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Abstract 

Nowadays, people’s life is closely related to an extensive use of electronic systems, 

which have to satisfy increasing demands related to their small size, energy efficiency 

and high performance. Application-specific instruction-set processors (ASIPs), featured 

as customized instruction processors, are suitable for the realization of such highly-

demanding electronic systems, because they are able to meet stringent demands for 

size, power consumption and performance.  

However, the stringent physical and economic requirements on hardware design 

combined with the increasing complexity of modern applications, result in the 

extremely complex problem of ASIP hardware design and application mapping, when 

guaranteeing a low power consumption and high performance.  

The research described in this Master report addresses the automatic synthesis of 

parallel memories for Very Long Instruction Word (VLIW) ASIPs and data to memory 

mapping problem for ASIPs. The research activities are applied to the Intel/Silicon Hive 

VLIW ASIPS. The main aim of this Master project is to propose methods to reduce 

memory access conflicts and thereafter, propose and implement an automatic memory 

mapping tool to deal with the data mapping problem. The tool is able to automatically 

explore and decide an adequate number of memories needed for a specific application, 

as well as, perform the solution space exploration for the data mapping problem and 

simulation of the results. With the help of the tool, the hand-designed, error-prone and 

time consuming mapping method became automatic, and an optimal solution for the 

data mapping problem can be obtained. 
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1. Chapter 1: Introduction 

This chapter introduces the project and presents relevant background information. It 

starts with background of the reported research activities. Next, a brief introduction to 

the Intel/Silicon Hive ASIP technology is given, consisting of discussion of general ASIP 

architecture template and the ASIP instance used in this research activity. Finally, the 

main problem addressed during this research activity and the organization of this report 

are described.  

1.1 Project background 

Nowadays, people’s daily life is closely related to an extensive use of electronic systems, 

which have to satisfy increasing demands related to their small size, energy efficiency 

and high performance. Application-specific instruction-set processors (ASIPs), featured 

as customized instruction processors for specific applications, are suitable for such 

electronic systems, because they are able to meet the stringent demands for size, power 

consumption and performance.  

ASIPs are an intermediary solution between the Application-specific integrated circuits 

(ASIC) and general purpose (GP) processors, having both the flexibility of the general 

purpose processor and the high performance of ASICs. ASICs are able to efficiently 

realize any kind of functionality, but they are extremely costly and not programmable. 

ASIPs deliver greater computational efficiencies than GP processors and more flexibility 

than fixed-function logic designs. As such, they are an appropriate technology to 

consider for performance and power sensitive designs in next-generation SoCs – 

particularly where flexibility provides a competitive advantage [1]. 

However, the stringent physical and economic requirements on hardware design 

combined with the increasing complexity of modern applications, result in an extremely 

complex problem of ASIP hardware design and application mapping when guaranteeing 

a low power consumption and high performance. The ASIP design problem involves 

application analysis, code optimization, scheduling and mapping, as well as, efficient 

processor design with customized data paths and memory subsystem. The design of 

memory subsystem, which involves the choice of the appropriate number and size of 

parallel local memories and of the mapping of arrays into the local memories, influences 

the performance of the processor to a high degree. This influence is even increased for 

data dominated applications, i.e. applications processing large amount of data. A good 

strategy for data memory mapping should make the full use of the allocated memory 

and should optimize the system performances. The problem of finding a good data to 



  

6 
 

memory mapping strategy and deciding a minimum number of different memory 

locations where to map the data, so that all possible conflicts in data access are 

removed, can be referred to as the data mapping problem. The subject of the Master 

project reported here is the automatic synthesis of parallel memories for VLIW ASIPs 

and data to memory mapping problem for ASIPs. The project was performed as a part of 

the European research project ASAM. 

In the rest of this chapter, we describe the context of the Master thesis, i.e. the ASAM 

project, and SH technology and give the problem statement. 

 
Figure 1-1 ASAM design flow 

1.2 ASAM project 

1.2.1 Project introduction 

ASAM stands for Automatic Architecture Synthesis and Application Mapping. It is a 

European research project conducted in the framework of the ARTEMIS Program [2]. 

ASAM targets a uniform process of automatic architecture synthesis and application 

mapping for heterogeneous multi-processor embedded systems based on adaptable 

and extendable VLIW ASIPs. It aims to provide a tool suite for automatic multi-ASIP 

system design. The new design environment allows a rapid exploration of the high-level 
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algorithm and architecture design spaces, as well as, an efficient automation of the final 

system synthesis, and in consequence, a quick development of high-quality designs [3]. 

System DSE takes as its inputs: an application C-code, parametric and structural 

requirements, and representative stimuli. ASIP DSE aims at the design of a single ASIP 

and its associated software for the execution (of a part of) the whole application. GC&M 

DSE aims at the exploration and optimization of the global communication and memory 

structures for a multi-ASIP system. HW/SW synthesis accepts as input service requests 

from the System DSE, ASIP DSE and GC&M DSE. It also takes as input the abstract 

architecture description of the designed MPSoCs or their parts, and the corresponding 

restructured application C-code [3]. It produces a corresponding actual hardware and 

software. Rapid prototyping performs a simulation on FPGA evaluation of the 

synthesized HW/SW design.  

 

Figure 1-2 ASIP level DSE 

This Master project is related to ASIP DSE. The ASIP level DSE in the ASAM project is 

subdivided into the following three phases, as shown in Figure 1-2:  

 Application analysis 

 Application optimization and ASIP coarse design 
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 Refinement 

This Master project is part of the refinement phase. It explores and proposes a solution 

to the problem of parallel memory design and data to memory mapping for ASIPs to 

optimize system performances. ASAM project targets the VLIW ASIP technology of Intel  

Benelux (former Silicon Hive). 

1.3 Intel/Silicon Hive ASIPs 

Intel/Silicon Hive (SH) is a company of Intel's Mobile Communications Group (MCG), 

providing generic customizable ASIPs, developing flexible system intellectual properties 

(IP) modules based on ASIPs, as well as, for handling media processing in consumer 

electronics and mobile terminals chipsets, designing application-specific solutions for 

image, video processing and communications. SH provides a hive processor description 

language and a hive system description language. TIM language, the processor 

specification language, is a basis for SH’s programming and processor generation tools. 

HSD language, which is the system description language, can be used to write 

customized system descriptions and plug-in customized device into the system. 

Moreover, a software development kit (SDK) is provided, including toolsets and 

application libraries to allow users to create fully programmable systems on chips that 

can be adapted to different application fields. 

SH ASIP consists of one or more interconnected Cells. A single cell defines a Very Long 

Instruction Word (VLIW) machine that is capable of executing parallel software with a 

single thread of control. A cell template is shown in Figure 1-3, taken from [4]. 

A cell consists of a Core that performs computations under software program control, 

including: 

 Datapath, which contains several function units, organized in a number of 

parallel issue slots to realize functional operations. 

 Sequencer, which is a simple state machine containing a program counter 

register as well as a status register, can enable special processor modes under 

software control 

Another part is a CoreIO that provides subsystems of memories and I/O allowing the 

core to be easily integrated in any system. CoreIO contains: 

 Local data memories, comprised of one or more storage or I/O devices, allowing 

the function units’ access to local physical memory in CoreIO or to perform 

memory mapped I/O with the system. 
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 Interfaces, providing communication and easy integration of a processor in a 

wide variety of system architectures 

 FIFO, used with a stream interface to deal with a data stream. 

