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Abstract

In this report we discuss the properties of a new high-brightness ion source based on transverse

cooling and compression of a thermal atomic rubidium beam using magneto-optical forces. The

neutral atomic beam effuses from a Knudsen cell and, after cooling and compression, is photo-

ionized to create a high brightness ion beam.

This new high-brightness ion source can be used for focused ion beam (FIB) applications where

milling, imaging and deposition at the nanoscale needs to be done with increasing demands on

control and resolution of the focused ion beam.

An analytical model of the high-brightness ion source is developed and simulations are per-

formed to calculate the effects of transverse laser cooling and compression of the atomic beam.

Disorder-induced stochastic heating of the ion beam immediately after ionization is also simulated.

From these simulations we conclude that this new source based on 87Rb+ can reach a higher

reduced brightness (Br = 2 · 107 A/m2 srad eV) than conventional Liquid Metal Ion Sources

(LMIS) by a factor of 20, whilst having an energy spread of 0.7 eV that is 6 times lower than

the energy spread of the LMIS. The performance of the source is in the same league as the Gas

Field Ionization Source (GFIS), but is a better alternative for milling at such high brightnesses as

rubidium atoms have a much shorter penetration depth than the helium and neon atoms used in

GFIS.

In the second part of this report we investigate the possibilities of stabilizing the frequency

of a Titanium:Sapphire ring laser used for the magneto-optical cooling and compression of the

atomic beam. Long-term frequency stabilization is achieved using a feedback system based on

either modulation transfer (MT) spectroscopy or frequency modulation (FM) spectroscopy. The

frequency stability is determined using the Allan variance, from which we find sub-20 kHz fluctu-

ations over averaging times ranging from one second to a few thousand seconds, which is sufficient

for future purposes.

We also investigate the possiblity of detuning the stabilized laser frequency using the Zeeman

shift of the atomic reference frequencies. We conclude that this method is not accurate enough

and propose future stabilization using MT spectroscopy and detuning the laser from the exact

resonance frequency using two acousto-optical modulators.





“... en ik kan maar één ding zeggen:
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Chapter 1

Introduction

Since the advent of the microprocessor industry, miniturization has become one of the main goals

of the industry to produce faster devices with the capability to perform complex tasks. In the

near future, however, a company’s adherence to the well-known Moore’s law of miniturization

will not provide sufficient competition as microprocessors will reach limits in either the realization

of the miniturized devices or energy consumption [1]. On a different development track, 3D

microprocessors will become a complex but interesting alternative [2]. The production of complex

3D structures or improving the product reliability and custumization of current designs will become

more important [2, 3]. To achieve these goals, the industry will require the ability to probe and

modify nanostructures with evermore increasing control and spatial resolution.

Conventional (optical) microscopy does not provide the full answer as the resolution is diffrac-

tion limited by the wavelength of light used. Using shorter wavelengths (e.g. x-ray microscopy)

does improve the resolution, but most materials are transparent for such high photon energies.

A next step can be achieved by considering alternatives to optical microscopy. Particles such as

electrons and ions have much shorter (De Broglie) wavelengths than photons, and thus have a

much lower diffraction limit. As they are charged particles they can easily be manipulated using

electric and magnetic lenses, although interparticle Coulomb interactions provide another realm

of problems and difficulties to overcome [4].

A scanning electron microscope (SEM) is an important tool to probe microscopic surfaces and

objects. A SEM uses a focused electron beam to scan the surface of a sample. By detecting the

scattered electrons or the secondary electrons emitted by the surface, topological and informa-

tion about the chemical composition can be obtained. Although the SEM has excellent probing

characteristics, it is difficult to use SEM to sputter a surface in order to obtain information about

sub-surface chemical composition of the sample or to purposely modify the structure [5].

Ions, however, have a much higher mass than electrons and are therefore much more suitable

for milling1 as they provide more ‘punch’ when striking a surface. Due to their size, ions do

not penetrate the sample as deeply as electrons or photons. This makes secondary ion mass

spectroscopy (SIMS) an excellent method to obtain chemical information of the surface. Further,

as ions have a low penetration depth, they can also be used to deposit materials on the surface [6].

1Milling is a common phrase which includes the sputtering and redeposition of material on a substrate.
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Combining these characteristics (milling, imaging and deposition), ions are an excellent candidate

to constitute a main tool in nanodevice industry [7].

1.1 Focused ion beams (FIBs)

In order to use ions as a tool for working with nanostructures, ion beams need to be created which

can be focused down to nanometer spotsizes. In order to discuss and compare different ion beam

sources, we first discuss two figures of merit used to describe the quality of ion beams.

1.1.1 Figures of merit

There are two common figures of merit used to assess the focusability and current of a charged

particle beam. The first figure of merit is the longitudinal energy spread σU of the ions in the

beam, where σU is defined as

σU =
1

2
m(〈v2〉 − 〈v〉2). (1.1)

A large σU indicates that the ion beam is sensitive to chromatic aberrations when focusing.

The second figure of merit is the transverse reduced brightness Br. In units of A / m2 sr eV,

the reduced brightness of a beam with a Gaussian distributed phase-space density is defined as [8]

Br =
2I

4π2mc2εxεy
, (1.2)

where I is the current and εx and εy the normalised root-mean-square (rms) emittance of the

beam in the transverse x and y direction (here, by convention, the beam propagates along the

z-axis). The reduced brightness is independent of the beam energy for nonrelativistic beams [8].

The normalised rms emittance along transverse axis i is defined as

εi =
1

mc

√
〈i2〉〈v2i 〉 − 〈ivi〉2. (1.3)

Using this definition of emittance, the reduced brightness can be written as

Br =
I

4π2εr
, (1.4)

where εr is the reduced emittance of the beam defined as

εr =
m

2

√
〈x2〉〈v2x〉 − 〈xvx〉2

√
〈y2〉〈v2y〉 − 〈yvy〉2. (1.5)

The notation 〈.〉 represents an average over a set of particles of the beam. Ion beams do not

necessarily have a homogeneous reduced brightness; the central (on-axis) part of the beam usually

has a higher reduced brightness than the ‘wings’ (off-axis part) of the beam. In practice the

reduced brightness can be increased by aperturing the beam, but at a cost of a lower current.

The maximum reduced brightness attainable by a tightly apertured beam is also called the ‘peak

brightness’, and this is the brightness generally discussed in this report. If any other definition of

brightness is used, this will be mentioned explicitly.
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The peak brightness can be calculated analytically, but it is difficult to calculate the peak

brightness in simulations as the number of particles contributing to the peak brightness is much

smaller than the total number of particles used in the simulations. If only a few particles contribute

to the peak brightness, the statistical fluctuations of the calculated peak brightness are very large.

Therefore we define a 10% reduced peak brightness (also denoted as Bpr ) which includes 10% of

the total number of particles that are closest to the propagation axis and thus contribute most to

the peak brightness. The validity of this method will be discussed in Section 3.5

Finally, if we obtain an ion beam and a focusing system without any spherical abberations,

the final chromatic abberation limited 50% (full width median) spot size σs of a focused ion beam

with a specified current can be calculated as [9]

σs =

(
IC2

cσ
2
U

BrV 3
p

)1/4

, (1.6)

where Cc is the chromatic aberration coefficient of the focusing system and Vp the applied electric

field used to accelerate the ion beam. Typically Cc = 20 mm and Vp = 30 kV in FIB columns [10].

Here we are interested in maximizing the reduced brightness of the beam whilst maintaining a

high current. A high current increases the spotsize, but is necessary to obtain measurable signals.

1.1.2 Common ion sources

The current state of the art high brightness ion source for FIB applications is the Liquid Metal Ion

Source (LMIS). The LMIS is based on a needle tip which is connected to a liquid metal (usually

gallium) reservoir [11, 12]. By applying an electric field, the liquid metal forms a small cone-

shaped droplet at the tip at which the atoms are extracted from the liquid and ionized due to field

ionization. The resulting ion beam can then be used in a typical FIB system, as shown in Figure

1.1. LMIS can provide brightnesses of Br = 106 A/m2 sr eV at a current of 1 pA, with an energy

spread of σU = 4.5 eV, and can go to currents on the order of µA [11]. Although the brightness

is quite high, the large energy spread of the LMIS limits the attainable spotsize due to chromatic

aberrations. Further, there are not many alternative elements to be used than gallium, which

has the most favourable combination of high surface tension and low vapor pressure required for

efficient extraction of ions [13].

An alternative would be the Gas Field Ionization Source (GFIS) [14]. Contrary to the LMIS,

where the liquid metal wets the tip, the GFIS is based on ionization of a gas near the tip. An

applied electric field will ionize the gas atoms near the tip due to quantum mechanical electron

tunneling, after which the ions are accelerated away from the tip. Current GFIS uses helium or

neon, with which brightnesses of Br ≈ 5 · 108 A/m2 sr eV with an energy spread of σU ≈ 0.5

eV can be obtained [14]. The imaging resolution with such brightness and energy spread is much

higher than the LMIS, but the large penetration depth of such light elements as helium and neon

makes them useless for milling purposes. To improve the milling capacity of the GFIS, research

on argon and xenon based sources is currently being done [15].

The high brightness which can be achieved by both the LMIS and GFIS is based on the fact

that the extraction volume, from which the ions are created, is approximately as small as the final
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attainable spotsize of the FIB. Although the initial ionization volume is very small, the divergence

of the ion beam is huge. Hence an alternative source could be considered which might have a

larger ionization volume, but a much lower divergence of the ion beam. This idea is the basis of

laser-cooled ion sources.

1.1.3 Laser-cooled ion sources

Laser-cooled ion sources, such as the rubidium Ultra Cold Ion Source (UCIS) at the TU/e, have

a huge advantage compared to the LMIS and GFIS: essentially any element which can be laser-

cooled, can be used to create an ion beam. The UCIS is based on the magneto-optical cooling

and trapping of neutral atoms in a magneto-optical trap (MOT) [16], after which they are ionized

using an ionization laser beam. The ions are extracted using an applied electric field. As the ions

are created from laser-cooled atoms, the transverse velocities (and therefore the divergence of the

beam) are much smaller than for the LMIS or GFIS [17]. The UCIS used at the Coherence and

Quantum Technology (CQT) group could produce brightnesses of Br = 3 · 105 A/m2 sr eV at

a current of 1 pA [17]. Although this brightness is lower than the brightness achieved by LMIS

or GFIS, it is compensated by a extremely low energy spread of the ions (up to 0.02 eV) [17].

However, these numbers are the theoretical capability of the UCIS, as an important limit on the

current is the loading rate of the MOT, for which solutions such as the push-beam method should

be applied [18]. The brightness and energy spread of the UCIS which have been achieved are given

in Table 1.1.

The basic limitation of the UCIS is the fact a MOT is limited by its loading rate; it is impossible

to extract more ions from the MOT than there are atoms diffusing into the MOT. Even if one

were to increase the density of the MOT to extract higher currents, increased collision rates

will deteriorate the brightness of the MOT [18]. Therefore we propose a new ion source, the

Atomic Beam Laser-cooled Ion Source (ABLIS), as proposed by Mutsaers et al [19]. In stead of

a MOT, we use a Knudsen cell to form a neutral atomic beam which we transversally cool and

compress using the same magneto-optical forces used in a MOT. As we only apply these forces in

the transverse direction, we call this a 2D-MOT or a MOC (magneto-optical compressor). After

cooling and compression in the 2D-MOT, we get a neutral atomic beam with a very high phase-

space density. The neutral atomic beam is then ionized using an ionization laser beam. We will

present an analytical model and simulations on the performance of the ABLIS in this report, and

a preliminary comparison between the four ion sources is shown in Table 1.1
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Table 1.1: A comparison of the different types of ion sources used for FIB applications. In order

to make this comparison, we use an ion current of 1 pA for all sources, although some sources can

produce currents which are orders of magnitude larger. All numbers are derived from experimental

results except for the ABLIS, for which currently only simulation results are available. ?The spot

size is calculated using Equation. 1.6, using the coefficient values given in the text. †These

elements are currently being researched [15].

Source property [unit] LMIS [11, 12] GFIS [14] UCIS [17, 18] ABLIS

Used element 69Ga 4He 85Rb 87Rb

Alternative elements Limited Ne, Xe†, Ar† Over 20 Over 20

Energy spread [eV] 4.5 < 0.1 0.9 0.7

Reduced Brightness [A / m2 sr eV] 106 5 · 108 2 · 103 2 · 107

Spot diameter? [nm] 3 0.3 9 0.5

1.2 This report

In the first part of this report, we develop an analytical model of the ABLIS. From this analytical

model certain experimental parameters, such as the optimal laser detuning, magnetic field gradient

and source temperature, can be determined. As the analytical model is limited by considering

the atom-laser interactions according to the ideal 2-level atom model, simulations are performed

which take the actual rubidium hyperfine magnetic sub-structure and spontaneous emission into

account. We will look into the performance limits and optimize the technical parameters of the

2D-MOT required to cool and compress the neutral atomic beam.

In the second part of this report experimental work is discussed on the frequency stabilization

of a Titanium:Sapphire ring laser system, as this laser system will be used in the future to create

the 2D-MOT. The frequency stabilization is based on saturated absorption techniques such as

frequency modulation (FM) spectroscopy and modulation transfer (MT) spectroscopy, using a

rubidium gas cell as a reference. Starting with a discussion on the feedback system built in the

lab, we characterize the feedback system sensitivities to polarization and magnetic fields. We then

explore the possibilities of detuning the locked laser frequency using the Zeeman shift to shift the

atomic reference transition frequency. Finally the stability of the laser system is determined in

terms of Allan deviation and linewidth by locking the laser frequency to the required rubidium

transition and creating a beatnote with a laser from the UCIS setup which is locked to the same

transition.
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Figure 1.1: Schematic view of a focused ion beam (FIB) system. Once the ion beam is created,

a first lens is used to collimate the beam. Then an octopole lens is used to reduce the spherical

aberrations. The variable aperture at the center is used to vary the total current and brightness

of the resulting ion beam, to vary between e.g. high resolution SIMS or high current milling. The

lower octopole lens is used to steer the ion beam, which is focused by the second lens. Finally, the

MCP can detected secondary particles to reconstruct an image of the sample surface. This Figure

has been adopted from [7].
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Chapter 2

Atomic Beam Laser-cooled Ion

Source

Based on the idea proposed by Freinkman et al [20] and extended by Mutsaers et al [19], the

ABLIS is a thermal atomic beam which is transversally cooled and compressed using magneto-

optical forces, after which it is ionized using near-threshold ionization. Additionaly, as a techical

requirement the ABLIS should be as compact as possible to make it easy to implement in existing

FIB instruments. Further, most optical paths should be in optical fibers, for a more flexible and

decoupled optical setup.

The atomic species used in this experiment is rubidium as it is a common element used to

produce ultracold gases through laser cooling [16]. Further, rubidium is already being used in the

current UCIS setup hence there is quite some practical knowledge available in the research group.

An advantage of using rubidium is the low melting point at 312.5 K, which is only slightly above

room temperature [21]. As considerable vapour pressures create considerable particle fluxes which

are required to produce large ion beam currents, these can be achieved using rubidium without

having to heat it to extreme temperatures. All other relevant data on the rubidium atom is given

in Table 2.1.

The atomic beam will be produced using a Knudsen cell. A Knudsen cell is essentially a

container with a thin-walled orifice [24]. As the diameter of the orifice is much smaller than the

mean free path Λ of the particles, the particles do not collide with each other and the expanding

gaseous beam outside the Knudsen cell can be considered to be in the same thermal equilibrium as

the gas inside the Knudsen cell. The effusion of particles through the orifice, effusion rate, angular

distribution and velocity distribution can be calculated using the kinetic gas theory applicable to

the gas inside the Knudsen cell.

The basic setup of the ABLIS is shown in Figure 2.1. The atomic beam effusing from the

Knudsen cell enters a light field consisting of counterpropagating laser beams (with σ+ and σ−

polarization, respectively) perpendicular to the propagation direction of the atomic beam. Figure

2.1 only shows the setup in the x − z plane, where the beam propagates along the z−axis and x

is the transverse coordinate. It should be noted that there is another set of counterpropagating
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Table 2.1: Atomic constants of rubidium used in the calculations and simulations. Unless stated

otherwise, the data is from [21]. The values of p0 and T0 used to calculate the vapour pressure

in the Knudsen cell are valid for source temperatures ranging from 312 K (rubidium melting

point) to 550 K [21]. †The cooling transitions are 52S1/2 (F = 3) → 52P3/2 (F = 4) for 85Rb

and 52S1/2 (F = 2) → 52P3/2 (F = 3) for 87Rb [16]. ?The cooling transition wavelengths are

calculated from [22, 23]. The frequency difference between the cooling transitions of the two

rubidium isotopes is 1204.6 MHz.

Parameter [unit] Symbol 85Rb 87Rb

Mass [amu] m 84.91 86.91

Natural abundance [%] - 72.2 27.8

Pressure constant [Pa] p0 2.08 · 109 2.08 · 109

Temperature constant [K] T0 9.30 · 103 9.30 · 103

Cooling transition wavelength†? [nm] [16] λ 780.2437 780.2462

Natural linewidth [rad/s] [16] γ 2π · 5.98 MHz 2π · 5.98 MHz

Saturation intensity [W/m2] [16] Is 16.4 16.4

Doppler limit (s0 → 0) [µK] TD 143.41 143.41

Ionization wavelength of the 52P3/2 state [nm] [16] λI 480 480

Nuclear spin [quantum number] I 5/2 3/2

Figure 2.1: Schematic view of the ion source. An effusive Knudsen cell K with orifice surface

S produces a particle flux which is apertured by an aperture with radius d at a distance l from

the cell. An applied magnetic field gradient ∇B and a light field (two counter-propagating laser

beams with σ+ and σ− polarization, respectively) cool and compress the particle beam. There are

two pairs of laser beams, in the x− z and in the y − z plane. The cooled and compressed atomic

beam is apertured by an aperture with radius df after a distance L from the first aperture. Then

the beam is ionized and accelerated in the electric field E for FIB purposes.
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laser beams in the y − z plane, where y is the transverse coordinate orthogonal to x. In this

way the beam experiences magneto-optical cooling and compression forces along both transverse

coordinates. The origin of these magneto-optical forces will be explained in the next Section.

Additionaly we require a magnetic field gradient in order to create a magneto-optical compression

force. In our analytical model, which will be presented later, we assume this magnetic field

gradient is radially symmetric, i.e., we apply radial compression. However, such magnetic fields

have ∇ · ~B 6= 0 and can therefore not be realized1. The best alternative is a quadrupole magnetic

field, which enables us to compress the beam along both the x− and y−axes.

The beam is apertured before it enters the light field, as the capture range of the magneto-

optical compressor is limited: the part of the beam which is too divergent (i.e. is too far from the

z−axis or has too large transverse velocities) will not be cooled and compressed effectively within

the finite length L. After the magneto-optical cooling and compression, the beam is apertured

again. This second aperture is used to only select the central part of the beam, which will give

the highest (peak) brightness. In the third section, after the second aperture, a laser ionizes the

atomic beam while an applied electric field accelerates the resulting ion beam. The resulting ion

beam can be focused to a small spotsize using ion optics used in FIB systems.

In this Chapter we first introduce magneto-optical forces: where they originate from and how

they can be used to cool and compress an atomic beam. After having discussed these forces, we

present an analytical model of the ABLIS in order to calculate the performance and to calculate

for which experimental parameters this performance can be optimized.

2.1 Interactions between atoms and radiation

Before we can discuss the performance of the ABLIS, we need to introduce the magneto-optical

forces which are used in the ABLIS to cool and compress the atomic beam. First we briefly discuss

the electron level structure of atoms, after which the relevant magneto-optical forces are discussed.

2.1.1 Electron level structure in atoms

The interaction between atoms and radiation usually takes place when the frequency of the radia-

tion is near the frequency corresponding to an electronic transition in the atom. In the calculations

presented in this project we will use a simplified version of the atom: a 2-level atom which only

has a single electronic transition with a single frequency. However, in reality the possible energy

levels of an atom are much more complicated. In the standard spectroscopic notation, each energy

level can be written as n2S+1LJ F . We will discuss all the different parameters present in this

notation. Here a brief overview is given, a more extensive explanation can be found in [25, 26].

The principal quantum number n represents the semiclassical ‘orbit’ of an electron around the

nucleus. The lowest possible value of n is 1. With n there are a finite possible number of angular

momentum states associated with the electrons in the state n. These angular momentum states

1An example would be the field ~B(r) = αr~er, with B(r) = | ~B(r)| = αr and α the gradient. But ∇· ~B = 2α 6= 0.

An alternative would be the quadrupole magnetic field ~B(x, y) = α(x~ex − y~ey), for which B(x, y) = | ~B(x, y)| =

α
√
x2 + y2 = B(r), ∇B = α~er and ∇ · ~B = 0.
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are labeled with the quantum number L. The value of L can range from −n + 1 to n − 1 in

integer values. Additionally the atomic state is also labeled with the quantum number S, which

represents the total spin of the electrons.

In the LS-coupling scheme, where the angular momentum of the electrons combines with the

spin, the resulting total electronic angular momentum state is labeled with quantum number J .

The possible combinations of L and S which form J ranges from |L − S| to |L + S| in integer

values. In the spectroscopic notation, the 2S + 1 term represents the number of possible values of

J a single combination of L and S can generate. These states constitute the fine structure of the

atom.

In the LS-coupling scheme the interactions of the electrons with the nuclear spin I of the atom

are ignored. If we include the interaction between the total electronic angular momentum and

the nuclear spin (with quantum number I) in the IJ-coupling scheme, a total angular momentum

quantum number F can be constructed from J and I and the possible values of F ranges from

|I − J | to |I + J |. This is called the hyperfine structure.

The combination of all these quantum numbers leads to the spectroscopic state description

n2S+1LJ F . Knowledge of the nuclear spin I then makes it possible to describe the state using

only the quantum numbers I, J , F and the projection of F along a quantization axis MF . The

quantization number MF is also called the magnetic quantum number, as it is coupled to the total

magnetic moment of the atom.

In this work we will discuss transitions from the 52S1/2 F states to the 52P3/2 F
′ states for

85Rb and 87Rb. Figure 2.2 shows these two states and their hyperfine structure for 85Rb, which

has a nuclear spin quantum number of I = 5/2 (see Table 2.1). A more detailed level scheme for

both isotopes is shown in Appendix B as Figures B.1 and B.2.

It is clear that this is not a simple level structure to work with. In order to be able to perform

calculations in the analytical model, we make certain simplifications as discussed in Section 2.1.3.

5

5

n

2P3/2

2S1/2

2S+1LJ F

4

3

2

1

3

2

MF

−4,−3, ...,+3,+4

−3,−2, ...,+2,+3

−2,−1, 0,+1,+2

−1, 0,+1

−3,−2, ...,+2,+3

−2,−1, 0,+1,+2

Figure 2.2: Schematic hyperfine levels for the 52S1/2 and 52P3/2 states of 85Rb. As this rubidium

isotope has a nuclear spin of I = 5/2, the electronic angular momentum J couples to the nuclear

spin I to form the total angular momentum state F . Finally, the allowed magnetic substates MF

per F state are shown.
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Transition rules

Electronic transitions between different states can only occur for certain properties of the initial

and final state. These restrictions are caused by quantummechanical constraints, such as the

requirement that electric dipole transitions cannot change the electron spin hence the term S

cannot change during a transition: ∆S = 0. Further, a photon carries an angular momentum

quantum number of 1. Due to conservation of angular momentum, the total angular momentum

of an atom after absorbing a photon cannot change by more than 1. Therefore another transition

rule is ∆F = 0,±1. However, the transition F = 0→ F ′ = 0 is not allowed as this would violate

conservation of angular momentum. From the conservation of angular momentum one can also

derive identical transition rules for L and J .

We also mentioned the magnetic quantum numbers MF associated with the hyperfine state

F . There are additional transition rules for MF based on the polarization of light. For linearly

polarized light, only MF →MF ′ can occur for which ∆MF = 0. However, for circularly polarized

light only ∆MF = +1 or ∆MF = −1 transitions can occur for σ+ or σ− polarizations, respectively.

Zeeman shift

The atom has a magnetic moment depending on the electronic state and the nuclear spin. In an

applied field ~B, the projection of the total angular momentum along ~B leads to an additional

magnetic energy

∆E = gFµBBMF , (2.1)

where gF is the Landé factor of the state2, µB is the Bohr magneton and MF is the quantum

number related to the projection of the total angular momentum on ~B. Hence depending on the

MF state, an electronic state can experience a shift in energy due to an applied magnetic field.

This shift is called the Zeeman shift. A change in the energy of an electronic state can be measured

as the frequency of a transition from or to this state also changes. We will use this effect later to

apply a force on the atoms.

2.1.2 Magneto-optical forces

The interaction of atoms with radiation is described extensively in literature, and for a full treat-

ment of these interactions we refer to [16, 25, 26]. One of the results of describing these interactions

is the quantification of forces acting on atoms. The origin of this force is based on the scattering

of photons by an atom. An atom in an excited state can decay to the ground state by emitting

a photon in a random direction. Although photons have a momentum ~k, where k = 2π/λ is the

wavenumber of the photon and ~ Planck’s constant divided by 2π, the absorption and emission of

photons in random directions does not produce a net force. However, if an atom absorbs photons

from a specific direction but still emits the photons in random directions, there will be a net force

acting on the atom. As this force is based on the scattering of photons, it is called the scattering

force.

