
 Eindhoven University of Technology

MASTER

Accurate and efficient continuous collision detection

Buddingh', W.L.B.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/4dbba972-f767-4d9e-be48-3bf02a864f8b

Accurate and Efficient
Continuous Collision Detection

Wouter L. B. Buddingh’

January 2014

Words of Thanks

While writing this thesis, I received a lot of help from my supervisor Andrei
Jalba. I would like to explicitly thank him for that. Next to this, I have
received a lot of advice from people of the Visualization/Algorithms group of
the TU/e. Although they are not mentioned explicitly, they have contributed
indirectly to this work. Also, I would like to thank family and friends for the
moral support they have given me.

1

Contents

1 Introduction 5

2 Definitions 9

3 Background 10
3.1 Motion . 10

3.1.1 Linear Translational and Linear Rotational Motion 11
3.1.2 Linear-Interpolation Motion 12
3.1.3 Ballistic Motion . 13
3.1.4 Articulated Motion . 13

3.2 Truly Continuous Motion . 13
3.3 Common Solutions . 15

3.3.1 Feature Testing . 15
3.3.2 Conservative Advancement 18
3.3.3 4D Intersection Testing 19
3.3.4 Approximate Swept Volume 22
3.3.5 GJK-Raycast . 23

3.4 Bounding Volume Hierarchies . 23
3.4.1 R-Trees . 25
3.4.2 ...-Trees . 25

4 Related work 26
4.1 Early contributions to Continuous Collision Detection 26
4.2 State of the art methods . 26
4.3 Bounding Volume Hierarchies . 27
4.4 Physical simulation . 27

5 Proposed Continuous Method 28
5.1 The 2D case . 28

5.1.1 Brute-Force 2D Continuous Collision Detection 28
5.1.2 Interval Arithmetic based Root-Finding 29

5.2 The 3D case . 32
5.2.1 A root finder based on Taylor’s theorem with the La-

grange remainder . 34
5.3 Making the system Non-Penetrating 39

5.3.1 Limiting the amount of deviation 40
5.3.2 Take a step back . 40

5.4 Improving Performance . 41
5.4.1 A custom Bounding-Volume-Hierarchy 42
5.4.2 An approximate sphere/sphere test 45
5.4.3 Traversing the hierarchy 48
5.4.4 Capoeira mode . 52
5.4.5 Brute-force optimization of raw-collision detection 54
5.4.6 Reasons why the system is non-optimal 54

2

6 Constructing a Rigid Body Simulation 56
6.1 Determining contact points . 56

6.1.1 Determining additional contact points in Capoeira mode . 57
6.1.2 Determining additional contact points considering the full

geometry . 57
6.2 Solving the impulse for a number of contact points between two

bodies . 57

7 Results 61
7.1 Preliminary Setup . 61
7.2 Validation . 62
7.3 The Benchmarks used in this Thesis 64
7.4 Highlighting the Benchmarks . 66

7.4.1 The Low Speed Benchmarks 66
7.4.2 The High Speed Benchmarks 68

7.5 The Verdict . 70

8 Future Work / Discussion 71

9 Conclusion 73

Appendix A Linear Translational and Linear Rotational Motion 76
A.1 Linear Translational and Linear Rotational Motion in 2D 76
A.2 Linear Translational and Linear Rotational Motion in 3D 76

Appendix B Derivatives 77
B.1 Derivatives of a Point under Linear Translational and Linear Ro-

tational Motion . 77
B.1.1 The 2D case . 77
B.1.2 The 3D case . 78

B.2 The Derivatives of Distance Functions 78
B.2.1 A Line and a Point . 78
B.2.2 The Signed Distance between two Spheres 80
B.2.3 Two Lines (in 3D) . 80
B.2.4 Point-Plane Distance . 82

Appendix C Fuzzy Line Segment Intersection 82

Appendix D Interval Arithmetic 83

Appendix E Taylor models 85

Appendix F The Lagrange Remainder 85

Appendix G Taylor-Lagrange based root finder 86

Appendix H An example of a 2D Boolean function 88

Appendix I A proof that the parabolas are indeed bounding
parabolas 89

Appendix J A proof that the parabolas are indeed diverging 89

3

Appendix K Processed Data 90
K.1 Benchmark 0/1 Tetrahedron versus Tetrahedron (low speed) . . . 90
K.2 Benchmark 2/3 Tetrahedron versus Tetrahedron (high speed) . . 91
K.3 Benchmark 4/5 Tetrahedron versus Bunny (low speed) 93
K.4 Benchmark 6/7 Tetrahedron versus Bunny (high speed) 94
K.5 Benchmark 8/9 Tetrahedron versus Dragon (low speed) 96
K.6 Benchmark 10/11 Tetrahedron versus Dragon (high speed) . . . 97
K.7 Benchmark 12/13 Tetrahedron versus Buddha (low speed) 99
K.8 Benchmark 14/15 Tetrahedron versus Buddha (high speed) . . . 100
K.9 Benchmark 16/17 Bunny versus Bunny (low speed) 102
K.10 Benchmark 18/19 Bunny versus Bunny (high speed) 103
K.11 Benchmark 20/21 Bunny versus Dragon (low speed) 105
K.12 Benchmark 22/23 Bunny versus Dragon (high speed) 106
K.13 Benchmark 24/25 Bunny versus Buddha (low speed) 108
K.14 Benchmark 26/27 Bunny versus Buddha (high speed) 109
K.15 Benchmark 28/29 Dragon versus Dragon (low speed) 111
K.16 Benchmark 30/31 Dragon versus Dragon (high speed) 112
K.17 Benchmark 32/33 Dragon versus Buddha (low speed) 114
K.18 Benchmark 34/35 Dragon versus Buddha (high speed) 115
K.19 Benchmark 36/37 Buddha versus Buddha (low speed) 117
K.20 Benchmark 38/39 Buddha versus Buddha (high speed) 118
K.21 General Remarks about all Benchmarks 120

4

1 Introduction

In the last decades, interactive simulation has gained popularity in many fields.
Whether it is interactive simulation with respect to gaming or interactive sim-
ulation with respect to space simulation, an interactive simulation system will
most likely require some form of collision detection. Another field which also
benefits from collision detection is robotics. A collision detection system can be
used to assure that a planned motion of one or multiple robot arms is collision
free.

Collision detection is the process of determining whether objects intersect
or will intersect within a given time-span. In real-life, collision detection (and
collision response) is something we get for free (sometimes unwanted). That two
objects cannot occupy the same space at the same time is obvious in real-life, but
kind of exotic within a mathematical construct or computer program. Usually
objects and especially their poses are determined by a collection of numbers.
There is no straightforward way to make these numbers represent objects that
do not intersect and behave in the same way as real objects do. The latter
properties have to be enforced by a system.

Collision detection systems come in many flavours. It is possible to subdivide
them into two categories:

• Static Collision Detection

• Continuous Collision Detection (or C.C.D.)

Static collision detection is the processes of determining whether two objects
intersect at a given moment in time. This question can be answered with a
simple yes or no.

With continuous collision detection, one has to specify the behaviour of ob-
jects over a given time-span. A system that preforms C.C.D. does not only
compute whether objects will intersect within the given time-span, when ob-
jects do intersect, it also computes the first time of intersection. This moment
in time is commonly referred to as Time of Contact or TOC. Whenever the
TOC is known, this also determines additional traits of the collision, like the
configuration of the bodies at impact. This is because the configuration of the
objects is defined as a function of time.

Why do we need continuous collision detection? Sometimes static collision
detection is not good enough. Conceptually, a C.C.D. system is able to guar-
antee that no collisions are missed, whereas this is not the case with a static
collision detection system. Static collision detection systems suffer from an effect
called “tunnelling” (see Figure 1). Which means that it behaves in a counter
intuitive way. E.g. an object may pass trough a solid wall, because the instance
of collision is missed due to a low number of samples (static collision tests) per
time unit. This problem can be partially solved by increasing the number of
samples per time unit (adaptively), in such a way that the tunnelling effect is
almost gone. In order to solve this problem completely, C.C.D. is required.

Objects can be three-dimensional or they can be two-dimensional. A 2D-
object is usually an abstraction of a 3D-object. Certain problems are better
modelled in 2D because in some cases the third dimension adds little or noth-
ing. However, the 3D case is analogous to the real-life situation. In real life,
objects can move, and therefore they can collide. Objects can deform, break

5

t=0 t=1 t=2 t=3

Figure 1: A collision that is missed.

and melt. The cases mentioned in the previous sentence and other exotic trans-
formations on objects are explicitly not treated within this thesis. Rotation is
also considered to be some sort of movement. Certain collision-detection sys-
tems are constricted to movement without rotation. Rotations usually make
the process of collision detection somewhat harder, and it is unnatural to leave
it out. Because of the latter, rotations are an integral part of this thesis. As
can be concluded from the text above, objects are not allowed to deform. In
many cases, this sort of behaviour may be regarded as unnatural. However,
there exists quite a large class of problems that can be modelled by only con-
sidering non-deformable objects. These type of objects are commonly referred
to as rigid-bodies.

Rigid bodies are also considered to be impermeable. When two rigid (imper-
meable) objects approach each-other with some relative velocity between them,
the collision needs to be resolved with an impulse response. Applying forces over
a period of time would cause inter-penetration of objects. By using impulse,
the objects will instantaneously change their velocities, causing the objects not
to penetrate.

There are still some other properties of the objects that are relevant, namely
their type of motion, and the class of their shapes. The shape of an object can be
of a certain type. For example a spherical object is of the type “sphere”, whereas
a cube is of the type “convex polyhedron”. It is possible to define shapes in a
variety of ways. When it comes to curved shapes, there is no simple universal
way to define them all. This thesis will consider polygon soups. Polygon soups
can define any bounded non-curved shape. Thus, a broad range of geometrical
objects are considered within this thesis. Polygon soups are always defined in
three dimensions. The two-dimensional equivalent of a polygon soup is edge-set
(informally edge soup).

The motion of an object also needs to be restricted. To be complete it
should be stated that time and space are organized according to the classical
Newtonian view of the world. The term “world” is often used to describe the
virtual world in which a simulation resides. When considering 3D collision
detection, the world is represented by four dimensions. When considering 2D
collision detection, the world is represented by three dimensions. It should be
noted that the 3D problem is not fully four-dimensional (in the Euclidean sense),
since only moments in time, or time-spans are considered and not arbitrary 4D-
space intersections. This drastically simplifies things. In Figure 2 a 3D space
(x,y and time) is projected onto the plane.

6

Figure 2: A 2D collision that was detected.

Within the context of this master project, a 3D, highly accurate, continuous
collision detection system has been devised. When considering the units of
the system to be meters, and when considering the object size to be in the
order of one meter, the system has nanometer precision. This means that when
the objects are declared to be in contact, there is a space in between them of
less than a nanometer. Though the system is very precise, when considering
complicated models (models having a complexity of 70K-100K triangles), it has
a performance that is (worst-case) comparable to a reference system; Controlled
Conservative Advancement [20] when considering independent collisions. The
efficiency of the system that was devised is due through the usage of efficient
geometric indexing.

It can be said that for many purposes continuous collision detection is not
required to be accurate. For a certain class of applications, very little precision
is required. As a by-product of constructing the highly accurate method, a much
less accurate method has been found. We shall call this method Capoeira mode.
The method is named after a Latin-American martial art in which non-contact
is important.

Capoeria mode is less accurate than the reference system, though consider-
ably faster when collisions are independent. The notion of a non-independent
collision is reasonably artificial. Usually a collision stands by itself, but suppose
that two consecutive collisions are almost identical, the collision detection pro-
cess can be accelerated. However, this notion is not exploited by the systems
devised within this thesis.

The goal of this thesis is to illustrate how to compute the instance of col-
lision, given two rigid bodies under some continuous motion. The problem of
computing the instance of collision between more than two rigid bodies can be
reduced to the problem of computing the instance of collision between two rigid

7

bodies.
Within this thesis, a certain motion type is used namely linear translational

and linear rotational motion. The motion type is reasonably elementary, yet
from a mathematical point of view it is already difficult to solve. A motivation
is given why a customized numerical method is used in order to solve the instance
of collision (of a feature pair). Because a numerical method is used, this gives the
system more flexibility. In theory, the motion type of the system is customizable,
under the pre-condition that the customized motion type is sufficiently smooth
(C2 continuity of all point trajectories is enough). Some other preconditions
may apply here too.

In this thesis, the following contributions are made:

• Global level contributions

– A highly accurate C.C.D. system is presented.

– A very fast system that is less accurate (Capoeira mode) is described.

• Lower level contributions

– A root finder is introduced which is capable of finding the first root
of any C2 continuous function.

– A custom Bounding Volume Hierarchy is introduced that is effective.

This thesis is organized as follows: In Chapter 2, the notations are par-
tially explained. Next, some background information is given in Chapter 3.
Afterwards, in the related work section, some of the accomplishments of others
are described (Chapter 4). A method based on feature testing is described in
Chapter 5. This method can be applied in both 2D and 3D. The 3D system
is benchmarked in the result section. Chapter 8 indicates potential research
topics and discusses them in relation to this thesis. In Chapter 9, this thesis is
concluded.

8

2 Definitions

This chapter introduces the notation that is used, throughout the thesis. Big-Oh
notation is denoted by O(x). It can either be infinite asymptotic or infinitesimal
asymptotic. Whenever it is used, the context will indicate the intention.

The symbol Cn is used to denote the continuity class of functions. With
P(S) the power set of set S is denoted.

The · symbol is used in different contexts. It usually describes the dot
product but it can also describe normal multiplication of objects. The × symbol
specifies the 3-vector cross product, but sometimes it is also used to denote the
number of entries of a matrix e.g. A ∈ R2×2, sometimes it denotes the Cartesian
product.

Time is always a real value and described by the letter t. The span of a
time-interval is denoted by δt. The set of intervals is denoted with IR and an
element of this set is written with a lower case, non bold letter. An interval is
a pair of two real numbers [a, b] for which a ≤ b.

The term TOC denotes Time Of Contact, and usually describes the first
Time of Contact. However, the term is context sensitive; sometimes multiple
(distinct) TOCs are used within the same context and thus not all of them can
be the first.

It is often the case that a second order polynomial is designated with the
name parabola. Whenever the name parabola is used, this may just as well
designate a hyperbola, or it might even designate a line.

The set of quaternions is denoted by H. Quaternions [9] are hyper-complex
numbers and they are used in order to define rotations of objects. Additionally
scalars are written with a lower-case, non-bold letter e.g. s. Vector quantities
are written using a bold lower-case letter e.g. v. Matrices are denoted by using
a bold, upper-case letter and quaternions are denoted by a bold, lower-case
letter. The variable names i, j and k are used for the imaginary identities of
the quaternions. Next to describing the imaginary identities of the quaternions,
the letters i, j and k can also be used as indices. Selecting an identity of a
quaternion is done with a subscript function e.g. qi or qr. The latter example
(qr) selects the real component of q.

9

3 Background

This section describes aspects like motion and some general approaches to solv-
ing the collision detection problem.

3.1 Motion

Objects that collide do so because they are moving. A rigid object follows a
certain trajectory. To be more precise, each point of a rigid object follows a
certain trajectory. Rigid objects can translate, i.e. change their position while
time passes, and they can rotate. From now on, the term rigid will usually be
left out, because this thesis does not consider non-rigid objects.

If objects are modelled in such a way that they are only able to translate, the
collision detection process is drastically simplified. As said in the introduction,
in this thesis a more generic case is considered, including both translational and
rotational motion.

The next step is to describe various kinds of motion that are both translating
and rotating. Let us constrict ourselves to analytical functions. The reason
for this is that it is possible to use Taylor’s theorem in order to reason about
these functions. Analytical functions can be differentiated infinitely many times
around any point. Such functions are called smooth functions. In contrast,
smooth functions are not always analytical functions 1. Each point of an object
has a trajectory in space-time. In 3D, this path can be described by using three
one-dimensional Taylor series. Such a construct is usually called a parametrized
function. One parameter (i.e. time) is supplied to the function and a three-
dimensional positional vector is returned.

Because the motion of the object contains rotations, the Taylor series is
therefore based on sine and cosine expressions. Note that the Taylor series
representation of the sine/cosine contains an infinite number of non-zero terms.

The Taylor series can be truncated in order to get an nth-order Taylor poly-
nomial that approximates the curve.The approximation quality is described by
using (infinitesimal) asymptotic (big-Oh) notation (see Chapter 2).

Note that we have been describing the trajectory of any point in an object.
Each object has a special point namely its centroid or center of gravity. A spe-
cial feature of this point is that its trajectory is not affected by the rotation of
the object. In fact in some cases, the trajectory of this object can be described
exactly by a polynomial. Assuming that the object is undergoing some compli-
cated motion e.g. its motion is governed by some differential equation, then the
motion is most likely described by a Taylor series having an infinite number of
non-zero terms. Anyway, in order to be able to type the motion, it is handy to
truncate this Taylor series.

Next to the center of gravity, the rotation of an object is usually described
by some variable. In 2D this variable can be a scalar representing an angular
value. In 3D this variable can be a hyper-complex number called a quaternion
[9]. Regardless of the representation of this variable, this variable can change.
Therefore, it also has a rate of change. And a rate of change of the rate of
change (and so on). Similar to the trajectory of the centroid, the value of the

1http://en.wikipedia.org/wiki/Non-analytic_smooth_function

10

http://en.wikipedia.org/wiki/Non-analytic_smooth_function

rotational variable can be described by a Taylor series. Again we might wish to
truncate this Taylor series.

It should be noted that the behaviour of rotations in 3D is a bit different than
the behaviour of rotations in 2D. For instance, the quaternion Taylor series of a
linear rotation has infinitely many non-zero terms, while in 2D, the Taylor series
for a linear rotation is just a linear function (depending on the representation).

3.1.1 Linear Translational and Linear Rotational Motion

We can make a first order simplification of the general motion of an object.
This first order simplification is not a truncation of the Taylor series of each
point of the object. If one would do so, then each point of the object would
follow some linear motion, causing the object to deform in an unnatural way (if
it were to rotate). In Section 3.2, the concept of continuous motion is explained.
For now let us briefly state that within the context of this thesis, continuous
motion implies rigidity and all of the points of the object to have C0 continuous
trajectories.

If we basically truncate all Taylor series of all points of the object, we get
linear motion in the case of non-rotation, and something funny when the object
is rotating. Rotations are basically two-dimensional operations. In 2D, an
orientation is basically a scalar value called α. A rotation, δα can be used to
increment the rotation scalar α. The alpha value can be converted into a 2D
rotation matrix that is capable of transforming points that are non-rotated into
points that are rotated. In 3D, an orientation cannot be represented by a single
scalar. An orientation in 3D can be represented by a 3× 3 rotation matrix. By
rotating each column vector of the orientation matrix, one is able to change the
orientation. A rotation is defined around a certain (normalized) axis. When the
axis is pointing towards the observer, one can define the amount of rotation (δα)
as being counter clockwise around the axis. Usually the rotation is measured in
radians.

Rotating the column vectors of an orientation matrix in 3D around a certain
axis is a non-trivial operation. In [24] the authors give a formula that describes
the motion that is discussed here. This formula uses 3 × 3 matrices in order
to describe the transformation. In Appendix A the same transformation is
described, but instead of matrices, quaternions are used. Both definitions are
equivalent to the informal definition given below:

To summarize the concept of linear translational and linear rotational mo-
tion; the center of gravity of an object under such motion follows linear motion.
While the body gets rotated around the center of gravity along an axis with a
fixed orientation having constant rotational velocity.

It must be noted that this type of motion does not necessarily represent the
motion of an object under the absence of net external force/torque. Newton’s
first law states that the velocity of an object does not change when no net ex-
ternal force/torque is applied. This implies that linear momentum is conserved.
Likewise, angular momentum also happens to be conserved in the absence of net
external torque. However, conservation of angular momentum, does not imply
a constant rotational velocity around a fixed axis. In reality, the axis of rotation
of an object may change due to time-varying distribution of the mass.

In Figure 3, the velocity of a point trajectory at t0 is shown. The user of the
system is free to choose the variables ω and v. If these variables are chosen such

11

t = t0

ω v

r(t)

ω × r(t)

v

dp(t)
dt = v + ω × r(t)

A

p(t)

t = t0 + 1

Figure 3: A sketch illustrating the velocity of a point under linear translational
and linear rotational motion.

that they match the real angular velocity and translational velocity of object A
at t0 then the velocity of each point p(t0) ∈ A(t0), matches the velocity of the
associated real trajectory. Because all the trajectories have an error of O(δt2)
(when considering their Taylor series) we can state that all trajectories are a
first order approximations of the associated real trajectories.

3.1.2 Linear-Interpolation Motion

Given a beginning pose i.e. an orientation and a location, and an ending pose.
The motion could be defined by preforming linear interpolation on the center of
mass and by preforming some form of linear interpolation on the orientations.
For the interpolation of orientations one would pick quaternion spherical-linear-
interpolation (or SLERP), because it is the most natural type of interpolation.
Note that this motion is very similar to linear translational and linear rota-
tional motion. Because the amount of rotations per motion segment is limited
with linear-interpolation motion, it is not equivalent to the motion type ex-
pressed in the previous section. Linear-interpolation motion is the type of mo-
tion that is sometimes used when dealing with conservative advancement [20]
(a technique described in Section 3.3.2). A time domain in which a single linear
translational and linear rotational motion exists can be translated into multiple
linear-interpolated motion segments (featuring quaternion-SLERP). Why the
two motion types are not equivalent is just a matter of differing definitions.
However, they can be converted in both directions.

12

3.1.3 Ballistic Motion

In [15], Mirtich uses quadratic polynomials in order to describe the trajectory
of the centroid of rigid bodies.

In a rigid body simulation, forces are sampled at a certain moment in time,
and they are dependent on the state of the simulation (which includes aspects
like velocity and angular velocity). Using a second order Taylor approxima-
tion of the trajectory of the centroid, i.e. an approximation based on position,
velocity and acceleration seems to be a logical choice.

However, this type of approximation does not seem to be used much. In-
stead of using this type of approximation, an Euler approximation is used more
frequently (since it also converges to the exact solution when the time-step con-
verges to 0). Alternatively some higher order scheme is used, e.g. some instance
of the Runge Kutta family of integrators.

3.1.4 Articulated Motion

Earlier in the introduction, the example of a robot arm was given. A robot
arm moves around a joint. This is usually a rotating joint or some translating
mechanism. The translations are not the problem, since translations are directly
related to the Cartesian system; the rotations cause difficulties. In the ideal case,
exact articulated continuous collision detection can be preformed. However, as
the number of joints in the robot arm grows, the more complex the motion
of the robot arm becomes. Increased complexity means that more processing
power is required. When considering a robot arm, the “approximation” can
be very precise. The trajectory of the robot arm is precisely defined (up to
arithmetical precision). It is possible to compute the precise time of contact
of the robot arm with e.g. another robot arm, up to a specified time epsilon
(ignoring arithmetical errors). If the arithmetical precision of the system allows
for it, it is even possible to approximate up to a distance epsilon (the application
of epsilon values will be discussed in Section 5.3).

To summarize the above, the model is analytical, but the solution has to
be approximated using numerics. In theory it is possible to give an arbitrary
accurate approximation. The same holds for other types of motion if they are
considered to be exact instead of approximate.

However, in Chapter 4 others are aiming at something quite different than
giving an arbitrary accurate approximation. Their main target is speed, and
not approximation accuracy. The reasoning behind this is that a time step, i.e.
a single motion segment, is only persistent over a small period of time. This is
the reason why many care less about the asymptotic accuracy of motion within
a timestep. The current subject is closely related to the following section.

3.2 Truly Continuous Motion

When making a simulation, one naturally starts by animating a static scene.
Usually, the simulation is defined in frames. A frame usually lasts for a time
interval, lets say [0, δt). However, frames are often treated as if they happen at
a single moment in time. It would be strange to say that this approach is wrong,
and actually it is not. We need to abstract in order to make things work. But
if there is a frame at t = 0 and a frame at t = δt, then an infinite amount of

13

frames are located at (0, δt). It can be stated that in some cases the abstraction
is wrong.

Collision detection systems that operate at discrete frames, are called discrete-
time collision detection systems. C.C.D. systems have to obey some properties
in order to be called “truly continuous” [18].

These properties can be described in an intuitive way:

1. Objects are not allowed to “teleport”, or “jump” in time

2. Objects are not allowed to deform

These properties can also be described formally. The first property is defined
as follows:

Let A(t) ⊆ R3, be a time-dependent point-set representing an object. (To
be precise: A : R 7→ P(R3).) Let p(t) ∈ A(t) and let p(t+ δt) ∈ A(t+ δt) where
p(t) is a parametrized function describing the trajectory of a point in object
A. Then the Euclidean distance between the two points converges to zero as δt
goes to 0. Summarized in a compact way:

lim
δt↓0

p(t) = p(t+ δt) (1)

The definition above does not suffice yet, since deformable objects e.g. (in-
compressible) fluids also obey the above. Property 2, can also be formalized:

There exists a vector o ∈ R3 and a rotation matrix R ∈ R3×3 such
that for each point p ∈ A(t) the point R · p + o ∈ A(t+ δt) and for
each point q ∈ A(t+ δt) the point R−1 · (q− o) ∈ A(t).

Note that the second transformation, the transformation of point q, is the in-
verse transformation of the one applied on p. The second part is there because
the relation is bijective.

Both properties symbolize part of the motion of a real object. At least the
motion that most people consider real, considering the classical Newtonian view
of the world.

To give an example, an object that has truly continuous motion can never
pass trough a (rigid) hole if it does not fit trough the rigid hole. This might
seem obvious, but with discrete collision detection, this may not be the case.

Some discrete systems are likely to miss collisions. However the property
above is not only about not missing collisions, it is about avoiding physical
impossibilities. It should be noted however, that the truly continuous property
does in no way account for all physical impossibilities. There is nothing that
guards for jump discontinuities in the first derivative. In reality this is impossible
but actually, this is what is preferable. As explained in the introduction, the
objects are rigid and the rigid collisions must be resolved with impulse. So the
first derivative of the object can have irregularities.

Various authors of literature on (truly) continuous collision detection make
up different kinds of motion that have little to do with being realistic, but can
still be labelled as “continuous”. These types of motion are constructed in such
a way that they are easy to compute. Section 4 will elaborate on this.

Let us discuss one example of a strange continuous motion. Suppose that
object A has to go from pose a to pose b. A way to accomplish this is to

14

first rotate the object in such a way that it will assume the orientation of b.
This rotation can happen in time interval [0, δt2). Afterwards the object can be

translated to its final position (within time interval [δt2 , δt)).
Now suppose that there is a collision between object A and some other

object in interval [0, δt). The time of the first moment of contact retuned by
the collision detection system, will be very inaccurate. Said differently, the
approximation accuracy of motion within the interval is of O(1) (i.e. an error
of O(δt), or stated differently 0th order accurate). In contrast, (simultaneous)
linear translational and linear rotational motion has an error of O(δt2), due
to its correspondence with explicit-Euler integration. These asymptotic error
descriptions apply on every point of the object (see 3.1.1). For the case of the
strange motion, in general, most likely all points will have a first time-derivative
that is different from the first time-derivative of their actual trajectories. This
conflicts with being O(δt) accurate.

3.3 Common Solutions

The most straightforward solution to continuous collision detection seems to be
feature testing [6] [8] [11] [18]. This is the approach that will be used in this
thesis. Other approaches include conservative advancement [15] [24] [20] [25],
4D-intersection-testing [5], swept-volume [13] and the GJK-raycast algorithm
[23]. The latter approach does not consider rotations. Whether swept-volume
is truly continuous depends on the implementation.

With 4D-intersection-testing, the problem is treated as if it were fully four-
dimensional. In its basic form, 4D-intersection-testing only deals well with trans-
lations. Rotations have to be “hacked” into the system in a non-efficient way.
Also such a hack will cause the system to strictly be non-continuous. Therefore
in practice, 4D intersection only deals well with translational motion.

Conservative advancement is a reasonably new approach to continuous col-
lision detection that is fast and effective. Originally, it was defined for convex
shapes only, but recently work has been done on non-convex implementations.
More on this will be described in Chapter 4.

Let us first start with the approach that will be used in this thesis, namely
feature testing. However, the subject will be discussed briefly, because it will
be made explicit in Section 5.1 and 5.2.

3.3.1 Feature Testing

Two objects, whether they are defined in 2D or in 3D, have features such as
points and edges (and facets). Let a be a feature of object A and let b be
a feature of object B. These features may collide or they may not collide.
It is disputable whether a point and another point can collide. Although the
probability of such an event happening is 0, when assuming a random initial
configuration. When using finite precision arithmetic, this probability becomes
a bit larger, however this is not the issue. Let us suppose that feature a is a
point and feature b is a facet. A point and a facet can definitely collide. One
has to devise a continuous test that is capable of determining the first time of
contact of these features. Note that the word first is used, since the features
may separate and collide again. It should again be noted that the term time of
contact is abbreviated with TOC. Usually, this term also implies the first time

15

of contact. Before we give some indications on how to devise a continuous test,
let us first complete the picture.

For each feature pair, one feature belonging to A and one feature belonging
to B, compute the TOC. When a list of TOCs is computed, take the first one
and this TOC will represent the collision time between object A and B. To
be complete, not every feature pair has to collide, so when there is no colli-
sion, the TOC can either be infinite, or it can be excluded from the list. The
story above describes part of the 3D case. The latter sentence says “part of”
because edge/edge intersections were not explicitly mentioned. For a 2D imple-
mentation, a function that can compute the TOC between an edge and a point
suffices.

Note that the story above says noting about motion. In principle the motion
can therefore be generic (higher-order for example). Without considering the
type of motion, the approach is already slow. The asymptotic time complexity
is O(Af · Bf), where Af and Bf represent the number of features of object
A and B respectively. The latter statement assumes that the time complexity
of a single feature test is constant. Let us now give some intuition on how to
construct a feature test.

It is possible to construct a distance function between feature a and feature
b. This distance function is a mapping from time to distance: s : R 7→ R. Note
that it is quite okay if distances are negative.

Lets consider the 2D case of a point and an edge for now. Basic computa-
tional geometry enables us to compute the distance between a point and a line
segment. Before we do this, we first have to integrate the poses of both bodies
to the right moment in time. The point and the line segment are defined in local
coordinates of the associated object. When a moment in time is given, the coor-
dinates of these features can thus be described in global (or world) coordinates
by integrating the poses of both objects. Thus for each moment in time, we
can compute the poses of the features and thus the distance in-between them.
Now, we have our distance function. When the distance function reaches 0 (at
a certain t) there is a collision. These collision points correspond to the roots
of the distance function s.

The distance function above can be considered a bad example for two rea-
sons:

• The function does not cross the time axis, it merely touches it.

• The distance derivative for a vertex on the edge is actually undefined
(contradicting C1 continuity).

