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Abstract

Data leakage and data misuse cause significant losses for companies each year, in terms of mone-
tary cost as well as in reputation damages. One way to prevent or discover data leakage and data
misuse is to use an intrusion detection system. Extensive academic research has been done in
this field. In this thesis we focus on database intrusion detection systems. In particular, anomaly
based approaches to data leakage, which have the great theoretical advantage of detecting known
and unknown attacks, are analysed in this thesis.

The objectives of this thesis are threefold: 1) creating a framework to benchmark existing solu-
tions; 2) formulating both normal and misuse scenarios verified by experts for proper testing; and
3) exploring the effects of richer feature spaces on the detection rates and false positive rates.
To create a benchmark framework we used GNU health, an open source medical information
system. The underlying architecture was modified to add a logging class which can intercept and
log queries to and responses from the internal database. Normal behaviour and attack scenarios
were then formulated with the help of domain experts. These scenarios were then simulated in
GNU health, intercepted by the logger and parsed into realistic data sets. Finally these data
sets were used to test, analyse and compare interesting existing solutions in a fair way by using
Rapidminer, a visual tool for predictive analysis. This environment ensures that all simulations
are processed and analysed in a consistent manner when testing different approaches and while
simulating different scenarios. The formulated scenarios can be simulated in any hospital ad-
ministration system. Further more, such a collection of attack scenarios, when complete and
accurate, could form a basis for unified testing of database data leakage detection approaches in
the future.

Anomaly based database intrusion detection solutions usually work by building profiles that de-
fine normal behaviour per user or role and subsequently flagging deviations from those profiles
as attacks. Normal behaviour profiles are built over a set of features which represent important
characteristics or attributes of database transactions. The features used for detection by differ-
ent approaches from literature can be divided into three types: features about the query text
(syntax based features), features about the result set (result set based features) and features
about the context of the interaction (context based features). We compare three approaches
from literature: one consisting only of syntax based features, one consisting of a combination of
syntax based and context based features and one consisting of a combination of all three types
of features.

This work also tries to determine the effect of a richer feature space on the detection rates and
false positive rates. This was done by using different feature spaces for the same attacks and ob-
serving differences in performance. Our results show better false positive rates for the approach
which uses all types of features. This approach is also able to detection a wider set of attacks.

Keywords: anomaly detection, data leakage, databases, intrusion detection
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Chapter 1

Introduction

Every company uses data in some shape or form, for example when managing stocks, designing
new products or scheduling work. Some companies even have a core business in the analysis of
data. In addition, most companies also process personal or otherwise sensitive data, for example
contact details about their customers for shipping or personal information about their employees
for salary administration.

Companies have good reasons to keep their data safe: competitors might be interested in a com-
pany’s new products; suppliers might want to know who their competitors are; and advertising
companies might want to get their hands on email addresses to send their adverts to.

The (un)intentional disclosure or revelation of a company’s data to unwanted (and probably
malicious) recipients is commonly referred to as data leakage [1]. Protecting companies from
facing a data leakage is essential to reduce the enormous costs data leakages can cause in terms
of money, legal issues and reputation [2]. In a time when digital espionage and cyber crime are
happening on a daily basis, the task of securing data is becoming increasingly harder.

Besides the threat of a data leakage caused by a cyber attack coming from an external party,
organisations also have to deal with insider threats to data leakage. An insider threat can be
represented by individuals within the organisation (e.g. employees) who cause harm due to their
knowledge of internal procedures and resources. An actual insider attack is usually performed
by employees, former employees, contractors or business associates who abuses their position to
either steal data from the organisation or sabotage computer systems. When an employee abuses
their access rights, the term data misuse is often used. When this data misuse is used in order
to steal data, we speak of data leakage.

An example of data leakage is the theft by a senior IT technician of the NDB, the national
intelligence service of Switzerland!. The employee became disgruntled as he felt that his ad-
vice on operating the data systems was not being taken seriously. In retaliation, the technician
downloaded hundreds of thousands of printed pages containing information on counter-terrorism,
totalling several terabytes of data, and carried it out of the office on portable hard drives. The
technician had, from his function, administrative rights in the system, giving him unrestricted
access to most of the service’s data.

A second example is the theft of the laptop of a Home Depot employee in 20072. The employee

1Reuters, “Swiss spy agency warns U.S., Britain about huge data leak”, http://www.reuters.com/article/
2012/12/04/us-usa-switzerland-datatheft-idUSBRE8B30ID20121204, last accessed 16 December 2013

2CNET, “Stolen Home Depot laptop exposes employee data”, http://news.cnet.com/8301-10784_
3-9799644-7 .html, last accessed 16 December 2013



took the laptop, containing unencrypted personal information of roughly 5,600 coworkers, to do
some additional work at home when it was stolen from his vehicle?. The target of the theft was
most likely the laptop itself but this case shows how easy it can be to have large amounts of
(personal) data leaked in a seemingly unrelated incident.

A third example is known as the largest data security breaches in history to date*: the attack
on the Sony Playstation Network in April 2011. A database containing personal data of approx-
imately 77 million users was accessed by an external party over the course of three days. The
attack, disguised as a purchase, was exploiting a known vulnerability which was not dealt with
yet®.

The aforementioned examples are only three of thousands of incidents that happen every year
around the globe. The scope of the problem becomes even clearer from surveys and research in
this subject. A study by the Ponemon Institute [2] approximated that in 2012, data breaches
cost companies an average of 136 USD per (leaked) record. This figure, however, varies greatly
between countries, with an average of 199 USD in Germany being the most costly and India with
42 USD being the least costly. The total cost of data breaches was the highest in the US, whereas
Brazil had the lowest total cost of the included countries, with 5.4 million and 1.1 million USD
respectively. The same study reports that the average number of breached records per attack
was 23,647. Note that no attacks in which more then 100,000 records were compromised were
included in this number, as those incidents are not representative of general data breaches and
could skew results.

In 2008, InsightExpress conducted a study [3] that exemplifies the omnipresence of the issue.
Only 16 percent of employees in France claim to adhere to security policies all the time, employ-
ees in India admitted to changing I'T security settings on business computers so they can view
unauthorised websites and some Chinese employers even decided to audit all company computers
for unauthorised content because of the high IT abuse levels at the time. This shows how all
over the world, companies are susceptible to data leakage.

This work deals with the problem of data leakage, with a specific focus on leakages which happen
at a database level. Since storing and retrieving data from the structured framework that is a
database is very convenient, stealing that data can also be a very quick and easy process. A
simple query can retrieve a large amount of information from the database at once. The breach
on the Sony Playstation Network shows how big these data leaks can become.

3http://doj.nh.gov/consumer/security-breaches/documents/home-depot-20070502.pdf, last accessed 16
December 2013

4Reuters, “Sony Playstation suffers massive data breach”, http://www.reuters.com/article/2011/04/26/
us-sony-stoldendata-idUSTRE73P6WB20110426, last accessed 16 December 2013

SCNET, “The Playstation Network Breach (FAQ)”, http://news.cnet.com/8301-31021_3-20058950-260.
html, last accessed 16 December 2013



1.1 General Approaches

One way of detecting data leakage, or data misuse in general, is by using an Intrusion Detection
System (IDS). Intrusion detection systems can be employed detect several kinds of computer
security violations, including;:

e attacks from the outside, such as exploits;

e attackers who assume the identity of a legitimate user and try to access the underlying
systemn;

e and insiders attempting to abuse their privileges

In the context of data leakage detection in databases, such a system tries to detect attacks on
or misuse inside the database system. It does so by looking at incoming database requests and
determining whether the user’s actions are considered an attack or not based on some criteria.
In general, two major kinds of IDSs can be distinguished [4]: signature based and anomaly based
detection systems. Database intrusion detection systems, which are the focus of this work, are a
specific kind of IDS for which the distinction between signature and anomaly based systems also
applies.

1.1.1 Signature Based Detection Systems

In signature based detection systems, all undesirable behaviour is defined in rules or signatures.
The system is then able to detect activities compliant with these signatures as intrusions.

As long as the signatures that specify the attacks are accurate and complete, this type of sys-
tem can be very effective and efficient in detecting attacks. The amount of false positives, (i.e.
the amount of normal actions falsely declared an attack) in such a system is usually quite low
because it was specifically trained to detect attacks and the signature of normal behaviour is
usually significantly different from that of an attack. Another advantage of signature based de-
tection systems is that they tell the security officer , who has to resolve the issue, what kind of
attack was detected. This gives the security officer insight into what happened and also makes
it possible for him or her to determine whether the attack was real or actually a mistake by the
system. The speed and effectivity of signature based intrusion detection systems makes them
good candidates for many real-time systems such as virus scanners.

The main issues with signature based intrusion detection systems are threefold: detecting un-
known attacks, coping with setting specific parameters, and detecting masked attacks. Each of
these problems will be explained below.

The first and probably the most obvious issue with signature based systems is their inability to
detect unknown attacks. If the system has learned no signature for an attack, then that attack
simply cannot be detected. A result of this limitation is that, even assuming perfect knowledge
of all attacks at the moment of deployment, the system would start running behind in knowledge
of attacks from the moment it was introduced. A solution to this problem would be to update
the signature database frequently in order to keep it up to date. A delayed update could have
significant consequences, similar to the main issue with the Sony database breach. Any update
to such a database containing normal activity marked as an attack could have large consequences
as well, as they have had before with virus scannersS.