2The Landé factors relevant for our work are shown in Table B.1 in Appendix B.
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For an atom for which we only consider a ground and an excited state, also called an ideal

2-level atom, the scattering rate can be calculated using the optical Bloch equations [25]. The

scattering force Fscatt is then the scattering rate Rscatt (the number of photons emitted per second)

multiplied by the momentum kick ~k per scattered photon [25]

Rscatt =
γ

2

s0
1 + s0 + (2δ/γ)2

, (2.2)

Fscatt(δ) = ~k
γ

2

s0
1 + s0 + (2δ/γ)2

, (2.3)

where γ is the linewidth of the transition, δ = ωL − ω0 the detuning of the laser frequency ωL

to the transition frequency ω0 and s0 = I/Is is the saturation parameter which is the ratio of

the light intensity I and the saturation intensity Is of the transition. An excited state of the

atom always has a finite lifetime τ = 1/γ, so the energy of the excited state has a finite width

which is expressed as a width in the frequency distribution of the photons that are absorbed.

This frequency distribution is Lorentzian, and the full width at half the maximum (FWHM) of

the frequency distribution is defined as the linewidth γ of the transition. The linewidth and

saturation intensity are given in Table 2.1.

Optical molasses

In our definition of the scattering force, we have implicitly assumed that the atom is not moving.

However, if the atom does move, the frequency of the photons as observed by the atom shift due

to the Doppler effect given by −~k · ~v [16]. The frequency becomes velocity-dependent

Fscatt(δ − kv) = ~k
γ

2

s0
1 + s0 + (2(δ − kv)/γ)2

, (2.4)

where we have assumed that the atom moves collinear with the laser beam and −~k · ~v = −kv.

Now consider two counterpropagating laser beams. The Doppler shift of the atom with respect

to either laser beam is ±~k · ~v. The net force acting of both beams acting on the atom is

Ftot = Fscatt(δ − kv)− Fscatt(δ + kv), (2.5)

Ftot(v) = ~k
γ

2

s0
1 + s0 + (2(δ − kv)/γ)2

− ~k
γ

2

s0
1 + s0 + (2(δ + kv)/γ)2

. (2.6)

The total force is shown in Figure 2.3. The maxima of the force occur near the capture velocity

±vc, which is defined as vc = |δ/k|. The force within this velocity range is proportional to v and

can be considered as a damping force, acting like a viscous fluid. For small velocities,

Ftot(v) ≈ −2kv
∂Fscatt
∂ωL

, (2.7)

Ftot(v) ≈ −αv = 8~k2
s0(δ/γ)(

1 + s0 + (2δ/γ)2
)2 v. (2.8)

As α > 0 for damping, we find that δ < 0, i.e. the laser frequency should always be detuned below

the transition frequency for damping.
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Figure 2.3: One dimensional optical scattering force for two counterpropating beams. The full

line is the total force, the dotted lines are the individual contributions. Left The laser frequency

is detuned δ = −γ/2 from the transition frequency. Right The laser frequency is detuned δ = −γ
from the transition frequency. For small velocities v the total force is proportional to v.

Cooling limit

Now we have a damping force, we can investigate the limit to which the atoms can be cooled. The

temperature of the atoms is defined as

kBT =
1

2
m(〈v2i 〉 − 〈vi〉2), (2.9)

where m is the atomic mass, i = x, y, z and kB is Boltzmann’s constant. Here we see that the

width of the velocity distribution of the atoms defines the temperature. Hence cooling an ensemble

of atoms actually means that the width of the velocity distribution is reduced. However, in this

simple picture atoms can be cooled to 0 K because we have neglected any possible heating processes

when scattering photons. In the velocity phase-space of a single atom, the scattering of photons

changes the velocity of the atom in steps of vr = ~k/m (the recoil velocity, which represents the

change in velocity from a single photon ‘kick’). As the direction in which the photon is emitted is

random, so is the velocity change. As an atom scatters t ·Rscatt photons during time t, the mean

square of the velocity increases as [25]

〈v2i 〉spontaneous = ηv2rRscattt, (2.10)

where the factor η = 1/3 represents the angular average for isotropic emission. However, the atom

does not exactly scatter Rscattt photons during an interval t. Assuming the scattering follows

Poissonian statistics, the root mean square of the velocity increases as [25]

〈v2i 〉absorption = v2rRscattt. (2.11)

Here the isotropic emission does not play a role as we consider the absorption of photons from a

single direction.

Combining these two heating mechanism with the cooling mechanism, the average kinetic

energy of the atoms changes as

1

2
m
d〈v2i 〉
dt

= (1 + 2η)Er(2Rscatt)− α〈v2i 〉, (2.12)

where Er = (1/2)mv2r is the recoil energy. We use 2Rscatt as there two laser beams and therefore

the scattering rate doubles. The factor 2η takes into account that cooling in two dimensions
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(two pairs of counterpropagating laser beams, such as in our 2D-MOT) increases the number

of spontaneous emissions3. The minimum root mean square velocity is determined by setting

d〈v2i 〉/dt = 0. Filling in η = 1/3 and α from Equation 2.8 and using our definition of temperature

as stated before we find a transverse temperature for two-dimensional cooling

kBT
2D = −5

6

~
4

(γ2
2δ

(1 + s0) + 2δ
)
. (2.13)

For three-dimensional cooling, where there are three counterpropagating beams, is [25]

kBT
3D = −~

4

(γ2
2δ

(1 + s0) + 2δ
)
. (2.14)

Hence we see that the final temperature achievable with two-dimensional cooling is 5/6 (≈ 83%)

of the final temperature achievable with three-dimensional cooling.

Both final temperatures are minimized for δ = −γ/2√1 + s0. This minimal achievable tem-

perature is called the Doppler temperature TD and is usually given for cooling in three dimensions

as

kBTD =
~γ
2

√
1 + s0. (2.15)

For the two-dimensional cooling, this result should be multiplied by 5/6. This limit is called the

Doppler limit as it is achieved using a cooling technique based on the Doppler shift.

2.1.3 Compression forces

We have seen how the scattering force can be used to reduce the velocity of atoms due to a

velocity-dependent effect (the Doppler effect). One way to produce a space-dependent force is by

using the Zeeman effect (see Section 2.1.1). If we apply a linearly varying magnetic field B with

gradient ∇B, the magnitude can be written as B(x) = ∇Bx. The energy shift as function of

position is

∆E(x) = gFµB

(
∇B

)
MFx. (2.16)

However, this sign of the shift depends on the sign of MF . For an excited F = 1 state, the

possible values for MF are MF = −1, 0,+1. This means that the states MF = −1 and MF = +1

experience opposite energy shifts depending on their position in the magnetic field; the MF = 0

state will not experience any shift. This example is also shown in Figure 2.4. This model with a

F = 0, which has only MF = 0, ground state and a F = 1 excited state is the ideal 2-level model

that will be used during the calculation of the analytical model.

A laser beam with frequency ωL, which is slightly detuned by an amount δ from the actual

transition frequency, propagates from both the left and right hand side. However, both beams

have opposing circular polarizations. The MF = −1 state shifts to lower energies as the atoms

are more to the right. At some position the energy shift is large enough to have detuned the

transition frequency to be in resonance with the laser frequency. However, as the excited state is

in the MF = −1 state, a transition from the ground MF = 0 state can only be induced by σ−

3The substitution 3η is made when calculating the heating for a 3D-MOT [25].
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MF

F = 1

F = 0

σ+ σ−

δ

~B(x) ~B(x)

0 0

Figure 2.4: Schematic view of a 1D MOT and a F = 0→ F = 1 transition. A magnetic gradient

along the x-axis creates a position dependent Zeeman shift of the MF = −1 and MF = +1 states.

The two counterpropagating laser beams have an angular frequency ωl and are detuned δ from

the actual resonance. As an example, the MF = −1 state shifts closer to resonance with the σ−

polarized beam for x > 0 than the MF = +1 states. The atom therefore scatters more photons

from the σ− polarized beam than the σ+ polarized beam and experiences a net force towards

x = 0. This Figure is taken from [16].

polarized light. Therefore the atom will only absorb photons coming from the right laser beam,

which is σ− polarized. The opposite happens for the MF = +1 states on the left side of the

graph; they will only absorb photons from the σ+ polarized beam coming from the left. In this

way the atoms only absorb photons coming from the off-axis direction they are at. This causes

a net scattering force directed towards the minimum of the magnetic field (as that is also the

minimum of the energy shift of the electronic levels). If the minimum of the magnetic field is

created at the centre of an atomic beam and counterpropagating laser beams are perpendicular

to the propagation direction of the beam, the beam can be compressed to a smaller radius.

The formalism for describing the scattering force caused by the Zeeman shift is similar to the

scattering force due to the Doppler shift. Instead of the velocity dependent detuning ±kv, the

scattering force is modified by an added detuning ±gFµB∇Bx/~. The position-dependent force

is written as

Ftot(x) = ~k
γ

2

s0
1 + s0 + (2(δ − gFµB∇Bx/~)/γ)2

− ~k
γ

2

s0
1 + s0 + (2(δ + gFµB∇Bx/~)/γ)2

.

(2.17)

The spatial dependence of the total force is graphically identical to Figure 2.3, but the v−axis

should be replaced by a x−axis. Similar to the Doppler cooling force, we can identify a linear

regime for the compression force for small deviations from the central position x = 0, which in

the ABLIS would be the z-axis (axis of propagation of the atomic beam). As a force with linear

dependence on position always can be described using a spring constant κ, the same can be done

for the magneto-optical force. This will be done during the derivation of the analytical model.
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2.2 Analytical model

The new source concept can be fully described using the basic equations of magneto-optical cooling

which we have discussed in the previous Section. We also mentioned the actual hyperfine level

structure of the rubidium atoms. In order to estimate the performance of the ABLIS, we have to

make a simplification in the level structure in order to be able to abtain an analytical result. We

assume an ideal 2-level rubidium atom for which only F = 0→ F = 1 transitions occur from the

52S1/2 state to the 52P3/2 state (see Figure 2.4 for the simplified level scheme).

Another simplification is our definition of the reduced brightness of the resulting ion beam. It

is very difficult to obtain an accurate analytical result for the ionization of the neutral atomic beam

[4]. Therefore we will calculate an equivalent reduced brightness, which is the reduced brightness

we would achieve if we fully ionize the cooled and compressed beam neutral atomic beam. This

will unevitably lead to an overestimation of the actual achievable reduced brightness, but still can

be used as a good indicator of the performance of our source.

After we have discussed the analytical model, we investigate the discrepancy between both

simplifications of the level structure and the reduced brightness by performing simulations which

do include the magnetic substates of the hyperfine structure and include a more realistic ionization

of the atomic beam. But first we calculate an analytical model.

One of the major assumptions we make to simplify the geometry of our setup is the paraxial

approximation. This means that the opening angle θ, as shown in Figure 2.1, is much smaller

than 1. The effusive flux Φ of the Knudsen cell going through the first aperture is [24, 27]

Φ =
1

4
n0S〈v〉θ2, (2.18)

where n0 = p/kBTs is the particle density at the source, S the area of the orifice and 〈v〉 =√
8kbTs/πm the average velocity for a gas in thermal equilibrium in the Knudsen cell. The source

temperature is Ts, kB is Boltzmann’s constant and m is the atomic mass. The source pressure p is

given as p = p0 exp[−T0/Ts] [21], where p0 and T0 are atomic constants which are given in Table

2.1. For later purposes, we have calculated a fully analytical model of the flux going through the

first aperture. The calculations are shown in Appendix A and give the same result as Equation

2.18 when applying the paraxial approximation. The angular spread of the effusing beam is given

(in the paraxial approximation) by θ = d/l, where d is the radius or half-width of the orifice. In

the following analysis the orifice and apertures are assumed to be circular. In the simulations later

on we use square apertures as they simplify the calculations. Therefore we interchange d often

during this work for either the radius or the half-width of the orifice and apertures. This is not a

problem, as our analysis in Appendix A shows that the difference between these two approaches

is neglible and can be calculated explicitly if necessary. The length l is the distance between the

source and the aperture. The initial reduced brightness Bi of the atomic beam at the aperture

can be defined as [8]

Bi =
eJ

πkBT
=

eJ

πkBTsθ2
=

e2Φ/S

πkBTsθ2
, (2.19)

where e is the elementary charge and Tsθ
2 represents the effective transverse temperature of the

atoms in the apertured beam. Here we have made the equivalent reduced brightness approximation
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by simply multiplying the particle flux by the elementary charge, creating a current density J =

eΦ. The extra factor of e converts the brightness unit of Joules (J) to electron Volts (eV). If

the beam is transversally cooled by the 2D-MOT to its minimum temperature, which is the

Doppler temperature TD, the brightness increases proportional to the ratio of the initial and final

temperatures. That is, the brightness Bc after cooling is

Bc = Bi
θ2Ts
TD

=
eΦ/S

πkBTD
. (2.20)

From this Equation we learn that the ratio of the brightness after cooling and the brightness before

cooling is

Bc
Bi

= θ2
Ts
TD
≈ 240, (2.21)

where we have assumed θ ≈ 10 mrad, Ts ≈ 350 K and TD = 144 µK (from Table 2.1). The choice

of these numbers will be motivated later on, but here they are used to give an indication of the

gain we can achieve.

The brightness can be further increased by compressing the beam. Using the formalism for

Doppler cooling and magneto-optical compression using the Zeeman effect as described in Section

2.1.2, the total scattering force exerted by two counterpropagation laser beams with σ+ and σ−

polarization on an ideal 2-level atom perpendicular to the propagation axis of the atomic beam,

is [16, 25]

Ftot(x, vx) = ~ks0
γ

2

[
1

1 + s0 + 4
γ2 (δ − kvx − µB∇Bx/~)2

− 1

1 + s0 + 4
γ2 (δ + kvx + µB∇Bx/~)2

]
.

(2.22)

Here k = 2π/λ is the wavenumber of the laser, γ the transition linewidth, s0 = I/Is the saturation

parameter of the laser, δ the detuning of the laser, vx the transverse velocity of the particle, µB the

Bohr magneton, ∇B the magnetic field gradient and x the transverse position of the particle. The

Landé factors are assumed to be 1, the highest possible values for a F = 0→ F = 1 transition.

The maximum acceleration of a particle is defined as

amax = lim
vx→vc,x→0

Ftot
m

, (2.23)

amax =
~k
m

γ

2
s0

[
1

1 + s0 + 4
γ2 (δ − kvc)2

− 1

1 + s0 + 4
γ2 (δ + kvc)2

]
, (2.24)

where vc = |δ/k| is the so-called capture velocity as introduced in Section 2.1.2. Using this

definition of the capture velocity, we find

amax = 8F0
−s0δn

(1 + s0)(1 + s0 + 16δ2n)
, (2.25)

where we define the maximum force as

F0 =
~kγ
m

, (2.26)
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and we have introduced the normalized detuning δn = −δ/γ to simplify the equation.

The particles spend a time τ = L/〈v〉 in the 2D-MOT. As this timespan is finite, particles

can only be compressed from a certain maximum radial position ri from the central axis. The

maximum range ri of particles which can be compressed to the propagation axis of the beam is

[25]

ri =
1

4
amaxτ

2, (2.27)

where we have a counterintuitive extra factor 1/2. This factor is added to use an effective acceler-

ation aeff = amax/2 to make sure that all atoms are cooled and compressed [25]. Equation 2.27

shows that all particles within an area Ai = πr2i can be compressed. Ideally the first aperture size

d should then be equal to ri. If we set d = ri, we can find τ and calculate L for a given source

temperature Ts (as 〈v〉 depends on Ts). However, the definition of the maximum acceleration is

dependent on the detuning, hence the size of the initial aperture is also dependent on the detun-

ing. In order to reduce the number of variables, we would like to set a fixed size aperture size. A

common detuning for laser cooling is δ = −γ/2, where the Doppler temperature is minimized (as

discussed in Section 2.1.2). This detuning will be chosen to define the maximum allowed transverse

velocity to go through the first aperture, i.e. vmax = vc|(δ=−γ/2) = γ/2k. In this way the opening

angle θ is defined as

θ =
vmax
〈v〉 =

γ

2k

√
πm

8kBTs
. (2.28)

This definition of the opening angle ensures that the transverse velocities of the atoms stay well

within the effective capture range of the 2D-MOT we are calculating. After finishing the analytical

model we will also do simulations, where some attention will be given to the variation of the opening

angle, but the predominant optimization will concern the parameters defining the 2D-MOT. By

defining ri = d and using this fixed angle θ, the expansion stage length l can be calculated as

l = d/θ.

The final radius rf of the beam can be calculated using equipartition of the potential energy

of the compression force and the thermal energy of the beam. In Section 2.1.2 we show that the

compression force is linear for small transverse positions x and a corresponding spring constant κ

can be defined as

κ = lim
vx→0,x→0

[
− ∂Ftot

∂x

]
, (2.29)

κ = −8µB∇Bs0k
δn

(1 + s0 + 4δ2n)2
. (2.30)

The equipartition of the potential energy and the thermal energy gives

κr2f = kBTD, (2.31)

rf =

√
kBTD
κ

(2.32)
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Hence we can write the final beam area Af = πr2f . Combining the brightness increase due to

compression with the brightness increase due to cooling, we obtain

Br = Bc
Ai
Af

=
e2Φ/S

πkBTD

Ai
Af

. (2.33)

Similar to the gains in brightness due to cooling, the gains in brightness due to the compression

of the beam is

Br
Bc

=
Ai
Af

=
d2

r2f
≈ 900, (2.34)

where we use d ≈ 300 µm and rf ≈ 10 µm. Both values will be justified later on. The combined

increase in brightness due to cooling and compression then is

Br
Bi

=
Bc
Bi

Br
Bc
≈ 2 · 105, (2.35)

an increase of over five orders of magnitude!

Filling in the flux (Equation 2.18) and final beam size (Equation 2.32) in Equation 2.33, we

find

Br =
8e2µB√

2π5

k√
mk5B

p0 exp[−T0/Ts]
T 2
D

√
Ts

δn∇Bs0Sθ2
(1 + s0 + (2δn)2)2

, (2.36)

where we have used that S = Ai in our model, i.e., the orifice of the Knudsen cell has an equal

area as the first aperture. The choice of this specific geometry creates a good balance between a

high flux and a reduced transverse velocity distribution.

However, we would like to investigate for what set of parameters this brightness increase is

optimal. Combining the relevant equations for TD and θ as described in this Section, we obtain

the total analytical result for the final reduced brightness as

Banar =

[
e2µBπ

3/2

√
2k

7/2
b

][
kp0γ

2
√
m
][ ∇BL4s30δ

7
n exp(−T0/Ts)

T
7/2
s (1 + s0)2(1 + s0 + 4δ2n)4(1 + s0 + 16δ2n)2

]
. (2.37)

We have grouped the different parameters in three sections: the natural constants (left), the atomic

constants (center) and the experimental parameters which can be varied (right). This analytical

result gives the maximum attainable brightness for any set of parameters4.

Now we have developed a full analytical expression for the final equivalent reduced brightness

of the beam, we can investigate for what practical experimental parameters we can optimize the

brightness.

2.3 Analytical model parameters

In order to obtain sensible results from the analytical model, we use some common values for the

different parameters and see what kind of performance the analytical model predicts. From flux

calculations based on the models described in Appendix A, we select a typical value for the source

4The only constraint we have used in this model is, see Equation 2.28, the opening angle θ of the system.

19



temperature Ts to be 350 K in order to have a high enough flux without having a too short mean

free path Λ, where Λ is defined as [27]

Λ =
kBTs√

2πp(2rvdW )2
, (2.38)

where rvdW = 0.3 nm is the Van de Waals radius for rubidium [28]. The mean free path Λ = 0.5 m

at Ts = 350 K, which is long enough for our purposes. Should we increase the source temperature

to 400 K to increase the flux, the mean free path decreases to 21 mm, which is still acceptable.

The opening angle θ = d/l is given by Equation 2.28. For Ts = 350 K, this angle is θ ≈ 8

mrad. Also, the average velocity of the atoms in the beam is 〈v〉 ≈ 300 m/s. Filling in some typical

laser cooling parameters of s0 ≈ 1 and δ ≈ −γ/2 (this choice of parameters minimizes the Doppler

temperature), we find a damping time of the transverse temperature as [25] τtemp = m/2α ≈ 20 µs,

with α taken from Equation 2.8. We also find an oscillation time τcomp = 2π
√
m/κ ≈ 380 µs, which

is the harmonic oscillation time of the atom’s position due to the magneto-optical compression.

In order to minimize the cooling and compression length, we choose L = 5 cm, corresponding to

a transit time of τ = L/〈v〉 ≈ 170 µs. Compared to the damping time and the oscillation period,

this should provide the atoms enough time to be cooled and compressed. At a later stage we will

discuss whether this length can be optimized as well.

Using L = 5 cm, Ts = 350 K, s0 = 1 and δ = −γ/2, we can use Equations 2.25 and 2.27 to

calculate amax and estimate the aperture size to be d ≈ 300 µm.

In order to have the apertured beam fully compressed, the magnetic compression capture range

rc can be defined in the same way as the capture velocity vc for cooling. From Equation 2.22 and

using a detuning δ = −γ/2, which minimizes the Doppler temperatures, we find

δ =
µB∇Brc

h
, (2.39)

∇B =
hγ

2µBrc
≈ 0.7 T/m. (2.40)

Here we have set the capture range rc equal to the size d of the initial aperture. In order to have

efficient magneto-optical compression, we choose a magnetic gradient of ∇B = 1 T/m.

Using these simple estimates, we can calculate the reduced brightness for the saturation pa-

rameter s0 and the detuning δ using the analytical model. The result is shown in Figure 2.5. From

this model, we find a maximum attainable brightness of Br = 2.1 ·107 A / m2 sr eV for a detuning

of δ = −0.8γ and a saturation parameter s0 = 2. This is a few orders of magnitude larger than

the reduced brightness UCIS, and one order of magnitude larger than the reduced brightness of

the conventional LMIS source (see Table 1.1).

A summary of all parameters used in the analytical model is given in Table 2.2. These will be

used as a starting point for the simulations, which will be discussed next.
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Figure 2.5: Parameter space of the analytical reduced brightness Banar , in units of A / m2 sr eV

for the saturation parameter s0 and the normalized detuning δn = −δ/γ. The maximum reduced

brightness is Br = 2.1 · 107 A / m2 sr eV at s0 = 2 and δ = −0.8γ (δn = 0.8). The analytical

model is based on an ideal 2-level 85Rb atom and other parameters given in Table 2.2.

Table 2.2: Parameters given by analytical model.

Parameter [unit] Symbol Analytical model

Opening angle [rad] ∆θ 8 · 10−3

Expansion length [m] l 3.9 · 10−2

First aperture size [m] d 3.1 · 10−4

Cooling and compression stage length [m] L 0.05

Source temperature [K] Ts 350

Saturation parameter [-] s0 2

Detuning [γ] δ −0.8

Magnetic gradient [T/m] ∇B 1
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Chapter 3

Simulation model

The developed analytical model shows some very promising results. However, we have made

several assumptions in order to be able to calculate the analtyical model. First, the acceleration

amax experienced by the atoms is kept constant. In reality the atoms experience a continuously

changing acceleration as function of their velocity. Further, this acceleration is calculated using

a simplified 2-level atom with only a F = 0 ground state and a F = 1 excited state. In reality

the rubidium isotopes have a F = 3→ F = 4 and F = 2→ F = 3 transition for 85Rb and 87Rb,

respectively. This means that each hyperfine level exists out of 2F + 1 magnetic substates MF .

Therefore the magneto-optical compression cannot be seen as a force caused by a single transition,

but of multiple transitions. As amax is lower and the compressing force is different due to the

magnetic substate structure of the transitions, we expect that in reality the required cooling and

compression stage length L should be longer than the length used in the analytical model.

Further, our analytical model assumes that all particles within our capture range rc can be

compressed to a beam with radius rf within the cooling and compression stage length L. This is

not true as the compressed beam will have developed an approximately radial symmetric density

profile, from which only the central part will be cooled and compressed enough to contribute to

the peak brightness of the beam. This is another reason why we calculate a 10% brightness of the

beam (Bpr , also mentioned in the Introduction), which is the brightness calculated from 10% of

the particles of the beam which are closest to the propagation axis of the beam. This turns out to

be an appropriate choice of our peak brightness and will be discussed and verified in Section 3.5.

Finally, we assume full radial cooling and compression in the analytical model. A more feasible

approach would be cooling and compression along two orthogonal (x and y) directions transverse

to the propagation of the beam as this is a more probable setup for the laser beams and the

magnetic field, as in the latter geometry a quadrupole magnetic field can be used to create the

Zeeman shift along the two transverse axes to compress the beam.

The previous remarks only concern the cooling and compression stage. However, another major

assumption of the analytical model is our definition of the equivalent reduced brightness, where

we calculate the brightness of the resulting ion beam by assuming that the neutral atomic beam

is instantaneously ionized. We have not discussed the effects of ionization yet, but a common

problem with ionizing high density neutral atomic beams is the Coulomb force the ions experience
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immediately after ionization due to the short interatomic distances. Due to these Coulomb forces

the ions will obtain increased longitudinal and transversal velocity distributions. As this process

is disordered, these increased velocity distributions can also be interpreted as a form of heating.

This effect is therefore also called stochastic heating [4].

After optimizing the experimental parameters of the cooling and compression stage for more

realistic rubidium atoms, we will investigate the effect of stochastic heating for our best case

cooling and compression scenario in order to show the possible performance of the ABLIS.

