
 Eindhoven University of Technology

MASTER

Formal comparison of separation kernel models
GWV separation versus Rushby's non interference

Garcia Ramirez, A.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/af6b6aec-e426-4247-bb73-8b908c77b9fd

Technische Universiteit Eindhoven

Master Thesis

Formal Comparison Of Separation
Kernel Models: GWV Separation Versus

Rushby’s Non Interference

Author:

Adrian Garcia Ramirez

Supervisor:

Julien Schmaltz

Assessment Committee:

Julien Schmaltz

Jerry den Hartog

Hans Zantema

A thesis submitted in fulfilment of the requirements

for the degree of Master in Computer Science and Engineering.

in the

Department of Mathematics and Computer Science

January 2014

www.tue.nl
mailto:adrian.garcia.ramirez@gmail.com
Julien.Schmaltz@ou.nl
Julien.Schmaltz@ou.nl
j.d.hartog@TUE.nl
H.Zantema@tue.nl
http://www.tue.nl/en/university/column-2/departments/mathematics-and-computer-science/

TECHNISCHE UNIVERSITEIT EINDHOVEN

Abstract

Department of Mathematics and Computer Science

Master in Computer Science and Engineering.

Formal Comparison Of Separation Kernel Models: GWV Separation

Versus Rushby’s Non Interference

by Adrian Garcia Ramirez

In this document we investigate how formal verification methods can be used to compare

and classify separation kernel architectures.

The separation kernels are an integral part of the Multiple Independent Levels of Security

(MILS) design pattern. Consisting of relatively small components that run directly over

the hardware and whose main task is to create separation or isolation between the

different processes running within the host device.

The two main formal models of separation kernels are the one proposed by Greves,

Wilding and Vanfleet (GWV) and the one proposed by John Rushby.

In the first part of this dissertation we formalize the original version of the GWV and

Rushby models in the Isabelle/HOL theorem prover. Moreover, we present that to our

knowledge is the first formal comparison of the aforementioned models.

In the second part, we propose a a mapping between the elements conforming both

models, and later we use this mapping to compare the security definitions presented in

them.

Finally In the last part we present two examples that illustrate the main differences

between the Rushby Non Interference and GWV separation models.

University Web Site URL Here (include http://)
http://www.tue.nl/en/university/column-2/departments/mathematics-and-computer-science/

Acknowledgements

Through these lines I want to express my sincere gratitude to all the people whose

scientific and human support have collaborated in conducting this research.

I want to thank in a very special manner to my supervisor Julien Schmaltz, for his

invaluable help, patience and guidance. His support and advice allowed this project

come to fruition. Likewise, I want to thank Jerry den Hartog for the close monitoring

he gave to this project and Hans Zantema for being a voting member in the assessment

committee.

In general I want to thank all members of the assessment committee for the time spent

reviewing this document.

I Also want to thank the “Consejo Nacional De Ciencia Y tecnologia” (CONACYT) and

the “Fondo para el Desarrollo de Recursos Humanos” (FIDERH) for economic support

provided during the completion of my studies.

Finally, I thank my friends and family for their understanding, support and constant

communication.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures v

List of Tables vi

Abbreviations vii

1 Context 1

2 Preliminaries 5

2.1 Information Security Overview . 5

2.2 Formal Verification . 6

2.3 Multiple Independent Levels of Security . 6

2.4 The Role of Separation in MILS . 7

2.5 Separation Kernels . 9

2.5.1 Common Criteria Certification . 11

2.5.2 Separation Kernel Protection Profile 12

3 Rushby’s Non Interference Formalization 14

3.1 Transitive Non-Interference . 14

3.1.1 System Model . 15

3.1.2 Security Policy . 16

3.1.3 Purge Function . 17

3.1.4 Security Definition . 18

3.1.5 Conditions to Guarantee Security 18

3.1.6 Security for Single Step Transitions. 19

3.1.7 Rushby Model and Access Control Interpretation 20

3.1.8 Access Control Security Policy . 21

3.1.9 Access Control Reference Monitors. 23

3.2 Intransitive Non-Interference . 24

3.2.1 Sources Function . 25

iii

Contents iv

3.2.2 Ipurge Function . 26

3.2.3 Security Definition for Intransitive Policies. 26

3.2.4 Weakly step consistency . 27

3.2.5 Security of Weak Step Consistent Systems for Intransitive policies 28

3.2.6 Security of Intransitive Access Control Systems 29

4 GWV Security Policy 31

4.1 System Model . 31

4.2 Clarification of Next and Current Functions 32

4.3 Security Policy (Separation) . 33

4.4 Relationship with other formalizations . 34

4.4.1 Exfiltration. 35

4.4.2 Infiltration . 35

4.4.3 Mediation . 36

5 Non-Interference vs GWV 37

5.1 Mapping Between GWV and Rushby Concepts 37

5.2 Equivalence Relation Mapping . 41

5.3 Reference Monitor Mappings . 42

5.4 Reference Monitor Verification . 43

5.5 Proof of GWV Step Consistency . 50

5.5.1 “Strengthening” Weakly Step Consistency. 52

5.5.2 Security of Weak Step Consistent Systems for Transitive Policies . 55

5.5.3 Non-interference for GWV Secure Systems 56

5.6 Comparing GWV Secure vs Rushby’s Step Consistency 59

5.7 Rushby Intransitive Non-Interference vs GWV 61

6 Discussion 65

6.1 Example 1 . 66

6.2 Example 2 . 68

7 Conclusions and Future Work 72

A Isabelle/HOL 75

Bibliography 79

List of Figures

1.1 MILS Architecture Diagram . 2

1.2 Relation Among the GWV and Ruhby Security definitions 4

2.1 Simple Security Policy . 8

2.2 “Real world” Simple Security Policy . 8

2.3 Simple Security Policy with Duty Separation 9

2.4 Architecture of separation-kernel-based system. Figure taken from [24] . 10

3.1 John Rushby’s System Model . 16

3.2 Information flow Security Policy. 17

3.3 John Rushby’s Structured State System . 21

3.4 John Rushby Security Policy Representation 24

3.5 John Rushby [7]. Controlled Downgrading 25

4.1 GWV Separation kernel main components 31

4.2 GWV state change . 33

4.3 Information Flow Defined with dia . 34

5.1 Overview of the proofs in Chapter 5 . 38

5.2 Relation Between GWV secure and Weakly Step Consistency definitions. 50

5.3 Relation Between Weakly Step Consistency and Step Consistency defini-
tions. 52

5.4 Relation Between Weakly Step Consistency and GWV secure definitions. 59

5.5 Relation Between GWV Mediation and Weakly Step Consistency defini-
tions. 62

6.1 Relation Among the GWV and Rushby Security definitions 65

6.2 GWV Secure Policy . 66

6.3 Policy expressed with GWV and Rushby Models 69

v

List of Tables

2.1 Description of Objectives for Each EAL. 12

3.1 John Rushby’s Structured System Access Matrix 22

5.1 Mapping between the elements of GWV and Rushby models 39

vi

Abbreviations

CC Common Criteria

EAL Evaluation Assurance Levels

GWV Greve Wilding Vanfleet separation model

MILS Multiple Independent Levels of Security

MLS Multiple Levels of Security

NSA National Security of Agency (from the United States of America)

NSA National Institute of Standards and Technology

SKPP Separation Kernel Protection Profile

vii

A mis padres que me han dado el tesoro más valioso que se puede

dar a un hijo, amor. Para ellos que no escatimado ningun esfuerzo

y han sacrificado gran parte de su vida por sus hijos.

A mi esposa Claudia que ha compartido mis alegŕıas y

preocupaciones, por animarme a superarme todos los d́ıas, por su

apoyo incondicional y ayuda. En Claudia he encontrado la fuerza

necesaria para llegar hasta el final.

Esta tesis está dedicada a ellos.

viii

Chapter 1

Context

There are several security models proposals born hand in hand with the military se-

curity classification model [1]. Multiple Levels of Security Models (MLS), correspond

to multiple mandatory access control policies[2], in which the data are classified into

security levels.

In MLS systems the access to a resource is granted according to the authorization level

of the subject trying to access it. The MLS approach has also been called data flow

model, because it allows to control the flow of data between different security levels.

The MLS best known models are the Bell-La Padula [3] and Biba [4] models.

Multiple Independent Levels of Security (MILS) is an architectural design pattern capa-

ble of implementing multi-level security in a simple and adequate manner. The objective

of MILS is to ensure the security for high reliability or mission-critical systems.

Figure 1.1 exemplifies the MILS architecture pattern. The main MILS security mecha-

nism, is the separation kernel [5]. The idea behind security kernels consists in isolating

all processes and make them appear independent, as if they run on different machines,

so they cannot interfere with each other. Interaction between different security levels is

only allowed trough channels previously defined.

More background information about MILS and separation kernels can be found in the

next Chapter.

Motivation and Contribution

Motivation

Separation kernel is a key element to achieve multiple-level security in MILS systems.

1

Chapter 1. Context 2

Figure 1.1: MILS Architecture Diagram

Formal verification is a fundamental process to ensure the correctness of systems such as

separation kernels. However,there is no guideline on how to select the most appropriate

separation kernel model.

The two main formal separation kernels models are the GWV model proposed by Greve,

Wilding and Vanfleet [6], and the model proposed by John Rushby [7].

The GWV model contains a separation property that can be used to represent the

isolation between the separation kernel partitions. Whereas, the Rushby model provides

the basis to satisfy a non-interference security policy.

The differences between GWV and Rushby separation kernel models have previously

been informally discussed [8]. However, a formal comparison of the concepts in both

models has never been performed.

The lack of a formal comparison between the GWV and Rushby models makes it im-

possible to determine with certainty which of the two proposed security definitions is

stronger and what is the exact relationship between the different elements and definitions

of both models.

In the present document we do not only formalize the security definition of the GWV

and Rushby models, but we also compare the security properties offered by them against

each other.

Research Question

The objective of this thesis is to use formal methods to determine the differences between

GWV and Rushby’s models and to classify these models in terms of their strength and

Chapter 1. Context 3

features offered. A model is stronger if it accepts less systems as “secure”. A secondary

goal is to determine under which conditions a system would be considered secure under

both security definitions. Therefore, the main research question to be answered in this

thesis is:

Research Question: “What are the exact differences and similarities between

the GWV separation Model and the non-interference model proposed by Rushby?”.

To reach the this objective, the following sub research questions need to be answered:

� How can we map the concepts of the two models?

� What conditions does the GWV model need to be considered secure under Rushby

non-interference definition?

� Which Rushby conditions can be derived from the GWV security definition?

� Can Rushby model ensure security under the GWV definition?

� Is possible to find counterexamples to show the differences of the two models?

Our approach method to answer these questions is to construct a formal proof relating

the GWV and Rushby models.

Contribution

The primary contributions of this dissertation can be summarized as follows:

In Chapters 3 and 4, we formalize the original GWV and Rushby Models and reproduce

the proofs of the original models in the Isabelle/HOL theorem prover.

Our first four sub-research questions are covered in Chapter 5. In this chapter we provide

a mapping between the main elements and functions of both models and we use them to

formalize Rushby’s reference monitor conditions using the GWV concepts and elements.

Later, we prove the relation between Rushby’s transitive and intransitive models and

GWV.

Our main contribution is pictured in Figure 1.2. This picture illustrates the relation

between the different GWV and Rushby elements, line in the figure indicate a relation

between definitions, whereas the numbers indicate the Section where the proof of such

relation can be found.

As we can see GWV separation definition and one extra condition named “GWVcond1”

implies Rushby’s step consistency definition. Whereas, step consistency implies GWV

security (we assume that the action executed in the active partition are the same). In the

Chapter 1. Context 4

Figure 1.2: Relation Among the GWV and Ruhby Security definitions

case of intransitive policies we show that the GWV separation definition implies weakly

step consistency, while Rushby’s definition can only ensure the property of mediation

proposed in the original GWV model.

In Chapter 6 we answer the last sub-research question. In this chapter we first present

an example that illustrates the need of GWVcond1 for GWV to be considered secure in

the Rushby model. Later, a second example shows that Rushby weakly step consistency

cannot ensure GWV security.

Finally, in Chapter 7 the conclusions and some recommendations for further research

are described.

Chapter 2

Preliminaries

2.1 Information Security Overview

Information Security is considered a key factor within organizations. However, it has

many interpretations and encompasses many different concepts. In a broad context

information security is responsible for providing secure and reliable conditions for data

processing systems.

The goals of information security are to ensure that information systems resources are

available when needed, and to guarantee that access and modification of the information

contained in them is only possible within the limits defined by the organization security

policies.

The objectives of information security[9] can be summarized by the following principles:

� Confidentiality: Organizations need to protect the privacy of the data stored and

processed in computer systems.

� Integrity: A secure system must ensure that the data contained in them can only

be modified in appropriate ways, by appropriate people, and that users can rely

on the accuracy of the information contained in the system.

� Availability: This refers to continuity of access to the elements of a computer

system. Based on this principle, information security must ensure that the services

or information supplied by the system are available when required.

5

Chapter 2. Preliminaries 6

2.2 Formal Verification

Commonly, the term verification is used to name the process that aiming at ensuring

that a design satisfies the properties that express correct operation of a given system.

The formal and precise aspect is achieved by describing the system and its properties in

a mathematical language. Verification is the process that ensures, to a certain extent,

whether a system meets it desired properties [10].

Formal verification can be useful to prove the correctness of a wide range of systems such

as: communication protocols, digital circuits and software. In order to verify a system

we need to provide a formal proof of an abstract mathematical model of the system,

and demonstrate the correspondence between the mathematical model and the system

being developed.

An approach to formal verification is theorem proving[11].

Theorem proving is a technique where the system and its desired properties are expressed

in mathematical logic[12]. This logic is given a set of axioms. The theorem proving is

then the process of finding a proof of a property using these axioms and inference rules.

Proofs can be obtained by hand, but in recent years there has been an increasing use of

theorems provers such as ACL2[13], PVS[14], Coq[15] and Isabele/HOL[16]. Theorem

provers can be used as an assistant in the proving process.

Theorem provers vary according to their degree of automation, from fully automatic to

interactive provers. The latter, require interaction with a person. On the one hand,

human interaction makes them more susceptible to errors. On the other hand, it in-

creases the power of the prover thanks to the contribution that can be made by a human

intelligence.

Theorem proving approach requires the user to understand in detail why the system

operates properly, and transmit this information to the verification system, either in

the form of a sequence of theorems to be proved or in the form of system components

specifications.

2.3 Multiple Independent Levels of Security

Multiple independent levels of Security (MILS) is a security model promoted by The Air

Force Research Laboratory, in cooperation with the National Security Agency (NSA),

Department of Defence contractors, academia and software suppliers, with the goal of

ensuring security of systems performing mission-critical functions.

http://www.cs.utexas.edu/~moore/acl2/
http://pvs.csl.sri.com/
http://coq.inria.fr/
isabelle.in.tum.de

Chapter 2. Preliminaries 7

Principles of NEATness

MILS is based on the concepts of separation and information flow control. The goal

of this design pattern is that the security mechanisms meet the following properties,

appropriately represented by the acronym NEAT [17]:

� Non-Bypasable: A security mechanism must be impossible to bypass. Each pro-

cess by a security mechanism must be obligatorily executed.

� Evaluatable: It must be possible to show that the security solution was imple-

mented properly. To comply with this principle it should be possible for the MILS

designer to demonstrate that the defined security mechanisms functions properly,

this can be achieved by using techniques such as code inspection or formal verifi-

cation

� Always Invoked: Security functions are invoked on every execution of the system.

� Tamper proof: A security mechanism cannot be modified without authorization.