 

Figure 1-3 ASIP architecture template 

The processors used in the scope of this project are instances of the ASIP architecture 

template of Figure 1-4. Every issue slot has an associated register file. The register files 

are part of storage elements in the VLIW architecture. The read ports of a register file 

are connected with relevant Function Units (FUs) in the issue slot the register file is 

deployed in. For the write ports, they are fully connected with each other through buses. 

Memories are single ported, which cannot be accessed concurrently. For the purpose of 

this project, we considered that maximally one memory is connected with one issue slot.  

FUs are used for different operations. Issue slot 1 consists of 9 FUs, as shown in Figure 1-

5a. A BRanch Unit (bru) and a Status Update Unit (suu) form the sequencer, which are 

used for program control. ARithmetic Unit (aru), Bit Management Unit (bmu), LoGic Unit 

(lgu), Multi Accumulate (mac), PaSs Unit (psu) and SHift Unit (shu) are able to provide 

the instructions for general purpose processing. Load Store Unit (lsu) is used for data 

transmission. Issue slot 2 and issue slot 3, as shown in Figure 1-4b, have the same 
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structure, consisting 6 FU’s: ARithmetic Unit (aru), Bit Management Unit (bmu), LoGic 

Unit (lgu), Multi Accumulate (mac), PaSs Unit (psu) and SHift Unit (shu). 

 

Figure 1-4 ASIP instance used in the project 

 

Figure 1-5 Schematic of issue slot a) issue slot 1 b) issue slot 2 and 3 

1.4 Problem statement 

Memory subsystem design and data to memory mapping are main concerns in ASIP 

design, especially for data-intensive applications. To realize these applications with high 

performance and high energy efficiency in a small size ASIP, the following two main 

problems, being the subject of this Master project have to be solved: 

 Elimination of data conflicts when accessing memories. Conflicts in data access 

appear, if different parts of same data array or different data arrays mapped to 

the same memory are accessed simultaneously. To solve these conflicts, data 

accesses are rescheduled and some of them are delayed in time. This introduces 

stall cycles in the execution of processes waiting to be fetched with data, and it 
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degenerates the overall system performance. Adequate methods need to be 

found to reduce the data conflicts. There are two kinds of conflicts when 

accessing data into memory: self conflicts and parallel conflicts. Self conflicts 

appear when there are simultaneously accesses to the same array variable. 

Parallel conflicts appear when there are simultaneously accesses to different 

array variables mapped into the same memory. 

 Deciding the proper number of parallel memories and appropriate data 

mapping to memories. Data mapping involves exploration of various possible 

placements of data in memories. This is an error-prone and time consuming 

process, requiring a lot of iterative analysis passes and a long experimental time, 

due to large solution space simulation. Automation of this process is therefore 

very important. 

The research reported in this Master report addresses the automatic synthesis of 

parallel memories for VLIW ASIPs and data to memory mapping problem for ASIPs, 

focusing on the problems mentioned above, the aims of the project are the followings:  

 To analyze the problem of parallel memory synthesis and data mapping for VLIW 

ASIPs, when focusing on the above listed two main sub problems of this problem. 

 To propose and implement a method to reduce the memory access conflicts.   

 To develop an automatic memory mapping tool to deal with the data mapping 

problem. The tool has to automatically find an appropriate number of memories 

needed for a specific application, as well as, an optimal data mapping strategy. 

 To perform experimental research to analyze how the data conflicts elimination 

method improves the system performance and to analyze the efficiency of the 

automatic memory mapping tool. 

The research activity builds upon these aims and is developed as described below. 

Applications used in this project are ported onto an ASIP instance and their performance 

is evaluated. Then methods are proposed and implemented to deal with self-conflicts 

and parallel-conflicts. Thereafter, certain code optimizations are performed to obtain 

the power efficiency and high performance. Subsequently, an automatic memory 

mapping tool is designed and implemented to find the minimum number of local 

memories required for a specific application and an optimal data mapping strategy, 

which improves both the performance and power consumption. Finally, a grouping 

method is proposed and implemented to reduce the data memory mapping solution 

space, and in this way, to speed up the exploration time. In parallel to the above listed 

activities and after finalizing implementations of particular methods, an extensive 
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experimental research has been performed which is discussed in the corresponding 

sections of the report. 

1.5 Report organization 

The reminder of this thesis is structured as follows. 

In Chapter 2, the introduction for automatic synthesis of parallel memories for ASIPs is 

given. Then, a motivational example is used to explore the influences of different data 

to memory mapping strategies on system performance. Thereafter, related works are 

summarized and one method to deal with the data to memory mapping problem is 

proposed. 

In Chapter 3, the data conflict problems of data mapping onto local memories are 

analyzed, and strategies are proposed to reduce the data conflicts. Moreover, some 

code optimizations are applied to make better use of the VLIW architecture in order to 

improve the system performance.  

In Chapter 4, a memory mapping tool proposed by us and its implementation are 

discussed. At first, the motivation to the design of this tool and its general design are 

given. Then, the implementation details of the memory mapping tool and also the 

algorithm used for the tool are presented. Thereafter, the memory mapping tool is 

applied to test benches to explore how the tool benefits the selection of a mapping 

strategy. Finally, the bottleneck of the tool is discussed, and a grouping method is 

proposed to reduce the solution space of data mapping to overcome the bottleneck. 

In Chapter 5, the experiments results for data conflicts elimination and memory 

mapping tool are described. First part describes how the system performance improved 

by eliminating data conflicts and then, the efficiency of the memory mapping tool is 

illustrated. 

In Chapter 6, this report is concluded providing a summary and discussion of the 

presented work and a discussion. Also, several ideas for future research and 

development are discussed.  
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2. Chapter 2: Automatic synthesis of parallel memories for 

ASIPs 

In this chapter, the introduction for automatic synthesis of parallel memories for ASIPs is 

given. Then, a motivational example is used to explore the influences of different data to 

memory mapping strategies on system performance. Thereafter, related works are 

summarized and one method to deal with the data to memory mapping problem is 

proposed. 

2.1 Introduction 

In order to realize data-intensive applications with high performance and high energy 

efficiency on a small sized ASIP, the following two main problems have to be solved: 1) 

Elimination of data conflicts when accessing memories, since data conflicts introduces 

stall cycles in the execution of the overall process. 2) Selection of the appropriate 

number of parallel memories and appropriate data to memory mapping.  

We will use the 3mm application for benchmark to illustrate our discussion. The 3mm is 

3 matrixes multiplication distributed in three independent loops, each realizing one of 

the following matrix multiplications: E = A*B; F = C*D; G = E*F.We explain the impact of 

memory mapping on system performance by using the simplified models of application 

execution time and energy consumption taken from [5] [6] and reported below: 

Estimated execution time calculation formula: 

                 

  ∑                               

                                                  

                                                                                                                                   

Estimated energy consumption calculation formula: 

                     

  ∑                                              
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              equals to the total size of arrays mapped to         and   is the 

normalized value for energy consumption per cycle(8.98642E-08 J/cycle). Access time 

can be get from application simulation result. 

Figure 2-1 shows the variances in system performance due to different mapping 

strategies. From the figure, we explain strategies 1 and 5 with respect to the previous 

formula. Figure 2-2shows the arrays assignments of mapping strategies 1 and 5. 

