attribute rules Guard

S → T T.Number ← n

T → a T.Number = 1

T0 → aT1 T1.Number ← T0.Number − 1 T.Number > 1

Here, n ≥ 1 is the predefined amount of occurrences for a. This shows how structure frequency
can be modeled using constraints.
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8 Test Case Design

8.1 Partial Testing

In black-box testing where we have output from a program we can only verify it through a spec-
ification of the program’s functionality and the corresponding input. The verifier of the result of
the execution of a test is commonly called a test oracle. A re-implementation of the specification
can serve as an oracle. However this is not feasible since specifications are not always present.
Furthermore, specifications can be complex and most tools have undergone years of development
making reimplementations error prone.

Instead, we opt to use other tools from the toolset to test for a property or invariant of a
tool, i.e. partial testing. For tools where For example, consider a tool is specified to transform
an input while preserving some property. If there is a second tool that can decide whether or
not two objects are equal in that property, it can be used on the input and output of the first
tool to check the correctness of the first tool. Now the tests succeed, as long as the second tool
produces the same answer for every combination of input and corresponding output of the first tool.

As stated before, tools in the mCRL2 toolset require one or more input strings that are specified
through a context-free grammar. The same holds for the output of the tools, although there are
some that only produce side effects, like a visualization program. The programs also require values
for parameters that influence the functionality. The definition below formalizes a tool, so we can
use them to define tests.

Definition 8.1.1 (Tool). A tool is a four-tuple T = (I,O,A, P ) where

• I is the list of input grammars of the tool

• O is the list of output grammars of the tool

• A is the set of parameters and their values

• P is the tool’s functionality relating input and output

The choice for lists is made because there is a distinct ordering on input and output. Consider
a tool T = (I,O,A, P ) where the input consists of two terms from different languages GA and
GB . Then I = [ GA, GB ], so a list of the two grammars, if the first input corresponds to grammar
GA and the second to GB . So the definition of tools ensures an ordering in input and output and
this also applies whenever there are multiple inputs that specify the same grammar. We abstract
from the functionality P , since we are not interested in white box testing.

In the previous example of a tool deciding the output of another tool, we saw in fact the
application of a tool on the output of another. We can view a test case as a set of tools, some
of which use the output of others as input, along with an expression over one (or more) of the
outputs to determine the test result, i.e. the testing oracle. This reduces the risk of errors in the
verification while providing an efficient way to specify test cases. When an error is found, if the
oracle is correct, one of the programs in the set of tools contains an error.

The set of tools in a test case can be used as nodes in a graph and by doing this a test case can
be considered as a graph consisting of tools linked together through intermediate ’grammar’ nodes.

Figure 8.1 displays a tool connected to its input and output nodes. For grammar nodes l1, ..., l6,
the grammar type of li is Gi for some context-free grammar Gi. Different grammar nodes can
have the same grammar. The nodes themselves have a label so a distinction can be made between
two grammar nodes that have the same grammar.
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l1

l2

l3

l4
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Figure 8.1: A tool with three input and three output nodes that have a language type

During the execution of the test, each grammar node will be given a value. This value can be
reused by more tools, but not altered. This means every grammar node has at most one incoming
edge, from the tool that will produce its value as output. Additionally every instance of a tool
can only be applied once during the test. We should also enforce every input and output of every
tool in the graph to be mapped to a grammar node with the correct grammar label.

Definition 8.1.2 (Test case). A test is a four-tuple (VT , VL, E, F ) where

1. G = (V,E) with V = VL ∪ VT is a directed acyclic connected graph

2. VT = {t1, ..., tn} is a set of tools, so ti = (Ii, Oi, Ai, Pi), for 1 ≤ i ≤ n

3. VL = {l1, ..., lm} is a set of nodes with a grammar type:

• γ(li) = Gi for some context-free grammar Gi and 1 ≤ i ≤ m

4. there are only edges between different node types, E ⊆ (VL × VT ) ∪ (VT × VL)

5. every node v ∈ VL has at most one incoming edge,

• (∀l, l′ ∈ VL, t, t′ ∈ VT : (t, l), (t′, l′) ∈ E : l = l′ ⇒ t = t′)

6. every input and output of every tool is mapped to a node, so

• (∀ti ∈ VT : (∀j ∈ Ii : (∃(l, ti) ∈ E : λ(l) = j)))

• (∀ti ∈ VT : (∀j ∈ Oi : (∃(ti, l) ∈ E : λ(l) = j)))

7. a verdict F : L(G1)× ...×L(Gm)→ B is a Boolean function over strings from the languages
defined by the types of the grammar nodes

There are some grammar nodes that will serve as the starting point of our tests, i.e. when
these nodes are given a value one of the tools can be applied and the testing can begin. These
nodes will comprise the initial configuration, which will be the set of nodes that do not have an
incoming edge. Finally there has to be a set of end nodes for which it can be decided whether or
not the test succeeded or failed, based on the values they will get during execution of the test.