6Mary Landesman, “Six Most Memorable Antivirus Mistakes”, http://www.antivirus.about.com/od/
whatisavirus/tp/antivirusmistakes.htm, accessed last on 16 December 2013



A second issue is setting specific parameters. Many different database systems exist, and they
all have subtle (and not so subtle) differences. In addition, a lot of different applications for
accessing databases exist who all might formulate their queries in a different way. Both these
facts contribute to the fact that deploying a signature based detection system requires fine tuning
to those specifics in order to function properly.

Finally, we have the issue of masked attacks. SQL and its dialects have many ways of express-
ing the same query, even in one system there are multiple ways of formulating the same query.
Across different dialects the problem grows even bigger. For example, the word SELECT can
be constructed in many ways, depending on the dialect.

e Oracle: ‘SEL’||‘ECT’

o MS-SQL: ‘SEL’+‘ECT’

o MySQL: ‘SEL*ECT’

e SQL Server: CHAR(83) + CHAR(69) + CHAR(76) + CHAR(69) + CHAR(67) + CHAR(84).

This means that, to deal with the great flexibility of the SQL language, many signatures have
to be created. Otherwise even small variations of a known attack may let malicious activities to
pass unnoticed.

1.1.2 Anomaly Based Detection Systems

Anomaly based detection systems take a rather different approach compared to signature based
detection systems. In the training/set up phase, the system’s normal behaviour is defined by
learning it either from a set of rules or from previous system activity which has been verified by
a security expert in the field where the activity originated from. Normal behaviour is usually
defined over a set of features, representing characteristics of the interaction of the user with the
database. These features might include the query text, the result set, the time of issuing or the
location of the issuer. These features together form a feature space which can be very important
for detecting certain types of attacks. During the detection phase (i.e. after the system has
been deployed), every new incoming request is broken down in to these features which are then
compared to the known normal behaviour. If the request does not fit the known pattern for
normal behaviour, it is considered an anomaly and an alarm will be raised.

Often normal behaviour is not classified in general, but per user or per (logical) role in the system.
The request is then compared to the normal behaviour of that user or role, and subsequently
classified as normal or anomalous for that user or role. A second approach is to hide the actual
user or role and let the intrusion detection system predict what user or role most likely sent the
request. If the prediction is correct, the activity is deemed normal, otherwise an alarm is raised.
An advantage of anomaly based approach is that unknown or new attacks can just as easily be
detected as known or old attacks because the information in the system only knows what normal
behaviour looks like. This makes the approach very promising as it has the potential to detect
every type of attack.

Unfortunately, a number of disadvantages exist for currently existing database anomaly detec-
tion systems as well. These include a relatively high false positive rates due to the difficulty in
capturing all normal behaviour adequately during the training phase, overlap in activity between
roles or users which increases false positive rates, the lack of capabilities in coping with quickly
changing environments and the low amount of feedback that is given about why an alarm was



raised.

One of the more difficult issues with the anomaly based detection systems is that all normal
behaviour must be trained before the system can be deployed. This is because all behaviour that
has not been learned by the system will cause an alarm to be raised, and acceptable behaviour
that has not been learned will therefore cause false alarms. This might seem similar to how all
attacks must be learned beforehand for the signature based approach, but learning all normal
behaviour might be more difficult achieve. Consider the example of an emergency situation in
a hospital, now the actions of some users will possibly change compared to the average day.
However, this should not cause alarms in a detection system since it is still considered acceptable
behaviour. Training for all such possible cases might be almost impossible. In addition, people
do not always behave exactly the same every day. Small deviations might have not been ac-
counted for during the training phase which can again lead to more false positives. A high false
positive rate is undesirable because every alarm (including false positives) has to be addressed
by a security officer.

If we would capture all normal behaviour in a single profile, the system would be unable to
recognise which users do what in the system. This means that all employees who behave like
other employees (including accessing sensitive data they should not) will go undetected. The only
suspicious activity would be those actions that no employee ever does. This approach is clearly
insufficient for most organisations. Note that this approach also makes it easier for outsiders
to masquerade themselves as employees in order to access (valuable) data of the organisation
undetected.

By profiling normal behaviour per role or per user, we eliminate the issue we have with general
classification. In this case, the role of an employee can be their function inside the organisation
or a role based on access rights, such as in a Role Based Access Control administered system.
The most common method of using these role or user profiles is to predict the role or user of an
incoming request based on the profiles. If the user or role matches the actual issuer, we consider
the request authentic and allow it. If the prediction classifies the action as more likely to be
issued by some other user or role, an alert is raised. A problem that arises is when everyday
activity of roles or users overlap. For example, a team manager of a research team might per-
form the same actions as the researchers of the team, but with some added scheduling or other
administrative tasks. Now the normal research activity is seen (and has been learned before) for
both roles. When the system sees a research activity request it will classify the originating role
as either researcher or research team leader, marking the research activity of the other role as an
attack. This means that a researcher performing his daily actions might cause a false alert in the
system. If we give the same role to both users, we will fail to detect management-specific actions
performed by researchers (the problem with a general approach). The same problem exists in
overlap of activity between users. In general, the best case scenario for these approaches is to
have roles or users with mutually exclusive activity. An alternative solution is, if the underlying
system allows for it, to use a hierarchy of roles such as proposed by Wu et al. [5].

The third issue with anomaly based database detection systems is that any changes in role or
user activity (reorganisations, promotions, etc) necessitates complete relearning of normal activ-
ity for that user or role. This is a laborious and difficult task, and especially inconvenient if such
an event occurs frequently.

The final issue we will discuss is the amount of feedback given to the security officer who has to
resolve the alarms. Most current approaches perform as a black box, a request is entered and
the result is either “attack” or “not an attack” possibly in conjunction with the expected role or
user. This does not aid the person tasked with resolving these issues very much. For signature
based systems the feedback might contain what kind of attack was detected but since an anomaly
based system only knows normal behaviour, it can be difficult to recognise false positives from



carefully crafted attacks.

Due to the theoretical vast detection potential, most literature adopted an anomaly based ap-
proach. The possibility of detecting unforseen attacks leads to the belief that it could have
stopped some of the biggest digital attacks so far. However, as discussed before, there are still
a number of issues that require attention in anomaly based detection systems. In addition to
these issues, there are some limitations in the studies themselves as well. The most common
limitations of existing solutions are the following:

The solutions were tested on synthetic databases rather than databases originating from
a real system. Data from the real world is usually hard to come by, but it would increase
the reliability of the results.

The feature space is usually very limited. The main reason for this is that a lot of work
uses Naive Bayes as their classifier which assumes independence of features. To avoid
overlap and dependence between features, information usually is abstracted of or features
are merged with other features in to one. Information is lost in such an abstraction or
merging of features which could otherwise have aided in detecting attacks.

Most solutions only make use of features related to the syntax of the request (the query
itself) or of features related to the data retrieved, not a combination of those.

The false positive rate is too high for the solution to be practical in a big system or the
solution puts impractical demands on the system in any other way.

It is difficult to compare different works because there is no common data set or benchmark
to do so.

1.2 Goals and Research Questions

This project focuses on anomaly based database intrusion detection systems and as such, over-
coming some of the most common problems with those systems is the goal of this project. To
achieve these goals, a number of research questions have been formulated.

Goal 1: Comparing existing solutions in the field of database anomaly detection
systems on the same data set in order to provide a performance benchmark in terms
of detection rate and false positive rate.

Subgoal 1.1: Specifying realistic scenarios related to a database in the health care
domain to aid in testing the performance of various database anomaly detection sys-
tems. The scenarios should represent both normal behaviour and misuse situations.
Subgoal 1.2: Creating a environment for simulating different scenarios and testing
the results against different database anomaly detection solutions.

e What are realistic misuse scenarios in the health care domain?

e Which of the existing solutions perform the best in the given misuse scenarios
and settings?

e How do different solutions behave under the different types of scenarios in terms
of detection rate and false positive rate?



Goal 2: Varying the feature space of data sets used in database anomaly detection
systems to determine the impact on system performance in terms of detection rate
and false positive rate.

e Can a richer feature space increase a database anomaly detection system’s de-
tection rate while decreasing the false positive rate?

1.3 Outline

The remainder of chapters describe the steps taken to answer the research questions. Chapter 2
contains a summary of the related work in the field of database anomaly detection systems and
their advantages and disadvantages.

Our simulation and testing environment consists of three parts, a query and result set logger,
a parser for the log files and a testing framework for comparison and analysis. These three are
explained in detail in chapter 3.

Chapter 4 contains detailed information about the experiments conducted for the project. This
chapter has been split into four sections: 4.1 about the experimental setup that was used, 4.2
about the feature selection that was used for our experiments, 4.3 on the normal behaviour and
misuse scenarios simulated to retrieve our data sets and finally section 4.4 containing the results
of our experiments and the discussion of those results.

The final conclusions, the answers to our research questions and the future work can be found
in chapter 5.



Chapter 2

Related Work

The goal for a detection system is to distinguish normal behaviour from abnormal and mark the
abnormal behaviour as an intrusion. In order to do this, normal behaviour needs to be modelled
for each user of logical role in the system. When trying to model normal behaviour, different
sources of information can be used.