We can derive the first derivative analytically (at moments in time where
the features are not intersecting). One might argue that it is possible to apply
a root finding technique, such as Newton-Raphson iteration. However, usually
the complexity of the motion disallows using this technique (disregarding the
fact that the derivative is not well defined at every moment in time). Also the
case distinction might spoil finding the roots. Likewise, a method similar to
Newton-Raphson, called the Secant method will also not work, due to similar
reasons.

The curvature of the function is just too complicated. The function may
incorporate oscillations, oscillations having an arbitrary frequency (the oscilla-
tions are due to the rotations of the objects). In the case of linear translational

16

and linear rotational motion (see Figure 4, the red curve), it might be possi-
ble to chop the curve into parts (with respect to the time variable), that are
of limited complexity, by looking at the oscillation with the highest frequency.
However, this does not guarantee that a chopped part contains at most one
root and that its curvature obeys the criteria of the selected “elementary” root
finder. Note that the curvature cannot be chopped at the extremes because
finding the extremes is even more difficult than finding the roots.

Using the root finder presented below, there is no need for the function to
be C1 continuous.

Interval Arithmetic

There exists a simple and robust root finding method called binary bisection
on intervals that is based on interval-arithmetic. This method is quite capable
of finding the roots of any C0 continuous function, no matter its complexity.
There are two downsides to this approach. The method has a moderate conver-
gence speed, and it is inherently based on case distinctions, making it unable to
fully exploit the huge processing power of modern-day computers. (Conditional
jumps usually cause some lag in the execution of code.) More on the binary
bisection method on intervals will be described in Section 5.1.

Taylor-Lagrange based Method

Part of this master project assignment is to find an alternative for using bi-
nary bisection on intervals. The alternative should be fast, instead of being
logic based (like interval arithmetic), the alternative approach uses a combina-
tion of algorithm and calculus in order to find the roots. A similar approach
can be found in [15], however it differs considerably form the method presented
here.

In order for a Taylor based method that is presented within this thesis to
work, the distance function needs to be C2 continuous. This immediately yields a
problem, because our edge/vertex distance function does not obey this criterion.
The problem can be solved by re-designing the entire feature test in a similar
way as done in [11]. Instead of computing the distance between a vertex and an
edge, it is preferable to compute the distance between a vertex and a line (this
yields a signed distance). Such a computation can be done with ease, and when
considering linear translational and linear rotational motion, we conjecture that
all the derivatives of the distance function will be continuous.

The distance s(t) is shown in Figure 4. The red curve represents the dis-
tance, while the grey blue curve represents the derivative of the distance. The
derivative is illustrated in order to show that the derivatives of the function do
not simplify. This property makes root-finding somewhat more difficult. Be-
cause the derivatives do not simplify, it is not easy to select an increasing or
decreasing domain, that is why it is not possible to apply some variation of the
Secant method.

Let us for now assume that we have a working root finder, see Section 5.2.1
for details. However, too many roots are found. One must also consider roots
that correspond to the vertex hitting part of the line that lies outside of the
domain of the edge. Before a root is reported, a static intersection query is
performed to check whether the vertex is indeed inside the domain of the edge.

17

Distance between Point and Line

Derivative of Distance between Point and Line

Time Axis

The First Root (possibly TOC)

Figure 4: The signed distance (s(t)) between a point and a line both subject to
linear translational and linear rotational motion.

If inside, the root is reported as a real intersection, if the vertex lies outside, the
root is discarded.

Summarizing this method: brute force all feature combinations by using a
continuous TOC test that is based on a distance function. Brute-forcing sounds
bad, however multiple techniques exist to reduce the computational effort. The
most prominent of those is by using bounding-volume-hierarchies or BVHs, see
Section 3.4. BVHs is certainly not limited to feature testing. It describes a set
of data-structures that preform spatial partitioning in a hierarchical way.

3.3.2 Conservative Advancement

Conservative Advancement is a technique that relies on static proximity queries
in order to preform continuous collision detection. It was introduced by Brian
Mirtich in [15]. The method operates on two convex objects.

In figure 5 the “maximal axis of separation” is shown. If one would rotate
this axis, it would lose the property of being maximal. Such a maximal axis is
defined for each pair of objects A and B. When the two objects are projected
on the axis, the separation of the projections of both objects is maximal.

The distance the objects travel towards each other, can be measured along
this axis. To make this a bit more specific, the distance object A travels on a
(the axis), can be bounded by a linear equation, which is a mapping from δt to
distance. The same holds for object B. By subtracting the two equations, we
get a single equation. This equation states how far the objects have approached

18

A

B

a

Figure 5: The line segment in-between the objects is the maximal axis of sepa-
ration.

each other when given a certain δt. Note that the equation is a parametrized
upper bound for how much the objects have approached each-other. We thus
get a linear equation f(δt) = a + bδt. We then solve δt in f(δt) = d, where
d is the distance between both objects (or the length of the axis). Once δt is
determined, both objects can be safely integrated to t+ δt, without the objects
touching each other. At this moment in time, a new axis is computed, and
the process starts again, until the distance between the objects drops below a
certain threshold.

A property of this construct is that the objects will not overlap each-other.
If the motion bounding function is constructed in the right manner, the method
is continuous.

3.3.3 4D Intersection Testing

This method is well suited for linear translational movement of polyhedral ob-
jects. When rotations are required, a naive solution would be to use a swept-

19

volume-like strategy (see Section 3.3.4) in combination with this method. Better
approximations of rotations seem to be possible, yet difficult.

For translational movement of polyhedral objects, the problem can be solved
analytically. For the linear translational part, the method works by extruding
a polyhedral representation into the time dimension. Note that this extrusion
may be non-orthogonal, in fact the extrusion is non-orthogonal if the object is
moving. When an object is extruded, an extra dimension is added, in this case
this is the time dimension. Normally an object is a subset of R3. By extruding
the object it becomes a subset of R4 (the set of all events). Let A : IR 7→ P(R4)
and let B also be such a function. The 4D-volume like quantity of these sets is
finite. However, the latter remark is of lesser importance, because there exists
software that is quite capable of dealing with unbounded polytopes.

Let t ∈ IR be a time interval and let A(t)∩B(t) be the space-time intersection
of these sets. If the intersection is empty, the objects do not collide within the
interval t. If the intersection is non-empty, then we are interested in the set of
events that are first.

Intersecting sets is nice, but how can this be done efficiently? Recall that the
shape of the objects is polyhedral, and a polyhedral object can be decomposed
in convex objects. Now that we have a set of convex objects (in R3), we also have
the half-spaces that bound these objects (3D half-spaces are usually represented
by using a 4-vector).

Each half-space can be extruded on its own. Extruding a half-space from 3D
to 4D is a relatively simple operation. Such an extrusion requires one parameter,
namely the velocity of the object. Now that we have a set of 4D-half-spaces for
each convex polyhedron, we can construct a 4D-convex-polytope for each convex
polyhedron. This convex-polytope is preferably also bounded by the 4D-half-
spaces t ≥ 0 and t ≤ δt. The latter remark may help when one wishes to
optimize the computations.

In Figure 6, a rectangle in the plane is given a linear motion up to a certain
moment in time. After this moment in time, the motion is changed into another
direction.

Since we have two objects we can brute force intersect all the (a, b) pairs
of 4D-convex-polytopes. The intersection of 2 polytopes can be achieved by
combining their half-spaces. This also holds in 4D (by definition). Thus for
each 4D-convex-polytope pair (a, b) we get a resultant 4D-convex-polytope that
represents part of the collision event set. Uniting all these event sets yields the
total collision event set. We pick the most early events form this set. These can
be considered to represent the collision surface at t = TOC.

Compositing a 4D-convex polytope is not easy. However, it is possible to
construct a framework based on mathematical definitions that does just that.
There is a more efficient way of solving the problem, that is by using (4D-
)linear-programming (assuming that this can be done fast). For each (a, b)
pair, a linear program is ran. And the objective function is to get an event as
early as possible. The software that facilitates linear-programming should be
able to indicate whether such an event exist (or perhaps even return a range
of such events). The latter is of lesser importance, since one contact point is
usually sufficient. Anyway, alternative contact points can be found differently
(see Section 6.1).

With or without using linear programming, the process seems reasonably
in-efficient. One might think of using 4D-bounding-boxes to bound the initial

20

Vertical

Horizontal

Time

A square that is persistent in time

Figure 6: A square in the plane extruded into the time dimension.

4D-polytopes, and this bounding-box structure can be hierarchical. Another op-
tion is to use Binary-Space-Partition trees in order to cut down on the quadratic
complexity. Similar approaches are summarized with Bounding Volume Hierar-
chies (see Section 3.4). One might have noticed the term “quadratic complex-
ity”. Why is the complexity of such an algorithm quadratic? This is because
in the analysis, we assume that the complexity of a single convex polytope (in
3D or in 4D) is bounded by a constant. In fact, this is always the case if the
polyhedral object is decomposed into tetrahedrons.

How to deal with rotations

This is the point where the method will become not strictly continuous any
more. Non-continuous in the sense that the object is grown in order to guar-
antee that no collisions are missed. By growing the object (and thus deforming
it), false-positives may be returned. It is possible to construct a system in such
a way that false-negatives are impossible. An application of such a system can
be robot-motion-planning.

The difficulty lies in finding a set of events that includes the events of the

21

rotating object. Preferably, this set is equal to the set of events that define the
moving object while it is rotating, but this is not possible when using a finite
number of 4D half-spaces.

Actually, the method is similar to swept-volume, which will be discussed in
Section 3.3.4. Approximate rotations can be integrated in the 4D-framework
though.

3.3.4 Approximate Swept Volume

Another technique that can be used is approximate swept volume collision de-
tection. This method does not match the definition of truly continuous motion
given in this thesis. Given an initial and an ending configuration, and some
static convex polyhedral model, one can construct a convex polyhedron that
fits around the beginning pose and the ending pose. This convex polyhedron
i.e. the approximate swept volume can be defined as the minimal convex hull
containing both the beginning and the ending configuration (see Figure 7).

A at t = 0 A at t = δt

Convex hull

Intermediate configuration

Figure 7: An approximate swept volume in the plane.

When given two pose pairs for two objects, each containing a beginning and
an ending pose, and two convex polyhedra, we can construct two approximate
swept volumes that both are represented by a convex polyhedron. By using
static collision detection queries we can determine whether these approximate
swept volumes are intersecting or non-intersecting.

The convex polyhedron that is fitted around the beginning pose and ending
pose is non-approximate when linear motion is considered. When the object is
rotating (and translating), the swept volume is approximate. Actually, what
is likely happen is that the model cannot be physically transported from the
beginning pose to the ending pose while not leaving the approximate swept
volume. So using the approximate swept volume technique may return false
negatives (see Figure 7).

Using exact swept volume collision detection is somewhat harder. The swept
volume of a sphere that has an off-center rotation is non trivial to compute. It
is even difficult to choose the right representation for this kind of geometry.

22

When an approximate swept volume query can be computed, it is also pos-
sible to call these using binary bisection, giving us a way to approximate the
“approximate” time of contact. The binary bisection method is applied on in-
tervals in Section 5.1. With little alteration, this gives us a binary bisection on
the approximate swept-volume method. Note that the concept approximation of
approximation is used. This might look like the construction is wrong, however,
this construction is no different from other constructions that are commonly
used within discrete and continuous collision collision detection.

Although this method is non-continuous in the strict sense, it is simple and
thus, most likely robust. If discrete collision detection fails, one might want to
use this, before attempting to use a method that is fully continuous.

3.3.5 GJK-Raycast

In [23], Gino van den Bergen presents an algorithm to compute the hit point
between a ray and a static generic convex object. The algorithm partially car-
ries the name GJK, or Gilbert-Johnson-Keerthi, because it is inspired by an
algorithm devised by those three people, i.e. the GJK algorithm. The GJK
algorithm computes the positive distance between a convex polyhedron and the
origin of the coordinate system. Alternatively, the GJK algorithm can be tai-
lored to return the closest point pair between two convex objects due to the
usage of translational configuration space. Translational configuration space
is a space that is defined by the usage of Minkowski addition. It will not be
discussed here, but for an elaborate description of the GJK algorithm see [22].

Using the same conceptual leap as done with GJK, the GJK-raycast algo-
rithm is capable of determining the time of contact of two colliding (convex)
objects under linear motion. It can thus be seen as a good alternative for 4D in-
tersection testing. The GJK-raycast algorithm is capable of approximating the
time of contact of a wide class of convex shapes. Both the GJK algorithm and
the GJK-raycast algorithm rely on an implicit definition of the convex geometry.
When given an explicit definition i.e. the convex hull of a vertex cloud, a corre-
sponding implicit definition is easily found. However, the GJK and GJK-raycast
algorithms are also capable of handling a wide class of curved geometry.

3.4 Bounding Volume Hierarchies

Bounding Volume Hierarchies refer to a set of data-structures that allow for the
spatial bounding of geometry. Bounding Volume Hierarchies or BVHs can be
applied in any number of dimensions. Why do we want to bound geometry? Let
us consider a simple, though very complex example. Suppose that we have two
Mandelbrot sets that lie in the plane. Both of them have a certain pose within
the plane. A Mandelbrot set happens to be conveniently bounded by a disk of
radius 2. It may be quite difficult to determine whether two Mandelbrot sets
are intersecting. However, if the disks in which the translated and rotated Man-
delbrot sets are located do not intersect, then we know that the translated and
rotated Mandelbrot sets are also disjoint. So by using a simple (constant time)
disk/disk test, we can avoid having to compute something extremely difficult.

The example above explains what a bounding volume is. It still does not
explain the “hierarchy” part of the name. It does not make much sense to use
the Mandelbrot set to explain this. The latter statement may not be entirely

23

true, but for the sake of clarity, let us use something less difficult. It should be
noted that in this section bounding volume hierarchies are explained within the
context of rigid-body collision detection. This means that there are two bodies
instead of one.

Before two objects can be explained, let us pick one object first (i.e. a point-
cloud). Also let the number of dimensions be 1 and let the number of children
of each node in the hierarchy be 2. The objects that are put in the BVH tree are
real numbers i.e. 1D-points. Now we end up with something familiar, namely
a binary search tree. As is known from binary search trees, a balanced binary
search tree has a depth of O(log n). Thus by using O(log n) comparisons, we can
find a leaf (when given a 1D-point). The higher dimensional variant of a binary
search tree can be a K-d tree. With a K-d tree the nodes of the tree become
axis-oriented planes. Instead of excluding part of the real axis, and thereby
excluding a branch and ultimately a lot of leaves, the planes can exclude part
of the the search volume in multiple dimensions. To make this explicit, a point
is always located in front, on, or behind a plane. Usually one groups on and
behind in the same category. Whether a point is in front or on/behind a plane
can be determined with a simple constant time test. In the ideal case, with each
point plane test, one will exclude about 50% of the geometry.

If the multi-dimensional K-d tree is balanced, we can locate leaves inO(log n)
time. It is also possible to preform interval queries on K-d trees. If we consider
our geometry to just be a set of 3D-points, it is possible to just query e.g. a 3D-
interval on this tree. An interval query will be slower than a point query. This
is because it may be required to traverse multiple branches of the K-d tree. A
3D-interval, also known as an axis aligned bounding box, can contain geometry.
Suppose that we want to statically collide (i.e. intersect) a simple solid model
with our point cloud, then we could construct an axis aligned bounding box
around our simple model. Supply it to the K-d tree as a 3D-interval. And test
the 3D points that are returned for inclusion in our simple solid model. Thus
we avoid testing the entire point cloud and this saves us a lot of time.

The problem becomes a bit more complicated than this because of at least
three reasons:

1. We are dealing with triangles instead of point-clouds.

2. Both models can be complicated.

3. We have to preform continuous collision detection instead of static collision
detection.

Because we are dealing with triangles, the problem becomes slightly more
complicated. Suppose that a plane of a K-d tree wants to bound part of a
triangular 3D-mesh. In the case of a triangle intersecting the plane, the plane
has to be shifted in order to make this possible. Alternatively the triangle can
be cut in two parts. The latter has less preference, but it seems unavoidable
when dealing with real triangular 3D-meshes. Instead of dealing with triangular
meshes, we are now dealing with polygon-meshes. When you cut a triangle into
two parts, you are likely to get one quad and one triangle. When the quad is
cut again, you may get a triangle and a pentagon. We can also look at this on
the bright side, at least the polygons are convex.

24

Reason 2 makes the problem more complicated than simply traversing a
single tree. Two trees need to be traversed simultaneously. How this is done
within the context of this thesis is described in Section 5.4.3.

While reading this text, one might think that a K-d tree structure was used
within the context of this thesis. This is not the case. The K-d tree was used in
order to explain the concept of bounding volume hierarchies. Instead of using
K-d trees, a more flexible structure has been used.

How to account for reason 3 is will become clear when reading paragraph
5.1.2. Four-dimensional bounding volume hierarchies are not used within the
context of this thesis.

3.4.1 R-Trees

The definition of an R-tree can be brief. It is basically an axis-oriented bounding
box tree. Each node in the tree is a bounding box. Research has shown that
using axis-aligned bounding boxes as a bounding volume can be extremely fast.

An R-tree can have any number of children at each node. It is even possible
to use a varying number of children.

3.4.2 ...-Trees

It is possible to vary the concept of an R-tree. It is possible to use spheres at
each node. It is also possible to use axis aligned grid-spaced cubes or rectangles
in order to create an octree/quadtree. Next to this one can think of non-axis
aligned half-spaces; the so called binary-space-partitions. Actually, it is quite
okay to use ones imagination to construct an efficient bounding volume hierarchy
for a specific purpose. It is quite difficult to make claims about things like the
time complexity of a point query. For example when considering a binary-space-
partition, the height of this BSP-tree does not have to be O(log n) (this is made
explicit in [10]). In fact, when constructing a bounding volume hierarchy, the
ideal tree height is O(log n). This is often not the case. It should be noted that
there exist structures that can do better than O(log n), but this concerns certain
spatial hashing structures (see [17]). These structures have some assumptions
on the geometry.

25

4 Related work

As said in the introduction, the encapsulating topic of collision detection is
simulation. This topic is very broad, because there are a lot of reasonably
exotic constructs that are indirectly related to this topic. Because of this, only
a small part of the “simulation” topic will be discussed namely the part centered
around continuous collision detection.

4.1 Early contributions to Continuous Collision Detection

In [6] (1984), John Canny makes an abstraction of motion and reduces the prob-
lem of continuous collision detection to higher order polynomial root finding.
The method is based on feature testing, just like the method that is proposed
in this thesis (Chapter 5). The solution presented in [6] is made possible trough
applying some simplified type of quaternion interpolation, instead of applying
quaternion SLERP. This makes the type of motion deviate from linear trans-
lational and linear rotational motion (as presented in Chapter 3). The motion
of Canny is approximately identical to linear translational and linear rotational
motion, especially when amount of rotation per time-step is small. The deriva-
tion that is made by Canny is quite elegant and because the problem is reduced
to polynomial root finding, the roots can be found using a rather limited amount
of numerics.

In [5] (1990), Stephen Cameron presents the concept of 4D-intersection test-
ing. This concept is illustrated in Chapter 3. The publication of Cameron is
limited to linear motion (i.e. no rotations).

In [15] (1996), Brian Mirtich presents the concept of conservative advance-
ment. This technique is described in Chapter 3. It is commonly used to pre-
form continuous collision detection. The method of Mirtich is limited to convex
shapes. However, recently this method has been extended by others in order to
cope with non-convex shapes.

4.2 State of the art methods

In [18], Redon et al. present a continuous method for colliding bodies under-
going articulated motion. The motion abstraction that was used has not been
mentioned before in this thesis, but it is called screw-motion. The naming of
the motion-type is very appropriate since the motion represents the motion of
a screw that is being rotated by a screw-driver. Presumably, the abstracted
motion has been used in order to improve the computational efficiency. They
use interval arithmetic as a method to find roots of features. In [19], Redon et
al. use interpolated motion instead of screw-motion.

In [25], Xinyu Zhang, Stephane Redon, Minkyoung Lee and Young J. Kim
constructed a continuous system for articulated bodies that seems to be quite
efficient. The system works on bodies consisting out of convex components (thus
capable of dealing with non-convex geometry). Conservative advancement is
used in order to collide these bodies. The motion-type that is used is the same
as used in [19] (i.e. interpolated motion). What is important about their system
is that they bound the swept volume of objects by using Taylor models. Taylor
models are function inclusion methods and they are described in Appendix E.
They happen to be used within the context of this thesis.

26

In [24], Xinyu Zhang, Minkyoung Lee and Young J. Kim devised a system
that is called FAST. It operates on polyhedral shapes. The class of polyhedral
shapes is a subset of the class “polygon soups”. FAST works by interpolating
the motion in-between two poses, like the other methods do.

The follow-up of FAST seems to be Controlled Conservative Advancement
[20], which has been devised by Min Tang, Young J. Kim and Dinesh Manocha.
The approach seems reasonably similar to that of FAST, although the main
difference is that it operates on polygon soups. Like FAST, they also use in-
terpolated motion. More on this method will be written in Chapter 5, because
Controlled Conservative Advancement will be used to benchmark the method
devised within the context of this project.

4.3 Bounding Volume Hierarchies

For the context of this project, the main reference to BVHs has been an excerpt
of chapter 1 from [12]. Here Herman Haverkort gives an overview of the concept
of Bounding Volume Hierarchies. In [12], asymptotic bounds are given that
describe the query time of certain bounding volume hierarchies. Making claims
about the asymptotic query time of bounding volume hierarchies seems to be
rather difficult.

In [21] the advantages of using axis aligned bounding box trees are discussed.
Within the context of this project, axis aligned bounding boxes are used in a
similar, but non-equivalent manner. The content of [21] (which is also in the
PhD thesis of Gino van den Bergen), has been found at the near end of this
master project. If this paper were to be read earlier, this would have most likely
influenced the construction of the bounding volume hierarchy used within this
project. The main difference between the bounding volume hierarchy that is
presented in Section 5.4.1 and the approach of van den Bergen is that van den
Bergen does not cut the geometry.

Part of the approach used in this thesis has been discussed with Herman
Haverkort. Haverkort’s thesis partly focusses on the data structures whereas
the thesis of van den Bergen partly focusses on applying these structures within
the context of collision detection.

4.4 Physical simulation

The way motion should be handled is similar to the way David Baraff describes
it in [2]. The paper primarily deals with what should happen after a collision
has occurred. In [2], Baraff abstracts from the asymptotic precision of the
motion. This is doable, since the collision detection method used is discrete.
Additionally binary bisection is used to approximately find the time of contact.

In [7], Erin Catto presents an iterative algorithm that is able to compute
constraint forces between rigid objects. The constraint forces are determined
by an algorithm that is based on projected Gauss-Seidel. A simplified friction
model is used. The algorithm runs in linear time, linear with respect to the
number of constraints. Catto does not consider constraint impulses explicitly.
In [4], impulse constraints are described. In order to construct a rigid body
simulation, you do need impulse based collision response.

27

5 Proposed Continuous Method

The method proposed in this section is based on Feature-Testing, Interval-
Arithmetic/Taylor-Lagrange based inclusion functions, Taylor-Lagrange based
root-finding and Bounding-Volume-Hierarchies.

Constructing a continuous collision detection system based on interval arith-
metic seems to be a conservative choice. Interval-arithmetic is a logic based
construct with which one is able to prove certain properties of functions. For
example: “Function f does not contain a root in domain D.”. Such facts can
be used in order to make safe assertions about intersections of certain features.

When using real numbers, we have to deal with approximations of real num-
bers called floating point numbers. Collision detection systems based on in-
terval arithmetic, in particular root-finders based on interval arithmetic seem
quite capable of doing this. They are stable in the sense that a reliable result
is computed every time such a root finder is used. Within the context of this
thesis interval arithmetic is used in a way that does not account for floating
point rounding. Thus strictly speaking, facts derived with interval arithmetic
within the context of this project should not always be taken as absolute facts.

It is difficult to label root-finding based on interval-arithmetic as being
“slow”. The word slow can be used in different contexts. Within the context of
this thesis, one of the goals is maximize computational efficiency.

5.1 The 2D case

Before reading this section, it is required that the reader is familiar with the
background section (especially Section 3.3.1).

5.1.1 Brute-Force 2D Continuous Collision Detection

In 2D, within the context of this project, an object is defined as a set of edges.
The edges are defined locally in object space. Imagine two of these sets, defining
two objects, each having a certain pose. Of course these two objects are ani-
mated. The animation of a single rigid object can be seen as a time-dependent
transformation from local object space, to world space. This 2D transformation
is described in Appendix A.

An edge is an ordered list of two points. We thus have two kinds of objects:
point and line-segment. If and when two objects have collided at t = TOC, there
can be one or multiple contact points. The method proposed here is capable of
retuning one of these contact points (and associated contact normal).

With 2D continuous collision detection, one can make the observation that
when two objects are in contact. It is always the case that a vertex of object A
is touching a line segment of object B or that a vertex of object B is touching
a line segment of object A.

The property above is fully exploited in order to find the TOC in a brute
force manner. For each vertex of object A one has to test whether it will hit any
of the edges of object B and vice versa. If one wishes to determine the TOC,
then one simply picks the minimum TOC of all feature/feature combinations
(see Figure 8).

Note that in Figure 8, the shapes are convex. With this method the shapes
are not required to be convex.

28

A

B

Figure 8: Brute forcing all combinations.

In order to be able to compute the TOC, one must also be able to compute
the TOC of an animated point and an animated line segment. Within the
context of this project, in the 2D case, this is done with interval arithmetic.

5.1.2 Interval Arithmetic based Root-Finding

As described in Section 3.3.1, in order to devise a continuous test, one has to
construct a distance function. This distance function can be very complicated,
and that is why it is very difficult to use analytical techniques to solve the roots.
In Section 3.3.1, a motivation is given to use interval arithmetic in order to solve
the roots of such a distance function.

The distance function we have to solve denotes the distance between a
point and an line (both subject to linear translational and linear rotational
motion). The motion type is listed between parenthesis, because it is possible
to abstract from the type of motion. A moving line is defined by two (differ-
ent) parametrized point trajectories, and a moving point is defined by a single
parametrized point trajectory. It is possible to derive an optimized parametrized
distance function for a specific kind of motion, or it is possible to supply point-
trajectory functions to the distance function in order to compute the distance
dependent on time while leaving the motion type customizable.

The latter is done within the 2D phase of this thesis. By simply defining the
motion of a point as is done in Appendix A, it is possible to sample distances

29

at certain moments in time as done in Appendix B.2.1. Note that in Appendix
B.2.1, also two time derivatives of this distance function are derived. Within
the context of this project, in the 2D phase, no time derivatives were used in
order to find the roots of points and lines. The time derivatives can be used to
optimize the root finding though. More on this will be written in Section 5.2.

For the reader that is totally unfamiliar with interval arithmetic, the basic
concept of interval arithmetic is described in Appendix D.

It is possible to construct an interval-arithmetic based root finder that takes
a distance function, a time domain and an time epsilon value as input. The
function will return a small domain r, rupper − rlower < εt that is likely to
contain the first root of the distance function within the domain.

As said in Section 3.3.1, not all roots are considered to be intersections.
After a root has been reported the root has to be tested for inclusion within the
line segment. Only then, the root can be reported as a real contact between a
point and a line-segment.

In 2D is it quite doable to make a conceptual simplification to the root
finder. Instead of supplying a distance function, a domain and an epsilon, it is
sufficient to supply a boolean function, a domain and an epsilon. As you may
have guessed, the boolean function is there to indicate intersection.

Let the boolean function be defined as follows: b : IR 7→ B. When given a
time domain, the boolean function indicates whether the the two features could
be intersecting. As the span of the input domain of the function converges to
0, the boolean function becomes exact. Meaning that when the input domain
is larger than 0, the function may return false-positives.

There is quite some rationale behind this, if the input time domain span is
0, then the function is just the result of a static collision query. As the domain
gets larger (i.e. non-zero), the boolean function can be thought of as a static
collision detection query on two swept volumes (allowing for false positives).

Algorithm FindFirstRoot(b, d, εt)
1. f ← dupper
2. while true
3. q ← b(d)
4. if q
5. then if dupper − dlower < εt
6. then return d
7. d← [dlower,

dlower+dupper

2]
8. else
9. if dupper = f
10. then return nil
11. d← [dupper, f]

Floating point issues regarding this root finder

The parameter εt may get arbitrarily small. Actually εt may even reach 0. In
the latter case, the code that is listed above does not work. It is actually already
possible that the code above fails when using reasonably small epsilon values.
This is due to the fact that the floating point expression m =

dlower+dupper

2
does not always obey dlower < m < dupper. In fact, it may be the case that
m = dupper, in this case, the search domain will not converge.

30

In order to cope with this, some additional code has been written to select a
floating point value m that does obey dlower < m < dupper. It may be the case
that such an m does not exist, i.e. when dupper is the successive value of dlower.
In this case, it is no use to iterate further to gain more precision. Because we
are in a case where q holds, it is allowed to simply return d as being a very small
domain.

A boolean function

For those who are interested in to see how the edge-point boolean function
looks like, the code that was used within the 2D project is listed in Appendix
H. Note that this example does not use the derivations made in Appendix B.2.1.
The construct differs from Appendix B.2.1 in the sense that a transformation
is made such that one object is fixed (see Figure 9). In Appendix B.2.1, the
problem is solved in world space. The advantage of working in world-space is
that it doesn’t cause much confusion when dealing with derivatives.

Figure 9: Two objects under linear translational and linear rotational motion,
viewed from object B.

As can be seen in Figure 9 and in Figure 2, the contact normal is easily
computed once the two features that cause the contact are known.

31

5.2 The 3D case

In 3D things are a bit different. Instead of having edges and points, now we
have points and convex polygons. Because of the topology of a model, it seems
to be rather in-efficient to just test all polygon/polygon combinations. This is
because polygons share vertices and edges.

The convex polygon can be decomposed into the following three components:

• point

• line

• plane

If we take all distinct sets of size two from the set above we get a set of
cardinality 6:

• {point, point}

• {point, line}

• {point, plane}

• {line, line}

• {line, plane}

• {plane, plane}
Now we have to prune the combinations that do not make sense. Can a point
collide with a point, in an artificial setting it is possible. However, leaving out
these kind of collisions does not seem to hurt. In 3D, a point/line collision can
be also be considered to be artificial. A point and a plane can definitely collide,
and following the same criteria, a line and a line can also collide. A plane is
considered to have an unbounded surface. Whether two planes intersect is a
matter of them being parallel or non-parallel. This is non interesting in the
context of this application. Likewise the TOC between a line and a plane also
does not make much sense2.

Two types of computations will remain:

• point/plane TOC query

• line/line TOC query

Note that the remaining computations apply on lines and planes instead of on
edges and polygons. What we really would like to know is the TOC between
a point and a convex polygon or the TOC between two edges. This result is
obtained in a similar way as done in the 2D case. First the TOC of a point
and a plane is computed. When this result is known, a static test is done to
determine whether the TOC is also the TOC of a point and a polygon associated
with the plane in question. The same applies for line/line tests. First the TOC
is computed of two touching lines. Later, a static test is preformed to see if this
TOC is indeed the TOC of two intersecting edges.