This principle avoids the inclusion of mechanism that could introduce malicious

mechanisms to the system.

2.4 The Role of Separation in MILS

Typically the common way to implement security into a system is to add additional

elements above the operating system and applications. In contrast, the MILS approach

is just the opposite. Systems become secure by simplifying the protection, and as the

systems are simpler we can trust them to work properly. Simple means secure [18].

MILS places particular emphasis on the principle of least privilege formulated by Saltszer[19],

which states that: “every program and every user of the system should operate using the

least set of privileges necessary to complete the job.”

To apply the least privilege security principle the designers of MILS compliant systems

are required to decompose the obligations of the system. Each obligation is later placed

into separate components, in such a way that the resulting components are as simple as

possible. This approach involves the advantage that each component can be evaluated

and verified in a simple manner.

MILS is a layered approach where the low-level layers provide security services to the

upper layers. Under this approach each layer is responsible for the security services only

in their own domain.

Chapter 2. Preliminaries 8

Figure 2.1: Simple Security Policy

Imagine for example, a simple security policy like the one shown in Figure 2.1. This

policy requires that component A can only send data to B if it has been previously

encrypted. Component B should not be able to transmit any data to A.

In the real world policies like this are not as easy to implement as it may seem. As

Figure 2.2 shows, components of simple system like this can be very complicated. The

only way to ensure that a policy like this is satisfied, is if each one of the elements

in A and B have been previously assessed and verified against accidental or malicious

mechanisms that can subvert the policy. Therefore we can conclude that to ensure a

simple policy in a relatively simple system, is required to verify the security of operating

systems, protocols and application software. The costs of such an effort can be really

prohibitive.

Now imagine that instead of allowing direct communication between A and B we have a

system composed of three different elements connected by specific communication paths

as shown in Figure 2.3. In this case the complexity of ensuring the security of the system

is simplified, since crypto may be a dedicated component whose correctness has been

previously verified.

Taking this into consideration it can be said that one way to protect the information from

corruption, misuse or unauthorized disclosure is through the separation of the system

in different security domains and maintaining the control of information flows between

such domains.

Figure 2.2: “Real world” Simple Security Policy

Chapter 2. Preliminaries 9

Figure 2.3: Simple Security Policy with Duty Separation

Separation is relatively easy to implement if there is an actual physical distance between

each of the components, ie each component is really a separate physical device. How-

ever, this task is more complex if the system is deployed on a single machine and each

component makes use of a single shared processor and resources. Therefore, is duty of

MILS designers to establish the mechanisms required to achieve this separation.

2.5 Separation Kernels

From the security standpoint of view, the creation of various independent containers

within a single device, enables the possibility of resource isolation. This separation is

extremely important for systems requiring multiple levels of security (i. eg. military

System) or systems that simultaneously host critical processes along with others appli-

cations that may not have been properly verified, may contain errors or even present

malicious behaviour.

The idea of splitting a single system on different “virtual” machines to increase their

security, was originally proposed by Madnick in 1972 [20]. Nevertheless, existing virtu-

alization systems have not been designed with this goal in mind and cannot ensure the

complete separation of the systems hosted in them [21].

Separation kernels were initially proposed by John Rushby [5] as an integral part of the

Multiple Independent Levels of Security (MILS) [22] architecture pattern. This special

type of security kernel consists of relatively small components that run directly over the

hardware and whose main task is to create separation or isolation between the different

processes running within the host device.

Jonas Frid identified [23] some attractive features of separation kernels:

Flexibility: using separation kernels it is possible to create systems that range from

a few partitions to hundreds of them. Systems can easily be modified by adding more

partitions.

Isolation of Security Critical Functions: Owning to the possibility of having secure

separated modules, it is possible to extract the security critical functions and allocate

Chapter 2. Preliminaries 10

Figure 2.4: Architecture of separation-kernel-based system. Figure taken from [24]

them into separate partitions. In consequence security functions can be simpler and

specific which leads to easier verification because the modules are smaller.

Figure 2.4 illustrates the general architecture of separation kernels. In a separation

kernel, isolation is accomplished through the creation of different security partitions.

A certain number of memory segments are assigned to each partition. The processes

running within each partition are only allowed to read and write in the segments that

correspond to their assigned partition. Meanwhile, the kernel is responsible for control-

ling the flow of information between the different partitions.

Kei Kawamorita et al. defined three main requirements to ensure the protection of

memory in a security kernel[24] that can be listed as follows:

� The memory space of each partition must be isolated from the other partitions, in

other words a process being executed in a partition should not be able to access

the memory space from other partitions.

� The memory area containing the separation kernel must be only accessible by the

same kernel.

� The memory space that contains the operating system of each partition should not

be accessible to the user-initiated processes.

Separation kernels are in charge of providing multilevel secure operation on general-

purpose systems by creating an indistinguishable environment from that provided by

Chapter 2. Preliminaries 11

a physically distributed system: to the internal processes each partitions appears as it

were a separate, isolated machine.

One of the main advantages of separation kernels is that they can increase the security

of the whole system by denying the ability of the processes to interfere with any resource

outside their assigned security partition.

To ensure that a separation kernel provides an appropriate level of protection, and

presents all its desired properties, it should be possible for the kernel developer to demon-

strate that the kernel functions properly, this can be achieved by using techniques such

as code inspection or formal verification.

A verifiable secure kernel improves the trustworthiness of the entire system. Separation

kernels should be small enough for mathematical verification. This principle removes all

superfluous functionality from the kernel, removing with it the problems of complexity

and potential security flaws.

The small size and relative simplicity of separation kernels makes them obvious candi-

dates for formal verification thus increasing the trustworthiness of the entire system.

2.5.1 Common Criteria Certification

The Common Criteria (CC) provides a standardized framework (methodology, notation

and syntax) to specify and verify security functional requirements to be met by IT

systems and assurance measures applied to them, in their different stages of life-cycle.

Common Criteria originated from three standards: ITSEC [25], TCSEC [26] and CTCPEC

[27]. The standard ITSEC is an European standard. The TCSEC standard formerly

known as the Orange book (DoD 5200.28 Std) was a work of the NSA and NBS (now

NIST). The CTCPEC standard was published in Canada.

CC consists of a regulatory framework, adopted as an international standard by ISO

in 1999 (ISO 15408) for the security assessment. Common Criteria certification comes

in seven predefined assurance packages, which are called Evaluation Assurance Levels

(EAL). Table 2.1 offers a small description of each EAL level. As EAL level increases,

time, resources and technical requirements needed to achieve the certification also in-

crease.

Chapter 2. Preliminaries 12

EAL Description Target

EAL 1 Product functional as-
say

Demonstrate proper operation of the
product by independent testing, review-
ing the applicability of threats not public
domain.

EAL 2 Product structural test It adds more active cooperation of the de-
veloper in terms of product delivery and
test results.

EAL3 Test methodical and
product validation

In addition to the above, it provides high
security guarantee in the product design
phase.

EAL4 Methodical design, test-
ing and product valida-
tion

To provide a high assurance of safety prac-
tices implementation in the development
and testing phase of the product. Level
up and products suitable for commercial
environments.

EAL5 Semi-formal design and
product testing

Provides high assurance rigorous applica-
tion of safety practices in the phase of
product development and testing at both
the developer how independent.

EAL6 Semi - formally verified
design and product test-
ing

Demonstrates proficiency in asset protec-
tion against significant threats, where the
value of the assets justifies the additional
costs of development.

EAL7 Formal design and
product testing verified

Provides maximum protection guarantee
high-value assets, based on a formal anal-
ysis of the product development and test-
ing level.

Table 2.1: Description of Objectives for Each EAL.

2.5.2 Separation Kernel Protection Profile

Common criteria establishes a common language were users can specify their security

needs. With this language users can specify what functionality should have the products

to meet their needs. User security needs are specified in documents called Protection

Profiles.

In 2007, the U.S. National Security Information Security Agency (NSA) released a Sepa-

ration Kernel Protection Profile (SKPP) [28], that contains a specification of the security

requirements for separation kernels. The SKPP describes the fundamental properties

of separation kernels and defines the security requirements for their under Common

Criteria certification.

The SKPP defines a separation kernel as:

Chapter 2. Preliminaries 13

”Hardware and/or firmware and/or software mechanisms whose primary function

is to establish, isolate and separate multiple partitions and control information flow

between the subjects and exported resources allocated to those partitions”.

Although the fulfilment of SKPP requirements does not imply that the evaluated kernel

is immediately certified under Common Criteria, the requirements defined by the docu-

ment were designed to provide an assurance level EAL 6 augmented. Among the main

requirements of this protection profile we can find the obligation to present a formal

model that describes the functionality of the separation kernel.

Chapter 3

Rushby’s Non Interference

Formalization

In this chapter we describe the notion of Security (non-Interference) for separation Ker-

nels originally formulated by John Rushby [7]. This chapter has been divided in two

sections:

In this Section we present the notion of non-interference for transitive security policies.

First, we formalize the system model proposed by Rushby. Next, we discuss the notion

of security (non-interference) used to evaluate the security of this model. Later, we

prove that the system model proposed by Rushby complies with the notion of non

interference. Finally we consider the relation between non-interference and access control

formulations, and we identify the “Rushby’s reference monitor assumptions” that play

a key role to ensure non-interference in access control systems.

3.1 Transitive Non-Interference

An information flow policy defines the types of information that a system can have, and

how information can flow between these classes. An information flow policy can be used

to express a multi-level security models.

The concept of Non-interference is a very abstract formalization aimed at solving the

problem of confidentiality in computer systems. The definition of non-interference was

introduced by Goguen and Meseguer in 1982 [29], and later refined by John Rushby [7].

According to the concept of non-interference. A security domain does not interfere with

another if the actions executed in the first domain have no effect on what the second

can see. In other words, it is as if the first security domain does not exist for the second.

14

Chapter 3. Rushby’s Non Interference Formalization 15

3.1.1 System Model

Non-Interference security policy was defined by Rushby over a system modeled with a

finite state automaton (state machine), composed by:

� States. A state contains all the values stored in the machine.

� Actions. An action can be seen as an “input” or “commands” supplied to the

machine.

� Outputs. An output is the result returned by the system after feeding it with an

action.

With an initial State s0 which represents the state of the machine before the execution

of any action. In Isabelle/HOL, this model is formalized as follows:

fixes s0 ∶∶ ′State

The aforementioned state machine includes functions step and output, defined as follows:

fixes step ∶∶ ′Action => ′State => ′State

fixes output ∶∶ ′State => ′Action => ′Output

Please note that from this point on, the first letters of the alphabet (a, b, ...) are used to

denote actions, the letters s, t, .. to represent states and the letters of the Greek alphabet

α,β, ... to indicate sequences of actions.

Function step(a, s) returns the state of the machine after action a has been executed in

a given state s. Function output(a, s) returns the output of the machine after applying

the action a over the state s

We make use of an Isabelle/HOL parametrized type ′Domain to represent these security

domains.

Function dom returns the domain associated with the action given as a parameter.

fixes dom ∶∶ ′Action => ′Domain

Figure 3.1 shows a representation of the system model proposed by John Rushby, as we

can notice, the system is divided in several domains, each action feed in the system is

related with a domain

Function run represents a sequence of actions applied to the initial state of the machine,

and is equivalent to an execution trace.

primrec run ∶∶ ′Action list => ′State => ′State where

Chapter 3. Rushby’s Non Interference Formalization 16

Figure 3.1: John Rushby’s System Model

runEmpty ∶ run [] s = s∣
RunActions ∶ run (a#α) = run α ○ step a

Because of the frequent use of expressions like output(run(s0, α), a) and run(s0, α),
Rushby defined functions do and test as a convenient way to abbreviate these forms:

fun do ∶∶ ′Action list => ′State where

do (α) = run α s0

fun test ∶∶ ′Action list => ′Action => ′Output where

test α a = output (do α) a

3.1.2 Security Policy

The core component of Rushby’s Security Definition is the introduction of a policy that

restricts the flow of information among the different security domains.

This security policy is denoted with two reflexive relations: ↝ called “Interference” and

 that denotes the complement relation “Non-Interference”, formally defined as:

 = (Domain × Domain) /↝

Where / denotes set difference.

These relations can be formalized in Isabelle/HOL as follows:

consts interference :: ”’Domain => ’Domain => bool” (”(↝)”)

Chapter 3. Rushby’s Non Interference Formalization 17

Figure 3.2: Information flow Security Policy.

syntax nonInterference :: ”’Domain => ’Domain => bool” (”(/↝)”)

translations ”u /↝ v”⇌”¬ (u ↝ v)”

Intuitively two domains u and v have an “Interference” relation (u↝ v) if u is allowed to

interact with v (the information can flow from one domain to the other). If information

is not allowed to flow between these domains they have a “non-Interference” relation

(u v).
Using the interference (↝) and non-Interference () relations we can model information

flow policies between different security domains.

Figure 3.2 illustrates a policy that can be expressed by:

u↝ w

w ↝ u

v u

v w

This policy allows domains u and w to interact, and restricts any interaction of these

domains with domain v.

3.1.3 Purge Function

For a domain v and an action sequence α, we define function purge(α, v). This function

returns a subsequence of α, resulting of deleting all the actions of the domains that are

not allowed to interact with v. In other words, it removes all actions of domains u that

have a “non-Interference” relation with v (u v).

primrec purge ∶∶ ′Action list => ′Domain => ′Action list where

PurgeemptyCase∶ purge [] v= []∣

PurgeDefList∶ purge (a#α) v = (if (dom a) ↝ v then a#(purge α v)

Chapter 3. Rushby’s Non Interference Formalization 18

else purge α v)

3.1.4 Security Definition

John Rushby[7] defines a system as secure for the policy ↝ if:

definition secure∶∶bool where

secure ≡ (∀ α a.(test α a) = (test (purge α (dom a)) a))

Under this definition, for a system to be considered as secure, no action performed in a

security domain can affect the outputs of any other domain on which the interaction is

not allowed.

3.1.5 Conditions to Guarantee Security

Rushby defines several conditions that individual systems have to satisfy to guarantee

security.

A system is view-partitioned if, for each domain, there is an equivalence relation
u∼ on

the states.

consts equivalenceRelation :: ”State => Domain => State => bool” (”(∼ ∼)”)

As we are defining an equivalence relation it must be transitive symmetric and reflexive.

We can model these properties in Isabelle/HOL as follows:

definition eqvRelTransitive∶∶bool where

eqvRelTransitive ≡ ∀ a b c u. (a ∼ u ∼ b) ∧ (b ∼ u ∼ c)
Ð→ (a ∼ u ∼ c)

definition eqvRelSymmetric∶∶bool where

eqvRelSymmetric ≡ ∀ s u t. (s ∼ u ∼ t) Ð→ (t ∼ u ∼ s)

definition eqvRelreflexive∶∶bool where

eqvRelreflexive ≡ ∀ a u. (a ∼ u ∼ a)

The equivalence relations are said to be output consistent if:

definition outputConsistent ∶∶bool where

outputConsistent ≡ (∀ s t a. ((s ∼ (dom a) ∼ t) Ð→ output s a = output t a))

Informally, two states are considered output consistent for domain u if their outputs are

the same for any sequence of actions α applied on domain u. This property ensures

Chapter 3. Rushby’s Non Interference Formalization 19

that the outputs of two states s and t that seem equivalent to a domain u are really

indistinguishable no matter what actions are performed on u.

Rushby proved [7] that given a policy ↝ and a view-partitioned, output consistent sys-

tem such that

do(α) u∼ do(purge(α,u)).