Existing research in anomaly based database intrusion detection generally takes either one of
the following two approaches: looking at the query involved with the request (query centric
approach), or looking at the data retrieved by the request (data centric approach). In addition,
some approaches use information related to the context, such as the time of day the query was
executed or the user that issued the request. In this chapter, we will first look at the different
feature types more closely and then discuss the state of the art with respect to different types
of approaches. Finally, we will look at different attack types and compare a few of the related
works in terms of feature selection and expected ability to detect different types of attacks.

2.1 Feature types

Features can be divided into three categories: syntaz based features, context based features and
result set based features. Syntax based features are features that tell us something about the
query text such as the length of the query or the tables from which information was retrieved.
Context based features contain meta data about the query, for example the ip of the sender
of the query or the time the query was issued. Result set based features contain information
concerning the result set retrieved by the query, examples include the amount of rows retrieved
and what address details are retrieved by the query (if any). This last example is a very specific
one, but it might be very useful in detecting an attack trying to gather all contact information
of a company’s clients.

The availability of context based features depends on the specific setup. For this reason, the
amount and type of context based features varies greatly between different approaches. In some
cases the result set of a query is not available to be used for the extraction of features due to the
high cost of monitoring the result set of every query in the log files, for example in very large
database systems that need to process a lot of transactions per second. Additionally, many types
of queries do not have a result set. Examples include queries executing the delete, insert and
update command.



2.2 Query centric approaches

An example of a query centric approach is the one proposed by Bertino et al. [6] which deals
with database anomaly detection in RBAC-administered database systems, where each user is
associated with a role. To represent data, the usage of one of three types of so-called quiplets is
proposed, which differ in the detail of the information used. The five fields used in the quiplets
are summarized as “SQL Command, Projection Relation Information, Projection Attribute Infor-
mation, Selection Relation Information and Selection Attribute Information”. Unlike the other
fields, the command field is the same for all quiplets. For the coarse quiplet (or c-quiplet), the
other fields are numeric and represent the count of the relations and attributes in the projection
and selection clause of the query. For the medium-grain quiplet (or m-quiplet) the two relation
fields contain a binary vector which denotes which tables are included in the query and which are
not. The attribute fields are a vector which denotes the number of attributes that are used per
relation. The four fields in the fine quiplet (or f-quiplet) contain the same binary vectors used in
m-quiplets for the relations while they contain a vector of binary vectors for the attribute fields to
denote exactly which attribute is being queried from each relation for the attribute information.
The different quiplets represent a trade-off between speed and detection capabilities.

Normally the profiles are learned over roles. In the case that no role information is available, a
clustering approach is proposed to create artificial roles which will be used instead. The profiles
used for detection are built using the Naive Bayes Classifier [7]. In the detection phase, the
model built in the training phase is used to predict a role given an incoming request. If the
prediction does not match the real role, an alert is raised.

The described approach was tested using three data sets: two synthetic data set containing 100
tables; one with four roles and one with nine, and one real data set consisting of 8,368 SQL
traces from eight roles on a database consisting of 130 tables. Randomly generated anomalous
queries were added to all data sets to test the detection rate of the approach. One of the most
interesting observations from the results in this study was that the m-quiplets outperformed
the f-quiplets in some occasions. The biggest limitation is the relative high false positive rate
observed for the tests with the real database. The authors state that the reason could lie in the
nature of the specific data set. Other limitations include the fact that independence amongst
features is assumed by the Naive Bayes classifier while this is not necessarily true. In addition,
the frequency with which a role and query pair has been seen in the training phase influences
the model which can causes a bias towards predicting certain roles.

A way to reduce the false positive rate was proposed by Wu et al. [5]. The main idea is the
usage of a role-hierarchy in anomaly detection. Whenever an anomaly is detected where a senior
function is profiled as a junior function (whose capabilities are a strict subset to those of the
senior) it is not considered an anomaly. The feature space used in this work contains a combina-
tion of syntax based and context based features. This feature space can also be used when such
a role hierarchy is not available by simply performing detection based on the role profiles or by
performing detection based on profiles build on the basis of user-ids. Similar to [6], this work
also uses Naive Bayes as their classification algorithm. The feature space proposed in this work
can also be used without a role hierarchy and even with profiles based on users rather than roles.
The approach was tested on AdventureWorks, a sample database of a fictitious company!. For
the experiments, the work used the marketing and sales departments of the company. This led
to a system with 12 roles of which two were abstract and had no user assigned to them. The
final database was reduced to only include the 17 tables referenced by the users from the selected

I Microsoft MSDN. AdventureWorks sample OLTP database, http://msdn.microsoft.com/en-us/library/
ms124659.aspx (Last accessed 13 January 2014)



departments. Legitimate queries were created by taking random combinations of users and appli-
cations those users are permitted to invoke. These applications then generated database activity
on set tables on behalf of the user that invoked it. Anomalous queries were generated by taking
legitimate transactions and changing the id and role of the sender to a role and id of some user
in the other department.

Their tests show that the tolerance introduced by the role hierarchy does not lead to a significant
decrease in detection rate compared to tests where this hierarchy was not used. The false positive
rate for the tests where the role hierarchy was used was significantly lower.

Fonseca et al. [8] introduced an approach with two levels of abstraction. A command level
abstraction which looks at single queries and a transaction level abstraction which considers ex-
ecution paths and in general collections of queries. A query has to pass checks in both levels of
abstraction in order to not be marked as an intrusion. The queries are reduced to their invariable
part and translated into signatures for groups of queries to allow for a compact representation.
The command level abstraction prevents attackers from changing the query in a significant way
while the transaction level abstraction checks if the order of execution for the queries fits a nor-
mal execution path.

The performance of the approach was tested on a benchmark database. Besides random attacks,
the authors also attempted to fool their own system by crafting attacks that are hard to detect
and could be crafted by a well informed attacker. The results show an outstanding performance
of 100% detection rate. The only false positive rates were found on attacks that specifically evade
the command level abstraction by changing the text inside the strings and values in the where
clause. The two real databases were used to determine the training time needed in a real system.
Their results show that new profiles are learned even after hundreds of thousands commands
over a nine week period. The main limitation of this approach is highlighted by the authors as
well. Their system has a few specific weaknesses that especially insiders can exploit due to their
knowledge of the system. One of the attacks that falls in to the category that is not detected by
the system is the collection of large amounts of data, also called data harvesting.

Valeur et al. [9] propose an approach in which a number of statistical methods are used to
calculate an anomaly score of a query compared to a learned profile. The features used in this
calculation are the query skeleton (the query with all constants removed) in conjunction to the
constants in the query in a separate vector. The profiles are built in the first part of the training
period. Then more normal activity is used to establish anomaly thresholds of normal activity
for those profiles. The anomaly score of queries in the detection phase is then compared to
the maximum threshold found in the training phase in order to determine whether a query is
considered anomalous or not. The approach was tested by performing known vulnerabilities on
a web-portal and logging the queries performed. The false positive observed in the tests are very
low (especially after some fine-tuning) but the detection rates are very low as well (up to 4%).
In addition, a limited variety of attacks were tested.

Chung et al. [10] propose usage of a distance measure between database schema’s and several
thresholds to determine the so-called working scope of a user. If the distance from the working
scope to the pending request is too large it is considered an anomaly. The effectiveness of the
approach is shown via the use of two examples and has not been tested on any large data set.
This lack of testing also represents the biggest limitation of the approach.

Low et al. [11] propose a database containing fingerprints of queries per user to check for anoma-
lies. The fingerprints can be seen as an abstract version of actual (sets of) queries and are
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compared to the fingerprints of incoming queries. This work differs from others in that it takes
the manner in which the query is formulated into account rather than what tables or attributes
are accessed. Lee et al. [12] then further explored solutions for coping with issues that occur with
the management of potential enormous set of fingerprints and other issues with the approach.
Tests on both these systems are limited to the impact on the system performance rather than
detection capabilities.

2.3 Data centric approaches

To build normal behaviour profiles, instead of looking at how a query is formulated, it is also
possible to look at what data it retrieves. The profiles used for detection in data centric ap-
proaches are built on the information found in the result sets of queries rather than the queries
themselves. For example, we can learn what diseases a doctor usually treats patients for instead
of the fact that he or she looks at the disease table.

In [13], Mathew et al. applied this approach; the result set of the query is processed and con-
verted into an S-vector. This is a vector consisting of a number of statistical measurements of the
entries of the result set. The format of the S-Vector differs according to the database schema,
while the values differ according to each different query. By keeping track of statistical sum-
maries instead of individual records and by using a record with a fixed dimension, this S-vector
prevents the normal behaviour model to become prohibitively large. User profiles are made by
making clusters of S-vectors. During the detection phase, if a user sends a query of which the
S-vector does not belong to his or her profile cluster, it is considered an attack. A limitation
of the S-vectors is that they contain statistical summaries of the values, this means S-vectors
cannot help in detecting some attacks based on very specific entries such as a specific disease.
One other limitation is that a varying ordering of attributes with the same data can change the
contents of a S-vector which may lead to false positives in the detection phase.

In the approach proposed by Gafny et al. [14], context based features play a relatively big
role. A decision tree is generated from the context of queries in the normal behaviour in con-
junction with the result sets for those queries. The decisions in the tree are made based on the
context information while the leaves contains sets of rules which are true for the result set of
normal behaviour. By following the decision tree using the context of the incoming request in
the detection phase, a set of rules is retrieved. The extent to which the result set of the request
follows the rules is converted to a numerical value and compared to a set threshold. When the
score is higher than the threshold, the request is considered malicious. This threshold score is
used to make a tradeoff between the false positive rate and the detection rate. The approach can
in theory be used with various methods for calculating the extent to which a result set follows
the rules and for inducing detection models.