Example 8.1.1 (BES Solver). A solver for BESs is implemented in the tool bessolve. This
solver outputs either true or false, depending on the solution, if there indeed is a solution for
the input BES. Two solving strategies are available in bessolve, namely small progress measures
(SPM) and Gaussian elimination. Both of these strategies are specified to give the same answer
for every BES. We can use this invariant and design the following test case to test if the tools
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respect the invariant.

The tool txt2bes is there to transform the textual representation of a BES into a mCRL2 in-
ternal representation. The internal representation is the required representation of the input for
most tools in the mCRL2 toolset.

txt2bes

bessolve
-spm

bessolve
-sgauss

l1 l2

l3

l4

If we generate a random BES for l1 and run the test by executing the tools. The values for l3
and l4 should always be equal. If we have a test run where this is not the case, we have encountered
an error in one of the tools of this test case along with the input serve as a counterexample.

The visualization of a test case as a graph in example 8.1.1 is used to define these test cases
in this document. The types of the grammar nodes are omitted, since they can be inferred from
the tools. The verification expression is informally described in the accompanying text.

8.2 Execution

The execution of a test case involves running the tools as specified by the test case while directing
the input and output between them. By giving values to language nodes we enable the execution of
a tool. We can define the Boolean function enabled(ti) to be true when all input nodes for ti have
a value. The necessary actions for a test case execution is described in the following algorithm.

ExecuteTestCase(VT , VL, E, F )

1 for li ∈ VL that has no incoming edge
2 do generate random string value for li based on its grammar
3 while VT 6= ∅
4 do take tool ti ∈ VT for which enabled(ti) is true
5 execute ti and put the output in the corresponding node(s)
6 remove ti from VT
7 return F applied to the values for nodes li ∈ VL

The successful run of this algorithm and thus the execution of a test case depends on the
correctness of the test case with respect to definition 8.1.2. So every input and output of every
tool is mapped to a node and for every tool, its input nodes eventually get a value so every tool
is eventually enabled. When a test is executed, not all tools will successfully terminate. Even if it
is presented with valid input, the tool could error or timeout, which makes it unable to verify the
end result of a test. For every test run, the following results are possible.

• Tool timeout
Depending on the input a tool could fail to terminate within a specified amount of time,
which will cause a time out to occur. Commonly this is not a result of an error in the tool
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but it is indeed expected behaviour. For this reason, whenever a timeout is occurred, the
current test run is discarded. We can then continue to generate new input and do another
test run. Of course, it can be the case that a timeout is not expected behaviour in which
case we can count the test result as a failure and conclude we have discovered an error.

• Tool error
A tool can return an error message whenever it is presented with invalid input. Since we
want to test tools by giving them valid input, this error message is an indication of a missing
constraint.

• Result success
If the test result is verified and considered valid, we can conclude the tools preserve the
invariant under test for a single set of generated input. We can subsequently discard the
result.

• Result failure
If the test verdict produces false, we have an instance where the invariant under test is
violated. This means that not only is there an error in one of the tools of the test case, but
we also have a counterexample (the generated input), which can be used to reproduce and
localize the error.

The result failures are the most interesting result. If a result is false, it means that the tools
have ran successfully but the invariant under test has been violated. So this indicates that we
have found an error and we have the corresponding input to serve as a counterexample.

Tool errors are indication of a missing constraint. Depending on the frequency of a generated
input being invalid with respect to a semantic requirement, it is necessary to add a constraint to
solve this. If the probability that a generated string violates a semantic requirement is significantly
large, a constraint has to be added.
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9 Implementation

Until now we have seen the complete approach to the random testing of the mCRL2 toolset. The
concepts of string generation with constraints, as well as the approach to building test cases are
combined and implemented into a testing framework. This framework is written in Python, which
is the standard scripting language used in the mCRL2 toolset.