3.1 General approach

The total setup as shown in Figure 2.1 can be split in three parts, which are defined along the z

(propagation axis) as: the initial expansion stage (0 < z < l), the laser cooling and compression

(2D-MOT) part (l < z < l + L) and the ionization stage (z > l + L).

The analytical model as presented in the previous Chapter is based on a circular orifice and

aperture geometry. As shown in Appendix A, there is only a slight difference between the choice

of geometry (circles or squares). In the simulation model we choose square apertures for two

reasons. First the calculations of the distribution functions becomes much easier, as the x and y

coordinates and velocities of the particles can be considered to be independent1. This assumption

can not necessarily be used here as in reality the x and y components are dependent as a photon

absorbed from a laser beam in the x direction can emitted along the y direction due to stimulated

emission from a laser beam along the y direction. Another effect is saturation of the transition due

to absorption from the laser beam in the y direction, which results in a reduced scattering rate

for the laser beam in the x direction. For a saturation parameter on the order of 1 and a detuning

of δ ≈ −γ/2, the scattering rate is Rscatt ≈ 106 s−1 (see Equation 2.2), whereas the lifetime τexc

of the excited state is τexc ≈ 27 ns [16]. In this regime the atoms can thus be considered to be

in the ground state and the effects of saturation and stimulated emission are neglible. For large

transverse positions and velocities this calculation does not hold as the transitions are shifted into

resonance due to the Zeeman and/or Doppler shift, but near the central axis this approximation

is valid.

The simulation software COOL which is used to perform the laser cooling and compression

calculations, only gives the result in 2D (one longitudinal and one transverse coordinate) [29].

Assuming the independent x and y position and velocity components of the atoms, the simulation

of 2D cooling and compression can be performed for N atoms. Making sure that each pair

of simulated atoms has the same longitudinal velocity vz, which is being taken care of in the

simulation code, we take the transverse position xi,j and velocity vi,j of two atoms i and j, and

reconstruct a 3D final position ~r and velocity ~v of a single atom at the end of the cooling and

compression stage (at z = l + L) as

~r(xi, xj) = xi~ex + xj~ey + (l + L)~ez, (3.1)

1In a radial geometry the x and y coordinates are coupled through the radial coordinate r =
√
x2 + y2, which

makes calculation of the distribution functions much more complicated. An example of these extra complications

can be seen in the flux calculations in Appendix A.

23



~v(vi, vj) = vi~ex + vj~ey + vz~ez. (3.2)

In this way we simulate N particles in a 1D-MOT system and reconstruct N/2 particles in a

2D-MOT system.

In our simulations we will only vary one or two parameters in order to investigate its effects

on the resulting brightness. However, in all cases we will use the other parameters as calculated

in the analytical model given in Table 2.2.

3.2 Initial expansion stage

In the analytical model, Sec. 2.2, the flux Φ through the first aperture is given as

Φ =
1

4
n0〈v〉Sθ2. (3.3)

This equation is calculated in the paraxial approximation, and is based on a fully analytical flux

calculation described in Appendix A. As θ is on the order of 10 mrad, the effective flux coming

from the Knudsen cell and going through the aperture is only 0.01% of the flux emitted by the

Knudsen cell. There will be further losses in the cooling and compression stage simulations and

finally we will look at only 10% of the particles remaining in the end (in order to calculate the

peak brightness Bpr ). In order to have a sufficient amount of particles at the end in order to

suppress statistical fluctuations in the results, at least a million times more particles should be

used initially! This results in severe computational demands which we are not able and willing to

comply.

An alternative method is to calculate the flux at the first aperture and calculate the individual

flux contribution of the particles at the aperture accordingly. In this way we can initialize the

simulation at the first aperture and still calculate the final attained flux at the second aperture.

Second we need to initialize the particles with the correct boundary conditions so the particle

velocity and angular distributions correspond to a real apertured beam. This will be discussed

next.

3.2.1 Particle velocity distribution

Because we use a Knudsen cell in thermal equilibrium, and the mean free parth is larger than the

orifice size, the longitudinal velocity distribution of our beam at the first aperture can be described

using the Maxwell-Boltzmann distribution

fvel(vz) = C0
v2z
v3σ

exp

[
− 1

2

( vz
vσ

)2]
, (3.4)

where vσ =
√
kBTs/m is the thermal velocity of the atoms and C0 a normalization constant.

Here we have made the approximation that we deal with an effusing beam, and thus v ≈ vz. For

Ts = 400 K, the thermal velocity is vσ ≈ 195 m/s for rubidium atoms. The particles are initialized

using a Monte Carlo algorithm based on Equation 3.4, which gives a velocity distribution as shown

in Figure 3.1.
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Because the beam is apertured, the transverse velocity distribution will be more complicated.

In order to calculate the transverse velocity distribution, we also have to consider the angular

velocity distribution.

3.2.2 Spatial distribution

In Appendix A we calculate the asymmetry of the particle density at the first aperture. The

asymmetry ε is defined using the particle density at the center nc and the particle density at the

border of the aperture nb as

ε =
nc − nb
nc + nb

. (3.5)

For our geometric parameters ε� 10−4, which motivates our assumption that the spatial density

distribution over the aperture is homogeneous. Assuming a homogeneous density distribution at

the aperture will simplify the following calculations of the distribution functions enormously.

Figure 3.1: Particle distribution of N = 5 · 105 87Rb atoms at a temperature of Ts = 400 K

as initialized using our Monte Carlo algorithm in the simulations. The distribution is normalized

to N . The solid line is a fit of the normalized velocity distribution of Equation 3.4 and yields

a thermal velocity of (194.7 ± 0.2) m/s, which is in good agreement with the calculated value

vσ = 195 m/s.
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3.2.3 Angular distribution

As the beam is apertured, the angular distribution will depend on the geometry of the setup. We

have introduced to opening angle θ = d/l, but now we want to calculate the angular distribution

function. For this we use the variable angle α, for which −θ ≤ α ≤ θ. In 1D, along the x−axis,

the allowed range of angles α for a single particle passing through the aperture is

− arctan

(
d− x0
l

)
≤ α ≤ arctan

(
d+ x0
l

)
, (3.6)

where x0 is the initial position of the particle at the orifice (−d < x0 < d), d is the half width

of the orifice and the first aperture and l is the distance between the orifice and the aperture.

Although the angular distribution goes as fang(α)dα ∼ cos(α) [24], this reduces to a homogeneous

distribution fang(α)dα = 1 in the paraxial approximation (α � 1). We initialize the angles by

using a Monte Carlo algorithm to pick an angle α within the aforementioned limits (which are

particle-dependent).

To test this algorithm, we would like to compare this to an analytically derived distribution

function. From simple geometrical considerations the angular distribution function can be cal-

culated as follows. Consider a 1D orifice and aperture as shown in Figure 3.2. For a specific

angle α = (2d − x)/l, where x = 2d − l tan(α), only particles moving through the part ls = x of

the orifice are able to move through the aperture. As we can assume that the particle density is

homogeneous at the surfaces, the number of particles in a small interval dα is

fang(α)dα = C1(2d− l tan(α))dα; − arctan(2d/l) ≤ α ≤ arctan(2d/l), (3.7)

where C1 is a normalization constant and we have extended α to include the negative angles as

well. As we have the paraxial approximation d/l � 1, we can linearize this distribution function

as

fang(α)dα ≈ C1(2d− lα) (3.8)

If we use a total number ofN particles in our simulation, the angular distribution can be normalized

as

N = 2

∫ 2d/l

0

fang(α)dα ≈ 4C1
d2

l
. (3.9)

Using N = 5 · 105 particles and the geometrical parameters from Table 2.2, we expect a nor-

malization constant of C1 = 5.12 · 107 rad m−1. An example of the angular distribution after

initialization using our Monte Carlo method is shown in Figure 3.3. Fitting the histogram using

Equation 3.8, we find a value of C1 = (5.11± 0.06) · 107 rad m−1, in excellent agreement with our

calculation.

Since we now have initialized the particle positions, longitudinal velocities and the angles, we

could start simulating. For completeness we verify whether we obtain the expected transverse

velocity distribution.
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Figure 3.2: Schematic 1D view of the orifice and aperture. For a specific angle α ≈ (2d− x)/l,

particles emitted from the part ls of the orifice can move through the aperture.

Figure 3.3: Angular distribution histogram acquired after an initialization Monte Carlo routine

for N = 5 · 105 particles as described in the text. The bin size is 10−3 radians. The geometrical

parameters are given in Table 2.2. The angular distribution is fitted using Equation 3.8 and yields

a normalization constant C1 = (5.11 ± 0.06) · 107 rad m−1, which is in excellent agreement with

our calculated result.
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3.2.4 Transverse velocity distribution

Using the angular and longitudinal velocity distribution, the transverse velocity distribution can

be calculated. The number of particles with a transverse velocity vx and a longitudinal velocity v

can be discribed using the following distribution function

f(vx, v)dvxdv = fang(α)fvel(vz)dαdvz. (3.10)

We cannot state a priori that the left hand distribution function is a product of two independent

distribution functions (of vx and vz), as both velocities are correlated through the paraxial relation

vx ≈ αvz. Using this relation to substitute α and making the approximation v ≈ vz, we effectively

make a coordinate transformation with the corresponding Jacobian

J(vx, v) ≈ J(vx, vz) =
∣∣∣∂(vx, vz)

∂(α, vz)

∣∣∣ = vz. (3.11)

This allows us to rewrite Equation 3.10 as

f(vx, vz)dvxdvz = fang(vx/vz)fvel(vz)
dvxdvz
vz

. (3.12)

The transverse velocity distribution of the particles can now be obtained by integrating this

equation over vz. However, for each transverse velocity vx there must be a lower cutoff in the

longitudinal velocities that contribute to this transverse velocity. This is due to the fact that the

maximum angle of a particle in this geometry is approximately 2d/l and for a transverse velocity

vx the lowest longitudinal velocity vz,min that leads to such transverse velocity at its largest angle,

is

vz,min =
l

2d
vz. (3.13)

The transverse velocity distribution

ftrans(vx) =

∫ ∞
vz,min

f(vx, vz)dvz =

∫ ∞
vz,min

fang(vx/vz)fvel(vz)
dvz
vz

, (3.14)

ftrans(vx) =

∫ ∞
vz,min

C2

(
2d− l vx

vz

) v2z
v3σ

exp

[
− 1

2

( vz
vσ

)2]dvz
vz

, (3.15)

ftrans(vx)dvx = C2
2d

vσ
exp

[
−
( l
d

vx

2
√

2vσ

)2]
dvx − C2l

√
π

2

vx
v2σ

(
1− erf

[ l
d

vx

2
√

2vσ

])
dvx. (3.16)

Here erf(z) is the error function defined as erf(z) = (2/
√
π)
∫ z
0

exp[−t2]dt. Similar to the angular

distribution function, we can normalize the transverse velocity distribution to the total number of

particles N used in the simulations:

N = 2

∫ ∞
0

f(vx)transdvx, (3.17)

where the factor 2 arises from the fact that Equation 3.16 is only valid for vx ≥ 0 but also works for

vx ≤ 0 by using the substitution vx → −vx. The integral can only be evaluated numerically. Using
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Figure 3.4: Transverse velocity distribution histogram acquired after an initialization Monte

Carlo routine for N = 5 · 105 particles as described in the text. The bin size is 0.1 m/s. The

geometrical parameters are given in Table 2.2. The transverse velocity distribution is fitted using

Equation 3.16 and yields a normalization constant C2 = (4.055 ± 0.003) · 109 m−1, which is in

adequate agreement with our calculated result.

the parameters N = 5 · 105, a thermal velocity of vσ = 195 m/s and the geometric parameters

as given in Table 2.2, we find a normalization constant of C2 = 4.074 · 109 m−1. An example

of a histogram of the transverse velocities (which is a result of our Monte Carlo initialization of

the angles and the longitudinal velocities) is shown in Figure 3.4. The distribution is fitted using

Equation 3.16 and gives a normalization constant C2 = (4.055± 0.003) · 109 m−1, which is within

0.5% of our calculation.

3.2.5 Defining the flux at the first aperture

It is numerically difficult to calculate the flux going through the first aperture as each particle has

a different contribution to the total flux in our simulations. Hence we designed a normalization

method which enables us to calculate the flux at the end of the cooling and compression stage.

Our method is quite straightforward. From our analytical calculation shown in Appendix A,

we can exactly calculate the flux Φi at the first aperture. As the particle density at the aperture

can be considered to be homogeneous, it is easy to initialize the particles using a Monte Carlo

algorithm for the particle position, longitudinal velocity and the angle of emission, according to the

methods described above. Once the longitudinal velocities have been initialized, we can calculate

the initial flux Φi = (1/4)n0S〈v〉θ2. We define a weighting constant Cflux as

Cflux =
Φi∑N
j=1 v

j
z

, (3.18)

where the sum is defined over all N particles at the first aperture and vjz is each particle’s longitu-

dinal velocity. At the second aperture we can choose a different aperture size df to aperture the
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beam. The resulting number of particles Nf going through the final aperture is a function of df .

The final flux Φf can thus be calculated as

Φf = Cflux

Nf (df )∑
j=1

vjz, (3.19)

which enables us to accurately calculate the final flux and thus the current of the resulting ion

beam.

3.2.6 Concluding remarks on the expansion stage

We have shown how we can effectively initialize the simulation at the first aperture with a flux

and transverse and longitudinal velocity distributions corresponding to an atomic beam effusing

from a Knudsen cell. In this way we save a lot of computer time when performing the simulations.

Contrary to the analytical model, we use a square aperture geometry to simplify the calculations.

This is no problem, as the full flux calculations in Appendix A show that the difference between

a circular and square geometry is neglible, and can be exactly corrected for.

The final check we can do is calculate the emittance of the atomic beam after it passes the first

aperture using the distribution functions and obtaining the emittance from the initialization in

the COOL program. In 1D we use the x-axis similar to the previous calculations and the angular

and position distribution function of the particles is

f(α, x)dαdx = C3

[
H(x+ l arctan

(d− x
l

)
)−H(x− l arctan

(d+ x

l

)
)

]
, (3.20)

where H(z) is the Heaviside step function

H(z) =

{
1 z ≥ 0,

0 z < 0.
(3.21)

The distribution function is normalized to unity which gives a normalization constant C3 = l/4d2.

Using the normalized distribution function, we can calculate the relevant moments of the distri-

bution:

〈xα〉 =
1

3

d2

l
, (3.22)

〈α2〉 =
2

3

d2

l2
, (3.23)

〈x2〉 =
1

3
d2. (3.24)

From this we can calculate the geometric emittance in the x−direction as

εx =
√
〈x2〉〈α2〉 − 〈xα〉2 =

1

3

d2

l
. (3.25)

We check this result with the COOL software. Using the geometric parameters from Table 2.2

emittance calculated in the program is εx = 1.0338 · 10−6 m rad, within 0.07% of the theoretical

value of εx = 1.0345 · 10−6 m rad.

Now that we have checked the validity of the initialization, we discuss the laser cooling and

compression stage as simulated by the COOL software.
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3.3 Laser cooling and compression stage

The laser cooling and compression stage is simulated using the COOL software [29]. Essentially

the program calculates all velocity changes of particles due to absorption and emission of photons

during each timestep and propagates the particles with the new velocities. As discussed in Section

2.1.1, the rubidium hyperfine levels actually exist out of multiple magnetic substates. This is

taken into account using a Monte Carlo algorithm based on the photon absorption rate of each

possible magnetic substate transition.

Further Monte Carlo algorithms determine the angle of emission of the photon. The random

angle of emission leads to the diffusive heating mechanism as discussed in Section 2.1.2. In this

way the atoms can only be cooled down to the Doppler temperature.

After emission of a photon the final magnetic substate of the atom is picked by a Monte Carlo

algorithm using the appropriate Clebsch-Gordan coefficients to weigh the transition probabilities.

The program accepts any set of particles with transverse and longitudinal velocities, such as the

particles we initialize using the procedures described in Section 3.2. The program allows any laser

beam orientation and polarization. As mentioned in the introduction to the simulations, the 2D-

MOT is actually simulated as a 1D-MOT in the COOL software. We define two counterpropagating

laser beams with σ+ and σ− polarization and the appropriate cooling transition wavelength and

detuning. We also define a magnetic field which has a gradient ∇B along the transverse direction.

As we can define the hyperfine (and magnetic substate) structure ourselves, we can first sim-

ulate an ideal 2-level 85Rb atom (with only F = 0 → F = 1 transitions) to see if the simulation

results converge to the analytical model. After the verification, we introduce the 85Rb and 87Rb

hyperfine and magnetic substate structures as discussed in Section 2.1.1 to make the simulations

more realistic.

The software has some limitations. The COOL software only calculates the atom trajectories

along one transverse axis and one longitudinal axis and we are thus limited to simulate a 1D-MOT.

Assuming that the two transverse coordinates for a 2D-MOT are independent, we can still use

this software to reconstruct 3D motion of the particles. The validity of this assumption and the

method used to reconstruct the 3D motion are discussed in Section 3.1.

A common problem with laser cooling with rubidium2 is the unwanted transition F = 3 →
F = 3 which is only 120 MHz below the transition frequency of the cooling transition [22]. It can

therefore be significantly excited due to the linewidth of the laser and power broadening of the

transition. This is shown in Figure 3.5. As a fraction of the atoms are actually excited to the

excited F = 3 state, atoms can decay either to the ground F = 2 or F = 3 state. The latter state

does not provide a problem as the atom can be excited to the F = 4 state again. However, if

the atom decays to the F = 2 ground state, it becomes transparent for the laser frequency as the

F = 2 ground state lies 3 GHz below the F = 3 ground state [22]. A common solution, as used in

the UCIS setup [17, 18], is to have a second laser which pumps the atoms from the ground state

F = 2 to the F = 3 excited state, from which they can decay to the usable F = 3 ground state or

back to the unusable F = 2 ground state, at which point they are being pumped to F = 3 again.

This process is called repumping.

2This example is based on the hyperfine structure of 85Rb, but is also present with 87Rb.
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Although the magnetic substate structure of the atom is taken into account, only the F = 3→
F = 4 cooling transition is used in the simulations. Hence atoms can never decay to any other

hyperfine state, such as the F = 2 ground state. This simplification in the simulations is identical

to the assumption that there are ideal repumping laser present which make sure that all atoms

can only be in the F = 3 ground state at all times.

A further limitation is the fact that the software does not take the actual intensity profile or

wavefront of the laser beams into account. Hence the laser beams used in the simulations are ideal

plane-waves and have ‘top-hat’ intensity profiles. Further, the software does not take particle

collisions into account which probably start playing a role as the beam is compressed and the

density increases. Increased absorption due to the increased optical thickness of the cooled and

compressed beam is also ignored.

Although the software has limitations, it is a useful tool to investigate some effects of a real

2D-MOT. But we should first check whether the simulation results make sense, which means that

we have to check whether the simulations results are similar to the analyical model results.
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Figure 3.5: 85Rb level scheme. The left arrow is the F = 3 → F = 4 transition, also known

as the cooling transition. When pumping this transition, the F = 3 → F = 3 transition (second

arrow from the left) is also excited. From the excited F = 3 state atoms can decay to the ground

F = 2 state (third arrow from the left) from which they are transparent to the laser. A second

laser, which drives the F = 2→ F = 3 transition (fourth arrow from the left), is used to pump the

atoms into the excited F = 3 state from which they decay either to the ground F = 3 state and

can be used again, or they decay to the F = 2 ground state, from which they are being pumped

again. This process is called repumping.
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3.4 Comparison between the simulation results and the an-

alytical model

Now that we are acquainted with the basic principles of the COOL software, we have to check

whether this software actually produces similar results as predicted by the analytical model. In

order to do this check we perform simulations based on the atomic data from Table 2.1 and the

experimental parameters from the analytical model given by Table 2.2. As the analytical model is

based on an ideal 2-level atom, we also use an ideal 2-level 85Rb atom in our simulations. Some of

the parameters will be changed in order to investigate the parameter-space of the simulations and

to check whether they correspond to the predictions of the analytical model using the brightness

as defined in Equation 2.36. Also, the peak brightnesses given in this Chapter will be equivalent

peak brightnesses i.e. peak brightness obtained if the full beam is ionized without experiencing

any stochastic heating effects, which are briefly mentioned at the beginning of this Chapter. This

definition is identical to the equivalent brightness definition used for the analytical model.

The basic idea of these checks has been mentioned at the beginning of this Chapter: as the

acceleration which the atoms experience is not constantly equal to amax, it takes a more time

and interaction length in the 2D-MOT to effectively cool and compress the beam. If we want

to compare the simulation model to the analytical model, we therefore have to look at the final

peak brightness as function of the length L of the 2D-MOT. We also look at the peak brightness

as function of several other parameters to investigate whether the general behaviour of the peak

brightness corresponds to the behaviour predicted by the analytical model.

The parameters used in the simulations are given in Table 2.2. In the simulations where we

vary a single parameter, all other parameters are given by this Table.

In the first simulations we vary the source temperature Ts and 2D-MOT length L. The

results are shown in Figure 3.6. First we note that the peak brightness increases as the source

temperature increases. This is caused by the increased flux and therefore increased current of the

ion beam. We also see that the peak brightness increases as L is increased and tend to converge to

a single line, which is the brightness as calculated by the analytical model. We can conclude that

the simulation results become very similar to the analytical model when the interaction length L

becomes very large (20 times larger than the analytical model length). Additionaly we see that the

peak brightness increases by approximately a factor of 10 when the interaction length is increased

by a factor of 2. We will use this information when optimizing the system.

Next we vary the detuning δ, and the result is shown in Figure 3.7. We see that for detunings

around δ ≈ −γ/2, the attainable peak brightness is maximal. It decreases for larger detunings as

the laser frequency is too off-resonant and does not create a large enough scattering force to cool

and compress the beam. Again we see that the simulation results become similar to the analytical

model as long as the interaction length in the simulations is much longer than in the analytical

model. For equal interaction lengths in the analytical model and the simulations (L = 5 cm),

the peak brightness shows different behaviour. By increasing the detuning beyond δ = −γ/2 the

velocity capture range of the Doppler cooling force is increased, but this does not contribute much

as the opening angle θ is fixed using the aformentioned detuning (see Sec. 2.2) and therefore

33



Figure 3.6: Peak brightness Bpr as function of the source temperature Ts for different 2D-MOT

lengths L. We can draw two conclusions. First the simulation results converge to the analytical

model when the interaction length becomes much (20 times) larger than the interaction length of

the analytical model (which is 5 cm). Second, the peak brightness increases by approximately an

order of magnitude by doubling L to 10 cm.

Figure 3.7: Peak brightness Bpr as function of the detuning δ for different 2D-MOT lengths L.

Again we see that the simulation results converge to the analytical model as long as the interaction

length is much longer than used in the analytical model. We also see that the simulations show

different behaviour compared to the analytical model for the same interaction length L = 5 cm.
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Figure 3.8: Peak brightness Bpr as function of the saturation parameter s0 for different 2D-MOT

lengths L. Again we see that the simulation results converge to the analytical model as long as

the interaction length is much longer than used in the analytical model.

extending the velocity capture range only results in less effective cooling. To understand this we

have to consider the maximum acceleration amax and the spring constant κ from Equations 2.25

and 2.30; both will decrease if δ increases and thus the atomic beam is cooled and compressed

less efficiently. This explains the faster decay in peak brightness in the simulations than in the

analytical model.

We finally do a third set of simulations, where we vary the saturation parameter s0, as shown

in Figure 3.8. Again we see that the simulation results and the analytical model agree for large

interaction lengths, but usually the simulation results are much lower than the analytical model.

Similar to the results discussed when varying the detuning, the low saturation parameter decreases

both amax and κ and therefore results in less efficient cooling and compression. Therefore the

maximum of the peak brightness is at a higher saturation parameter in the simulations than for

the analytical model.

3.4.1 Concluding remarks on the laser cooling and compression stage

We can conclude that the COOL software does provide results which agree with the analytical

model if the simulation geometry is given enough interaction length to fully cool and compress

the beam.

There is one additional remark to be made. We have shown that the brightness Equation 2.36

as function of the source temperature, detuning and saturation parameter does agree with the

behaviour as observed in the simulation results, but we have to make one adjustment. The Doppler

temperature TD as calculated in Section 2.1.2 and used in the analytical model, assumes that all

particles are in equilibrium between the Doppler cooling and the diffusive heating mechanism as
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discussed in Section 2.1.2. However, as the beam is not fully cooled and compressed in the 2D-

MOT, the particles actually have a different transverse temperature than expected. Therefore we

calculate the temperature kBTsim = m(〈v2〉 − 〈v〉2)/2 of the transverse velocities of the particles

in the simulation and then calculate . Substituting this value for the Doppler temperature in

Equation 2.36, we find the agreement between the analytical model and the simulation results as

discussed above. We should note that we calculate the peak brightness of the beam using only

10% of the particles closest to the central axis. These particles are colder than particles which are

further away from the beam, as they have not been cooled and compressed much yet due to their

large transverse velocities and/or positions. Therefore the temperature Tsim obtained from the

simulation is usually below the transverse temperature of the total beam.

3.5 Validity of the peak brightness definition

In the Introduction we discuss the peak brightness Bpr which is the equivalent reduced brightness

of 10% of the particles which are closest to the axis of propagation of the beam at the end of the

2D-MOT. We use this definition throughout all our COOL simulations as there is no numerical

method to determine the maximum brightness of the beam in the limit df → 0, where df is the

half-width of the second aperture, which is the aperture behind the 2D-MOT. A brief discussion

about the validity should be in order.