2When the line is a parametrized equation, then one can solve for a time of contact. This
is a different application though.

32

There are multiple ways to solve the line/line intersection problem. One
way is to assume that the lines are co-planar, and then solve the problem in
2D. The way this problem was solved within the project associated with this
thesis is that the line segments are enlarged because there is uncertainty about
their ending points. Once the lines are enlarged, one can use rectangle/rectangle
tests, rectangle/disk tests, and disk/disk tests, see Appendix C.

Again, distance functions are used in order to compute the distance between
the features. To be complete, the word distance can be omitted. Because we are
only interested in the roots of such a function, it does not matter much if the
function actually represents the distance between the features. So we abstract
a bit further, and construct functions of which the roots are of interest. In
Appendix B.2.4, the distance function between a point and a plane is derived.
The point and the plane can have a customizable type of motion.

In Appendix B.2.3 a function is constructed that yields a scalar for any
configuration of two lines. Whenever this scalar is 0, then the lines are either
intersecting, or they are parallel. Also this derivation abstracts from the type
of motion.

There exists the notion of plane space. I.e. a coordinate system that is
uniquely defined by a plane in e.g. the space of object B. By using homoge-
neous 4× 4 matrices, it is not that difficult to construct a transformation that
transforms a point in the space of object A to the plane space of object B. If a
point is in plane space, then the z−coordinate simply measures the Euclidean
distance to the plane. The xy−plane in plane space represents the plane itself
(after being rotated and translated). When raising the latter transformation
to an interval arithmetic transformation (instead of taking a time parameter it
takes a time interval parameter, see Appendix D), we can transform a point in
A-space, to plane space. The result will be an axis aligned beam in plane space.
If this beam strictly does not intersect the xy−plane then we know that the
point does not hit the plane. If it does, then we can preform a test to check
whether the beam hits the polygon located on the xy−plane.

By using the basic root finder presented in Section 5.1.2, the TOC between
a point and a plane both under customizable motion can be approximated.

When using interval arithmetic, the bottle-neck definitely lies in interval-
multiplication. Interval-multiplication is very slow. This is because lots of “if”
statements are used in order to preform it.

Eventually in 3D the constructs in Appendix B.2.4 and B.2.3 were fully
exploited (including the derivatives). Before explaining the way the derivatives
were used, let us first explain why interval arithmetic alone is not adequate
enough.

Diverging computations

With interval arithmetic, a problem that will arise is that the computation
may diverge. Suppose that we have a large chain of computations. This can
be represented with a function (f : IR 7→ IR). If t is an interval with span 0,
interval arithmetic requires that the function results into a single value. Now for
example, assuming that the computation inside f(t) is elaborate, we can take
an tiny interval of e.g. a span of 2−16. This can actually result in an output
range having a span of 1. If this happens to be the distance between a point
and a plane, than obviously it is not sufficient to use a time epsilon of 2−16. In

33

order to make it work, the time epsilon supplied to the root finder has to be
made very small. So small that it is less worthy of being called efficient. One
would expect that making the input twice as small would cause the output to
also become twice as small. Visual inspection of colliding object shows that this
is not the case. One might expect that there are more simplistic ways to show
this. Indeed there are, however this approach has not been investigated.

To conclude the above, the initial 3D results using interval arithmetic were
disappointing. The collisions were only satisfying when using a very small ep-
silon. In this case, the collision rate would drop below an acceptable rate. The
slow performance is most likely caused by the slow convergence of the interval
arithmetic based root finder.

5.2.1 A root finder based on Taylor’s theorem with the Lagrange
remainder

The initial design of this root finder is presented in Appendix G. The method
uses the “distance” function itself, its first time derivative and its second time
derivative over an interval in order to compute two parabolas that bound the
function (see Figure 10). The function is sampled at a certain moment in time.
Likewise its first time derivative is sampled. Next we determine a span in
which we want the bounding parabolas to be valid. We sample the second time
derivative over this time span. When sampling a second time derivative over
a time span, we get an upper bound and a lower bound for this value. The
upper bound determines the curvature of the upper bounding parabola and the
lower bound determines the curvature of the lower bounding parabola. It is
guaranteed that the function is bounded by the upper and lower parabolas (in
order to get an understanding of this see Appendix I).

The green lines represent interval arithmetic bounds on the 0th derivative of
the function (i.e. the function itself). Likewise the blue lines represent bounds
on the function that are determined by the parabolas. As one can see, the
blue (parabola-) bounds are not always tighter than interval arithmetic bounds.
They do get tighter as the size of the search domain decreases.

If the parabolas do not hit the horizontal axis within the time domain in
which they are valid, then the inner curve will also not hit the horizontal axis
within this time domain. If both parabolas intersect the horizontal axis (t = t6,
Figure 10) within the valid domain, then it is certain that the inner curve will
intersect the horizontal axis within that domain. These mathematical conjec-
tures are implied by the construct and can be used in order to speed up the root
finding that is done with plain interval arithmetic. A mixture of the method
presented in Appendix G and the interval arithmetic based root finder presented
in Section 5.1 has been used to solve roots within the context of 3D continuous
collision detection.

There exists a class of function inclusion methods called Taylor models.
These are explained in Appendix E. They differ from the function inclusion
method presented above in the sense that the vertical distance between the lower
bounding polynomial and the upper bounding polynomial is always constant.
In fact, a Taylor model is just a polynomial with vertical thickness making it
able to bound complicated functions.

The advantage of two bounding parabolas above Taylor-models is that the
thickness of the two bounding parabolas is 0 at the point where the function

34

t0
t1

t2

t3

t4 t5

t6

t7

Interval arithmetic upper bound

Interval arithmetic lower bound

Figure 10: The operation of the root finder.

and its time derivative are sampled. When computing the roots of the two
parabolas, one will always get some advancement (see Appendix G). This need
not be the case with Taylor models.

However, two bounding parabolas are conceptually more difficult to handle
than a single polynomial that is vertically fattened. It might be possible to
construct a root finder based on first order Taylor models that also uses binary
bisection that may be faster than the root finder constructed within this thesis.
When using two parabolas, one does not require bisection. Using both bisection
and bounding parabolas causes the root finder to converge faster though.

35

There exists one root finder that is similar to the root finder presented in
Appendix G and that is the Interval Newton method. The Interval Newton
method uses an upper bound and a lower bound on the first derivative in order
to bound the function curvature. The Interval Newton method has not been
investigated within the context of this project. A method based on the Interval
Newton method, might be capable of quickly finding the first root when only
one derivative is available.

However, a lot of thought has been put into this. Using the Interval-Newton
method, does not seem to be a right choice because the curvature of the functions
is not well approximated by a diverging slab (as is the case with the Interval
Newton method). Using the Interval Newton method will still remain an option
because it has not been tested.

Algorithm FindFirstRootHybrid(f, dfdt ,
d2f
dt2 , d, εt)

1. f ← dupper
2. while true
3. q ←IntersectingAtRoot(d)
(∗ Possible intersection ≡ q ∗)
4. if q
5. then gdomain ← f(d)
6. g ← f(dlower)
7. dg

dt ←
df
dt (dlower)

8. d2g
dt2 domain

← d2f
dt2 (d)

9. Construct a second order inclusion function i.e. two parabo-

las based on g, dg
dt and d2g

dt2 domain
.

10. q ← (0 ∈ gdomain)and(0 ∈ VerticalSpan(g, dgdt ,
d2g
dt2 domain

, d))

11. if q
12. then if the inclusion function does not intersect the horizontal

axis within d
13. then q ← false
14. else
15. if the inclusion function intersects part of the hor-

izontal axis within d
16. then adjust d to match the (first) intersection

(within the original d)
17. if q

(∗ Domain d is likely to have been adjusted. ∗)
18. then q ← IntersectingAtRoot(d)
19.
20. if q
21. then if dupper − dlower < εt
22. then return d
23. d← [dlower,

dlower+dupper

2]
24. else
25. if dupper = f
26. then return nil
27. d← [dupper, f]

It must be noted that the algorithm is more or less similar to the algorithm

36

presented in Section 5.1. The final lines of the algorithm, starting with line 20
are actually identical.

At line 5, a regular interval arithmetic query is preformed on the function
itself. This interval is converted to a boolean in line 10. If the boolean is
true, this implies that there may be an intersection. Lines 11 to 16 are added in
order to prune this possible intersection. First a check is done if the second order
inclusion function that was constructed, can be used to assert that there is no
intersection. If so, q is basically set to false and we preform a normal iteration
of the interval arithmetic based root finder. Note that just using this construct
already gives a considerable speed-up. However, when the inclusion function
is hitting the axis, the parts that do not hit the axis can be excluded. Recall
that in general a parabola may have two roots. Thus our second order inclusion
function may intersect, leave the axis, and then intersect again. However, it is
still possible to make safe bounds on where roots may or may not occur. One
can construct a lower bound for which it is known that the first root cannot
occur before that. If both parabolas are intersecting the horizontal axis within
the domain, one can also give an upper bound (see Appendix G). If we get an
upper bound and a lower bound, then the convergence of the root finder seems
to be very fast.

At lines 3 and 18, the function IntersectingAtRoot : IR 7→ B indicates
whether there is a possible intersection within the specified time domain.

The content of the function is specific to the type of query that is being
made. It can either be a weakened point/polygon query. Or it can be a weak-
ened edge/edge query. In both cases, the assumption that everything is within
the plane, reduces both the edge/edge intersection and the point/polygon in-
tersection, into two 2D problems.

Instead of first finding roots and afterwards pruning these roots, a different
approach has been taken to increase performance. The detection of roots and
the pruning of roots happens simultaneously. This seems to be an efficient
configuration.

Note that IntersectingAtRoot does not require any derivatives to be used.
The function name ends with “AtRoot” because one is allowed to make an
assumption that the features are co-planar. Note that IntersectingAtRoot , con-
siders a scene over a span of time, not at an instant. A moving vertex can
thus be seen as a axis-aligned bounding-box that contains the trajectory of that
vertex. When we consider two line segments, we are actually considering four
moving vertices. Deciding when two fattened edges intersect is not trivial. In
Appendix C, the case of four moving vertices is simplified into a 2D test.

Whether a moving point will hit a polygon, can be computed quite effi-
ciently by fixing the polygon into the xy−plane. The point trajectory will be
represented by a beam. If the cube’s z−coordinate spans through the xy−plane,
there may be an intersection. Next to this, the rectangle (as viewed through the
xy−plane, has to intersect with the polygon. The latter is done with the help of
cached-half-spaces. For each edge of the polygon a half-space is precomputed.
One can easily test for the inclusion of a point in the polygon. The problem
is that we need a rectangle in polygon test. Thankfully this problem is solved
quite easily. The measure for the distance to an edge is a direct computation
that only uses addition and multiplication. Replacing the point by a rectangle
in IR2, fixes the problem. Instead of yielding a scalar, representing the distance
to the line of a line segment, an interval is produced that bounds the previously

37

mentioned quantity.

Floating point issues involving the hybrid root finder

This is the point where the root finder becomes less clean. The interval arith-
metic algorithm presented in Section 5.1 has some floating point issues, but
these have been resolved in a neat way. This is not really the case with this root
finder. The roots of the parabolas that are used are subject to some error. The
way this has been resolved is by subtracting an epsilon from the lower-bound
and afterwards clamping it to the original domain d. Likewise the upper bound
is incremented with an epsilon and clamped to domain d. This may seem like
a good solution, however there is little that safeguards correct operation of the
root finder in extreme situations. This is because the epsilon values that were
used have been guessed. The epsilon value is dependent on the shape of the
parabolas.

In practice the root finder does quite well. But making the epsilon twice as
small causes the root finder to miss roots in a very incidental basis. Luckily,
where the parabolas fail (in accuracy) the interval arithmetic takes over. Where
the parabolas are incapable of determining a finer interval, the interval arith-
metic algorithm can keep cutting the domain into parts until the “bottom” of
the arithmetic has been reached.

Loss of significance

The roots of a parabola can be computed in a “naive” way using the quadratic
formula as is done within the context of this project. However, one may argue
that there exist better ways to compute the roots of a parabola. Some effort
has been undertaken to account for loss of significance. However, accounting for
loss of significance is rather troublesome, due to unfamiliar mathematics and
new degeneracies that arise trough doing so. One might even want to consider
using a library (written by an expert) to compute the roots of a parabola3.

Degeneracies

There are lots of degeneracies that may occur when implementing the root
finder above. One of them is very awkward, and causes the system to become
very slow. The system, as presented above assumes that the function which is
supplied incidentally intersects with the horizontal axis. What if the function
would be a line that would endure intersection with the horizontal axis over a
period of time. One can argue that such a situation would not show up, and in
many tests it did not show up. However, when resorting to randomized tests,
this degeneracy did show up, causing the system to become extremely slow. It
used to be extremely slow because an entire range of roots had to be declared.
It is already slow to basically iterate over these roots. Computing them is just
a waste of computing power and it serves no purpose.

In the system, enduring roots translate to the following two situations:

1. A vertex moving tangential to a plane (on that plane).

3The solution on http://en.wikipedia.org/wiki/Loss_of_significance does not seem
to suffice, due to degeneracies that are not treated.

38

http://en.wikipedia.org/wiki/Loss_of_significance

2. Two parallel edges that move while remaining parallel.

3. Enduring touch of crossing lines

If a vertex is moving as described in situation 1, then a possible collision
does not contribute much to our 3D collision detection system. This is because
it is only possible for the vertex to hit the side of a polygon. Because these
polygons are “infinitely thin”, and because such a collision should be covered
by the other features of the model, this type of collision can be pruned.

Situation 2 describes two parallel edges. In such cases these edges can pass
trough each other. Because edges are modelled as being “infinitely thin”, this
is okay.

The last situation (3), can either represent the enduring touch of two lines or
the enduring touch of two edges. Let us assume that two edges are in enduring
contact. It must be noted that the contact is enduring, i.e. the edges are not
passing trough each-other. This is the motivation for also ignoring this case.

How to solve the degeneracy described above has been the subject of exper-
imentation. The situation where the root finder is about to declare a root is
recognized, i.e. the function is approximately 0. If the slope of the function is
approximately 0 too, then the search domain of the root finder is skipped until
the function itself deviates from being approximately 0. The parabolas are used
to assert whether the function is approximately 0 over a domain.

The observant reader might have noticed that the declaration gdomain ← f(d)
was used within the hybrid root finding algorithm. This construct can also be
used to assert that the function is approximately 0 over a domain. Thus there
are two ways to do this. Both the parabolas and the sampled interval bound
the range of the function over the domain. The parabolas usually happen to
be tighter, but not in all cases. Eventually, a bounding interval was computed
based on the parabolas. This interval was then intersected with the sampled
interval bound in order to obtain a better bound.

The degeneracy fix has not been incorporated in the algorithm within this
section. This is because the pseudo code is a simplification anyway.

Is this faster than Interval Arithmetic?

The answer to this question is yes. If the root finder is replaced by an in-
terval arithmetic solver, and when the first and second derivative computations
are removed, the system becomes 6 to 9 times slower.

5.3 Making the system Non-Penetrating

In the previous sections it is shown how to get an approximation of the TOC
with parametrizable accuracy. This parameter has the name εt (i.e. time based
epsilon). The problem with the conceptual system above is that the objects are
touching at the TOC. They can either be disjoint, touching or slightly penetrat-
ing. It would be preferable to limit the amount of penetration or disjointness
by being able to specify a distance epsilon (εd).

39

5.3.1 Limiting the amount of deviation

Time and distance happen to be related by the concept of velocity. It is possible
to compute an upper bound for the worst case relative velocity between two
objects.

For each pair of leaves, it is possible to give an upper bound for the relative
velocity in between. This upper bound can be tight, but it is not required to be
tight. Computing this upper bound (a positive scalar) is actually a very cheap
computation.

Using this cheap computation, it is possible to compute a lower bound for
the time epsilon i.e. εt = εd

relativeVelocityUpperBound .

The root finders presented earlier return a domain instead of a single value
as a root. By taking the lower bound of the domain that is retuned, the error
is biased towards non-penetration. The lower bound may still penetrate due to
arithmetical errors (floating point values are rounded to even meaning that the
bounds of the root are not strict bounds).

In the conceptual model, εt = h means that that the lower bound of the root
that is returned does not deviate more than h time units from the actual root.
Within these h time units, a relative distance of at most
εd = h · relativeVelocityUpperBound can be covered in any direction.

5.3.2 Take a step back

By considering the above, in most cases the system does not cause penetration.
However, due to imprecise rounding of floating point values, this may be the
case. In order to cope with this and to make the system strictly non-penetrating,
strictly non-penetrating with the exception of possible bugs, we take a step
back in order to enforce non-penetration. Taking a step back is easily done by
decrementing the TOC and clamping it to the non-negative domain afterwards.

However, we want the two objects to be at least εd units apart. At the
non-decremented TOC, there is a contact point, and an associated contact nor-
mal. The relative velocity between the objects can be computed at this point.
This vector can be designated with the name “impact velocity”. This vec-
tor can afterwards be measured along the normal of the contact point (using
the dot product). It is thus possible to measure the impact velocity in the
direction of the contact normal. We can compute δTOC as being a first or-
der approximation δTOC · impactVelocityDotNormal = εd. Thus δTOC =

εd
impactVelocityDotNormal . We can thus state that TOC = TOC ′+ δTOC or

TOC ′ = TOC − δTOC (such that TOC ′ is non-negative).
Note that the approach discussed above is not perfect (see Figure 11).

Though in practice very decent results can be obtained by using it see Sec-
tion 7. The situation has been simplified for illustrative purposes (in general
the face is not static). Note that d is the distance between both objects if one
object were to consist out of a single vertex. Although in theory the picture
may get worse, in practice it does not. The difference between the actual point
trajectory and its first order approximation based on the impact velocity is neg-
ligible. If the angle of impact has a cosine of 1, then the result is almost perfect.
The steeper the angle gets, the bigger the factor in difference between εd and d
may get.

40

ǫd

n̂

static face

point trajectory

d

Figure 11: Figure illustrating that the separation distance may be a lot bigger
than εd.

One detail that is important to mention is that the variable
impactVelocityDotNormal is always positive. If there is a collision, the rel-
ative velocity at the point of impact should always be headed towards pene-
tration. If this is not the case than this means that the contact normal has
to be flipped and and that the variable impactVelocityDotNormal has to be
negated, effectively causing the contact normal to have the right orientation and
the impactVelocityDotNormal to always be positive.

Because the direction of normals on edges is rather ill defined and because
faces can collide with their back-sides, postulating that the variable
impactVelocityDotNormal is always positive seems to always make the contact
normals consistent.

5.4 Improving Performance

Up until now, 2D and 3D continuous collisions have been discussed in a brute
force manner. This type of collision detection is also called raw collision detec-
tion. The approaches above fail when the number of features grows. It would
not be sufficient to just state that they are slower, the systems simply become
unusable when the number of features exceed a certain (low) threshold. The
quadratic complexity of the brute-force algorithm says part of it. It is actually
quadratic complexity with a big constant.

The performance has been boosted in two concrete ways:

1. Factoring the algorithm in such a way that the constant of the quadratic
term becomes smaller and the constant of the linear term becomes bigger

2. Exploiting the concept of Bounding Volume Hierarchies

As is not clear from the enumeration above, both are quite related. This is
because both methods rely on non-precise continuous sphere/sphere tests. Some
readers may find that continuous sphere/sphere tests are simple to preform.
Within the context of this project, the spheres have an off-center rotation, thus

41

making a continuous test significantly harder. Above, it is stated that an non-
precise test is used. This is because we are not that much interested in when
the spheres collide. We are interested in when the geometry collides that is
within the spheres. There’s little to gain if one is able to approximate the TOC
between two “bounding” spheres with an accuracy of e.g 1.0 · 10−10.

Let us start with discussing the bounding volume hierarchy that was used.
The bounding volume hierarchy itself i.e. the data-structure, in 2D is quite
similar to the data structure in 3D. Therefore less focus will be given on the
number of dimensions.

5.4.1 A custom Bounding-Volume-Hierarchy

When given a complicated model in 2D or in 3D, collision detection becomes
infeasible due to the high number of features. By chopping up the model into
tiny parts. We try to only test those parts that actually will collide. How
do we know which parts of the model will collide? It happens to be simpler
to ask which parts will not collide. The latter can usually be answered by a
computation of limited complexity for each part.

Figure 12: A bounding volume hierarchy. (The model is a parametrized cyclic
radial curve.)

As may still be difficult to see from Figure 12; there is a hierarchy of bounding
rectangles. The outer rectangle bounds the entire model. One may also be able
to see green circular shapes around the geometry. Actually, there is a big disk
bounding all the geometry (which may be invisible due to the type of blending
that was chosen). The disks that are drawn around the geometry are minimal.
If one is able to construct minimal spanning disks for a set of points, one is

42

capable of constructing minimal spanning disks around edges. In 3D a similar
statement holds about spanning spheres and polygons.

Note that finding a minimal spanning disk is a classic geometrical problem.
It is described in [10]. Due to the complexity of this problem, one might be
persuaded to fit a disk around a bounding rectangle. This will lead to an infe-
rior bounding-volume-hierarchy, and this is not the approach taken within this
thesis. Alternatively a 3D minimal spanning sphere algorithm can be derived
from [16]. Both the 2D and the 3D algorithm look very similar.

Floating point issues involving the minimal spanning sphere/disk al-
gorithm

Implementing these algorithms is not easy. In fact the implementation done
within the context of this project has certain unresolved degeneracies. When-
ever such a degeneracy occurs, the algorithm is terminated (by throwing an
exception). Because the implementation will only fail in extreme cases, and
because the construction of the disks/spheres occurs at start-up, this is not a
big issue. In practice these awkward degeneracies almost never occur.

It is most likely, that these degeneracies are floating point based and have
nothing to do with the classic description of the algorithm. As [16] states, the
problem requires rational arithmetic to be solved. A quick floating point imple-
mentation should be avoided. When one is capable of using rational arithmetic,
the implementation should be doable, when guided by [10] and [16].

During the span of this project, using CGAL or Computational Geometry
Algorithms Library has been reserved as a back-up option, if implementing the
minimal spanning disk/sphere algorithms would fail.

Cutting the geometry

Let us now give an explicit description on how the bounding-volume-hierarchy
is partitioned. We start by fitting a minimal axis-aligned bounding rectangle (or
bounding-box) around our model. Then we take the broadest dimension, and
cut the model into two equally-sized parts. We create bounding boxes around
the newly created parts and re-fit them such that they are minimal again. For
our new two models, this process will go on recursively.

Because we are using axis-aligned bounding-boxes/bounding-rectangles, we
are using an R-tree (as described in Section 3.4).

The partitioning of the geometry has to stop. It is not possible to simply give
a upper bound on the number of polygons that may be present within a node
in order to terminate the partitioning. In fact, it is possible to show, that with
certain constructs, the number of polygons does not decrease. Sadly, one has to
resort to more rigorous methods in order to stop the tree from exploding. One
stopping criterion is that the maximum tree depth may not exceed 17 levels.
Another stopping criterion is that when a leaf has a reached a certain size and
the number of polygons is 4 or less, the partitioning must also stop.

The size criterion seems rather artificial. In practice, the size criterion forces
the partitioning of polygons that are big. Whenever a section with a one big
polygon (O(1)) collides with multiple sections with small polygons (O(n)) , we
will still get a time complexity of O(n), which is still not really acceptable. By
partitioning the big polygon into smaller parts, the bottleneck involving these

43

kind of collisions is reduced. Actually what will happen in the ideal situation is
that O(n) is reduced to O(1).

A downside of the size criterion is that there is an additional parameter that
influences the performance of the collision detection system.

Now that the geometry has been cut, for each node, a minimal spanning disk
or sphere is computed. The computation of such an object takes O(n) expected
time, where n is the number of vertices of which the geometry is composed.
Each node represents the geometry of a model. The tree is built top-down.
I.e. initially, the minimum spanning disk/sphere is computed around the full
geometry. Then the geometry is cut into two parts, and the two minimal-
spanning disks/spheres are computed for each part. Thus for each node, the
minimal spanning disk/sphere is computed.

That each node represents the geometry of a model, does not mean that at
each node geometry is stored. The geometry is stored only once, at the leaves
(cut into pieces).

Quality of hierarchy construction

It is difficult to state much about storage requirements, and about the time
it takes for the hierarchy to be constructed. It might be that these are asymp-
totically different for 2D and 3D. However, if we assume that the complexity
of the geometry that is stored will only increase by a constant after chopping
it up, then it is possible to make nice claims about the time complexity of the
construction of the hierarchy.

If the latter assumption is true (it is just a guess actually), then because
the depth of the tree is bounded and because the expected time of the minimal
spanning sphere construction is O(n), this would imply that the (bounded)-tree
can be built in linear expected time.

It should be noted that the above is quite deceptive. That the tree height is
bounded is actually a weakness of the system. This weakness might cause high
detail models having a highly variable level of detail to preform poorly. Yet
this disadvantage is used to show that the asymptotic construction time is quite
acceptable, while in practice the construction of the bounding volume hierarchy
is slow, due to the usage of robust but inefficient ways of implementation.

Constructing two hierarchies in 3D for two 100K triangular models takes
about a minute. In 2D, when supplying a set of random edges (instead of a set
with decent topology), the construction time seems to explode. In this case, it
seems to be that our uncertain assumption about the complexity of the geometry
within the leaves is false.

It should be noted that in principle it is possible to pre-process the hierarchy
and store it on disk. If the hierarchy would be stored in memory in an efficient
manner, this might actually improve the performance of the continuous collision
detection algorithm that reads from the hierarchy. Currently the way in which
the hierarchy is stored in memory seems to be rather poor, i.e. each node of the
tree has a memory address defined by a new memory allocation. The alternative
is to use a single memory allocation to store a range of nodes.

44

5.4.2 An approximate sphere/sphere test

The proposed collision detection system relies heavily on approximate sphere/-
sphere tests. The preliminary 2D version of the system, uses approximate
disk/disk tests, but these rely on the usage of Taylor models. The eventual
sphere/sphere tests that were used rely on the same function inclusion method
that was used with the Taylor-Lagrange based root finder. There is no real good
reason for the two approaches to be different, apart from the 3D approach not
being propagated into the 2D project. The 3D approach involving second order
Taylor-Lagrange-based models seems to be prettier than the 2D Taylor-model
based approach.

It should be noted that the terminology of inclusion functions is rather con-
fusing. Taylor models have been used in literature, and therefore the usage of
the name is clear. Taylor-Lagrange-based inclusion functions rely on both Tay-
lor’s theorem and the Lagrange remainder. However, it must be noted that the
Taylor models used within the 2D project also rely on the Lagrange remainder
in order to bound the thickness of the models. Thus the naming is rather ar-
tificial. The original intent of Taylor models is that they are composed out of
analytical functions. Within the 2D context of this project, the Taylor models
are developed in a different way (similar to the way “Taylor-Lagrange models”
are developed).

2D linear Taylor models

Suppose that we have a point, undergoing some kind of motion. We can
construct a model that is valid along a certain time interval that bounds this
point. This point trajectory can be seen as a parametrized vector function i.e.
p : R 7→ R2. For each of the two dimensions we can imagine a Cartesian system:
pi : R 7→ R, i ∈ {1, 2}. Within this Cartesian system, we will see some function
plot. This function plot can be very complicated, i.e. it may have oscillations.
A linear Taylor model is simply a slab that is drawn around the Cartesian func-
tion plot. (A slab is simply a line-equation that is vertically fattened.) How do
we draw this slab around the Cartesian plot? Since we define our Taylor model
over an interval, we sample the function at the center of the interval. We sample
the derivative of the function on the center of the interval, and we sample the
second derivative over the entire interval (using interval arithmetic).

Next we draw a line tangential to the curve, trough the center of that curve.
Thanks to the Lagrange remainder (see Appendix F), the error between the
linearisation and the actual curve is made explicit. By using the bounds on
the second derivative that we have obtained, it is possible to construct a lower
bound and an upper bound on the error. These bounds are used to determine
the vertical thickness of the slab.

This is done for each dimension of our Taylor model. If two 1D, first-order
Tayor models bound the curve in the x− and in the y− dimension, than we
have a single 2D-Taylor model bounding our 2D curve. Note that these models
are computed in world-space.

In Figure 13, a snapshot of a moving shape is taken. The point indicated
with a red cross has a trajectory and the first derivative of this trajectory is
indicated with the blue line. The blue line only indicates the direction of the
first derivative since it is cut by the bounds of the picture. The beam-like shape

45

Figure 13: The beam-like shape represents a linear 2D Taylor model bounding
the trajectory of the point that is indicated with a cross.

bounds the trajectory of the point on the shape associated with the red cross
for approximately 0.5 seconds. If the time domain would be decreased, 0.25
seconds for instance, then the tightness of the bound would be roughly four
times better. This is due to the square sign that is present within the error
(thickness) of the linear Taylor models.

The description above is a bit incomplete. For instance, no hint is given on
how to compute the intersection of two 2D-linear-Taylor-models. The reason
why this section ends here is because the approach described here is not used
anyway.

The alternative (proposed) method for approximate sphere/sphere
intersection

Instead of constructing an inclusion function around a point in world space,
this method is similar to a continuous feature test. Suppose that we have a
point in the local coordinate system of an object that represents the origin of a
sphere. If we are able to sample the 0th the first and the second time-derivative
of the origin, both at a certain t or a given time span, then this information can
be put yo good use.

Given a sphere, and a trajectory of this sphere over a given time-domain, we
construct a data-structure called “SphereOverDomain” that stores a number of
things:

1. The radius of the sphere

2. The interval-origin of the sphere over the entire time domain

3. The interval-velocity of the sphere over the entire time domain

46

4. The interval-acceleration of the sphere over the entire time domain

5. The origin of the sphere at the beginning of the time domain

6. The velocity of the sphere origin at the beginning of the time domain

7. An axis-aligned bounding box bounding the swept volume of the sphere

Indeed, a lot of information is stored. Note that in order to obtain 4 one
first needs to compute 3 and 2. Also note that 7 is determined by 2 and 1.

The information above is pre-computed and stored, because it is used mul-
tiple times. It may be required to make a single sphere collide with a few other
spheres. If the information above would have to be computed twice for each
sphere/sphere combination, then this would cause an excessive amount of com-
putations. Note that by storing this information, we do not get an asymptotic
improvement in performance. Finding all collisions between n spheres still takes
O(n2) time.

Suppose that we have two “SphereOverDomain” structures for two spheres,
and suppose that we want to know the time of intersection between these two
spheres. Similar to the example in section 3.4, we can do a simple test to
avoid having to compute something difficult. Both bounding boxes of the swept
volumes of the spheres are located in world space. By performing a simple
bounding box intersection test, it is already possible to know that the spheres
will not intersect within the time domain.