The method used for building the decision tree in the tests was based off the Jaccard similary
coefficient [15]. The approach was tested on a synthetic database albeit with realistic attack
scenarios. The test results show a very high detection rate (93%) with a low false positive rate
(9%) and a high detection rate (88%) and a very low false positive rate (1%), with two different
settings for the threshold. A disadvantage of the approach is that it assumes legitimate user
behaviour is completely captured in a set of rules and not being learned by observing issued
queries. This requires an extra conversion step compared to most other approaches.

Another data centric approach was proposed by Harel et al. in[16]. The study contains a proposal
for a so-called M-score, a score that represents the misuseability weight of tabular data. Using
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this score, anomaly detection can be performed by comparing the M-score of usual data requests
with the M-score of new requests. In addition, the severity of a data leakage can be estimated
by using this M-score as it represents the sensitivity of the data as well. A disadvantage of this
approach lies in the fact that the score does not tell us anything about what type of data is being
accessed, only the overall misuseability of the data. For example a very sensitive result set with
only a few records might score just as high as a large number of records with low sensitivity.
In addition, a patient attacker might be able to circumvent detection by performing multiple
malicious queries with a low score, obtaining a lot of sensitive information overall.

2.4 Hybrid approaches

A hybrid approach is one that uses a combination of syntax based and result set based features,
possibly with some context based features as well. This makes it a combination between the
query centric approach and the data centric approach described in the previous sections.

The approach proposed by Costante et al. [17] uses a histogram based detection method. For
each feature, every possible data value is mapped to a bin. For integers or dates, such a bin
can be an interval; for nominal values, every value can have its own bin; for more complex types
such as sets, multiple bins are used, mapping each item in the set to a bin. For each entry in
the training set, the amount of items mapped to each bin is tallied in order to make a profile
for a user or a role. These values are then normalised to create a distribution over bins for all
features and profiles. Next, there is a tuning phase where the security officer can set a threshold
which will be used in the detection phase, as well as set some exceptions to the learned profiles:
some features might occur rarely but they should not be considered anomalous and to allow this,
the security officer can mark such situations to prevent false positives in the detection phase.
The detection is fairly straightforward: if any of the features in the incoming request occurs less
frequently for the corresponding profile than the threshold (and is not one of the exceptions),
the request is considered an anomaly. An anomaly score is also calculated in an attempt to
quantify the severity of the anomaly. Finally, the work describes a broader framework including
a feedback system in which a security officer can mark certain anomaly alerts as false positives
and prevent them from occurring again in the future.

The histogram based detection method was tested on two data sets and with two feature spaces,
one data set was obtained by monitoring the activities of a operational Oracle database of an
IT company and the other data set was a synthetical data set obtained by simulating realistic
misuse scenarios. One of the feature spaces used only syntax and context based features while
the other one included a small number of result set based features as well, creating a hybrid
approach. The results show that the approach has a low false positive rate of less than 1.65%
across both data sets with relative high detection rates (over 70%) for the hybrid approach. The
addition of the result set based features resulted in a higher detection rate but also a higher
false positive rate. Three main limitations are noted by the authors. First, the features are all
considered independently from each other in the detection phase while combinations of features
might contain valuable information as well. Second, the queries are analysed individually, leaving
the system vulnerable to carefully crafted combinations of queries by an insider who is aware of
the system in place. Finally the feedback mechanism gives the security officer a lot of power, if
he or she makes a mistake or has a malicious intent the system might not be as effective as hoped.

The solution of Santos et al. [18] looks at numerical meta-data regarding the SQL commands

that are being sent to the database in a user session as well as numerical information about
each of those commands in order to detect intrusions. Intrusions are detected by performing
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statistical tests on the data, if all features match the pre-built profile for all tests, the request
is considered normal. In addition, a risk exposure matrix to increase the alert management effi-
ciency is proposed.

The approach was tested using a wide variety of attacks which were randomly generated and
merged with an existing synthetic database which contains queries representing typical reporting
behaviour. A drawback of this approach is that detailed information about queries is lost in the
abstraction into numerical features.

2.5 Attack types

Similar to the distinction that can be made between the anomaly detection approaches, we can
make a distinction between different kinds of attacks. One attack might involve a person ac-
cessing types of data he normally never accesses (e.g. financial information instead of medical
information) while another attack might inspect similar types of data, but with different values
(e.g. medical information on children instead of elderly). The first type of attack can be detected
by looking at syntax based features while to detect the second type of attack, we need to look
at the values returned, i.e. at result set based features.

This distinction was also made by Mathew et al. [13], they defined three types of attack in re-
lation to a normal query: (1) different result schema/different result tuples, (2) similar result
schema/different result tuples and (3) similar result schema/similar result tuples. Attacks of
type (1) should normally be detected by both query centric and data centric solutions. Attacks
of type (2) should generally be detected by data centric approaches, while the performance of
the query centric approaches will depend on the way the query was formulated as well as the
way queries are interpreted. Type (3) attacks are typically hard to detect for approaches which
consider the statistical distribution such as the one described in [13], while an approach which
looks at actual data values such as [17] should be able to detect it. Similarly to attacks of type
(2), attacks of type (3) may be detectable by query centric approach depending on the specific
query and the adopted approach.

2.6 Feature spaces in the state of art

The related work presented so far shows us that there is no golden standard for which features
to use when detecting anomalies in database systems. There are even significant differences
amongst solutions who fall in the same category of approaches. In addition, the way in which
information is represented differs as well. We summarise the reasons different feature spaces are
used in different approaches with the following three observations:

e If the goal is to make a system which detects anomalies in requests before those requests
are executed, we are faced with some strict timing demands: the detection system should
not slow down the application by a noticeable amount. This means we have very little time
to perform our detection. Therefore it has to be as fast as possible. Adding a large amount
of features could slow down the system. In a response to this limitation, including some
sort of threshold or introducing different grains of detection in order to allow a tradeoff
between performance and speed [14][17][6] is a common choice.

e Since time is an important asset when detecting anomalies, a majority of the solutions favor
the usage of the Naive Bayes classifier for its low computational cost [6]. The downside
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of using Naive Bayes, however, is that it assumes strong independence between the fea-
tures. Since this assumption is rather strict and the algorithm seems to perform reasonably
well in practice, most solutions use it regardless. Adding features would possibly increase
the dependence between the attributes and as such might not contribute as much to the
detection rate as they would with other algorithms (e.g. decision trees).

e Many different types of queries exist. Some of them modify the contents of a table while
others simply retrieve data. When we select features that might aid in the detection of
anomalies, we have to take into account that the information might simply not be present
in all types of queries. Usually this is circumvented by not using features that occur
infrequently.

In this thesis we compare several variations of three approaches available in the state of the art
presented so far: the quiplets from the work of Bertino et al. [6], the approaches described in
Wu et al. [5]’s work and the histogram based method with the added result set based features
described in Costante et al.’s [17] work. These three works were selected because these three
works represent different approaches in terms of the types of features used. The quiplets consists
of only syntax based features, the feature space used for Wu et al.’s work contains a combination
of context based features and syntax based features and Costante et al.’s work contain a hybrid
solution that uses all three types of features. Table 2.1 contains an overview of which features
are used in which work. The features used contain a tick (v') if the approach includes the specific
feature.
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Table 2.1: Overview of features used by the three works compared in this thesis.

type feature description Bertino | Bertino | Bertino | Wu et | Costante
et al. c- | etal. m- | et al. | al. et al.
quiplet quiplet f-quiplet hybrid
syntax based query_attr_list a list containing the attributes selected in the SELECT v v
part of the query.
query_attr_number the number of attributes selected in the SELECT part of | v/ v v
the query (the amount of items in query_attr_list).
query_attr_counter a list containing the amount of attributes used per table for v
the SELECT part of the query.
query_length the length of the query (amount of characters). v
query_table_list a list containing the tables in the FROM part of the query. v v v v
query_table number the number of tables selected in the FROM part of the | v/ v
query (the amount of items in query_table_list).
query_where_attr_list a list containing the attributes in the WHERFE part of the v v
query.
query_where_attr_list number | the number of attributes in the WHERE part of the query | v v
(the amount of items in query_where_attr_list).
query_where_attr_counter a list containing the amount of attributes used per table for v v
the WHERE part of the query.
query_where_length the length of the WHERE part of the query (amount of v
characters).
query_where_table_list a list containing the tables in the WHERE part of the query. v v v
query_where_table_list_number | the number of tables in the WHERE part of the query (the | v/
amount of items in query where_table_list).
query_command the SQL command used. v v v v v
context based query_timestamp the time the query was logged. v v
web_app_role the role of the user sending the query. v v v v v
web_app-uid the user-id of the user sending the query. v v v v v
department_id an identifier for the department of the company. v
access_type an identifier for how the database was accessed. v
area_constraint the location where the query was sent from. v
result set based | rows_bytes the number of bytes of the result set. v
rows_number the number of rows of the result set. v
result_set aggregate information about the most interesting columns v

of the result set.




Chapter 3

Methods

In order to fairly compare work from the literature we need a collection of data sets to use for
testing the approaches we want to compare. Almost no overlap exists between the data sets
used to benchmark the current solutions which makes it hard to compare the different available
solutions. In order to create such data sets and perform the comparison, a testing framework
was set up.