Then such system is secure for ↝

This lemma can be proven in Isabelle/HOL as follows:

lemma lemma1∶
assumes 1∶ ∀ u α.((do α)∼ u ∼ (do (purge α u)))
and 2∶ outputConsistent

shows 3∶secure

proof −
from assms show ?thesis

unfolding outputConsistent-def secure-def test.simps

by simp

qed

3.1.6 Security for Single Step Transitions.

Rushby also defines the conditions the single step transitions have to fulfill in order to

comply with the security definition described as follows:

Let a system be a view-partitioned system and ↝ a policy. We say that the system

locally respects ↝ if:

definition LocalRespects ∶∶ bool where

LocalRespects ≡ (∀a u s. ((dom a) ∖↝ u) Ð→ (s ∼ u ∼ (step a s)))

System M is step consistent if:

definition stepConsistent ∶∶ bool where

stepConsistent ≡ ∀a u s t . (s ∼ u ∼ t) Ð→ ((step a s) ∼ u ∼ (step a t))

“Locally respects” means that if an action is executed in a domain with non-Interference

relation with u then domain u cannot distinguish the states before and after the execu-

tion of the action.

Chapter 3. Rushby’s Non Interference Formalization 20

Finally “step consistency” requires that if two states are equal for a domain u and we

execute the same action on both states, the outputs will still be same after the execution

of the action.

After defining step consistency and locally respects rushby proves that any system that

is step consistent and locally respects a policy is also secure.

Theorem 1 (Unwinding Theorem) Let ↝ be a policy in a view-partitioned system that

is

� output consistent,

� step consistent, and

� locally respects ↝.

Then the system is secure for ↝.

This theorem can be formalized in Isabelle/HOL as follows:

theorem simple-noninterference∶
assumes outputConsistent∶outputConsistent

and stepConsistent∶ stepConsistent

and LocalRespects∶ LocalRespects

The following premises are included to include the properties of the equivalence

relations

and eqvRelSymmetric∶eqvRelSymmetric

and eqvRelTransitive∶eqvRelTransitive

and eqvRelreflexive∶eqvRelreflexive

shows 5∶secure

3.1.7 Rushby Model and Access Control Interpretation

The original Rushby model describes the conditions that an abstract system has to

comply to be considered secure. However to consider non-Interference in actual systems

he recognized the necessity to provide the system with a more elaborated state structure

(Structured State System).

First we can consider that partitions will be composed of several memory locations called

by Rushby as objects. Each one of these object stores a value.

We use two Isabelle/HOL parametrized types to represent this inner structure:

Chapter 3. Rushby’s Non Interference Formalization 21

Figure 3.3: John Rushby’s Structured State System

� ’Object

� ’Value

The system also defines a function contents which returns the value of a object in a

given state, formalized as:

fixes contents ∶∶ ′State => ′Object => ′Value

3.1.8 Access Control Security Policy

The information flow is controlled with functions observe and alter, that determine the

objects on which a given domain is capable to read or write. Function observe returns

the set of objects that can be read by the domain given as a parameter.

This function can be modeled with the following expression:

fixes observe∶∶ ′Domain => ′Object set

Function alter returns the set of objects that can be modified by the domain given as a

parameter.

fixes alter∶∶ ′Domain => ′Object set

Functions alter and observe are used to encode an “Access Matrix” used to represent

the security policy of the system. Figure 3.3 depicts a graphical representation of a

Structured State System with a security policy encoded by the Table 3.1.

Chapter 3. Rushby’s Non Interference Formalization 22

D/O Obj1 Obj2 Obj3 Obj4 Obj5

Domain u w r

Domain v rw r w

Table 3.1: John Rushby’s Structured System Access Matrix

For a domain u and two states s and t, Rushby defines relation
u∼ by the following

formalization:

assumes acRelation∶
∀ s u t.(s ∼ u ∼ t) ←→ (∀ n ∈ observe u. contents s n = contents t n)

It is easy to prove that
u∼ have the Transitive, Symmetry and Reflexive properties from

the equivalence relations:

lemma acRelationisTransitive∶
shows eqvRelTransitive

proof −
from acRelation

show ?thesis

unfolding eqvRelTransitive-def by auto

qed

lemma acRelationIsSymmetric∶
shows eqvRelSymmetric

proof −
from acRelation

show ?thesis

unfolding eqvRelSymmetric-def by auto

qed

lemma acRelationIsReflexive∶
shows eqvRelreflexive

proof −
from acRelation

show ?thesis

unfolding eqvRelreflexive-def by auto

qed

Chapter 3. Rushby’s Non Interference Formalization 23

3.1.9 Access Control Reference Monitors.

A State Structured System enforces a security policy when the following conditions are

satisfied:

1.The outputs of an action a must depend only of the objects that can be read by the

domain u , thus is required that:

definition(in AC) rma1 ∶∶bool where

rma1 ≡ (∀ s t a. ((s ∼ (dom a) ∼ t) Ð→ output s a = output t a))

This condition can be seen as an interpretation of the “output consistency ” property

for state structured systems. This condition requires that for a domain u the values

stored in the objects are the same for any sequence of actions α applied on domain u.

This property ensures that the values of two states s and t that seem equivalent to a

domain u are really indistinguishable no matter what actions are performed on u.

2.When an action is applied to the system, the values of all the modified objects must

depend only of the values on the object on which dom(a) has read access:

definition rma2 ∶∶bool where

rma2 ≡ (∀ s t a n.((s ∼ (dom a) ∼ t)
∧ (contents (step a s) n /= (contents s n)
∨ contents (step a t) n /= (contents t n))

Ð→ (contents (step a s) n = contents (step a t) n)))

This condition requires that if one object have the same value for two different states s

and t for a domain u. If we execute an action a in both states, the value of the object

shall be modified in the same way in the resulting states.

3. If an action a changes the value of object n then dom(a) must have alter access to n:

definition rma3 ∶∶bool where

rma3 ≡ (∀ a n s .(contents (step a s) n) /= (contents s n)
Ð→ n ∈ alter (dom a))

Rushby names this three conditions the “Reference Monitor Assumptions” and states a

theorem to relate the non-Interference relation and the Access Control System we just

described.

Theorem: A system with structured state that satisfies the Reference Monitor Assump-

tions and the following two conditions.

� 1 u↝ v ⊃ observe(u) ⊆ observe(v), and

Chapter 3. Rushby’s Non Interference Formalization 24

Figure 3.4: John Rushby Security Policy Representation

� 2 n ∈ alter(u) ∧ n ∈ observe(v) ⊃ u↝ v.

Is secure for the policy ↝.

This theorem can be formalized in Isabelle/HOL as follows:

theorem accessControlSystemIsSecure∶
assumes 1∶∀ u v. ((u ↝ v) Ð→ observe u ⊆ observe v)
and 2∶∀ u v n. ((n ∈ alter u) ∧ (n ∈ observe v)) Ð→ (u ↝ v)
and rma1∶rma1

and rma2∶rma2

and rma3∶rma3

shows secure

On this proof we have formalized Rushby intransitive non-interference model for access

control systems. In the next Chapter we will study the GWV separation model.

3.2 Intransitive Non-Interference

The notion of basic non-Interference discussed in Section 2.5.2 is excessively restrictive in

some cases; Imagine for example that we have a security policy like the one represented

by Figure 3.4 and composed by the following assertions:

1.u v

2.u↝ w

3.w ↝ v

Expression 1 (u v) forbids the communication between domains u and v and requires

that there is no way for domain v to observe any change on the system caused by the

actions applied to u. However, this condition is too restrictive on this case and would

consider the assertions 2 and 3 as insecure, because the domain v could observe changes

caused by actions of u trough w.

This kind of policies can be useful for applications such as the one illustrated by Figure

3.5. In this Figure the right arrows connecting the “Downgrader” domain represent

intransitive information flows because, although the iformation can flow without restric-

tion from the lower levels to the higher level, they need to use the ”Downgrader” to send

the information the other way around.

Chapter 3. Rushby’s Non Interference Formalization 25

Figure 3.5: John Rushby [7]. Controlled Downgrading

To solve this kind of problems Haigh and Young [30] proposed a variant of intransitive

non Interference based on an “intransitive purge” function wich was later refined by

John Rushby [7].

Rushby intransitive policies are defined on the same state machine we described in

Chapter 3 with some additional elements we describe in the next sections.

3.2.1 Sources Function

Rushby specify a sources function. sources receives a list of actions “α” and a domain

U as parameters, and returns a set of domains. sources function is formally defined as

follows:

primrec sources ∶∶ ′Action list => ′Domain => ′Domain set where

SourcesEmptyCase ∶sources [] u = {u}
∣ SourcesDefList ∶sources (a#α) u = (if (∃ v . v ∈ (sources α u) ∧ ((dom a) ↝ v))

then (sources α u) ∪ {dom a}
else sources α u)

The goal of sources function is to determine the Security domains that are allowed to

interfere with the domain given as a parameter. In other words U ∈ sources(α,V) either

means that U = V or that there is a subsequence of steps in α such that U ↝ D1 ↝
D2.... ↝ Dn ↝ V . It is important to point out that the order on which the actions

are executed is important for the sources function. Consider for example the following

intransitive security policy:

A↝ B

Chapter 3. Rushby’s Non Interference Formalization 26

B ↝ C

A C

Defined for a system with a set of actions {a, b} such that dom(a) = A, dom(b) = B. If

we apply sources function to the two step sequences α1 = {a, b} and α2 = {b, a} for the

domain C we would notice that:

sources(α1,C) = {A,B,C} , while

sources(α2,C) = {B,C}

The reason for this difference is that an α2 action a is executed after action b. In

intransitive policies like this C should not be able to notice changes from A that has not

been followed by an action on B.

3.2.2 Ipurge Function

Using sources function it is possible to define an ipurge function. ipurge represents an

intransitive version of purge function we described in Section 3.1.3.

ipurge can be defined as follows:

primrec ipurge ∶∶ ′Action list => ′Domain => ′Action list where

iPurgeEmptyCase ∶ipurge [] u= [] ∣
iPurgeDefList ∶ipurge (a#α) u = (if ((dom a) ∈ (sources (a # α) u)) then

a#(ipurge α u)
else ipurge α u)

The goal of ipurge function is to return a subsequence of α, resulting of deleting all the

action that are not allowed to interact with u.

3.2.3 Security Definition for Intransitive Policies.

John Rushby defines an intransitive machine as secure for the policy ↝ if:

definition isecure ∶∶bool where

isecure≡(∀ α a.(test α a) = (test (ipurge α (dom a)) a))

Under this definition, for a system to be considered secure, no action performed in a

security domain can affect the outputs of any other domain on which the interaction

is not allowed by a direct interference relation U ↝ V or by a intransitive policy (A ↝
B,B ↝ C).

Rushby showed that given an intransitive policy ↝ and a view-partitioned, output con-

sistent system such that

Chapter 3. Rushby’s Non Interference Formalization 27

do(α) u∼ do(ipurge(α,u)).

Then such system is secure for ↝

This lemma can defined in Isabelle/HOL as follows:

lemma lemma2 ∶
assumes ∀ u α.((do α) ∼ u ∼ (do (ipurge α u)))
and outputConsistent

shows isecure

proof − {
from assms show ?thesis

unfolding outputConsistent-def isecure-def test .simps

by auto}
qed

Rusbhy defines a new equivalence relation. Given a set of security domains C relation

and two states s and t s
C≈ t is defined as follows:

definition iequivalenceRelation ∶∶ ′State => ′Domain set=> ′State => bool ((- ≈ - ≈ -))
where iequivalenceRelation s c t ≡ ∀ u ∈ c.(s ∼ u ∼ t)

Informally the relation is true when the states s and t look the same for all the members

of C.

3.2.4 Weakly step consistency

Intransitive policies requires a weaker version of the step consistency condition we de-

scribed in Section 3.1.6. A system is weakly step consistent if the states that result from

executing an action in equivalent states are equivalent.

Weakly step consistency can be defined as follows:

s
u∼ t ∧ s dom(a)∼ t ⊃ step(a, s) u∼ step(a, t)

Isabelle/HOL

definition weaklyStepConsistent ∶∶ bool

where weaklyStepConsistent ≡
∀ s u t a.(s ∼ u ∼ t) ∧ (s ∼ (dom a) ∼ t)Ð→ ((step a s) ∼ u ∼(step a t))

Weak step consistency [31]: can be described informally as follows: If two states look

equal to the evaluated partition (u), and also look the same to the partition executing

the action (dom(a)), then resulting states must also look the same to the evaluated

partition (u).

Chapter 3. Rushby’s Non Interference Formalization 28

3.2.5 Security of Weak Step Consistent Systems for Intransitive poli-

cies

Rushby defines three lemmas to prove the security of weak step consistent systems.

A formal verification of the lemmas has been performed using Isabelle/HOL. The Is-

abelle/HOL file containing the following proofs cna be found in [URL]. The mechanically

checked proof of Rushby’s Lemmas 3 to 5 and Theorem 7 follow the original approach

very closely.

Lemma 3 Let ↝ be a policy and M a weakly step consistent view-partitioned system,

and locally respects ↝. Then

s
sources(a○α,u)

≈ t ⊃ step(s, a)
sources(a○α,u)

≈ step(s, t)

This lemma can be formalized in Isabelle/HOL as follows:

lemma lemma3 ∶
assumes weaklyStepConsistent ∶weaklyStepConsistent

and LocalRespects ∶LocalRespects

and eqvRelSymmetric∶eqvRelSymmetric

and eqvRelTransitive ∶eqvRelTransitive

shows

∀ s a α u t .(s ≈ (sources (a # α) u) ≈ t) Ð→ ((step a s) ≈ (sources α u) ≈ (step a t))

Rushby basically proves that in weakly step consistent system, if all the Domains that

can modify a domain U are equal in two states s and t, They are going to remain equal

after executing the same action in both states.

Lemma 4 Let ↝ be a policy and M a view-partitioned system that locally respects ↝.

Then

dom(a) ∉ sources(a ○ α,u) ⊃ s
sources(α,u)

≈ step(a, s)

This lemma can be formalized in Isabelle/HOL as follows:

lemma lemma4 ∶
assumes LocalRespects ∶LocalRespects

shows ∀ a α s u. ((dom a) ∉ sources(a # α) u) Ð→ (s ≈ (sources α u) ≈ (step a s))

The purpose of this lemma is to show that if the domain of an action a is not allowed

to alter a domain u, then the values of all the domains that alter u will remain the

same after performing the action a, In other words domain U will be able to observe

any action perform by domains that are not allowed to interact with it.

Lemma 5 Let ↝ be a policy and M a view-partitioned system which is weakly step

consistent, and locally respects ↝. Then

Chapter 3. Rushby’s Non Interference Formalization 29

s
sources(α,u)

≈ step(a, s) ⊃ run(α, s) u∼ run(ipurge(α,u)t)

We formalized this lemma in Isabelle/HOL as follows:

lemma lemma5 ∶
assumes weaklyStepConsistent ∶weaklyStepConsistent

and LocalRespects ∶LocalRespects

and eqvRelSymmetric∶eqvRelSymmetric

and eqvRelTransitive ∶eqvRelTransitive

shows ∀ α s t u.(s ≈ (sources α u) ≈ t) Ð→ ((run α s) ∼ u ∼ (run (ipurge α u) t))

Using lemmas 3 to 5, John Rushby proves that the proposed intransitive model is secure

Theorem 7 (Unwinding Theorem for Intransitive Policies) Let ↝ be a policy

and M a view-partitioned system that is

1. is output consistent,

2. weakly step consistent, and

3. locally respects ↝.

Then M is secure for ↝.