Suppose that the boxes do intersect, then something similar happens as in
Section 5.2.1. Instead of using two lines or a point and a plane as primitives, it
is also possible to use two spheres in a continuous test setting. The difference is
that instead of applying a root finder as is done in Section 5.2.1, only a single
iteration is performed. For this single iteration, it is possible to use the precom-
puted values stored in our “SphereOverDomain” structure. In Appendix B.2.2,
a function is derived of which the roots describe the touching of the surfaces of
two spheres. Such a function can be composed using two “SphereOverDomain”
structures (requiring little additional effort). When the function itself, the first
time derivative and the second time derivative over the time domain is com-
puted, a second order Taylor-Lagrange based inclusion function is constructed
(like is done in 5.2.1). We thus get two parabolas that bound the function.

Instead of computing an approximate lower bound for the TOC, also an up-
per bound is computed for the time after which the spheres will remain disjoint.
Because the inclusion function is second order, this makes things a bit more
complicated (i.e. the spheres may intersect, be disjoint, and intersect again).
By using a few case distinctions, it is possible to account for all possibilities.
Instead of returning a TOC, the sphere/sphere query returns a possibly empty
time interval in which intersection may occur. Note that this result is an ab-
straction of the actual result.

When comparing the linear Taylor model approach with “SphereOverDo-
main” structure, the performance of both methods is the same (asymptotically).
Because the linear Taylor models are developed in the middle of the time do-
main, the worst case bounding quality is four times better (roughly stated).
However the bounding quality of the sphere over domain structure is perfect
when considering the begin of the search domain. Whenever the sphere over
domain structure is a “PointOverDomain” stucture, i.e. the radius of the sphere

47

is 0, and whenever t gets closer to the beginning of the time domain, the ap-
proximation gets better and better until it is perfect.

5.4.3 Traversing the hierarchy

Now that we have defined the bounding volume hierarchy, and because we have
a broad-phase continuous collision detection primitive i.e. an approximate con-
tinuous sphere/sphere test, it is possible to traverse two bounding volume hier-
archies simultaneously in order to perform continuous collision detection in an
efficient way.

Let’s first start with the beginning of the traversal. We have two trees
and each tree has a base coordinate system and a linear translational and linear
rotational motion associated with it. Thus we have two rotating and translating
trees. Both trees have a root node. Each (root-) node has a bounding sphere.
The origin of this bounding sphere is usually not the center of the object. First
we apply an approximate sphere/sphere test as discussed in section 5.4.2. There
are basically two possible outcomes. Either the approximate sphere/sphere
test indicates non-intersection. In that case, we are done. The other option
is that the approximate sphere/sphere test returns a time domain of possible
intersection. In this case, we have to search for collisions within the time domain
that was returned. The tree actually needs to be traversed.

Because the traversal of the two trees is a recursive process, this process is
best described with pseudo-code:

Algorithm Contact(aNode, bNode, aMotion, bMotion, d)
1. if aNode is an empty leaf or bNode is an empty leaf
2. then return nil
3. epoch← dlower

4. d← [0, dspan]
5.
6. aMotion.Integrate(epoch)
7. bMotion.Integrate(epoch)
8.
9. nodePairList← []
10. result← nil
11.
12. if aNode is a leaf and bNode is a leaf
13. then Preform raw collision detection on both leaves within domain d on

aNode and bNode using aMotion and bMotion.
14. result← the TOC of the raw collision detection process (can be

nil).
15. else if both aNode and bNode are not leaves
16. then Both nodes have two children. I.e. two spheres.
17. For each node, construct two “SphereOverDomain” structures.
18. I.e. one structure for the upper child and one structure for the

lower child.
19. There are four “SphereOverDomain” structures in total.
20. Each child of node aNode can collide with each child of bNode.
21. Thus there are four combinations that can collide.
22. Add all four combinations to nodePairList.

48

23. else if aNode is a leaf and bNode is not a leaf
24. then Now we have an asymmetric situation.
25. Construct a “SphereOverDomain” for aNode
26. Construct two “SphereOverDomain” structures, one for the lower

child of bNode and one for the upper child of bNode.
27. There are thus three sphere over domain structures.
28. Also, there are two possible interactions.
29. Add the two possible interactions to the node pair list.
30. else if aNode is not a leaf and bNode is a leaf
31. then Construct a “SphereOverDomain” structure for bNode.
32. Construct two “SphereOverDomain” structures for the two chil-

dren of aNode.
33. Add all two interactions to nodePairList.
34.
35. For each element within nodePairList compute the domain of intersection

(may be empty) using the approximate sphere/sphere test. And store this
domain of intersection within the same element.

36. Prune the entries in nodePairList that have an empty domain of intersec-
tion.

37. These entries can be considered non-colliding.
38.
39. if Size(nodePairList) 6= 0
40. then Sort nodePairList on approximate TOC ascendingly.
41. The approximate TOC is the lower bound of the domain of inter-

section.
42.
43. maxTOC← dupper
44.
45. for i← 1 to Size(nodePairList)
46. do if result 6= nil
47. then maxTOC← min{maxTOC, result}
48.
49. minTOC← the approximate TOC (lower-bound) of nodePairList[i]
50. timeOfNonContact← the time after which contact cannot

be regained within d considering nodePairList[i]
51. maxTOCforThisNodePair← min{maxTOC, timeOfNonContact}
52. if minTOC ≤ maxTOCforThisNodePair

53. then
54. a← the node of objectA associated with nodePairList[i]
55. b← the node of objectB associated with nodePairList[i]
56. newD← [minTOC, maxTOCforThisNodePair]
57. subResult← Contact(a, b, aMotion, bMotion, newD)
58. if result = nil
59. then result← subResult

60. else if subResult 6= nil
61. then result← min{result, subResult}
62.
63. if result = nil
64. then return nil
65. return result + epoch

49

Immediately it should be noted that a motion object, is actually a state of
the physical object. A state that is allowed to be advanced by integrating it.
The goal of the function above is to search for collisions within time-domain d,
between aNode and bNode, having aMotion and bMotion respectively.

Note that the “current” time is basically advanced to epoch. The advantage
of advancing the time is that the upper bound on the time domain gets smaller.
This seems to have a positive influence on the precision of the root-finder that is
used to perform the raw-collision detection. Leaving out the epoch translation
would be an option since the above is only pseudo-code, but a choice has been
made to approximate the actual code as close as possible. The cost of integrating
aMotion and bMotion a lot of times is negligible.

It should also be noted that the algorithm above is only about TOC queries.
TOC queries are the most important part of continuous collision detection. How-
ever, with a slight modification, i.e. interpreting result as a “ContactResult”
object instead as an element of R∪{nil}, it is possible to also query information
such as a single contact point and associated contact normal.

The response time of the above is indecent

When we want to collide two objects, and basically call the function preced-
ing Contact (i.e. the function testing the root-node spheres of both trees, a
function that has not been explicitly declared), then the user is likely to get a
extremely poor performance. The latter has to do with the fact that the time
domain d that is supplied is simply too large for the approximate sphere-sphere
tests. If the span of d is too large, then the parabolas bounding the distance
function are not tight enough. This may result in false approximate collisions
being declared by the approximate sphere/sphere test, or it may be the case
that the approximate TOC that was found is way too low.

If line 14 is replaced by result← 0, then we do not concern ourselves with
raw collision detection any more. In fact, all that is remaining is a bounding-
volume-hierarchy that is traversed, giving us a lower-bound on the actual TOC.
If a big domain is supplied to the root collision detection procedure and if we
are only concerned with the bounding volume hierarchy, then we can simply
observe the result of the approximate collision detection query.

What is immediately clear is that the objects have advanced only a bit, and
are totally not touching each-other. The continuous sphere/sphere tests are
conservative, thus the advancement is conservative (not the be confused with
conservative advancement). Because the time domain is too large, this will cause
big values for the second time-derivative interval of the Taylor-Lagrange based
inclusion functions. By making the time-domain smaller, the Taylor-Lagrange
based inclusion functions will produce a better bound.

This problem applies to both Taylor models and the Taylor-Lagrange based
inclusion functions. In the 2D project, this has been solved by simply picking
a constant c, and by chopping up the domain into c parts. Thereby executing
the recursive process many times, for a single collision. Some effort has been
undertaken to use multiple iterations for an approximate sphere/sphere test, but
this did not seem to be a good solution, due to the fact that by using a single
iteration, it is possible to re-use the “SphereOverDomain” structure multiple
times. Additionally it should be mentioned that the re-use of this structure
was only done in 3D. This can be seen as a clear reason why the 2D project is

50

non-optimal.
One might expect that executing the root collision detection procedure n

times, would multiply the time spent by O(n). This is definitely not the case.
Because the time domain is smaller for each call, this drastically improves the
bounding quality of the approximate sphere/sphere tests. Thus it is more likely
that children of nodes located close to the root in the hierarchy, indicate non-
intersection, excluding lots of potential collisions.

The next question is: how big should n be? This question is rather hard,
because it is not only dependent on the time domain, it is also dependent on
other factors such as the translational and rotational speed of both objects. Be-
cause we can consider the scene to be kind of dimensionless, it is also preferable
to take the relative complexity of the objects with respect to their size into
account.

Let us consider a simple example in order to explain this. Suppose that we
have two triangulated spheres each consisting out of m triangles. Suppose that
the spheres represent the earth and the moon. All units are based on meters.
Now suppose that we have a model of some miniature stellar set-up, that is
precisely identical, using the same triangular models but then scaled down. Of
course we want the miniature set-up to use the same n as the earth and the
moon. However, one cannot achieve this by simply considering the relative
velocity between both objects. It is unwanted that these two set-ups that are
more or less identical would have differing performance. In the current system,
the performance does differ, but this is due to the size stopping criterion of the
bounding volume hierarchy.

Attempts have been made to compensate for these phenomena. It must be
noted that this has been the subject of experimentation. It can be argued that
the function for determining n can be more efficient than it is now.

Algorithm ComputeN (aNode, bNode, aMotion, bMotion, d, constant)
1. secondDerivativeMagnitude← 0
2. secondDerivativeMagnitude← max{secondDerivativeMagnitude,
3. aNode.getMaxRadius() · ‖aMotion.ω‖22}
4. secondDerivativeMagnitude← max{secondDerivativeMagnitude,
5. bNode.getMaxRadius() · ‖bMotion.ω‖22}
6. wostCaseVelocityA← 0
7. wostCaseVelocityA← wostCaseVelocityA + ‖aMotion.ν‖2
8. wostCaseVelocityA← wostCaseVelocityA+aNode.getMaxRadius()·‖aMotion.ω‖2
9. wostCaseVelocityB← 0
10. wostCaseVelocityB← wostCaseVelocityB + ‖bMotion.ν‖2
11. wostCaseVelocityB← wostCaseVelocityB+bNode.getMaxRadius()·‖bMotion.ω‖2
12. worstCaseVelocity← max{worstCaseVelocityA, wostCaseVelocityB}
13. correctionScalar← max{secondDerivativeMagnitude·0.5, worstCaseVelocity}
14. minimumObjectRadius← min{aNode.getMaxRadius(), bNode.getMaxRadius()}
15. minimumObjectRadius← max{minimumObjectRadius, εm}
16. return max

{⌈
dspan·correctionScalar·constant

minimumObjectRadius

⌉
, 1
}

Where getMaxRadius denotes the maximum radius of an object with respect to
its center of gravity (this is not the radius of the bounding sphere). Line 15
is just there to prevent a division by 0. The variable constant is an arbitrary
constant that needs to be determined experimentally. It should be noted that

51

the function above has been determined by the application of trial and error.
There is some rationale behind the function, although it is not fully logical.

5.4.4 Capoeira mode

One may have noticed that in order to test the effectiveness of the bounding vol-
ume hierarchy, the raw-collision detection was omitted. This eventually yielded
a system that is very effective at computing a lower-bound for the TOC. Without
considering raw collision detection, this system already produced results that
were in some cases comparable in accuracy to the system that was benchmarked
against (Controlled Conservative Advancement). Because the system does not
consider raw-collision detection, which is definitely the bottleneck, the system
is faster at the expense of accuracy. This approximate method for continuous
collision detection may be useful in certain cases. Though there are cases in
which the method totally fails in accuracy (as described in section 7.4.1). This
approximate method is designated with the name Capoeira mode, named af-
ter the Latin-American martial-art in which one strives not to hit his or her
opponent.

Let us now list all the systems:

• Differentiate Twice Method (D2M)
This is the method presented in this thesis. You have to analytically dif-
ferentiate an arbitrary point on the object twice (with respect to time), if
you want a customized motion.

• Differentiate Twice Method, Capoeira (D2M Cappoeira)
This is the quick method discussed above.

• Controlled Conservative Advancement (C2A)
D2M is benchmarked against this system.

In Figure 14, one can see nodes of the tree at the levels 0 (top-left), 4 , 8
and 12. Note that the all the geometry of the (Stanford-) bunny is contained
within the nodes.

It is possible to pose the question whether Capoeira mode is a fully contin-
uous method. Capoeira mode does not miss collisions, though declaring false
positives is inherent to the method. With other methods like D2M and C2A,
the false positives of the system can be neglected as the distance epsilon of
the system converges to 0. Thus false positives of D2M and C2A are caused
by numerical inaccuracies, while false-positives of D2M Capoeira are caused by
both numerical inaccuracies and also because the model has been deformed (en-
larged). Within Section 7, D2M Capoeira is treated as if it is fully continuous.
The inherent deformations are accounted for as inaccuracy of the system.

For Capoeira mode, the function ComputeN is called in order to determine
the number of subdivisions. The parameter constant has been experimentally
minimized, such that the accuracy is within acceptable levels. In fact it is
chosen such that the accuracy does not improve significantly if it was raised.
This approach has shown to be very effective. It is that effective, that even
the precise collision detection system is based on Capoeira mode. The latter
statement requires additional explanation.

By first advancing the objects with Capoeira mode, it is possible to make an
additional optimization to the system. When the objects have been advanced,

52

Figure 14: Visualizing the D2M tree at different levels.

the remaining tiny part is handled by a continuous collision detection query, that
is capable of using raw collision detection. This remaining query is associated
with a much smaller domain. This query also uses the ComputeN function, but
with a different constant parameter. Actually, the constant is 512 times bigger
than the constant parameter used in Capoeira mode. Decreasing the size of the
time-domain for near-contact, seems more computationally efficient. Decreasing
the time domain, may help prune some expensive raw collision detection tests. It
may also shorten the time domain of the root finder, causing faster convergence.

There is one other reason why shortening the time span may improve per-
formance. That is because increasing the number of time-domains, causes the
recursive call to synchronize at fixed moments in time. To give a more concrete
example, suppose that at the two root nodes of A and B, all four children, from
two pairs of interactions (actually there can be four pairs of interaction, but
suppose these are pruned). What will happen is that the problem is split into
two parts. It may be the case that the part that is executed first returns a
TOC of 1.1, while the second part returns a TOC of 1.0, thereby discarding the
1.1 TOC and perhaps some additional effort to find a TOC that is between the
approximate TOC and 1.1. To state things briefly, the raw TOCs that are found

53

are not always found in the same order in which the algorithm is executed.
The approximate TOCs that are determined by the sphere/sphere tests,

cause the order of execution of the algorithm. Within literature [18], it is de-
scribed that the order of execution of such an algorithm can be determined by
the Euclidean distance between the nodes at a certain moment in time. This
approach has not been investigated within the context of this project. In the-
ory, using both the Euclidean distance and the approximate time of contact to
determine the order of traversal may lead to a better system.

Whenever two leaves collide, there is an additional construct that guards
against brute-force collision detection.

5.4.5 Brute-force optimization of raw-collision detection

The raw-collision detection procedure has a time complexity of Θ(Af ·Bf) (as-
suming that a feature test takes constant time). However, the time it takes can
be written as a quadratic polynomial. It is possible to make the linear term
bigger and the quadratic term smaller. This is done by caching the “Sphere-
OverDomain” structures for each feature within the leaf of object A and for each
feature within the leaf of object B. In practice, two vertex lists are constructed,
two polygon lists, and two edge lists, each element of each list containing a
“SphereOverDomain” structure that bounds the feature inside. We thus avoid
having to recompute these structures for each feature/feature interaction that
occurs. A continuous intersection test between two “SphereOverDomain” struc-
tures is relatively cheap. If there is no intersection, a really expensive raw feature
test can be avoided.

5.4.6 Reasons why the system is non-optimal

There are various reasons why the system can be improved upon. Some of them
are listed below:

1. There exist edges that are created by cutting the geometry. Some of these
edges are pruned after the construction of the hierarchy, but not all of
them. It is even allowed to prune edges of two adjacent polygons of which
the angle in-between is insignificant. By pruning all non-significant edges,
the system can be optimized.

2. The geometry is cut, in order to obtain a reasonably tight bounding volume
hierarchy. For example, a single triangle can be cut in many different parts
each fitted into a bounding sphere of a leaf node. Instead of storing the
geometry within the leaf nodes, it is possible to store the uncut geometry
associated with the hierarchy. Within each leaf node it would be possible
to make references to the geometry that falls inside. The geometry that
has been cut can be discarded saving lots of storage space. The hierarchy
(including minimized bounding spheres) remains.

3. In-efficient in-memory representation of the bounding volume hierarchy.
The bounding volume hierarchy was constructed with the focus on cor-
rectness and asymptotic construction performance. In practice the con-
struction is rather slow. This does not matter that much, since it only
needs to be done once for a rigid body. Then again, lots of C++ standard

54

template library components have been used like red-black trees to achieve
high levels of abstraction. However using these components comes at the
cost of lots of memory indirections. Reimplementing the bounding volume
hierarchy, considering item 2 and the cost of memory indirections could
decrease the construction time, the storage requirements and ultimately
increase the actual performance of the bounding volume hierarchy.

55

6 Constructing a Rigid Body Simulation

Now that a continuous collision detection system has been constructed, in order
to be able to make a simulation, one has to deal with three things.

1. Unconstrained Rigid Body dynamics

2. Resolving a collision with impulse

3. Sustaining a collision with normal forces

Instead of constructing a rigid body simulator that is capable of simulating n
rigid bodies, let us limit ourselves to two rigid bodies. Unconstrained dynamics
are debated in [3], as well as resolving collisions with impulse and sustaining
a collision with normal forces. However, 3 is solved using quadratic program-
ming. Because quadratic solvers can be seen as kind of specialized equipment,
it is preferable to use a linear (inequality) solver to obtain a solution. This is
done in [7]. In [7], Erin Catto uses a projective Gauss-Seidel solver in order
to solve 3. The method is generic in the sense that it is capable of solving the
contact forces between n rigid bodies. Any number of rigid bodies can be in
simultaneous contact, when solving the normal forces between these bodies, one
has to consider all the bodies.

That three bodies collide at the exact same moment in time is rather exotic.
Usually, when two objects collide, there is a single contact point at the TOC,
which can be used to resolve the collision with impulse. However, this is not
always the case. One can think of two cubes that are frontally colliding.

When gravity is present, it is not that uncommon, that three objects
share resting contact. This is not treated within this thesis.

If one chooses to use one contact point, the cube will bounce off, but not in
the way that is preferred. Instead of manipulating the linear velocity of the cube,
the angular velocity is changed. This change in angular velocity, will almost
immediately cause a second collision event. This collision event will compensate
for the change in angular velocity. Instead of getting one collision, we get
a sequence of immediately following collisions. This sequence of immediately
following collisions puts a strain on the collision detection system. Because of
this, it is preferred to determine all contact points between the two bodies, and
solve the impulse for all contact points simultaneously.

The problem of resolving a collision with impulses considering multiple con-
tact points is treated in [4]. Here they describe the rationale (the physics) of
how such a collision is resolved. They also give an algorithm that describes how
the impulses are computed. However, this description is rather vague, therefore
instead of using their algorithm, a custom algorithm is derived in section 6.2.

The algorithm in this section, is based on the physics described in [4], how-
ever instead of using the iterative algorithm that they suggest, a projected
Gauss-Seidel solver (Ax = b s.t. xi ≥ 0 for i ∈ {1 . . . n}) is used.

6.1 Determining contact points

When we have the time of contact, we need contact points. Actually, we need
contact-points and associated normals. The normals can usually be inferred,
however there are some complexities with edge/edge contacts.

56

6.1.1 Determining additional contact points in Capoeira mode

In Capoeira mode, there are two leaves that are close to each other. These leaves
are not necessarily spherical as one might think. In fact, they are the intersection
of many spheres. We do have an origin of the leaves that are hitting each-other.
One can compute the distance in between and multiply it by a constant factor
let us say 3

2 . Next a static proximity query is done to find all the nodes that are
nearby. The custom BVH that was constructed can also be used for proximity
queries on nodes. The construct is not entirely proper, but good results are
obtained.

“Do nodes overlap when they are enlarged?”.

Additionally, it must be noted, that for determining the normals of Capoeira
mode, a very primitive method was used. (I.e. it is not the method of choice.)

6.1.2 Determining additional contact points considering the full ge-
ometry

With the full geometry, things are less complicated. It is possible to query the
precise time of contact (not caring about minute penetrations). The next thing
to do is take a tiny step back, such that there is a minimum distance between
the objects. This can be done, because we already have one contact point and
associated contact normal. Taking a step back can be done by decrementing
the TOC the right way. Next a proximity query is performed. Both models are
enlarged. If the leaves overlap, the geometry inside is tested for approximate
intersection.

6.2 Solving the impulse for a number of contact points
between two bodies

It must be noted that this section leads to a linear system of which the solution
is iteratively clamped to the non-negative domain. The construct does not give
the right output for all input. This can be, because the solution is non-unique
or because the system does not obey the criteria for the Gauss-Seidel solver that
is used.

It seems that the approach described in [4], is better. The construct de-
scribed below guarantees nothing. Whereas [4] is written by experts. Their
construct (a numerical algorithm) is difficult to understand.

The algorithm below is the simultaneous application of Newton’s impact law
on multiple contact points. The solution, λi, is a vector that has non-negative
elements. Each element corresponds with a contact point and associated contact
normal. The construct is similar to the construct of [3]. The only difference is
that in this case multiple contact points are handled simultaneously.

We have two rigid bodies at the instance of collision. There are n contact
points at the approximate instance of collision. We only have to consider those
contact points, which are actually tending towards penetration, meaning that
their relative velocity is contrary to the normal direction associated with the
contact point.

To be precise; let the input be defined by the following values: p−A, L−A, p−B ,
L−B , mA, IA,mB ,IB ,xA,xB . Where p−O and L−O respectively denote the linear

57

and angular momentum of object O. IO and mO respectively denote the inertia
tensor and the mass of object O. Whereas xO denotes the centroid of object O.
Note that the orientation of the object is left out. This is because we assume
that the inertia tensors IA and IB are defined in world coordinates.

Let the contact points be defined as follows; let ci ∈ R3 be a contact point,
and let n̂i ∈ R3 be its associated normal. Let rO,i be the arm of contact point
ci with respect to object O. Thus rO,i = ci − xO.

Let v−O be the velocity of the centroid of object O before the collision has
been resolved, i.e. let v−O be 1

mO
p−O. Let ω−O be the angular velocity before the

collision has been resolved, i.e. let ω−O be I−1O L−O.
We can describe the velocity at a certain ci on a certain object. Since we

have two objects, we thus have two velocities at ci. The velocity of point ci can
be seen as the rate of change of ci with respect to time and with respect to a
certain object before the collision has been resolved.

We can thus define
dc−O,i

dt as v−O + ω−O × rO,i. Let the relative velocity at ci

before the collision be
dc−B,i

dt −
dc−A,i

dt . A criterion for any contact point ci with

associated normal n̂i is that (
dc−B,i

dt −
dc−A,i

dt) · n̂i ≤ 0, thus to have a tendency to
cause penetration.

Now that we have described the input, let us describe the output. The
output can be seen in multiple ways. Meaning that the output can have an
extended form (it can be seen as a collection of non-negative scalars i.e. λi, or
it can be seen as the difference in momentum (both angular and linear) of both
objects.

We want the objects to bounce off each other in an approximately correct
manner. This can be achieved by interpreting Newton’s impact law in a non-
conservative manner (as is done in [4]). For each contact point, there is an initial

relative velocity i.e. (
dc−B,i

dt −
dc−A,i

dt) · n̂i. Newton’s impact law is a statement

about the change in relative velocity: (
dc+

B,i

dt −
dc+

A,i

dt) · n̂i = −e(dc
−
B,i

dt −
dc−A,i

dt) · n̂i,
where e is the coefficient of restitution i.e. e ∈ [0, 1]. To give an example, e = 0
implies a plastic collision, whereas e = 1 implies an elastic collision.

In order for the moment of collision to be resolved, each contact point/normal
pair must exert a symmetric impulse on both bodies. Meaning that an impulse
applied on ci in the direction of n̂i acts on object B. And this same impulse will
act on object A in the direction of −n̂i. Let the magnitude of these impulses be
undetermined, and let us call these magnitudes λi. Because we have to solve a
magnitude, and not a scalar, we have the additional constraint that all λi must
be non-negative.

Let n be the number of contact points and let f : Rn 7→ R12 be a (lin-
ear) transformation that maps impulse magnitude to delta momentum. To be

explicit f(λ) = δs =

δpA
δLA
δpB
δLB

.

Let us be explicit on the meaning of δpO and δLO. Both are the difference
in momentum (δs) that is applied i.e. p+

O = p−O + δpO and L+
O = L−O + δLO.

Where p+
O and L+

O denote the linear and angular momentum after the collision
has been resolved. Stated otherwise s+ = δs + s−.

58

Let g : R12 7→ Rn3 be an affine transformation (i.e. having the shape Ax+b),
that maps the δs of both objects to a vector of relative velocities, corresponding
with all the contact points. Let h be a function that measures the relative
velocities in the direction of the associated contact normal.

We can now describe the system by using the three functions above:

h(g(f(λ))) = u. (2)

Subject to λi ≥ 0. Where u is a vector containing the resultant relative velocities
in the direction of the associated normal. These relative velocities are pre-
computed, by considering each contact point individually using Newton’s impact
law.

Let us first describe the linear transformation f . Let Ai be a row vector
having 12 elements:

Ai = (−n̂Ti ,−(rA,i × n̂i)
T , n̂T , (rB,i × n̂i)

T) (3)

Let the transformation f(λ) be equal to ATλ. The latter is true because of
the following equations:

δpA = −
∑

i

λin̂i (4)

δLA = −
∑

i

rA,i × (λin̂i) (5)

δpB =
∑

i

λin̂i (6)

δLB =
∑

i

rB,i × (λin̂i) (7)

Before describing transformation g, let us first describe the equations that
map the delta momentum to the relative velocities at the contact points. In
order to do this, let us first describe how to compute the values for v+

O and ω+
O .

v+
O = v−O +

1

mO
δpO (8)

ω+
O = ω−O + I−1O δLO (9)

We can define the relative velocity as
dc+

B,i

dt −
dc+

A,i

dt which equals:

(v+
B + ω+

B × rB,i)− (v+
A + ω+

A × rA,i) =
v+
B + ω+

B × rB,i − v+
A − ω+

A × rA,i =
v+
B − rB,i × ω+

B − v+
A + rA,i × ω+

A =
v+
B − rB,i × I−1B L+

B − v+
A + rA,i × I−1A L+

A =
v+
B − r∗B,iI

−1
B L+

B − v+
A + r∗A,iI

−1
A L+

A =
1
mB

p+
B − r∗B,iI

−1
B L+

B − 1
mA

p+
A + r∗A,iI

−1
A L+

A

Where r∗O,i represents a matrix that has the same effect as the operation rO,i×
. . .. It must thus be noted that r∗O,iI

−1
O is a matrix. The resultant equation can

be written in matrix form:

59

dc+B,i
dt
−
dc+A,i
dt

=

(
− 1

mA
E3, r

∗
A,iI

−1
A ,

1

mB
E3,−r∗B,iI

−1
B

)
s = Bis

+. (10)

Where E3 is the 3× 3 identity matrix. Note that Bi ∈ R3×12. The full matrix
B is thus an element of R3n×12. This can be rewritten into:

Bs+ = B(s− + δs) = Bδs + Bs− (11)

Our function g(δs) is thus defined as Bδs + Bs−. Note that the term Bs−

can be pre-computed.
Now we have n relative velocity vectors. These velocity vectors still need to

be translated into velocity scalars (in the direction of the associated normals).
This is done with the mapping function h or its matrix variant N.

Let N ∈ Rn×3n, and let it be defined as follows:

N =

n̂T1 0T 0T

0T . . . 0T

0T 0T n̂Tn

 . (12)

Our initial equation now translates to:

N(B(ATλ) + Bs−) = u. (13)

After rewriting this equation, this yields:

NBATλ = u−NBs−. (14)

The matrix NBAT can be precomputed, as can the vector u − NBs−. The
strategy is to solve λ under the criterion λi ≥ 0 by using a projected Gauss-
Seidel solver. It is unclear whether the system will converge to a unique solution.
This is sometimes not the case, because it may depend on the input. In [7] an
example of a set of redundant constraints is given causing multiple solutions to
be valid.

Although the system does not strictly fulfil the criteria that are required for
the projected Gauss-Seidel solver to work properly, it is possible to obtain good
results in practice. This may require a lot of tweaking though. Resting contact
is not treated well. In fact resting contact is modelled as tiny bounces, causing
the system to use too much processing power.

60

7 Results

7.1 Preliminary Setup

The initial results of this master project were as follows:

Consider two disjoint rotating objects in the plane. These objects
are fixed with their center of gravity to the horizontal axis. For each
moment in time (i.e. discrete moments in time), these two objects
are continuously pushed against each-other, in order to illustrate
the continuous collision detection method. What remains is a scene
of two rotating objects that are sticking to each-other (see Figure
15). This process was performed for two identical models of both
65536 edges and ran at approximately 200 collisions per second (on
average). This benchmark was preformed on a single thread on an
Intelr CoreTM i7-2670QM CPU @ 2.20GHz × 8.

Figure 15: Two “curved” objects that are pushed together.

One might have noticed that the initial results were results in the plane, thus
2D and not 3D. It would be a reasonably safe guess that performing collision
detection in 3D is computationally more expensive than performing it in 2D.
It should also be noted that this test does not involve continuous rotations,
although the visual result does imply that. However, the method implemented
fully supports continuous rotational and translational motion.

It is very questionable whether the preliminary test set-up is good. Each
frame, an entire time span of continuous collision detection is performed (in this
case, a time span of one second). The test can be altered to make the results

61

look better or worse. Adding e.g. continuous rotations has a negative effect on
the number of collisions per second.

Now, suppose that there is an animated scene that spans one second. And
suppose that in this one second, there is just one collision. Then most likely, all
of the non-colliding frame intervals will be very computationally efficient. The
actual collision may be very expensive, but on average, the “benchmark” may
still reach many thousands of frames per second.

This aspect of simulations has already been identified by many authors and
this is partially solved by denoting the computation time per frame (usually in
milliseconds). Little can be said about the preliminary results of this master
project. More aspects of the preliminary set-up can be described, however since
this has little purpose such a description is reserved for the eventual set-up.
Not much effort has been undertaken to make elaborate benchmarks of the 2D
setup.