The recent steps towards digitalisation and the abundance of sensitive information in a health
care system has drawn us towards using the health care domain as the application domain for
this thesis. Health records of patients may contain very sensitive information and in any case
contain personally identifiable information. This kind of information has to be handled with care
and access to such information has to be assigned cautiously. Nevertheless, emergency situations
sometimes call for usage of data without proper consent of the patient in question. In addition,
the size of a hospital in terms of amount of employees is usually too high for manual supervision
of all data accesses. Even if the amount of requests would be feasible for manual processing,
reading queries and tables of data and comparing them to normal behaviour is not an easy
task. It requires extensive knowledge of the database system and of all the normal activities of
every employee. Evidently, a largely automated system is preferred. Our system tries to provide
an environment for simulating scenarios in a health care information sytem and testing existing
solutions in such scenarios. Figure 3.1 contains the overview of our testing framework, the logging
class, log files, query and result set parser, feature information and form our contribution for
the testing framework. Activity is simulated for all users via the Tryton® client (which serves as
the interface to GNU health?). The database queries resulting from this activity are logged by
the logger class which is located in the Tryton server. The logger class writes the activity to log
files which are then parsed by a custom written parser. The parsing result are inserted in a local
database and then used for experiments and analysis using Rapidminer?.

All the steps mentioned above will be explained in detail in the remainder of this chapter.

Thttp://www.tryton.org/
?http://health.gnu.org/
Shttp://rapidminer.com
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Figure 3.1: The complete architecture of the testing framework

3.1 Logger

The free and open source health and hospital information system GNUhealth* running on the
high-level general purpose application platform Tryton® was used as the information system
for simulating activity. The modular and open source nature has lead for GNU health to be
adopted by the United Nations University International Institute for Global Health®, for train-
ing and implementation globally, particularly in developing countries. Additionally it is being
used by, amongst others, the Jamaica ministry of health for their Public Healthcare Network, as
well as hospitals in Argentina and Bangladesh, universities in Indonesia and the Commonwealth
Caribbean.

Tryton is a application platform that can be used to many ends. In its core it provides function-
alities for accounting, project management and more. Beyond that, it can easily be extended to
make it suitable for other purposes with the use of modules. GNU health is basically a set of
modules which allow Tryton to function as a health care information system.

As depicted in figure 3.1, Tryton uses a server-client architecture. This architecture allows multi-
ple clients to connect while keeping updates and maintenance restricted to the server only. This
also means that it is possible to use external modules in Tryton by installing them on the server.
In our case, we use the health-modules provided by the GNU health project to turn Tryton in

4nttp://health.gnu.org/
Shttp://www.tryton.org/
Shttp://iigh.unu.edu/
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to create a health information system. For our experiments we simulate normal behaviour and
realistic misuse scenarios in the Tryton client.

As Tryton runs on Python and is open-source, we have the opportunity to write a class that
extends the database request handling module. The logger will write all queries and the cor-
responding result sets to log files. The logger class makes no modifications and as such has no
influence on the functionality of the remainder of the system.

As mentioned earlier, the task of the logger class is to extract the queries and result sets from
Tryton and write them to a (log) file. By doing logging in this way, we can process the data
request on a later moment. Some research has been done to designing a real-time data leakage
detection solution, i.e. one that tries to detect an anomaly in a request before it is executed.
In the case of a real-time data leakage system, the system must conclude whether a request
is anomalous or not before sending the result set back to the issuer. Attempting to compare
approaches from literature in a real-time setting was not done in this project for a number of
reasons:

e Speed: preliminary tests showed that logging all database activity slows the system down
noticeably. The addition of a complete parsing of both the query and the result set and
applying the results to a detection model would worsen the impact.

e Training and Testing convenience: since anomaly detection models have to rely on a pre-
learned model of normal behaviour, saving data requests to file at some point is preferred
in any case. In addition, we want to test a data set multiple times with varying test
setups or against different algorithms. Reenacting activity for every test would be very
time consuming as well as difficult because we have to get details such as the system time
exactly the same as before.

e Flexibility: by not implementing all the steps in the process in one location, we do not
restrict ourselves to a specific context for implementing the parser and the detection model.

A benefit of the decision of implementing the logger class as a part of the database handling
module of Tryton is that the logger can also be used for logging other applications running on
Tryton and not only GNUhealth.

Since this project is limited to data leakage (i.e. data leaving the system) and does not ac-
count for other kind of data misuse (e.g. removing or modifying data), we only need to log
queries that execute the SELECT command. Doing this will also guarantee that a result set can
be retrieved, even though it may be empty. The remainder of the logger is straightforward: sim-
ply write all relevant information available to a comma separated values (csv) file. In our case
this information is the database name, the full query, the result set after executing the query and
finally the current time. The user and their role in the system are added to the logs as those are
needed to create user and role profiles. We have to add this user and role information manually
because it is not available in the query handling class of Tryton.

3.2 Parser

Before we can train the detection model using the logged information, we need to break the
query and result set down into useful features. To be able to cover all types of anomaly detec-
tion approaches we have to be able to extract both syntax and result set based features. The
syntax based features are usually completely determined by the approach that wants to use the
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features. For example, if we want to parse a log file for usage with f-quiplets, we need to process
the query in such a way that gives us the features used in that quiplet. On the other hand, the
result set based features used are sometimes a combination of what the approach dictates (e.g.
amount of rows in the result set) and application specific features (e.g. disease names in medical
applications, bank account number in financial applications). For our comparisons, we need to
determine a number of features that can be useful for detecting attacks. Information required for
the parser to create and populate these features is read from a file that was created in advance.
In figure 3.1, this file is labeled “feature information”. More details on the feature selection for
our experiments can be found in section 4.2.

The creation of some syntax based features requires full knowledge of the layout of the database
of the system where the activity was performed on. For this reason, the parser connects to the
Tryton database to extract meta data about the layout from the information_schema table.
As said before, the task of extracting features from queries and result sets is done by a custom
written parser in the Python language. The data is read one entry at a time from the CSV-file
provided by the logger after which the parsing can begin. This parsing has two major parts: the
parsing of the SQL query and the parsing of the result set.

The parsing of the SQL mainly consists of finding keywords (most importantly “FROM” and
“WHERE”) and using those to split up the query. Tricky parts include functions (such as extract ()
for timestamps), reverting aliases and correctly escaping and removing quotes and parentheses
in to order to parse the entire query correctly. In the end this leaves us with all the features we
need: lists of attributes and tables as well as some other statistics about the query such as the
length of the query and the number of attributes. These features are then temporarily stored in
a list in the format we need them to be for the detection. In our case this means storing them in
several different variations as there is overlap in what information is used, but not in the format
of storing that information.

Parsing the result set is also a difficult task as we have to know what type of information is in
the tables. For example, we process a nominal value (such as a user-id) differently from a integer
value (e.g. the number of days a person has been hospitalised) despite both being represented
as integer in the result set. We use the information from the SQL parser (which column rep-
resents which attribute) in combination with details from the feature information file described
previously. For every (result set based) feature we want to use in the detection phase, the file
contains the type of data the attribute is in. Using the conversion table 3.1, we determine how to
process each column. Since a result set from a query can retrieve multiple rows, some statistics
or aggregates over all rows are used as features.

After the parsing is done, all features will be written to a local database. Since Tryton uses
a PostgreSQL” database for its data management, the same database management system was
chosen here as well to ensure minimal conversion issues between different types of databases
in the entire data flow from logger to experiments. Since all features for all tested detection
algorithms have to be converted by the parser, the resulting database schema has a relatively
large number of attributes. The average processing time for a single entry (i.e. one query and
result set) for our tests was approximately 35 ms, which is reasonable if we keep in mind that
the process was not optimised for speed. The size of the query in some cases reaches over fifty
thousand characters and the result sets contain up to a thousand rows of data for a single query.
The speed of this step is not the most important part since we only need to convert the data
once in order to perform many experiments.

"http://www.postgresql.org/
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Table 3.1: Conversion table from database attribute to detection features
Attribute type | Example Feature

average value

maximum value

minimum value

standard deviation

Nominal top most frequent value and frequency
patient ID second most frequent value and frequency
third most frequent value and frequency
average length

maximum length

minimum length

standard deviation of length

most frequent value

fraction of rows with special (non-
alphanumerical) characters

Date maximum value

date of birth minimum value

top most frequent value

Numerical

age of a patient

Text

(additional) critical info

3.3 Rapidminer

RapidMiner, an open source predictive analysis and data mining tool, was used for testing var-
ious approaches. Rapidminer is a powerful data miner with a substantial number of built-in
features, allowing for quick and reliable data mining. It is used by companies over the world,
including Lufthansa, Pepsi, Siemens AG and Volkswagen.

Rapidminer was chosen because it has standard interfaces for various database systems and
built-in processes for almost all analysis required for this project. Examples used for this project
include k-fold cross validation, partitioning data using preset ratios and the generation of Naive
Bayes classification models. The generation and modification of attributes and values for testing
purposes have been used as well. The default Performance process was used when possible to
retrieve detection results.

Before any testing, the data is loaded from the database into Rapidminer and preprocessed.
All test data sets are filtered to exclude most system queries not directly related to the user ac-
tivity. The resulting data table is stored locally for later use. An example of such a preprocessing
process can be found in figure 3.2. The database containing normal behaviour is split into two
parts, 70% training data and 30% testing data, this split has been done only once to not allow
any randomness affect the results and comparisons.