In the framework the algorithms GenerateII and ExecuteTestCase are implemented. A
parser for the mCRL2 grammars is used to import the context-free grammars into a datastructure
of multidimensional lists. In the framework the functions f and f ′ are also implemented, which
operate on this datastructure.

The framework operates on the context-free grammars in the mCRL2 toolset in BNF. The
production rules in these grammars are labelled. Separate from the grammar a set of constraints is
built for every grammar. These constraints are annotations to the production rules in the context-
free grammars, using the labels to refer to the production rules. The following annotations are
supported in the constraints.

• Weight
The weight of a production rule, described in section 4.1.2, affects the probability of that
production rule being chosen by the algorithm to apply to a symbol.

• Attributes
The set of inherited and synthesized attributes can be defined per production rule. Since
these sets pertain to a non-terminal and not a production rule, these should be the same for
every production rule with the same non-terminal as its left-hand side.

• Attribute rules
The set of attribute rules as defined in definition 5.2.1, that determine the value of the
attributes for every symbol in the rule. They define the values for the inherited attributes
of the right-hand side non-terminals and the values for the synthesized attributes of the left-
hand side non-terminal. For tokens there is an attribute rule that defines the string value
for that token.

• Guard
A single Boolean expression serves as guard of a production rule (see definition 5.2.1). This
guard can also be omitted, in which case the algorithm will default the evaluation to true.

• Attribute dependency
A production rule can be marked if it has an attribute dependency that cannot be respected
in a left-to-right traversal strategy. When a production rule is marked, the application is
postponed until everything else is processed, after which the marked symbols are processed.

The implementation of GenerateII means we have a left-right processing of symbols in pro-
duction rules. Some static semantics, e.g. variable binding, have different dependencies. Rather
than rewriting the grammar (which is not always possible), we opt to postpone the processing of
a symbol until the rest is processed.

So after the first pass of the algorithm we have a term that contains several marked symbols
and for the rest solely terminal symbols. The context returned by the first pass is then used in
the second pass to process the marked symbols.

These annotations are grouped by production rule (using the labels from the grammars). Ev-
ery grammar has several semantic requirements and the constraints that fulfill these requirements
are combined as annotations in a single constraints file.
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The grammar and constraints are separated which allows the user to create different sets of
constraints on the same context-free grammar, without having to touch this grammar. This is
useful in cases where the user wants to switch between completely different sets of constraints.
However, since the constraints are combinations of several semantic requirements, the user has to
copy the relevant parts when he wants to reuse them.

A database contains the test cases designed per definition 8.1.2. Every test case contains the
graph in a textual format, the grammars and constraints needed for input generation, as well as
a small block of code that serves as an oracle. This code is executed to determine the result of
the test case, where it is allowed to use the values for the nodes in the test case. These values are
calculated during test execution.

The user of the framework can specify the set of tools for which the test cases should be ex-
ecuted. This allows the user to test several versions of the same tools without having to modify
the test case. Files serve as input and output for the tools in a test run. Every string from the
language of one of the formalisms of mCRL2 is recorded in a separate file. When a test run is
unsuccessful, the corresponding input that is stored in a file is kept. For successful runs, all the
input and output is discarded, unless specified otherwise by the user.

The user can run a test by importing the test case, the grammar and constraints, by specifying
the location of the tools and by specifying the given input string generation length, number of
tests to run and the timeout time. The framework will calculate the necessary table entries for f
and f ′ after which it runs ExecuteTestCase the specified number of times. Exceptions are raised
when a tool errors or times out, which the user can choose to handle or ignore.

Every constraint from section 6 is implemented. Appendix A shows the context-free grammars
for which constraints are implemented. For BESs this is the entire grammar. For PBESs and
mCRL2 process specifications, a subset of the data grammar is implemented. This subset pertains
to the basic types of the data grammar. Furthermore, the grammar for mCRL2 process specifica-
tions is not complete as it misses operators, like renaming and hiding actions. The main reason
for their omission is the amount of work: every operator and data type can have a multitude of
constraints which have to be manually constructed.

For the remainder of the grammar and constraints, implementation should be straightforward.
However, for the support of composite types like lists and sets or user-defined types, the domain
of the typing attribute can become complex. The reason is that these compositions produce an
infinite set of possible types and the attribute rules and guards have to support this to generate
type correct strings.