Strategy Memory 1 Memory2 Memory3 
Execution 

time 
Energy 

consumption 

1 BDG AF CE 733684 80470 

2 CDG EF AB 733620 80560 

3 AF BCG DE 700884 77280 

4 AE DF BCG 700852 77250 

5 CE BF ADG 700852 77170 
Figure 2-1 System performance variances due to different mapping strategies 

 
Figure 2-2 Arrays assignments of mapping strategies 1 and 5 

Strategy 
Accesses Size 

Data memory Program memory Memory 1 Memory 2 Memory 3 

1 396288 730516 3096 2048 2048 

5 396288 698708 2048 2048 3096 
Figure 2-3 Memory accesses and array size of mapping strategies 1 and 5 

According to the above estimated calculation formulas for execution time and energy 

consumption. The execution times for strategies 1 and 5 are 1126804 and 1094996. The 

energy consumptions for strategies 1 and 5 are 85.4+0.065*size(pmem) and 85.4+0.063 

*size(pmem). The variances on system performance are caused due to the influence of 

the sequencer, which is used to realize control related interactions, as well as data 

accesses into the local memory. The interactions create a delay in accessing the memory 

connected with the sequencer. Consequently, the local memory connected to the 

sequencer is always slower than the others. We say that an architecture allocating 

memories with different speeds is asymmetric. The delay can be modeled by assigning 
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different speeds to the different local memories, as shown in Figure 2-4. The figure 

shows the ratio of each memory’s performance compared to memory 3 and in this case, 

memory 1 is connected with the sequencer. The factor is a normalized value with 

respected to the value obtained from memory 3. Memory 1 is the slowest memory and 

has the highest energy consumption, so when arrays are mapped to memory 1, the 

system performance will be degenerated. This is the main reason why the system 

performance varies with different data mapping strategies. 

Performance Memory 1 Memory 2 Memory 3 

Accessing time 1.35 1 1 

Energy consumption 1.28 1 1 
Figure 2-4 Memory performance normalized with memory 3 

2.2 Related work 

Memory subsystem plays a dominant role in the design of electronic systems, and it is a 

major contributor to the overall energy consumption of the entire system. As 

applications get more and more complex, the number of local memories used in the 

system and data to memory mapping strategy influence the system performance 

significantly. 

One idea that can be applied to reduce energy consumption is memory partition, which 

is to divide the address space and to map the blocks to local memory. This idea has been 

applied to several prior works. Kandermir et al. [7] proposed a compiler-controlled 

dynamic on-chip scratch-pad memory management framework that uses both loop and 

data transformations to maximizing the reuse of data portions. Memory space 

partitioning strategy is applied to utilize the memory space efficiently. Benini et al. [8] 

proposed a recursive partitioning of the on-chip SRAMs address space into multiple 

banks and achieved an exploration of banking solution. Angiolini et al. [9] optimized the 

solution in [8], the cost function was shown to exhibit properties that allow applying a 

dynamic programming paradigm. Prior work illustrates that the memory partitioning is 

an effective method to reduce energy consumption. In this Master project, loop 

transformation – loop fusion, is applied to improve the reuse of memory locations. 

Moreover, memory partition is also applied to partition the address space of memory to 

fit the size of different arrays that mapped into local memory, in order to deal with the 

data to memory mapping problem. 

2.3 Proposed solution 

One solution to deal with the data to memory mapping problem is using graph coloring. 

Graph coloring is a way of coloring the nodes of a conflict graph such that no two 



  

16 
 

adjacent nodes in the graph share the same color. The graph coloring problem can be 

defined as follows: For a given conflict graph G = (V, E), and m colors, color all the nodes 

in all possible ways, so that no adjacent nodes have the same color. By apply the graph 

coloring algorithm, data mapping problem can be solved. Data mapping strategy can be 

found after completing the conflict graph coloring. It is possible to iterate the solution of 

the graph coloring problem, while iterating the number of used colors. This allows for 

exploring the impact of the number of memories on the improvements of the 

application mapping.  

The input graph of the memory mapping analysis is a conflict graph among the arrays of 

an application. The conflict graph is able to model the conflict relation among different 

arrays in the application. The conflict graph can be built according to the following rules: 

 The nodes of the conflict graph represent the arrays being used in a given 

application. 

 The edges of the graph indicate that two arrays can be used in parallel, and 

therefore, they should not share the same memory.  

 An array assigned into a certain memory location corresponds to a node 

assigned with a color, corresponding to this memory. Thus, two adjacent 

nodes should never be assigned with the same color. 

In this way, the data mapping problem has been translated into the graph coloring 

problem, with the following attributes: 

 The number of nodes in the conflict graph equals to overall number of 

arrays used in the application. 

 The number of colors that can be used to coloring the conflict graph is the 

same as the overall number of memories provided in the processor. 

 Two adjacent nodes, i.e. with edges between them indicate that two arrays 

access one memory simultaneously. Therefore, they should not be colored 

with same color. 

In order to complete the conflict graph coloring, the conflict graph needs to be colored 

with the provided colors. Different graph coloring strategies indicate different solutions 

for data mapping. 

3mm application is taken as an example to illustrate the building of the conflict graph. 

There are 7 arrays in the 3mm application. So the number of nodes in the conflict graph 

is 7. In our case, the arrays with data conflicts have to be distributed into 3 memories, 

which indicate that 3 colors have to be used to color the conflict graph. Nodes are used 
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to represent arrays that can be accessed simultaneously, and then edges are added 

indicating that these arrays have possible data conflicts. 

Figure 2-5a shows the conflict graph for the 3mm application. There are 7 indexed 

nodes in the conflict graph, corresponding to 7 arrays used in the application. 3 

memories are used and they are represented by 3 colors. Color blue, green and pink are 

used to represent memory 1, memory 2 and memory 3, respectively. The edges 

corresponding to the sunset of arrays that have parallel conflicts, such as array E, array 

A and array B, have edges between them indicating that node E, node A and node B 

cannot be colored with the same color. To complete the conflict graph coloring, the 

conflict graph needs to be colored with 3 provided colors without breaking constrains of 

the graph coloring problem. Figure 2-5b shows a coloring example. It is shown that node 

A, node B and node E are colored with different colors. Similarly, node C, node D and 

node E are colored with different colors, and the same for node E, node F and node G. 

This coloring strategy indicates that array A, array C and array G are mapped to memory 

1; array B and array F are mapped to memory 2; array E and D are mapped to memory 3. 

 

Figure 2-5 3mm a) conflict graph b) colored conflict graph 
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3. Chapter 3: Data conflict problem 

In this chapter, data conflict problem arising when mapping data onto local memories is 

introduced and the strategies to reduce data conflicts are described. Thereafter, some 

code optimizations are discussed which were applied to make better use of the VLIW 

architecture in order to improve the system performance. Three applications are used as 

benchmarks to see how good the system performs after reducing the data conflicts and 

applying the code optimizations. The performances after each optimized steps are 

compared in terms of the execution time and energy consumption. 

3.1 Problem analysis 

The arrays used in the application are stored in the memory, so the memory will be 

accessed every iteration during data reading and writing. There are two kinds of conflict 

problems when accessing the memory: self conflicts problem and parallel conflicts 

problem. Self conflicts refer to simultaneous access of the same data array and parallel 

conflicts refer to simultaneous access of two or more different data arrays mapped into 

the same memory. A code segment taken from 3mm application is used as an example 

of data conflicts.  

The code segment performs the computation of E+=A*B, which can also be written as 

E=E+A*B. It is shown that array E is self-conflicted, because it accesses the same 

memory both in reading and writing. Moreover, array E, A and B need to be accessed 

simultaneously to complete the computation, leading to the parallel-conflicts if the 

arrays are stored in the same memory.  