For all approaches, a cross validation using the training data set was performed. Where possi-
ble, the built-in k-fold cross validation process was used for £ = 10. The model built from the
complete training set was stored for the detection tests. In the case that an approach is not
fit for usage with the built-in cross validation process, we create a custom process to perform
the 10-fold cross validation. The process for the cross-validation generally looks similar to the
example given in figure 3.3.

Besides performing cross validation, the performance of the models was also tested using the
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Figure 3.2: Example process used for data preprocessing.
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Figure 3.3: Example process used for cross-validation.

remaining 30% of the normal behaviour that was stored as the testing set. Since this data set
contains only normal behaviour, every detected attack is a false positive and as such this will

give us a false positive rating. An example for a process that performs such a test is given in
figure 3.4.

Retrieve model Apply Model Performance
@ out ) ( mod & lab ) C lab ; per :I
.&' Qui g med) i per % exa b
=] @/
Retrieve testi... Select Attribu... Set Role
@ aut [} {] exa exa i {] exa T [
ol B i B
&) &)

Figure 3.4: Example process used for testing the false positive rates.

The general process for the detection rate experiments are fairly straightforward for most experi-
ments, simply apply the model built in the training phase to the testing set and input the results
into a performance process. Obviously there are some small alterations to accommodate for the
specifics of each approach, but the example process in figure 3.5 sums up the most important
parts.
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Figure 3.5: Example process used for testing the detection performance.
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Chapter 4

Experiments

To test and compare the performance of different existing database data leakage detection systems
we carried out a series of experiments, as described in detail in the next sections. The approaches
chosen for comparison are the ¢-, m- and f-quiplets described in [6], the three approaches by Wu
et al. as described in [5] and finally the histogram based method described in [17]. The details
on the feature selection used for these experiments can be found in section 4.2.

In order to compare the approaches in a meaningful manner, we want to have a common data set.
To create such a data set, we formulated normal behaviour as well as five misuse scenarios which
can be simulated using the testing environment described in the previous chapter. To ensure
that the tests are realistic, medical experts verified the validity of the scenarios, behaviour and
setup. Section 4.3 contains all information about the scenarios.

Finally, in section 4.4 we present and discuss the results of our experiments.

4.1 Experimental Setup

The environment used for the experiments was the testing environment described in the previous
chapter. A complete overview of process used to perform the experiments can be found in figure
4.1.
A Tryton server was installed on a virtual machine running Ubuntu 12.04. The GNU health
modules were installed in Tryton and the logger class was implemented next. The parser and
feature information files were added to the machine to allow for parsing on the same machine.
Finally a PostgreSQL database was created to allow for storage of the data sets.
Before the logger was deployed, the GNU health information system was filled with 500 ran-
domly generated patients with a variety of diseases, appointments and other details. In addition,
all employees were added to the system and subsequently assigned a user account. Next, we
activated the logger class so that any activity performed from that point on would be logged.
All activity was then simulated manually by logging in to the Tryton client on different user
accounts and performing actions considered normal for them, generating log files. All the details
on the user activity will be presented in section 4.3. The log files were completed by manually
adding user id and role data afterwards. The parser was then used to read all the log files and
create a set of tables (one for each attack and one for normal behaviour) in the local database
containing the features used for testing.

The tables from the local database were then read by a process in Rapidminer which prepro-
cessed and stored the data in Rapidminer. After the preprocessing, the models were learned for
all approaches and subsequently stored for usage in the test processes. The test processes used
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Figure 4.1: The process which was used for performing our experiments.
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the preprocessed data sets as well as the learned models to generate performance results per data
set for all approaches. As a final step, the accuracy measure retrieved in some processes were
converted to a false positive rate or a detection rate, depending on the data set used. For the
control set (normal behaviour), every incorrectly predicted role or id is considered a false alarm
which adds to the false positive rate. For the attack data sets, every incorrectly predicted role
or user id is considered a true alarm which adds to the detection rate.

In total there are five data sets containing simulations of the misuse scenarios and a control
data set containing only normal behaviour, which will all be presented in section 4.3. All these
data sets were tested using all variations of the methods described in three studies from liter-
ature: Bertino et al.’s quiplets [6], Wu et al.’s feature space using user profiling, simple role
profiling and role hierarchy profiling [5] and Costante et al.’s histogram based method [17].
From the work of Bertino, all three types of quiplets were tested twice, once with role and once
with user id as profiling feature.

Wu et al.’s feature space was used for tests with user id and role as profiled feature, as well
as the role with role hierarchy introduced in their work. In our case the only hierarchy in the
system is that the activities of the nurses are a subset of the activities of the doctors. This means
that the doctor role is senior to the nurse role and that any doctor profiled as a nurse will not
be considered an anomaly whereas they normally would. Since both Wu et al.’s and Bertino’s
approach use Naive Bayes as their detection model generation algorithm, these tests also show
us how much the detection rate and false positive rate are affected by the choice of features and
by the way gathered information is represented.

Costante et al.’s histogram method allows for a wide variety of features, the impact of which
we test by using four set-ups: two for user id and two for role as profiled feature. For both
profiled features we performed one test with only syntax and context based features and one test
with a combination of syntax, context and result set based features. The selection of features is
explained in the next section. The choices for bins were made such that any numerical values
(include dates) were on an interval that guarantees at most 100 bins. In general, the decision
depends on the precision we need. For example, the time of day might be needed at a preci-
sion that indicates whether an employee worked the morning, afternoon or night shift in some
applications, which would be three bins. In other cases where working times vary a lot more a
precision of one hour (meaning 24 bins) might not suffice.

4.2 Feature Selection

In an ideal situation we would use all the information contained in the query and result set in
a way that can clearly help in detecting an attack. Doing so with the Naive Bayes classifier is
probably not a good idea as the added features are likely to have some dependency with existing
features. Thus the main assumption of Naive Bayes is not met anymore. For this reason and
to accurately reproduce the results from the original work, we use the features that were used
in the original works as long as they were available and meaningful in our setup. The SQL
command field and IP address were always the same for all queries so they were omitted during
the experiments. In addition, our system did not include department or regions like the database
used by the original work of Wu et al. [5]. Since one of our goals is to include experiments with
more features, we use the histogram based approach by Costante et al. [17] to perform these
experiments. This approach does not try to estimate a user or role but compares features one
by one, making it more suitable for a larger number of features. We used two different feature
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spaces for our experiments with the histogram based method. One consisting of purely syntax
and context based features and one consisting of a combination of syntax, context and result
set based features. The syntax and context based features used were in both cases the same set
of features as used in the original work, the only difference is the selection of result set based
features which we will discuss shortly. The complete list of features used for each approach has
already been presented in table 2.1.

The result set based features used in the experiments include the number of rows and the number
of bytes of data. These two features can help detecting data harvesting. The remaining result
set based feature is named “result set” in table 2.1. This result set is in fact a list of features
as every attribute that is profiled is converted to multiple features by the parser, depending on
the type of the attribute. The conversion table used in this step was presented in table 3.1. For
example:

Query:

SELECT sex, age, disease_name AS dis, primary_care_doctor AS doc
FROM patient
WHERE age = 37;

Result set: (partially shown)

sex age | dis doc
Male 37 Flu
Male 37 HIV
Female | 37 Cholera
Female | 37 Flu

N N GRS

Resulting feature table: (partially shown)

sex_topl | sex_top2 | sex_top3 | age_avg | age_max | age_min | age_std | dis_topl

Male;12 Female;11 37 37 37 0 Flu;

Here we see that the sex attribute is of the nominal type and therefore will be converted to three
features containing the top three most observed values with their frequencies (as <value>;<frequency>).
The age attribute is a numerical value and as such will be summarized by four features repre-
senting the average, maximum, minimum and standard deviation of all the values seen in the

result set. The full list of attributes and the reason they were selected is listed below:

e The patient id is included so we can know who’s data somebody is accessing.

e The patient’s date of birth is included to detect when the general age group of a request
changes from normal behaviour.

e The sex of the patient is included. As it would be strange for a gynaecologist to inspect
data of males while he or she normally only treats females.

e The patient’s critical info field contains any especially important information that a doctor
or nurse must know when treating the patient. Since this information can be very sensitive,
it is included in our list.

e The primary care doctor of a patient is the doctor who normally treats a patient. If some
other else is accessing the file, then this is probably an anomaly.
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e The disease is a very obvious choice for a hospital, this value indicates what disease a patient
is being treated for. This value can be considered sensitive and personal information which
is why we included it.

e The registration patient field contains the id of patient that is currently admitted for treat-
ment in the hospital. Since this probably changes the behaviour of the nurses and doctors
towards the patient compared to a patient that is currently not being treated, it is included.

e The fields diagnosis, patient and doctor concern an evaluation of a patient. The doctor
field is the doctor who diagnosed the patient in the evaluation, which should be the primary
care doctor.

e A patients family disease history can give a doctor clues to what might cause some symp-
toms, but they can also be valuable information for possible future employees or health
insurance companies. That is why it is included in our feature space. Both the patient and
the name of the disease are included as separate features.

e We also include three features about lab tests, the requestor of the lab test, the patient
who’s blood is tested (or perhaps tissue or something else) and the doctor who performed
the tests. Note that this last person is most likely an analyst and not the primary care
doctor.

e The patient who received a vaccination field can again help us detect who accesses detailed
information about a patient.

e Qur final three features concern a surgery, the fields we use as features are the patient’s id,
the patient’s age and the operating physician. Again these represent details that nobody
should access without good reasons.