The framework logs the result of every test execution. The corresponding generated input is
only recorded when the result is false.
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10 Experimental Setup

This section describes the setup of the experiments done in an attempt to achieve the main goal
presented in this thesis, which is finding new errors in the mCRL2 toolset. Before we apply the
presented method to the latest version of the toolset, we can first determine if the presented
approach is effective at finding errors at all. Furthermore, we want to find an effective testing
strategy that we can apply. There is one parameter, namely the length for string generation, that
we can vary. Therefore it is useful to determine actual length of the resulting strings.

All in all we can identify the following testing goals.

• Validate the approach presented in this thesis by applying it to previous cases

• Determine the actual length of generated strings

• Find a strategy for random testing by determining the optimal testing string length per
formalism and duration of tests

• Apply this strategy on the latest release in an attempt to discover new errors

• Apply directed testing to increase the error probability

Currently there is an existing random testing method available in the mCRL2 toolset. This
testing method uses a bottom-up approach to string generation which differs only in implemen-
tation details from our top-down approach. The existing method is ad hoc; for every grammar
there exists a separate module that can build a string from (a subset of) the language defined
by this grammar, in contrast to our approach where the input is a grammar. There is however
a mechanism in the existing method that aims to minimize the error-producing input strings.
Having the minimal length input that produces an error can be very useful for fixing the error.

The existing method has a set of parameters that determine the amount of several grammatical
structures, e.g. the number of fix-point equations, in the resulting string. In our approach this is
done using constraints. The existing method does not enable the weighting of production rules.

The existing random testing method has identified several errors in previous versions of the
toolset. We can apply the presented method implemented in our framework to these previous cases
in attempt to verify the effectiveness. Our framework should be able to find any error previously
discovered by the existing random testing method.

10.1 Validation

In an attempt to verify the random testing approach presented in this thesis, we apply the method
to previous versions of the mCRL2 toolset. In several revisions, there have been fixes for errors
discovered by the existing random testing method. If we apply our method to the revisions before
the ones that introduce these fixes, we should be able to encounter those errors again. We can
subsequently verify the effectiveness of our method.

So we aim to reproduce the tests used to find the errors in previous revisions of the mCRL2
toolset. We can use the following test plan.

• We search for revisions in which a fix is introduced for an error that was identified through
random testing. This fix can span a number of subsequent revisions, as it can take multiple
revisions to resolve an error. Since it is unknown which revision actually introduces the
error, we take the revision before the first that is part of the series with the fix. This gives
us a number of revisions and errors to test for.
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• For the tool that contains the error in a selected revision, we design a test case per definition
8.1.2 to test for an invariant of that tool. This is the same test case as the one that discovered
the error in the original random testing method. This gives us a test case for each revision.

• We identify the grammar and set of constraints that have to be imposed on that grammar
to produce valid input for our test cases. The grammars for the formalisms can be different
from one revision to another, so when testing a specific revision, we use the grammars from
that revision.

• We test for one hour per length, varying the length between 30, 60, 120 and 240. Since the
running time increases linearly with the length, we increase the length exponentially.

• For each test run of an hour we record the amount of single test cases ran, the error frequency,
number of timeouts and every error-producing input string. We can use all of this information
to determine an optimal testing strategy.

Several revisions will not be suitable for selection. These revisions are regarded unstable and
include revisions where some tools are not able to compile. Also revisions where regression tests fail
can be unsuitable. The reason is that failing regressions tests can indicate unexpected behaviour in
tools, so depending on for which tools the regression tests fail we can choose to exclude the revision.

It is possible for a tool to time out. For example a PBES solver that cannot come to a solution
due to infinite data domains will run indefinitely. We set a limit to the execution time of a tool, so
a timeout occurs whenever a tool exceeds this time limit. We can empirically determine this limit
by sampling a number of test runs and examine the execution time. Depending on the distribution
of the running times we can take a limit thats above a majority of run times. In practice, when
the tools are supposed to terminate on their input, the running times will be close together so
choosing a limit is straightforward.

When a timeout occurs during execution of one of the tools of a test case, this test run is not
counted towards the total number of executed tests. Note that this does not mean the test result
is a failure. Instead, whenever a timeout occurs, the test is reran. The test and timeout time do
count towards the hour testing time.

To acknowledge that the test failures are indeed due to the error under test and that the test
results are not diluted by other errors, we manually verify every failed test. When we encounter
a large number of failures (e.g. more than 100), we take a subsample of 10% to manually verify.