We formalized this theorem in Isabelle/HOL as follows:

theorem Theorem7 ∶
assumes outputConsistent ∶outputConsistent

and weaklyStepConsistent ∶weaklyStepConsistent

and LocalRespects ∶LocalRespects

and eqvRelSymmetric∶eqvRelSymmetric

and eqvRelTransitive ∶eqvRelTransitive

and eqvRelreflexive ∶eqvRelreflexive

shows isecure

3.2.6 Security of Intransitive Access Control Systems

Finally,John Rushby proved that the access control system described in Section 3.1.7

works for intransitive noninterference policies as well as for transitive ones.

Theorem 8 Let M be a system with structured state that satisfies the Reference Monitor

Assumptions and the condition

n ∈ alter(u) ∧ n ∈ observe(v) ⊃ u↝ v

is secure for ↝.

The aforementioned theorem is translated in Isabelle/HOL as follows:

theorem Theorem8 ∶
assumes 1 ∶∀ n u v .(n ∈ alter u ∧ n ∈ observe v) Ð→ (u ↝ v)
and rma1 ∶rma1

Chapter 3. Rushby’s Non Interference Formalization 30

and rma2 ∶rma2

and rma3 ∶rma3

shows isecure

Chapter 4

GWV Security Policy

In this chapter we describe the Greve, Wildling, Vanfleet (GWV) separation Kernel

Formal Security Policy[6]. The original GWV model was formalized in ACL2. In this

dissertation we translate the original formalization into Isabelle/HOL.

ACL2 and Isabelle/HOL support different styles of specification and proof. The ACL2

logic is unquantified and untyped, Isabelle/HOL is not only quantified but higher-order

(it allows quantification over functions and predicates, not just individuals). However,

we were able to successfully translate the original security definition and show that GWV

model presents the properties of Exfiltration, Mediation and Infiltration.

4.1 System Model

The GWV formal security policy describes an abstract model of a Separation Kernel.

Such model divides a state machine in several memory segments and ensures its separa-

tion by controlling the flow of information between them. Figure 4.1 depicts the main

components of the GWV system model.

Figure 4.1: GWV Separation kernel main components

31

Chapter 4. GWVChapter 32

It is worth pointing out that states in the GWV model are not completely equivalent to

the ones described in the Rushby model. In the Rushby model an action a is applied

to a state s to change the current state. Whereas, the GWV model does not define a

concept for actions. Thus, we consider that a GWV state is composed by a Rushby

State and an Action.

As it was mentioned before the GWV security policy is defined over a machine that

supports several partitions, with one of them defined as the current partition. Function

current returns the current active partition given a memory state as parameter.

fixes current ∶∶ (′State, ′Action) memorystate ⇒ ′Domain

Each partition has several memory segments associated with it. Function segs takes

a partition as parameter and returns the memory segments associated with it. (Note

that function segs that segments associated to a partition are not modified with current

memory state of the machine).

fixes segs ∶∶ ′Domain ⇒ ′Object set

The values stored in a memory segment are extracted by function select. Select takes

two arguments: a segment and a machine memory state and returns all the values stored

in the memory segment in the given memory state.

fixes select ∶∶ (′State, ′Action) memorystate ⇒ ′Object ⇒ ′Value

The change between memory states is modeled with function next, that represents

a computation on the state machine. This function takes as an argument a memory

state and returns the new memory state of the machine after the execution of a single

execution step.

fixes Next ∶∶ (′State, ′Action) memorystate ⇒ (′State, ′Action) memorystate

4.2 Clarification of Next and Current Functions

The way the states are defined within the model GVW can be a bit confusing at first.

However, Alvez [8] offers a clarification about the correct interpretation of the Current

and Next functions.

Chapter 4. GWVChapter 33

Figure 4.2: GWV state change

Figure 4.2 illustrates how the change of states is performed in the GWV model. As it

can be seen, when the Next function is executed the kernel invokes, what the author

calls a cut point. The cut point is the time the previous state of the kernel has already

been saved in memory, but the values of the current state are not yet loaded into the

kernel work area. It is at this time when the security policy is evaluated.

When the next function is executed, the separation kernel has the function to execute

several steps. First, the values of the current state are loaded to the Kernel working area.

Once the data is loaded , the action that corresponds to the current state is executed.

When the task is completely executed the partition status is saved to memory. Finally

the kernel work area is cleaned before loading the next state.

4.3 Security Policy (Separation)

The GWV Separation Kernel model enforces a communication policy between memory

segments. The basic idea is to control the information flow between memory segments.

This policy is modeled with function “Direct Interaction Allowed” dia, which takes as

an argument a memory segment and returns a list of memory segments that are allowed

to interact with it.

fixes dia ∶∶ ′Object ⇒ ′Object set

Figure 4.3 illustrates how GWV security policies are defined using dia. It’s worth notice

that the only segments which can effect segment A are those returned from dia, on this

case:

dia (A) = {B,E,D}

Finally function equals is defined to test if the values of a given set of segments match

for two different memory states. Please notice that this function is not present in the

Chapter 4. GWVChapter 34

Figure 4.3: Information Flow Defined with dia

original model. However it greatly increases the readability of the separation lemma

described later.

fun equals ∶∶ ′Object set ⇒ (′State, ′Action) memorystate ⇒ (′State, ′Action) memo-

rystate ⇒ bool

where

equals A sa sb = (∀ a ∈ A. select sa a = select sb a)

The security policy requires that any arbitrary memory segment seg is only affected by

the set of memory segments that are allowed to interact with seg and at the same time

are associated with the current partition.

definition GWV-secure∶∶ bool where

GWV-secure ≡ ∀ st1 st2 seg.

current st1 = current st2 ∧
select st1 seg = select st2 seg ∧
equals ((dia seg) ∩ (segs (current st1))) st1 st2

Ð→ (select (Next st1) seg = select (Next st2) seg)

GWV security Policy states that for any given segment, seg, the values of the segment

are only affected by memory segments that are allowed to communicate with it and that

are part of the currently executing partition. If the separation assumption is preserved,

then the only apparent way that a given segment could change is from interaction with

segments that are allowed to affect it and that are in dia(seg).

4.4 Relationship with other formalizations

It is proven [6] that any system that meets the requirements for the separation security

policy also present three desired properties of the separation kernels, namely Exfiltration,

Chapter 4. GWVChapter 35

Mediation and Infiltration. In this section, these properties are presented and proved

under the assumption that separation holds:

4.4.1 Exfiltration.

Lemma exfiltration states that when a step is executed in the current partition, the

memory segments can only be affected in a way that is consistent with the communica-

tion policy expressed with function dia.

lemma exfiltration∶
assumes GWV-secure

shows ∀ st1 st2 seg. current st1 = current st2 ∧
select st1 seg = select st2 seg ∧
(dia seg) ∩ (segs (current st1)) = {}
Ð→ select (Next st1) seg = select (Next st2) seg

proof −
from assms show ?thesis unfolding GWV-secure-def by auto

qed

For this lemma we assume that dia for a considered memory segment does not intersect

with the segments of the current partition

4.4.2 Infiltration

Lemma infiltration states that the values in the current partition are not affected by the

data in the segments associated with other partitions.

lemma infiltration∶
assumes GWV-secure

shows ∀ st1 st2 seg. current st1 = current st2 ∧
seg ∈ segs (current st1) ∧
equals (segs (current st1)) st1 st2

Ð→ select (Next st1) seg = select (Next st2) seg

proof −
from assms show ?thesis unfolding GWV-secure-def by auto

qed

Chapter 4. GWVChapter 36

4.4.3 Mediation

When a process is executed in the current partition, the effect on a segment does not

depend on anything else than the segment’s original value and the values of the current

partition.

lemma mediation∶
assumes GWV-secure

shows ∀ st1 st2 seg.

current st1 = current st2 ∧
select st1 seg = select st2 seg ∧
equals (segs (current st1)) st1 st2

Ð→
select (Next st1) seg = select (Next st2) seg

proof −
from assms show ?thesis unfolding GWV-secure-def by auto

qed

We have proven that our formalization of the GWV separation model holds the exfiltration,

infiltration and mediation. properties In the next Chapter we will compare the models

we just described to find their main similarities and differences.

Chapter 5

Non-Interference vs GWV

The structure of this chapter is illustrated in Figure 5.1. First we present a mapping

between the concepts of the GWV and Rushby models, the mapping includes a definition

of the Rushby reference monitor conditions in GWV terms. Next, we use this mapping to

check if we can derive the original reference monitor definitions from the GWV versions.

Later, we prove that a system with the GWV reference monitors complies with the

non-Interference security definition. After that, we show that GWV security definition

implies weakly step consistency.

Once we have showed that GWV secure implies weakly step consistency we can use this

proof to show that a GWV secure system can be Rushby secure for the transitive and

intrasitive Rushby security definitions.

Finally, we show that Rushby’s step consitency (transitive model) implies GWV secu-

rity (with action equality), but Rushby weak step consistency (intransitive model) only

implies one of the properties of GWV security known as Mediation.

5.1 Mapping Between GWV and Rushby Concepts

The first problem while trying to compare ”GWV” and Rushby basic ”non-Interference”

is that the concepts and components of the two models are not equivalent. In this section

we try to find the similarities between these elements and map these equivalences. Table

6.1 presents the mappings between GWV and Rushby functions.

One of the most important similarities between the two models is the way the system

is divided. The two models provide separation between processes on different security

levels. However, such division is achieved by defining Partitions in GWV and security

Domains in Rushby model. For the rest of this document we consider these concepts

as equivalent.

We define function GWVoutput-f which takes a GWV memory state as input and returns

the output of that state.

37

Chapter 5. Non-Interference vs GW 38

Figure 5.1: Overview of the proofs in Chapter 5

fixes GWVoutput-f ∶∶ (′State, ′Action) memorystate => ′Output

GWV does not define an interference relation at the level of partitions. It defines

dia, which returns pairs of interfering segments. We now provide a definition of an

interference relation in the world of GWV.

definition GWVia ∶∶ ′Domain => ′Domain => bool where

GWVia u v ≡ (∃ s s ′. s ∈ segs v ∧ s ′ ∈ dia s ∧ s ′ ∈ segs u)

We define the mapping between GWVia and Rushby’s interference relation. This def-

inition basically reads, there is an interference from u to v, if there are two objects s

and s′ such that s is a segment of v, s′ is a segment of u, and s′ is allowed to directly

interfere with s. In other words, two partitions have an interference relation if they have

interfering segments.

definition intMapping∶∶ bool where

intMapping ≡ ∀ u v. (u ↝ v) ←→ GWVia u v

Chapter 5. Non-Interference vs GW 39

GWV Rushby Comments

(’State, ’Action) memo-
rystate

state GWV states are not equiv-
alent to Ruhsby states.
States in GWV contain the
Rushby state and the ac-
tion to be executed.

Partition Domain

Segment Object

GWVoutput f Output We define a new function
GWVoutput f to represent
the output of the machine
in a given state.

(’State, ’Action) memo-
rystate

action GWV states contains the
action that is going to be
performed when the next
function is called.

current(segment) dom(dimension)
segs(partition) alter(domain)
select(State, Segment) contents(State,Object)
next(State) step(State)
segs(u) observe(u)
GWV vpeq(s, u, t) s

u∼ t We define the GWV vpeq
function to represent the
“view partitioned” equiva-
lence relation.

GWV ia(u, v) u↝ v GWV ia function provides
a definition of interference
relation in the world of
GWV.

Table 5.1: Mapping between the elements of GWV and Rushby models

Chapter 5. Non-Interference vs GW 40

In Rushby’s model, the equivalence relation “view partitioned” plays a central role.

There is no similar relation defined in the context of GWV. Therefore we define such a

relation with function GWVveq

definition GWVvpeq ∶∶ (′State, ′Action) memorystate ⇒
′Domain ⇒ (′State, ′Action) memorystate ⇒ bool

where

GWVvpeq s p t ≡
(∀ seg ∈ segs p. select s seg = select t seg)
∧ Action s = Action t

According to John Rushby, function ”observe(u) is the set of locations whose values can

be observed by domain u.” [7]. Whereas in the GWV model, a partition is able to read

from all the segments segments assigned to it.

The new definition observeMapping maps the Rushby’s observe function in the terms of

GWV model.

definition observeMapping∶∶ bool where observeMapping ≡ ∀ u. observe u = segs u

In the GWV context a partition can modify (”alter”) all its assigned partitions.

definition alterMapping∶∶ bool where alterMapping ≡ ∀ u. alter u = segs u

We assume that the values stored in a segment n in the GWV state s are equal to the

values stored in a similar state in the Rushby model.

definition selectMapping∶∶ bool where

selectMapping ≡ (∀ n memoryState.

select memoryState n = contents (State memoryState) n)

A mapping between the Rushby output and the GWV GWVoutput-f functions is defined

as follows:

definition outputMapping∶∶bool where

outputMapping ≡ (∀ memoryState.(GWVoutput-f memoryState) =
(output (State memoryState) (Action memoryState)))

The active partition returned by function current for a state s, is equal to the domain

returned by the Rusby function dom for the state s

definition currentMapping∶∶bool where

currentMapping ≡ ∀ memoryState. current memoryState

= dom (Action memoryState)

The state obtained after executing the GWV function next on a state s will be equal

to the one obtained from the Rushby step function for the action contained within the

GWV state.

Chapter 5. Non-Interference vs GW 41

definition stepMapping∶∶ bool where

stepMapping ≡ ∀ s. State (Next s) = step (Action s) (State s)

5.2 Equivalence Relation Mapping

We define a equivalent to the Rushby state equivalence relation in GWV terms as follows:

definition GWVvpeqtoRelation∶∶bool where

GWVvpeqtoRelation ≡ ∀ s u t. GWVvpeq s u t

←→ ((State s) ∼ u ∼ (State t))

Rushby’s s
u∼ t relation denotes an equivalence relation. We prove that the GWV map-

ping holds the transitivity, symmetry and reflexivity properties

definition GWVvpeq-transitive∶∶bool where

GWVvpeq-transitive ≡ ∀ a b c u. (GWVvpeq a u b) ∧ (GWVvpeq b u c)
Ð→ (GWVvpeq a u c)

lemma GWVvpeqIstransitive∶
shows GWVvpeq-transitive

proof −
show ?thesis

unfolding GWVvpeq-def GWVvpeq-transitive-def by auto

qed

definition GWVvpeq-symmetric∶∶bool where

GWVvpeq-symmetric ≡ ∀ a b u. (GWVvpeq a u b) Ð→ (GWVvpeq b u a)

lemma GWVvpeqIsSymmetric∶
shows GWVvpeq-symmetric

proof −
show ?thesis unfolding GWVvpeq-def GWVvpeq-symmetric-def by auto

qed

definition GWVvpeq-reflexive∶∶bool where

GWVvpeq-reflexive ≡ ∀ a u. (GWVvpeq a u a)

lemma GWVvpeqIsReflexive∶
shows GWVvpeq-reflexive

proof −

Chapter 5. Non-Interference vs GW 42

show ?thesis unfolding GWVvpeq-def GWVvpeq-reflexive-def by auto

qed

5.3 Reference Monitor Mappings

Now that we have mapped all the Rushby concepts to GWV concepts, we can start

phrasing Rushby’s accessControlSystemIsSecure obligations and reference monitor con-

ditions in terms of GWV concepts.

Theorem accessControlSystemIsSecure have 3 reference monitor obligations to be dis-

charged.

The first reference monitor:

s
dom(a)∼ t ⊃ output(s, a) = output(t, a)

Can be expressed in GWV terms, by simply replacing GWV ia. as follows:

definition GWVrma1∶∶bool where

GWVrma1 ≡ ∀ s t. (GWVvpeq s (current s) t)
Ð→ GWVoutput-f s = GWVoutput-f t

The second reference monitor defined as:

s
dom(a)∼ t ∧ (contents(step(s, a), n) ≠ contents(s, n)

∨contents(step(t, a), n) ≠ contents(t, n))
⊃ contents(step(s, a), n) = contents(step(t, a), n).