4.3 Scenarios

The limitation of using synthetic data sets (those made up for the sake of testing rather than
those originating from a real system) can be overcome in two ways: by using a full sized real
data set acquired from an organisation, or by simulating realistic misuse scenarios in an synthetic
information system. Since the former option is difficult to organise for the scope of this project,
the latter approach was chosen. Normal behaviour and five data misuse scenarios for four roles
were formulated and then verified by medical experts from the Roessingh medical rehabilitation
centre!. Besides usage for these experiments, these scenarios could form a basis for a general
test set on which future solutions can be tested.

In our experiments we simulated a hospital with with six doctors, four nurses, one secretary
and one administrator. The hospital has around 500 patients of which the majority are just
in the system and not actively being treated. The employee and patient data were generated
randomly by a small python script. The remainder of information such a diseases, appointments
and employee login accounts were added manually before the logging of activities started.
Every patient in the system is assigned to a primary care doctor. For our misuse scenarios this
has the following semantics: if doctor A is the primary care doctor of patient B, then doctor A
is the doctor who treats patient B and no other doctor is treating patient B.

Nurses also treat patients, but no patients have a nurse directly assigned to them in the system,

Thttp://www.roessingh.nl/
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i.e. patients can be treated by several nurses.

The secretary also deals with patients, but she does not have a set of patients assigned to her
and cannot access medical information. In addition, she does some miscellaneous activity in the
administrative part of the system.

The administrator governs the entire database, if anything is wrong: he should look in to it.
Normally this involves adding new users to the database, changing settings in the system and
updating stocks when new goods arrive.

In case of an emergency, we want doctors and nurses to be able to be as flexible as they have
to be in that situation without being hindered by the system. For this reason, all doctors and
nurses have access to the patient records of all patients, a common practice in real cases.

The secretary has access to all administrative parts of the database as well as access to the
patient demographic data, appointments and patient evaluations.

The administrator has full access to the entire database. It is his responsibility to keep the
system running so he must be able to access it.

The normal behaviour that was simulated for our experiments consists of all actions that are to
be expected from each role. This means inspecting and sometimes modifying details of a patient
for doctors and nurses. As mentioned, doctors only inspect and modify files of patients of which
they are the primary care doctor. For the administrator and secretary this means performing
various actions on the administrative part of the system. For the secretary this includes inspect-
ing (not modifying) patient data and adding appointments.

During the simulations, the system time was changed frequently and the order of actions was
randomised in order to avoid causing detection mistakes due to the biases in context due to the
simulations.

Together with normal behaviour we also simulated misuse scenarios to test the ability of the
approaches under analysis to detect them. When presenting a misuse scenario (or attack) we
also discuss what features are necessary for an approach to be able to detect that attack. For
example, if an attack is anomalous because a user accesses a system during night time, then the
approach must include the time of day in some feature otherwise it will be unable to detect the
attack.

Attack 1: administrator accesses medical data

In this scenario, the system administrator misuses his privileges to access patient data. The ad-
ministrator usually checks stocks and does administrative work with respect to the user accounts
of the system. He or she uses a lot of different tables of the database but none of those are
directly related to patient data. In this attack the admin accesses patient data.

Since our system only has one administrator, we expect to see detection perform similarly for
both role and user-id as profiled feature for the data set resulting from this scenario. As both
the data values as the tables accessed by the administrator are new to the system, both query
and data centric approaches are expected to have high detection rates for this scenario.

Attack 2: doctor specialised in treating children accesses data of elderly patient

In our second scenario we consider a doctor in the hospital. This doctor only treats patients
aged eighteen or less because of his or her specialisation. Since all doctors can access all patient
data in this setup, this doctor can as well. In this attack, the doctor looks at data of a patient
who is much older than eighteen and who he or she does not treat.
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Since all patients are treated by doctors, we do not expect high detection rates for tests with
role as the profiled feature. Since the actual value of the age field is important, we expect only
data centric approaches that include this field to detect the anomaly accurately.

Attack 3: doctor specialised in specific disease accesses data of patient with different
disease

For our third scenario we consider a second doctor. This doctor is specialised in treating people
with a certain disease and as such, only does this in the hospital. The attack consists of this doctor
inspecting the file of someone who does not suffer from the disease that he or she is specialised in.
Note that our setup does not account for the severity or sensitivity of disease in question during
the detection phase. Specific diseases may affect the severity in a real case of data misuse greatly.

Inspecting the disease entry for a patient is considered normal activity for a doctor. The way
to detect this kind of anomaly is by looking at data values to find what specific disease is being
looked at. This means we expect only result set based approaches to detect this anomaly. Ad-
ditionally, since other doctors in the hospital treat the disease in question, we need the user-id
as the profiled feature in order to find this anomaly.

Attack 4: doctor accesses file of a patient she does not treat

Our third doctor can be described as a generalist, he or she treats all different kinds of patients
for various complaints they may have. However, as any other doctor, he or she only treats the
patients that are assigned to him or her. In this attack, the doctor accesses the file of a patient
he or she does not treat.

Again we have a case where the values are more important than the tables used. Further
more, we expect only the test for user-id to be raising an alarm since some other doctor would
normally access this file (as every patient has a doctor assigned to them).

Attack 5: nurse logs in at an unusual time

In our fifth and final scenario we have a nurse. This nurse usually only works day shifts from
9am to 5pm. This is important since in this case, he or she logs in and inspects patient data files
around 11pm.

This scenario is different from the others in the sense that the anomalous feature is context
based rather than result set or syntax based. This means that only approaches that include the
time of day as a feature should be finding anomalies in this scenario.

4.4 Results

The results for the control data set containing only normal behaviour can be found in table
4.1. The normal behaviour was first split into two portions, 70% went to the training set (21344
rows) and the remaining 30% were put in the testing set (9148 rows). For all approaches, ten-fold
cross-validation was performed on the training set to estimate the performance of the models
on an independent data set. Since we know that the training set consist entirely of acceptable
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behaviour, we can mark every detected anomaly as a false positive. The resulting false positive
rates (FPR) can be found in the first row of the table. The second row of data contains the
corresponding error margins (EM).

By performing tests using the testing set and the models built from the training set, we are
able to test the performance of the model on the remaining normal behaviour. The results of
these tests can show us if significant parts of the normal behaviour did not end up in the training
set due to the random split made initially. In such a case these results would differ by a large
margin from those in table 4.1. The results of these tests can be found in table 4.2.

The results of the data sets retrieved from simulating misuse scenarios can be found in table
4.3. The column labeled “data set” shows which misuse scenario was simulated for creating that
data set. Since these attack data sets only contain attacks, every entry marked as an anomaly
is considered a true positive. In the end, this gives us detection rates (or true positive rate) per
attack and approach.

Since the false positive rates of the cross validation in table 4.1 are more reliable than those
in table 4.2, they will be used for comparison and analysis. The most important to note about
table 4.2 is that the differences with 4.1 are quite slim overall. This means that, overall, most
activity was distributed fairly evenly between the two data sets.

The false positive rates found in our experiments are vastly superior for both variations of the
histogram based method (0,64% - 3,05%, highlighted in bold) compared to the other solutions,
particularly the variation without result set based features. The difference between the hybrid
approach and the query centric approach is a factor 4 for the tests where the user’s role was
used as profiled feature, and a factor 2,7 for the tests where the user-id was used as the profiled
feature. In both cases, the query centric approach outperforms the hybrid approach in terms of
false positive rate.

The false positive rates for the approaches that use Naive Bayes as their classification algorithm
are rather high (29,74% - 71,72%), with better results for Wu et al.’s approaches where the role
profiles were used. A reason for the high false positive rates can be found in a bias developed
in the training phase by using the Naive Bayes algorithm. This bias results from the uneven
distribution of user ids and roles in the training set. This causes the model to predict the most
occurring roles and ids much more often than others almost regardless of the features. Since
certain roles have more activities in their normal behaviour then other roles, such a bias is hard
to avoid. In general, Naive Bayes will always have this problem when there is an unbalanced
distribution. A random generation of normal activity as performed in related work probably
gives a more even distribution amongst roles which leads to a better performance overall.

The detection rates are also affected by the bias described in the previous paragraph. As long
as the real sender of a query is not the role or id to which the bias is towards, chances are high
it will be marked as an attack. For this reason, it is hard to appreciate the high detection rates
seen for some of the attacks. Specifically attacks number 2 through 4, where the features to
detect those attacks are missing are and the results found for these experiments are most likely
not actual detections but rather a result of this bias.
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Table 4.1: Average false positive rates (FPR) and corresponding error margins (EM) for ten-fold cross validation on the control set.

Bertino Wu Histogram Based
c-quiplet m-quiplet f-quiplet role hierarchy without result set with result set
id role id role id role id role role id role id role
FPR 71,72%  39,04% 69,32% 50,08% 69,28%  50,03% 56,04%  32,22% 29,74% 1,12% 0,64% 3,05% 2,57%
EM 0,67%  0,98% 0,89%  0,99% 0,91%  1,00% 0,65%  0,38% 0,46% 0,11% 0,11% 0,31% 0,38%

Table 4.2: False positive rates (FPR) for the tests using the testing set on the model build on the training set.