Listed below are the revisions used for testing. For every revision we have a test case in the
form of a graph and a description of the tool and invariant under test as well as a specification of
the end result.

• Revision 8316 (bessolve)
In this revision there is an error in the small progress measures algorithm that is implemented
in the tool bessolve. This tool takes a BES as input and solves it, outputting either true or
false. We design a test case where a random BES is solved in three ways: using the tool
bessolve with Gaussian elimination (-sgauss) and small progress measures (-spm) and using
the tool pbes2bool with the default strategy (-s0 ). The following graph displays this test
case.
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Every solver should give the same answer for the same BES. This means the test will succeed
when the Boolean values for l3, l4 and l5 are equal.

• Revision 8693 (pbesrewr)
The test case for revision 8693 involves a PBES that is rewritten into PFNF, a normal form,
through the tool pbesrewr with (-ppfnf ). The original and resulting PBES are solved through
the tool pbes2bool. The solutions should always match. The following graph displays this
test case.
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l2 l3

l4 l5

The test will succeed if and only if the Boolean values for l4 and l5 are equal.

• Revision 9390 (pbespareqelm)
The test case for revision 9390 involves a PBES that is transformed using pbespareqelm, while
the solution is specified to be preserved. The original and resulting PBES are solved through
the tool pbes2bool. The solutions should always match. The following graph displays this
test case.
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The test will succeed if and only if the Boolean values for l4 and l5 are equal.

• Revision 11070 (pbesstategraph)
The test case for revision 11070 involves a PBES that is transformed using pbesstategraph,
while the solution is specified to be preserved. The original and resulting PBES are solved
through the tool pbes2bool. The solutions should always match. The following graph displays
this test case.
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The test will succeed if and only if the Boolean values for l4 and l5 are equal.
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11 Results

From section 5.3 we know that the resulting length can differ from the given length. To get an
indication of what this difference is, we experiment by generating PBESs with three lengths 60,
120 and 240 and record the resulting lengths. Figure 11.1 shows the results of this experiment.

Figure 11.1: Expected lengths versus resulting lengths for PBES generation with constraints.

From the results we can see that the resulting length can differ significantly from the given
length. The majority of resulting lengths are smaller than the given length, but can be worst-case
doubled or worse. This large difference makes length not a useful metric for generated strings,
outside of its purpose for termination in the string generation algorithm.

11.1 Validation

This section describes the results obtained from the application of the presented random testing
method, implemented in a framework, to the previous revisions of the mCRL2 toolset. The tables
listed below show the data obtained from the test runs. Per revision we can see the amount of tests
ran in an hour, the number of error occurrences and the amount of timeouts that have occurred.
If the error occurrence is zero, it means that the framework was unsuccessful in finding the error.
From the results we can see that the framework can find every error for all test cases of previously
discovered errors. This verifies the effectiveness of the presented approach.

• Revision 8631

Length Tests Errors Timeouts

30 38226 36181 11

60 28000 27746 10

120 18365 18342 19

240 11011 11005 6

In this revision we have tested errors in the BES solver algorithms. We can see a very large
fraction of test cases where an error has occurred. This can be explained due to the fact
that the small progress measures algorithm in the bessolve tool was still under development.
The ratio of failed tests increases as the strings become longer.
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• Revision 8693

Length Tests Errors Timeouts

30 35510 0 1

60 25074 5 21

120 13938 5 28

240 8903 8 45

This revision contains an error in the PFNF rewriter. The results show that for a length of
30 we have been unsuccessful at finding the error. For the other lengths however, the error
has been found. The highest error ratio is with the highest length. This can be explained
due to the fact that when a string is longer, it has higher probability of containing the error
producing structure.

• Revision 9390

Length Tests Errors Timeouts

30 27624 0 0

60 22514 1 3

120 13597 3 17

240 8769 4 16

In this revision we have tested the pbespareqelm tool. From the results we can conclude we
have been successful at identifying the error. Again, for length 30 however, there have been
no test failures. Apparently this length is too small for the error producing grammatical
structures to occur, as we can see the frequency increasing with the length. The error ratio
is low, which can be expected when the error is relatively hard to find.