7.2 Validation

Because it is very difficult to compare apples and oranges, the eventual result
of this project needs to be compared with an existing (state of the art) system
that will belong to the same class of systems as the system to be devised.

Controlled Conservative Advancement (C2A)

Controlled Conservative Advancement is a system that can preform continu-
ous collision detection on polygon soups. In [20], the authors do not explicitly
show that the method is capable of colliding two rigid bodies that are both
under interpolated rigid motion. When they present their method, they always
tend to keep one object fixed. This simplifies the problem up to a certain extent,
however their continuous collision detection application programming interface
seems to approximately give the right output when using two bodies that are
under interpolated rigid motion. Also the source code of their product suggests
that the method is intended to deal with two rotating and translating rigid
bodies.

Both C2A and the proposed method have to be comparable, they have to
solve exactly the same problem. Namely a TOC query between two rotating
and translating objects.

Box2D

Before this validation can occur, the system needs to be completed. Within
this project, this has been done in two phases, namely the 2D phase and the
3D phase. Initially it was the intent to verify the 2D result against a 2D con-
tinuous collision detection system called Box2D4. Because Box2D is an entire
2D-physics solution, and the 2D results of this project only incorporate collision
detection, Box2D as a whole is incomparable to the 2D results of this project.
The Box2D system seems well optimized, making it more difficult to separate
its components. Another aspect is that Box2D is optimized for the collision of
many simple objects, instead for the collision of complicated objects (which is

4http://box2d.org

62

http://box2d.org

a goal of this thesis). At least, a demo program of Box2D only shows simple
box-like shapes. If the system was well capable of colliding complicated objects,
then this would most likely have been demonstrated. Box2D is capable of col-
liding non-convex polygons however, the number of edges always seems to be
low.

Concrete results have been achieved in a 3D setting. The system that has
been devised, Differentiate Twice Method, is compared to Controlled Conser-
vative Advancement.

The Controlled Conservative Advancement source code is available for ed-
ucational, research and non-profit purposes. The system has been successfully
tested under Microsoft Windows using Visual C++ 9.0. Their code was written
in an almost system independent manner. Some include directives have been
changed in order to make them consistent with the unix file system. (I.e. a
change of lower/upper-case letters.) Apart from this, the code of the C2A li-
brary has not been changed. C2A is based on the PQP library version 1.3. The
version of C2A that has been used also carries the number 1.3.

The C2A library has been compiled with GCC 4.4.7.2 using the -O3 opti-
mization option in combination with the NDEBUG compile constant. The same
compile settings were used for the D2M system. Both systems were tested on a
single thread ran by an Intelr CoreTM i7-2670QM CPU @ 2.20GHz × 8 laptop
having 6 GB of RAM. The operating system that was used was Ubuntu Linux
12.10.

The C2A library contains a small benchmarking program. The original
intent was to run exactly the same benchmark. In their benchmark, two bunnies,
each having 69,664 triangles are continuously pushed against each other. To be
more precise, the benchmark consists out of approximately 300 frames. About
200 of them represent colliding contact, while 100 of them represent non-contact.

Each frame, consists out of a static bunny together with continuously trans-
lating and rotating bunny. Thus in their benchmark, only one bunny is actually
moving, although one may get a different impression while watching the end re-
sult. In version 1.3 of their distribution, only one bunny is continuously moving.
The other bunny changes orientation on a per-frame basis. The above seems to
imply that they have been over-simplifying the problem. This is not the case.
When making the rotation of the static bunny continuous, their system does
not fail. The performance of their system only slightly decreases.

There is however another construct in their benchmark, that does raise many
questions. Each frame is measured 10 times in a loop, presumably to achieve
accuracy in time-measurement. The benchmark shows very very promising per-
formance statistics. The performance of their system seems to be a bit exag-
gerated. The reason for this is that the number of tests is parametrizable. One
would expect that a decent measurement of time is obtained after measuring 10
times. Though their time measurement seems to lower very significantly (ex-
ceeding a factor 2), when the number of trails per frame is set to e.g 1000. This
means that the timer is either very inaccurate, or their is something wrong with
their setup.

The computational efficiency of C2A seems to get significantly better when
the number of trials is increased. The reason for this is not that obvious, but
when closely examining their source code, it is clear that the trials are non-
independent. After each trial, the closest pair of triangles is cached and used
with the new iteration. This causes the average timing of one frame to converge

63

to approximately 1.6 milliseconds, which is much faster than the system would
perform in the case of only one trial per frame.

Caching the closest triangle seems to be a good way to optimize the perfor-
mance of a collision detection system in general when the collisions are coherent.
But when the collisions are repeated in order to get a finer time-measurement,
it is not appropriate. Because of this caching, their exact setup has been dis-
qualified within the context of this thesis. When only timing once, their method
still performs way better (in speed) at their own setup.

7.3 The Benchmarks used in this Thesis

There are 40 benchmarks that measure the computational efficiency and accu-
racy of D2M, D2M Capoeira and C2A. The tests have been constructed in such
a way that the caching system of C2A is disabled as much as possible. This
seems fair, though the caching system does serve a purpose. In reality, it is
likely that a similar collision query can be performed multiple times (it depends
on the application). Coherency between collisions is explicitly not tested within
these benchmarks.

In order to make the tests as fair as possible, randomized tests are used,
which are also used in the C2A paper. The main API function C2A Solve
was called in all benchmarks. This function returns a lot of data. The only
value that was effectively used was the time of contact. This time was used to
integrate the motions of both objects (using code associated with this thesis).
Incidentally the distance between the two models, when using C2A reaches 0.
In this context, 0 means that the surfaces are touching or that there is some
penetration. The distances are measured with the C2A Distance function that
was included within the C2A library. The C2A distance function itself is based
on the distance querying function that was supplied with the PQP (proximity
query package) library.

Plots have shown that the motion of C2A is identical to the motion of D2M.
This is also illustrated in their paper. Though in practice the type of motion is
not identical at the floating point level.

Within the following context, the term random means pseudo random:

All the benchmarks consists out of two objects being thrown against
each other with linear translational and linear rotational motion.
Both objects move along an axis. This axis is picked at random (i.e.
a point on a uniformly distributed sphere). Both objects can initially
be either 4 units apart, or they can initially be 512 units apart. Each
frame simulates a collision that takes one second. Within this one
second, both objects are moved to the origin, meaning that they both
have a velocity of 2 units per second, or 256 units per second, yielding
a relative velocity of 4 or 512 units per second. Additionally both
objects also rotate. For each object, an axis of rotation is picked at
random (again a point on a uniformly distributed sphere is picked).
The objects are rotated along these random axis for an angle of 90
degrees. It is also required to mention that the initial orientation
of both objects is also chosen at random. In order to do this, an
element on the upper hemisphere of the unit quaternions is chosen
uniformly at random.

64

The above described just one frame of a benchmark. Note that such a frame
has a parameter, namely the kind of speed. The speed can be low i.e a 4 units
per second collision, or it can be high, i.e. a 512 units per second collision (not
considering the rotational velocity).

A single benchmark consists out of 256 high speed or low speed collisions.
Each benchmarks represents either D2M against C2A or D2M Capoeira against
C2A. The benchmarks involving D2M Capoeira happen to have odd index num-
bers.

Next to the speed, and whether Capoeira mode is used or not, the models
may vary. Within the 40 benchmarks that show the difference between D2M
and C2A, 4 models are used.

Tetrahedron (T) Bunny (BN)

Dragon (D) Buddha (B)

69,664 triangles4 triangles

100,000 triangles 99,732 triangles

Figure 16: The experiment setup, each test (arrow) is performed 4 times.

As can be seen in Figure 16, each combination of two (possibly non-distinct)
models is benchmarked. Each of these combinations is benchmarked four times.
This is because there exists low speed/high speed benchmarks, and non-Capoeira
mode/Capoeira mode benchmarks.

Also note the number of triangles of each model. In the bottom of the
picture, the models contain approximately 100K triangles, while in the top of
the picture, the models contain less. As an additional remark, it must be said

65

that all models are topologically closed. Meaning that from the outside the back
of a triangle cannot be reached. This is not a requirement for the D2M method
and neither is it a requirement of C2A.

It must be stated that in general, each frame of each benchmark is repeated
10 times, in order to improve timing accuracy. There is one exception though,
the tetrahedron versus tetrahedron benchmarks are repeated 1000 times, in
order to reduce the timing in-accuracy. With these tetrahedron benchmarks,
it is even questionable whether the diagnostic message that is passed via the
standard output slows down the process.

7.4 Highlighting the Benchmarks

When considering the benchmarks, the distances are measured using the C2A
wrapper around the PQP library. This library seems to measure the distances
with good precision. Contrary to the distances, the timings are inaccurate. This
is because the actual time it takes to compute the benchmarks is measured by a
clock. The scheduling of threads may cause the timings to be off by at most 4.0
milliseconds. For the tetrahedron versus tetrahedron benchmarks this is about
0.027 milliseconds (due to more precise timings).

7.4.1 The Low Speed Benchmarks

The concrete timing measurements for low speed collisions are summarized in
Figure 17.

 0.01

 0.1

 1

 10

 100

 1000

T/T T/BN T/D T/B BN/BN BN/D BN/B D/D D/B B/B

T
im

e
(m

il
li

se
co

n
d
s)

Benchmark

Box-Plot Timings of the Low Speed (4 units per second) Benchmarks

D2M
C2A

D2M Capoeira

Figure 17

These box plots denote the minimum, the lower-quartile, the median (black
stripe), the upper-quartile and the maximum time a collision instance took to
compute within a single benchmark. It must be noted that the plot is on a
logarithmic scale and that the dots represent the means of the distributions. As
is clear from the box plot, the timings may vary a lot, both between different
systems, but also between different collision instances of the same benchmark.
Note that in the tetrahedron versus bunny (T/BN) benchmark, the timings for
D2M may vary from 1.9 milliseconds, to 1.9 · 102 milliseconds. The box in the

66

middle is bounded by the lower and upper quartile. It can be stated that 75% of
the timings does not exceed 44 milliseconds (tetrahedron versus bunny, D2M).

Note that in the tetrahedron versus tetrahedron benchmark, C2A performs
outstanding in computational efficiency. In the worst case, it is about 170 times
faster than D2M and about 8.1 times faster than D2M Capoeira. In the same
benchmark, on average C2A is about 20 times faster than D2M and 2.2 times
faster than D2M Capoeira.

Depending on the type of application, one may be interested in a different
kind of statistic.

All three systems are described using various statistics. If you want to use
the systems in their current form for e.g. a real-time simulation, then you do
need to look at the worst case performance. The worst cases look bad for D2M
as well as for C2A.

All collision instances of a benchmark are similar in conceptual difficulty.
Considering this, it does not seem to make much sense that there is such a huge
variation in timings. Though both D2M and C2A display this behaviour.

When one wishes to use these collision detection systems in a non-time crit-
ical context, one would probably want to look at the mean timings (indicated
with the dot). Because the logarithmic scale can be quite confusing, the statis-
tics have been included in tables in Appendix K. Figure 17 does not stand by
itself. It is accompanied by a different figure, namely a box-plot of distances
between the objects at the TOC of the associated collision instance (see Figure
18).

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

T/T T/BN T/D T/B BN/BN BN/D BN/B D/D D/B B/B

D
is

ta
n
ce

 (
u
n
it

s)

Benchmark

Box-Plot Distances of the Low Speed (4 units per second) Benchmarks

D2M
C2A

D2M Capoeira

Figure 18

When reviewing the picture, one immediately notices the high accuracy of
D2M. What is also quite visible is that the minimum distance of C2A reaches
below 10−11 in various instances. In these cases, the diagnostic message of C2A
that is printed after each collision indicates that the distance is 0. Thus both
the distance measurement used to obtain the data and the diagnostic message
of C2A correspond. A distance of 0 either means that the system is penetrating
or touching. The latter is unwanted for the purpose of simulation.

However, probably this has to do with degenerate cases of C2A. In all bench-
marks C2A touches or penetrates in only 15 of the 5120 collision instances. To

67

be honest, during the development of the D2M system, the benchmarks failed
on numerous occasions (measuring a distance of 0). By adjusting the system
repeatedly, the benchmarks eventually reached a perfect (penetration) score of
0 (both D2M and D2M Capoeira). This does in no way mean that the system is
flawless in that sense. If someone were to create a new benchmark, this bench-
mark could either cause penetration or maybe degrade the performance of the
system to unknown depths. Concluding the text above; that C2A penetrates
incidentally does not degrade their system from a theoretical point of view.

Additionally it must be noted that in D2M Capoeira mode, the distances are
measured between the models and not between the bounding volume hierarchy
around the models. Although the simulation results of D2M do not suggest this,
it may be the case that the hierarchies are penetrating incidentally, thus making
simulation less robust. The latter has not been tested in a decent manner.

In general, when considering the worst-case distances, D2M is about a million
times more accurate than C2A in its default configuration. In the tetrahedron
versus tetrahedron case, the worst-case timing difference between D2M and C2A
is extreme though (about a factor 170 in the advantage of C2A). Still, if one
prefers accuracy over performance, D2M is still a valid option.

With D2M, the accuracy is parametrizable, though setting the accuracy to
low does not improve the performance significantly. This is due to the fast
convergence of the hybrid root finder that was used. With the C2A code that
was supplied, the accuracy had been fixed. Without changing the source code,
a way has been found to vary the accuracy of C2A. And that is by varying the
speed of the objects.

Before getting into the high-speed benchmarks, it can be stated that in
general, the performance of D2M is comparable to the performance of C2A
though slightly worse, with the exception of the tetrahedron versus tetrahedron
benchmark in which C2A excels in performance. In any case D2M is about a
million times more accurate.

D2M Capoeira seems to be faster than C2A, but the accuracy of D2M
Capoeira is rather disappointing at low speeds. C2A is about a hundred times
more accurate than D2M Capoeira at low speeds. This accuracy difference is
rather significant because it is even visible when looking at both objects as a
whole. In its worst collision instance, D2M Capoeira has a collision distance of
0.24. This is actually noticeable since the dragon has a diameter of about 3.5
units.

For the purpose of comparing relative accuracy, this should be done by
considering the worst cases.

7.4.2 The High Speed Benchmarks

The high speed benchmarks are summarized in Figures 19 and 20.
The reason why these benchmarks have been included is because it makes

it possible to compare D2M Capoeira against C2A in accuracy. The timings
of C2A against D2M are no match, because the worst case accuracy of D2M
is always better than 10−9, while the worst case accuracy of D2M Capoeira
and C2A is almost comparable around 10−1 (C2A is significantly more precise
though). It is almost possible to discriminate between C2A and D2M Capoeira
considering these rather extreme benchmarks by just looking at the timings.

68

Another reason why these extreme benchmarks have been included is to
show what the systems are capable of. If one considers the units to be meters,
then both objects are moving at near super-sonic speeds. The combined relative
velocity would be 512 meters per second (not considering the rotations), which is
super-sonic. It must be noted that within this context, D2M is way too accurate
for practical purposes. Yet, if one can spare the processing power, there is little
reason not to use it.

 0.01

 0.1

 1

 10

 100

 1000

T/T T/BN T/D T/B BN/BN BN/D BN/B D/D D/B B/B

T
im

e
(m

il
li

se
co

n
d
s)

Benchmark

Box-Plot Timings of the High Speed (512 units per second) Benchmarks

D2M
C2A

D2M Capoeira

Figure 19

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

T/T T/BN T/D T/B BN/BN BN/D BN/B D/D D/B B/B

D
is

ta
n
ce

 (
u
n
it

s)

Benchmark

Box-Plot Distances of the High Speed (512 units per second) Benchmarks

D2M
C2A

D2M Capoeira

Figure 20

Again this time C2A excels at the tetrahedron versus tetrahedron case. This
benchmark also illustrates the weakness of D2M Capoeira, meaning that only
the bounding volume hierarchy gets collided and not the actual geometry inside.
Again it must be noted that D2M Capoeira is a very approximate form of
continuous collision detection. Though in the other benchmarks it does not
seem to do much worse than C2A when looking at (high-speed) accuracy. In
fact, D2M Capoeira displays more stable results than C2A (considering the high-

69

speed benchmarks). Also, D2M Capoera is faster than C2A in the (high-speed)
non tetrahedron versus tetrahedron cases.

7.5 The Verdict

It is possible to aggregate over all the 40 benchmarks. The differences between
the methods can be summarized by Figures 21 and 22. Again both tables are
plotted on a logarithmic scale:

 0.01

 0.1

 1

 10

 100

 1000

T
im

e
(m

il
li

se
co

n
d
s)

Method

Summarizing Box-Plot Timings of all Benchmarks

D2M
C2A

D2M Capoeira

Figure 21

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

D
is

ta
n
ce

 (
u
n
it

s)

Method

Summarizing Box-Plot Distances of all Benchmarks

D2M
C2A

D2M Capoeira

Figure 22

The numbers above are also listed in a table in Appendix K.21. The data
above summarizes all 5120 collision instances. Considering these benchmarks,
D2M Capoeira is the fastest but the least accurate. D2M excels in accuracy but
it is less computationally efficient than C2A.

By decreasing the accuracy of D2M, one does not get a considerable im-
provement in speed.

70

8 Future Work / Discussion

Truly continuous collision detection is still a research branch. The system pre-
sented in this thesis seems to do quite well. Yet if you combine it with an
unproven numerical collision response algorithm, you get something that works
in most cases, but not always. Thus, a field of study that remains is how to
handle collision responses 100% of the time. Also more attention can be added
to sustaining collisions.

Non-penetration is essential for many systems that involve C.C.D.. The
benchmarks suggest that the D2M / D2M Capoeira systems are indeed non-
penetrating. However, the simulation part fails on incidental occasions. To
be thorough, the precise C.C.D. system seems to fail on rare occasions when
embedded into a simulation. Sometimes, a distance of 0 is measured (within the
simulation part). Let us just state that the system (D2M) has its weaknesses.
On the other hand, Capoeira mode seems to be stable enough to be used for
simulation purposes. Yet, parts in the source code involving Capoeira mode do
not make much sense. The parts mentioned within this paragraph require some
work.

Computer simulations demand high performance of its sub-components. The
construction time of the custom BVH can be reduced. By cutting away excessive
constructions, it may also be possible to optimize the system even further.

The projects associated with this thesis use a customized implementation
of interval-arithmetic. This implementation does not account for floating point
roundings. Using an interval arithmetic library that does account for this would
be a good thing when considering robustness. When considering ease of imple-
mentation and speed, the current interval arithmetic implementation is doing
just fine.

In theory the motion can be customized. The latter requires some derivations
involving analytical derivatives to be done again. The current derivations in the
appendix are often simplified due to a property of linear translational and linear
rotational motion. An essential property of any type of motion is that it can be
cut into pieces along the time axis, and that each of these pieces is of the same
motion type as the big piece (which was cut).

As stated earlier, the system does not handle big flat surfaces that collide
with tiny triangles in a decent manner. This issue needs to be tackled. There
are solutions to this problem, but within the context of this thesis there is no
time to solve them.

Now, we have polygon-object A versus polygon-object B. Perhaps it would
be a good thing to also allow collisions with spheres, or static planes/polygons.
This would make the system even more complex, but in certain contexts, it is
not preferred to triangulate a sphere. Likewise, if the geometry is static (or
non-rotating), bounding boxes may do a better job than bounding spheres.

Issues concerning scalability have not been discussed. It is always possible
to put different collisions on different threads. The BVHs are read-only, so it
will not cause any read-write concurrency problems. A problem that arises is
that there does not seem to be a way of knowing which collisions will be heavy
and which of them will be light, considering their computational load. During
the coarse of the project, no efficient solution was found to tackle this problem.

Last, but not least, resting contact may also shrink the computational de-
mand put on the C.C.D. system. If object B is hovering over object A, then this

71

reduces the strain on the C.C.D. system. Otherwise, object B and object A,
might collide e.g. 32 times per second. The latter is likely to stop the simulation
from performing in real-time.

72

9 Conclusion

During the span of this master-project, the collision detection problem as it
is described in the introduction, has been solved in both 2D and 3D. The 3D
system (D2M) has been benchmarked next to a competing system; C2A. In
general C2A is faster, but D2M is very-much more accurate. When two object
collide with D2M, the distance in-between objects is within the range [1, 4] ·
10−10.

The D2M system uses a technique that is based on Taylor’s theorem (with
the Lagrange remainder) in combination with the bisection of intervals. When
this technique is compared with the more simplistic interval-bisection, the more
complicated technique is about 6 or 7 times faster than bisection on intervals.

The data structure that was used in order to partition the model is an R-
tree. Each node of the R-tree also stores a disk/sphere to bound the geometry
inside. The latter is useful when the objects rotate. A lot of effort has been
invested in finding the right broad-phase continuous collision primitives. The
primitive that was eventually found (approximate sphere/sphere test) fits the
eventual BVH quite well . The current impression is that the current Hierarchy
is “good but not great”. As written in the related work section, the hierarchy
could be improved upon by just considering more literature.

As a by-product, the D2M Capoeira method was found; a very approximate
form of C.C.D. . D2M Capoeira performs good enough under certain circum-
stances and it is much faster than D2M in general.

To conclude positively, the system (D2M) presented in this thesis is highly
accurate, and its computational performance is comparable to a system that is
considered to be state of the art.

73

References

[1] Robert A. Adams. Calculus, A Complete Course, Sixth edition. Pearson
Addison Wesley, 2006.

[2] David Baraff. Analytical methods for dynamic simulation of non-
penetrating rigid bodies. In In Proc. of ACM SIGGRAPH 89, pages 223–
232, 1989.

[3] David Baraff. Physically based modeling rigid body simulation. 2001.

[4] Jan Bender and Alfred Schmitt. Constraint-based collision and contact
handling using impulses. 2006.

[5] Stephen Cameron. Collision detection by four-dimensional intersection test-
ing. IEEE Transactions on Robotics and Automation, 6:291–302, 1990.

[6] John Canny. Collision detection for moving polyhedra. 1984.

[7] Erin Catto. Iterative dynamics with temporal coherence. 2005.

[8] S. Redon A. Kheddar S. Coquillart. An algebraic solution to the problem
of collision detection for rigid polyhedral objects. 2000.

[9] Erik B. Dam, Martin Koch, and Martin Lillholm. Quaternions, interpo-
lalation and animation. 1998.

[10] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Applications.
Springer-Verlag, third edition, 2008.

[11] Jens Eckstein and Elmar Schömer. Dynamic collision detection in virtual
reality applications. In University of West Bohemia, pages 71–78, 1999.

[12] Herman Haverkort. Results on Geometric Networks and Data Structures.
PhD thesis, 2004.

[13] Berthold Bäuml Holger Täubig and Udo Frese. Real-time swept volume
and distance computation for self collision detection. 2011.

[14] Kyoko Makino and Martin Berz. Taylor models and other validated func-
tional inclusion methods. In International Journal of Pure and Applied
Mathematics, 2003.

[15] Brian Vincent Mirtich. Impulse-based dynamic simulation of rigid body
systems, 1996.

[16] Ramanathan Muthuganapathy, Gershon Elber, Gill Barequet, and Myung-
Soo Kim. Computing the minimum enclosing sphere of free-form hypersur-
faces in arbitrary dimensions. Computer-Aided Design Volume 43 Issue 3,
March, 2011, Computer-Aided Design:247–257, 2011.

[17] Mark H. Overmars. Efficient data structures for range searching on a grid,
1987.

74

[18] Stephane Redon, Abderrahmane Kheddar, and Sabine Coquillart. Fast
continuous collision detection between rigid bodies. In Proc. of Eurograph-
ics (Computer Graphics Forum), page 2002, 2002.

[19] Stephane Redon, Young J. Kim, Ming C. Lin, and Dinesh Manocha. Fast
continuous collision detection for articulated models. In ACM Symposiu-
mon Solid Modeling and Applications, 2004.

[20] Min Tang, Young J. Kim, and Dinesh Manocha. C2a: Controlled conser-
vative advancement for continuous collision detection of polygonal models.
Proceedings of International Conference on Robotics and Automation, 2009.

[21] Gino van den Bergen. Efficient collision detection of complex deformable
models using aabb trees. 1998.

[22] Gino van den Bergen. Collision Detection in Interactive 3D Computer
Animation. University Press, 1999.

[23] Gino van den Bergen. Ray casting against general convex objects with
application to continuous collision detection. 2004.

[24] Xinyu Zhang, Minkyoung Lee, and Young J. Kim. Interactive continuous
collision detection for non-convex polyhedra. Vis. Comput., 22(9):749–760,
September 2006.

[25] Xinyu Zhang, Stephane Redon, Minkyoung Lee, and Young J. Kim. Con-
tinuous collision detection for articulated models using taylor models and
temporal culling, 2007.

75

Appendix

A Linear Translational and Linear Rotational
Motion

In this section, the concept of linear translational and linear rotational motion
will be mathematically defined in both 2D and 3D.

A.1 Linear Translational and Linear Rotational Motion in
2D

Let a linear translational and linear rotational motion in 2D be described by a
4-tuple: (o0,v, α0, ω) ∈ R2 × R2 × R× R.

Let o0 be the origin of the object at t = 0 and let v be the translational
velocity along the entire time domain. Let α0 be the initial orientation (at
t = 0), measured in counter clockwise radians with respect to the positive x-
axis. Let ω be the rotational velocity in counter clockwise radians per time unit
along the entire time domain.

The concept is described best as a transformation from local object-space
to world-space by using the following 3 × 3 parametrized homogeneous trans-
formation matrix (M):

R(x) =

cos(x) − sin(x) 0
sin(x) cos(x) 0

0 0 1

 (15)

T(x) =

1 0 x1
0 1 x2
0 0 1

 (16)

M(t) = T(o0 + v · t) ·R(α0 + ω · t) (17)

A.2 Linear Translational and Linear Rotational Motion in
3D

Let a linear translational and linear rotational motion in 3D be described by a
4-tuple: (o0,v,q0, ω) ∈ R3×R3×H×R3. Similar to the 2D case, let o0 be the
origin of the object at t = 0 and let v be the translational velocity of the object
along the entire time domain. Let q0 be a unit quaternion that represents the
initial orientation of the object (i.e. at t = 0). Let ω be a radial vector that
represents the rotational velocity of the object along the entire time domain.

A radial vector has a direction and a magnitude. Let the axis be the axis of
rotation a = ω

‖ω‖2 , and let the magnitude (i.e. ‖ω‖2) be the number of radians

per time unit that the object is rotating in counter-clockwise direction (when
the axis is pointing into the direction of the observer).

This rotation can be converted into (unit) quaternion form by using the

formula s(β) = sin
(
β
2

)

i
j
k

 ·a + cos

(
β
2

)
, where β is the amount of rotation

along a in counter clockwise radians (when a is pointing into the direction of

76

the observer). Note that this formula is not well defined when ω = 0. In this
case, a is not defined, and the way to correctly deal with the situation would
be to make s(β) equal to 1 (the identity quaternion).

Now we can define linear translational and linear rotational motion as a
function of time to pair: ltlrm : R 7→ H× R3.

ltlrm(t) = (s(‖ω‖2 · t) · q0,o0 + v · t) (18)

The parametrized pair above gives us a rotation followed by a translation. This
is conceptually identical to the matrix definition given for 2D linear translational
and linear rotational motion above. Nevertheless, it is possible to be a little more
explicit.

Let the rotation of point p ∈ H by a unit quaternion x ∈ H, be defined by:

r(x,p) = x · p · x∗. (19)

Where x∗ is the conjugate quaterion of x. The quaternion p is defined as
i · u1 + j · u2 + k · u3, where u = (u1, u2, u3)T represents the 3D point in the
initial, non-rotated space.

Now we can use Equation 19 to construct a mapping from local space to
world space:

m(p, t) = r(ltlrm1(t),p) +

i
j
k

 · ltlrm2(t). (20)

The mapping above is invertible:

m−1(p, t) = r

ltlrm∗1(t),p−

i
j
k

 · ltlrm2(t)

 . (21)

B Derivatives

This appendix describes the computation of the derivatives that are used within
the thesis.

B.1 Derivatives of a Point under Linear Translational and
Linear Rotational Motion

Given a point in world-space, that is located on/in an object, compute its deriva-
tive with respect to time. When this derivative has been described, the second
derivative with respect to time will be derived.

B.1.1 The 2D case

We define r(t) as p(t) − o(t) where p(t) is the point defined in world-space of
which we want to know the velocity and o(t) is the origin of the object. The
velocity of a point in 3D is conveniently defined by a formula.

dp(t)

dt
= ω × r(t) + v (22)

77

The 2D analogy of this equation is:

dp(t)

dt
= ω

(
−r2(t)
r1(t)

)
+ v (23)

Note that

(
−r2(t)
r1(t)

)
describes r(t), but then rotated 90 degrees counter-

clockwise. Thus

(
−r2(t)
r1(t)

)
is perpendicular to r(t), and of the same mag-

nitude. Suppose the object would have a velocity of 0, and an angular velocity

of 1, then

(
−r2(t)
r1(t)

)
would be the velocity of point p(t). The angular velocity

can be varied, and a linear translational component can be added.
Now we describe the second derivative of p(t).

d2p(t)

dt2
= ω

(
−dr2(t)dt
dr1(t)
dt

)
(24)

Where dr(t)
dt = dp(t)

dt −
do(t)
dt = dp(t)

dt −v. Note that additional simplifications are
possible.

B.1.2 The 3D case

The first derivative of a point is basically known (see Equation 22). The second
derivative can be found by using the following identity5:

One may observe that certain terms vanish. This has to do with the assump-
tion that the motion is of the type “linear translational and linear rotational
motion”.

d
dx (a× b) = da

dx × b + a× db
dx

Applying d
dt on equation 22, yields:

d2p(t)
dt2 = d

dt (ω × r(t)) + dv
dt

d2p(t)
dt2 = dω

dt × r(t) + ω × dr(t)
dt

d2p(t)
dt2 = ω × dr(t)

dt

The resultant equation is:

d2p(t)

dt2
= ω × (ω × r(t)) (25)

B.2 The Derivatives of Distance Functions

In this section, derivatives will be derived of distance functions.

B.2.1 A Line and a Point

This function is only required in 2D, since vertex/edge collisions are not appli-
cable in 3D. The function will thus be defined in 2D. Let a,b, δ ∈ R2 (see Figure
23).

5This product rule is literally quoted from Wikipedia.

78

δ

(
−δ2
δ1

)

a

b

c

Figure 23: The distance between a point and a line.

Note that the point a is located on object A, and that the points b and c are
located on object B. The vector δ is defined as c− b. Let us start by defining
the 0th derivative of the distance function, i.e. the distance function itself. Let

‖δ‖2 be a constant, let γ(t) be a(t)− b(t) and let δ∗(t) be

(
−δ2(t)
δ1(t)

)
then:

s(t) =
1

‖δ‖2
δ∗(t) · γ(t). (26)

Where s(t) is the distance toward the edge. By using the product rule, we can
take the derivative:

ds(t)

dt
=

1

‖δ‖2

(
dδ∗(t)

dt
· γ(t) + δ∗(t) · dγ(t)

dt

)
. (27)

If we take the derivative again (by again using the product rule and simplifying
afterwards), we get:

d2s(t)

dt2
=

1

‖δ‖2

(
d2δ∗(t)

dt2
· γ(t) + 2

dδ∗(t)

dt
· dγ(t)

dt
+ δ∗(t) · d

2γ(t)

dt2

)
. (28)

The formulas are deliberately kept in a non-explicit form. It is preferable to keep
the notation as compact as possible, because when the derivatives are evaluated,
they are evaluated using functions on vectors instead of scalars.