3mm_partial 

1 /* E := A * B */ 

2  for (i = 0; i < 32; i++) 

3     for (j = 0; j < 32; j++) 

4       { 

5  E[i][j] = 0; 

6  for (k = 0; k < 32; ++k){ 

7   E[i][j] += A[i][k] * B[k][j]; 

8  }} 

Figure 3-1 Partial code segment of 3mm 

The conflict relations between arrays of an application can be captured by a      

conflict matrix, where n is the number of arrays used in the application. The elements 

on diagonal position represent self-conflicts and the other elements represent possible 

parallel-conflicts for particular arrays. The conflict matrix below shows the conflicts 

among arrays E, A and B. Rows and columns of the matrix represent E, A and B in order. 
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In the conflict matrix, taking first row as an example, it is shown that E conflicts 32768 

times with itself, while it conflicts 32768 times both with A and B. The total number of 

conflicts for arrays E, A and B are 98304, 65536 and 65536, respectively. 



















03276832768

32768032768

327683276832768

C  

3.2 Reduce data conflicts 

3.2.1 Self-conflicts 

The memory in the ASIP instance considered is single ported, which means it can only 

have one single access at a time, either in reading or in writing. To solve the data self-

conflict problem, data with self-conflicts need to be placed into a multi-ported memory 

to allow data to be read and written simultaneously. Due to the single port attribute of 

the memory, it is not possible to solve this kind of conflict from the hardware side alone, 

so we take advantage of the register files to deal with the data self-conflict problem. 

The calculations in the application use accumulation methods, to reduce the memory 

accesses to arrays that have self-conflicts are replaced with integers stored in the 

register file, and assign only the final computation results to the arrays stored in the 

memory.  

As shown in Figure 3-2, integer temp_E is used instead of array E to store the 

intermediate computation result derived the iterations of the recursive process. By 

taking advantage of the register files, the number of memory accesses are reduced since 

the memory has no need to be accessed every time to read and write elements in array 

E in each iteration. Also, the overhead of data is reduced because self-conflicts of array 

E are eliminated, which benefits the execution time and energy consumption. 

3.2.2 Parallel - conflicts 

Parallel-conflicts appear when two or more different data arrays are mapped to the 

same memory and are accessed simultaneously. Application execution time will increase 

duo to the extra cycles cost for waiting. The parallel-conflicts can be reduced through 

distributing arrays that have parallel-conflicts in different local memories, so that they 

can be accessed simultaneously.  
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3mm_partial_register 

1 /* E := A * B */ 

2  for (i = 0; i < 32; i++){ 

3     for (j = 0; j < 32; j++) 

4       { 

5  temp_E = 0; 

6  for (k = 0; k < 32; ++k){ 

7   temp_E += A[i][k] * B[k][j]; 

8  } 

9              E[i][j] = temp_E; 

10 }} 

Figure 3-2  Partial code segment of 3mm after applying register files to reduce self-conflicts 

Normally, the number of memories in the ASIP is fixed by the allocation, and it is equal 

to or fewer than the overall number of arrays having parallel-conflicts in an application. 

In our case, the number of memories is also constrained by the issue slots’ number. 

Therefore, memory re-use is needed. For application 3mm with conflict matrix in page 

20, one strategy to distribute arrays with parallel-conflicts to different memories is 

shown in Figure 3-3 below. It is shown that array E, array A and array B are assigned to 

different memories, as well as array F, array C and array D,  and array G, array E and 

array F are assigned to different memories. With this mapping, arrays that have parallel-

conflicts can be accessed in parallel in the execution. 

 

Figure 3-3 Assign arrays in application 3mm to reduce parallel-conflicts 

3.2.3 API for data transfer 

To map data from host memories to memories in the processor, the Hive Run-Time (HRT) 

Application Program Interface (API) can be used. HRT API can be used to control SH 

processor from a host processor. With the help of HRT, the host processor can upload 

and execute programs on SH processor. Also, data can be passed and stored in 

memories of SH processor [10]. A common reason for accessing variables in a 

processor’s memory is to pass data to the application running on the processor. The 

following two functions can be used for data passing: 
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 Pass data from host to processor 

o void hrt_mem_store(hive_cell_id cell, hrt_mem_id mem, hrt_address dst, 

void* src, hive_uint size) 

 Pass data from processor to host 

o void hrt_mem_load(hive_cell_id cell, hrt_mem_id mem, hrt_address src, 

void* dst, hive_uint size) 

The first API function can be used to pass data from the host into arbitrary memory 

locations in the processor, meaning it copies copy size bytes from src into dst in memory 

mem of processor cell. The source address, src, is a host address, and the destination 

address, dst is a processor memory address. In the same way, the other API function can 

be used to copy data back from an arbitrary memory location of a processor into the 

host. The examples below show the usage of the API, for data transfer between host 

memory and processor memory. 

 hrt_mem_store(c_2mm_fully, cluster01_cec0_dmem_mem, 0x100, A, 32*32* 

sizeof(int)) 

In this command, array E of size 32*32*sizeof(int) is passed from address E in host to 

memory cluster01_cec0_dmem_mem in processor c_2mm_fully in address 0x100. 

 hrt_mem_load(c_2mm_fully, cluster02_cec0_dmem_mem, 0x100+5*sizeof(int) 

+ 6*32*32+sizeof(int), G, 32*32* sizeof(int)) 

In this command, array G of size 32*32*sizeof(int) is passed from address 0x100 + 

5*sizeof(int) + 6*32*32 + sizeof(int) in memory cluster02_cec0_dmem_mem  processor 

of processor c_2mm_fully  back to address G in host. 

By setting the source and destination memory address, the needed data can be mapped 

in the appropriate location and realize arbitrary data mapping. These two data transfer 

functions are the basis for the automatic data mapping discussed in Chapter4.  

3.3 Code optimization 

After the above described methods were applied to eliminate the data conflicts in an 

application, several application code optimizations are applied in order to increase the 

instruction level parallelism. The original application is written in a sequential C format, 

which may prevent the scheduler to find optimized schedules and to exploit the ILP, for 

instance, due to too many functional calls and recursive functions. The code 

optimizations allow to remove some redundant overhead and to better exploit the VLIW 

architecture to obtain power efficiency and high performance. Also, for a specific 
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allocation, the code optimizations help to find optimized data mapping solution on a 

VLIW ASIP.  

3.3.1 Loop fusion 

Loop fusion is used to change the execution order of iterations or data accesses in the 

application where the iteration space is traversed. The loop fusion can be applied by 

merging adjacent loops with identical control into one loop or tiling the iteration space 

or inverting the execution order of a given loop, etc. Application 3mm is taken as an 

example.  

3mm_orignal 

1 /* E := A * B */ 

2  for (i = 0; i < 32; i++) 

3     for (j = 0; j < 32; j++) 

4       { 

5  E[i][j] = 0; 

6  for (k = 0; k < 32; ++k){ 

7   E[i][j] += A[i][k] * B[k][j]; 

8  }} 

9  

10 /* F := A * B */ 

11  for (i = 0; i < 32; i++) 

12     for (j = 0; j < 32; j++){ 

13  F[i][j] = 0; 

14  for (k = 0; k < 32; ++k){ 

15   F[i][j] += A[i][k] * B[k][j]; 

16               }} 

17  

18 /* G := E * F */ 

19  for (i = 0; i < 32; i++) 

20     for (j = 0; j < 32; j++){ 

21  G[i][j] = 0; 

22  for (k = 0; k < 32; ++k){ 

23   G[i][j] += E[i][k] * F[k][j]; 

               }} 

Figure 3-4 Original code segment of 3mm 

Originally, the matrix operations E+=A*B and G+=E*F are distributed in two 

independent loops, since there control are the same, these two loops can be merged 

into to one loop. The execution of E+=A*B, F+=C*D, G+=E*F are sequential in original 

code, so maximally, only 3 arrays can be accessed in parallel, and the execution time is 

long due to latencies in computation of intermediate data. After loop fusion is applied, 

there are 5 arrays that can be accessed in parallel. Loop fusion gives more parallelization 

possibilities, and these potential possibilities can be actually enhanced when more 

memories are allocated to the processor. If new memories are not allocated, the 
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performance of the system is not decreased by the application of loop fusion, if the total 

amount of data conflicts stays the same as original, no extra conflicts are generated. 