Here we present one comparison based on optimized simulation which will be discussed later

in this Chapter. The simulation parameters are given in Table 3.1, but here we use the results

just to show the validity of our definition. Figure 3.9 shows the equivalent reduced brightness Br

of an optimized 87Rb beam, which is calculated by including all particles that move through the

final aperture with half-width df . We also show the peak brightness Bpr for comparison, which is

calculated using only 10% of the particles of the beam which are closest to the central axis. We

see that Br stays constant and equal to Bpr for aperture sizes up to df ≈ 7 µm. For larger aperture

sizes the less cooled and compressed (and thus more divergent) part of the beam goes through the

aperture, which effectively decreases the reduced brightness. Simultaneously we see that in the

same aperture size range df < 7 µm, the current of the resulting beam increases proportional to

the surface of the aperture (I ∼ d2f ), indicating that the particle density is almost homogeneous

near the central axis of the beam.

We can conclude that our definition of the peak brightness is in good agreement with the

reduced brightness for small aperture sizes. We also see that there is a simple relationship between

the aperture size and the current in the 1 − 1000 pA range, and we will discuss this in Section

3.6.4.

3.6 Simulation results using ‘real’ rubidium

In the previous Section we have established that the COOL software accurately simulates the

laser cooling and compression of the atomic beam. However, to verify the simulation results with

the analytical model presented in Section 2.2 we used ideal 2-level 85Rb atoms in which only
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Figure 3.9: Equivalent reduced brightness Br of the beam at the end of the 2D-MOT as function

of the final aperture half-width df . The solid line is Br calculated using all particles which pass

through the aperture. The dotted line is the calculated peak brightness Bpr by taking 10% of the

particles which are closest to the axis of propagation into account. The blue dashed line is the

ion beam current corresponding to the different aperture sizes. There is no data for aperture sizes

below 0.1 µm, as the calculated brightness becomes unreliable due to poor particle statistics. The

data is from the optimized 87Rb beam simulation with the simulation parameters given by Table

3.1.

F = 0 → F = 1 transitions occur. At the beginning of this Chapter, we have also discussed the

motivation to include a more complicated level structure of the atoms. The following simulations

will all be performed with ‘real’ rubidium atoms, which is either the 85Rb F = 3 → F = 4

transition with its magnetic substates or the 87Rb F = 2 → F = 3 transition with its magnetic

substates. The cooling transition for 87Rb has lower total angular momentum terms as its nuclear

spin quantum number is I = 3/2 instead of I = 5/2 for 85Rb [21]. As the total angular momentum

terms are lower for 87Rb than for 85Rb, there are less magnetic substates MF , as the degeneracy

of the magnetic substates is 2F + 1. As a result, 87Rb has less possible transitions than 85Rb. As

will see later in this Section, this will have an effect on the performance of the ABLIS for either

isotope.

As the simulations will be performed seperately for each isotope, the results are valid when

assuming that a purified source is used. In this way we learn the most about the different isotopes,

but in practice the usage of purified sources is much more expensive than using a natural mixture

of the isotopes. We will address this in the conclusion of the simulation results when discussing

the maximum achievable brightness in our simulations.

First we will look at the effects of the experimental parameters on the performance of the

2D-MOT. Then we will show some results which indicate that there are possibilities to improve

the final peak brightness even beyond the results we will discuss here.

The geometric parameters d and l of the initial expansion stage will not be changed; here we
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fully rely on the numbers given by the analytical model, which incorporates the capture velocity

and the capture range of the 2D-MOT. Although any exploration of this parameter-space might be

an interesting exercise, it does not lead to much more insight in the laser cooling and compression

physics than the other parameters s0, δ, ∇B, L and Ts. But first we will take a look at the actual

output of the COOL simulations.

3.6.1 Optimization the ABLIS using ‘real’ rubidium

There are five parameters which can be optimized in our source: the saturation parameter s0,

the detuning δ, the magnetic gradient ∇B, the cooling and compression stage length L and the

source temperature Ts. Each of these parameters has a different effect on the atomic beam. An

increased saturation parameter s0 will cool and compress the beam faster, but the final attainable

temperature which can be achieved by the beam will be increased due to an increase photon

scattering rate (also see the Doppler temperature as discussed in Section 2.1.2). This leads to a

decreased peak brightness. The detuning δ is coupled to the saturation parameter s0 through the

Doppler temperature as δ = (γ/2)
√

1 + s0, which follows from minimizing the final temperature

of the beam (also discussed in Section 2.1.2). An increased magnetic gradient ∇B decreases the

capture range and the efficiency of the compression, and it is also technically more challenging to

achieve large gradients. The compression stage length L can be varied to change the efficiency of

the cooling and compression stage as essentially the length determines the net amount of photons

each atom can scatter. As we have seen in e.g. Figure 3.6 an increased length improves the peak

brightness, but as part of our optimization we are only interested in small variations of the length.

Finally, the source temperature Ts can be varied to increase the total flux, hence the brightness

of the final beam. As the temperature also determines the transverse velocity spread, there is a

nontrivial relation between the source temperature and the length of the cooling and compression

stage in order to obtain the highest peak brightness.

Optimizing the saturation parameter and the detuning

The simulation results for different values of s0 and δ are shown in Figure 3.10 for 85Rb. The

peak brightness is optimal for a detuning δ ≈ −γ/2, which makes sense when comparing to the

analytical model. Further, the peak brightness increases rapidly for s0 < 1.5 but saturates for

s0 > 1.5. Therefore we can conclude that a detuning of δ = −γ/2 and s0 = 1.5 are the minimum

requirements to produce the peak brightness. Similar results are obtained when performing the

simulation using 87Rb, but the peak brightness is alway approximately a factor of 2 higher than

the 85Rb results. We will explain this difference in after we discuss the results when considering

the influence of the magnetic field gradient.

Optimizing the magnetic field gradient

Next we look at the magnetic field gradient ∇B. Figure 3.11 shows the peak brightness for two

sets of simulations using either one of the rubidium isotopes. The 87Rb beam obtains high peak

brightness for ∇B ≈ 2.5 T/m, whereas the 85Rb beam requires a higher gradient ∇B ≈ 3 T/m,
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Figure 3.10: Peak brightness Bpr of a 85Rb beam as function of the saturation parameter s0 for

different detunings δ. The other simulation parameters are given in Table 2.2.

Figure 3.11: Peak brightness Bpr of a 85Rb and a 87Rb beam as function of the magnetic field

gradient ∇B. The other simulation parameters are given in Table 2.2.

although the exact gradient is quite arbitrary to choose.

The different behaviour can be explained by considering the relative transition strengths of the

different isotopes, which for circular polarized light (as this polarization is used in the 2D-MOT)

are shown in Figures B.3 and B.4 in Appendix B. The average Zeeman shift weighted by the

magnetic substate transition strengths is 75% of the maximum Zeeman shift for 85Rb and 83% of

the maximum Zeeman shift for 87Rb (the calculation is shown in Appendix B). As the maximum

Zeeman shifts of both isotopes is equal, the difference in average Zeeman shift explains why 87Rb

is compressed more efficiently than 85Rb.
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Optimizing the cooling and compression stage length

As discussed earlier, the cooling and compression stage length L determines the amount of time

the atoms spend in the 2D-MOT and thus the peak brightness of the beam. Figure 3.12 shows

the peak brightness of both rubidium isotopes as function of the length. It is obvious that we are

far from saturation of the peak brightness, i.e., the length is too short to cool and compress the

beam to a minimum width and temperature as calculated in the analytical model. However, we

see that increasing the length by a factor of 2 from L = 5 cm to L = 10 cm increases the peak

brightness by a factor of approximately 3 for a 85Rb beam and a factor of 10 for a 87Rb beam!

Because of this large increase in brightness at a relative low cost of increase in length, we decide

to increase the 2D-MOT length to L = 10 cm.

Optimizing the source temperature

The final parameter is the source temperature Ts. Increasing the source temperature will increase

the width of the velocity distribution. As a result also the transverse velocity distribution will

be broadened, making it more difficult to cool and compress the beam. However, an increased

source temperature will increase the flux and therefore the final current of the ion beam. Hence

there is a trade-off between an increased flux and decreased cooling and compression efficiency.

Additionally, the mean free path Λ (see Equation 2.38 in Section 2.3) of the atoms decreases as the

source temperature increases. If the mean free path becomes shorter than the size of the orifice of

the Knudsen cell, collisions within the orifice’s walls will start to play a role and affect the velocity

distribution of the particles. This effect is not included in the simulations but should be taken

into account when optimizing the source temperature.

Figure 3.13 shows the peak brightness for 2-level 85Rb compared to the peak brightnessess of

the realistic 85Rb and 87Rb atoms. In these simulations we have used the optimized parameter

values, which are given in Table 3.1, in order to get an indication of the actual performance of the

ABLIS. First, Figure 3.13 shows no obvious optimum in the temperature range 320− 420 K. It is

not relevant to increase the source temperature beyond 420 K as the mean free path of the atoms,

given in Equation 2.38, will be too short. Second, we see that the performance of the ideal 2-level

atom is always better than the realistic atoms and that the 87Rb isotope performs approximately

5 times better than the 85Rb isotope. In order to have an acceptable mean free path and the

maximum peak brightness, we use a source temperature of Ts = 400 K (for which Λ ≈ 21 mm

> d ≈ 309 µm). We see that we can obtain a peak brightness of 108 A / m2 srad eV with the
87Rb isotope!

3.6.2 Concluding remarks on the parameter optimization

We have implemented both rubidium isotopes with their magnetic substate structures in the COOL

software in order to optimize the parameters of the ABLIS. We observe significant differences

between the analytical 2-level atom model and the real isotopes, first due to the fact that the

atoms experience a different force than assumed in the analytical model and second due to the

different Zeeman shifts for the magnetic substate transitions than the simplified F = 0 → F = 1
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Figure 3.12: Peak brightness Bpr of a 85Rb and a 87Rb beam as function of the cooling and

compression stage length L. The other simulation parameters are given in Table 2.2.

Figure 3.13: Peak brightness Bpr of a 85Rb and a 87Rb beam and an ideal 2-level 85Rb beam as

function of the source temperature Ts. Here we have used all parameter values as given in Table

3.1.
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Table 3.1: Final parameters for both rubidium isotopes compared to the parameter values given

by the analytical model.

Parameter [unit] Symbol Analytical model 85Rb 87Rb

Opening angle [rad] ∆θ 8 · 10−3

Expansion length [m] l 3.9 · 10−2

First aperture size [m] d 3.1 · 10−4

Cooling and compression stage length [m] L 0.05 0.10

Source temperature [K] Ts 350 400

Saturation parameter [-] s0 2 1.5

Detuning [γ] δ −0.8 −0.5

Magnetic gradient [T/m] ∇B 1 3 2.5

transitions.

Further, the difference in magnetic substate structure between the two isotopes is expressed

in all simulation results as a different attainable peak brightness for both isotopes. Nonetheless

we find peak brightnessess of 107 − 108 A / m2 srad eV, depending on the isotope. However, this

assumes that a purified, single isotope, source is used. In order to calculate the peak brightness

of an atomic beam with a natural mixture of both isotopes, and assuming there is only one laser

to cool and compress a single isotope, the peak brightness has to be weighted using the natural

abundance of the relevant isotope. From Figure 3.13, one can then find a peak brightness of

0.722 × 2 · 107 ≈ 1.4 · 107 A / m2 srad eV for 85Rb and 0.278 × 108 ≈ 2.3 · 107 A / m2 srad

eV for 87Rb. This is an impressive result compared to the LMIS and the UCIS discussed in the

Introduction.

There are still two issues to be considered. First, we have discussed the longitudinal energy

spread in Section 3.7 but we have not done any calculations or simulations regarding the longi-

tidunal energy spread after the ionization of the atomic beam. Second, we do not know what the

stochastic heating effects due to ionization of the atomic beam are. These issues will be discussed

in Section 3.8.

3.6.3 Is this the limit?

A relevant question at this point should be whether the calculated peak brightnesses of 107 − 108

A / m2 srad eV are the absolute limit of the ABLIS performance. As we have seen, the source

temperature (see Figure 3.13) leaves some room for improvement, but this also depends on the

geometry of the expansion stage.

As discussed before, the expansion stage has two parameters: the expansion stage length l and

the Knudsen cell orifice half-width (or radius) d. We have kept these two parameters constant

during the simulations using ‘real’ rubidium in order to reduce the number of parameters. However,

for future use it might be interesting to vary these geometric parameters as well.

The same simulation parameters are used as for the simulations in the previous Section, and

they are given in Table 2.2. We use the ideal 2-level rubidium atom in order to exclude any of the
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Figure 3.14: Peak brightness Bpr as function of the source temperature Ts for different orifice

and aperture half-widths d. An ideal 2-level rubidium atom is used to exclude isotope effects. The

other simulation parameters are given in Table 2.2.

Figure 3.15: Peak brightness Bpr as function of the source temperature Ts for different expansion

stage lengths l. An ideal 2-level rubidium atom is used to exclude isotope effects. The other

simulation parameters are given in Table 2.2.
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isotope effects, as we are only interested in the effect of the geometry. The source temperature is

varied in order to give an idea whether the two geometric parameters can be optimized. The results

are given in Figures 3.14 and 3.15. The attainable peak brightness scales roughly quadratically

with the geometric parameters as the compression and cooling efficiency of the 2D-MOT does not

change significantly. For high temperatures Ts > 500 K, the peak brightness increases differently

as the increased source temperature also leads to an increase in the width of the transverse velocity

distribution. In this regime the cooling and compression stage becomes less efficient. This could

be solved by increasing the length of the cooling and compression stage or the gradient of the

magnetic field, but this increases the technical demands on the resulting apparatus.

Hence we conclude that the geometry of the expansion stage can be further optimized. As

mentioned earlier, we will keep this information for future use and continue the current simulations

using the standard values as given in Table 2.2.

3.6.4 Atomic beam real-space and phase-space distribution

The real-space and phase-space distribution shown in this Section as an example output of the

COOL software, is the actual distribution of the atomic beam used in the ionization simulations

in Section 3.8. The phase-space distribution of the particles is shown in Figure 3.16. Only the

(x− vx) distribution is shown as it is similar to the (y − vy) distribution due to the symmetry of

our setup. It is clear that the majority of the particles are cooled and compressed, but there are

still many particles (see the inset in Figure 3.16) which are not cooled or compressed at all. This

is due to the finite length of the cooling and compression stage.

The spatial distribution of the particles is shown in Figure 3.17. We see that the beam has four

‘arms’ along the x- and y-axes as the pairs of laser beams are perpendicular and therefore do not

provide radially symmetric compression. If we calculate the rms width of the whole ensemble, we

find σrmsx ≈ σrmsy = 285 µm. If we only take the particles which are within a square aperture with

half-width df = 30 µm (which is the black square in Figure 3.17), we find σrmsx ≈ σrmsy = 2.9 µm,

which is much closer to the expected width of the beam from the analytical model. It is therefore

necessary to aperture the beam before ionization in order to obtain the peak brightness.

As aperturing the beam will change the number of ions, the size of the aperture is linked to the

total current of the beam. The half-width df of the aperture for different currents of the resulting

ion beam for this specific case is shown in Figure 3.18. A linear fit y = ax+ b of this log-log plot

in the range of 1-1000 pA gives a = (0.507 ± 0.003) log(µm)/log(pA) and b = (−0.779 ± 0.006)

log(µm) resulting in the approximate relation

df ≈ 10−0.78
√
I ≈ 0.17

√
I, (3.26)

where df is in µm and I in pA. This relation is only valid for this specific beam, and should be

recalculated when using different parameters in the cooling and compression simulations.

In Section 3.8 the brightness will be shown as a function of the ion beam current. Using this

equation one can always find the corresponding aperture size.
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Figure 3.16: Particle (x−vx) phase-space distribution at the end of the 2D-MOT for N = 1.4·105

particles. Due to the symmetry along both x- and y-axes, we only have to consider the x-axis

distribution. The plot is binned and the color code represents the areal particle density, ranging

from blue (low density) to yellow (high density). The inset has a larger x scale, ranging from

−1 mm to 1 mm. The data is from the optimized 87Rb beam simulation with the simulation

parameters given by Table 3.1.

Figure 3.17: Spatial distribution of the atoms at the end of the 2D-MOT as they are loaded

into GPT. The plot is constructed by binning the atoms and the color code represents the areal

particle density ranging from blue (low density) to yellow (high density). The beam exists of

N = 1.4 · 105 particles, and 95% of the particles are contained within the square box with half-

width df = 30 µm. The data is from the optimized 87Rb beam simulation with the simulation

parameters given by Table 3.1.
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Figure 3.18: Aperture half-width df for different currents of the resulting ion beam. The straight

line is a fit with the parameters given in the text. The data is from the optimized 87Rb beam

simulation with the simulation parameters given by Table 3.1.

3.7 Creating an ion beam

In the Introduction of this report we discuss two figures of merit which define an ion beam:

the brightness and the longitudinal energy spread. We have optimized the brightness of the

beam using magneto-optical cooling and compression techniques, but we have not discussed the

longitudinal energy spread. An increased longitudinal energy spread leads to larger chromatic

abberations, which limits the final spotsize when focusing the ion beam. Therefore we now discuss

the ionization process of the cooled and compressed ion beam.

In the introduction of this Chapter we briefly mentioned stochastic heating effects. As we create

a cooled and compressed neutral atomic beam, the atoms will be quite close to each other and, after

ionization, experience large Coulomb forces from their neighbouring ions [4]. Due to these forces

the ions will be accelerated outward in the transverse and longitudinal directions. The acceleration

in the transverse directions means that the transverse velocity distribution will become broader,

and the same goes for the longitudinal velocity distribution. As the disordered increase of the

width of the velocity distribution is associated with heating, this process is also called stochastic

heating [4]. Here the phrase ‘stochastic’ refers to the fact that this is a disordered many-body

effect and is difficult, if not impossible, to calculate for each particle analytically. Although some

analytical results can be presented, as in [4], we choose to simulate the ionization of the neutral

atomic beam and observe the stochastic heating effects in the simulations results.

One method to reduce the stochastic heating effects is to reduce the time the ions spend in

each others’ neighbourhood. This can be achieved by applying an electric field ~E in the ionization

stage. However, as the atoms are ionized in a finite ionization laser beam size, the spatial spread

of the ionization process itself increases the energy spread. Assuming an rms laser spotsize σL,
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the energy spread due to ionization in an electric field E is [17]

σU = eσLE. (3.27)

For an atomic beam with a longitudinal temperature of 400 K, the longitudinal energy spread

σU of the beam is can be calculated using Equation 1.1 and gives σU ≈ 8 meV. In order to

minimize the stochastic heating effects, one has to maximize the electric field to the order of

E ≈ 1 MV/m, which is a realistically attainable field. However, to be a competitive alternative to

the other technologies discussed in the Introduction, the energy spread should be less than 1 eV.

This means that the laser spotsize should be around σL ≈ 1 µm. This a quite a small spotsize, but

there are commercial focusing objectives available which are able to provide sub-micron spotsizes

in the correct wavelength range3. Therefore we use a 1 µm rms spotsize ionization laser beam in

our simulations.

In the simulations of the ionization process we will only use the best results we have from the

laser cooling and compression simulations, in order to show the best possible performance as a

‘proof of principle’ of the ABLIS. This is the result using the simulation parameters given by Table

3.1 using a 87Rb source, i.e. a purified single isotope source.

3.7.1 Ionization stage

Once the beam is cooled and compressed using the COOL simulations, we save all transverse

positions and velocities (both transverse and longitudinal) of the particles. Using the flux weighting

coefficient Cflux as discussed in Section 3.2, we can calculate the flux at the second aperture. The

data is then loaded in the General Particle Tracer (GPT) program [30]. The flux is converted into

a particle rate through the aperture to implement a longitudinal spatial spread of the particles

to create a realistic particle beam. In order to investigate the effects of ionization as function of

beam size and current, we apply an aperture half-width df and the program omits all particles

which are not within the aperture. As the aperture size determines the number of atoms that

will be ionized, simulating the resulting brightness as function of df is identical to simulating the

resulting brightness as function of current. The exact relation between current and df will be

discussed later.

Immediately after the aperture plane, GPT propagates the particles along the z-axis through

a 1 µm rms beam radius of a two-stage ionization laser beam. The two-stage ionization process

is not implemented in the code; the GPT code only ionizes the atom. In the region of overlap

between the laser beam and the atomic beam the ionization fraction is set to one, which is realistic

for a high power CW laser beam, and the atoms are ionized along z-axis with a quasi-Gaussian

probability distribution, which is a model for the fact that not each atom is ionized the instant it

enters the laser beam.

The ionization takes place in a constant electric field ~E which accelerates the ions along the

beam’s axis of propagation away from the ionization laser beam. In this way the Coulomb inter-

action time between the ions near the ionization site is reduced. The ions are accelerated to a

3For instance the LMH-20X-532 High-Power Nd:YAG MicroSpot Focusing Objectives provided by Thorlabs,

which is able to provide a 0.8 µm diffraction limited spot size.
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plane 10 cm behind the ionization site, where the resulting phase-space density distribution of the

particles is calculted to determine the reduced brightness of the beam.

In order to observe the stochastic heating effect, we first benchmark the GPT simulations by

turning off the pairwise Coulomb interactions and calculate the resulting brightness. Having this

benchmark, we turn the pairwise Coulomb interactions on and calculate the resulting brightness

for different aperture sizes and electric fields.

3.8 Stochastic heating

As discussed in Section 3.7, the magnitude of the electric field determines the longitudinal energy

spread of the ion beam. However, a large electric field reduces the amount of time the ions spend

close to each other and thereby reduces the stochastic heating effects [4]. Therefore we create the

ion beam in two different electric fields: a field of 0.5 MV/m for which the longitudinal energy

spread stays below 1 eV, which is better than the LMIS, and a field of 2.5 MV/m for which

we expect a larger longitudinal energy spread but less stochastic heating effects as the ions are

accelerated faster away from the ionization laser beam.

The results are given in Figure 3.19 and show three cases. The first case is a benchmark where

the atoms are ionized but the space charge forces are not taken into account. This shows that the

reduced brightness of the beam stays approximately equal. The other two cases are the ionized

beams with either one of the discussed electric fields, and we observe several effects.

First it is obvious that the reduced brightness of the ion beam decreases at some point as the

current becomes too large and stochastic heating effects dominate. This is caused by the fact

that although the ion density stays the same independent of current, a larger current requires a

larger beam size and ions ‘see’ much more neighbours in the transverse direction. This reduces

the reduced brightness as there are now much more Coulomb forces in the transverse direction

causing stochastic heating.

Second, the ion beam extracted in the electric field of 2.5 MV/m has an overall higher reduced

brightness than the ion beam extracted in the 0.5 MV/m electric field as the ions spend less time

close to each other. However, the ion beam extracted in the higher electric field also has a 50%

energy spread of σU = 3.3 eV, which is 4.7 times larger than the energy spread of the lower electric

field case (which is σU = 0.7 eV). However, in both cases we see that the reduced brightness stays

approximately 2 · 107− 4 · 107 A / m2 srad eV for currents up to 10’s of pA! This is caused by the

low ion density in the beam: as the ions have more neighbours along the axial direction in stead of

the radial direction, they experience Coulomb forces predominantly in the longitudinal direction.

Therefore the ionization only affects the longitudinal energy spread of the ion beam, and not the

reduced brightness. This is called the pencil beam regime and enables us to increase the current

of the ion beam without having to pay the price by getting a smaller reduced brightness [9, 31].

Evidently the current can only be increased up to the point that the number of neighbouring atoms

(in the transverse direction) becomes too large and the ions experience dominating Coulomb forces

in the radial direction.
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Figure 3.19: Reduced brightness Br plotted versus the ion beam current. The curves are

calculated with GPT by considering all particles in the ion beam. The dashed line (’SC off’) is

our benchmark, as no space charge forces are taken into account and all fluctuations are due to

fluctuations in the particle distributions of the beam. The solid lines are in presence of space

charge forces. The black solid line is for an extraction field of 2.5 MV/m. The red solid line is for

an extraction field of 0.5 MV/m. σU represents the 50% energy spread of the resulting ion beam.

3.9 Conclusion on the ABLIS simulations

In this Chapter we have established a new concept for an ion beam source, the Atomic Beam

Laser-cooled Ion Source (ABLIS). An analytical model has been developed to establish the ini-

tial parameters of the model, such as the source temperature and the length of the cooling and

compression stage. From this analytical model we move to simulations with the COOL software,

which incorporate the hyperfine structure of the atoms and the finite interaction time of the setup.

Convergence of the simulations to the analytical model is tested and confirmed by increasing the

interaction length. The simulations are then used to optimize the experimental parameters. We

find that both rubidium isotopes have different performances, primarily due to their different hy-

perfine structures. After optimization of the experimental parameters, we use the GPT software

to investigate the stochastic heating effects when ionizing the atomic beam. We observe stochastic

heating of the ion beam, but the ion beam is in the pencil beam regime which enables us to keep

the maximum reduced brightness whilst having ion beam currents of 10’s of pA. Our best result

is obtained with a pure 87Rb+ beam, where we obtain a reduced brightness of Br = 2 ·107 A / m2

srad eV with a current of 22 pA and a longitudinal energy spread of 0.7 eV using the simulation

parameters of the cooling and compression stage given in Table 3.1. These simulations are per-

formed for a specific case, but work as a proof of principle of the ABLIS. The reduced brightness

is 10 times larger than the reduced brightness of the LMIS with a 10 times smaller energy spread,

showing that the ABLIS is a good alternative to current technologies.
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Chapter 4

Experimental setup

One of the main components of the ABLIS is the cooling and compression stage which we call

the 2D-MOT or MOC. The 2D-MOT exists of two main components which create the magneto-

optical cooling and compression forces: the light field created by the laser beams and the magnetic

gradient field created by a quadrupole magnet. Both components need yet to be established in an

experimental environment. Here we focus on the laser system.