79

B.2.2 The Signed Distance between two Spheres

Let there be two spheres, sphere A and sphere B. Let a(t) ∈ R3 be the origin
of sphere A and let b(t) ∈ R3 be the origin of sphere B. The radii of the two
spheres are denoted by rA and rB .

When the distance between the origins is equal to the sum of the radii,
then surfaces of the spheres are touching each-other. To be explicit, let γ(t) be
b(t)− a(t). If ‖γ(t)‖2 = rA + rB then the surfaces of the spheres are touching.

Because ‖γ(t)‖2 is defined as
√
γ(t) · γ(t), the derivatives are somewhat

harder to derive. However, by squaring the formula we do get something that
is usable:

‖γ(t)‖22 = (rA + rB)2

‖γ(t)‖22 − (rA + rB)2 = 0

Let us define the expression above as s(t). When s(t) = 0, the surfaces of
the spheres are touching. We only need to find the first occurrence of t such
that s(t) = 0:

s(t) = γ(t) · γ(t)− (rA + rB)2. (29)

Again we derive:

ds(t)

dt
=
dγ(t)

dt
· γ(t) + γ(t) · dγ(t)

dt
= 2

dγ(t)

dt
· γ(t). (30)

and

d2s(t)

dt2
= 2

(
d2γ(t)

dt2
· γ(t) +

dγ(t)

dt
· dγ(t)

dt

)
. (31)

B.2.3 Two Lines (in 3D)

Let there be 4 points in world-space: a(t), b(t), c(t) and d(t), and let (a(t),b(t))
and (c(t),d(t)) define `1 and `2 respectively. Let δ1(t) be b(t)−a(t) and let δ2(t)
be d(t) − c(t). Let n(t) = δ1(t) × δ2(t), be the direction in which the distance
between the lines segments should be measured. The latter statement is only
true when the lines are non-parallel. If the lines are parallel, n(t) = 0. In the
case of non-parallel lines, the signed distance s(t) equals f(t) ·n(t) · (c(t)−a(t))
for some strictly positive scalar function f(t). Typically, if one is interested in
the distance for the non-parallel lines, one would pick f(t) = 1

‖n(t)‖2 . However

we are not interested in the distance but in the roots of the distance function.
By leaving out the normalization, we also find the intersections of both lines.
The function s(t) also evaluates to 0 when lines are parallel.

Thus, the roots lie at line intersections and they lie at moments in time
where the lines are parallel. When the roots are eventually determined, a static
check has to show whether there is indeed a line/line intersection, or ultimately
an edge/edge intersection.

s(t) = n(t) · γ(t). (32)

Where γ(t) = c(t)− a(t). We can apply d
dt on s(t):

ds(t)

dt
=
dn(t)

dt
· γ(t) + n(t) · dγ(t)

dt
. (33)

80

Let us now derive dn(t)
dt :

dn(t)
dt = d

dt (δ1(t)× δ2(t)).

dn(t)

dt
=
dδ1(t)

dt
× δ2(t) + δ1(t)× dδ2(t)

dt
. (34)

It is of course also required to state dδ1(t)
dt , dδ2(t)

dt and dγ(t)
dt :

dδ1(t)

dt
=

db(t)

dt
− da(t)

dt
. (35)

dδ2(t)

dt
=

dd(t)

dt
− dc(t)

dt
. (36)

dγ(t)

dt
=

dc(t)

dt
− da(t)

dt
. (37)

Applying d
dt on equation 33 yields:

d2s(t)
dt2 = d

dt

(
dn(t)
dt · γ(t)

)
+ d

dt

(
n(t) · dγ(t)dt

)
.

d2s(t)
dt2 = d2n(t)

dt2 · γ(t) + dn(t)
dt ·

dγ(t)
dt + dn(t)

dt ·
dγ(t)
dt + n(t) · d

2γ(t)
dt2 .

d2s(t)

dt2
=
d2n(t)

dt2
· γ(t) + 2

dn(t)

dt
· dγ(t)

dt
+ n(t) · d

2γ(t)

dt2
. (38)

Where d2n(t)
dt2 is derived as follows:

d2n(t)
dt2 = d

dt

(
dδ1(t)
dt × δ2(t) + δ1(t)× dδ2(t)

dt

)
.

d2n(t)
dt2 = d

dt

(
dδ1(t)
dt × δ2(t)

)
+ d

dt

(
δ1(t)× dδ2(t)

dt

)
.

d2n(t)
dt2 = d2δ1(t)

dt2 ×δ2(t)+ dδ1(t)
dt ×

dδ2(t)
dt + dδ1(t)

dt ×
dδ2(t)
dt +δ1(t)× d2δ2(t)

dt2 .

Resulting in:

d2n(t)

dt2
=
d2δ1(t)

dt2
× δ2(t) + 2

dδ1(t)

dt
× dδ2(t)

dt
+ δ1(t)× d2δ2(t)

dt2
. (39)

For completeness, it is also required to mention d2γ(t)
dt2 , d2δ1(t)

dt2 and d2δ2(t)
dt2 :

d2γ(t)

dt2
=

d2c(t)

dt2
− d2a(t)

dt2
. (40)

d2δ1(t)

dt2
=

d2b(t)

dt2
− d2a(t)

dt2
. (41)

d2δ2(t)

dt2
=

d2d(t)

dt2
− d2c(t)

dt2
. (42)

81

B.2.4 Point-Plane Distance

Suppose that we are interested in the distance between a plane and a point. The
distance between a plane and a point can be found by sampling three points,
one in A-space, and two in B-space.

Let point a be our point in A-space. Let b be a point on the plane in B-
space, and let c be a point in front of the plane, i.e. c = b + n̂, where n̂ is the
normal of the plane. Now that we have defined a, b and c in their local spaces,
let us consider these same points, but now they are transformed to world space.
Note that now, these three points are time dependent.

We can now easily compute the distance between point a(t) and the plane
in world-space:

s(t) = γ(t) · n̂(t). (43)

Where γ(t) = a(t) − b(t) and n̂(t) = c(t) − b(t). Applying d
dt on equation 43,

yields:

ds(t)
dt = d

dt (γ(t) · n̂(t))

ds(t)

dt
=
dγ(t)

dt
· n̂(t) + γ(t) · dn̂(t)

dt
. (44)

Were dγ(t)
dt = da(t)

dt −
db(t)
dt and dn̂(t)

dt = dc(t)
dt −

db(t)
dt .

Now, we take the derivative once more:

d2s(t)
dt2 = d

dt

(
dγ(t)
dt · n̂(t) + γ(t) · dn̂(t)dt

)

d2s(t)
dt2 = d

dt

(
dγ(t)
dt · n̂(t)

)
+ d

dt

(
γ(t) · dn̂(t)dt

)

d2s(t)
dt2 =

(
d2γ(t)
dt2 · n̂(t) + dγ(t)

dt ·
dn̂(t)
dt

)
+
(
dγ(t)
dt ·

dn̂(t)
dt + γ(t) · d

2n̂(t)
dt2

)

Resulting in:

d2s(t)

dt2
=
d2γ(t)

dt2
· n̂(t) + 2

dγ(t)

dt
· dn̂(t)

dt
+ γ(t) · d

2n̂(t)

dt2
(45)

Were d2γ(t)
dt2 = d2a(t)

dt2 −
d2b(t)
dt2 and d2n̂(t)

dt2 = d2c(t)
dt2 −

d2b(t)
dt2 .

C Fuzzy Line Segment Intersection

When one considers a trajectory of a point that corresponds with a time interval,
it is possible to put a bounding box around this trajectory such that the location
of the point is bounded. This box is equivalent to an axis aligned bounding box,
and can be computed with the help of interval arithmetic.

If we have two line segments, we have four vertices. Since we sample the line
segments over a time interval, each vertex has a trajectory associated with it.
The trajectory of each vertex is bounded by an axis aligned bounding box.

Next, a capsule is drawn around each box pair that resembles an edge (see
Figure 24).

82

This capsule can be found quite easily. When given one box, one can easily
compute the centroid. It is possible to construct a minimal sphere around the
box, by using basic math. Such a sphere has a radius. Note that there are two
vertices for each edge. Both of them have bounding spheres. We define the
radius of the capsule to be the largest of the radii of both boxes/vertexes.

These edges may or may not touch each other. By looking just at the boxes
derived with interval arithmetic, one can argue that it is okay to use convex
hulling in order to find the shape of the edge. The latter is rather expensive.
That is why using a bounding capsule is a better alternative.

Since we are only considering roots, this implies that both edges are co-
planar (or parallel), (see B.2.3) it is thus allowed to make a 2D projection of
the edges.

The direction in which to project is of importance. It is usually the direction
that is perpendicular to both edges. If this is non-uniquely defined, another test
needs to be done.

Capsule

Interval Arithmetic Beam

Figure 24: A capsule drawn around two interval beams.

In Figure 25, a simple two-dimensional problem is illustrated. Do the cap-
sules overlap? If one is capable of doing a rectangle/rectangle test, a disk/disk
test and a rectangle/disk test, one is capable of answering this question.

As the time domain in which the edge exist gets smaller, both capsules will
converge to line segments.

D Interval Arithmetic

An interval is defined by two real numbers a, b ∈ R, such that a ≤ b. An interval
is closed, meaning that a and b are included within the interval. Let s = [a, b]
be an interval. Then s is an element of IR which is the set of intervals. We can
apply unary functions on s. Let f : R 7→ R, be a real valued unary function.

83

Figure 25: Two capsules, their length and thickness may differ.

An example of such a function is the negation function. But it can also be the
sine function.

There exists a concept called a raised function. Instead of mapping elements
to elements, such a function maps sets to sets. The same concept can be applied
on intervals, but in a different manner. Let F : IR 7→ IR be the “interval raised
function” of f .

1. For each r ∈ s there exists an r′ ∈ F (s) such that r′ = f(r).

2. The resulting interval s′ = F (s) = [a, b], is minimal. Meaning that if a
were any higher or b were any lower, property 1 would not hold.

It is possible to construct a similar definition for binary functions and for
functions of arbitrary arity, but this will do little good. Instead, let us define
some example operations on intervals. Let u, v ∈ IR:

−u = [−uupper,−ulower] (46)

u+ v = [ulower + vlower, uupper + vupper] (47)

u− v = u+ (−v) (48)

u · v =

[
min
{

ulower · vlower, ulower · vupper,
uupper · vlower, uupper · vupper

},
max
{

ulower · vlower, ulower · vupper,
uupper · vlower, uupper · vupper

}
]

(49)

84

The operations above are the most common ones. It should be noted that
multiplication of two intervals is reasonably in-efficient, due to the max and
min operators. It is also possible to construct a division operation. Note that
in general u+ v − v 6= u and u·v

v 6= u. Thus interval arithmetic is not a field.
When creating composed functions, property 2 (property of minimality),

might fail. There exist some theorems about the minimality of composed func-
tions, but in general, composed functions do not have a minimal interval repre-
sentation.

In fact, composed functions are only required to give an upper-bound and
a lower-bound. An additional property for many algorithms to function is that
the result converges to a single value as the input converges to a single value.

E Taylor models

In [25], the concept of Taylor models as a substitute for interval arithmetic is
used. Taylor models are more thoroughly defined in [14]. A Taylor model is
a vertically fattened polynomial bound around a more complicated function.
In [25] a definition of a Taylor model is given. The same definition is repeated
over here (after correcting a tiny mistake):

Let the Taylor model be defined over an interval, i.e. t ∈ [t0, t1]. Let
m ∈ [t0, t1] be the point around which the Taylor-polynomial used
in the Taylor model is developed. Let f(t) be the function that is
included within the Taylor model, then:

f(t) ∈
n∑

i=0

dif(m)

dti · i! (t−m)i + [r0, r1] (50)

Where [r0, r1] represents a bound on the error term. This bound
represents the amount of absolute deviation that can occur within a
specified domain.

It is possible to apply arithmetic operations on Taylor models. The two most
important ones are addition and multiplication.

F The Lagrange Remainder

Taylor’s theorem with the Lagrange remainder can be written as follows:

f(x) =

n∑

i=0

dif(a)

dxi
(x− a)i

i!
+
dn+1f(s)

dxn+1

(x− a)n+1

(n+ 1)!
. (51)

Where n ∈ N, and s is in between a and x. In order for this theorem to be
valid, f(x) needs to be Cn+1 continuous (in the interval containing a and x).
This description is based on the formulation in [1]. Note that the notation in [1]
is better. It has not been used here for consistency reasons.

The term
∑n
i=0

dif(a)
dxi

(x−a)i
i! is a Taylor polynomial without error term. The

term dn+1f(s)
dxn+1

(x−a)n+1

(n+1)! , is an explicit formulation of the error. This error is a

function of s. We know that s is in between a and x, but we do not know

85

the exact value of s. We do have an upper bound and a lower bound for
s. Using the Lagrange remainder in combination with interval arithmetic, can
yield surprising results (as is shown in Appendix G).

G Taylor-Lagrange based root finder

Let f : R 7→ R be any function that is C2 continuous. Let s ∈ IR, be the
search domain of the function. The root finder requires two derived functions

namely: df
dt : R 7→ R and d2f

dt2 : IR 7→ IR. The latter function deserves some
annotations. It is a mapping from an interval (i.e the current search domain)
to an interval of second derivatives. In other words, the result contains a lower
bound for the second derivative along the interval and an upper bound for the
second derivative along the interval.

Now we can construct a second order Taylor interval polynomial that encloses
the function f along the domain s. Let g be a mapping from time to distance
interval i.e. g : R 7→ IR.

g(t) = f(slower) +
df(slower)

dt
(t− slower) +

d2f(s)

dt2
(t− slower)

2

2
(52)

The first two terms of the polynomial above look like the development of a
normal Taylor polynomial around slower. The third term however is based on
an explicit formulation of the remainder called the Lagrange form. By the
definition of the Lagrange remainder, the function f is “included” in g along
the search domain. Outside of the search domain, f is no longer required to be
“in” g.

Whenever a function g is constructed for a given search domain s, the roots
of g (there are at most two) can be computed. However, it seems to be easier
to compute the roots of the lower bound of the polynomial separately from the
roots of the upper-bound of the polynomial (see Figure 26).

When looking at the Figure, one might notice that the upper bounding
polynomial does not hit the horizontal axis (yet). In the situation at t = t7, it is
still uncertain whether the function will hit the horizontal axis or not. However,
as t approaches the root, both curves will construct a fit around f that is tighter.

In the picture, the second derivative interval is based on the entire domain
excluding the time between the start of the domain and the “current” time. If
both the lower bounding parabola and the upper bounding parabola intersect
the horizontal axis, then there is certainty about intersection of f with the
horizontal axis. The search domain will be reasonably small then, and will thus
result in a tighter bound on the second derivative, causing the root finder to
converge extremely fast (t = t8).

Once the span of the root (the root is an interval), reaches below a certain
threshold, lets say εt, then the root interval is returned.

Note that a picture similar to Figure 26 is depicted in [15]. Instead of
using upper-bound and lower-bound polynomials, [15] uses only lower-bound
polynomials.

86

t0
t1

t2

t2
t4

t5

t6

t7

t8 t9

Figure 26: Operation of the Taylor-Lagrange based root finder.

87

H An example of a 2D Boolean function
/
/
!

C
o
m

p
u
t
e

t
h
e

T
O
C

b
e
t
w
e
e
n

a
n

e
d
g
e

a
n
d

a
p
o
i
n
t

t
e
m

p
l
a
t
e
<
t
y
p
e
n
a
m

e
T
>

s
t
r
u
c
t

E
d
g
e
P
o
in

t
T

O
C

:
p
u
b
l
i
c

B
i
n
a
r
y
F
u
n
c
t
i
o
n
<
T
>

{
M

a
t
r
i
x
<
T

,
3
,

3
>

a
E

d
g
e
M

a
t
r
i
x
I
n
v
e
r
s
e
;

/
/
t
h
e

y
−

a
x
i
s

i
s

p
o
i
n
t
i
n
g

a
l
o
n
g

t
h
e

e
d
g
e

/
/
N

o
t
e

t
h
a
t

t
h
e

m
a
t
r
i
x

i
s

o
r
t
h
o
n
o
r
m

a
l

a
n
d

t
r
a
n
s
l
a
t
e
d

(
t
h
e

i
n
v
e
r
s
e

a
l
s
o

h
a
s

t
h
i
s

p
r
o
p
e
r
t
y
)

/
/
t
h
e

o
r
i
g
i
n

o
f

t
h
e

h
o
m

o
g
e
n
e
o
u
s

m
a
t
r
i
x

i
s

e
d
g
e
0

V
e
c
t
o
r
<
T

,
2

>
b
P

o
i
n
t
;

/
/
a

p
o
i
n
t

i
n

B
−

s
p
a
c
e

T
e
d
g
e
L
e
n
g
t
h

;
/
/
t
h
e

l
e
n
g
t
h

o
f

t
h
e

e
d
g
e

G
L
M

O
b
je

c
t<

T
>

a
G
L
M

;
/
/
t
h
e

m
o
t
i
o
n

o
f

o
b
j
e
c
t

A
G

L
M

O
b
je

c
t<

T
>

b
G
L
M

;
/
/
t
h
e

m
o
t
i
o
n

o
f

o
b
j
e
c
t

B

b
o
o
l

o
p
e
r
a
t
o
r
(
)

(
c
o
n
s
t

I
n
t
e
r
v
a
l
<
T
>

&
d
o
m

a
in

)
{

M
a
t
r
i
x
<

I
n
t
e
r
v
a
l
<
T
>

,
3
,

3
>

A
i
n
v
e
r
s
e

,
B

,
C

;

A
i
n
v
e
r
s
e

=
a
E

d
g
e
M

a
t
r
i
x
I
n
v
e
r
s
e
.
t
e
m

p
l
a
t
e

c
a
s
t
<

I
n
t
e
r
v
a
l
<
T
>

>
(
)
∗

a
G
L
M

.
g
e
t
I
n
v
e
r
s
e
M

a
t
r
i
x

(
d
o
m

a
in

)
;

/
/
a

i
n
v
e
r
s
e

i
s

a
t
r
a
n
s
f
o
r
m

a
t
i
o
n

f
r
o
m

w
o
r
l
d

s
p
a
c
e

t
o

A
e
d
g
e

s
p
a
c
e

B
=

b
G
L
M

.
g
e
t
M

a
t
r
i
x
(
d
o
m

a
in

)
;

/
/
B

i
s

a
t
r
a
n
s
f
o
r
m

a
t
i
o
n

f
r
o
m

B
o
b
j
e
c
t

s
p
a
c
e

t
o

w
o
r
l
d

s
p
a
c
e

C
=

A
i
n
v
e
r
s
e
∗

B
;

/
/
C

i
s

a
t
r
a
n
s
f
o
r
m

a
t
i
o
n

f
r
o
m

B
o
b
j
e
c
t

s
p
a
c
e

t
o

A
e
d
g
e

s
p
a
c
e

V
e
c
t
o
r
<

I
n
t
e
r
v
a
l
<
T
>

,
3

>
p
o
i
n
t
I
n
E

d
g
e
S
p
a
c
e

=
C
∗

b
P

o
i
n
t
.
t
o
H

o
m

o
g
e
n
e
o
u
s
(
)
.
t
e
m

p
l
a
t
e

c
a
s
t
<

I
n
t
e
r
v
a
l
<
T
>

>
(
)
;

I
n
t
e
r
v
a
l
<
T
>

e
d
g
e
(
0

,
e
d
g
e
L
e
n
g
t
h

)
;

i
f

(
p
o
i
n
t
I
n
E

d
g
e
S
p
a
c
e

[
1
]
.
o
v
e
r
l
a
p
s
(
e
d
g
e
)

&
&

p
o
i
n
t
I
n
E

d
g
e
S
p
a
c
e

[
0
]
.
l
o
w

e
r
(
)

<
=

0
&
&

p
o
i
n
t
I
n
E

d
g
e
S
p
a
c
e

[
0
]
.
u
p
p
e
r
(
)

>
=

0
)

r
e
t
u
r
n

t
r
u
e

;

r
e
t
u
r
n

f
a
l
s
e

;
}

}
;

88

I A proof that the parabolas are indeed bound-
ing parabolas

Consider this arbitrary interval function h : IR 7→ IR. Let the same function
also be defined on real numbers h : R 7→ R. Now let b ∈ IR and let a ∈ R and
a ∈ b. Now, by definition, the following inequalities hold:

h(b)lower ≤ h(a) ≤ h(b)upper. (53)

A similar statement: h(a) ∈ h(b) is also true.
For any t ∈ (slower, supper], there exists a t∗, such that slower < t∗ < t for

which:

f(t) = f(slower) +
df(slower)

dt
(t− slower) +

d2f(t∗)

dt2
(t− slower)

2

2
(54)

Note that the above is just a restricted version of Taylor’s theorem with the
Lagrange remainder.

Note that for any t ∈ (slower, supper], the expression (t−slower)
2

2 is just a pos-

itive scalar. The function d2f(t∗)
dt2 is a mapping from real to real. Raising this

function to interval arithmetic and giving it the parameter s would give us the
in-equalities:

d2f(s)

dt2 lower
≤ d2f(t∗)

dt2
≤ d2f(s)

dt2 upper
. (55)

By multiplying with our positive constant, the in-equalities will be conserved:

d2f(s)

dt2 lower

(t− slower)
2

2
≤ d2f(t∗)

dt2
(t− slower)

2

2
≤ d2f(s)

dt2 upper

(t− slower)
2

2
.

(56)
Summarizing what is stated above, for any t within (slower, supper], the exact

error is bounded if we supply the entire domain s to the raised d2f
dt2 function.

As an additional remark, it can be noted that the domain in which t must
lie is open at slower. If t were to get the value of slower then the error term would
not be relevant (i.e. 0). In this case the bounding function is exact.

J A proof that the parabolas are indeed diverg-
ing

Recall the inclusion equation 52, the term with the largest exponent is an in-

terval, meaning that d2f(s)
dt2

(t−slower)
2

2 is an interval. The term d2f(s)
dt2 represents

the second time derivative over the interval s. Again, we get an upper bound

and a lower bound. Because (t−slower)
2

2 , is a non negative real expression, that
is 0 at slower, the parabolas are diverging as they get away from slower.

This is always the case, unless the second interval-derivative span is 0. In
this case, the inclusion function is a perfect bound.

89

K Processed Data

The data below has been constructed using a high level of automation. Al-
though the benchmark conclusions are written in text, they have been auto-
matically generated in order to avoid mistakes. It must be noted that timings
are measured in milliseconds (instead of seconds) and that distance is measured
in units, though velocities are measured in units per second. Each measurement
is recorded by repeating it 10 times. The time recorded is then divided by 10.
There is one exception however, the tetrahedron versus tetrahedron experiments
have been repeated 1000 times. This is because these timings are rather low
with respect to the other experiments. If the tetrahedron versus tetrahedron
experiments would have been done only 10 times, this would ruin the worst case
relative overall accuracy of the 40 benchmarks.

Because all C2A timings are performed twice, this serves as a sanity check,
in order to assert that the timings are correct.

Whenever the word significantly is used within a comparison, this means
that the relative magnitude between the two quantities differs by at least a
factor 1.5.

In the general remark sections, “facts” are described. For the speed com-
parisons, these facts are based on the mean timings. For accuracy comparisons,
the facts are based on the worst case accuracy of the benchmark.

K.1 Benchmark 0/1 Tetrahedron versus Tetrahedron (low
speed)

Time Dist. v v · n̂ TOC

Minimum 0.16 1.0 · 10−10 3.0 1.3 0.66

Lower Quartile 0.77 1.0 · 10−10 3.9 2.9 0.76

Median 1.2 1.0 · 10−10 4.2 3.5 0.79

Upper Quartile 2.3 1.1 · 10−10 4.4 3.9 0.81

Maximum 25. 1.4 · 10−10 5.3 4.9 0.89

Mean 2.1 1.0 · 10−10 4.2 3.4 0.78

Standard-Deviation 2.8 4.4 · 10−12 0.41 0.72 0.043

Table 1: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 0.076 0 - - 0.66
Lower Quartile 0.098 0.00024 - - 0.76
Median 0.10 0.00032 - - 0.79
Upper Quartile 0.11 0.00040 - - 0.81
Maximum 0.14 0.00060 - - 0.89
Mean 0.11 0.00032 - - 0.78
Standard-Deviation 0.012 0.00011 - - 0.043

Table 2: C2A statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-11
2.00·10

-11
3.00·10

-11
4.00·10

-11
5.00·10

-11
6.00·10

-11
7.00·10

-11
8.00·10

-11
9.00·10

-11
1.00·10

-10
1.10·10

-10
1.20·10

-10
1.30·10

-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Tetrahedron (low speed): distance

Legend
D2M

Figure 27: A plot 90

Time Dist. v v · n̂ TOC

Minimum 0.058 0.0096 4.0 - 0.60
Lower Quartile 0.12 0.040 4.0 - 0.74
Median 0.20 0.050 4.1 - 0.77
Upper Quartile 0.29 0.062 4.1 - 0.80
Maximum 1.2 0.090 4.4 - 0.87
Mean 0.24 0.051 4.1 - 0.77
Standard-Deviation 0.17 0.016 0.080 - 0.043

Table 3: D2M Capoeira statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-4

2.00·10
-4

3.00·10
-4

4.00·10
-4

5.00·10
-4

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Tetrahedron (low speed): distance

Legend
C2A

Figure 28: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

6.00·10
-2

7.00·10
-2

8.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Tetrahedron (low speed) distances

Legend

C2A

D2M Capoeira

Figure 29: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0

10.0

20.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Tetrahedron (low speed) timings

Legend

C2A

D2M

Figure 30: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Tetrahedron (low speed) timings

Legend

C2A

D2M Capoeira

Figure 31: A dual plot

Worst Case Timing Remarks

C2A is 1.7 ·102 times faster than D2M.
C2A is 8.1 times faster than D2M
Capoeira. D2M Capoeira is 22. times
faster than D2M.

Average Timing Remarks

C2A is 20. times faster than D2M.
C2A is 2.2 times faster than D2M
Capoeira. D2M Capoeira is 8.9 times
faster than D2M.

Worst Case Accuracy Remarks

D2M is 4.4 · 106 times more accurate
than C2A. C2A is 1.5 · 102 times more
accurate than D2M Capoeira. D2M is
6.6·108 times more accurate than D2M
Capoeira.

General Remarks

C2A is either touching or penetrat-
ing at frame 76. D2M is significantly
more accurate than C2A. C2A is sig-
nificantly faster than D2M. C2A is sig-
nificantly faster than D2M Capoeira.
C2A is significantly more accurate
than D2M Capoeira. The worst case
recorded absolute timing error of C2A
is 0.027 milliseconds.

K.2 Benchmark 2/3 Tetrahedron versus Tetrahedron (high
speed)

91

Time Dist. v v · n̂ TOC

Minimum 0.31 1.0 · 10−10 5.1 · 102 1.7 · 102 1.0

Lower Quartile 0.83 1.4 · 10−10 5.1 · 102 3.7 · 102 1.0

Median 1.4 1.5 · 10−10 5.1 · 102 4.3 · 102 1.0

Upper Quartile 2.8 1.7 · 10−10 5.1 · 102 4.8 · 102 1.0

Maximum 15. 3.4 · 10−10 5.1 · 102 5.1 · 102 1.0

Mean 2.3 1.6 · 10−10 5.1 · 102 4.2 · 102 1.0

Standard-Deviation 2.2 3.0 · 10−11 0.40 73. 0.00034

Table 4: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 0.072 3.2 · 10−5 - - 1.0
Lower Quartile 0.080 0.00056 - - 1.0
Median 0.084 0.0024 - - 1.0
Upper Quartile 0.090 0.0081 - - 1.0
Maximum 0.11 0.038 - - 1.0
Mean 0.085 0.0071 - - 1.0
Standard-Deviation 0.0067 0.0099 - - 0.00035

Table 5: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.062 0.016 5.1 · 102 - 1.0

Lower Quartile 0.13 0.038 5.1 · 102 - 1.0

Median 0.20 0.049 5.1 · 102 - 1.0

Upper Quartile 0.31 0.060 5.1 · 102 - 1.0

Maximum 1.1 0.095 5.1 · 102 - 1.0

Mean 0.25 0.050 5.1 · 102 - 1.0
Standard-Deviation 0.17 0.016 0.00067 - 0.00034

Table 6: D2M Capoeira statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-10

2.00·10
-10

3.00·10
-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Tetrahedron (high speed): distance

Legend
D2M

Figure 32: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Tetrahedron (high speed): distance

Legend
C2A

Figure 33: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-2
2.00·10

-2
3.00·10

-2
4.00·10

-2
5.00·10

-2
6.00·10

-2
7.00·10

-2
8.00·10

-2
9.00·10

-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Tetrahedron (high speed) distances

Legend

C2A

D2M Capoeira

Figure 34: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Tetrahedron (high speed) timings

Legend

C2A

D2M

Figure 35: A dual plot

92

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

frame

ti
m

e
(m

il
li

se
co

n
d

s)
Tetrahedron versus Tetrahedron (high speed) timings

Legend

C2A

D2M Capoeira

Figure 36: A dual plot

Worst Case Timing Remarks

C2A is 1.4 ·102 times faster than D2M.
C2A is 11. times faster than D2M
Capoeira. D2M Capoeira is 13. times
faster than D2M.

Average Timing Remarks

C2A is 27. times faster than D2M.
C2A is 2.9 times faster than D2M

Capoeira. D2M Capoeira is 9.1 times
faster than D2M.

Worst Case Accuracy Remarks

D2M is 1.1 · 108 times more accurate
than C2A. C2A is 2.5 times more ac-
curate than D2M Capoeira. D2M is
2.8·108 times more accurate than D2M
Capoeira.

General Remarks

D2M is significantly more accurate
than C2A. C2A is significantly faster
than D2M. C2A is significantly faster
than D2M Capoeira. C2A is sig-
nificantly more accurate than D2M
Capoeira. The worst case recorded ab-
solute timing error of C2A is 0.025 mil-
liseconds.