The original application has high storage and bandwidth requirements, since elements 

in array E need to be written into a memory during the execution of the first loop and to 

be read back from the memory during the second loop executing when calculating the 

value of array G. This is repeated by Figure 3-5b, when the production consumption of 

the whole array E are degenerated. After loop fusion is applied, data locality is improved 

by combining loops references to the same array locality.  As shown in Figure 3-5b that 

array E is consumed shortly after it has been produced. This optimizes the locality of 

data and reduces the requirements of memory and bandwidth.  

 

Figure 3-5  Improvement of data locality for array E in 3mm a) original b) after loop fusion 

Also, the loop overhead can be reduced, since the loop overhead is cut down due to 

more compact code. Take array E as an example, loop fusion optimizes the loop nest by 

removing redundant overheads generated by the initialization, comparison and self- 

increment of variables. From Figure 3-6, it can be seen that the loop overhead 

decreased from 206115 times for the original code to 137379 times for the merged 

loops, which is 33.3% reduction.  

 

Figure 3-6 Reduction of loop overhead for partial code segment of 3mm 
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3.3.2 Software Pipelining 

One of the important features of VLIW is allowing for software pipelining, which reduces 

cycles per instruction (CPI) by assigning operations that can be executed in parallel to 

resources of the targeted processor. With software pipelining, the processor allows 

instructions of the next iterations to be fetched and partially executed while the 

processor is performing the instruction of the current iteration. As a result, instructions 

are allowed to be executed in parallel. 

Instruction scheduling determines which instructions to execute in parallel. Silicon Hive 

compiler, HiveCC, is an instruction scheduling complier, which can group the operations 

that are able to be execute in parallel into one instruction, and the VLIW hardware 

executes the instruction containing parallelized operations. The principle of software 

pipelining is to schedule the code of the loop body and determine an integer number 

called initiation interval (II), which is the minimum interval between the beginnings of 

two successive loop iterations.  HiveCC supports automatic software pipelining and it 

can be enabled by adding software pipelining pragma before the closing curly brace at 

the end of the loop in the code. For example: 

 #pragma hivecc pipelining=0  

o The complier tries to initiate a new loop iteration every cycle. Otherwise, 

it finds the minimum number of cycles for the II. 

3.4 Influence of data to memory mapping strategy 

In section 3.3.2, data matrixes with parallel conflicts are assigned to different local 

memories to reduce the parallel conflicts. After data conflicts have been eliminated, 

loop fusion and software pipelining are applied to better exploit the VLIW architecture 

in order to further increase the energy efficiency and performance.  However, for an 

application, many possible data mapping strategies may exist. For example for 3mm 

application mapped on an ASIP with 3 issue slots, there are 24 possible mapping 

strategies. A subset of possible mapping strategies is shown in Figure 3-7. Different data 

mapping strategies result in different system performance and energy consumption, 

due to the speed variance and different memory access times, as shown in Figure 2-4. In 

the previous work to eliminate parallel conflicts, a hand-designed mapping strategy 

assigning data to a specific memory is used, to distribute each array of the application 

manually onto a chosen memory. Thereafter, the application is simulated and the 

execution time and power consumption data are obtained. This method can be iterated 

in an exploration approach to discover the best mapping strategy with respect to system 

performance. However, it is inefficient and ineffective, as data need to be mapped 
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manually to the targeted memory and the application has to be simulated repeatedly. 

Consequently, this method requires a lot of iterative analysis passes and a long 

experimental time, which is very time-consuming and error-prone. Also, the code 

optimizations are applied based on the result after parallel conflicts are reduced, so the 

automation of data to memory mapping process and find a mapping strategy giving 

better system performance are therefore very important. 

 

Figure 3-7 Subset of data mapping strategies for 3mm  
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4. Chapter 4: Memory mapping tool design  

In this chapter, the proposed memory mapping tool is described. At first, the motivation 

for designing this tool is presented. Then, in section 4.2, the algorithm used for the tool 

and the implementation details of the memory mapping tool and are described. 

Thereafter, in section 4.3, the memory mapping tool is applied to applications from 

Polybench to explore how the tool performs the selection of optimal mapping strategy. 

Finally, a bottleneck of the tool is analyzed and a grouping method to reduce the 

solution space of data mapping is introduced, to eliminate the bottleneck. 

4.1 Introduction 

The research reported in this Master thesis explores and proposes a solution to the 

problem of automatic synthesis of parallel memories to VLIW ASIPs, and especially of 

data to memory mapping for ASIPs. Given a specific ASIP instance, with a fixed number 

and type of issue slots and an application C code, we want to find the minimal number 

of local memories and decide the mapping of arrays in the application into the ASIP local 

memories in order to make good use of the allocated memories and to get high 

performance and low energy consumption.  

To efficiently and correctly deal with the data mapping problem, a memory mapping 

tool is proposed and implemented, that can automatically explore the solution space for 

the data mapping problem and simulate the application. After automating the solution 

space exploration, the proposed method can much more efficiently find Pareto optimal 

solutions of the memory mapping problem, with respect to the execution time and 

power consumption. The proposed design and exploration flow is shown as Figure 4-1. 

The input for the tool is an adjacency matrix, which can be computed from the data 

conflict graph of an application. The tool reads its input and based on a brute-force 

algorithm, computes the minimal number of colors needed to color the conflict graph 

without breaking the constrains. Given the minimal number of colors and the conflict 

graph, the possible mapping strategies are exhaustively enumerated and simulated. An 

output file that contains all the possible coloring strategies and relevant execution time 

and power consumption data is generated. According to the output, the Pareto mapping 

strategies with the highest performance and lowest energy consumption will be found. 

For each Pareto mapping strategy, the header file defining the source and destination 

address for each array in the SH APIs is generated. This defines the data mapping 

strategy, so that the application can be directly simulated. 
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Figure 4-1 System flow of memory mapping tool 

4.2 Memory mapping tool construction 

4.2.1 Input 

The input for the memory mapping tool is an adjacency matrix of the conflict graph, 

which indicates the adjacency relation among different nodes in the conflict graph. The 

adjacency matrix summarizes the information about the parallel conflicts. The elements 

of an adjacency matrix of a conflict graph are 0 and 1. The elements in the diagonal 

element are all 0, because there is no edge exists for one single node. If a graph has n 

nodes, the adjacency matrix can be given as by a     matrix M.   

    {
                                          
                                                                      

 

For Figure 2-5a, the adjacency matrix is as following:  

    





























0110000

1011100

1100011

0100100

0101000

0010001

0010010

 

Rows and columns of the adjacency matrix represent node A, B, C, D, E, F and G in order. 

For example, the first row represents the relation between node A and all other nodes. 

Since node A is in conflict with node B and node E, in the position of node B and E, the 

values are set to 1 and the rest of values are set to 0. 