Can be expressed in GWV terms with the following definition:

definition GWVrma2∶∶bool where

GWVrma2 ≡ ∀ s t n u.((GWVvpeq s u t)
∧(select (Next s) n /= select s n

∨ select (Next t) n /= select t n))
Ð→ select (Next s) n = select (Next t) n

Finally the third reference monitor:

contents(step(a, s), n) ≠ contents(step(a, t), n) ⊃ n ∈ alter(dom(a)).

can be formalized in the GWV world as follows:

definition GWVrma3∶∶bool where

GWVrma3 ≡ ∀ n s. select (Next s) n /= select s n Ð→ n ∈ segs (current s)

The accessControlSystemIsSecure theorem additionally defines two extra conditions that

systems must comply to be considered secure:

Chapter 5. Non-Interference vs GW 43

� 1 u↝ v ⊃ observe(u) ⊆ observe(v), and

� 2 n ∈ alter(u) ∧ n ∈ observe(v) ⊃ u↝ v.

The aforementioned conditions are expressed with the following definitions:

definition GWVcond1∶∶bool where

GWVcond1 ≡ ∀ u v. GWVia u v Ð→ observe v ⊇ observe u

definition GWVcond2∶∶bool where

GWVcond2 ≡ ∀ u v n.(n ∈ alter u) ∧ (n ∈ observe v) Ð→ GWVia u v

5.4 Reference Monitor Verification

In this section we verify the mappings between GWV and Rushby reference monitor

obligations, proving that the new GWV definitions can be translated into the ones

defined by Rushby.

First we prove the translation of the proof obligation 1. The goal of this lemma is to

demostrate that if a domain ”u” can alter the values of other domain v , then that all

objects observable by u are also observable by v

lemma proofobligation1Mapping∶
assumes GWVcond1∶GWVcond1

and intMapping∶ intMapping

shows ∀ u v. (u ↝ v) Ð→ observe v ⊇ observe u

proof −
from GWVcond1 and intMapping show ?thesis

unfolding intMapping-def GWVcond1-def by metis

This lemma is proven directly from the definition of the first condition and the

mappings

qed

Now we verify the mapping for proof obligation 2. The purpose of this lemma is to prove

that if an object can be written by a domain u and read by a domain v then we have

an interference relation u ↝ v between u and v

lemma proofobligation2Mapping∶
assumes GWVcond2∶GWVcond2

and intMapping∶intMapping

shows

∀ u v n. ((n ∈ alter u) ∧ (n ∈ observe v)) Ð→ (u ↝ v)
proof −

Chapter 5. Non-Interference vs GW 44

We use the mappings to replace the GWV terms with the Rushby ones

thm GWVcond2-def

from GWVcond2 and GWVia-def and intMapping show

?thesis

unfolding intMapping-def GWVcond2-def by auto

The lemma is proven from the mapping and the definition of GWVcond2

qed

The next step is to prove the GWV reference monitor for the Rushby proof obligation

3. We have separated this proof in two lemmas:

lemma proof-obligation3 proves that GWVrma1 can be mapped to an intermediate ex-

pression similar to rma1 but using GWV states.

lemma GWVproofobligation3∶
assumes GWVrma1∶GWVrma1

and outputMapping∶outputMapping

and currentMapping∶currentMapping

and GWVvpeqtoRelation∶GWVvpeqtoRelation

shows ∀ s t. ((State s) ∼ dom (Action s) ∼ (State t))
Ð→ output (State s) (Action s) = output (State t) (Action s)

proof −
{

fix s t∶∶(′State, ′Action) memorystate

We make use of the definition of GWVrma1 and the mappings to

get the intermediate expression.

from assms

have ((State s) ∼ (dom (Action s)) ∼ (State t))Ð→
output (State s) (Action s) = output (State t) (Action s)

unfolding GWVrma1-def GWVvpeqtoRelation-def currentMapping-def

outputMapping-def GWVvpeq-def by metis

}
then show ?thesis by (metis select-convs(1) select-convs(2))

qed

The second lemma GWVrma1ToRma1 invokes proof-obligation3 to prove that GWVrma1

implies the First Rushby’s reference monitor (rma1) making use of the new intermediate

expression.

lemma GWVrma1ToRma1∶
assumes GWVrma1∶GWVrma1

Chapter 5. Non-Interference vs GW 45

and outputMapping∶outputMapping

and currentMapping∶currentMapping

and GWVvpeqtoRelation∶GWVvpeqtoRelation

shows rma1

rma1 states that two equivalent states have the same output

proof −
{

from assms and GWVproofobligation3 have

∀ (s∶∶ ′State) (t∶∶ ′State) (a∶∶ ′Action).

((State (∣State = s, Action = a∣)) ∼
dom (Action (∣State = s, Action = a∣)) ∼
(State (∣State = t, Action = a∣)))

Ð→ output (State (∣State = s, Action = a∣)) (Action (∣State = s, Action = a∣))
= output (State (∣State = t, Action = a∣)) (Action (∣State = s, Action = a∣))

by metis

}
The proof directly follows from the intermediate definition.

then show rma1

unfolding rma1-def

by (metis select-convs(1) select-convs(2))
qed

In a similar way, we can prove that our new definition implies the second Rushby’s

reference monitor, separating this proof in two lemmas:

lemma proof-obligation4 proves that GWVrma2 can be mapped to an intermediate ex-

pression similar to rma2 but using GWV states.

lemma proof-obligation4∶
assumes GWVrma2∶GWVrma2

and selectMapping∶selectMapping

and stepMapping∶ stepMapping

and GWVvpeqtoRelation∶GWVvpeqtoRelation

shows (∀ (s∶∶(′State, ′Action) memorystate) (t∶∶(′State, ′Action) memorystate)
n.(((State s) ∼ (dom (Action s))∼ (State t))

∧ (contents (step (Action s) (State s)) n /= contents (State s) n

∨ contents (step (Action t) (State t)) n /= contents (State t) n)
Ð→ contents (step (Action s) (State s)) n

Chapter 5. Non-Interference vs GW 46

= contents (step (Action t) (State t)) n)
)

proof −
{

fix s t∶∶(′State, ′Action) memorystate

fix n ∶∶ ′Object

from assms have

(((State s) ∼ (dom (Action s)) ∼ (State t)) ∧
(contents (step (Action s) (State s)) n /= contents (State s) n

∨ contents (step (Action t) (State t)) n /= contents (State t) n))
Ð→

contents (step (Action s) (State s)) n

= contents (step (Action t) (State t)) n

We prove this lemma simply by using the definition of the GWVrma2 and

the mappings

unfolding GWVrma2-def selectMapping-def stepMapping-def

GWVvpeqtoRelation-def

by auto

}
then show ?thesis by auto

qed

The second lemma GWVrma2ToRma2 uses proof-obligation4 to show that GWVrma2

implies the second Rushby’s reference monitor (rma2) making use of the new interme-

diate expression.

lemma GWVrma2ToRma2∶
assumes GWVrma2∶GWVrma2

and selectMapping∶selectMapping

and stepMapping∶ stepMapping

and GWVvpeqtoRelation∶GWVvpeqtoRelation

shows rma2

proof −

This expression will be used to transform the GWVrma2 into the conclusion of

proof-obligation4 lemma.

from assms and proof-obligation4 have

Chapter 5. Non-Interference vs GW 47

(∀ (s∶∶ ′State) (t∶∶ ′State) (a∶∶ ′Action) (n∶∶ ′Object).

((State (∣State = s, Action = a∣)) ∼
(dom (Action (∣State = s, Action = a∣)))∼
(State (∣State = t, Action = a∣)))

∧ (contents (step (Action (∣State = s, Action = a∣))
(State (∣State = s, Action = a∣))) n

/= contents (State (∣State = s, Action = a∣)) n

∨ contents (step (Action (∣State = t, Action = a∣))
(State (∣State = t, Action = a∣))) n

/= contents (State (∣State = t, Action = a∣)) n)
Ð→ contents (step (Action (∣State = s, Action = a∣))

(State (∣State = s, Action = a∣))) n

= contents (step (Action (∣State = t, Action = a∣))
(State (∣State = t, Action = a∣))) n

)
unfolding selectMapping-def stepMapping-def by metis

Then the proof falls directly from this transformation and the mappings

from this and selectMapping and stepMapping and select-convs(1) and select-convs(2)

show ?thesis

unfolding currentMapping-def selectMapping-def rma2-def stepMapping-def

by auto

qed

Finally we prove that the mapping for the Third reference monitor is correct, by making

use of a similar strategy to the previous two monitors.

lemma proof-obligation5 shows that GWVrma3 can be mapped to an intermediate ex-

pression similar to rma3 with GWV states.

lemma proof-obligation5∶
assumes GWVrma3∶GWVrma3

and selectMapping∶selectMapping

and stepMapping∶stepMapping

and alterMapping∶alterMapping

and currentMapping∶currentMapping

shows ∀a n s. contents (step (Action s) (State s)) n /= contents (State s) n

Ð→ n ∈ alter (dom (Action s))

Chapter 5. Non-Interference vs GW 48

proof −
{

fix s t∶∶(′State, ′Action) memorystate

fix n ∶∶ ′Object

We prove the intermediate expression by making use of the mappings and the

GWVrma3 definition

from GWVrma3 and selectMapping and stepMapping and currentMapping

and alterMapping

have

contents (step (Action s) (State s)) n /= contents (State s) n

Ð→ n ∈ alter (dom (Action s))
unfolding GWVrma3-def selectMapping-def stepMapping-def currentMapping-def

alterMapping-def

by (metis (full-types))

}
then show ?thesis by (metis (mono-tags) select-convs(1) select-convs(2))

qed

The lemma GWVrma3ToRma3 uses proof-obligation5 to show that GWVrma3 implies

the last Rushby’s reference monitor (rma3).

lemma GWVrma3ToRma3∶
assumes GWVrma3∶GWVrma3

and selectMapping∶selectMapping

and stepMapping∶stepMapping

and alterMapping∶alterMapping

and currentMapping∶currentMapping

shows rma3

proof −
{

We define a transformation expression to convert GWVrma3 into rma3

by invoking the proof-obligation5 lemma.

from assms and proof-obligation5

have

∀ (s∶∶ ′State) (a∶∶ ′Action) (n∶∶ ′Object).
contents (step (Action (∣State = s, Action = a∣))

(State (∣State = s, Action = a∣))) n

Chapter 5. Non-Interference vs GW 49

/= contents (State (∣State = s, Action = a∣)) n

Ð→ n ∈ alter (dom (Action (∣State = s, Action = a∣)))
unfolding GWVrma3-def

by metis

}
The proof directly follows from the mapping and this transformation expression

from this show ?thesis unfolding rma3-def

by (metis select-convs(1) select-convs(2))
qed

We now show that a system that satisfies GWV reference monitors we just formulated

can be considered secure under Rushby’s definition.

lemma GWVmapsAreRushbySecure∶
We use the definitions for the GWV reference monitors

assumes GWVrma1∶GWVrma1

and GWVrma2∶GWVrma2

and GWVrma3

and GWVcond1

and GWVcond2

And we use the mappings

and selectMapping∶selectMapping

and stepMapping∶stepMapping

and outputMapping∶outputMapping

and alterMapping∶alterMapping

and currentMapping∶currentMapping

and GWVvpeqtoRelation∶GWVvpeqtoRelation

and GWVvpeqtoRelation∶GWVvpeqtoRelation

and intMapping

shows secure

proof −
from assms

and GWVrma1ToRma1

and GWVrma2ToRma2

and GWVrma3ToRma3

and proofobligation1Mapping

and proofobligation2Mapping

We just invoke the Rushby’s accessControlSystemIsSecure lemma to complete

the proof

Chapter 5. Non-Interference vs GW 50

Figure 5.2: Relation Between GWV secure and Weakly Step Consistency definitions.

and accessControlSystemIsSecure show secure by auto

qed

5.5 Proof of GWV Step Consistency

In the previous section we shown that a system modeled with with GWV components can

be considered secure under Rushby ”non-Interference” definition. Figure 5.2 illustrates

the relation between the GWV security and Rushby’s step consistency definitions. We

show that the GWV definition of security GWV-secure implies Rushby ”Weak Step

Consistency” (weaklyStepConsistent).

lemma GWV-WeakStepConsitent∶
assumes GWV-secure∶GWV-secure

and currentMapping∶currentMapping

and ActionStep∶∀ s t u . GWVvpeq s u t Ð→ Action (Next s) = Action (Next t)
shows ∀ s u t. GWVvpeq s u t ∧ GWVvpeq s (current s) t Ð→ GWVvpeq (Next s) u

(Next t)
proof (auto)
{

fix s t∶∶(′State, ′Action) memorystate

fix u∶∶ ′Domain

assume uEquiv∶GWVvpeq s u t

assume currentEquiv∶GWVvpeq s (current s) t

show GWVvpeq (Next s) u (Next t)

unfolding GWVvpeq-def

proof {
From the definition of GWVvpeq we need to prove 2 goals:

GWVvpeq (Next s) u (Next t) 1 . ∀ seg∈segs u. select (Next s) seg = select (Next t)
seg 2 . Action (Next s) = Action (Next t)

show ∀ n ∈segs u. select (Next s) n = select (Next t) n

proof {
fix n∶∶ ′Object

assume observe∶n ∈ segs u

Chapter 5. Non-Interference vs GW 51

show select (Next s) n = select (Next t) n

this is the conclusion of the GWV-secure definition

proof − {
We get each one of the premises of GWV-secure

from GWVvpeq relation and the mappings.

from currentEquiv and currentMapping have sec1∶current s = current t

unfolding GWVvpeq-def currentMapping-def by auto

from currentEquiv and observe have sec2∶select t n = select t n

unfolding GWVvpeq-def by auto

from currentEquiv have sec3∶Action s = Action t

unfolding GWVvpeq-def by auto

from currentEquiv and observe

have sec4∶equals (dia n ∩ segs (current s)) s t

unfolding GWVvpeq-def

by auto

the proof of this goal, then directly follows the above facts and

GWVsecure

from sec1 sec2 sec3 sec4 and GWV-secure

and observe currentEquiv GWVvpeq-def

show select (Next s) n = select (Next t) n

unfolding GWV-secure-def GWVvpeq-def

by (metis GWVvpeq-def uEquiv)

} qed

} qed

next

The proof of the second goal is trivial from our ActionStep assumption.

from currentEquiv and ActionStep show Action (Next s) = Action (Next t)
unfolding GWVvpeq-def by auto

}
qed

}
qed

Chapter 5. Non-Interference vs GW 52

Now we prove that Weak Step Consistency (under GWV terms) can also be transformed

into an expression under Rusbhy terms.

lemma GWV-RusbhyWeakStepConsitent∶
assumes GWV-secure∶ GWV-secure

and currentMapping∶currentMapping

and ActionStep∶∀ s t u . GWVvpeq s u t Ð→ Action (Next s) = Action (Next t)
and GWVvpeqtoRelation∶GWVvpeqtoRelation

and stepMapping∶stepMapping

shows weaklyStepConsistent

5.5.1 “Strengthening” Weakly Step Consistency.

Figure 5.3 shows the relation between Rushby’s “step consistency” and “weak step con-

sistency” definitions. As the following lemma shows is trivial to prove that step consis-

tency implies “weakly step consistency”.

lemma

assumes stepConsistent

shows weaklyStepConsistent

proof −
from assms show ?thesis

unfolding stepConsistent-def and weaklyStepConsistent-def

by auto

qed

To show the reverse implication we propose the following lemma.