K.3 Benchmark 4/5 Tetrahedron versus Bunny (low speed)

Time Dist. v v · n̂ TOC

Minimum 1.9 1.0 · 10−10 2.5 0.50 0.54

Lower Quartile 13. 1.0 · 10−10 4.0 3.1 0.69

Median 28. 1.0 · 10−10 4.3 3.6 0.73

Upper Quartile 44. 1.1 · 10−10 4.5 4.0 0.76

Maximum 1.9 · 102 1.3 · 10−10 5.7 5.1 0.86

Mean 35. 1.0 · 10−10 4.2 3.5 0.73

Standard-Deviation 30. 3.4 · 10−12 0.43 0.78 0.050

Table 7: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 0.19 0 - - 0.54
Lower Quartile 3.7 0.00022 - - 0.69
Median 17. 0.00032 - - 0.73
Upper Quartile 30. 0.00041 - - 0.76

Maximum 1.6 · 102 0.00058 - - 0.86
Mean 22. 0.00031 - - 0.73
Standard-Deviation 24. 0.00013 - - 0.050

Table 8: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.084 0.0056 4.0 - 0.53
Lower Quartile 0.40 0.026 4.0 - 0.68
Median 0.68 0.036 4.1 - 0.72
Upper Quartile 1.1 0.048 4.2 - 0.75
Maximum 2.6 0.064 4.7 - 0.84
Mean 0.79 0.036 4.1 - 0.72
Standard-Deviation 0.51 0.013 0.12 - 0.049

Table 9: D2M Capoeira statistics

93

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-11
2.00·10

-11
3.00·10

-11
4.00·10

-11
5.00·10

-11
6.00·10

-11
7.00·10

-11
8.00·10

-11
9.00·10

-11
1.00·10

-10
1.10·10

-10
1.20·10

-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Bunny (low speed): distance

Legend
D2M

Figure 37: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-4

2.00·10
-4

3.00·10
-4

4.00·10
-4

5.00·10
-4

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Bunny (low speed): distance

Legend
C2A

Figure 38: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

6.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Bunny (low speed) distances

Legend

C2A

D2M Capoeira

Figure 39: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Bunny (low speed) timings

Legend

C2A

D2M

Figure 40: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Bunny (low speed) timings

Legend

C2A

D2M Capoeira

Figure 41: A dual plot

Worst Case Timing Remarks

C2A is not significantly faster than
D2M nor is it slower than D2M. D2M
Capoeira is 62. times faster than C2A.
D2M Capoeira is 72. times faster than
D2M.

Average Timing Remarks

C2A is 1.6 times faster than D2M.
D2M Capoeira is 28. times faster than
C2A. D2M Capoeira is 44. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 4.6 · 106 times more accurate
than C2A. C2A is 1.1 · 102 times more
accurate than D2M Capoeira. D2M is
5.0·108 times more accurate than D2M
Capoeira.

General Remarks

C2A is either touching or penetrating
at frame 76, 83 and 156. D2M is signif-
icantly more accurate than C2A. C2A
is significantly more accurate than
D2M Capoeira. D2M Capoeira is sig-
nificantly faster than C2A. The worst
case recorded absolute timing error of
C2A is 1.3 milliseconds.

K.4 Benchmark 6/7 Tetrahedron versus Bunny (high speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-10

2.00·10
-10

3.00·10
-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Bunny (high speed): distance

Legend
D2M

Figure 42: A plot

94

Time Dist. v v · n̂ TOC

Minimum 5.1 1.0 · 10−10 5.1 · 102 66. 1.0

Lower Quartile 13. 1.4 · 10−10 5.1 · 102 3.9 · 102 1.0

Median 21. 2.5 · 10−10 5.1 · 102 4.5 · 102 1.0

Upper Quartile 44. 3.1 · 10−10 5.1 · 102 4.8 · 102 1.0

Maximum 2.0 · 102 3.6 · 10−10 5.1 · 102 5.1 · 102 1.0

Mean 34. 2.3 · 10−10 5.1 · 102 4.3 · 102 1.0

Standard-Deviation 33. 8.2 · 10−11 0.41 79. 0.00038

Table 10: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 0.12 9.1 · 10−5 - - 1.0
Lower Quartile 2.0 0.0061 - - 1.0
Median 7.0 0.015 - - 1.0
Upper Quartile 13. 0.027 - - 1.0
Maximum 41. 0.050 - - 1.0
Mean 8.9 0.018 - - 1.0
Standard-Deviation 8.5 0.014 - - 0.00039

Table 11: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.12 0.0094 5.1 · 102 - 1.0

Lower Quartile 0.43 0.027 5.1 · 102 - 1.0

Median 0.66 0.036 5.1 · 102 - 1.0

Upper Quartile 1.0 0.045 5.1 · 102 - 1.0

Maximum 2.8 0.070 5.1 · 102 - 1.0

Mean 0.78 0.036 5.1 · 102 - 1.0
Standard-Deviation 0.49 0.013 0.00097 - 0.00038

Table 12: D2M Capoeira statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Bunny (high speed): distance

Legend
C2A

Figure 43: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

6.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Bunny (high speed) distances

Legend

C2A

D2M Capoeira

Figure 44: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Bunny (high speed) timings

Legend

C2A

D2M

Figure 45: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0

10.0

20.0

30.0

40.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Bunny (high speed) timings

Legend

C2A

D2M Capoeira

Figure 46: A dual plot

Worst Case Timing Remarks

C2A is 4.9 times faster than D2M.
D2M Capoeira is 15. times faster than

95

C2A. D2M Capoeira is 71. times faster
than D2M.

Average Timing Remarks

C2A is 3.8 times faster than D2M.
D2M Capoeira is 11. times faster than
C2A. D2M Capoeira is 43. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 1.4 · 108 times more accurate
than C2A. C2A is not significantly

more accurate than D2M Capoeira,
nor is it less accurate than D2M
Capoeira. D2M is 2.0 · 108 times more
accurate than D2M Capoeira.

General Remarks

D2M is significantly more accurate
than C2A. C2A is significantly faster
than D2M. D2M Capoeira is signifi-
cantly faster than C2A. The worst case
recorded absolute timing error of C2A
is 0.59 milliseconds.

K.5 Benchmark 8/9 Tetrahedron versus Dragon (low speed)

Time Dist. v v · n̂ TOC

Minimum 1.2 1.0 · 10−10 2.8 0.47 0.42

Lower Quartile 5.7 1.0 · 10−10 4.1 2.9 0.55

Median 9.9 1.0 · 10−10 4.5 3.6 0.62

Upper Quartile 16. 1.1 · 10−10 4.8 4.2 0.69

Maximum 2.6 · 102 1.2 · 10−10 6.3 6.0 0.86

Mean 14. 1.0 · 10−10 4.5 3.5 0.63

Standard-Deviation 19. 3.7 · 10−12 0.59 1.0 0.10

Table 13: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 0.26 0 - - 0.42
Lower Quartile 5.9 0.00026 - - 0.55
Median 16. 0.00035 - - 0.62
Upper Quartile 37. 0.00047 - - 0.69

Maximum 2.1 · 102 0.00074 - - 0.86
Mean 25. 0.00036 - - 0.63
Standard-Deviation 28. 0.00015 - - 0.10

Table 14: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.10 0.013 4.0 - 0.41
Lower Quartile 0.48 0.032 4.1 - 0.54
Median 0.85 0.042 4.1 - 0.60
Upper Quartile 1.3 0.050 4.4 - 0.67
Maximum 4.5 0.14 5.1 - 0.85
Mean 0.95 0.042 4.2 - 0.61
Standard-Deviation 0.64 0.014 0.24 - 0.099

Table 15: D2M Capoeira statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-11
2.00·10

-11
3.00·10

-11
4.00·10

-11
5.00·10

-11
6.00·10

-11
7.00·10

-11
8.00·10

-11
9.00·10

-11
1.00·10

-10
1.10·10

-10
1.20·10

-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Dragon (low speed): distance

Legend
D2M

Figure 47: A plot 96

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-4

2.00·10
-4

3.00·10
-4

4.00·10
-4

5.00·10
-4

6.00·10
-4

7.00·10
-4

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Dragon (low speed): distance

Legend
C2A

Figure 48: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-2
2.00·10

-2
3.00·10

-2
4.00·10

-2
5.00·10

-2
6.00·10

-2
7.00·10

-2
8.00·10

-2
9.00·10

-2
1.00·10

-1
1.10·10

-1
1.20·10

-1
1.30·10

-1
1.40·10

-1

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Dragon (low speed) distances

Legend

C2A

D2M Capoeira

Figure 49: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0
210.0
220.0
230.0
240.0
250.0
260.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Dragon (low speed) timings

Legend

C2A

D2M

Figure 50: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0
210.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Dragon (low speed) timings

Legend

C2A

D2M Capoeira

Figure 51: A dual plot

Worst Case Timing Remarks

C2A is not significantly faster than
D2M nor is it slower than D2M. D2M
Capoeira is 48. times faster than C2A.
D2M Capoeira is 59. times faster than
D2M.

Average Timing Remarks

D2M is 1.8 times faster than C2A.
D2M Capoeira is 27. times faster than
C2A. D2M Capoeira is 14. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 6.1 · 106 times more accurate
than C2A. C2A is 1.9 · 102 times more
accurate than D2M Capoeira. D2M is
1.2·109 times more accurate than D2M
Capoeira.

General Remarks

C2A is either touching or penetrating
at frame 34, 188 and 217. D2M is
significantly more accurate than C2A.
C2A is significantly more accurate
than D2M Capoeira. D2M Capoeira
is significantly faster than C2A. The
worst case recorded absolute timing er-
ror of C2A is 2.9 milliseconds.

K.6 Benchmark 10/11 Tetrahedron versus Dragon (high
speed)

Time Dist. v v · n̂ TOC

Minimum 1.6 1.0 · 10−10 5.1 · 102 81. 1.0

Lower Quartile 5.2 1.4 · 10−10 5.1 · 102 3.3 · 102 1.0

Median 8.3 1.8 · 10−10 5.1 · 102 4.1 · 102 1.0

Upper Quartile 16. 2.6 · 10−10 5.1 · 102 4.7 · 102 1.0

Maximum 70. 3.3 · 10−10 5.1 · 102 5.1 · 102 1.0

Mean 12. 2.0 · 10−10 5.1 · 102 3.9 · 102 1.0

Standard-Deviation 11. 7.1 · 10−11 0.56 99. 0.00085

Table 16: D2M statistics

97

Time Dist. v v · n̂ TOC

Minimum 0.17 0.00014 - - 0.99
Lower Quartile 1.6 0.0098 - - 1.0
Median 4.5 0.021 - - 1.0
Upper Quartile 11. 0.032 - - 1.0
Maximum 58. 0.050 - - 1.0
Mean 7.9 0.021 - - 1.0
Standard-Deviation 9.2 0.014 - - 0.00084

Table 17: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.12 0.013 5.1 · 102 - 1.0

Lower Quartile 0.42 0.029 5.1 · 102 - 1.0

Median 0.68 0.038 5.1 · 102 - 1.0

Upper Quartile 1.0 0.048 5.1 · 102 - 1.0

Maximum 3.0 0.075 5.1 · 102 - 1.0

Mean 0.79 0.040 5.1 · 102 - 1.0
Standard-Deviation 0.49 0.013 0.0022 - 0.00085

Table 18: D2M Capoeira statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-10

2.00·10
-10

3.00·10
-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Dragon (high speed): distance

Legend
D2M

Figure 52: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Dragon (high speed): distance

Legend
C2A

Figure 53: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

6.00·10
-2

7.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Dragon (high speed) distances

Legend

C2A

D2M Capoeira

Figure 54: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Dragon (high speed) timings

Legend

C2A

D2M

Figure 55: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0

10.0

20.0

30.0

40.0

50.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Dragon (high speed) timings

Legend

C2A

D2M Capoeira

Figure 56: A dual plot

Worst Case Timing Remarks

C2A is not significantly faster than
D2M nor is it slower than D2M. D2M
Capoeira is 19. times faster than C2A.
D2M Capoeira is 23. times faster than
D2M.

Average Timing Remarks

C2A is 1.5 times faster than D2M.
D2M Capoeira is 10. times faster than

98

C2A. D2M Capoeira is 16. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 1.5 · 108 times more accurate
than C2A. C2A is not significantly
more accurate than D2M Capoeira,
nor is it less accurate than D2M
Capoeira. D2M is 2.3 · 108 times more

accurate than D2M Capoeira.

General Remarks

D2M is significantly more accurate
than C2A. D2M Capoeira is signifi-
cantly faster than C2A. The worst case
recorded absolute timing error of C2A
is 0.79 milliseconds.

K.7 Benchmark 12/13 Tetrahedron versus Buddha (low
speed)

Time Dist. v v · n̂ TOC

Minimum 0.99 1.0 · 10−10 2.6 0.80 0.52

Lower Quartile 8.0 1.0 · 10−10 4.0 2.8 0.67

Median 15. 1.0 · 10−10 4.2 3.4 0.74

Upper Quartile 24. 1.1 · 10−10 4.5 3.9 0.79

Maximum 1.5 · 102 1.3 · 10−10 5.5 5.3 0.87

Mean 19. 1.0 · 10−10 4.2 3.3 0.73

Standard-Deviation 17. 4.9 · 10−12 0.49 0.86 0.077

Table 19: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 0.34 4.2 · 10−5 - - 0.52
Lower Quartile 3.8 0.00024 - - 0.67
Median 18. 0.00033 - - 0.74
Upper Quartile 49. 0.00041 - - 0.79

Maximum 3.3 · 102 0.00071 - - 0.87
Mean 37. 0.00033 - - 0.73
Standard-Deviation 50. 0.00012 - - 0.077

Table 20: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.10 0.0086 4.0 - 0.49
Lower Quartile 0.27 0.031 4.0 - 0.66
Median 0.46 0.039 4.1 - 0.73
Upper Quartile 0.67 0.049 4.2 - 0.78
Maximum 1.9 0.089 4.6 - 0.84
Mean 0.51 0.040 4.1 - 0.71
Standard-Deviation 0.32 0.014 0.14 - 0.077

Table 21: D2M Capoeira statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-11
2.00·10

-11
3.00·10

-11
4.00·10

-11
5.00·10

-11
6.00·10

-11
7.00·10

-11
8.00·10

-11
9.00·10

-11
1.00·10

-10
1.10·10

-10
1.20·10

-10
1.30·10

-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Buddha (low speed): distance

Legend
D2M

Figure 57: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-4

2.00·10
-4

3.00·10
-4

4.00·10
-4

5.00·10
-4

6.00·10
-4

7.00·10
-4

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Buddha (low speed): distance

Legend
C2A

Figure 58: A plot

99

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

6.00·10
-2

7.00·10
-2

8.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Buddha (low speed) distances

Legend

C2A

D2M Capoeira

Figure 59: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
290.0
300.0
310.0
320.0
330.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Buddha (low speed) timings

Legend

C2A

D2M

Figure 60: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0
210.0
220.0
230.0
240.0
250.0
260.0
270.0
280.0
290.0
300.0
310.0
320.0
330.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Buddha (low speed) timings

Legend

C2A

D2M Capoeira

Figure 61: A dual plot

Worst Case Timing Remarks

D2M is 2.2 times faster than C2A.
D2M Capoeira is 1.8 · 102 times faster
than C2A. D2M Capoeira is 83. times
faster than D2M.

Average Timing Remarks

D2M is 1.9 times faster than C2A.
D2M Capoeira is 72. times faster than
C2A. D2M Capoeira is 37. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 5.4 · 106 times more accurate
than C2A. C2A is 1.2 · 102 times more
accurate than D2M Capoeira. D2M is
6.7·108 times more accurate than D2M
Capoeira.

General Remarks

D2M is significantly faster than C2A.
D2M is significantly more accurate
than C2A. C2A is significantly more
accurate than D2M Capoeira. D2M
Capoeira is significantly faster than
C2A. The worst case recorded absolute
timing error of C2A is 3.0 milliseconds.

K.8 Benchmark 14/15 Tetrahedron versus Buddha (high
speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-10

2.00·10
-10

3.00·10
-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Buddha (high speed): distance

Legend
D2M

Figure 62: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Buddha (high speed): distance

Legend
C2A

Figure 63: A plot

100

Time Dist. v v · n̂ TOC

Minimum 1.2 1.0 · 10−10 5.1 · 102 1.1 · 102 1.0

Lower Quartile 7.5 1.4 · 10−10 5.1 · 102 3.4 · 102 1.0

Median 12. 2.3 · 10−10 5.1 · 102 4.1 · 102 1.0

Upper Quartile 21. 2.9 · 10−10 5.1 · 102 4.7 · 102 1.0

Maximum 1.2 · 102 3.3 · 10−10 5.1 · 102 5.1 · 102 1.0

Mean 18. 2.2 · 10−10 5.1 · 102 4.0 · 102 1.0

Standard-Deviation 17. 7.3 · 10−11 0.47 87. 0.00061

Table 22: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 0.12 0 - - 1.0
Lower Quartile 1.4 0.0081 - - 1.0
Median 7.7 0.017 - - 1.0
Upper Quartile 18. 0.032 - - 1.0
Maximum 72. 0.050 - - 1.0
Mean 13. 0.020 - - 1.0
Standard-Deviation 14. 0.014 - - 0.00062

Table 23: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.11 0.0076 5.1 · 102 - 1.0

Lower Quartile 0.27 0.029 5.1 · 102 - 1.0

Median 0.43 0.037 5.1 · 102 - 1.0

Upper Quartile 0.72 0.049 5.1 · 102 - 1.0

Maximum 1.8 0.084 5.1 · 102 - 1.0

Mean 0.52 0.038 5.1 · 102 - 1.0
Standard-Deviation 0.33 0.014 0.0012 - 0.00061

Table 24: D2M Capoeira statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

6.00·10
-2

7.00·10
-2

8.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Tetrahedron versus Buddha (high speed) distances

Legend

C2A

D2M Capoeira

Figure 64: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Buddha (high speed) timings

Legend

C2A

D2M

Figure 65: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Tetrahedron versus Buddha (high speed) timings

Legend

C2A

D2M Capoeira

Figure 66: A dual plot

Worst Case Timing Remarks

C2A is 1.7 times faster than D2M.
D2M Capoeira is 40. times faster than
C2A. D2M Capoeira is 68. times faster
than D2M.

Average Timing Remarks

C2A is not significantly faster than
D2M nor is it slower than D2M. D2M
Capoeira is 25. times faster than C2A.
D2M Capoeira is 34. times faster than
D2M.

101

Worst Case Accuracy Remarks

D2M is 1.5 · 108 times more accurate
than C2A. C2A is 1.7 times more ac-
curate than D2M Capoeira. D2M is
2.5·108 times more accurate than D2M
Capoeira.

General Remarks

C2A is either touching or penetrat-
ing at frame 42. D2M is significantly
more accurate than C2A. C2A is sig-
nificantly more accurate than D2M
Capoeira. D2M Capoeira is signifi-
cantly faster than C2A. The worst case
recorded absolute timing error of C2A
is 1.5 milliseconds.

K.9 Benchmark 16/17 Bunny versus Bunny (low speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-11
2.00·10

-11
3.00·10

-11
4.00·10

-11
5.00·10

-11
6.00·10

-11
7.00·10

-11
8.00·10

-11
9.00·10

-11
1.00·10

-10
1.10·10

-10
1.20·10

-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Bunny (low speed): distance

Legend
D2M

Figure 67: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-4

2.00·10
-4

3.00·10
-4

4.00·10
-4

5.00·10
-4

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Bunny (low speed): distance

Legend
C2A

Figure 68: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Bunny (low speed) distances

Legend

C2A

D2M Capoeira

Figure 69: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Bunny versus Bunny (low speed) timings

Legend

C2A

D2M

Figure 70: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Bunny versus Bunny (low speed) timings

Legend

C2A

D2M Capoeira

Figure 71: A dual plot

102

Time Dist. v v · n̂ TOC

Minimum 5.6 1.0 · 10−10 2.6 1.1 0.50

Lower Quartile 20. 1.0 · 10−10 4.0 3.2 0.63

Median 32. 1.0 · 10−10 4.3 3.7 0.68

Upper Quartile 48. 1.1 · 10−10 4.5 4.0 0.71

Maximum 1.0 · 102 1.3 · 10−10 5.7 5.6 0.78

Mean 36. 1.1 · 10−10 4.3 3.6 0.67

Standard-Deviation 21. 3.9 · 10−12 0.42 0.73 0.055

Table 25: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 1.5 0 - - 0.50
Lower Quartile 7.1 0.00023 - - 0.63
Median 10. 0.00031 - - 0.68
Upper Quartile 15. 0.00040 - - 0.71

Maximum 1.8 · 102 0.00060 - - 0.78
Mean 13. 0.00031 - - 0.67
Standard-Deviation 14. 0.00013 - - 0.055

Table 26: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.26 0.0064 4.0 - 0.49
Lower Quartile 0.98 0.017 4.0 - 0.62
Median 1.6 0.019 4.1 - 0.67
Upper Quartile 2.5 0.021 4.3 - 0.71
Maximum 5.5 0.032 4.7 - 0.77
Mean 1.8 0.019 4.2 - 0.66
Standard-Deviation 1.0 0.0034 0.15 - 0.054

Table 27: D2M Capoeira statistics

Worst Case Timing Remarks

D2M is 1.8 times faster than C2A.
D2M Capoeira is 34. times faster than
C2A. D2M Capoeira is 19. times faster
than D2M.

Average Timing Remarks

C2A is 2.8 times faster than D2M.
D2M Capoeira is 7.2 times faster than
C2A. D2M Capoeira is 20. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 4.7 · 106 times more accurate
than C2A. C2A is 54. times more ac-

curate than D2M Capoeira. D2M is
2.6·108 times more accurate than D2M
Capoeira.

General Remarks

C2A is either touching or penetrat-
ing at frame 83. D2M is significantly
more accurate than C2A. C2A is sig-
nificantly more accurate than D2M
Capoeira. D2M Capoeira is signifi-
cantly faster than C2A. The worst case
recorded absolute timing error of C2A
is 0.97 milliseconds.

K.10 Benchmark 18/19 Bunny versus Bunny (high speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-10

2.00·10
-10

3.00·10
-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Bunny (high speed): distance

Legend
D2M

Figure 72: A plot

103

Time Dist. v v · n̂ TOC

Minimum 9.7 1.0 · 10−10 5.1 · 102 63. 1.0

Lower Quartile 26. 1.4 · 10−10 5.1 · 102 4.3 · 102 1.0

Median 40. 1.7 · 10−10 5.1 · 102 4.7 · 102 1.0

Upper Quartile 65. 3.2 · 10−10 5.1 · 102 5.0 · 102 1.0

Maximum 1.6 · 102 3.3 · 10−10 5.1 · 102 5.1 · 102 1.0

Mean 47. 2.2 · 10−10 5.1 · 102 4.5 · 102 1.0

Standard-Deviation 27. 8.6 · 10−11 0.38 76. 0.00042

Table 28: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 0.69 0.00044 - - 1.0
Lower Quartile 2.2 0.0047 - - 1.0
Median 3.3 0.012 - - 1.0
Upper Quartile 4.2 0.024 - - 1.0
Maximum 11. 0.050 - - 1.0
Mean 3.5 0.016 - - 1.0
Standard-Deviation 1.7 0.014 - - 0.00042

Table 29: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.30 0.0098 5.1 · 102 - 1.0

Lower Quartile 1.0 0.018 5.1 · 102 - 1.0

Median 1.6 0.020 5.1 · 102 - 1.0

Upper Quartile 2.4 0.022 5.1 · 102 - 1.0

Maximum 5.1 0.044 5.1 · 102 - 1.0

Mean 1.8 0.020 5.1 · 102 - 1.0
Standard-Deviation 0.91 0.0036 0.0013 - 0.00042

Table 30: D2M Capoeira statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Bunny (high speed): distance

Legend
C2A

Figure 73: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Bunny (high speed) distances

Legend

C2A

D2M Capoeira

Figure 74: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Bunny versus Bunny (high speed) timings

Legend

C2A

D2M

Figure 75: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Bunny versus Bunny (high speed) timings

Legend

C2A

D2M Capoeira

Figure 76: A dual plot

Worst Case Timing Remarks

C2A is 15. times faster than D2M.
D2M Capoeira is 2.1 times faster than

104

C2A. D2M Capoeira is 31. times faster
than D2M.

Average Timing Remarks

C2A is 13. times faster than D2M.
D2M Capoeira is 2.0 times faster than
C2A. D2M Capoeira is 27. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 1.5 · 108 times more accurate
than C2A. D2M Capoeira is not signif-

icantly more accurate than C2A, nor
is it less accurate than C2A. D2M is
1.3·108 times more accurate than D2M
Capoeira.

General Remarks

D2M is significantly more accurate
than C2A. C2A is significantly faster
than D2M. D2M Capoeira is signifi-
cantly faster than C2A. The worst case
recorded absolute timing error of C2A
is 0.49 milliseconds.

K.11 Benchmark 20/21 Bunny versus Dragon (low speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-11
2.00·10

-11
3.00·10

-11
4.00·10

-11
5.00·10

-11
6.00·10

-11
7.00·10

-11
8.00·10

-11
9.00·10

-11
1.00·10

-10
1.10·10

-10
1.20·10

-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Dragon (low speed): distance

Legend
D2M

Figure 77: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-4

2.00·10
-4

3.00·10
-4

4.00·10
-4

5.00·10
-4

6.00·10
-4

7.00·10
-4

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Dragon (low speed): distance

Legend
C2A

Figure 78: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Dragon (low speed) distances

Legend

C2A

D2M Capoeira

Figure 79: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0
210.0
220.0
230.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Bunny versus Dragon (low speed) timings

Legend

C2A

D2M

Figure 80: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Bunny versus Dragon (low speed) timings

Legend

C2A

D2M Capoeira

Figure 81: A dual plot

105

Time Dist. v v · n̂ TOC

Minimum 7.8 1.0 · 10−10 1.7 0.87 0.29

Lower Quartile 20. 1.0 · 10−10 4.2 2.8 0.50

Median 30. 1.0 · 10−10 4.5 3.6 0.55

Upper Quartile 53. 1.1 · 10−10 5.0 4.1 0.62

Maximum 2.3 · 102 1.3 · 10−10 6.3 6.1 0.79

Mean 41. 1.1 · 10−10 4.5 3.4 0.56

Standard-Deviation 30. 4.0 · 10−12 0.65 0.97 0.098

Table 31: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 1.4 3.1 · 10−5 - - 0.29
Lower Quartile 9.1 0.00028 - - 0.50
Median 15. 0.00039 - - 0.55
Upper Quartile 21. 0.00049 - - 0.62

Maximum 1.4 · 102 0.00070 - - 0.79
Mean 18. 0.00038 - - 0.56
Standard-Deviation 15. 0.00014 - - 0.098

Table 32: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.21 0.0091 4.0 - 0.28
Lower Quartile 0.96 0.021 4.1 - 0.49
Median 1.8 0.027 4.2 - 0.54
Upper Quartile 3.0 0.032 4.5 - 0.61
Maximum 22. 0.049 5.8 - 0.78
Mean 2.4 0.026 4.3 - 0.55
Standard-Deviation 2.2 0.0074 0.31 - 0.097

Table 33: D2M Capoeira statistics

Worst Case Timing Remarks

C2A is 1.7 times faster than D2M.
D2M Capoeira is 6.0 times faster than
C2A. D2M Capoeira is 10. times faster
than D2M.

Average Timing Remarks

C2A is 2.3 times faster than D2M.
D2M Capoeira is 7.5 times faster than
C2A. D2M Capoeira is 17. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 5.6 · 106 times more accurate
than C2A. C2A is 69. times more ac-

curate than D2M Capoeira. D2M is
3.9·108 times more accurate than D2M
Capoeira.

General Remarks

D2M is significantly more accurate
than C2A. C2A is significantly faster
than D2M. C2A is significantly more
accurate than D2M Capoeira. D2M
Capoeira is significantly faster than
C2A. The worst case recorded abso-
lute timing error of C2A is 0.50 mil-
liseconds.

K.12 Benchmark 22/23 Bunny versus Dragon (high speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-10

2.00·10
-10

3.00·10
-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Dragon (high speed): distance

Legend
D2M

Figure 82: A plot

106

Time Dist. v v · n̂ TOC

Minimum 7.7 1.0 · 10−10 5.1 · 102 70. 0.99

Lower Quartile 22. 1.4 · 10−10 5.1 · 102 3.8 · 102 1.0

Median 33. 1.7 · 10−10 5.1 · 102 4.3 · 102 1.0

Upper Quartile 49. 3.0 · 10−10 5.1 · 102 4.8 · 102 1.0

Maximum 1.4 · 102 3.3 · 10−10 5.1 · 102 5.1 · 102 1.0

Mean 39. 2.2 · 10−10 5.1 · 102 4.1 · 102 1.0

Standard-Deviation 24. 7.8 · 10−11 0.60 86. 0.00084

Table 34: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 0.69 0.0010 - - 0.99
Lower Quartile 2.6 0.010 - - 1.0
Median 3.8 0.018 - - 1.0
Upper Quartile 5.5 0.031 - - 1.0
Maximum 14. 0.049 - - 1.0
Mean 4.2 0.020 - - 1.0
Standard-Deviation 2.3 0.013 - - 0.00084

Table 35: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.18 0.0089 5.1 · 102 - 0.99

Lower Quartile 0.82 0.020 5.1 · 102 - 1.0

Median 1.3 0.027 5.1 · 102 - 1.0

Upper Quartile 2.0 0.032 5.1 · 102 - 1.0

Maximum 5.8 0.047 5.1 · 102 - 1.0

Mean 1.5 0.026 5.1 · 102 - 1.0
Standard-Deviation 0.92 0.0080 0.0028 - 0.00084

Table 36: D2M Capoeira statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Dragon (high speed): distance

Legend
C2A

Figure 83: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Dragon (high speed) distances

Legend

C2A

D2M Capoeira

Figure 84: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Bunny versus Dragon (high speed) timings

Legend

C2A

D2M

Figure 85: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Bunny versus Dragon (high speed) timings

Legend

C2A

D2M Capoeira

Figure 86: A dual plot

Worst Case Timing Remarks

C2A is 10. times faster than D2M.
D2M Capoeira is 2.3 times faster than

107

C2A. D2M Capoeira is 24. times faster
than D2M.

Average Timing Remarks

C2A is 9.2 times faster than D2M.
D2M Capoeira is 2.8 times faster than
C2A. D2M Capoeira is 25. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 1.5 · 108 times more accurate
than C2A. D2M Capoeira is not signif-

icantly more accurate than C2A, nor
is it less accurate than C2A. D2M is
1.4·108 times more accurate than D2M
Capoeira.

General Remarks

D2M is significantly more accurate
than C2A. C2A is significantly faster
than D2M. D2M Capoeira is signifi-
cantly faster than C2A. The worst case
recorded absolute timing error of C2A
is 1.1 milliseconds.