As discussed in Section 3.6.1 and shown in Table 3.1, there is a specific detuning of the laser

frequency from the rubidium cooling transition for which the final brightness of the beam is

optimized. Further, as shown in Figure 3.10, the final brightness is quite sensitive to the actual

detuning of the laser. Typically the detuning should be accurate within 10%. Here the accuracy

both refers to the absolute frequency and the average frequency fluctuations of the laser. The

optimal detuning is about half of the linewidth of the transition, which is approximately 3 MHz

below the transition frequency of the 85Rb cooling transition. This means we would like to stabilize

the laser frequency to 3 MHz below the cooling transition frequency with an accuracy of 300 kHz

and fluctuations of at most 300 kHz.

In this Chapter we discuss our laser system and the methods with which we want to stabilize

our laser frequency. We will also discuss the active components used in our stabilization system.

In the next Chapter we will discuss our experimental results.

4.1 Laser system

The laser system used in the lab is a Titanium:Sapphire1 (Ti:Al2O3) ring laser pumped by a

Verdi laser2. The Titanium:Sapphire (Ti:Al2O3) crystal based laser system has a very broad gain

bandwidth ranging from approximately 650 to 1000 nm [32, 33], hence the major advantage of

this system is its tunability. Additional optical components in the laser cavity ensure single mode

emission of light.

The first optical element used to tune the laser frequency is a birefringent filter, which can

be used approach the desired laser frequency [33]. For a higher accuracy, two etalons are used.

1Coherent 899-21 Ring Laser by Coherent Inc.
2Verdi 18 by Coherent Inc.

50



Generally, the bandwidth of an etalon δνetalon is given by [34]

δνetalon =
c

2L

1

F
, (4.1)

where L is the length of the etalon, c the speed of light and F the finesse of the etalon. The

Titanium:Sapphire ring laser contains two low finesse etalons with two different lengths L and

are therefore identified as a ‘thin’ and a ‘thick’ etalon that allow selectivity of the laser frequency

within 10 MHz [33]. A ‘tweeter’ mirror and a galvo are used to finetune the cavity to the desired

frequency.

In a ring laser system, running wave laser modes exist that propagate in both directions. This

can lead to standing wave patterns in the gain medium which either lead to multimode lasing

or deterioration of the laser beam profile. In order to achieve a laser mode running in a single

direction, an optical diode is used. The optical diode acts as a Faraday rotator, and combined

with a half-wave plate it leads to unidirectional transmission of the laser beam [33].

Single mode operation is achieved when the transmission maxima of all optical components,

the mirrors, birefringent filter and both etalons overlap. In that case only a single mode will

be amplified above the lasing threshold. A schematic view of these transmissions and the lasing

threshold is shown in Figure 4.1.

The laser frequency needs to be locked to a specific frequency. To achieve this, the laser system

has two active feedback systems. The first is a ‘tweeter’ mirror which compensates for fast cavity

length variations, whereas a galvo provides long term stabilization [33]. Using an internal reference

cavity and the two aformentioned active feedback components, the frequency fluctuations of the

laser are below 500 kHz [33]. However, this does not provide an absolute frequency stability.

Figure 4.1: Left A schematic view of the transmission versus frequency ν of all the different

elements in the Titanium:Sapphire laser system. The mirrors, crystal and the birefringent filter

all have broad transmissions to achieve large tunability of the laser frequency, but the ‘thin’ and

‘thick’ etalon are used for finetuning the laser frequency. Right If all the transmission peaks

overlap, only a single laser mode will have enough power above the lasing threshold and the laser

will achieve single mode lasing. This Figure has been adopted from [35].
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4.2 Frequency stabilization

Generally speaking, frequency stabilization of a laser occurs on short and long timescales. The

short timescales roughly correspond to frequencies over 100 Hz and are associated with mechanical,

acoustic and electronical noise, e.g., vibrations and noise due to vacuum pumps. On long timescales

fluctuations in the environment of the laser, especially the temperature, play a role [36].

Although the laser system is specified to stabilize itself through an internal feedback system

within 500 kHz, it does not provide an absolute reference to the desired frequency [33]. It is much

more convenient to use an independent system to reference the laser frequency to.

In the introduction of this Chapter, we mentioned that the laser frequency should be stabilized

a few MHz below the cooling transition. Therefore a logical step would be to reference the laser

frequency to the actual transition itself using spectroscopy. However, we need to be slightly below

this transition frequency. There are two possible methods to achieve the desired detuning of the

laser. One method would be to lock the laser frequency to the actual transition frequency of the

atomic reference and use two acousto-optical modulators (AOMs) to detune the laser frequency by

3 MHz before sending the laser beam to the 2D-MOT. Another option would be to use a magnetic

field to induce a Zeeman shift of the transition frequency in our reference system and lock the

laser to this frequency. In this work we will investigate the applicability of the latter method.

The implementation of this method will be explained in more detail in this Chapter, and we will

discuss the different methods we use to perform spectroscopy on our atomic reference. But first we

discuss how to design our electronic feedback system, which takes care of the actual stabilization

of the laser frequency.

4.2.1 Feedback system

In order to create a feedback system to stabilize the laser frequency, an error signal is required

[37, 38]. The error signal as function of the actual laser frequency ν, ε(ν), is zero exactly at

the transition frequency and should be an odd function around the transition frequency ν0 i.e.

ε(ν0) = 0 and ε(ν0 − ν) = −ε(ν0 + ν). Such an error signal, also called dispersion signal, is used

as input for a PI controller. Using the error signal, the output Vout of a PI controller is [38]

Vout = P
[
ε+ I

∫
εdt
]
, (4.2)

where P is a proportionality constant and I the integrating constant. Values for these settings

depend on the amplitude of and the slope of the signal. Essentially the PI controller tries to reduce

the error signal to zero by sending a feedback signal to the laser. The feedback signal at the laser

then drives the ‘tweeter’ mirror and the galvo in order to optimize the cavity transmission to the

transition frequency. As the laser frequency gets closer to the transition frequency, the error signal

approaches zero. A schematic view of a generic feedback system is shown in Figure 4.2.

The response of the feedback system depends on the specific shape of the error signal (i.e.

peak-to-peak voltage and the slope of the signal at ε(ν0)) and the settings of the PI controller.
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Figure 4.2: Schematic view of a feedback system. From the spectroscopy setup, a signal S1 is

generated by a photodiode which is fed to the feedback electronics (e.g. modulation/demodulation

electronics and noise filters). The electronics generate an error signal ε which, due to the spec-

troscopy, depends on the laser frequency ν. A PI controller then tries to converge the error signal

to zero by sending a feedback signal S2 to the laser system, where the frequency of the laser is

adjusted.

4.2.2 Spectroscopy methods

One of the most basic forms of spectroscopy is absorption spectroscopy [39]. A laser beam (also

called the ‘probe beam’) propagates through a vapor cell containing the atomic species of interest

and is then detected by a photodetector. As the laser frequency is scanned over an atomic transition

frequency, the probe beam will experience different absorption during the scan. The photodetector

will observe this absorption as a decrease in total intensity of the beam. This method is not very

accurate as the observed absorption will appear much broader than the actual transition due

to different broadening mechanisms, of which Doppler broadening (apparent broadening of the

absorption due to the Maxwell-Boltzmann velocity distribution of the atoms) is the largest effect in

common vapour cells [39]. As an example, the Doppler broadened width ∆ν of the 52S1/2 → 52P3/2

transitions of rubidium at room temperature can be calculated as ∆ν = ν0
√

8kBT ln(2)/mc2 ≈ 0.5

GHz for the rubidium transitions considered in this report [25, 39]. As will be shown in Section 5,

the rubidium transitions of both isotopes form four clusters in the frequency spectrum in which

the transitions are within 0.5 GHz of each other. Therefore absorption spectroscopy cannot be

used to isolate a single atomic transition frequency.

An extension of absorption spectroscopy is saturated absorption spectroscopy [25, 39]. In this

case one uses two counterpropagating beams with unequal powers. The high power beam is called

the pump beam and the low power beam is called the probe beam. As the beams counterpropagate,

the frequencies are shifted for the atoms due to the Doppler shift ∆ω = −~k · ~v. At most atomic

velocities, both laser beams will thus be detuned differently and will be absorbed at different rates.

However, for atoms with ~k ·~v = 0, both laser beams can be in resonance with the atomic transition

simultaneously. In that case the strong pump beam depletes most of the ground state atoms and

the weak probe beam will experience less absorption as it encounters less atoms in the ground

state. This can be observed as a slight bump in the absorption spectrum, which occurs exactly at

the resonance frequency [25, 39]. As the resonance frequency is situated exactly at the maximum

of the peak, one would like to lock the laser frequency to the saturated absorption peak. As

we mentioned earlier, for a good feedback signal one needs an asymmetric signal. The saturated
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absorption peak is symmetric and other methods should be used to obtain an asymmetric signal

from the saturated absorption peak. These methods are usually based on frequency modulation

of the pump or probe beam [39].

There is another possible process involved with saturated absorption spectroscopy which will

be relevant for our measurements. For a certain velocity v of an atom along both beams’ axis of

propagation, the Doppler shift in both beams can tune either beam in resonance with a transition

to a different excited state. Hence the atom is able to absorb photons from either beam, but for

different frequencies. We can write both resonance conditions as ω − kv = ω1 and ω + kv = ω2,

where ω1 and ω2 are the transition frequencies to two different excited states. Both resonance

conditions are satisfied when v = (ω2 − ω1)/2k, which gives ω = (ω1 + ω2)/2. This transition

falls exactly midway between to transitions and is therefore called the cross-over transition. The

cross-over transition is a common feature when using saturated absorption spectroscopy [25, 39].

We will encounter this later as well.

Many spectroscopy methods used for frequency locking of lasers are based on modulation of the

laser frequency to obtain a dispersive error signal [39]. This can either be done by modulating the

laser cavity or by using an external modulator to modulate the frequency of the laser beam, such

as an electro-optical modulator (EOM). Although EOMs can be expensive, they can modulate the

laser frequency without modulating the cavity, making the laser more stabile. For this reason we

have chosen to use an EOM to modulate the frequency of the laser beam.

Electro-optical modulation

There are two kinds of electro-optical modulators (EOMs): those which modulate the amplitude

and those which modulate the phase of the electric field. We use the latter type. Essentially an

EOM contains a crystal with an applied RF voltage which modulates the extraordinary index of

refraction [40]. This modulation of the index of refraction causes a net modulation of the phase of

the light. Considering a linear polarized electric field E oscillating at angular frequency ωL (the

angular frequency of the laser beam) and a harmonic phase modulation at an angular frequency

ωFM caused by the EOM, we have for an electric field after propagating through the crystal

E(t) = E0 sin
(
ωLt+ β sin(ωFM t)

)
, (4.3)

where β is the modulation index and is a measure of the strength of the interaction of the EOM

with the laser beam. A harmonic modulation of the phase of a harmonic fuction can also be

written as an infinite series of Bessel functions of the first kind Ji(x) multiplied by each harmonic

frequency of the phase modulation [41]

E(t) = E0J0(β) sin(ωLt) + E0

[ ∞∑
n=1

Jn(β) sin
(
ωLt+ nωFM t

)
...

+

∞∑
n=1

(−1)nJn(β) sin
(
ωLt− nωFM t

)]
. (4.4)
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In the frequency domain, we can understand this series as follows. The laser beam with central,

or carrier, frequency ωL is modulated by the EOM to obtain nth order sidebands at frequencies

ω±n = ωL ± nωFM , where the amplitudes of the sidebands are determined by the order n and

the modulation index β according to the Bessel function Jn(β). The Bessel functions up to third

order for small modulation index are shown in Table 4.1.

The modulation index β can be estimated by looking at the ratio of the intensities of the

carrier frequency and the first sideband. In order to calculate the intensities of the sidebands, we

use the fact that the intensity I is related to the electric field E as I ∝ 〈|E|2〉. Using Table 4.1

and calculating the ratio of the first sideband intensity I1 and the carrier intensity I0, we have

I1
I0

=
〈|E1|2〉
〈|E′0|2〉

=

[
J1(β)

J0(β)

]2
≈
[
β
2 −

β3

16

1− β2

4

]2
≈ β2

4
+O(β4), (4.5)

where we have defined E′0 = J0(β)E0 and En = Jn(β)E0 for n = 1, 2, 3, .... From this expansion

we learn that the modulation index can be approximated as β ≈ 2
√
I1/I0. We will use this

approximation later to check the performance of the EOM.

Table 4.1: The first four Bessel functions expanded for a modulation index β � 1.

Order n Jn(β)

0 1− β2

4 +O(β4)

1 β
2 −

β3

16 +O(β5)

2 β2

8 −
β4

96 +O(β6)

3 β3

48 −
β5

768 +O(β7)

4.2.3 Using sidebands in spectroscopy

Using an EOM, we can create a laser beam existing of its carrier (laser) frequency and sideband

frequencies. We can use this beam to perform spectroscopy at multiple frequencies simultane-

ously. In our setup we will use two methods: frequency modulation (FM) spectroscopy [42] and

modulation transfer (MT) spectroscopy [41].

Frequency modulation spectroscopy

If a laser beam containing sidebands propagates through an atomic vapor for which it is close to an

atomic transition frequency, the frequency components will each experience different absorption

rates as they are at different frequencies with respect to the transition frequency. We will call the

absorption coefficient F (ω) = |F (ω)| exp(iφ(ω)), reflecting the fact that absorption can also alter

the phase of the light through dispersion [37, 43]. For convenience we will describe the electric

field using the complex notation

E = E0

[
J0(β)eiωLt + J1(β)ei(ωL+ωFM )t − J1(β)ei(ωL−ωFM )t

]
(4.6)
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We have omitted any higher order sidebands for simplicity. The electric field of the partially

absorbed beam can be described as

Eabs = E0

[
J0(β)|F (ωL)|eiωLt+iφ(ωL) + J1(β)|F (ωL + ωFM )|ei(ωL+ωFM )t+iφ(ωL+ωFM )...

−J1(β)|F (ωL − ωFM )|ei(ωL−ωFM )t+iφ(ωL−ωFM )

]
. (4.7)

But we can only detect the intensity of this beam with a photodetector, therefore we have to

consider the square of the electric field |Eabs|2. For simplicity and brevity, we will only consider the

carrier frequency and the first sidebands in this calculation. As it is a straightforward calculation

[37, 43], we will skip most of the steps and give the final result

Iabs ∝ EabsE
?
abs = |Eabs|2 ≈ |E0|2

[
J2
0 (β)|F0|2 + J2

1 (β)
(
|F1|2 + |F−1|2

)
+ ...

J0(β)J1(β)
(
|F0||F1| cos(φ1 − φ0)− |F0||F−1| cos(φ−1 − φ0)

)
cos(ωFM t) + ...

J0(β)J1(β)
(
|F0||F1| sin(φ1 − φ0)− |F0||F−1| sin(φ−1 − φ0)

)
sin(ωFM t)

]
. (4.8)

Here the superscript ? denotes the complex conjugate and we have defined Fn = F (ωL + nωFM )

and φn = φ(ωL +nωFM ). Further we have omitted the explicit calculation of all terms oscillation

at frequencies above ωFM as we are currently not interested in them and we can filter these

using appropriate electronics. This is a reasonable assumption as ωL/2π ≈ 100 THz whereas

ωFM/2π ≈ 10 MHz in our experiments.

Assuming the difference in phase shifts is small, i.e. |φ1−φ0| � 1 and |φ−1−φ0| � 1, and we

are near resonance so F1 ≈ F−1, we can rewrite Equation 4.8 as

Iabs ∝ |E0|2
[
J2
0 (β)|F0|2 + J2

1 (β)
(
|F1|2 + |F−1|2

)
+ J0(β)J1(β)|F0|

(
|F1| − |F−1|

)
cos(ωFM t) + ...

J0(β)J1(β)|F0||F1|
(
φ1 − φ−1 − 2φ0

)
sin(ωFM t)

]
.

(4.9)

This shows us that the amplitude of the in-phase term cos(ωFM t) is proportional to the difference

in absorption of the sidebands. The amplitude of the out-of-phase (or quadrature) term sin(ωFM t)

is proportional to the difference in the acquired phases of the different frequency components and

therefore is related to the dispersion of the different frequency components.

The in-phase amplitude is schematically shown in Figure 4.3. In this Figure we show a mock

absorption line and the different absorption of the sidebands. Taking the amplitude of the in-phase

(cosine) term of Equation 4.8, we effectively take the difference between both sideband intensities

once they are being partially absorbed. This leads to a lineshape which is similar to the first

derivative of the absorption line and provides an excellent error signal for the PI controller.
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Figure 4.3: Schematic interpretation of FM spectroscopy. Here we have a Lorentzian lineshape

absorption dip with a linewidth of 6 MHz, which is the linewidth of our rubidium transition. The

modulation frequency ωFM = 6.8 MHz, similar as used in our experiments. The amplitude of the

in-phase (cosine) oscillations at the modulation frequency ωFM of the intensity of the laser beam

is proportional to the difference in absorption of the sidebands. The two insets schematically show

the transmission of the two sidebands above and below the transition frequency. The zero crossing

of this curve is at the actual transition frequency and can be used as an error signal for the PI

controller.

From this we intuitively learn something about the properties of FM spectroscopy. First, if

the sideband separation is much larger than the linewidth of the transition (i.e., the linewidth of

the absorption in Figure 4.3), one will find only absorption of either sideband and no dispersion

signal as shown in Figure 4.3 [44]. Second, even if the sidebands are close enough, the observed

dispersion signal is similar to the derivative of the absorption line but actually is a convolution

of both sideband intensities with the absorption line. The actual linewidth of the absorption can

only be determined by deconvoluting the dispersion signal with the spectrum of the laser beam.

It should be mentioned that a serious disadvantage of this method is its sensitivity to AC and

DC Stark shifts of the electronic levels, as well as for Zeeman shifts [25, 39]. Hence it has limited

use to lock at the absolute transition frequency. Therefore we also consider a second spectroscopy

method: modulation transfer spectroscopy.

Modulation transfer spectroscopy

Modulation transfer (MT) spectroscopy is based on the same concept as FM spectroscopy: using

an EOM to create sidebands in the laser beam to perform spectroscopy. The spectroscopy is

performed using a saturated absorption setup i.e., a pump beam modulated by an EOM and an

unmodulated probe beam counterpropagate collinearly through a vapour cell containing atomic

rubidium [41, 45]. The physical processes involved, however, are quite different compared to

FM spectroscopy. Through a nonlinear third order interaction, a fraction of the intensity of the
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sidebands of the modulated pump beam is transferred to the probe beam and the initially single

frequency probe beam acquires two sidebands [46, 47, 48]. This process is schematically shown in

Figure 4.4. Two photons from the pump beam at frequencies ωL and ωL + ωFM (the sideband)

combine in an atomic transition with a photon from the probe beam at frequency ωL to form a

sideband photon at frequency ωL ± ωFM which copropagates with the probe beam. Because four

different photons (or similarly, waves) are involved, this process is also called four-wave mixing

[47, 48].

As this process takes place for both sidebands, the probe beam also obtains both sidebands,

but with much smaller intensities than the pump beam. Detecting the intensity of the probe beam

with a photodetector then leads to a similar time-dependent behaviour as in the FM example in

Equation 4.8 [41]. By looking at the amplitude of either the in-phase (cosine) or out-of-phase

(sine) signals beating with frequency ωFM , again a similar dispersion lineshape can be detected

as for FM spectroscopy [41].

However, there are some significant differences between FM and MT spectroscopy. First, as

MT spectroscopy is based on a nonlinear process, the four-wave mixing only takes place very close

to or at the atomic resonance and therefore has a much smaller background signal than for FM

spectroscopy. FM spectroscopy is based on saturated absorption and therefore still experiences

the Doppler broadened background, as discussed in Section 4.2.2. Second, MT spectroscopy

produces the largest signals for closed transitions [41] which makes it easier to lock the laser to the

cooling transition (which, by definition, is a closed transition). Closed transitions are the hyperfine

transitions F → F ′ = F + 1, where F ′ is the largest hyperfine level of the spectroscopic state. As

an example, for the 85Rb 52S1/2 F → 52P3/2 F
′ transitions (as discussed in Section 2.1.1), this is

the F = 3→ F ′ = 4 transition.

In FM spectroscopy all transitions have approximately the same amplitude. Cross-over transi-

tions (discussed in Section 4.2.2), which are severely suppressed in MT spectroscopy, also dominate

the FM spectrum [41]. Finally, McCarron et al. claim that the zero crossing of the dispersion

signal obtained using MT spectroscopy does not shift due to a magnetic field (i.e. the Zeeman

shift) [41]. In our measurements, which we will discuss later, we do see a change in the lineshape

due to an applied magnetic field, but no clear frequency shift can be observed. We conclude that

|g〉

|e〉

ωL

ωL

ωL + ωFM

|g〉

|e〉
ωL

ωL

ωL + ωFM

ωL − ωFM ωL + ωFM

Figure 4.4: Schematic representation of four-wave mixing [47, 48] in a two-level atom with

ground state |g〉 and excited state |e〉. Through a resonant interaction between a sideband photon

ωL + ωFM of the pump beam, a pump carrier photon ωL and a probe carrier photon ωL, either

sideband photon ωL ± ωFM can be generated in the probe beam. This process is identical for the

other sideband of the pump beam [47].
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MT spectroscopy is less sensitive to magnetic perturbations (such as the Earth’s magnetic field)

than FM spectroscopy and therefore a more suitable reference to the absolute atomic transition

frequency. In order to investigate the possibility of detuning the laser frequency using the Zeeman

shift, we will have to use FM spectroscopy later in this report.

4.3 Proposed design for frequency stabilization

Now that we have shown the different methodsto stabilize the laser frequency, we discuss the

design of the actual setup in the laboratory. We want to be able to employ both FM and MT

spectroscopy in order to be able to lock the laser to the absolute transition frequency (with MT) or

lock the laser to a Zeeman-shifted transition (with FM). This means that we require a spectroscopy

setup where both methods are applicable.

Another aspect of this project, which has been briefly mentioned in Chapter 2, is to try to

construct the setup in such a way that most of the optical paths actually go through optical

fibers. This makes it easier to design a more flexible and compact future design, and it creates

a more modular (independent) design of the whole setup. In this way we would like to prevent

alignment problems and reduce beam pointing instabilities due to e.g. different vibrations in

the optical setup and the 2D-MOT. For this purpose we use several different fiber components

to e.g. couple the light in the fiber, distribute the light over different beams and collimate the

beam outside of the fiber. Fiber optics offers a lot of possibilities and there is a broad spectrum of

available components3. However, most components are designed for the optical telecommunication

industry and are therefore only available for wavelengths of 1300-1500 nm, almost twice as long as

the wavelength we are working with. There are also many components available which are designed

for 780 nm light, but at a higher cost. Therefore we currently use fibers only to transport and

distribute the light in our setup, and construct the spectroscopy setup using conventional ‘free

space’ optics.

Figure 4.5 is a schematic display of our final setup, and Figure 4.6 shows the spectroscopy part

in more detail. This setup is a combination of a FM spectroscopy setup based on [42] and an

MT spectroscopy setup based on [17, 41]. The laser beam first goes through an optical isolator to

prevent any destabilizing feedback through reflections. A half-wave plate and a polarizing beam

splitter (PBS) are used to control the total power which goes into the fiber. Coupling the light

into the fiber is done using four components: two mirrors to steer the laser beam, a 3D translation

stage on which we can optimize the position of the fiber and the microscope objective4 which is

used to focus the light into the fiber. We use a 2x2 fiber coupler5 to take 10% of the light to the

spectroscopy setup and keep the other 90% for other purposes (which in the end should go to the

experiment).

The spectroscopy setup is based on a typical ring setup common for saturated absorption

spectroscopy as for instance described in [39], and more directly on the setups described in [17, 41].

The distribution of the intensity over both pump and probe beams is controlled by a half-wave

3See, for instance, the Thorlabs catalog from which we have ordered most products.
4Thorlabs RMS20X Plan Achromat microscope objective.
5Thorlabs FC780-90B-APC 2x2 Single Mode Coupler with a 90:10 split ratio.
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plate and a PBS. A rubidium vapour cell6 contained in a copper wire coil (to apply an external

magnetic field if desired) is placed in one arm, and the EOM7 is placed in the other arm. The

EOM is driven by a frequency generator8 and an LC ciruit. In order to optimize the spectroscopy

signal, a large beam diameter is chosen of approximately 4 mm using a fiber collimator9. As the

entrance and exit of the EOM are only 1 mm in diameter, two plano-convex lenses with f = 200

mm are used to focus the light into the EOM and collimate the beam after the exit. For a beam

radius of 2 mm and a lens with a focal length of 200 mm, the far field divergence is approximately

θ ≈ 2/200 = 10 mrad. Using the fact that θ ≈ λ/πw0 [34] and λ ≈ 780 nm, we find a beam waist of

w0 ≈ 25 µm. This limits the maximum power we can put through the EOM (which has a damage

threshold of 3 W/mm2 [40]) to approximately 6 mW. We use two non-polarizing beam splitters

to either observe the FM or MT spectroscopy signal with two photodetectors10. Finally we have

the possibility of inserting two quarter-wave plates immediately in front and behind the rubidium

vapour cell in order to create circularly polarized light, which is required when Zeeman-shifting

the transitions.