Lemma: A Weakly Step Consistent system that satisfies the third Reference Monitor

Assumption we described in Section 3.1.9, and the following two conditions (originally

proposed by Rushby).

� 1 u↝ v ⊃ observe(u) ⊆ observe(v), and

� 2 n ∈ alter(u) ∧ n ∈ observe(v) ⊃ u↝ v.

is also step Consistent.

Figure 5.3: Relation Between Weakly Step Consistency and Step Consistency defini-
tions.

Chapter 5. Non-Interference vs GW 53

In the next proof we demonstrate this lemma by separating the proof in two steps; first

we prove the case when there is no change in the values of the state after executing

the a step in the state machine, the proof for this case is trivial and fall directly from

the equality properties of the state equivalence relation. For the second case we have a

change in the values of the evaluated memory segment, for this case we use the third

reference monitor ∀ a n s .(contents (step a s) n) /= (contents s n) Ð→ n ∈ alter (dom

a)}” to prove that having this additional condition we can ansure step consistency.

lemma weakStepConsistencyToStepConsistent∶
assumes 1∶∀ u v. ((u ↝ v) Ð→ observe u ⊆ observe v)
and 2∶∀ u v n. ((n ∈ alter u) ∧ (n ∈ observe v)) Ð→ (u ↝ v)
and weaklyStepConsistent∶weaklyStepConsistent

and rma3∶rma3

shows stepConsistent

proof −{
fix a∶∶ ′Action

fix s t∶∶ ′State

fix u∶∶ ′Domain

fix n∶∶ ′Object

—To prove step consistency we can rewrite its definition as:

have ((s ∼ u ∼ t) ∧ (n ∈ observe u)) Ð→
(contents (step a s) n = contents (step a t) n)

To prove this expression we have two cases to consider:

proof (case-tac contents (step a t) n = contents t n

∧ contents (step a s) n = contents s n){
{

{
—for the first case:

contents (step a t) n = contents t n

∧ contents (step a s) n = contents s n,

we have contents s n = contents t n then the proof of this case is trivial

assume case1∶contents (step a t) n = contents t n

∧ contents (step a s) n = contents s n

show ((s ∼ u ∼ t) ∧ (n ∈ observe u))
Ð→ (contents (step a s) n = contents (step a t) n)

proof {

Chapter 5. Non-Interference vs GW 54

assume hyp∶(s ∼ u ∼ t) ∧ (n ∈ observe u)
from hyp and acRelation have contents s n = contents t n by auto

from this and case1

show (contents (step a s) n) =(contents (step a t) n) by simp

}qed

}
next

{
—In the second case we have a change in any of the states after a step

is executed

assume case2∶¬ (contents (step a t) n = contents t n

∧ contents (step a s) n = contents s n)
show ((s ∼ u ∼ t) ∧ (n ∈ observe u))

Ð→ contents (step a s) n = contents (step a t) n

proof {
assume hyp∶(s ∼ u ∼ t) ∧ (n ∈ observe u)
—This case can be rewritten as follows for simplicity:

(contents (step a t) n /= contents t n)
∨ (contents (step a s) n /= contents s n)

from case2 have

case2Rew∶(contents (step a t) n /= contents t n)
∨ (contents (step a s) n /= contents s n)

by simp

—From the third reference monitor we have n ∈ alter (dom a)
from this and rma3 have n ∈ alter (dom a)
unfolding rma3-def by auto

—Using the first and second conditions of the theorem we

have that : observe (dom a) ⊆ observe u

from this and 1 and 2 and hyp

have observe (dom a) ⊆ observe u by metis

—Then we have that (s ∼ u ∼ t) implies s ∼(dom a) ∼ t

from this and acRelation and hyp have s ∼(dom a) ∼ t by auto

–finally using the weak Step Consistency definition we finish the

proof for this case.

from this and weaklyStepConsistent

Chapter 5. Non-Interference vs GW 55

show contents (step a s) n = contents (step a t) n

unfolding weaklyStepConsistent-def

by (metis acRelation hyp)
} qed end of the second case

}
}

}
qed end of the step consistency proof

}
from this and acRelation show ?thesis unfolding stepConsistent-def

by smt

qed

Using this lemma we show Weakly Step Consistency can be “strengthen” to the orig-

inal Step Consistency definition if we use some of the other conditions on the Rushby

Intransitive model.

5.5.2 Security of Weak Step Consistent Systems for Transitive Policies

Using previous lemma we can show that:

Theorem: A Weakly Step Consistent system with structured state that satisfies the

third Monitor Assumption and the following two conditions.

� 1 u↝ v ⊃ observe(u) ⊆ observe(v), and

� 2 n ∈ alter(u) ∧ n ∈ observe(v) ⊃ u↝ v.

Is secure for the policy ↝.

We prove this lemma in Isabelle/HOL as follows:

theorem weakStepConsistentSystemIsSecure∶
assumes 1∶∀ u v. ((u ↝ v) Ð→ observe u ⊆ observe v)
and 2∶∀ u v n. ((n ∈ alter u) ∧ (n ∈ observe v)) Ð→ (u ↝ v)
and rma1∶rma1

and weaklyStepConsistent∶weaklyStepConsistent

and rma3∶rma3

shows secure

proof −

To prove this theorem we need to show thatoiur assumptions imply

outputConsistent, stepConsistent and LocalRespects

Chapter 5. Non-Interference vs GW 56

Output consistency (outputConsistent) can be proven directly form the first

reference monitor rma1

from rma1 have outputConsistent∶outputConsistent

unfolding rma1-def and outputConsistent-def by auto

To show that the system holds the locally respects condition (LocalRespects), we

need to show: (s ∼ u ∼ (step a s)) that can be proven from the definition of
u∼ and the

third reference monitor (rma3)

have LocalRespects∶LocalRespects

unfolding LocalRespects-def

proof (auto){
fix a∶∶ ′Action

fix s∶∶ ′State

fix u∶∶ ′Domain

assume notInt∶(dom a) ∖↝ u

from notInt show (s ∼ u ∼ (step a s))
by (metis 2 acRelation rma3 rma3-def)
}

qed

to show step consistency we invoke the weakStepConsistencyToStepConsistent lemma

from assms have stepConsistent∶stepConsistent using weakStepConsistencyToStepConsistent

by auto

Once we have proven that the AC system complies with the

outputConsistent, stepConsistent and LocalRespects

conditions, we simply invoke the

simple-noninterference to show this system is secure.

from outputConsistent and LocalRespects and stepConsistent and

simple-noninterference

show ?thesis by auto

qed

5.5.3 Non-interference for GWV Secure Systems

Finally in the following theorem we prove a new version of Rusbhy’s Theorem 2 (access-

ControlSystemIsSecure). For this Theorem we do not assume GWVrma2 but we derive

stepConsistent from GWV secure, Weak Step Consistency and GWV cond1 .

theorem GWVSystemIsSecure∶

Chapter 5. Non-Interference vs GW 57

We use the definitions for the GWV reference monitors

assumes GWVrma1∶GWVrma1

and GWV-secure∶GWV-secure

and GWVrma3∶GWVrma3

and GWVcond1∶GWVcond1

and GWVcond2∶GWVcond2

and ActionStep∶∀ s t u . GWVvpeq s u t Ð→ Action (Next s) = Action (Next t)
And we use the mappings

and selectMapping∶selectMapping

and stepMapping∶stepMapping

and outputMapping∶outputMapping

and alterMapping∶alterMapping

and currentMapping∶currentMapping

and GWVvpeqtoRelation∶GWVvpeqtoRelation

and intMapping

shows secure

proof −
for this theorem we need to prove that the three GWV reference monitors and the

two

additional conditions imply outputConsistent, stepConsistent and

LocalRespects

we use the GWV reference monitor definitions and the mapping to get the original

Rushby reference monitors

from assms and GWVrma1ToRma1 have rma1∶rma1 by auto

from assms and GWVrma3ToRma3 have rma3∶rma3 by auto

from assms and proofobligation2Mapping

have 2∶∀ u v n. ((n ∈ alter u) ∧ (n ∈ observe v)) Ð→ (u ↝ v) by auto

from assms and proofobligation1Mapping

have 1∶∀ u v. ((u ↝ v) Ð→ observe u ⊆ observe v) by auto

from assms and GWV-RusbhyWeakStepConsitent have

weakStepConsistent∶weaklyStepConsistent

by auto

Chapter 5. Non-Interference vs GW 58

Output consistency (outputConsistent) can be proven directly from the

first reference monitor rma1

from rma1 have outputConsistent∶outputConsistent

unfolding rma1-def and outputConsistent-def by auto

To show that the system respects the locally respects condition (LocalRespects),

we need to show: (s ∼ u ∼ (step a s)) that can be proven from the definition of
u∼ and the third reference monitor (rma3)

have LocalRespects∶LocalRespects

unfolding LocalRespects-def

proof (auto){
fix a∶∶ ′Action

fix s∶∶ ′State

fix u∶∶ ′Domain

assume notInt∶(dom a) ∖↝ u

from notInt show (s ∼ u ∼ (step a s))
by (metis 2 acRelation rma3 rma3-def)
}

qed

Now we invoke the weakStepConsistencyToStepConsistent lemma

to show step Consistency

from weakStepConsistent and 1 and 2 and rma3

have stepConsistent∶stepConsistent

using weakStepConsistencyToStepConsistent

by auto

Once we have proven that we comply with the

simple-noninterference is easy to show that the system is secure.

from acRelationisTransitive have eqvRelTransitive∶eqvRelTransitive by auto

from acRelationIsSymmetric have eqvRelSymmetric∶eqvRelSymmetric by auto

from acRelationIsReflexive have eqvRelreflexive∶eqvRelreflexive by auto

from outputConsistent and LocalRespects and stepConsistent and simple-noninterference

and eqvRelTransitive and eqvRelSymmetric and eqvRelreflexive

show ?thesis by auto

qed

Chapter 5. Non-Interference vs GW 59

Figure 5.4: Relation Between Weakly Step Consistency and GWV secure definitions.

5.6 Comparing GWV Secure vs Rushby’s Step Consis-

tency

In this section we show that GWV security notion is contained by Rushby Step Con-

sistency definition. In other words that a Step Consistent Rushby system is also GWV

Secure. This relation is illustrated by Figure 5.4.

lemma GWVstepConsistent is used to translate Rushby step consistentcy s ∼ u ∼ t

Ð→ (step a s) ∼ u ∼ (step a t) into an equivalent expression given under GWV terms:

GWVvpeq s u t Ð→ GWVvpeq (Next s) u (Next t)

One primary difference between the Rushby and GWV models, is result of the way of

how their state machines are defined. On one hand, the Rushby model defines state

transitions through step function:

-step : Action × State → State

On the other hand, GWV model defines state changes with next function:

-Next : State → State

Taking a look on Next definition, we can notice that GWV states transitions are deter-

ministic. In other words, A state s will always result in the same state s′ after executing

next function. Whereas, in the Rushby model an state can execute different actions,

that will affect the outcome of the step function.

As a result of this difference, to deduce the GWV separation theorem from the Rushby

model, we need to prove that the action executed by the states on GWV separation

theorem is the same. This is impossible to prove because in the same current partition

there can be different active tasks. To avoid it, we introduced a notion of action equality

to GWV model.

definition GWV-secure-wAction∶∶ bool where

GWV-secure-wAction ≡ ∀ st1 st2 seg.

current st1 = current st2 ∧
select st1 seg = select st2 seg ∧
Action st1 = Action st2 ∧

Chapter 5. Non-Interference vs GW 60

equals ((dia seg) ∩ (segs (current st1))) st1 st2

Ð→ (select (Next st1) seg = select (Next st2) seg)

We define an Isabelle/HOL lemma to show that the original GWV secure definition

implies our new formulation including action equality:

lemma GWVsecure-wAction-isSecure∶
assumes GWV-secure∶GWV-secure

shows GWV-secure-wAction

proof −
from assms show ?thesis unfolding GWV-secure-def GWV-secure-wAction-def

by auto

qed

We now prove that Rushby step consistency implies our new definition of GWV secure

with action equality, for this theorem we needed to add an extra hypothesis named hyp:

hyp∶ ∀ n. ∃ p. n ∈ segs p ∧ (∀ n ′. n ′ ∈ segs p Ð→ n ′ = n

This extra hypothesis is composed by two parts ∀ n. ∃ p. n ∈ segs p states that every

partition should be assigned at least one partition, and (∀ n ′. n ′ ∈ segs p Ð→ n ′ = n)
requires that every partition has (only) one memory segment assigned to it.

theorem stepConsistencyImpliesGWVSecure∶
assumes 1∶ stepConsistent

and 2∶ stepMapping

and 3∶ selectMapping

and 4∶ observeMapping

and 5∶ GWVvpeqtoRelation

and hyp∶ ∀ n. ∃ p. n ∈ segs p ∧ (∀ n ′. n ′ ∈ segs p Ð→ n ′ = n)

shows GWV-secure-wAction

proof −
show ?thesis

unfolding GWV-secure-wAction-def

proof auto{
fix st1 st2∶∶(′State, ′Action) memorystate

fix seg∶∶ ′Object

we use the hypotesis of the GWV-secure definition.

Chapter 5. Non-Interference vs GW 61

assume GWVhyp2∶select st1 seg = select st2 seg

assume GWVhyp3∶Action st1 = Action st2

show select (Next st1) seg = select (Next st2) seg

proof−{

Using the GWVstepConsistent lemma and our premises we prove that

having two equivalent states and a segment that belongs to a partition and

we apply the same action to the states, then the values will remain the same

after executing a step on the state machine.

have GWVstepconst∶∀ u. GWVvpeq st1 u st2 ∧ seg ∈ segs u

Ð→ (select (Next st1) seg = select (Next st2) seg)
using GWVstepConsistent and assms

unfolding GWVvpeq-def

by auto

The conclusion directly falls from the last fact and the action equality

of the third GWV premise GWVhyp3

then show ?thesis using hyp GWVhyp2 GWVhyp3 unfolding GWVvpeq-def

by metis

}
qed

}qed

qed

As the reader can notice, so far we have proven the relation between the different for-

mulations of security defined in transitive version of the GWV and Rushby models. now

we proceed with the intransitive case.

5.7 Rushby Intransitive Non-Interference vs GWV

In this section we compare the Rushby intransitive non Interference described in Section

3.2 versus GWV security model.

As we proved in Section 5.5 GWV security definition implies weak step consistency,

which is a key concept for Rushby’s intransitive non Interference.

s
u∼ t ∧ s dom(a)∼ t ⊃ step(a, s) u∼ step(a, t)

Chapter 5. Non-Interference vs GW 62

Figure 5.5: Relation Between GWV Mediation and Weakly Step Consistency defini-
tions.

As consequence we can use the GWV security definition to show that a GWV secure

system that complies with the other Rusbhy reference monitor conditions is secure for

Rushby non interference:

theorem GWVIsiSecure ∶
We use the definitions for the GWV reference monitors

assumes GWVrma1∶GWVrma1

and GWV-secure∶GWV-secure

and GWVrma3∶GWVrma3

and GWVcond2∶GWVcond2

and ActionStep∶∀ s t u . GWVvpeq s u t Ð→ Action (Next s) = Action (Next t)
And we use the mappings

and selectMapping∶selectMapping

and stepMapping∶stepMapping

and outputMapping∶outputMapping

and alterMapping∶alterMapping

and currentMapping∶currentMapping

and GWVvpeqtoRelation∶GWVvpeqtoRelation

and intMapping

shows isecure

Rushby Weak Step Consistency cannot really ensure GWV separation but a weaker

property known as Mediation. The reason for this will be discussed in the next Chapter.