4.2.2 Memory mapping tool 

The memory mapping tool consists of two sub-parts: solution space exploration and 

application simulation, as shown in Figure 4-2. For the solution space exploration part, 

the tool reads the input adjacency matrix, and using the memory mapping algorithm, 
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finds the minimal number of colors needed to color the conflict graph without breaking 

the constrains. Subsequently, the solution space of coloring strategies is explored and all 

possible coloring strategies (data mappings) are found. The results are stored in a file. 

For the application simulation part, at beginning, a header file containing one mapping 

strategy extracted from the solution space is automatically generated that can be used 

to simulate the application. Thereafter, the application is automatically simulated 

according to the mapping strategy contained in the header file generated before, and 

subsequently, a power estimation tool is run, delivering information about the 

execution time and power consumption for the coloring strategy. Finally, the 

information on the possible solutions and related execution time and power 

consumption characteristics is stored in the output file. This process is iteratively 

executed until all the strategies in the solution space are simulated. 

 

Figure 4-2 Sub-parts of the memory mapping tool 

To find the solutions of the conflict graph coloring, the brute force algorithm is applied. 

To simplify the process, numbers instead of letters are used to index the nodes in the 

conflict graph and colors to color the graph. The following steps are taken to color the 

conflict graph: 

 Choose the first node as the starting point and color the node with color 1. 

 For the rest of nodes, it is checked if a node can be colored with color 1, in other 

words, if the adjacent nodes of this node are not colored or colored with a color 

different from 1, then, this node is colored with color 1. 

 If the node cannot be colored with color 1, a new color – color 2 is introduced to 

color this node. If color 2 is not allowed to color the node, then color 3 is 

introduced and so on. Repeatedly, new color is introduced until the node can be 

colored properly. 

 The above steps are repeated until all the nodes in the conflict graph are 

colored. 

Figure 4-3 shows the design flow of the memory mapping algorithm and detailed 

processes are shown in appendix. 
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Figure 4-3 Process flow of memory mapping algorithm 

4.2.3 Output 

The output of the memory mapping tool is stored in an excel file. The file contains the 

following 3 parameters: mapping strategy, execution time and energy consumption. 

Figure 4-4a below gives a part of the output for the expectation of Figure 2-5a in section 

3.2. As mentioned before, numbers are used instead of letters to index nodes and colors. 

For example for the first mapping strategy 1213321, it means that array A, array C and 

array G are mapped to memory 1; array B and array E are mapped to memory 2; array C 

and array D are mapped to memory 3. The colored conflict graph corresponding to this 

strategy is shown in Figure 4-4b.  

  

Figure 4-4 3mm a) Partial output of memory mapping tool b) Colored conflict graph according to 
mapping strategy 1213321 

Based on the output,  an optimised mapping strategy with high performance and low 

energy consumption can be found. Then, according to the index of the optimal strategy, 

the coresponding header file containing the memory mapping differences can be 

generated. The header file can be used to customize the SH ASIPs and for the simulation 

the application, detailed information can be found in Appendix. 
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4.3 Memory reduction 

As we know, using more memories brings extra energy consumption, and at the same 

time, increases the size of the processor, so we want to reduce the number of memories 

allocated to the processor without influencing the system performance. One possible 

method is to take advantage of register files. As described in section 3.2.1, register files 

are used to eliminate the data self-conflicts. At the same time, the self-conflicts 

reduction can also reduce the number of used memories. For example, let’s consider 

the operation E = A*B, after eliminating self-conflicts, the operation becomes temp_E = 

A*B. Now, instead of three memories, only two memories are needed to further 

eliminate the parallel-conflicts. Therefore, the total number of needed memory is 

reduced.  

Reducing the memory’s number also influences the relation among different conflict 

graph nodes, leading to changes in the conflict graph. For application 3mm taken as an 

example, the reduced conflict graph is show in Figure 4-5b. By applying the memory 

mapping tool on the reduced conflict graph, the minimal number of colors needed to 

color the conflict graph is two instead of three, what corresponds to one memory less 

than for the original conflict graph.  

 

Figure 4-5  conflict graph of 3mm a) original b) reduced 

This method is applied to application 3mm, 2mm and atax to explore the performance 

of the system after the number of memories allocated in the processor has been 

reduced. Figure 4-6 shows that reducing the memory’s number substantively benefits 

the system’s total area of the processor and can also benefits its execution time and 

energy consumption. 

4.4 Solution space reduction 

When using the memory mapping tool, the whole solution space of data mapping 

strategies can be explored and all possible solutions found. Thereafter, to test the 

performance of each mapping strategy, the application needs to be repeatedly 

simulated to get the corresponding execution time and energy consumption. For 

reasonably simple applications, if we only focus on the minimal number of memories, 
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the solution space can be small, and the optimized mapping strategy can be found easily. 

However, if we consider complex applications or larger than minimum number of 

memories, the solution space of data mapping becomes large, and the simulation time 

becomes the bottleneck of the whole exploration, since it takes time to simulate many 

different application mapping versions with different mapping strategies. One method 

to decrease the simulation time is proposed by Roel Jordans1, being a member of the 

ASAM project team. The method reuses the statistics.txt file, which contains the cycle 

count per instruction and overall program cycle count. The statistics.txt file is an output 

of application simulation and also can serve as an input to power estimation tool. This 

method can be used to predict simulation results when the control flow of the 

application is not modified. It is usefully for example to shrink down the ASIP HW to the 

minimum requirements of a given version of the SW. In this case, it can save up to 60% 

of the simulation time. However, this method cannot be applied in our case, as the SW 

mapping changes, because different data mapping strategies influence the application’s 

instruction scheduling, and in a consequence, the cycle count per instruction. For this 

reason, another solution is proposed. 

Application #memory 
Execution 

time(#cycles) 
Energy 

consumption(nJ) 
Total area 

3mm 

2  280910 32710 97123944 

3 278898 33220 145230419 

Ratio 1.007:1 0.98:1 0.67:1 

2mm 

2 182647 19800 97123944 

3 210298 23140 145230419 

Ratio 0.87:1 0.86:1 0.67:1 

atax 

2  5488 634.4 97123944 

3 5490 653.3 145230419 

Ratio 1:1 0.97:1 0.67:1 
Figure 4-6 Performance comparison between the original conflict graph and the reduced conflict graph 

To reduce the solution space, the nodes of the conflict graph are partitioned into groups 

and partial optimal mapping strategy for each group is found. Figure 4-7a shows the 

partitioned groups of Figure 4-5b. First, the memory problem for group 1 is solved, 

mapping all the other arrays in a default memory. Then, keeping the optimal strategy of 

group 1 as constraint and keeping the arrays of group 3 and group 4 mapped in the 

default memory, the optimal strategy for group 2 is found. First, the optimal mapping 

strategy for group 1 is found. Then, mapping strategy of group 1 is kept as a constraint 

and the optimal strategy for group 2 is explored. This process is repeated to find the 

mapping strategy for the whole graph. 

                                                             
1 http://www.es.ele.tue.nl/~rjordans/ 
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Figure 4-7 Grouped conflict graph a) 3mm b) 2mm 

Application of this method reduces the solution space of the data mapping and makes 

the number of solutions limited. This method allows us to explore the system 

performances for more complex applications and when the number of memories in the 

processor increases. This method is applied to applications 3mm, 2mm and atax for 

different number of memories, to explore how this method reduces the solution space 

and computes the relevant system performances. Figure 4-8 shows the results for 

applications mapped to different number of memories and related number of solutions. 

The execution time and energy consumption in the table is the value of the optimal 

mapping strategy for each case. Due to a long simulation time, we only simulated the 

2mm, 3mm and atax with the reduced conflict graph, mapped to three memories. The 

solution space is reduced to a large extent and the performance of the optimal mapping 

strategy found by grouping method is almost the same as the results found by 

simulating all the solutions. 