4.4 Feedback electronics

In our discussion of the different spectroscopy methods, we have not yet mentioned how the signals

as detected by the photodiodes are actually processed to generate the dispersion signal (also known

as the aforementioned error signal). In order to determine the amplitude of the in-phase or out-

of-phase signals of the intensity oscillations, we electronically multiply the photodiode signal by a

harmonic signal, from the same frequency generator which drives the EOM, oscillating at ωFM :

cos(ωFM t + φ), where φ is a phase-shift which can be adjusted in the lab to either pick the in-

phase (φ = nπ, n = 0, 1, 2...) signal, out-of-phase (φ = (n + 1/4)π, n = 0, 1, 2...) signal or a

superposition of both. This electronic multiplication will lead to a DC signal which is a function

of the laser frequency i.e. the dispersion (error) signal as shown in Figure 4.3. A block diagram

of the electronics is shown in Figure 4.7. There will also be terms oscillating at 2ωFM or higher

frequencies, but these are easily omitted using a low-pass filter. Although it is originally based on

[41], a similar detection unit has been built in the lab before [17]. As the existing detection unit

has shown no problems so far, our electronics unit is an exact copy where the only difference is

the oscillation frequency (ours runs at 6.8 MHz instead of 8.0 MHz).

6Toptica CE RB 50 Optical quality rubidium vapour cell.
7Thorlabs EO-PM-NR-C1 Broadband Electro-optic Phase Modulator, 600-900 nm.
8Hewlett-Packard 33120A 15 MHz Function/Arbitrary Waveform Generator.
9Thorlabs CFS18-850-APC Pigtailed aspheric collimator.

10Thorlabs DET10A/M High speed Si detector.
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Figure 4.5: Block diagram of our setup. We use an optical isolator to reduce reflected light

going into the laser. A half-wave plate and polarizing beam splitter are used to control the input

power into the fiber. The fiber input exists out of two mirrors, a microscope objective and a

3D translation stage. We use one input of a 2x2 fiber coupler to distribute the light; 10% to

spectroscopy and 90% to (eventually) the experiment. From the spectroscopy we then obtain

an electric signal which is demodulated by the feedback electronics and through a PI controller

produces a feedback signal to the laser.

Figure 4.6: Schematic diagram of our spectroscopy setup. The fiber collimator produces a laser

beam with a 1/e2 diameter of 4 mm. We first use a half-wave plate - polarizing beam splitter pair to

split off some light for future frequency metrology. Then we use another half-wave plate - polarizing

beam splitter pair to control the ratio of the intensities over both paths in the saturated absorption

ring. We slightly misalign the mirrors so the laser beam only propagates in the counterclockwise

direction through the EOM. The rubidium vapour cell is placed inside a copper wire coil and the

quarter-wave plates are only inserted when doing Zeeman-shift experiments. Photodetectors MT

PD and FM PD are used for performing the MT spectroscopy or FM spectroscopy, respectively.
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Figure 4.7: Diagram of the electronics used for demodulating the FM spectroscopy and MT

spectroscopy signals. Half of the power of a frequency generator drives the EOM through an LC

resonance circuit and the other half is used for the demodulation of the photodetector signal. After

mixing a low pass filter is used to only obtain the DC signal. The coaxial cable length between

the splitter and the mixer can be varied to change the detection phase φ. This diagram is mainly

based on [17].

4.5 Electro-optical modulator

The essential component for either FM or MT spectroscopy is the generation of sidebands using

an electro-optical modulator, or EOM. In order to operate the EOM, a voltage of approximately

100 Volts needs to be applied [40]. In order to obtain this voltage we use a resonant LC circuit to

drive the EOM. As the EOM already has an input capacitance, we only need to place a coil with

inductance L in series with the EOM as shown in Figure 4.7. The resonance frequency νres of a LC

circuit is νres = 1/2π
√
LC [49], and the voltage at the EOM will be greatly enhanced near or at

this resonance frequency. In order to create sidebands at the required frequency ωFM = 2πνFM ,

the EOM should work optimal at the same frequency. This means that νFM = νres for optimal

performance of the EOM.

4.5.1 Resonance of the LC circuit

The MT spectroscopy setup in the lab as described in [17] performs well at a modulation frequency

of 8 MHz and a frequency generator peak-to-peak voltage of 9 V. Therefore we would also like

to work with those parameters. Using the aforementioned resonance frequency and the given

input capacitance of the EOM C = 11.8 pF [50], we find a required inductance of L = 33.5 µH.

The inductance is produced by a coil which is handmade in the electronics workshop, and due to

imperfections we do not expect it to have the exact specified inductance. Therefore we connect

the coil to the EOM and measure the voltage buildup between the coil and the EOM using an
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oscilloscope11. This is schematically shown in Figure 4.8.

By scanning the frequency and measuring the voltage using the scope, we can find the reso-

nance. However, we are only able to measure the voltage with a 100 : 1 reduction of the amplitude.

This is because we have neglected several effects in our simplified electronical diagram. First, the

electronic signals are carried by coaxial cables12, which also have a capacitance. Second, our os-

cilloscope has an input resistance of 1 MΩ and a parallel capacitance of approximately 13 pF (as

specified on the oscilloscope). The input resistance is of little importance but the input capaci-

tance together with the 10 kΩ resistor forms a RC filter which attenuates signals for frequencies

over νRC = 1/2πRC ≈ 1.2 MHz [49].

To calculate the effect of the attenuation due to this RC filter effect, we use an electronic

circuit simulation software kit called PSpice [52]. The full electronic diagram is shown in Figure

4.9. Apart from the experimental error in the capacitances and resistors, our only degree of

freedom is the inductance L of the coil. In an iterative method, we try different values of L and

simulate the frequency response of this circuit using PSpice. We assume that the best agreement

between the simulated and the measured response then also gives the best approximation for the

inductance of the coil. The comparison between the simulated and measured resonance is shown in

Figure 4.10, and gives an inductance of L = (25.0± 0.5) µH. Further, we note that the resonance

frequency is νres ≈ 6.8 MHz. If we remove the scope and the connecting coaxial cable (C2 in

Figure 4.9) in our simulation model and repeat the simulation, we find the resonance still to be

at the same frequency. This makes sense as the removal of the scope only removes the RC filter

and does not affect the LC resonance.

Having measured the resonance frequency, we can now take a look at the sidebands generated

by the EOM.

4.5.2 Measuring the sidebands created by the EOM

A common method to measure the spectrum of a laser beam is by generating a beatnote with a

reference laser beam. The general idea is as follows: consider two oscillating electric fields which

have equal polarization and spatially overlap. The sum of both electric fields E1(t) and E2(t)

would be E(t) = E1(t) + E2(t) = E1 sin(ω1t) + E2 sin(ω2t). If the combined fields are incident

on a photodetector, the resulting intensity will oscillate and contain both the sum and difference

frequencies of the two fields:

I(t) ∝ E(t)E?(t) =
1

2
(E2

1 + E2
2) + E1E2 cos((ω1 − ω2)t) + (2ω terms). (4.10)

In this simple calculating we ignore any relative phase difference between the two electric fields, as

this does not affect the resulting oscillation frequency. If ω1 ≈ ω2, we see that the intensity has a

slowly varying modulation whose amplitude is linear with the amplitudes of the electric fields and

oscillates with the difference frequency of the two electric fields. We omit the sum terms as we are

dealing with optical fields, and whereas (ω1 − ω2)/2π ≈ 100’s of MHz, the intensity contributions

oscillating at the sum frequencies are 100’s of THz and will average to zero when looking at the

11Rigol DS 5062CA.
12Of which the capacitance is approximately 100 pF per meter cable [51].
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Figure 4.8: Schematic diagram of our LC resonance measurement setup. The frequency generator

drives the LC circuit, and we connect a scope (through a resistor of 10 kΩ) to measure the voltage

across the EOM. This diagram is drawn using PSpice.

Figure 4.9: Full electronic diagram of our LC resonance measurement setup. Capacitors C1

and C2 represent the coaxial cables and have approximate capacitances of 9.7 pF and 90 pF,

based on their respective lengths. The resistance R1 = 50 Ω is the output resistance of the

frequency generator and R2 = 10 kΩ is a safety resistance between the LC circuit and the scope to

prevent drawing large currents when accidently short-circuiting the system. The scope has input

capacitance C3 = 13 pF and input resistance R3 = 1 MΩ. This diagram is drawn using PSpice.
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Figure 4.10: Comparison between the resonance of the LC circuit as measured (dots) using

the scope, and the PSpice simulation (line) based on the electrical diagram of Figure 4.9. The

inductance of the coil used in this simulation is L = 25.0 µH but we add a ±0.5 µH error margin

on this value, approximated from the sensitivity of the simulated curve to the value of L. The

resonance frequency is νres ≈ 6.8 MHz.

intensity contribution oscillating at the difference frequency. Generating a beatnote thus enables

one to observe the difference in frequencies of two oscillating electric fields.

To obtain useful information from the beatnote, we need a reference frequency. For this we

could take the second output of the 2x2 fiber coupler, but generating a beatnote from this beam

with the EOM beam will create a difference frequency of 0 Hz for the carrier frequency (i.e., the

laser frequency itself). It is not possible to distinguish between the resulting negative and positive

frequency components of the spectrum we are interested in, as the negative frequency components

will add to the positive frequency components. Therefore we detune the frequency of the reference

laser beam with an AOM13 connected to an RF amplifier oscillating at 150 MHz and taking the

first order diffracted beam. We spatially overlap this beam with the beam from the EOM and

observe the intensity with a fast photodetector14. The photodetector is connected to a spectrum

analyzer15.

For our current operating settings of the frequency generator, 6.8 MHz and 9 V peak-to-

peak, the resulting beatnote spectrum is shown in Figure 4.11. It clearly shows the carrier offset

frequency at 150 MHz, and the equally spaced (up to third order!) sidebands. The peaks are

extremely narrow as we are producing a beatnote using the same source for both components.

Without making an effort to temporally delay either one of the beams, the fields are fully coherent

and therefore the spectrum is extremely narrow. We also see some background noise on the

spectrum in Figure 4.11. The noise source at 150 MHz is caused by the RF amplifier which drives

the AOM. All other sources are unknown, but can be separated from the spectrum of the probe

13ISOMET Acousto-Optical Modulator 1212-2-949.
14Thorlabs DET210 High-Speed Silicon Detector.
15Rohde&Schwarz ZVH8 Cable and Antenna Analyzer.
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Figure 4.11: Measured beatnote spectrum of the EOM modulated beam and the 150 MHz

detuned beam. The frequency generator is set to 6.8 MHz and 9 V peak-to-peak. A background

measurement (both beams blocked) is shown to indicate background noise sources. The low noise

at 150 MHz, for instance, is due to the RF amplifier which drives the AOM and stands near the

setup. However, we can see the carrier at 150 MHz, a sideband spacing of 6.8 MHz and up to

third order sidebands at 129.6 MHz and 170.4 MHz.

beam.

In Section 4.2.2 we discussed a method to determine the modulation index β from the spectrum:

β ≈ 2
√
I1/I0, where I1 and I0 are the intensities (or in this case, powers) of the first sideband

and the carrier, respectively. By determining the modulation index for different settings of the

frequency generator driving the EOM, we can determine the optimal frequency and voltage to

drive the EOM. Essentially we try to answer the same question as posed in Section 4.5.1, but we

now use a completely different method.

Figure 4.12 shows the modulation index β measured by scanning the frequency generator peak-

to-peak voltage and keeping the frequency set to 6.8 MHz. We cannot exceed 9 V, as this would

exceed the damage threshold of the feedback electronics. The modulation index increases linearly

with the voltage; this shows that the modulation index increases linearly with the electric field

applied inside the EOM. This validates the linear expansion of the electric fields in Section 4.2.2

used to calculate the EOM spectrum.

Figure 4.13 shows the modulation index determined for different frequencies, but at a frequency

generator amplitude of 9 V peak-to-peak. Comparing this to the resonance as simulated using

PSpice (also discussed in Section 4.5.1) we see that both resonances occur at the same frequency,

which makes sense.

In our calculation of the sidebands in Section 4.2.2, we found that the intensities of the nth

order sidebands should go as

In
I0

=

[
Jn(β)

J0(β)

]2
, (4.11)
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Figure 4.12: Modulation index β measured for different frequency generator peak-to-peak volt-

ages, but at a constant frequency of 6.8 MHz. The error bars are an estimate of the systematic

error due to the difference in power in the n = +1 and n = −1 sidebands. The red line is a linear

fit with slope (7.79± 0.06) · 10−2 V−1. The intercept is fixed at the origin.

Figure 4.13: Modulation index β (squares) measured for different frequencies, but at a constant

peak-to-peak voltage of 9 V. The error bars are an estimate due to the difference in power in the

n = +1 and n = −1 sidebands. Both the PSpice simulated resonance curve (full line) and the

determined modulation index are shown (normalised to their respective maxima) to show that

both from the optical and electronic model we obtain the same resonance at 6.8 MHz.
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Figure 4.14: Side- and carrierband intensities normalized to the carrier intensity for the smallest

value of β. The error bars on the normalized intensities are smaller than the squares. The full

lines are the nth order Bessel functions squared: J2
n(β). We find excellent agreement between the

perturbation calculation of the sidebands and the actual performance of the EOM.

where Jn(β) is the nth order Bessel function as function of the modulation index β. As J0(β →
0) = 1 (see Table 4.1), normalizing each sideband intensity with the carrier intensity in the absence

of modulation, should give us the square of the Bessel function for each sideband as function of the

modulation index. This is shown in Figure 4.14. The full lines are the nth order Bessel functions

squared for each nth sideband. The excellent agreement between the Bessel functions and the

intensities shows that the linear expansino using the Bessel functions quite accurately models the

EOM performance.

4.5.3 Conclusion on the performance of the EOM

In order to perform FM or MT spectroscopy, sideband generation is a basic necessity. Here we

implement an EOM driven in a LC circuit by a frequency generator. We determine the resonance

frequency of the LC circuit to be 6.8 MHz by measuring the resonance using a scope.

We also look at the spectrum of the laser beam after passing through the EOM. By varying

the modulation frequency and looking at the intensities of the sidebands generated, we find the

optimal sideband generation to be at a modulation frequency of 6.8 MHz, in agreement with the

measurement of the LC resonance. Further, by determining the modulation index β for different

frequency generator peak-to-peak voltages, we have found a linear relationship between the applied

voltage and the modulation index. Further, we find excellent agreement between the normalized

nth sideband and the exact nth order Bessel function, indicating that the modulation efficiency

of the EOM agrees with the model.
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4.6 Creating a magnetic field

In order to Zeeman-shift the energy states of the rubidium atoms, a copper wire coil is constructed

to produce the required magnetic field. As discussed in Appendix B, the Zeeman-shift of the

rubidium cooling transition is approximately 1.4 MHz/G. As the linewidth of the transition is

approximately 6 MHz, we would need a maximum magnetic field of 10 G to have a sufficiently

large tuning range of Zeeman-shifted frequencies (10 G ∼ 14 MHz ∼ two linewidths).

The constructed coil has 54 turns of copper wire over 60 mm, giving it an average number of

n = 900 turns per meter. The coil is connected to a current source16. A magnetic field probe17 is

used to measure the axial magnetic field and the field perpendicular to the optical table on which

the coil is mounted. The perpendicular field has a magnitude Bperp = (1.2±0.3) G. The axial field

is measured for different currents. The result is shown in Figure 4.15 and shows an excellent linear

relationship between the magnetic field and the current: Baxial = −(0.21± 0.03) + (8.24± 0.02)I.

The offset term indicates there will be some residual magnetic field along the axial direction. The

second term is the slope ∂B/∂I and is lower than the expected slope ∂B/∂I = µ0n = 11.3 G/A

from the ideal coil model, where the axial magnetic field B of an ideal coil is B = µ0nI and

µ0 = 4π · 10−7 H m−1 is the magnetic permeability and I the applied current [53]. We will use

the measured slope to convert the applied coil current to a magnetic field.

Figure 4.15: Axial magnetic field of the coil for different applied currents. The straight line is a

fit with zero crossing −(0.21± 0.03) G and a slope of (8.24± 0.02) G/A.

16Delta Elektronika ES 030-5 Power Supply.
17Hirst Magnetic Instruments GM04 Gaussmeter.
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Chapter 5

Spectroscopy and stability

Now we have the electronics and optics working, we can perform spectroscopy. First we want

to perform spectroscopy on rubidium in order to obtain the dispersion signals to lock the laser

frequency to. After that we use the Zeeman shift to detune the laser frequency. Finally we will

also look at the frequency stability of the locked laser frequency.

Although we have shown in Chapter 3 that using an atomic beam of pure 87Rb provides the

highest brightness, our future experiments on the ABLIS will start by using a natural mixture

of rubidium as a purified source is much more expensive. Using a natural mixture, it does not

matter much which isotope one will cool and compress to obtain the highest brightness (as shown

at the end of Chapter 3). Further, once we have shown that the locking and detuning works, it

is a trivial matter to lock and detune the frequency to either of the transitions required to cool

and compress either isotope. Therefore we currently choose the 85Rb cooling transition, which is

the 52S1/2 (F = 3)→ 52P3/2 (F = 4) transition to lock our laser frequency to. In the rest of this

report we will refer to this transition as the (85Rb) cooling transition.

As can be seen in the rubidium level schemes as introduced in Section 2.1.1, and shown in

in Appendix B, there are several transitions which are close (that is, within a few GHz) to the

cooling transition. The difference in transition frequencies with respect to the cooling transition

are shown in Table 5.1. As shown in Section 4.2.2, the Doppler broadening of these transitions at

room temperature is about 0.5 GHz. Including this broadening, we find that all 12 transitions in

Table 5.1 will effectively be observed in four clusters if we only use absorption spectroscopy. The

full absorption spectrum is shown in Figure 5.1. This spectrum is measured using the MT PD in

the setup as shown in Figure 4.6, but blocking the counterpropagating beam which goes through

the EOM. Four absorption dips are visible, each representing a cluster of the aforementioned

transitions. The outermost left and right hand absorption dips are the 87Rb transitions. They

absorb less light as the rubidium vapour cell contains a natural mixture of both rubidium isotopes,

which is about 87Rb:85Rb≈ 1:3 [21]. This spectrum could contain more detail if we were to perform

saturated absorption spectroscopy [25, 39], but we will skip this technique and continue to the

more accurate FM and MT spectroscopy (as some characteristic properties of saturated absorption

spectroscopy will also appear in either of these techniques).
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Table 5.1: Frequency differences of the 52S1/2 F → 52P3/2 F
′ transitions of 85Rb and 87Rb with

respect to the 85Rb F = 3 → F = 4 cooling transition. Including a Doppler broadening of 0.5

GHz for each transition at room temperature, the 12 transitions can only be resolved into four

clusters, shown by the divisions in the Table. The frequencies are calculated using the rubidium

level data from [22, 23].

Isotope Transition Frequency difference [GHz]

85Rb F = 3→ F = 4 0
85Rb F = 3→ F = 3 -0.121
85Rb F = 3→ F = 2 -0.184

85Rb F = 2→ F = 3 +2.92
85Rb F = 2→ F = 2 +2.85
85Rb F = 2→ F = 1 +2.82

87Rb F = 2→ F = 3 -1.20
87Rb F = 2→ F = 2 -1.47
87Rb F = 2→ F = 1 -1.63

87Rb F = 1→ F = 2 +5.36
87Rb F = 1→ F = 1 +5.21
87Rb F = 1→ F = 0 +5.13

Figure 5.1: Comparison of the signals of the three different spectroscopy methods by scanning

the laser frequency over the 52S1/2 F → 52P3/2 F
′ transitions of rubidium. The frequency axis

is calculated from the scope time axis using the laser scan rate of 43.21 GHz/s and the origin is

chosen at the center of the 85Rb cooling transition.
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Figure 5.2: Comparison of MT and FM dispersion signals by scanning the laser frequency over

the 85Rb 52S1/2 (F = 3)→ 52P3/2 F
′ transitions. The transitions marked F ′ = i, j are cross-over

transitions, as discussed in the text. The frequency axis is calculated from the scope time axis

using the laser scan rate of 1.18 GHz/s and its zero is defined at the cooling transition.

5.1 MT spectroscopy

The MT spectroscopy signal is obtained using the MT PD in the full setup as shown in Figure

4.6. Figure 5.1 shows all 52S1/2 → 52P3/2 transitions of both rubidium isotopes. There are two

striking differences with the absorption spectrum as shown in the same Figure. First, there is no

background signal; the only nonzero signals are the dispersion signals from the atomic transitions.

Second, the closed transitions (discussed in Section 4.2.3) have the largest amplitude. This makes

it easier to lock the laser frequency to the desired closed transition. This can also be seen in a

close-up of the cooling transition in Figure 5.2. Further, if we count the number of dispersions,

we find much more transitions than expected. We count 6 transitions (which is easier to see in

the FM spectrum in the same Figure) instead of the expected three transitions. The three extra

observed transitions are exactly halfway between the three atomic transitions and are the cross-

over transitions, as discussed in Section 4.2.2 [25, 39]. In MT spectroscopy, the F = 3 → F = 4

(cooling) transition has the largest dispersion signal and is easy to identify.

5.2 FM spectroscopy

To obtain the rubidium spectrum using FM spectroscopy, we use the FM PD in the full setup

as shown in 4.6. A full spectrum of the 52S1/2 → 52P3/2 transitions is shown in Figure 5.1.

Although we still have a residual Doppler broadened background, we can resolve the transitions.

FM spectroscopy also suffers from large cross-over transitions, and a big disadvantage is the
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fact that cross-over transitions distort the local background in the spectrum. Therefore the zero

crossing of the dispersion signal of the actual transition we are interested in might not be exactly

on the resonance frequency of the atomic transition.

There are some differences between MT and FM spectroscopy. First, FM spectroscopy still

suffers from a Doppler-broadened background which can shift the zero crossing of the actual

transition frequency. Second, FM spectroscopy suffers from much larger signals from the cross-

over transitions which can distort the signals from the actual transitions. In MT spectroscopy

the cross-over transitions are suppressed and the cooling transition signal has the overall largest

amplitude.

Now we have shown that we can perform basic spectroscopy and understand the obtained

spectra, we need to optimize the signals for optimal feedback.

5.3 Optimizing the FM and MT spectroscopy signals

Although we have obtained the FM and MT spectroscopy signals, we would like to optimize their

peak-to-peak amplitudes and peak-to-peak widths in order to obtain the best possible signals for

locking the laser frequency. Apart from the alignment of the laser beams in the setup, there are

also some other parameters which can be optimized.

5.3.1 Optimizing the phase in the feedback loop

When discussing the feedback electronics in Section 4.4, we briefly mentioned that there also is a

possibility to adjust the phase (which essentially is the time delay) between the frequency generator

and the signal obtained from the photodetector by adjusting the coaxial cable length between the

splitter and the mixer. Generally, the phase between both signals will not be optimal and the

dispersion signal obtained by the feedback electronics is a superposition of both the in-phase and

out-of-phase components of the spectroscopy.

Typically, the propagation velocity v of an electrical signal through a coaxial cable of length

L is approximately 70% of the speed of light. Calculating the cable length required to obtain a π

rad phase shift, we have ∆φ = 2πf∆t = 2πfL/v. Using v ≈ 0.7 · c, ∆φ = π rad and f = 6.8 MHz,

we find L ≈ 15.4 m. The MT feedback signal of the cooling transition is measured for coaxial

cable lengths varying from 30 cm to 1550 cm. Figure 5.3 shows the dispersion signal for different

cable lengths. We see that for a cable length of 15.5 m we have inverted the signal, i.e., induced

a π phase shift, as expected from our calculation.

The best dispersion signal S as a function of the frequency ν has the highest gradient ∂S/∂ν

at the zero crossing in order to have the optimal signal-to-noise ratio to suppress fluctuations.

Essentially this means that the peak-to-peak voltage of the dispersion signal should be maximized

and the width of the minimum and maximum of the dispersion signal (also called the capture range)

should also be minimized to have the largest gradient. However, the capture range should be wide

enough to keep the laser frequency locked during large-amplitude fluctuations (e.g. incidental

acoustic noise, such as voices or closing doors).
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Figure 5.3: MT dispersion signal of the cooling transition versus the laser frequency for different

lengths L of coaxial cable between the splitter and the mixer. All scans are on the same scale,

the maximum peak-to-peak voltage is approximately 200 mV. Notice that the central dispersion

feature disappears going from L = 10 m to L = 12.5 m.

Figure 5.4: Left Capture range (peak-to-peak width, see inset) of the cooling transition for

different cable lengths. The capture range is estimated from the scope plots using the frequency

scan rate of the laser, which is approximately 786.2 MHz/s. Right Peak-to-peak voltage (see

inset) of the same transition for different cable lengths. The discontinuity at L = 11 m is due to

the disappearance of the central dispersion, which can be seen in Figure 5.3.