Figure 5.5 shows the relation between Rushby step consistency and GWV mediation

definitions. We add a definition for mediation (including equality of actions) to prove

this.

definition GWV-secureEPartition∶∶ bool where

GWV-secureEPartition ≡ ∀ st1 st2 seg.

current st1 = current st2 ∧
select st1 seg = select st2 seg ∧
Action st1 = Action st2 ∧
equals ((segs (current st1))) st1 st2

Ð→ (select (Next st1) seg = select (Next st2) seg)

Chapter 5. Non-Interference vs GW 63

Finally we can prove that Rushby weak step consistency implies our new definition of

mediation.

theorem weaklyStepConsistencyImpliesGWVSecure∶
assumes 1∶ weaklyStepConsistent

and 2∶ stepMapping

and 3∶ selectMapping

and 4∶currentMapping

and 5∶ observeMapping

and 6∶ GWVvpeqtoRelation

and hyp∶ ∀ n. ∃ p. n ∈ segs p ∧ (∀ n ′. n ′ ∈ segs p Ð→ n ′ = n)
shows GWV-secureEPartition

proof −
show ?thesis

unfolding GWV-secureEPartition-def

proof auto{
fix st1 st2∶∶(′State, ′Action) memorystate

fix seg∶∶ ′Object

we use the hypotesis of the GWV-secure definition.

assume GWVhyp1∶current st1 = current st2

assume GWVhyp2∶select st1 seg = select st2 seg

assume GWVhyp3∶Action st1 = Action st2

assume GWVhyp4∶∀a∈ segs (current st2). select st1 a = select st2 a

show select (Next st1) seg = select (Next st2) seg

proof−{

Using the GWVstepConsistent lemma and our premises we prove that having

two equivalent states and a segment that belongs to a partition and we apply

the same action to the states, then the values will remain equal after executing

a step on the state machine.

have GWVstepconst∶∀ u.

GWVvpeq st1 u st2

∧ GWVvpeq st1 (current st1) st2

∧ seg ∈ segs u

∧ Action st1 = Action st2

Ð→ (select (Next st1) seg = select (Next st2) seg)
using GWVWeaklyStepConsistent and assms

Chapter 5. Non-Interference vs GW 64

unfolding GWVvpeq-def

by auto

from GWVhyp4 and GWVhyp3 and GWVhyp1

have h2∶GWVvpeq st1 (current st1) st2

unfolding GWVvpeq-def by simp

then show ?thesis using hyp GWVhyp2 GWVstepconst GWVhyp3

unfolding GWVvpeq-def by blast

}
qed

}qed

qed

So far we have proven the relation between the GWV and Rushby models. In the next

Chapter we discuss about the differences between the two models and explain the need

of the extra conditions we need to add into the original formulations.

Chapter 6

Discussion

There are several fundamental differences between the GWV and Rushby models. These

differences complicate the task of comparing them.

Figure 6.1 recapitulates the relation between the security formulations in the GWV and

Rushby models. In Chapter 5, we proved that GWV separation definition and one extra

condition we named (GWVcond1) implies Rushby’s non-interference step consistency

definition. Whereas, step consistency implies GWV-secure (we assume that the action

executed in the active partition are the same).

If we consider intransitive policies we show that GWV separation definition implies

weakly step consistency, while Rushby’s definition can only ensure the concept of medi-

ation proposed in the original model GWV.

This kind of fundamental differences results in the existence of some cases where a policy

is valid in a model but not for the other.

In this chapter we explore some of these instances, and discuss about the conditions that

must be fulfilled by each model to avoid such cases.

Figure 6.1: Relation Among the GWV and Rushby Security definitions

65

Chapter 8. Discussion 66

Figure 6.2: GWV Secure Policy

6.1 Example 1

For our first example we study one of the conditions added to the GWV model in Section

5.3:

definition GWVcond1::”bool” where

GWVcond1 ≡ ∀ u v. GWVia u v Ð→ observe v ⊆ observe u

Consider a system M as depicted in Figure 6.2. System M consists of two partitions U

and V . These partitions have several memory segments assigned to them.

The sole purpose of partition V is to read information from the system. Partition V

does not write any data. Partition V contains a memory segment ”1”, which is used to

obtain information from partition U .

On the other hand, partition U has four assigned memory segments {2,3,4,5}. Segment

1 can only be modified with information from segments 2 and 3. Meanwhile, segment 4

can only be modified with information from segment 5.

System M can be modelled using the following GWV security policy:

segs(V) = {1}
segs(U) = {2,3,4,5}

dia(1) = {2,3}
dia(2) = {3}
dia(4) = {5}

In this particular case, we assume system M is secure for the GWV separation definition.

That is, M meets all the conditions of the Separation theorem we discussed in Section

4.3:

(1) current s = current t ⋀
(2) select s seg = select t seg ⋀
(3) equals ((dia seg) ∩ (segs (current s))) s t

Ð→ (select (Next s) seg = select (Next t) seg)

Chapter 8. Discussion 67

GWV separation theorem definition states that for any two states ”s” and ”t”, and a

given partition ”seg” where the following conditions are met:

� (1)The Active partition is the same in both states.

� (2)The value of the segment ”seg” is equal in the both states.

� (3)The values of the segments that can modify ”seg” and are assigned to the active

partition equal.

The value of ”seg” will not be modified after performing a step on the state machine.

It is important to emphasize that according to GWV separation definition; a partition

can read (observe) from all its assigned memory segments(segs(V)) [8]. Furthermore,

GWV security definition prohibits the information flow between segments that do not

have a dia relation.

In this example, partition U can read from segments {2,3,4,5}, but the system can

only change segment 1 with the information from segments 2 and 3. In other words,

according to the GWV model, system M forbids the information flow from segments 4

and 5 to segments 1,2,3.

On the other hand, system M we just described would be defined in the Rushby model

by the following sequence of statements:

Alter(U) = {1}
Observe(U) = {2,3,4,5}

Observe(V) = {1}
Alter(V) = ∅

In this case, an interference relation between U and V (U ↝ V) is implied by system M .

Segment 1 can be modified by U and observed by V . However, if we observe carefully

the Rushby transitive access control theorem 3.1.8:

Theorem: A system with structured state that satisfies the Reference Monitor

Assumptions and the following two conditions.

� 1 u↝ v ⊃ observe(u) ⊆ observe(v), and

� 2 n ∈ alter(u) ∧ n ∈ observe(v) ⊃ u↝ v.

Is secure for the policy ↝.

In particular the first theorem condition (u ↝ v ⊂ observe(u) ⊆ observe(v)), states that

when two partitions U and V have an interference relation, partition V must be able to

read from all the segments that U can read.

Chapter 8. Discussion 68

As we can see, system M clearly violates the aforementioned condition. Partition U can

read from the segments {2,3,4,5}, and partition V can only read from segment 1.

In other words, in a system like this, not everything that can be observed by U can also

be observed by the partition V . Thus violating the Rushby condition.

Intra-partition flow restrictions (like the one required for the partition U) are in practice

complex and difficult to ensure. One reason for this, is that all memory segments assigned

to the same partition are loaded in the same kernel working area, and can be read for

all the processes running in the partition. Jim Alvez [8] discusses a possible attack on

the GWV model consisting on modifying the value of a segment, and returning it to its

previous value before the evaluation of the security policy (cut point).

A GWV system is expected to prevent the flow from segments {4,5} to segments {2,3}.

For commercial processors, this capability is too powerful. Custom made hardware is

needed to provide the ability to restrict information flow from a specific memory segment

to a particular destination segment.

For example, during a partition’s execution an untrusted process could copy information

from either segments {4,5} into the segments {2,3} and restore the previous value before

the policy evaluation (cut-point). The only way to stop the copy from {4,5} is to label

the information based on its original source and prevent the data flow during execution

time.

May seem like this discrepancy could be caused by our choice to use a strict definition

for the observe mapping. We considered to use a weaker definition: ∀u.observe(u) =
({s′.(∃s.s ∈ segsu ∧ s′ ∈ dia(s))} ∪ segs(u). To include not only memory segments

assigned to a partition but also all segments having a dia relation with them. However,

even with this expanded definition the difference between the models remains.

6.2 Example 2

In the next example we are going to explore the Rushby security condition, and describe

one instance where a Rushby security definition allows valid memory change that violates

GWV’s separation notion.

Consider a system N like the one depicted in Figure 6.3. System N represents an imple-

mentation of an intransitive security policy composed by three classification domains:

High, Downgrader and Low, enclosed in the partitions H, D and L respectively.

Partition H can read data from memory segment 1 and send information to partition

D using the memory segments {2,3}.

In this system, we assume that the Downgrader partition (D) has two specific goals.

The first goal is to declassify the information obtained from the High H domain, and

Chapter 8. Discussion 69

Figure 6.3: Policy expressed with GWV and Rushby Models

send the declassified information to partition L. The second goal is to store a copy of

the original data for auditing purposes. Partition D stores the original data in segment

3, while, the declassified data are stored in segment 2, and sent to partition L using

segment 4.

This kind of intransitive security policies can be written under Rushby terms as follows:

H ↝D

D ↝ L

H L

A possible implementation of this system can be made with the following object distri-

bution:

Observe(H) = {1}
Alter(H) = {2,3}
Observe(D) = {2,3}
Alter(D) = {4}
Observe(L) = {4}
Alter(L) = ∅

Imagine that system N has two states s and t as illustrated in Figure 6.3. Segment 3

has a different value in states s and t (contents(s, n) ≠ contents(t, n)).

Next suppose we execute an action a such that dom(a) = {D} in both states. After

executing action a, we evaluate the security policy for partition L in the resulting states

s′ and t′, where s′ = step(a, s) and t′ = step(a, t).

If we take a look at the definition of weakly step consistency for Rushby intransitive

policies:

Chapter 8. Discussion 70

s
l∼ t⋀ s dom(a)∼ tÐ→ step(a, s) l∼ step(a, t)

As we can notice, expression s
dom(a)∼ t is not true. The value of segment 3 is not equal

in both states. In consequence, Rushby model does not guarantee that the value of

Segment 4 remains identical in states s′ and t′ after executing a.

However, this situation does not violate the condition of weak step consistency. More-

over, the value of Segment 3 may change without implying that the system is insecure.

On the other hand, if we consider the same policy implemented in GWV as follows:

segs(H) = {1}
segs(D) = {2,3}
segs(L) = {4}
dia(2) = {1}
dia(3) = {1}
dia(4) = {2}

Taking a closer look on the GWV separation theorem we discussed in section 4.3:

(1) current s = current t ⋀
(2) select s seg = select t seg ⋀
(3) equals ((dia seg) ∩ (segs (current s))) s t

Ð→ (select (Next (s)) seg = select (Next (t)) seg)

If we evaluate the separation definition for the segment 4 (seg = 4) and the states s and

t (with different values for segment 3), we can notice that all the GWV conditions are

met:

� We apply the same action a to the states S and t. Hence, both states have the

same current partition (D).

� The value of segment 4 is equal in the states s and t, thus the second condition is

satisfied.

� The intersection of the dia(4) ∩ segments(D) = 2 have the same value on the s t

states.

However, if the value of segment 4 is different after the execution of action a (as in

the Rushby model). It would violate the GWV separation definition as we would have

(select(Next(s))seg ≠ select(Next(t)).

From this example, we can conclude that the only way for an intransitive Rushby system

to comply with the GWV security definition, is if all segments read by the active partition

have the same value (not only the intersection with the dia function). This condition

matches the Mediation definition of the original GWV model.

Chapter 8. Discussion 71

The Theorem weaklyStepConsistencyImpliesGWVSecure we discussed in Section 2.5.2

shows that weakly step consistency implies Mediation.

Chapter 7

Conclusions and Future Work

Summary and Conclusions

In this document we emphasized the importance of Multiple levels of Security models as

an appropriate way to ensure Information Security in computer systems. We explored

MILS architecture and concluded that it is a suitable way to implement MLS models.

A key concept in the MILS architecture is the separation kernel. Separation kernels are

in charge of providing and ensuring isolation between the different security domains in

MILS compliant systems.

A Separation Kernel Protection Profile containing the security requirements for high

robustness separation kernels was published by the NIST and the NSA. Among the

requirements of the SPPK we can find the need to verify the correctness of the separation

kernel by means of formal methods.

There are several formal models that can be used to verify security kernels. The best

known models are GWV separation and Rushby non-Interference models. However, in

the SKPP there is not any guideline on how to select the appropriate model.

This brought up the following question: “what are the exact differences and similari-

ties between the GWV separation model and the non-interference model proposed by

Rushby.”

This work contains to our knowledge, the first publicly available formal comparison

among GWV and Rushby separation kernel models. The main results of this work is

the creation of a mapping relating the concepts of the GWV and Rushby separation

kernel models as well as the accompanying proofs relating the security definition in both

models.

As we discussed in Chapter 5 we provided a mapping of the methods and properties

between we found and proven the relation of the security definition in both models.

In conclusion, we can state that both models have a great number of similarities; both

of them define security domains, and control the data flow between the such domains

72

Chapter 7. Summary, Conclusions and Future Work 73

according to a predefined security policy. However, they present a range of fundamental

differences between them:

� GWV and Rushby models are composed of several components that despite being

similar to one another are not completely equivalent.

� Rushby controls the flow of information between different security domains, while

the GWV controls the flow between different memory segments. This results in a

significant difference in the granularity of both models.

Although, none of the aforementioned differences imply an evident security issue, we

could find cases cases were a system is considered secure for the GWV model but not

under Rushby’s model and vice versa.

Formally determine the differences between different separation kernel models could

bring several practical advantages. For example:

� Find the similarities and differences between the two models can provide a starting

point to identify the strengths and weaknesses of each model;

� clarify the strengths and weaknesses of each model can serve as a guide to ease

the choice of the most suitable formal model in accordance to the specific needs of

the separation kernel to be evaluated, and

� Serve as base to estimate if it is feasible to design a system that complies with

both security definitions.

Future Work

In this document we have compared the original formulations for the Rushby and GWV

separation kernel models. However, both models have suffered several revisions and

refinements to extend and clarify its functionality. The coming of these new revisions

and models open a promising and interesting field for further research to determine the

exact relation between them.

On the one hand, Greve proposed a later revision of the GWV model called GWVr1 [32].

GWVr1 defines the notion of agents with the purpose of adding accountability properties

into the original model. Another generalization called GWVr2[33] was subsequently

defined to cover security policies for dynamic and distributed systems.

On the other hand, David Oheim proposed a generalization of the original Rushby non-

interference model to cover non-deterministic state machines. While Eggert and Van

der Meyden [34] argued that the classic notion of intransitive non-interference (ipurge)

Chapter 7. Summary, Conclusions and Future Work 74

allows some cases where a low security domain can infer information from higher secu-

rity domains without the intermediation of the trusted downgraders and prosed a new

definition of security named TA − security.

Appendix A

Isabelle/HOL

Isabelle [35, 36] is a generic system for interactive theorem proving. It was implemented

in the functional programming language ML, and developed by Larry Paulson and Tobias

Nipkow. It is available in isabelle(http://isabelle.in.tum.de).

Isabelle is based on tactics, characteristic inherited from the LCF system (Logic for

Computable Functions)[37], which allows building tactics in order to simplify the me-

chanical application rules for the inference deduction process. Isabelle supports formal

reasoning in First Order Logic (FOL) and Higher-Order logic (HOL).

In particular Isabelle/HOL [38] is the specialization of Isabelle for Higher-Order Logic.

Isabelle/HOL is an interactive prover assistant, based on Gordon’s HOL system[39],

which implements an extension of Church’s [40] Higher-Order logic. HOL has a large

library of theories including set theory, real and complex numbers, abstract algebra, etc.