Application 
conflict 
graph 

#solution 
Execution time 

(#cycles) 
Energy 

consumption (nJ) 

2mm 

original 108 181561 20240 

grouped 15 181561 20240 

Ratio 7.2:1 1:1 1:1 

3mm 

original 648 276849 33220 

grouped 21 278801 33220 

Ratio 30.8:1 0.99:1 1:1 

atax 

original 36 5488 649.5 

grouped 15 5488 649.5 

Ratio 2.4:1 1:1 1:1 
Figure 4-8  Performance comparison between the original simulation method and the grouped 
simulation method 
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5. Chapter 5: Experimental results 

This chapter describes the experiments results for data conflicts elimination and memory 

mapping tool. First part describes how the system performance improved by eliminating 

data conflicts and then, the efficiency of the memory mapping tool is illustrated. 

5.1 Data conflicts elimination 

In this section, 3 applications are used as benchmarks to apply the described strategies 

in Chapter 3 to eliminate data conflicts and to apply code optimizations to get better 

performance for the ASIP system. The applications are chosen from the Polyhedral 

Benchmark suite [11]: PolyBench/C, including 3mm, 2mm and atax. 

 3mm. Three matrix multiplications distributed in three independent loops. 

E = A*B; F = C*D; G = E*F 

 2mm. Two matrix multiplications distributed in two independent loops. 

tmp = A*B; D = C*tmp 

 Atax. Matrix transposition and vector multiplication distributed in two 

independent loops.  

tmp = A*x; y = A*tmp 

 

Figure 5-1 Data mapping strategies for 3mm, 2mm and atax to eliminate parallel-conflicts 

For each application, the earlier discussed strategies used to eliminate the data conflicts 

and code optimizations are applied. Both execution time and energy consumption of 

each optimization step are compared. The data mapping strategies for dealing with 
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parallel-conflicts and applying loop fusion and software pipelining are shown in Figure 5-

1. These mapping strategies assign data with conflict to different memories. For 

simplicity, Memory 1, memory 2 and memory 3 are used to represent real names of 

memory ali0_dmem_mem, cluster01_cec0_dmem_mem and cluster02_cec0_dmem 

_mem, respectively. 

Execution time 

We take advantage of the register files to reduce the data self-conflicts and we 

distribute data that have parallel-conflicts to different local memories to reduce 

parallel-conflicts. In this way, the stall cycles caused by conflicting simultaneous data 

accesses to the same memory are eliminated. This causes the execution time decrease. 

Also, loop fusion and software pipelining are applied to the code to optimize the data 

locality and instruction level parallelism. This increases the amount of parallelism 

available among instructions and gives the complier more flexibility to schedule the 

operations in a more effective way. Therefore, the number of clock cycles for execution 

drops. Figure 5-2a, Figure 5-3a and Figure 5-4a shows the execution time and 

improvements after optimization each step.  

  

Figure 5-2 3mm a) Execution time b) Energy consumption 

   

Figure 5-3  2mm a) Execution time b) Energy consumption 

13.26% 5.15% 

43.27% 

13.96% 3.64% 

45.69% 

12.95% -3.88% 

47.07% 

12.88% -1.48% 

40.17% 
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Figure 5-4 atax a) Execution time b) Energy consumption 

From the figures one can conclude that removing the data conflicts and applying loop 

fusion and software pipelining benefit the execution time. Eliminating the data self-

conflicts and parallel-conflicts gives 17.73%, 17.1% and 17.77% improvement on 

execution time for applications 3mm, 2mm and Atax, respectively.  

With the decrease of the number of accesses to memories, as shown in Figure 5-5, the 

execution time decreases at the same time. After applying the code optimizations, 

43.27%, 45.69% and 41.82% extra improvements are achieved in the execution time for 

applications 3mm, 2mm and atax, respectively.  

step 
total access to memory(normalized value) 

3mm 2mm atax 

1. Original 1 1 1 

2. Self-conflict 0.74 0.73 0.83 

3. Parallel-conflict 0.71 0.73 0.78 

4. Code optimizations 0.54 0.48 0.78 

Figure 5-5 Memory access for applications after each optimization step (normalized value) 

Energy consumption 

As shown in Figure 5-3b, Figure 5-4b and Figure 5-5b, reducing data conflicts also 

substantially decreases the energy consumption. The reduction in energy consumption 

for applications 3mm, 2mm and atax, is 11.57%, 9.58% and 17.53%, respectively. Also, 

after applying of the code optimization, 40.17%, 47.07% and 46.87% extra 

improvements on execution time are achieved for applications 3mm, 2mm and atax, 

respectively. We notice that for application 2mm and 3mm, after data parallel-conflicts 

are eliminated, the energy consumption increases, which is different from expectation. 

One reason for this is two extra memories added to reduce parallel-conflicts, which 

brings extra dynamic and static energy consumption. Although elimination of the 

parallel-conflicts decreases the memory accesses and overheads, which reduces the 

energy consumption, the extra energy consumption generated by additional memories 

8.88% 
9.76% 

41.82% 

9.27% -0.03% 

46.87% 
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exceeds the energy consumption reduction, leading to the increase of total energy 

consumption.    

Another aspect that will influence the system performance is hardware utilization. 

Hardware utilization indicates the system design efficiency. High architecture utilization 

corresponds to a low waste of energy. In this Master thesis, hardware utilization is 

considered and measured as the utilization of the processor Issue Slots. There also exist 

other utilization aspects and measures, such as the interconnected network utilization, 

register file write-port and read-port utilizations. The Issue Slot utilization considered in 

this thesis is the average utilization in each cycle during the whole execution process of 

one application. Therefore, the issue slot utilization is the sum of utilization of all issue 

slots for all cycles against the total number of cycles. The corresponding utilization 

calculation formula is shown as below: 

             
∑                          

                      
 

 

 

Figure 5-6 Resource utilization for 3mm 

We take the original 3mm application to show how the utilization is calculated. The 

utilization for each cycle is shown in Figure 5-6. For one cycle, the utilization is 33%, 67% 

and 100% for the usage of one issue slot, two issue slots and three issue slots, 

respectively. The utilization for this application can be calculated as below:  

             
∑                           

                      
 

             

  
        

The issue slot utilization benchmark results are shown in Figure 5-7.  The red bar is the 

final result after reducing the data conflicts and applying the code optimization. The 

improvement of the hardware utilization indicates the more efficient hardware usage, 

which is beneficial for the system performance. 
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Figure 5-7  Issue slot utilization of application 3mm, 2mm and atax 

Also, reducing the data conflicts allows the code optimization to result in better 

performance, as shown in Figure 5-8.  

5.2 Application of the tool to benchmark applications 

The memory mapping tool is applied to benchmark applications 3mm, 2mm and atax to 

analyze and evaluate the influence of different data mapping strategies on the system 

performance and energy consumption. The ASIP instance is the same as used before in 

relation to eliminate the parallel-conflicts elimination. The best case and worst case 

values used to compare the execution time and energy consumption were computed for 

the same data mapping strategy for each application. Figure 5-9 shows that the 

execution time and energy consumption are both substantially influenced by the 

mapping strategy. For the execution time, compared to the worst cases, the values of 

the best cases have 19.03%, 23.77% and 0.56% improvements for 3mm, 2mm and atax, 

respectively. For energy consumption, the values of best cases have 16.93%, 27.73% and 

1.74% improvements for 3mm, 2mm and atax respectively, versus worst case. With the 

help of the memory mapping tool, the hand-designed, time-consuming and error-prone 

Application 

Execution time Energy consumption 

with data 

conflicts 

no data 

conflicts 
ratio 

with data 

conflicts 

no data 

conflicts 
ratio 

3mm 22.62% 53.32% 1:2.4 20.84% 47.11% 1:2.6 

2mm 28.08% 54.97% 1:1.9 23.62% 52.14% 1:2.2 

atax 9.13% 52.16% 1:5.7 13.13% 50.21% 1:3.8 

Figure 5-8 Improvements of code optimization after data conflicts are eliminated 

35.08% 

11.16% 

10.8% 
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process is automated and the optimized mapping strategy can be found among all 

possible mapping strategies. 