74



Figure 5.4 shows both the peak-to-peak amplitude and the capture range of the cooling tran-

sition dispersion as function of the coaxial cable length. The discontinuity at a cable length of

11 m is caused by the disappearance of the central dispersion signal and continuing in the larger

dispersion signal (see Figure 5.3). From these graphs we conclude that a cable length of 30 cm is

preferred for practical purposes and it already provides a large gradient.

5.3.2 Pump and probe beam intensities

In saturated absorption spectroscopy, the pump beam has a higher intensity than the probe beam

[39]. But the optimal ratio of pump and probe beam intensity is not a priori clear, as it depends

on the exact alignment and spatial overlap of the beams. It is easy to vary the ratio of intensities,

as we have a half-wave plate in front of a polarizing beam splitter which creates the pump and

probe beam. Figure 5.5 shows the peak-to-peak voltages of both MT and FM dispersion signals for

different half-wave plate angles (relative to an arbitrary offset angle). Assuming a linear response

of the MT and FM signals with respect to the intensity, the data is fitted with a sin2 curve,

representing Malus’ law [34]. The FM and MT peak-to-peak voltages have different amplitudes,

but the maxima occur at the same half-wave plate angle, i.e., both signals are optimized for the

same ratio of pump and probe beam intensities. In these measurements the total power in the

setup, i.e. the pump and probe beam power combined, is approximately 4 mW.

We should mention here that, due to the layout of the setup, the definition of the pump and

probe beams gets mixed up for both spectroscopy methods. In our discussion of the pump and

probe beams throughout the whole report, they are named according to the MT spectroscopy

scheme. This means that the pump beam acquires sidebands from the EOM (in the MT spec-

troscopy scheme) and it is this pump beam which is observed by the FM photodetector to create

the FM spectroscopy dispersion signal.

By measuring the ratio of the pump and probe beam intensities as function of the half-wave

plate angle, as shown in Figure 5.6, and comparing to the optimal angle from Figure 5.5, we find

the optimal ratio to be Ipump/Iprobe = (2.5 ± 0.3). This is within a factor of two of the optimal

ratio as used by McCarron et al [41], and the difference is mainly caused by the difference in

experimental parameters of our setup and theirs.

Having optimized the ratio of the intensities of the pump and probe beams, another interesting

factor is the total power (the sum of the pump and probe beam intensities) in the spectroscopy

setup. This can be controlled by the half-wave plate and polarizing beam splitter used before the

free-space laser beam is coupled into the fiber (see Figure 4.5). Figure 5.7 shows the peak-to-peak

voltages for both FM and MT spectroscopy at the optimal pump/probe intensity ratio, but for

different total powers (which is the sum of the pump and probe beam powers). The FM signal

seems to saturate at higher powers. Using the saturation intensity of the rubidium transition

from Table 2.1, a power of 2 mW in a beam of 4 mm diameter results in a saturation parameter

s0 = I/Is ≈ 9.7, which is significantly larger than 1 and explains why the FM signal does not

respond linearly any more. This simple analysis does not work for the MT signal, as this is already

a nonlinear process.
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Figure 5.5: Peak-to-peak voltage (see inset) of both the MT and FM dispersion signals of the

cooling transition as function of the half-wave plate angle which distributes the intensities over

the pump and probe beam. The full lines are fits of a simple sine function. The difference in angle

of the two maxima is (0.1± 0.2) degrees, i.e., both maxima coincide.

Figure 5.6: Measured ratio of the pump and probe beam powers for different angles of the

half-wave plate. The error bars represent systematic errors. The vertical dashed line represents

the angle for which both signals are largest (see Figure 5.5). At this angle the optimal ratio is

(2.5± 0.3).
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Figure 5.7: Peak-to-peak voltage (see inset) of the MT and FM dispersion signals of the cooling

transition as function of the total power in the spectroscopy setup (which is the sum of the probe

and pump beam powers).

5.4 Applying circular polarization and magnetic field

During this report we have continuously mentioned the 85Rb cooling transition as the transition

of interest. Further, we have mentioned a few times in this report that we would like to detune

the laser frequency by locking it to a detuned atomic transition frequency using the Zeeman shift.

However, as we have also mentioned in Chapter 2, the transition from one hyperfine state F to

another hyperfine state F ′ actually exists out of a manifold of transitions from magnetic substates

MF of hyperfine state F to magnetic substates MF ′ of hyperfine state F ′. The rubidium level

scheme including these magnetic substates for both rubidium isotopes is shown in Appendix B in

Figures B.3 and B.4. We will present some calculations of the Zeeman shift as observed by FM

spectroscopy in Section 5.4.2.

5.4.1 MT spectroscopy

We would like to observe the Zeeman-shift of the transitions in order to be able to lock the laser

to a detuned frequency and we require the same circular polarization in both the pump and probe

beams simultaneously. Using linear polarizations and Zeeman-shifting the energy levels would

only lead to broadening of the transition width as the linear polarizations only allow ∆MF = 0

transitions, whereas σ± polarized light will pump the atomic states to either extreme MF = ±F
state, which allows for clear observation of the Zeeman shift [25, 39].

Figure 5.8 shows the peak-to-peak amplitude of the MT signal as function of the applied

magnetic field and σ+ or σ− polarization of both pump and probe beam. The signal amplitude

drops significantly, but at the same rate for either polarization. The shape of the dispersion signal

for both polarizations in an applied magnetic field is shown in Figure 5.9. The optical pumping
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Figure 5.8: Peak-to-peak amplitude (see inset) of the MT dispersion signal of the cooling tran-

sition for either σ+ or σ− polarised light as function of applied magnetic field. For magnetic fields

exceeding 5 G, the dispersion signal is too distorted to obtain a well-defined peak-to-peak signal.

Figure 5.9: MT dispersion signal of the cooling transition at an applied magnetic field of 4.9 G

(I = 0.6 A) for either σ+ or σ− polarised light. The frequency axis is calculated from the scope

time axis using the laser scan rate of 393.1 MHz/s. The steps on both curves is caused by the finite

resolution of the scope. The scope vertical scale is set to 100 mV/div, and the scope resolution is

8 bits. As the full vertical scale is 10 divisions, the resolution is 1 V / 28 ≈ 4 mV, in agreement

with the observed step sizes.
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Figure 5.10: Peak-to-peak amplitude (see inset) of the FM dispersion signal of the cooling

transition for either σ+ or σ− polarized light as function of applied magnetic field.

induced by the circular polarization creates an asymmetry in the dispersion signal. As the signal

is no longer symmetrical, the zero crossing of the dispersion signal does not necessarily represent

the actual Zeeman-shifted transition frequency. As mentioned before, McCarron et al claim that

the MT signal is independent of the Zeeman shift [41]. As they do not present a clear reason why

this should be, the MT signal cannot be interpreted in a clear way.

The MT spectroscopy signal is influenced by a magnetic field, but we cannot describe this

merely as a frequency shift. There is currently no explanation available in the literature which

discusses the MT spectroscopy signal for non-linear polarizations and magnetic fields. Therefore

we conclude that for practical purposes the MT spectroscopy signal is an ideal candidate for

locking at the transition frequency, but cannot be used to detune the laser frequency using the

Zeeman shift.

5.4.2 FM spectroscopy

Similar as the measurement done for the MT signal, we measure the FM peak-to-peak voltage

for different magnetic fields and either σ+ or σ− polarization. This is shown in Figure 5.10. For

small magnetic fields (approximately 3 G), the FM peak-to-peak signal increases by more than a

factor of two. This is probably due to the fact that there is a residual transverse magnetic field, as

measured and discussed in Section 4.6, of approximately 1 G. Increasing the axial magnetic field

to a few Gauss then produces a well-defined magnetic quantization axis collinear with the laser

beams. This increases the optical pumping and thus the peak-to-peak signal. For larger magnetic

fields the peak-to-peak signal decreases as the different transitions become more separated and do

not add constructively to a single dispersion signal.
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Calculating the Zeeman shift

A simple model has been developed to calculate the Zeeman shift of the separate transitions and

to see what the overall dispersion signal will look like using FM spectroscopy. We assume that

the Doppler width of the absorption is much larger than the linewidth of the transitions, which

is justified as the Doppler width is approximately 500 MHz (calculated in Section 4.2.2), whereas

the linewidth is approximately 6 MHz. We define the absorption S(ν) of all magnetic substate

transitions (M →M ′, M ′ = M + 1) of the 85Rb cooling transition as

S(ν) =

3∑
M=−3

CMf(ν, ν′M , γ
′), (5.1)

where f(ν, ν′M , γ
′) is defined as

f(ν, ν′M , γ
′) =

1

π

(γ′)2

(ν − ν′M )2 + (γ′)2
, (5.2)

where CM is proportional to the transition strength of the transition for σ+ polarized light,

obtained from [16] for all substate transitions. The power broadened linewidth γ′ is defined as

γ′ = γ
√

1 + s0, where s0 = I/Is [25]. The Zeeman-shifted transition frequency ν′i is calculated as

ν′M =
(
gF ′(M + 1)− gFM

)µB
h
B, (5.3)

where µB/h ≈ 1.4 MHz/G is the Bohr magneton divided by Planck’s constant, B the magnitude

of the applied magnetic field and gF the Landé factors of the lower or upper state (1/3 and 1/2,

respectively). The Zeeman shift coefficients and the relative transition strengths for all transitions

are listed in Table 5.2.

By calculating the Zeeman shift for each transition at a given magnetic field, we can calculate

the absorption spectrum. Our model spectrum fFM (ν0) of the carrier frequency with the first

order sidebands with which we probe the transitions is defined as

fFM (ν0) = δ0(ν0) + δ−1(ν0 − νFM ) + δ+1(ν0 + νFM ), (5.4)

Table 5.2: Parameters used in the absorption model. The parameters are ordered by the integer

i which is also used in the definition of the absorption. The calculation of the difference in Zeeman

shift for the different magnetic substate transitions is also discussed in Appendix B.

i M →M + 1 gF ′(M + 1)− gFM CM [16]

3 3→ 4 1 3780

2 2→ 3 5/6 2835

1 1→ 2 2/3 2025

0 0→ 1 1/2 1350

-1 −1→ 0 1/3 810

-2 −2→ −1 1/6 405

-3 −3→ −2 0 135
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Figure 5.11: Left Model absorption spectrum for different applied magnetic fields. The spectrum

shifts and broadens when the magnetic field is increased. At large magnetic fields the spectrum

becomes asymmetric due to the different Zeeman shifts of the different transitions. Right Calcu-

lated dispersion signals. The dispersion becomes asymmetric at high magnetic fields due to the

broadening and asymmetry of the absorption dips.

where ν0 is the laser frequency, νFM = 6.8 MHz the EOM modulation frequency, δ±1 = 0.1δ0 the

relative amplitudes of the sidebands with respect to the laser amplitude1. The dispersion signal

is calculated using the in-phase amplitude of Equation 4.9, where the amplitude of the in-phase

component is proportional to the difference between the absorption of both sidebands.

The only parameter undefined yet is the power broadened linewidth γ′. We can calculate

the power broadening as we know the total power in the vapour cell. We can also calculate the

apparent peak-to-peak width of the dispersion signal as function of the power broadened linewidth.

By comparing the apparent width with our observed width we find a power broadened linewidth

of (13 ± 0.8) MHz. This is slightly over twice the natural linewidth γ ≈ 6 MHz, and gives a

saturation parameter of s0 ≈ 3 which is within a factor of two of the experimental conditions

using this simple model.

Now that we have all parameters defined in our calculations, the absorption and resulting

dispersion signals can be calculated and are shown in Figure 5.11. On the left hand side we see

the absorption dips for different magnetic fields and on the right hand side we see the calculated

FM spectroscopy signals. We see that the absorption signals (and, as a direct consequence, also

the dispersion signals) shift as the magnetic field is increased. However, we also see that the signals

become asymmetric. This is because the Zeeman splitting of the transitions becomes larger than

the power broadened linewidth.

By determining the zero crossings of the dispersion signals, we can calculate the effective

Zeeman shift for the different magnetic fields. This is shown in Figure 5.12. There are three lines

shown. The full black line is the position of the zero crossing of the signals. The red dashed

line is the frequency exactly halfway between the two dispersion peaks. We include this latter

1This ratio is based on our experimental results discussed in Section 4.5.2.
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Figure 5.12: Calculated frequency shift of the FM dispersion signal. The full black line represents

the frequency of the zero crossing. The red dashed line is the frequency which is exactly in the

middle of the two dispersion peaks. The dotted line represents the transition with the highest

Zeeman shift of 1.4 MHz/G. For magnetic fields up to 20 G, our calculated Zeeman shift is

approximately 1.16 MHz/G.

calculation, as this method is often used in the laboratory. The dotted line is the Zeeman shift

of the MF = 3 → MF ′ = 4 transition, which has the highest Zeemans shift of 1.4 MHz/G. From

these calculations we determine that the expected Zeeman shift for small fields (up to 13 G in our

measurements) is 1.16 MHz/G. This is in agreement with a simple calculation which just takes the

average over the Zeeman shifts of all transitions weighed by their respective absorption strengths

Ci, which is also discussed in Section 3.6.1 and in Appendix B.

We learn two important things from these calculations. First, we observe a weighed average

over all possible transitions. This decreases the Zeeman shift from the expected 1.4 MHz/G to

1.16 MHz/G. Second, for the magnetic fields in our experimental range (up to approximately 13

G), both methods to find the zero crossing give the same result.

Measuring the Zeeman shift

The Zeeman shift is induced using either σ+ or σ− polarized light using two quarter-wave plates

in front and behind the vapor cell and applying a magnetic field using the copper wire coil.

To determine the frequency shift of the laser, we have to compare our laser frequency to a

reference frequency. Contrary to the EOM spectrum measurements, where we use a second beam

from our laser to create a beatnote, we now need an independent and uncorrelated frequency

reference to measure the frequency fluctuations. The UCIS setup in our lab uses the same 85Rb

cooling transition for producing a MOT, and we transport a redundant beam from the UCIS laser
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Figure 5.13: Left Measured shift of the beatnote frequency for σ+ polarized light. The red

dots are obtained for a reversed magnetic field. From the linear fits we obtain a Zeeman shift

of (0.73 ± 0.04) MHz/G and (−0.73 ± 0.02) MHz/G, respectively. Right Measured shift of the

beatnote frequency for σ− polarized light. Here, again, the red dots are obtained for a reversed

magnetic field. From the linear fits we obtain a Zeeman shift of (−0.64 ± 0.04) MHz/G and

(0.51± 0.02) MHz/G, respectively. In both graphs we define the beatnote frequency at B = 0 G

as zero, in order to plot the frequency shift of the beatnote frequency.

system2 to our optical table using a fiber. Figure 4.6 shows a half-wave plate and a polarizing beam

splitter that are used to continuously couple some of our laser light to the ‘frequency metrology

setup’, which is where we produce a beatnote between our laser and the UCIS laser using a similar

beatnote setup as explained in Section 4.5.2. For reasons of their own [17], the UCIS beam is

detuned by a double-pass through an AOM resonating at 73.2 MHz. Hence if both lasers are

locked exactly at the transition, the frequency difference between both lasers is 146.4 MHz and

can be observed by our spectrum analyzer. For the data presented in this report, we use the

digital Rohde&Schwarz spectrum analyzer. We also have an analog spectrum analyzer3 which we

use to optimize the beatnote signal and observe the beatnote during the day.

The Zeeman shift is measured by locking our laser frequency to the Zeeman-shifted dispersion

signal and looking at the beatnote. A least-squares fit of the beatnote using a Lorentzian frequency

distribution function gives the central frequency of the beatnote. Figure 5.13 shows the shift of

the beatnote frequencies as function of the applied magnetic field for both polarizations. Further,

we have also reversed the magnetic field (by reversing the current through the coil) and observed

a reverse shift for both polarizations, as expected. The Zeeman shifts, however, are lower than

expected. For σ+ polarization we find shifts of (0.73± 0.04) MHz/G and (−0.73± 0.02) MHz/G,

which are only 63% of the expected shift of 1.16 MHz/G. For the σ− polarization we find even lower

(and asymmetric) shifts of (−0.64± 0.04) MHz/G and (0.51± 0.02) MHz/G. This measurements

are all performed on a single day, and the intensities of both beams have been kept constant.

Further, the polarization of the beams is checked using the PBS in the spectroscopy setup, as the

2Toptica DLX 110 High Power Tunable Diode Laser.
3HAMEG Instruments HM5006 Spectrum Analyzer.
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vertical polarized beam is rotated by 90 degrees after passing through two quarter-wave plates

which are at the correct angles, the reflected intensity of the PBS goes to zero.

Figure 5.13 also shows that the negative frequency shift is only significant for applied magnetic

field exceeding 2 G. This is because for a magnetic field magnitude exceeding 2 G, the applied

magnetic field (which goes along the axial direction) dominates the measured transverse magnetic

field of approximately 1 G (see Section 4.6). This residual magnetic field is also seen in the FM

dispersion signal peak-to-peak amplitude measurement in Section 5.2.

5.4.3 Concluding remarks on tuning the transition frequency

We have looked at the effects of circularly polarized light and applied magnetic fields on the

dispersion signal shape of both MT and FM spectroscopy. For MT spectroscopy, the dispersion

signal does change in shape but no apparent shift is observed. For FM spectroscopy the dispersion

shape does shift and can be used to detune the frequency of the transition.

Using circularly polarized light and applying a magnetic field, we are able to shift the transition

frequency of the cooling transition using the Zeeman effect. We have developed a simple model

which incorporates the Zeeman shift of all magnetic substate transitions which predicts a frequency

shift of 1.16 MHz/G in our experimental range (B < 20 G). We determine a frequency shift of

(±0.73 ± 0.04) MHz/G for σ+ polarized light for either axial direction of the magnetic field and

(−0.64 ± 0.04) MHz/G or (0.51 ± 0.02) MHz/G for σ− polarized light, depending on the axial

direction of the applied magnetic field.

We conclude that FM spectroscopy cannot be used to accurately set the detuning, as the

zero crossing of the dispersion signals is shifted by either residual magnetic fields or the Doppler

broadened background. Further, we measure a different Zeeman shift than predicted, which makes

this method unreliable to apply accurate frequency shifts. We see that MT spectroscopy is less

sensitive to magnetic fields spectroscopy, although we do observe some change in the signal shape.

By placing the vapor cell in a µ-metal box to minimize background magnetic fields, we propose to

lock the laser frequency to the atomic transition frequency using MT spectroscopy, as it has the

largest dispersion signal for the cooling transitions. The laser beam should then be detuned using

two AOMs.

5.5 Frequency stability

We can the dispersion signal to stabilize our laser frequency using a PI controller4 which drives

the laser. Through this feedback system, the laser frequency is locked to the cooling transition

frequency.

In order to observe the beatnote, we use the same beatnote setup with the UCIS laser as

described in Section 5.4.2.

4Stanford Research Systems SIM960 Analog PID Controller.
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5.5.1 Stability in terms of Allan variance

A common measure for frequency stability is the Allan variance [54]. The Allan variance σ2
y is

defined as [54, 55]

σ2
y(τ) =

〈
(ȳk+1 − ȳk)

2

〉
, (5.5)

where ȳk is defined as

ȳk =
1

τ

∫ tk+τ

tk

y(t)dt. (5.6)

This average ȳk represents the frequency averaged over a time τ for a specific interval k. The

Allan variance can then be considered as the variance of the average frequency as function of the

averaging time. Calculating the Allan variance of a dataset for different averaging times will yield

information about the timescales of significant fluctuations in the frequency.

We obtain the Allan variance of the laser frequency by monitoring the beatnote using the

Rohde&Schwarz digital spectrometer connected to a PC. Due to the low speed of the spectrometer

and the connection to the PC, our sampling rate is limited to 1 Hz. This means that it is impossible

to obtain information about higher frequency disturbances in the setup using this method, but we

still obtain important information about the long-term stability of the laser.

The average frequency per spectrum scan is obtained by applying a least-squares fitting pro-

cedure of a Lorentzian frequency distribution g(ν) in Matlab

g(ν) = A0 +
2A1

π

w2

w2 + (ν − ν0)2
, (5.7)

where A0 and A1 represent the background and the amplitude, w is the full-width at half the

maximum amplitude and ν0 is the central frequency. See Figure 5.14 for an example spectrum

with its corresponding fit of the Lorentz distribution. Another Matlab script, based on the Allan

variance calculations as described in [55] then calculates the Allan variance for different averaging

times.

Figure 5.15 shows the beatnote frequency as monitored during an approximately two hour

run. Ignoring the incidental spike, which is caused by acoustic disturbances (such as closing lab

door, moving chairs and people talking with raised voices), we see that the lasers clearly drift

but are stabilized near the central frequency which in the Figure, for convenience, is shifted to 0

Hz. Further, the frequency excursions do not exceed 100 kHz from the central frequency, which

is well within our desired stability range of 300 kHz. Next to this graph, Figure 5.15 shows the

corresponding Allan deviation of this dataset. The Allan deviation is the square root of the Allan

variance. The shaded area on the Allan deviation in the Figure represents ±1σ deviations of

the average. The Allan deviation is a 10-20 kHz for averaging times of a few seconds, it quickly

drops below 10 kHz for averaging times ranging from 10 to 100’s of seconds. The increasing Allan

deviation for longer timescales can be caused by small thermal fluctuations or fluctuations in the

feedback system. But even for these longer timescales, the Allan deviation stays well below our

required stability of 300 kHz.
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Figure 5.14: Beatnote of our laser with the UCIS laser on a dBm scale (which is defined as a

logarithmic scale with base 10 and 0 dBm = 1 mW). This is a typical beatnote as measured during

the Allan deviation measurements. The red line is a least-squares fit of a Lorentz distribution

function. Near the maximum of the beatnote, the Lorentz distribution is a good approximation

for the frequency distribution.

Figure 5.15: Left Beatnote frequency monitored at a 1 Hz rate during approximately 2 hours.

There are some spikes of ≈ 100 kHz, and there obviously is drift but the beatnote frequency

does stabilize to its equilibrium frequency. Right Allan deviation for different averaging times

of the left-hand monitored beatnote frequency. The shaded area represents the ±1σ of the Allan

deviation and increases for larger averaging times as the number of samples decreases. The typical

dip with a minimum around τ ≈ 60 s is caused by two competing processes: the averaging out of

all short-term fluctuations and the increasing long-term drift.
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Figure 5.16: Linewidth (FWHM) of the beatnote of our laser with the UCIS laser during the

same two hour run from which the earlier Allan deviation is determined.

5.5.2 Laser linewidth

The Allan deviation resulting from our measurements cannot reveal information about the fre-

quency fluctuations of the beatnote at timescales shorter than 1 second. However, we can also

look at the full-width at half maximum (FWHM) of the beatnote to estimate the maximum size of

the frequency fluctuations within this 1 second. The FWHM of the beatnote as determined during

the same measurement from which we calculate the Allan deviation is shown in Figure 5.16. The

FWHM exceeds 1 MHz for the first 2000 seconds of the measurement, which coincides with the

largest drift of the beatnote frequency as shown in Figure 5.15. For most of the time, the FWHM

is below 900 kHz.

The frequency fluctuations of both lasers are distributed following a Lorentzian distribution and

the FWHM of this distribution is called the linewidth of the laser [39]. The FWHM, or equivalently

the linewidth, of the beatnote should be interpreted as a convolution of both linewidths of the

two lasers used to create the beatnote. Also, the convolution of two Lorentzian distributions with

linewidths w1 and w2 results in a Lorentzian distribution with linewidth w = w1 + w2 [25]. In

order to approximate the linewidths of the laser, we have to recognize that both lasers are quite

different in design: our Titanium:Sapphire ring laser has an extremely long cavity (approximately

2 meters), whereas the UCIS laser is a diode laser with a cavity of a few hundred microns. Further,

different processes take place in a diode laser due to the dynamics in the charge carrier density. The

minimal linewidth achievable by a laser, also known as the Schawlow-Townes limit [56], is increased

in diode lasers because of these interactions [57]. Whereas the linewidth of a Titanium:Sapphire

laser is below 500 kHz [33], the typical linewidth of the UCIS laser is specified as approximately 1

MHz [58]. We observe a beatnote of approximately 1 MHz, which is consistent with the linewidth

of the diodelaser. This means that we cannot set a lower limit on our Titanium:Sapphire laser

linewidth, and can only state as upper limit that it is much smaller than 1 MHz.
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Chapter 6

Discussion and conclusion

This report consists out of two main subjects. In Chapters 2 and 3 we report on a new type of high

brightness ion beam source, which we call the Atomic Beam Laser-cooled Ion Source or ABLIS.

Using the well-known physics of laser cooling and compression, an analytical model is developed

to predict the performance of the ABLIS.

As the analytical model is based on a few simplifications, such as an ideal 2-level atom struc-

ture and 100% efficient transverse cooling and compression of the atomic beam, we also perform

simulations of the laser cooling and compression stage. In these simulations we look at both

rubidium isotopes and take account of the different magnetic substate structure of the ground

and excited levels. These simulations also have their limitations, as they ignore transitions to

other hyperfine levels and ignore the optical thickness or collision rates of the atoms in the cooled

and compressed beam. However, they are a good tool to investigate the effects of using different

isotopes. Assuming a purified, single-isotope atomic beam, we find maximum achievable reduced

brightnesses of 2 · 107 A / m2 srad eV for 85Rb and 108 A / m2 srad eV for 87Rb. These reduced

brightnesses are achieved with laser intensities of 3.3 mW/cm2 (twice the saturation parameter)

and a laser frequency detuning of δ = −γ/2 ≈ 3 MHz with respect to the cooling transition.