• Revision 11070

Length Tests Errors Timeouts

30 20677 32 1

60 16491 67 8

120 11065 55 14

240 6032 45 16

This revision pertains to the pbesstategraph error. The results show that we can find the
error at every tested length. We can see the amount of tests decreases exponentially with
the length increasing while the amount of timeouts grows slightly. The most interesting
about these results is the fact that a length of 60 actually has the highest error frequency.
However, the error ratio is the highest with a length of 240. This means the occurrence of
the error is due to a particular grammatical structure in the resulting string. The larger the
string, the higher the probability it contains this grammatical structure.

The results for several revisions show an increase in the number of errors when the length
increases. In the tests for revision 9390 we can see the errors increase with the length. It is
interesting to see if this holds for even greater lengths. Since an increase in length results in fewer
tests per hour, the number of errors has to decrease at some point.

We repeat the experiments for revision 9390 with two additional lengths. Table 11.1 shows the
results for lengths 480, 960. The results show already for length 480 that the number of errors is
not increasing.
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Table 11.1: Test results for an hour test run per length for revision 9390.

Length Tests Errors Timeouts

30 30932 0 4

60 23068 3 4

120 12827 3 12

240 8944 4 24

480 4876 3 16

960 1869 2 48

11.2 New Errors

Using the results obtained from the validation experiments, we can determine a testing strategy
in order to find new errors. For sufficiently large length, we have discovered every error within the
one hour testing time. Therefore we take the same testing time in our strategy. From the results
we cannot conclude anything about the relation between length and the amount of errors, except
that a length of 30 appears to be too small. Therefore we take a length of 120 for every test case.

The test cases we use are listed below. We take the four test cases from the validation exper-
iments (bessolve, pbesrewr, pbespareqelm and pbesstategraph) and add a number of test cases
for linear process specifications (LPSs). The majority of test cases involves a transformation that
preserves a solution (in the case of BES and PBES) or bisimulation (in the case of LTSs and LPSs).
The original and transformed term are compared in terms of their solution or their bisimulation
equivalence. The following list displays the test cases for which we run the experiments.

Test case Description

bessolve comparison of BES solving algorithms

pbesrewr PBES transformation and two-way solving

pbespareqelm PBES transformation and two-way solving

pbesstategraph PBES transformation and two-way solving

lpsbinary LPS transformation and two-way bisimulation test

lpsparelm LPS transformation and two-way bisimulation test

lpsconstelm LPS transformation and two-way bisimulation test

lpssumelm LPS transformation and two-way bisimulation test

lpssuminst LPS transformation and two-way bisimulation test

ltsconvert LTS transformation and two-way bisimulation test

The tools that work with LPSs will be supplied a random LPS by generating a random mCRL2
process specification and using the tool mcrl22lps. The following graphs show this while displaying
the test cases for lpsbinary and ltsconvert.

• ltsconvert This test case involves a random mCRL2 process specification converted into an
labelled transition system (LTS). This LTS is then converted while preserving the bisimu-
lation equivalence relation. The ltscompare tool decides whether or not the two input LTSs
are bisimilar. The invariant under test is that ltsconvert -ebisim outputs an LTS that is
bisimilar to the input LTS. This means the value for l5 should always be true.
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• lpsbinary
In one of the more recent revisions an error has been identified which could be a candidate
for random testing. The error involves the tool lpsbinary which does not preserve strong
bisimulation when presented with at least one identified counterexample. Since this is an
invariant for lpsbinary, it is interesting to see if we can find this error through random testing.
The following graph displays the complete test case.
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lps2ltslps2lts
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l2 l3

l4 l5

l6

A mCRL2 process specification is transformed into a linear process specification (LPS) after
which lpsbinary creates another LPS from it. Both are converted into a labelled transition
system (LPS) and compared together using ltscompare. With -ebisim a comparison is made
based on the bisimulation equation relation. For every mCRL2 process specification for l1,
l6 should get the end result true.
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The test cases are applied to the several release versions of the mCRL2 toolset, namely 201310.0
(October 2013), 201210.0 (October 2012) and 201202.0 (February 2012). For every hour of test
runs we record the amount of tests, the amount of errors found and the amount of timeouts that
have occurred. Tables 11.2, 11.3 and 11.4 displays the results of the test runs for the release
versions.