  
Figure 5-9 Performance comparison between optimal mapping strategy and worst case mapping 
strategy a) Execution time b) Energy consumption. 

The variance in the results of different mapping strategies is due to the asymmetry of 

the ASIP architecture, i.e. the issue slots connected to the different memories are not 

equivalent. In the case of 3 issue slots ASIP, issue slot 2 (cluster01_cec0_cec_is) and 

issue slot 3 (cluster02_cec0_cec_is) are uniform, with same function units. However, 

issue slot 1 (alio_ali_is) is different, with more function units. Issue slot 1 is the 

sequencer and it needs to be connected to the program memory. This influences the 

performance when accessing memory 1 (ali0_dmem_mem). To test the speed of each 

memory, all the data of the application are mapped firstly on memory 1, then on 

memory 2 and then on memory 3, respectively, to evaluate the system performance. 

Figure 5-11 shows the ratio of each memory’s performance compared to memory 3. The 

factor is a normalized value with respected to the value obtained from memory 3. 

Memory 1 is the slowest memory and has the highest energy consumption, so when 

arrays are mapped to memory 1, the system performance will be degenerated. This is 

the main reason why the system performance varies with different data mapping 

strategies. 

Application Memory 1 Memory 2 Memory 3 

3mm 
time 1.35 1 1 

energy 1.28 1 1 

2mm 
time 1.17 1 1 

energy 1.27 1.05 1 

atax 
time 1.18 1 1 

energy 1.15 1 1 
Figure 5-10 Memory performance normalized with memory 3 
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6. Chapter 6: Conclusion 

This chapter concludes the report. In the first part, the work and contributions of the 

Master project are summarized. The second part provides several ideas for future 

research and development. 

6.1 Work and contribution 

The research reported in this Master project addressed the automatic synthesis of 

parallel memories for VLIW ASIPs and data to memory mapping problem for ASIPs, 

when focusing on the problems mentioned in section 1.4. The aims of the project were 

the following:  

 To analyze the problem of parallel memory synthesis and data mapping for VLIW 

ASIPs, when focusing on the above listed two main sub problems of this problem. 

 To propose and implement a method to reduce the memory access conflicts.   

 To develop an automatic memory mapping tool to deal with the data mapping 

problem. The tool has to automatically find an appropriate number of memories 

needed for a specific application, as well as, an optimal data mapping strategy. 

 To perform experimental research to analyze how the data conflicts elimination 

method improves the system performance and to analyze the efficiency of the 

automatic memory mapping tool. 

All the above aims have been satisfactorily realized. In particular, the project produced 

the following results: 

 Data conflicts when data accessing to memory are reduced. 

There are two kinds of data conflicts when accessing the memory: self-conflicts 

and parallel-conflicts. The self-conflicts have been reduced through placing the 

data that have self-conflicts into the register files instead of placing them in the 

local memory. The parallel-conflicts have been reduced through distributing 

arrays that have parallel-conflicts into different local memories. Thereafter, 

some code optimizations were applied to make a better use of the VLIW 

architecture in order to improve the system performance. Benchmark results 

show that elimination of the data conflicts saves up to 18% of the execution time 

and 13% of the energy consumption. After the application of the code 

optimization, 46% and 47% extra improvements are achieved in the execution 

time and energy consumption, respectively. 

 The automatic memory mapping tool is designed and implemented. 
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The tool is able to automatically explore and decide an adequate number of 

memories needed for a specific application, as well as, perform the solution 

space exploration for the data mapping problem and simulation of the results. 

Benchmark results show that among the different solution for data mapping 

problem, there are up to 27% and 28% variances on system performance 

between the best case solution and the worst case solution. With the help of the 

tool, the hand-designed, error-prone and time consuming mapping method 

became automatic, and an optimal solution for the data mapping problem can 

be obtained. 

 A method to deal with the simulation time bottleneck is proposed. 

If the solution space is large, the simulation is the bottleneck of the whole 

exploration. To deal with the bottleneck, a grouped method is applied to reduce 

the solution space in order reduce the simulation time. This method considers 

only a limited number of solutions. Benchmark results shows that up to 96% of 

the solution space can be reduced, while roughly maintaining the same system 

performance. 

6.2 Ideas for further work 

The input for the memory mapping tool is an adjacency matrix of the conflict graph, 

which indicates the adjacency relation among different nodes in the conflict graph. For 

the purpose of this project, the adjacency matrix is constructed by hand. To improve the 

efficiency, one possible method is to use the C-to-Array-OL tool to automatically 

generate the adjacency matrix from Array_OL of the application. 

In section 4.5, to reduce the solution space of mapping strategies, the nodes in the 

reduced conflict graph are partitioned into groups and an optimal mapping strategy by 

is found by searching for partial optimal mapping strategies of each group. However, for 

some applications, the reduced conflict graph cannot be partitioned into groups. One 

possible solution is to redefine and solve this problem as the Clique problem [12]. The 

nodes in the conflict graph can be partitioned by finding maximal cliques. 
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Appendix 

Memory mapping algorithm 

The main part of the memory mapping algorithm is shown below. In the table, matrix 

means the adjacency matrix of the conflict graph and array color store the color for each 

node. Integer m is the number of color needed to color the graph and n is total number 

of nodes. In line 2, a flag is used to identify if the number of current colors is enough. In 

line 5, the function colorchecking() is used to check whether color t can be used to color 

the current node. If color t can be used to color current node, graph coloring process is 

continued to color the rest of the nodes in the graph. The function graphcolor() is called 

again in line 8 to perform graph coloring for the next node. In line 9, if all existing colors 

fail to color the node, then, the index of color will be increased, introducing a new color. 

The colorchecking() function is used to check if the current color can be applied to color 

the node, in other words, the function check coloring conflicts. If there is a coloring 

conflict, the return value is false, meaning current color cannot be used to color the 

node. If there is no coloring conflict, the returned value is true, and the current color is 

used to color the node. 

1 def graphcolor(matrix,i,m,color): 

2        flag = 0 
3        if i<n:   
4                for t in range(0,m): 
5                       if colorchecking(matrix,i,t,color): 
6                              flag=1 
7                              color[i]=t 
8                              graphcolor(matrix,i+1,m,color) 
9                if(flag!=1): 
10                       m+=1 
11                       color[i]=m-1 
12                       graphcolor(matrix,i+1,m,color) 
13        else: 
14                  for j in range(0,n-1): 
15                       print(color[j]) 
16  
17 def colorchecking(matrix,i,t,color): 
18          for j in range(0,i+1): 
19                 if (matrix[i][j]==1 and color[j]==t): 
20                        return False 
21          return True 
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Header file for 3mm 

In the head file, information in Line 1 to Line 7 represents the indexes of memories 

where arrays are allocated and information in Line 8 to Line 14 represents the indexes 

of memories where arrays are mapped to. 

 