Typically a source temperature of 400 K and a magnetic field gradient of 3 T/m are required for

optimal cooling and compression and achieving the highest flux. Of these parameters, the final

achievable brightness is most sensitive to the detuning of the laser.

We have also investigated stochastic heating effects which limit the final attainable brightness

of the ion beam. Stochastic heating is caused by disordered Coulomb interactions between the ions.

These disordered interactions are a result of the ionization of the neutral cooled and compressed

atomic beam. Using simulation results based on the cooling and compression of a pure 87Rb

beam, and including the Coulomb interaction between the ions, the maximum reduced brightness

of 2·107 A / m2 srad eV stays constant for currents up to 20 pA and at a longitudinal energy spread

of 0.7 eV. Under these circumstances, the resulting ion beams are in the so-called pencil beam

regime, where the number of transverse neighbouring ions is low enough for disordered transverse

Coulomb forces to become neglible.

The calculated reduced brightnesses are much higher than can be achieved by the common

Liquid Metal Ion Source (LMIS) or the Ultra Cold Ion Source (UCIS). The Gas Field Ionization
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Source (GFIS) performs in the same order of magnitude, but the ABLIS is a much more likely

method to be used for milling purposes as the penetration depth of rubidium atoms is much shorter

than for the light noble gases like helium and neon that are currently used for GFIS.

In the second part of this report, Chapters 4 and 5, we investigate two possible methods to

stabilize the laser frequency of a Titanium:Sapphire ring laser system to the required rubidium

transition frequency with a detuning of approximately 3 MHz with an accuracy and stability of

10%. The detuning is achieved by Zeeman shifting the atomic transition frequency.

From our experiments we find that modulation transfer (MT) spectroscopy cannot be used to

lock the laser frequency to a Zeeman-shifted atomic transition frequency, as the change in the MT

dispersion signal due to an applied magnetic field cannot be accounted for by purely a frequency

shift. As there currently is limited literature available to explain the effect of magnetic fields and

circular polarization on four-wave mixing processes such as MT spectroscopy, we conclude that

MT spectroscopy currently cannot be used for detuning the laser frequency.

Frequency modulation (FM) spectroscopy does show a clear Zeeman shift of the frequencies,

but we do not observe the shift rate as predicted by a simple model taking all possible magnetic

substate transitions into account. This could be caused by background magnetic fields. Further,

the dispersion signal suffers from a Doppler broadened background. These factors make it more

difficult to use the FM spectroscopy signal to find the exact transition frequency.

Based on this work on both MT and FM spectroscopy, we propose that locking and stabilizing

the laser frequency on the atomic transition frequency as discussed in this report should be based

on MT spectroscopy (additionally even placing the reference vapor cell in a µ-metal box to exclude

any external magnetic fields) and detuning the laser frequency going to the cooling and compression

stage using two acousto-optical modulators (AOMs).

Finally we have measured the frequency stability of the locked laser by determining the Allan

variance of the beatnote frequency between our laser and the UCIS laser, which is locked to the

same transition frequency. We find that the frequency fluctuations are below 20 kHz at averaging

times between 1 to 1000 seconds, which is more than sufficient for future experiments. As the

linewidth of the beatnote (≈ 900 kHz) is fully dominated by the linewidth of the UCIS diode laser

system (specified linewidth of ≈ 1 MHz), the linewidth of our laser should be much smaller, but

it is not possible to make a more accurate upper limit.
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Appendix A

Flux model

In the analytical model and the simulations as explained in Chapters 2 and 3, we refer to full

analytical flux calculations. These are presented in this Appendix. We calculate the flux going

through the first aperture for two geometries: circular and square orifice and aperture geometries.

We will discuss the difference between both geometries and compare the full analytical expressions

with the paraxial approximation.

Approach

The initial expansion stage of the atomic beam setup has couple of geometric variables which

determine the flux through the aperture. These geometric variables are the source aperture size

ds, the first aperture size da and the distance between the source and the aperture l. The apertures

are centered at the z-axis at positions z = 0 for the source and z = l for the first aperture. In order

to assess the configuration of the expansion stage of the setup, the flux emerging from the source

aperture should be calculated at the first aperture. We use two different aperture geometries:

squares with sides 2ds (source) and 2da (aperture), and circular apertures with radii ds (source)

and da (aperture), respectively. We calculate the flux for both geometries, as the circular geometry

is used in the analytical model in Section 2.2, whereas a square geometry is used in the simulations.

In both the analytical model and the simulations we will use ds = da = d. Further, the ratio of the

aperture size d and distance l will be θ = d/l � 1. Although a fully analytical result dependent

on ds, da and l will be presented first, the latter two assumptions will be incorporated to give

approximate (and much simpler) solutions.

Effusive source

The number of particles, d4N , leaving the source area element, dσ, during the time, dt, with a

velocity between v and v + dv into a solid angle element, dω, whose axis is at an angle, θ, with

respect to the normal of dσ is given by [24]

d4N = n0f(v)
dω

4π
v cos(θ)dσdtdv, (A.1)
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where n0 is the number density of the source and f(v) the Maxwell-Boltzmann speed distribution

normalized to 1

f(v)dv =
4√
π

v2

v3mp
exp[−(v/vmp)

2]dv, (A.2)

where vmp =
√

2kBTs/m is the most probable velocity (kB is Boltzmann’s constant). The differ-

ential number density n at a distance R from the source is given as

n(R, θ, v) =
d4N

d2V
=

n0
π3/2

v2

v3mp
exp[−(v/vmp)

2]dv
cos(θ)

R2
dσ, (A.3)

where we have defined d2V = R2dωvdt as the solid angle volume differential element. In order to

transform the differential number density to a flux density d3Φ, we have to multiply the differential

number density by the effective velocity through the aperture surface

d3Φ = n(R, θ, v)× (~v · d ~A), (A.4)

where d ~A is the unit vector normal to the aperture surface. In an axisymmetric system, such as

ours, the source surface and aperture surface are parallel. Therefore the angle between the velocity

and the unit normal vector of both surfaces is identical, θ. Therefore we have ~v · d ~A = v cos(θ)dA

and we can write the flux density as

d3Φ =
n0
π3/2

v3

v3mp
exp[−(v/vmp)

2]dv
cos2(θ)

R2
dσdA. (A.5)

Integrating over the speeds gives us the average speed:∫ ∞
0

v3

v3mp
exp[−(v/vmp)

2]dv =

√
π

4
〈v〉, (A.6)

which reduces our flux density to a geometric problem:

d2Φ =
n0
4π
〈v〉cos2(θ)

R2
dσdA, (A.7)

as the integrals over dσ and dA only involve the actual geometry of the source and the aperture.

The calculation of these integrals for both square and circular apertures will be the subject in the

next two sections.

The general recipe can be discussed here. First we solve the integral over dσ by defining a

position ~r0 in the aperture from which we ’look’ at the source. This will give a nondimensional

density distribution

g(ds, l, ~r0) =

∫
cos(θ)2

R2
dσ, (A.8)

which is related to the flux density as

dΦ =
n0
4π
〈v〉g(ds, l, ~r0)dA. (A.9)

Next we integrate over the aperture dA, which gives us the integrated density

G(ds, da, l) =

∫
g(ds, l, r0)dA, (A.10)
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which is related to the flux going through the aperture as

Φ(ds, da, l) =
n0
4π
〈v〉G(ds, da, l). (A.11)

We can check this flux in the limit da � l � ds i.e. the aperture is much larger than the source.

In that case the flux through the aperture should be equal to the total flux emitted by the source:

lim
da→∞

Φ(ds, da, l) =
1

4
n0〈v〉S, (A.12)

where S is the surface of the source.

Square apertures

In order to calculate the flux at the aperture, we first calculate the particle density at a point

~r0 = (x0, y0) in the aperture, where −da ≤ (x0, y0) ≤ da. From each position at the aperture we

have to consider the particles emerging from the whole source aperture.

We start with a differential element dσ = dxdy at a position (x, y) at the source aperture,

where −ds ≤ (x, y) ≤ ds. The angle between the differential element and a point at the aperture

with respect to the z-axis is given by

θ(x, x0, y, y0, l) = arctan

(√
(x− x0)2 + (y − y0)2

l2

)
. (A.13)

The distance R between the differential element and the point at the aperture is

R =
l

cos(θ(x, x0, y, y0, l))
. (A.14)

Through the definition of the density distribution function as in Equation A.8, we have

gs(ds, x0, y0, l) =
1

l2

∫ ds

−ds

∫ ds

−ds
dxdy cos4(θ(x, x0, y, y0, l)). (A.15)

Using the trigonometric property that cos(arctan(z)) = (1 + z2)−1/2, we can write the integral as

gs(ds, x0, y0, l) = l2
∫ ds

−ds

∫ ds

−ds

dxdy

(l2 + (x− x0)2 + (y − y0)2)2
. (A.16)

Performing the integration gives

gs(ds, x0, y0, l) =
ds − y0

2
√
l2 + (ds − y0)2

[
arctan

(
ds − x0√

l2 + (ds − y0)2

)
− arctan

(
−(ds + x0)√
l2 + (ds − y0)2

)]

+
ds − x0

2
√
l2 + (ds − x0)2

[
arctan

(
ds − y0√

l2 + (ds − x0)2

)
− arctan

(
−(ds + y0)√
l2 + (ds − x0)2

)]

+
ds + x0

2
√
l2 + (ds + x0)2

[
arctan

(
ds − y0√

l2 + (ds + x0)2

)
− arctan

(
−(ds + y0)√
l2 + (ds + x0)2

)]

+
ds + y0

2
√
l2 + (ds + y0)2

[
arctan

(
ds − x0√

l2 + (ds + y0)2

)
− arctan

(
−(ds + x0)√
l2 + (ds + y0)2

)]
.

(A.17)
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This is the density distribution. In order to calculate the flux through the aperture, this density

distribution should be integrated over the aperture plane. This gives the integrated density through

the aperture Gs as

Gs(ds, da, l) =

∫ da

−da

∫ da

−da
dx0dy0 gs(ds, x0, y0, l). (A.18)

If ds = da = d, this reduces to

Gs(d, l) = 8d

[√
4d2 + l2 arctan

(
2d√

4d2 + l2

)
− l arctan

(
2d

l

)]
+ 2l2 ln

(
4d2 + l2√
8l2d2 + l4

)
.

(A.19)

The function Gs should have a well defined limit in the case da � l � ds, as there is a finite

amount of flux emitted by the source and all will move through the aperture in the aforementioned

limit. The limiting value of Gs is

Gs(da � l� ds) = 4πd2s, (A.20)

which leads to the total flux

Φ =
n0
4π
〈v〉Gs(da � l� ds) =

1

4
n0〈v〉(2ds)2 =

1

4
n0〈v〉S, (A.21)

where S is the surface of a square source with side 2ds. This is exactly the required limit as

discussed in Section A.

The fraction of the total amount of flux which goes through the aperture can be defined as

ηs(ds, da, l) =
Gs(ds, da, l)

Gs(da � l� ds)
=

1

4πd2s
Gs(ds, da, l). (A.22)

Further, we can also define an asymmetry parameter which is a measure of the uniformity of the

density distribution at the aperture. The asymmetry parameter is defined as

εs(ds, da, l) =
gs(ds, l, x0 = y0 = 0)− gs(ds, l, x0 = y0 = da)

gs(ds, l, x0 = y0 = 0) + gs(ds, l, x0 = y0 = da)
. (A.23)

Now we have an analytical model for a set of square apertures. In the real experiment the apertures

will be circular, and we will discuss those now.

Circular apertures

In order to calculate the flux at the aperture, we first calculate the particle density at a point

~r0 = (r0, φ0) in the aperture, where 0 ≤ r0 ≤ da and 0 ≤ φ0 < 2π. From each position at the

aperture we have to consider the flux emerging from the whole source aperture.

In order to solve the integrals, we start with a differential surface element dσ = rdrdφ at a

position (r, φ) at the source aperture, where 0 ≤ r ≤ ds and 0 ≤ φ < 2π. The angle between the

differential element and a point at the aperture with respect to the z-axis is given by

θ(r, r0, φ, φ0, l) = arctan

(√
r2 + r20 − 2rr0 cos(φ− φ0)

l2

)
. (A.24)
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The distance R between the differential element and the point at the aperture is

R =
l

cos(θ(r, r0, φ, φ0, l))
. (A.25)

The density distribution function of this circular source and circular aperture gc as given by

Equation A.8 is

gc(r0, φ0, ds, l) =
1

l2

∫ 2π

0

∫ ds

0

rdrdφ cos4(θ(r, r0, φ, φ0, l)). (A.26)

Using the trigonometric property that cos(arctan(z)) = (1 + z2)−1/2, we can write the integral as

gc(r0, ds, l) = l2
∫ 2π

0

∫ ds

0

rdrdu

(l2 + r20 + r2 − 2rr0 cos(u))2
, (A.27)

where we have used the transformation φ− φ0 = u. The result of the angular integration is

gc(r0, ds, l) = l2
∫ ds

0

rdr

[
2(l2 + r2 + r20)

((l2 + (r − r0)2)(l2 + (r + r0)2))3/2
arctan

(√
l2 + (r − r0)2

l2 + (r + r0)2
tan

(u
2

))

+
2rr0

(l2 + (r − r0)2)(l2 + (r + r0)2)

sin(u)

l2 + r20 + r2 − 2rr0 cos(u)

]2π
0

.

(A.28)

There is a π angle symmetry in this integral, and calculating the integral using the current bound-

aries gives an incorrect result (i.e. zero). The second term does (correctly) go to zero, but the

first term displays discontinuities (due to the tan(u/2) term) and should be linearized in order to

calculate the integral. By defining the factor β as

β =

√
l2 + (r − r0)2

l2 + (r + r0)2
(A.29)

which is β ≈ 1 for our experimental parameters of l ≈ 10−2 m and r ≈ r0 ≈ 10−4 m, the angular

part of the first term can be linearized as

arctan
(
β tan

(u
2

))
≈ 1

2
βu+

1

24
β(1− β2)u3 +O(u5). (A.30)

Using the integration limits u = 0 and u = 2π, we find[
arctan

(
β tan

(u
2

))]2π
0

≈ βπ. (A.31)

We can thus write our integral as

gc(r0, ds, l) = 2πl2
∫ ds

0

dr
r(l2 + r2 + r20)

(l2 + (r − r0)2)(l2 + (r + r0)2)2
. (A.32)

This integral can be solved and gives

gc(r0, ds, l) =
π

2
− π

2

l2 + r0(r0 + ds)

l2 + (r0 + ds)2
+
π

4

l

r0

[
arctan

(
ds − r0

l

)
− arctan

(
ds + r0

l

)]

+
π

2

[
l

r0
+
r0
l

]
arctan

(
r0
l

)
− π

2

r0
l

arctan

(
d+ r0
l

)
. (A.33)
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Similar to the solution of the square apertures, this result represents the local flux density. In

order to calculate the flux going through the aperture, you have to integrate this result over the

area of the aperture. This gives

Gc(ds, da, l) = 2π

∫ da

0

r0gc(r0, ds, l)dr0. (A.34)

Unfortunately this function has a discontinuity at ds = da. Therefore we have to define a new

function G̃c(ds, da, l), which is

G̃c(ds, da, l) =

{
Gc(ds, da, l) da ≤ ds
Gc(ds, da, l) + ∆ da > ds

(A.35)

where ∆ is defined as

∆ = lim
da↑ds

Gc(ds, da, l)− lim
da↓ds

Gc(ds, da, l) =
π3

2
lds. (A.36)

The function G̃c should have a well defined limit in the case da � l � ds, as there is a finite

amount of flux emitted by the source and all will move through the aperture in the aforementioned

limit. This limiting value is

G̃c(da � l� ds) = π2d2s. (A.37)

This leads to the total flux

Φ =
n0
4π
〈v〉G̃c(da � l� ds) =

1

4
n0〈v〉πd2s =

1

4
n0〈v〉S. (A.38)

This is exactly the required limit as discussed in Section A.

The above result shows that the total flux going through the aperture is limited by the source

size. This limiting value is slightly different to the limiting value for a square aperture, but can

be easily understood as the ratio of the limiting values

G̃c(da � l� ds)

Gs(da � l� ds)
=
π2d2s
4πd2s

=
π

4
(A.39)

is the ratio of the surfaces of a square and a circle with equal dimensions.

Taking the aformentioned discontinuity at ds = da into account, we can still calculate Gc for

equal source and aperture sizes ds = da = d:

Gc(d, l) =
d2π2

3
+
ldπ3

4
+ ldπ2

[
3

2
arctan

(
d

l

)
− arctan

(
2d

l

)
− 1

2
arctan

(
l

d

)

+
2

3

(
d

l

)2[
arctan

(
d

l

)
− arctan

(
2d

l

)]]
+
l2π2

12
ln

(
l14(4d2 + l2)

(d2 + l2)8

)
. (A.40)

Similar to the square aperture model, we can define two numbers which characterize the aper-

ture. The first is the fraction of the total amount of flux which goes through the aperture. It is

defined as

ηc(ds, da, l) =
G̃c(ds, da, l)

G̃c(da � l� ds)
=

1

π2d2s
G̃c(ds, da, l), (A.41)
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which, in the case of equal radii, reduces to

ηc(d, l) =
1

3
+
l

d

[
π

4
+

3

2
arctan

(
d

l

)
− arctan

(
2d

l

)
− 1

2
arctan

(
l

d

)]

+
2

3

d

l

[
arctan

(
d

l

)
− arctan

(
2d

l

)]
+

1

12

(
l

d

)2

ln

(
l14(4d2 + l2)

(d2 + l2)8

)
. (A.42)

We can also define an asymmetry parameter which is a measure of the uniformity of the density

distribution at the aperture. The asymmetry parameter is defined as

εc(ds, da, l) =
gc(ds, l, r0 = 0)− gs(ds, l, r0 = da)

gs(ds, l, r0 = 0) + gs(ds, l, r0 = da)
, (A.43)

which is a long expression, even in the case ds = da = d.

Comparing results

Now we have developed an analytical description of the source-aperture system in terms of aperture

diameter d and source-aperture separation distance l for two different aperture shapes. In our

experiment the typical aperture size will be around 100 µm (≈ 10−4 m), governed by the mean

free path of the atoms inside the Knudsen cell. The separation distance of the source and the

aperture is limited by the capture velocity of the cooling and compression stage after the aperture.

The typical separation distance is 1 cm (10−2 m). This means the ratio d/l = θ ≈ 10−2 � 1. In

this limit the integrated density functions Gs(d, l) and Gc(d, l) become

Gs(d/l� 1) ≈ 16
d4

l2
+O

(
d6

l4

)
, (A.44)

Gc(d/l� 1) ≈ π2 d
4

l2
+O

(
d6

l4

)
, (A.45)

which can be generalized to

G(d/l� 1) ≈ χSθ2, (A.46)

where χ can be either 4 or π, depending on the chosen geometry of the apertures. Incidentally, this

shows that the approximated flux given in Equation 2.18 is accurate within a factor χ/π which is

either 1 or 4/π for circular and square apertures, respectively.

If we compare the two different shapes, we see that the general behaviour is very similar.

Figures A.1 and A.2 show the fraction of flux, given by Equations A.22 and A.42, which goes

through the aperture as function of aperture half-width or radius. Again we stress that the

aperture and source sizes are equal in this model. By increasing the separation length by a

factor of two (from l = 0.010 m to l = 0.020 m), the fraction of flux going through the aperture

approximately decreases by an order of magnitude. This goes for both aperture shapes. Clearly

the separation distance is a very sensitive parameter to control the total flux through the aperture.

The asymmetry parameter, given by Equations A.23 and A.43, does depend on the shape of

the aperture, as can be seen in Figures A.3 and A.4. However, for all intents and purposes the

asymmetry parameter is neglibly low and the flux density can be considered homogenous over the

aperture surface.
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Figure A.1: Fraction η of the total amount of flux emitted by the source which goes through the

square aperture. The fraction as function of the source and aperture diameter has been plotted

for different separation distances.

Figure A.2: Fraction η of the total amount of flux emitted by the source which goes through the

circular aperture. The fraction as function of the source and aperture diameter has been plotted

for different separation distances.
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Figure A.3: Asymmetry parameter ε of the density distribution at the square aperture. The

parameter as function of the source and aperture diameter has been plotted for different separation

distances.

Figure A.4: Asymmetry parameter ε of the density distribution at the circular aperture. The

parameter as function of the source and aperture diameter has been plotted for different separation

distances.
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Appendix B

Rubidium hyperfine structure

Rubidium has two isotopes: 85Rb and 87Rb. As shown in Table 2.1, both isotopes have different

nuclear spin quantum numbers I and therefore also different hyperfine structure quantum num-

bers F . We discuss the origin of the hyperfine structure in Section 2.1.1. In this Appendix we

present some additional level schemes and Zeeman shift calculations which are relevant to the

work discussed in this report, but which are too long to be included in the main text.

The Zeeman shift for small magnetic fields (i.e. the energy shift due to the magnetic field is

much smaller than the hyperfine splitting of the states) can be linearized to [16, 25, 26]

∆E = µBgFBMF , (B.1)

where µB is the Bohr magneton, B the applied magnetic field, MF the quantum number of the

hyperfine magnetic sub-state. The Landé factor gF is defined as [16, 25, 26]

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
, (B.2)

gJ =
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (B.3)

As we know the quantum numbers of each state, we can calculate the appropriate Landé factors.

The Landé factors of the hyperfine states relevant for the cooling transitions 52S1/2 → 52P3/2 for

both isotopes are given in Table B.1. In order to calculate the Zeeman shift of a transition, we

have to take the difference in the Zeeman shift of both the ground and excited states into account

∆E = µBB(MF,egF,e −MF,ggF,g). (B.4)

Further, when applying a magnetic field gradient ∇B transverse to the axis of propagation, we

can linearize the magnetic field for small transverse positions x as B(x) ≈ x∇B, which gives

∆E(x) = µB(MF,egF,e −MF,ggF,g)∇Bx. (B.5)

The frequency shift due to the Zeeman shift can be calculated as ∆ν = ∆E/h, where h is Planck’s

constant.
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In Section 3.6.1 we discuss the different performances of both isotopes in the cooling and

compression stage. The difference can be explained when considering the different transition

strengths of the magnetic substate transitions of the isotopes combined with the Zeeman shift of

each magnetic substate transition. Here we calculate the Zeeman shift of both isotopes weighted

with the transitions strengths obtained from B.3 and B.4. We assume the light has σ+ polarization,

but the calculates are identical for σ− polarized light. The calculations are shown in Tables

B.2 and B.3 and give 8505/11340 ≈ 75% of the MF = 3 → MF ′ = 4 transition for 85Rb and

116.6/140 ≈ 83% of the MF = 2 → MF ′ = 3 transition for 87Rb. Averaged over all transition

strenghts, 87Rb experiences a larger Zeeman shift than 85Rb. This explains why the former isotope

is compressed more efficiently than the latter.

Table B.1: Calculated Landé factors of the cooling transitions based on Equations B.2 and B.3.

Property 85Rb 87Rb

Fground 3 2

Fexcited 4 3

gF,ground 1/3 1/2

gF,excited 1/2 2/3
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Table B.2: Calculated Zeeman shifts of 85Rb MF → MF ′ transitions weighted by the relative

transition strengths using σ+ polarized light. The Landé factors are from Table B.1 and the

relative transition strengths are from Figure B.3.

MF →MF ′ MF,egF,e −MF,ggF,g Transition strength Weighted shift

(= shift × strenght)

3→ 4 1 3780 3780

2→ 3 5/6 2835 2362.5

1→ 2 2/3 2025 1350

0→ 1 1/2 1350 675

−1→ 0 1/3 810 270

−2→ −1 1/6 405 67.5

−3→ −2 0 135 0

Sum 11340 8505

Table B.3: Calculated Zeeman shifts of 87Rb MF → MF ′ transitions weighted by the relative

transition strengths using σ+ polarized light. The Landé factors are from Table B.1 and the

relative transition strengths are from Figure B.4.

MF →MF ′ MF,egF,e −MF,ggF,g Transition strength Weighted shift

(= shift × strenght)

2→ 3 1 60 60

1→ 2 5/6 40 33.3

0→ 1 2/3 24 16

−1→ 0 1/2 12 6

−2→ −1 1/3 4 1.3

Sum 140 116.6
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Figure B.1: Hyperfine structure of 85Rb including the transition frequencies and wavelengths.

gF is the Landé g-factor of the state and the gradients given in MHz/G are the small magnetic

field Zeeman shifts of the energy levels [22, 25]. This Figure is taken from [22].
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Figure B.2: Hyperfine structure of 87Rb including the transition frequencies and wavelengths.

gF is the Landé g-factor of the state and the gradients given in MHz/G are the small magnetic

field Zeeman shifts of the energy levels [23, 25]. This Figure is taken from [23].
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Figure B.3: Relative transition strengths of the 5S1/2 → 5P3/2 transitions of 85Rb with σ+

polarized light. The transition strengths are mirrored for the MF → MF ′ to the M−F → M−F ′

transitions in the case of σ− polarized light. This Figure is taken from [16].

Figure B.4: Relative transition strengths of the 5S1/2 → 5P3/2 transitions of 87Rb with σ+

polarized light. The transition strengths are mirrored for the MF → MF ′ to the M−F → M−F ′

transitions in the case of σ− polarized light. This Figure is taken from [16].
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