Table 11.2: Test results for an hour test run per test case on mCRL2 version 201310.0

Test case Tests Errors Timeouts

bessolve 22636 0 15

pbesrewr 17048 0 19

pbespareqelm 15076 0 20

pbesstategraph 10123 0 9

lpsbinary 9479 0 476

lpsparelm 9969 0 458

lpsconstelm 8431 0 369

lpssumelm 11157 0 415

lpssuminst 8051 0 531

ltsconvert 8905 0 514

Table 11.3: Test results for an hour test run per test case on mCRL2 version 201210.0

Test case Tests Errors Timeouts

pbesrewr 16791 0 9

lpsbinary 7380 0 326

lpsparelm 7529 0 351

lpsconstelm 7186 0 355

lpssumelm 7209 0 369

lpssuminst 7677 0 376

ltsconvert 7004 0 363

lpspp 6881 0 317

Table 11.4: Test results for an hour test run per test case on mCRL2 version 201202.0

Test case Tests Errors Timeouts

lpsbinary 7942 0 351

lpsparelm 7360 0 333

lpsconstelm 5608 0 280

lpssumelm 6090 0 265

lpssuminst 6119 0 258

ltsconvert 8301 0 341

lpspp 6729 0 339
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The results show that we have been unable to discover any new errors for these test cases.
This could be due to the fact that there are no errors left. In fact, several of the tools in these
test cases have been tested before using the existing random testing method. We can identify four
main reasons for the fact that we have not found a new error.

• Since we use a subset of the data grammar, it could be the case that in the remaining
grammar there is an error.

• The probability of any remaining errors occurring is such that an hour of testing is not
enough to find them.

• For the invariants under test, the tools are error-free.

It is important to note the relatively large amount of timeouts that occur for test cases working
with mCRL2 process specifications.

11.3 Directed Testing

To experiment with directed testing (see section 7) we take a test case for which we know what the
error producing language pattern is. In the pbesrewr tool in revision 8693, there is an issue with
name clashes of variables in quantification operators. Consider for example the following PBES.

(νX = (∀u ∈ N.u < 5) ∧ (∃u ∈ P.u > 0)) (11.1)

This single fix-point equation contains two quantifications that both use the variable u. Since
they are in different scopes, this should be no issue. However, the tool pbesrewr in revision 8693,
contains does not handle name clashes like this correctly.

We want to put an emphasis on generating these quantifications. Therefore we opt to use a
constraint that sets the amount of generated fix-point equations to 1 and set the weight of the
production rules producing quantifications to 10.

Scenario Length Tests Errors Timeouts

1 120 13938 5 28

2 120 6450 23 15

In the above table we compare the results of the experiments without directed testing (no. 1),
with the scenario for directed testing described before (no. 2), for length 120. From the results we
can see that the amount of errors that have been found has increased from 5 to 23. We can also
see the number of tests has decreased, which can be explained due to the constraint for a single
fix-point equation. This constraint will force the algorithm to choose new lengths regularly, which
increases the generation time.
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12 Conclusion

In this work an approach for the random testing of the mCRL2 toolset using attribute grammars
is presented. Starting from the basic context-free grammars defining the language of the mCRL2
formalisms, we used a length-controlled string generation algorithm to generate input for the tools
of the toolset. To prevent the generation of meaningless input, we enhanced the context-free
grammars with attributes, rules and guards, turning them into attribute grammars. For several
semantic requirements we have seen attribute grammars that force strings from the language de-
fined by that grammar, to adhere to these semantic requirements.

We have used an abstract and formal definition of attribute grammars and related concepts
and have used a generic approach to building constraints. This generic approach enables the
presented methods to be applied in any other situation of context-free grammars and semantic
requirements. We have presented an abstract definition for building test cases where invariants
of tools are tested. These invariants come from the specification of the tools and enable us to do
partial testing of the tools.

The length of a string is used successfully as a control mechanism. However, outside of ter-
mination this length is not a useful metric. The reason is that the resulting length can differ
significantly from the given length and the way it is used forces a certain traversal strategy (left-
right).

All these concepts are implemented into a testing framework. To validate the effectiveness of
the presented approach we have used the framework on previous versions of the mCRL2 toolset.
These versions contain errors which were once discovered by an existing random testing frame-
work. From the results we can conclude that the presented approach is effective in finding errors:
for every test case the framework was able to find the error.

A small experiment for directed testing has shown how a probability of an error occurring can
sometimes be increased. When an error-triggering pattern in a string is known, we can use con-
straints to generate this pattern with a higher probability. Subsequently, the error should occur
with a higher probability.