K.13 Benchmark 24/25 Bunny versus Buddha (low speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-11
2.00·10

-11
3.00·10

-11
4.00·10

-11
5.00·10

-11
6.00·10

-11
7.00·10

-11
8.00·10

-11
9.00·10

-11
1.00·10

-10
1.10·10

-10
1.20·10

-10
1.30·10

-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Buddha (low speed): distance

Legend
D2M

Figure 87: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-4

2.00·10
-4

3.00·10
-4

4.00·10
-4

5.00·10
-4

6.00·10
-4

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Buddha (low speed): distance

Legend
C2A

Figure 88: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Buddha (low speed) distances

Legend

C2A

D2M Capoeira

Figure 89: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Bunny versus Buddha (low speed) timings

Legend

C2A

D2M

Figure 90: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Bunny versus Buddha (low speed) timings

Legend

C2A

D2M Capoeira

Figure 91: A dual plot

108

Time Dist. v v · n̂ TOC

Minimum 5.0 1.0 · 10−10 2.7 0.47 0.45

Lower Quartile 18. 1.0 · 10−10 4.0 3.2 0.60

Median 28. 1.0 · 10−10 4.3 3.6 0.68

Upper Quartile 46. 1.1 · 10−10 4.7 4.0 0.72

Maximum 1.6 · 102 1.3 · 10−10 5.9 5.6 0.80

Mean 37. 1.0 · 10−10 4.3 3.5 0.66

Standard-Deviation 27. 4.0 · 10−12 0.52 0.82 0.078

Table 37: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 1.4 0 - - 0.45
Lower Quartile 8.7 0.00023 - - 0.60
Median 13. 0.00031 - - 0.68
Upper Quartile 19. 0.00041 - - 0.72

Maximum 1.9 · 102 0.00067 - - 0.80
Mean 16. 0.00032 - - 0.66
Standard-Deviation 14. 0.00013 - - 0.078

Table 38: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.11 0.0074 4.0 - 0.43
Lower Quartile 0.85 0.018 4.0 - 0.59
Median 1.2 0.022 4.1 - 0.67
Upper Quartile 1.9 0.030 4.3 - 0.71
Maximum 6.9 0.047 5.0 - 0.79
Mean 1.4 0.025 4.2 - 0.66
Standard-Deviation 0.94 0.0088 0.18 - 0.078

Table 39: D2M Capoeira statistics

Worst Case Timing Remarks

D2M is not significantly faster than
C2A nor is it slower than C2A. D2M
Capoeira is 28. times faster than C2A.
D2M Capoeira is 24. times faster than
D2M.

Average Timing Remarks

C2A is 2.4 times faster than D2M.
D2M Capoeira is 11. times faster than
C2A. D2M Capoeira is 25. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 5.0 · 106 times more accurate
than C2A. C2A is 71. times more ac-
curate than D2M Capoeira. D2M is
3.6·108 times more accurate than D2M
Capoeira.

General Remarks

C2A is either touching or penetrat-
ing at frame 156. D2M is signifi-
cantly more accurate than C2A. C2A is
significantly more accurate than D2M
Capoeira. D2M Capoeira is signifi-
cantly faster than C2A. The worst case
recorded absolute timing error of C2A
is 0.94 milliseconds.

K.14 Benchmark 26/27 Bunny versus Buddha (high speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-10

2.00·10
-10

3.00·10
-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Buddha (high speed): distance

Legend
D2M

Figure 92: A plot

109

Time Dist. v v · n̂ TOC

Minimum 8.0 1.0 · 10−10 5.1 · 102 51. 1.0

Lower Quartile 25. 1.4 · 10−10 5.1 · 102 3.8 · 102 1.0

Median 35. 2.3 · 10−10 5.1 · 102 4.5 · 102 1.0

Upper Quartile 49. 3.0 · 10−10 5.1 · 102 4.9 · 102 1.0

Maximum 1.5 · 102 3.3 · 10−10 5.1 · 102 5.1 · 102 1.0

Mean 40. 2.2 · 10−10 5.1 · 102 4.2 · 102 1.0

Standard-Deviation 23. 7.9 · 10−11 0.55 82. 0.00064

Table 40: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 0.50 0.00047 - - 1.0
Lower Quartile 2.5 0.0087 - - 1.0
Median 3.6 0.018 - - 1.0
Upper Quartile 5.1 0.031 - - 1.0
Maximum 11. 0.050 - - 1.0
Mean 3.9 0.020 - - 1.0
Standard-Deviation 1.9 0.014 - - 0.00064

Table 41: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.16 0.0091 5.1 · 102 - 1.0

Lower Quartile 0.82 0.018 5.1 · 102 - 1.0

Median 1.2 0.022 5.1 · 102 - 1.0

Upper Quartile 1.6 0.032 5.1 · 102 - 1.0

Maximum 3.7 0.052 5.1 · 102 - 1.0

Mean 1.3 0.025 5.1 · 102 - 1.0
Standard-Deviation 0.65 0.0089 0.0017 - 0.00064

Table 42: D2M Capoeira statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Buddha (high speed): distance

Legend
C2A

Figure 93: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Bunny versus Buddha (high speed) distances

Legend

C2A

D2M Capoeira

Figure 94: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Bunny versus Buddha (high speed) timings

Legend

C2A

D2M

Figure 95: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Bunny versus Buddha (high speed) timings

Legend

C2A

D2M Capoeira

Figure 96: A dual plot

Worst Case Timing Remarks

C2A is 13. times faster than D2M.
D2M Capoeira is 3.0 times faster than

110

C2A. D2M Capoeira is 41. times faster
than D2M.

Average Timing Remarks

C2A is 10. times faster than D2M.
D2M Capoeira is 3.1 times faster than
C2A. D2M Capoeira is 31. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 1.5 · 108 times more accurate
than C2A. C2A is not significantly

more accurate than D2M Capoeira,
nor is it less accurate than D2M
Capoeira. D2M is 1.6 · 108 times more
accurate than D2M Capoeira.

General Remarks

D2M is significantly more accurate
than C2A. C2A is significantly faster
than D2M. D2M Capoeira is signifi-
cantly faster than C2A. The worst case
recorded absolute timing error of C2A
is 0.85 milliseconds.

K.15 Benchmark 28/29 Dragon versus Dragon (low speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-11
2.00·10

-11
3.00·10

-11
4.00·10

-11
5.00·10

-11
6.00·10

-11
7.00·10

-11
8.00·10

-11
9.00·10

-11
1.00·10

-10
1.10·10

-10
1.20·10

-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Dragon versus Dragon (low speed): distance

Legend
D2M

Figure 97: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-4

2.00·10
-4

3.00·10
-4

4.00·10
-4

5.00·10
-4

6.00·10
-4

7.00·10
-4

frame

d
is

ta
n

ce
 (

u
n

it
s)

Dragon versus Dragon (low speed): distance

Legend
C2A

Figure 98: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-1

2.00·10
-1

frame

d
is

ta
n

ce
 (

u
n

it
s)

Dragon versus Dragon (low speed) distances

Legend

C2A

D2M Capoeira

Figure 99: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Dragon versus Dragon (low speed) timings

Legend

C2A

D2M

Figure 100: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Dragon versus Dragon (low speed) timings

Legend

C2A

D2M Capoeira

Figure 101: A dual plot

111

Time Dist. v v · n̂ TOC

Minimum 4.3 1.0 · 10−10 1.9 0.45 0.19

Lower Quartile 13. 1.0 · 10−10 4.3 2.9 0.34

Median 19. 1.0 · 10−10 5.0 3.8 0.42

Upper Quartile 28. 1.1 · 10−10 5.6 4.6 0.50

Maximum 1.5 · 102 1.2 · 10−10 8.0 7.2 0.73

Mean 24. 1.0 · 10−10 4.9 3.8 0.42

Standard-Deviation 16. 4.2 · 10−12 1.0 1.2 0.11

Table 43: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 1.8 0 - - 0.19
Lower Quartile 9.7 0.00036 - - 0.34
Median 15. 0.00046 - - 0.42
Upper Quartile 25. 0.00056 - - 0.50

Maximum 2.0 · 102 0.00078 - - 0.73
Mean 20. 0.00045 - - 0.42
Standard-Deviation 20. 0.00015 - - 0.11

Table 44: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.17 0.0081 4.0 - 0.18
Lower Quartile 0.75 0.024 4.1 - 0.33
Median 1.7 0.031 4.3 - 0.40
Upper Quartile 3.4 0.040 4.8 - 0.49
Maximum 16. 0.24 5.9 - 0.70
Mean 2.8 0.034 4.5 - 0.41
Standard-Deviation 3.0 0.018 0.45 - 0.10

Table 45: D2M Capoeira statistics

Worst Case Timing Remarks

D2M is not significantly faster than
C2A nor is it slower than C2A. D2M
Capoeira is 13. times faster than C2A.
D2M Capoeira is 9.5 times faster than
D2M.

Average Timing Remarks

C2A is not significantly faster than
D2M nor is it slower than D2M. D2M
Capoeira is 7.3 times faster than C2A.
D2M Capoeira is 8.5 times faster than
D2M.

Worst Case Accuracy Remarks

D2M is 6.4 · 106 times more accurate
than C2A. C2A is 3.0 · 102 times more
accurate than D2M Capoeira. D2M is
1.9·109 times more accurate than D2M
Capoeira.

General Remarks

C2A is either touching or penetrating
at frame 32 and 68. D2M is signifi-
cantly more accurate than C2A. C2A is
significantly more accurate than D2M
Capoeira. D2M Capoeira is signifi-
cantly faster than C2A. The worst case
recorded absolute timing error of C2A
is 4.0 milliseconds.

K.16 Benchmark 30/31 Dragon versus Dragon (high speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-10

2.00·10
-10

3.00·10
-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Dragon versus Dragon (high speed): distance

Legend
D2M

Figure 102: A plot

112

Time Dist. v v · n̂ TOC

Minimum 6.7 1.0 · 10−10 5.1 · 102 22. 0.99

Lower Quartile 18. 1.4 · 10−10 5.1 · 102 3.6 · 102 0.99

Median 25. 1.7 · 10−10 5.1 · 102 4.2 · 102 1.0

Upper Quartile 34. 2.9 · 10−10 5.1 · 102 4.7 · 102 1.0

Maximum 1.0 · 102 3.3 · 10−10 5.1 · 102 5.1 · 102 1.0

Mean 27. 2.1 · 10−10 5.1 · 102 4.0 · 102 1.0

Standard-Deviation 14. 7.9 · 10−11 0.91 95. 0.00087

Table 46: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 0.78 0.0014 - - 0.99
Lower Quartile 2.6 0.011 - - 0.99
Median 4.0 0.020 - - 1.0
Upper Quartile 5.8 0.031 - - 1.0
Maximum 22. 0.050 - - 1.0
Mean 4.7 0.022 - - 1.0
Standard-Deviation 3.0 0.013 - - 0.00088

Table 47: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.12 0.0072 5.1 · 102 - 0.99

Lower Quartile 0.63 0.025 5.1 · 102 - 0.99

Median 0.90 0.031 5.1 · 102 - 1.0

Upper Quartile 1.4 0.039 5.1 · 102 - 1.0

Maximum 3.7 0.059 5.1 · 102 - 1.0

Mean 1.0 0.032 5.1 · 102 - 1.0
Standard-Deviation 0.62 0.0099 0.0044 - 0.00088

Table 48: D2M Capoeira statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Dragon versus Dragon (high speed): distance

Legend
C2A

Figure 103: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Dragon versus Dragon (high speed) distances

Legend

C2A

D2M Capoeira

Figure 104: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Dragon versus Dragon (high speed) timings

Legend

C2A

D2M

Figure 105: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0

10.0

20.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Dragon versus Dragon (high speed) timings

Legend

C2A

D2M Capoeira

Figure 106: A dual plot

Worst Case Timing Remarks

C2A is 4.7 times faster than D2M.
D2M Capoeira is 5.8 times faster than

113

C2A. D2M Capoeira is 27. times faster
than D2M.

Average Timing Remarks

C2A is 5.8 times faster than D2M.
D2M Capoeira is 4.5 times faster than
C2A. D2M Capoeira is 26. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 1.5 · 108 times more accurate
than C2A. C2A is not significantly

more accurate than D2M Capoeira,
nor is it less accurate than D2M
Capoeira. D2M is 1.8 · 108 times more
accurate than D2M Capoeira.

General Remarks

D2M is significantly more accurate
than C2A. C2A is significantly faster
than D2M. D2M Capoeira is signifi-
cantly faster than C2A. The worst case
recorded absolute timing error of C2A
is 0.56 milliseconds.

K.17 Benchmark 32/33 Dragon versus Buddha (low speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-11
2.00·10

-11
3.00·10

-11
4.00·10

-11
5.00·10

-11
6.00·10

-11
7.00·10

-11
8.00·10

-11
9.00·10

-11
1.00·10

-10
1.10·10

-10
1.20·10

-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Dragon versus Buddha (low speed): distance

Legend
D2M

Figure 107: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-4

2.00·10
-4

3.00·10
-4

4.00·10
-4

5.00·10
-4

6.00·10
-4

7.00·10
-4

frame

d
is

ta
n

ce
 (

u
n

it
s)

Dragon versus Buddha (low speed): distance

Legend
C2A

Figure 108: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

6.00·10
-2

7.00·10
-2

8.00·10
-2

9.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Dragon versus Buddha (low speed) distances

Legend

C2A

D2M Capoeira

Figure 109: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Dragon versus Buddha (low speed) timings

Legend

C2A

D2M

Figure 110: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Dragon versus Buddha (low speed) timings

Legend

C2A

D2M Capoeira

Figure 111: A dual plot

114

Time Dist. v v · n̂ TOC

Minimum 4.0 1.0 · 10−10 2.2 0.35 0.27

Lower Quartile 13. 1.0 · 10−10 4.1 2.9 0.46

Median 19. 1.0 · 10−10 4.7 3.7 0.53

Upper Quartile 30. 1.1 · 10−10 5.1 4.4 0.60

Maximum 73. 1.3 · 10−10 6.7 6.6 0.80

Mean 23. 1.0 · 10−10 4.6 3.6 0.53

Standard-Deviation 14. 4.3 · 10−12 0.79 1.1 0.11

Table 49: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 2.1 0 - - 0.27
Lower Quartile 7.9 0.00029 - - 0.46
Median 13. 0.00041 - - 0.53
Upper Quartile 21. 0.00052 - - 0.60

Maximum 1.1 · 102 0.00075 - - 0.80
Mean 17. 0.00040 - - 0.53
Standard-Deviation 14. 0.00016 - - 0.11

Table 50: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.24 0.0081 4.0 - 0.26
Lower Quartile 0.74 0.024 4.1 - 0.44
Median 1.2 0.031 4.2 - 0.52
Upper Quartile 2.2 0.040 4.5 - 0.59
Maximum 17. 0.091 5.4 - 0.78
Mean 1.8 0.032 4.3 - 0.52
Standard-Deviation 2.0 0.012 0.31 - 0.11

Table 51: D2M Capoeira statistics

Worst Case Timing Remarks

D2M is 1.5 times faster than C2A.
D2M Capoeira is 6.6 times faster than
C2A. D2M Capoeira is 4.3 times faster
than D2M.

Average Timing Remarks

C2A is not significantly faster than
D2M nor is it slower than D2M. D2M
Capoeira is 9.5 times faster than C2A.
D2M Capoeira is 13. times faster than
D2M.

Worst Case Accuracy Remarks

D2M is 6.0 · 106 times more accurate
than C2A. C2A is 1.2 · 102 times more
accurate than D2M Capoeira. D2M is
7.2·108 times more accurate than D2M
Capoeira.

General Remarks

C2A is either touching or penetrating
at frame 34, 187 and 239. D2M is
significantly more accurate than C2A.
C2A is significantly more accurate
than D2M Capoeira. D2M Capoeira
is significantly faster than C2A. The
worst case recorded absolute timing er-
ror of C2A is 0.65 milliseconds.

K.18 Benchmark 34/35 Dragon versus Buddha (high speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-10

2.00·10
-10

3.00·10
-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Dragon versus Buddha (high speed): distance

Legend
D2M

Figure 112: A plot

115

Time Dist. v v · n̂ TOC

Minimum 5.7 1.0 · 10−10 5.1 · 102 22. 0.99

Lower Quartile 18. 1.4 · 10−10 5.1 · 102 3.6 · 102 1.0

Median 25. 2.0 · 10−10 5.1 · 102 4.4 · 102 1.0

Upper Quartile 34. 3.0 · 10−10 5.1 · 102 4.8 · 102 1.0

Maximum 1.0 · 102 3.3 · 10−10 5.1 · 102 5.1 · 102 1.0

Mean 29. 2.2 · 10−10 5.1 · 102 4.1 · 102 1.0

Standard-Deviation 15. 8.0 · 10−11 0.84 93. 0.00085

Table 52: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 0.69 0.00081 - - 0.99
Lower Quartile 2.1 0.0094 - - 1.0
Median 3.3 0.017 - - 1.0
Upper Quartile 5.2 0.030 - - 1.0
Maximum 13. 0.049 - - 1.0
Mean 4.0 0.020 - - 1.0
Standard-Deviation 2.6 0.013 - - 0.00086

Table 53: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.12 0.0040 5.1 · 102 - 0.99

Lower Quartile 0.62 0.023 5.1 · 102 - 1.0

Median 1.0 0.030 5.1 · 102 - 1.0

Upper Quartile 1.5 0.037 5.1 · 102 - 1.0

Maximum 3.6 0.063 5.1 · 102 - 1.0

Mean 1.1 0.031 5.1 · 102 - 1.0
Standard-Deviation 0.65 0.011 0.0029 - 0.00086

Table 54: D2M Capoeira statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Dragon versus Buddha (high speed): distance

Legend
C2A

Figure 113: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

6.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Dragon versus Buddha (high speed) distances

Legend

C2A

D2M Capoeira

Figure 114: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Dragon versus Buddha (high speed) timings

Legend

C2A

D2M

Figure 115: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Dragon versus Buddha (high speed) timings

Legend

C2A

D2M Capoeira

Figure 116: A dual plot

Worst Case Timing Remarks

C2A is 7.8 times faster than D2M.
D2M Capoeira is 3.7 times faster than

116

C2A. D2M Capoeira is 29. times faster
than D2M.

Average Timing Remarks

C2A is 7.1 times faster than D2M.
D2M Capoeira is 3.5 times faster than
C2A. D2M Capoeira is 25. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 1.5 · 108 times more accurate
than C2A. C2A is not significantly

more accurate than D2M Capoeira,
nor is it less accurate than D2M
Capoeira. D2M is 1.9 · 108 times more
accurate than D2M Capoeira.

General Remarks

D2M is significantly more accurate
than C2A. C2A is significantly faster
than D2M. D2M Capoeira is signifi-
cantly faster than C2A. The worst case
recorded absolute timing error of C2A
is 0.60 milliseconds.

K.19 Benchmark 36/37 Buddha versus Buddha (low speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0
1.00·10

-11
2.00·10

-11
3.00·10

-11
4.00·10

-11
5.00·10

-11
6.00·10

-11
7.00·10

-11
8.00·10

-11
9.00·10

-11
1.00·10

-10
1.10·10

-10
1.20·10

-10
1.30·10

-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Buddha versus Buddha (low speed): distance

Legend
D2M

Figure 117: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-4

2.00·10
-4

3.00·10
-4

4.00·10
-4

5.00·10
-4

6.00·10
-4

7.00·10
-4

frame

d
is

ta
n

ce
 (

u
n

it
s)

Buddha versus Buddha (low speed): distance

Legend
C2A

Figure 118: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

6.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Buddha versus Buddha (low speed) distances

Legend

C2A

D2M Capoeira

Figure 119: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Buddha versus Buddha (low speed) timings

Legend

C2A

D2M

Figure 120: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Buddha versus Buddha (low speed) timings

Legend

C2A

D2M Capoeira

Figure 121: A dual plot

117

Time Dist. v v · n̂ TOC

Minimum 5.2 1.0 · 10−10 2.4 0.23 0.36

Lower Quartile 13. 1.0 · 10−10 4.0 2.9 0.58

Median 19. 1.0 · 10−10 4.4 3.5 0.66

Upper Quartile 28. 1.1 · 10−10 4.8 4.1 0.74

Maximum 79. 1.3 · 10−10 6.7 5.9 0.83

Mean 23. 1.0 · 10−10 4.4 3.4 0.65

Standard-Deviation 14. 4.6 · 10−12 0.68 0.89 0.11

Table 55: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 1.9 1.7 · 10−5 - - 0.36
Lower Quartile 9.0 0.00025 - - 0.58
Median 15. 0.00036 - - 0.66
Upper Quartile 21. 0.00045 - - 0.74
Maximum 97. 0.00076 - - 0.83
Mean 17. 0.00036 - - 0.65
Standard-Deviation 13. 0.00015 - - 0.11

Table 56: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.12 0.0091 4.0 - 0.34
Lower Quartile 0.56 0.018 4.0 - 0.55
Median 0.85 0.029 4.1 - 0.65
Upper Quartile 1.2 0.037 4.3 - 0.73
Maximum 7.8 0.069 5.3 - 0.82
Mean 1.0 0.030 4.2 - 0.64
Standard-Deviation 0.79 0.012 0.22 - 0.11

Table 57: D2M Capoeira statistics

Worst Case Timing Remarks

D2M is not significantly faster than
C2A nor is it slower than C2A. D2M
Capoeira is 12. times faster than C2A.
D2M Capoeira is 10. times faster than
D2M.

Average Timing Remarks

C2A is not significantly faster than
D2M nor is it slower than D2M. D2M
Capoeira is 17. times faster than C2A.
D2M Capoeira is 23. times faster than
D2M.

Worst Case Accuracy Remarks

D2M is 5.7 · 106 times more accurate
than C2A. C2A is 92. times more ac-
curate than D2M Capoeira. D2M is
5.2·108 times more accurate than D2M
Capoeira.

General Remarks

D2M is significantly more accurate
than C2A. C2A is significantly more
accurate than D2M Capoeira. D2M
Capoeira is significantly faster than
C2A. The worst case recorded abso-
lute timing error of C2A is 0.70 mil-
liseconds.

K.20 Benchmark 38/39 Buddha versus Buddha (high speed)

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-10

2.00·10
-10

3.00·10
-10

frame

d
is

ta
n

ce
 (

u
n

it
s)

Buddha versus Buddha (high speed): distance

Legend
D2M

Figure 122: A plot
118

Time Dist. v v · n̂ TOC

Minimum 7.9 1.0 · 10−10 5.1 · 102 94. 1.0

Lower Quartile 18. 1.4 · 10−10 5.1 · 102 3.4 · 102 1.0

Median 26. 2.5 · 10−10 5.1 · 102 4.2 · 102 1.0

Upper Quartile 36. 3.0 · 10−10 5.1 · 102 4.7 · 102 1.0

Maximum 80. 3.3 · 10−10 5.1 · 102 5.1 · 102 1.0

Mean 28. 2.3 · 10−10 5.1 · 102 4.0 · 102 1.0

Standard-Deviation 13. 7.6 · 10−11 0.72 89. 0.00076

Table 58: D2M statistics

Time Dist. v v · n̂ TOC

Minimum 0.67 0.00045 - - 1.0
Lower Quartile 2.6 0.0092 - - 1.0
Median 3.9 0.019 - - 1.0
Upper Quartile 5.3 0.032 - - 1.0
Maximum 15. 0.049 - - 1.0
Mean 4.2 0.021 - - 1.0
Standard-Deviation 2.1 0.014 - - 0.00075

Table 59: C2A statistics

Time Dist. v v · n̂ TOC

Minimum 0.18 0.0073 5.1 · 102 - 1.0

Lower Quartile 0.54 0.021 5.1 · 102 - 1.0

Median 0.82 0.029 5.1 · 102 - 1.0

Upper Quartile 1.1 0.036 5.1 · 102 - 1.0

Maximum 2.2 0.067 5.1 · 102 - 1.0

Mean 0.87 0.030 5.1 · 102 - 1.0
Standard-Deviation 0.44 0.011 0.0017 - 0.00076

Table 60: D2M Capoeira statistics

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Buddha versus Buddha (high speed): distance

Legend
C2A

Figure 123: A plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0

1.00·10
-2

2.00·10
-2

3.00·10
-2

4.00·10
-2

5.00·10
-2

6.00·10
-2

frame

d
is

ta
n

ce
 (

u
n

it
s)

Buddha versus Buddha (high speed) distances

Legend

C2A

D2M Capoeira

Figure 124: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Buddha versus Buddha (high speed) timings

Legend

C2A

D2M

Figure 125: A dual plot

0.0
32.0

64.0
96.0

128.0

160.0

192.0

224.0

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0

frame

ti
m

e
(m

il
li

se
co

n
d

s)

Buddha versus Buddha (high speed) timings

Legend

C2A

D2M Capoeira

Figure 126: A dual plot

Worst Case Timing Remarks

C2A is 5.3 times faster than D2M.
D2M Capoeira is 6.9 times faster than

119

C2A. D2M Capoeira is 36. times faster
than D2M.

Average Timing Remarks

C2A is 6.8 times faster than D2M.
D2M Capoeira is 4.8 times faster than
C2A. D2M Capoeira is 33. times faster
than D2M.

Worst Case Accuracy Remarks

D2M is 1.5 · 108 times more accurate
than C2A. C2A is not significantly

more accurate than D2M Capoeira,
nor is it less accurate than D2M
Capoeira. D2M is 2.0 · 108 times more
accurate than D2M Capoeira.

General Remarks

D2M is significantly more accurate
than C2A. C2A is significantly faster
than D2M. D2M Capoeira is signifi-
cantly faster than C2A. The worst case
recorded absolute timing error of C2A
is 0.61 milliseconds.

K.21 General Remarks about all Benchmarks

Note that all C2A benchmarks have been done twice; one time against D2M
and one time against D2M Capoeira. Because the computations are exactly
the same, the timings of these two benchmarks are interchangeable. However,
the worst case deviation of a timing that is known is 4.0 milliseconds. This
may be due to interference of the operating system. If a timing is measured
twice, on average there is a factor 1.027 difference between them. Again, the
following statistics are based on two measurements of C2A for each benchmark:
The relative error in the median of a benchmark may be a factor of 1.028. The
lower and upper quartiles have may have a relative error of 1.156 and 1.028
respectively. The maximum may have a relative error of 1.085. Note that the
statistics above are not strict upper bounds, but they are likely to give an upper
bound on the amount of deviation. The deviation should not have a considerable
influence on the results.

C2A penetrates or touches in 15 of 5120 collision instances. D2M penetrates
or touches in 0 of 5120 collision instances. D2M Capoeira penetrates or touches
in 0 of 5120 collision instances.

120

Time Dist.
Minimum 0.16 1.0 · 10−10

Lower Quartile 11. 1.0 · 10−10

Median 21. 1.1 · 10−10

Upper Quartile 35. 1.8 · 10−10

Maximum 2.6 · 102 3.6 · 10−10

Mean 26. 1.6 · 10−10

Standard-Deviation 24. 7.7 · 10−11

Table 61: D2M statistics

Time Dist.
Minimum 0.072 0
Lower Quartile 2.4 0.00035
Median 5.9 0.00060
Upper Quartile 15. 0.016
Maximum 3.3 · 102 0.050
Mean 12. 0.0095
Standard-Deviation 19. 0.013

Table 62: C2A statistics

Time Dist.
Minimum 0.058 0.0040
Lower Quartile 0.45 0.021
Median 0.85 0.031
Upper Quartile 1.5 0.042
Maximum 22. 0.24
Mean 1.2 0.033
Standard-Deviation 1.3 0.015

Table 63: D2M Capoeira statistics

121

	Introduction
	Definitions
	Background
	Motion
	Linear Translational and Linear Rotational Motion
	Linear-Interpolation Motion
	Ballistic Motion
	Articulated Motion

	Truly Continuous Motion
	Common Solutions
	Feature Testing
	Conservative Advancement
	4D Intersection Testing
	Approximate Swept Volume
	GJK-Raycast

	Bounding Volume Hierarchies
	R-Trees
	...-Trees

	Related work
	Early contributions to Continuous Collision Detection
	State of the art methods
	Bounding Volume Hierarchies
	Physical simulation

	Proposed Continuous Method
	The 2D case
	Brute-Force 2D Continuous Collision Detection
	Interval Arithmetic based Root-Finding

	The 3D case
	A root finder based on Taylor's theorem with the Lagrange remainder

	Making the system Non-Penetrating
	Limiting the amount of deviation
	Take a step back

	Improving Performance
	A custom Bounding-Volume-Hierarchy
	An approximate sphere/sphere test
	Traversing the hierarchy
	Capoeira mode
	Brute-force optimization of raw-collision detection
	Reasons why the system is non-optimal

	Constructing a Rigid Body Simulation
	Determining contact points
	Determining additional contact points in Capoeira mode
	Determining additional contact points considering the full geometry

	Solving the impulse for a number of contact points between two bodies

	Results
	Preliminary Setup
	Validation
	The Benchmarks used in this Thesis
	Highlighting the Benchmarks
	The Low Speed Benchmarks
	The High Speed Benchmarks

	The Verdict

	Future Work / Discussion
	Conclusion
	Appendix Linear Translational and Linear Rotational Motion
	Linear Translational and Linear Rotational Motion in 2D
	Linear Translational and Linear Rotational Motion in 3D

	Appendix Derivatives
	Derivatives of a Point under Linear Translational and Linear Rotational Motion
	The 2D case
	The 3D case

	The Derivatives of Distance Functions
	A Line and a Point
	The Signed Distance between two Spheres
	Two Lines (in 3D)
	Point-Plane Distance

	Appendix Fuzzy Line Segment Intersection
	Appendix Interval Arithmetic
	Appendix Taylor models
	Appendix The Lagrange Remainder
	Appendix Taylor-Lagrange based root finder
	Appendix An example of a 2D Boolean function
	Appendix A proof that the parabolas are indeed bounding parabolas
	Appendix A proof that the parabolas are indeed diverging
	Appendix Processed Data
	Benchmark 0/1 Tetrahedron versus Tetrahedron (low speed)
	Benchmark 2/3 Tetrahedron versus Tetrahedron (high speed)
	Benchmark 4/5 Tetrahedron versus Bunny (low speed)
	Benchmark 6/7 Tetrahedron versus Bunny (high speed)
	Benchmark 8/9 Tetrahedron versus Dragon (low speed)
	Benchmark 10/11 Tetrahedron versus Dragon (high speed)
	Benchmark 12/13 Tetrahedron versus Buddha (low speed)
	Benchmark 14/15 Tetrahedron versus Buddha (high speed)
	Benchmark 16/17 Bunny versus Bunny (low speed)
	Benchmark 18/19 Bunny versus Bunny (high speed)
	Benchmark 20/21 Bunny versus Dragon (low speed)
	Benchmark 22/23 Bunny versus Dragon (high speed)
	Benchmark 24/25 Bunny versus Buddha (low speed)
	Benchmark 26/27 Bunny versus Buddha (high speed)
	Benchmark 28/29 Dragon versus Dragon (low speed)
	Benchmark 30/31 Dragon versus Dragon (high speed)
	Benchmark 32/33 Dragon versus Buddha (low speed)
	Benchmark 34/35 Dragon versus Buddha (high speed)
	Benchmark 36/37 Buddha versus Buddha (low speed)
	Benchmark 38/39 Buddha versus Buddha (high speed)
	General Remarks about all Benchmarks