Isabelle/HOL has been successfully used for formal reasoning in various areas of knowl-

edge: Pure Mathematics, verification of computing systems, programming languages,

etc.

An Archive of Formal proofs is available with a variety of theories and examples cor-

responding to scientific developments that have been formally verified in Isabelle and

especially Isabelle/HOL.

Basic Elements of Isabelle/HOL

In this section we illustrate some important aspects of Isabelle/HOL described by Nipkow

and Paulson [38]. Please note this document does not intend to completely describe

the capacities and features offered by Isabelle/HOL and its multiple extensions, but to

provide a quick overview of its main language components.

75

http://afp.sourceforge.net/

Appendix A. Isabelle/HOL 76

Theories

Isabelle/HOL formalizations are defined in theories. Theories are modules that contain

definitions, terms, formulas, data types, functions, and theorems, etc., that describe the

solution of a problem.

When we use Isabelle/HOL, we define theories as extensions of other theories and thus we

“import” the data types and structures defined in the imported theories. Isabelle/HOL

contains a Main theory that includes predefined basic theories, such as the arithmetic

of natural numbers, lists and sets. The general syntax to define a theory is:

Theory

import T1. . . Tn

begin

Type declarations , function definitions and proofs

end

Where T1... Tn are the names of existing theories for which the new theory is defined.

In the declarations, definitions, and proofs section we introduce new concepts used

to solve a problem such as: types, functions, theorems, lemmas, and their respective

proofs.

Sometimes it is useful to introduce , through declarations, new concepts to expand the

theories already established. Functional programming needs datatypes and functions.

Both of them can be defined in Isabelle/HOL.

Type Declarations

The general datatype syntax in Isabelle has the form

datatype (α1... αn) = C1..Cn

Where α represents the name of the datatype and C1 represents the constructors of the

type.

Function Definition

In isabelle/HOL We declare a definition by defining a name, a type, and a set of defining

equations. Functions can be defined with the following keywords[41]:

definition: A function without recursion.

fun: For cases of recursion where termination can be automatically proved. For Isabelle

automatically prove the completion of a function, it is necessary that the recursive calls

Appendix A. Isabelle/HOL 77

of the arguments of the function on the right side of each equation are strictly smaller

than the arguments corresponding to the left.

primrec: For primitive recursion. In HOL all functions defined by func are fully re-

cursive. When it is not possible to define a fully recursive function primitive recursion

(primrec) must be used.

Isar Structured Testing

Isabelle/HOL can be used to prove lemmas and theorems, in this section we introduce

the features of the ISAR (Intelligible semi-automated reasoning) proof environment.

ISAR offers a framework for human readable structured proofs. This Section is based

on [42], ISAR proofs examples can be found in http://isabelle.in.tum.de/Isar/.

The proof environment in ISAR makes use of the following syntax:

|lemma|theorem| [<name >:]

[assumes "formula "]

show "formula"

proof [method] statement qed | by method

method = (simp ...)|(blast ...)|(rule ...)|...

statement = fix variables |

assume prop (==>)|

[from fact+] (have|show) prop proof|

next (separates subgoals)

prop = [name:] "formula"

fact = name|name[OF fact+]|‘formula ’

Isabelle proofs starts with the lemma or theorem keywords, always followed by a goal

to prove (shows formula). Please note that we only need to provide a name(label) to

the lemma/theorem is we want to reference it in the future.

In ISAR syntax “assumes” keyword is used to specify the hypotheses of the statement

we want to prove.

An ISAR a proof environment consists of a single method preceded by the by word or by

a proof −qed block composed by zero or more statements. A block may optionally start

http://isabelle.in.tum.de/Isar/

Appendix A. Isabelle/HOL 78

with the declaration of a method in order to indicate how start the test, for example,

(inductn)

A statement consists of one of two kinds of propositions, a hypothesis together with your

demonstration.

The optional word from indicates which facts or hypotheses are used in the demonstra-

tion. The intermediate propositions begin with the word have and the main proposition

with show.

A statement can introduce new local variables with the keyword fix.

The propositions are formulas preceded optionally a name (label) that subsequently

allows the formula to refer to corresponding an assertion preceded with the word from.

Bibliography

[1] Carl E. Landwehr, Constance L. Heitmeyer, and John D. McLean. A security

model for military message systems: Retrospective. In ACSAC, pages 174–190.

IEEE Computer Society, 2001. ISBN 0-7695-1405-7. URL http://dblp.uni-trier.

de/db/conf/acsac/acsac2001.html#LandwehrHM01.

[2] Sylvia Osborn. Mandatory access control and role-based access control revisited.

In IN PROCEEDINGS OF THE 2ND ACM WORKSHOP ON ROLE-BASED

ACCESS CONTROL, pages 31–40. ACM Press.

[3] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathematical Founda-

tions. Technical report, MITRE Corporation, March 1973.

[4] J. K. Biba. Integrity considerations for secure computer systems, 1977.

[5] John Rushby. The design and verification of secure systems. In Eighth ACM Sym-

posium on Operating System Principles (SOSP), pages 12–21, Asilomar, CA, De-

cember 1981. (ACM Operating Systems Review , Vol. 15, No. 5).

[6] David Greve, Matthew Wilding, and W. Mark Vanfleet. A separation kernel formal

security policy. In Fourth International Workshop on the ACL2 Theorem Prover

and Its Applications (ACL2 ’03), July 2003.

[7] John Rushby. Noninterference, transitivity and channel-control security policies.

Technical report, Computer Science Laboratory, SRI international, 1992.

[8] Jim Alves-foss and Carol Taylor. An analysis of the gwv security policy. In In 5th

Internat. Workshop on ACL2 Prover and Its Applications, pages 2–2004, 2004.

[9] M.E. Whitman and H.J. Mattord. Principles of Information Security. Course

Technology, 2010. ISBN 9781111138219. URL http://books.google.nl/books?id=

L3LtJAxcsmMC.

[10] Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Form.

Methods Syst. Des., 19(3):291–314, October 2001. ISSN 0925-9856. doi: 10.1023/A:

1011254632723. URL http://dx.doi.org/10.1023/A:1011254632723.

79

http://dblp.uni-trier.de/db/conf/acsac/acsac2001.html#LandwehrHM01
http://dblp.uni-trier.de/db/conf/acsac/acsac2001.html#LandwehrHM01
http://books.google.nl/books?id=L3LtJAxcsmMC
http://books.google.nl/books?id=L3LtJAxcsmMC
http://dx.doi.org/10.1023/A:1011254632723

Bibliography 80

[11] H. Geuvers. Proof assistants: History, ideas and future. Sadhana, 34(1):3–25, 2009.

ISSN 0256-2499. doi: 10.1007/s12046-009-0001-5. URL http://dx.doi.org/10.1007/

s12046-009-0001-5.

[12] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the art and

future directions. ACM Computing Surveys, 28:626–643, 1996.

[13] Matt Kaufmann and J. Strother Moore. An acl2 tutorial. In Otmane Aı̈t Mohamed,

César A. Muñoz, and Sofiène Tahar, editors, TPHOLs, volume 5170 of Lecture Notes

in Computer Science, pages 17–21. Springer, 2008. ISBN 978-3-540-71065-3. URL

http://dblp.uni-trier.de/db/conf/tphol/tphol2008.html#KaufmannM08.

[14] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system.

In Deepak Kapur, editor, 11th International Conference on Automated Deduction

(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,

Saratoga, NY, jun 1992. Springer-Verlag. URL http://www.csl.sri.com/papers/

cade92-pvs/.

[15] The Coq development team. The Coq proof assistant reference manual. LogiCal

Project, 2004. URL http://coq.inria.fr. Version 8.0.

[16] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A

Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer

Science. Springer, 2002.

[17] Mark W. Vanfleet, Jahn A. Luke, William R. Beckwith, Carol Taylor, Ben Calloni,

and Gordon Uchenick. MILS:Architecture for High-Assurance Embedded Comput-

ing. CrossTalk: Journal of Defence Software Engineering, 18(8):12–16, 2005. URL

http://www.stsc.hill.af.mil/crosstalk/2005/08/0508Vanfleet etal.pdf.

[18] Objective Interface Systems Joe Jacob. Mils: High-assurance security at affordable

costs. ”COTS journal, the Journal of Military electronics and Computing”, 28,

November 2005. URL http://www.cotsjournalonline.com/articles/view/100423.

[19] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in

computer systems, 1975.

[20] Stuart E. Madnick and John J. Donovan. Application and analysis of the virtual

machine approach to information system security and isolation. In Proceedings

of the Workshop on Virtual Computer Systems, pages 210–224, New York, NY,

USA, 1973. ACM. doi: 10.1145/800122.803961. URL http://doi.acm.org/10.1145/

800122.803961.

http://dx.doi.org/10.1007/s12046-009-0001-5
http://dx.doi.org/10.1007/s12046-009-0001-5
http://dblp.uni-trier.de/db/conf/tphol/tphol2008.html#KaufmannM08
http://www.csl.sri.com/papers/cade92-pvs/
http://www.csl.sri.com/papers/cade92-pvs/
http://coq.inria.fr
http://www.stsc.hill.af.mil/crosstalk/2005/08/0508Vanfleet_etal.pdf
http://www.cotsjournalonline.com/articles/view/100423
http://doi.acm.org/10.1145/800122.803961
http://doi.acm.org/10.1145/800122.803961

Bibliography 81

[21] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-vm

side channels and their use to extract private keys. In Proceedings of the 2012 ACM

Conference on Computer and Communications Security, CCS ’12, pages 305–316,

New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1651-4. doi: 10.1145/2382196.

2382230. URL http://doi.acm.org/10.1145/2382196.2382230.

[22] John Rushby. Separation and integration in mils (the mils constitution. Technical

report, Computer Science Laboratory, SRI international, 2008.

[23] Jonas Frid. Security critical systems in software, 2010.

[24] Kei Kawamorita, Ryouta Kasahara, Yuuki Mochizuki, and Kenichiro Noguchi. Ap-

plication of formal methods for designing a separation kernel for embedded systems.

World Academy of Science, Engineering and Technology, (44):1313–1321, 2010.

[25] Provisional Harmonised Criteria. Information technology security evaluation crite-

ria (itsec), 1991.

[26] Department of Defense. Trusted Computer System Evaluation Criteria. December

1985.

[27] Canadian System Security Centre. The Canadian Trusted Computer Product Eval-

uation Criteria. Canadian System Security Centre, Communications Security Es-

tablishment, Government of Canada, 1991. URL http://books.google.nl/books?

id=m6g5nQEACAAJ.

[28] Information Assurance Directorate. U.s. government protection profile for separa-

tion kernels in environments requiring high robustness, 2007.

[29] Joseph A. Goguen and José Meseguer. Security policies and security models. In

IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[30] J. Thomas Haigh and William D. Young. Extending the noninterference version of

mls for sat. IEEE Trans. Software Eng., 13(2):141–150, 1987.

[31] John Rushby. Partitioning for avionics architectures: Requirements, mechanisms,

and assurance. NASA Contractor Report CR-1999-209347, NASA Langley Research

Center, June 1999. Also to be issued by the FAA.

[32] Michael W. Whalen, David A. Greve, and Lucas G. Wagner. Model Checking

Information Flow. Springer-Verlag, Berlin Germany, March 2010.

[33] David Greve, Matthew Wilding, Raymond Richards, and W. Mark Vanfleet. For-

malizing security policies for dynamic and distributed systems. Unpublished, 2004.

URL http://hokiepokie.org/docs/sstc05.pdf.

http://doi.acm.org/10.1145/2382196.2382230
http://books.google.nl/books?id=m6g5nQEACAAJ
http://books.google.nl/books?id=m6g5nQEACAAJ
http://hokiepokie.org/docs/sstc05.pdf

Bibliography 82

[34] Sebastian Eggert, Ron van der Meyden, Henning Schnoor, and Thomas Wilke.

Complexity and unwinding for intransitive noninterference. CoRR, abs/1308.1204,

2013.

[35] Lawrence C. Paulson. Introduction to Isabelle. Technical Report UCAM-CL-TR-

280, University of Cambridge, Computer Laboratory, January 1993. URL http:

//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-280.dvi.gz.

[36] Lawrence C. Paulson. Isabelle - A Generic Theorem Prover (with a contribution

by T. Nipkow), volume 828 of Lecture Notes in Computer Science. Springer, 1994.

ISBN 3-540-58244-4.

[37] Mike Gordon. From lcf to hol: a short history. In Gordon D. Plotkin, Colin

Stirling, and Mads Tofte, editors, Proof, Language, and Interaction, pages 169–186.

The MIT Press, 2000. ISBN 978-0-262-16188-6. URL http://dblp.uni-trier.de/db/

conf/birthday/milner1999.html#Gordon00.

[38] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[39] M. J. C. Gordon and A. M. Pitts. The HOL logic and system. In J. Bowen,

editor, Towards Verified Systems, volume 2 of Real-Time Safety Critical Systems,

chapter 3, pages 49–70. Elsevier Science B.V., 1994.

[40] Alonzo Church. A formulation of the simple theory of types. Jurnal of Symbolic

Logic, 5(2):56–68, June 1940.

[41] Alexander Krauss. Defining recursive functions in isabelle/hol.

[42] Markus Wenzel and Tu München. The isabelle/isar reference manual. 1999.

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-280.dvi.gz
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-280.dvi.gz
http://dblp.uni-trier.de/db/conf/birthday/milner1999.html#Gordon00
http://dblp.uni-trier.de/db/conf/birthday/milner1999.html#Gordon00

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Context
	2 Preliminaries
	2.1 Information Security Overview
	2.2 Formal Verification
	2.3 Multiple Independent Levels of Security
	2.4 The Role of Separation in MILS
	2.5 Separation Kernels
	2.5.1 Common Criteria Certification
	2.5.2 Separation Kernel Protection Profile

	3 Rushby's Non Interference Formalization
	3.1 Transitive Non-Interference
	3.1.1 System Model
	3.1.2 Security Policy
	3.1.3 Purge Function
	3.1.4 Security Definition
	3.1.5 Conditions to Guarantee Security
	3.1.6 Security for Single Step Transitions.
	3.1.7 Rushby Model and Access Control Interpretation
	3.1.8 Access Control Security Policy
	3.1.9 Access Control Reference Monitors.

	3.2 Intransitive Non-Interference
	3.2.1 Sources Function
	3.2.2 Ipurge Function
	3.2.3 Security Definition for Intransitive Policies.
	3.2.4 Weakly step consistency
	3.2.5 Security of Weak Step Consistent Systems for Intransitive policies
	3.2.6 Security of Intransitive Access Control Systems

	4 GWV Security Policy
	4.1 System Model
	4.2 Clarification of Next and Current Functions
	4.3 Security Policy (Separation)
	4.4 Relationship with other formalizations
	4.4.1 Exfiltration.
	4.4.2 Infiltration
	4.4.3 Mediation

	5 Non-Interference vs GWV
	5.1 Mapping Between GWV and Rushby Concepts
	5.2 Equivalence Relation Mapping
	5.3 Reference Monitor Mappings
	5.4 Reference Monitor Verification
	5.5 Proof of GWV Step Consistency
	5.5.1 ``Strengthening" Weakly Step Consistency.
	5.5.2 Security of Weak Step Consistent Systems for Transitive Policies
	5.5.3 Non-interference for GWV Secure Systems

	5.6 Comparing GWV Secure vs Rushby's Step Consistency
	5.7 Rushby Intransitive Non-Interference vs GWV

	6 Discussion
	6.1 Example 1
	6.2 Example 2

	7 Conclusions and Future Work
	A Isabelle/HOL
	Bibliography