Bertino Wu Histogram Based
c-quiplet m-quiplet f-quiplet role hierarchy without result set with result set
id role id role id role id role role id role id role
FPR 72,18% 40,04% 69,61% 50,03% 69,58% 50,87% 56,13%  33,36% 30,50% 0,92% 0,37% 2,82% 2,31%

Table 4.3: Detection rates for the data sets resulting from simulating the misuse scenarios described in section 4.3.

Bertino Wu Histogram Based
c-quiplet m-quiplet f-quiplet role hierarchy without result set with result set
data set id role id role id role id role role id role id role
attack 1 100,00%  100,00% 100,00% 100,00% 100,00% 100,00% 99,29% 99,65% 99,65% 97,88% 97,88% 97,88% 97,88%
attack 2 97,94% 19,54% 98,34% 84,09% 98,34% 84,09% 100,00% 93,00% 93,00% 0,63% 0,00% 100,00% 0,99%
attack 3 100,00% 0,00% 100,00% 0,00% 100,00% 0,00% 0,00% 0,00% 0,00% 3,70% 3,70% 85,19% 85,19%
attack 4 72,79% 25,59% 91,15% 80,06% 91,15% 80,06% 100,00% 0,00% 0,00% 6,67% 0,00% 73,33% 46,67%

attack 5 87,30% 19,94% 92,04% 85,62% 91,99% 85,67% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%




For the attacks where the approaches were capable of detecting it we see relative high detection
rates across the board (73,33% - 100,00%), these are highlighted in bold in table 4.3. The de-
tection power in the histogram based method with a hybrid feature space is clearly observed in
our results.

In general we see that the detection rates for the tests using the user id as profiled feature have
higher or similar detection rates compared to the tests where the role was used for creating pro-
files. On the other hand, the false positive rates for the roles tests are lower (and thus better) for
the role-profiles. The reason behind this is that the id-profiles are more specific and can therefore
be distinguished better. This means that it is easier to distinguish between small differences in
behaviour, causing quicker detection of attacks but also more errors in the case of small harmless
deviations from normal behaviour. Overall, we can say that there is a trade off to be made when
using one of these two approaches.

Attack data set 1 shows the best detection rates overall (97,88% - 100,00%). We expected
both query centric and data centric approaches to detect the attack and they did.

The second data set shows us the benefit of adding the result set based features in the histogram
based approach. We did not expect to see high results for tests using roles to built profiles and
this turned out to be the case. The only approach theoretically capable of detecting the attack
delivered with a 100% detection rate.

The remarkable part about the results of the third data set is that the detection rate for the
histogram based approach with result set based features where the role was used to create pro-
files (85,19%). The fact that this rate is the same as the tests for the id-profiles means that the
disease did not occur for any of the doctors in the normal behaviour used for creating the model.
Since the data set containing normal behaviour has been split for training in order to test the
false positive rating, it is probable that all occurrences of this specific disease ended up in the
testing set. Training the model on a data set with more redundancy in the normal behaviour
will increase the odds of preventing mistakes like these.

Data set number 4 appears to be the hardest to detect (73,33%). This is probably because the
difference between the attack and the normal behaviour is too small to reliably detect it. An
approach that considers multiple features in conjunction might have a higher detection rate for
this scenario, as long as it uses result set based features as well.

Our final data set is different from the other as it requires a specific context based feature for de-
tection: the time of the day. From the results we clearly see excellent results (100,00%) from the
approaches that included this feature. This example shows us that, even with a bias, either ap-
proach can be very effective in detecting attacks as long as the correct features have been selected.

Another statistic that can be considered is the speed of the algorithms tested. There may be a
difference in the level of optimisation in the different processes in Rapidminer but these statistics
will give a reasonable basis for comparison regardless. All tests were measured with a precision
of seconds and performed on a data set containing 2228 entries. The processes using Naive Bayes
take less than one second, with no noticeable differences between the different feature spaces.
The histogram based approach with result set based features included takes three seconds while
it takes two to three seconds for the version without any result set based features. These results
show that the Naive Bayes algorithm is definitely quicker with the capability of processing over
2228 entries per second, but that the histogram based approach performs reasonably well as well
with over 700 queries per second.
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Chapter 5

Conclusions and Future Work

In this chapter we will first draw some conclusions with respect to our results from the previous
chapters as well as formulate answers to the research questions posed in the introduction. Finally
we will look at what future work is left and in what direction open issues lie.

5.1 Conclusions

In this thesis we described a benchmark framework used to analyse and compare different
anomaly based database data leakage solutions. The framework has been developed and used to
measure false positive rates and detection rates of selected existing data leakage solutions. The
results of our experiments have been presented in chapter 4. These results show that Bertino et
al.’s solution, with false positive rates between 39,04% and 71,72% seem inadequate at distin-
guishing normal behaviour from attacks. The detection tests for which the user-id was used as
profiled feature perform equal or better than those for which the role was used. However, the
detection rate results are likely to be insignificant due to a bias developed during the learning
phase. As expected (and as observed in the original work), the coarse grained quiplets perform
significantly worse than the other two types of quiplets. The small feature space size in combi-
nation with the choice of using Naive Bayes as their classification algorithm leads to a very quick
solution, capable of handling thousands of queries per second.

The added benefit of the role hierarchy introduced by Wu et al. is clear from the false positive
rate although it is still rather high (29,74% - 56,04%). In addition, the fact that it sometimes
marks queries as normal while they otherwise would be considered anomalous did not cause
any decrease in detection rate in our attack tests. Overall, Wu et al.’s choice of feature space
performs well in the misuse scenarios where they were expected to.

The histogram based method performed the best in our experiments, with a relatively low false
positive rates for both the exclusively query centric setup as the combined feature space (0,64%
- 3,05%). The detection rates are fairly high, although there are significant gaps in the detection
for two of our attack data sets. This shows that the choice of features is very important for
achieving high detection rates. The detection rates found in our experiments reflect the expec-
tations of theoretical detection capabilities per misuse scenario.

The experiments also show that the selection of features is very important in achieving high
detection rates. In addition we can conclude that using more features may cause the false posi-
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tive rate to increase, but it may also increases the detection possibilities.

Finally, we will answer our research questions posed in the introduction:

e What are realistic misuse scenarios in the health care domain?
The misuse scenarios specified in section 4.3 are verified by experts at the Roessingh medical
rehabilitation centre. This means these could serve as a basis for testing future work against
similar data sets. However, this does not mean our misuse scenario set is complete. As
discussed, the specification of normal behaviour is equally important to build highly reliable
data sets.

e Which of the existing solutions perform the best in the given misuse scenarios
and settings?
In general, the histogram based method performs best in our tests. The false positive rates
are very low in comparison to the other solutions tested and the detection rate is similar
for most tests. The difference between using id or role as profiled feature are similar for
all tests. The false positives are lower for role, but so are the detection rates. For the
histogram based method, we see a clear improvement in detection rates (and the difference
between being able to detect certain types of attacks or not) when including result set
based features but this also comes at the cost of a higher false positive rate.

e How do different solutions behave under the different types of misuse scenarios
in terms of detection rate and false positive rate?
In general, solutions have proven to be very effective in detecting attacks for which they
have specific features in their feature space (e.g. time of day). One thing we can say is
that for the histogram based method, the detection rates for role- and id-tests and with or
without using features from the result set match the expectations per scenario in terms of
which setups would be capable in detecting which attack.

e Can a richer feature space increase a database anomaly detection system’s
detection rate while decreasing the false positive rate?
Yes it can, if the right features are selected and sufficient training has been done. Some
attacks cannot be detected reliably without the inclusion of certain features. However,
many possible features are not present in all requests and this sparsity can cause false
positives in normal behaviour. Careful selection of features and sufficient training data can
possibly nullify the disadvantages while still improving the detection.

5.2 Future Work

The solutions presented in this thesis have some limitations and there are still some issues that
can be addressed.

The misuse scenarios used for simulation described in this work may function as a basis for
comparison in future work, but the set is not complete. A complete set could serve as a basis for
future comparisons and benchmarks of database data leakage detection solutions or, when gen-
eralised, even data misuse detection solutions in general. Even completely different approaches
of misuse detection could be tested and compared in a meaningful manner.

The hospital system used in this work is fairly small. Larger systems will lead to better compar-

isons as the systems are more close to real life system. In addition, it allows for testing how the
different detection systems behave under larger and more complex role hierarchies.
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Two major kinds of attack were reviewed in this work: query centric attacks and data centric
attacks. For the tests using Costante et al.’s histogram based approach we see a clear distinction
amongst setups between where it is and where it is not able to detect the attack. Research could
go towards if more types of attacks exist or if a more fine grained distinction between types of
attacks can be made. Such additions lead to better testing and enable better comparison of
solutions.

Our tests show that a richer feature space can indeed increase the detection rate albeit at the
cost of a higher false positive rate. More training or a different feature selection might be able to
improve the results even further. It also may be possible to reduce the features that contribute
the most down to characteristics which can be applied in general to distinguish potent features
on other information systems.

Most approaches use the Naive Bayes classifier which might not be ideal for large feature spaces.
Perhaps some other algorithm fares better with larger feature space. One option considered in
literature to reasonable success is using decision trees (with several decision tree building algo-
rithms). An advantage would be the capability of dealing with attributes who together have a
strong correlation with attacks, a disadvantage is that the size of a tree grows rapidly as the
feature space grows bigger. Testing and comparing the detection performance of decision trees
and other machine-learning algorithms would be another interesting further direction.
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