Using the results obtained in the validation experiments, we have determined a testing strategy
which we employed in order to find new errors. For the test cases that we have used, we did not
discover any errors. From this we cannot conclude that there are no errors left, since it could
be the case that there are errors left that have such a low probability of being occurring and
the testing amount has not been sufficient. Furthermore, only a subset of the data and mCRL2
process specification grammars are implemented. It could be the case that by implementing the
remaining grammar and constraints errors can be found.

To increase the effectiveness of the testing framework this is also the main consideration: imple-
menting the remaining grammar and constraints will have the largest increase of the effectiveness
of the testing framework. Additionally, more tests could be designed especially for the less com-
monly used tools.
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13 Future Work

13.1 Method

The length-controlled string generation algorithms we presented employ a left-to-right traversal
strategy, postponing the processing of a symbol when its attribute dependencies do not occur to
its left. This has been sufficient for the grammars and constraints in the test cases we considered.
However, it is possible that other grammars or semantic requirements cannot be handled by this
traversal strategy. So future work includes incorporating more traversal strategies and possibly
investigating the effect of different traversal strategies on string generation.

We have used the length metric as a control mechanism. However, there are several other
control mechanisms that can be considered ([21]). Even though these control mechanisms will be
similar in their usage and limitations, it can be useful to investigate their differences for string
generation. Furthermore, future work could include research on how control mechanisms can be
used with directed testing.

13.2 Experimentation

The list of test cases we have used in the experiments are non-exhaustive. There is a multitude
of other tools and invariants for which test cases can be built. Since these test cases could reveal
errors that were previously undiscovered, it is useful to use the framework with these new test
cases in the future.

For the formalisms using data, we have used a subset of the grammar pertaining to the data.
This includes PBESs and mCRL2 process specifications. For future experimentation with the
random testing framework, it can be useful to extend this data grammar to allow for, for example,
user defined types.

Several other grammars from mCRL2 are not supported in the random testing framework.
These are linear process specifications (LPS), labelled transition systems (LTS) and mu-calculus
formulas. These formalisms have their own tools, which leads to new test cases. Since a randomly
generated mCRL2 specification can be transformed into an LPS and LTS we can in fact test with
these formalisms. Still, these grammars could be included into the framework in the future.

Though we have experimented with directed testing, we have not employed it yet in our testing
strategy. Depending on the test cases, it can be useful to look for new errors using directed testing,
e.g. by varying the frequency of certain grammatical structures.
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A Context-Free Grammars

This section lists the context-free grammars that are used to generate input for the tools that
operate on these formalisms. The grammars listed are in the format used in this document in
the case of examples and defining semantic requirements. The actual internal representation in
mCRL2 differs slightly, e.g. mathematic symbols are replaced by ASCII versions and keywords
exist that mark the beginning or end of certain grammatical constructs.

A.1 Boolean Equation System

BES → E
E → (σX = φ) | (σX = φ)E
φ → φ⇒ φ | φ ∧ φ | φ ∨ φ | ¬φ | true | false | X
σ → µ | ν

(A.1)

A.2 Data Expressions

ψ → d | N | true | false | (ψ) | ¬ψ | − ψ |
ψ ⇒ ψ | ψ ∨ ψ | ψ ∧ ψ | ψ = ψ |ψ 6= ψ |
ψ < ψ | ψ > ψ | ψ ≥ ψ | ψ ≤ ψ | ∀e.ψ | ∃e.ψ |
ψ + ψ | ψ − ψ | ψ ∗ ψ | ψ/ψ | ψ div ψ | ψ mod ψ

Ψ → ψ | ψ, Ψ

e → d : D | d : D, e

(A.2)

A.3 Parameterized Boolean Equation System

PBES → E
E → (σX = φ) | (σX = φ)E
φ → ψ | ∀e.φ | ∃e.φ | φ⇒ φ | φ ∧ φ | φ ∨ φ | ¬φ | true | false | X
σ → µ | ν
X → X | X(Ψ)

(A.3)

For e, ψ and Ψ, see the data expressions grammar.

A.4 mCRL2 Process Specification

α → a | a|α
a → A | A(Ψ)

p → α | P | P (Ψ) | δ | τ | p+ p | p · p | ψ→p | ψ→p � p |
∑
e p

p || p | p T p

(A.4)

For e, ψ and Ψ, see the data expressions grammar.
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