
 Eindhoven University of Technology

MASTER

Automatic synthesis of parallel memories for VLIW ASIPs

Xu, P.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/2fdd3437-22e9-48db-b6a7-dea96a920954

Automatic synthesis of parallel
memories for VLIW ASIPs

By

Peng Xu

Final Project Thesis

Eindhoven University of Technology

Department of Mathematics and Computer Science

Student:

Peng Xu (0771511)

p.xu@student.tue.nl

Supervisors:

Lech Jozwiak, EE, TU Eindhoven

Rosilde Corvino, EE, TU Eindhoven

10-02-2014

1

Abstract

Nowadays, people’s life is closely related to an extensive use of electronic systems,

which have to satisfy increasing demands related to their small size, energy efficiency

and high performance. Application-specific instruction-set processors (ASIPs), featured

as customized instruction processors, are suitable for the realization of such highly-

demanding electronic systems, because they are able to meet stringent demands for

size, power consumption and performance.

However, the stringent physical and economic requirements on hardware design

combined with the increasing complexity of modern applications, result in the

extremely complex problem of ASIP hardware design and application mapping, when

guaranteeing a low power consumption and high performance.

The research described in this Master report addresses the automatic synthesis of

parallel memories for Very Long Instruction Word (VLIW) ASIPs and data to memory

mapping problem for ASIPs. The research activities are applied to the Intel/Silicon Hive

VLIW ASIPS. The main aim of this Master project is to propose methods to reduce

memory access conflicts and thereafter, propose and implement an automatic memory

mapping tool to deal with the data mapping problem. The tool is able to automatically

explore and decide an adequate number of memories needed for a specific application,

as well as, perform the solution space exploration for the data mapping problem and

simulation of the results. With the help of the tool, the hand-designed, error-prone and

time consuming mapping method became automatic, and an optimal solution for the

data mapping problem can be obtained.

2

Contents

Abstract .. 1

Table of Figures ... 4

1. Chapter 1: Introduction ... 5

1.1 Project background .. 5

1.2 ASAM project ... 6

1.2.1 Project introduction ... 6

1.3 Intel/Silicon Hive ASIPs... 8

1.4 Problem statement .. 10

1.5 Report organization ... 12

2. Chapter 2: Automatic synthesis of parallel memories for ASIPs .. 13

2.1 Introduction ... 13

2.2 Related work.. 15

2.3 Proposed solution .. 15

3. Chapter 3: Data conflict problem ... 18

3.1 Problem analysis .. 18

3.2 Reduce data conflicts ... 19

3.2.1 Self-conflicts... 19

3.2.2 Parallel - conflicts ... 19

3.2.3 API for data transfer ... 20

3.3 Code optimization .. 21

3.3.1 Loop fusion .. 22

3.3.2 Software Pipelining .. 24

3.4 Influence of data to memory mapping strategy .. 24

4. Chapter 4: Memory mapping tool design ... 26

4.1 Introduction ... 26

4.2 Memory mapping tool construction ... 27

4.2.1 Input .. 27

4.2.2 Memory mapping tool .. 27

4.2.3 Output ... 29

4.3 Memory reduction ... 30

3

4.4 Solution space reduction .. 30

5. Chapter 5: Experimental results ... 33

5.1 Data conflicts elimination .. 33

5.2 Application of the tool to benchmark applications ... 37

6. Chapter 6: Conclusion .. 39

6.1 Work and contribution ... 39

6.2 Ideas for further work .. 40

Bibliography .. 41

Appendix ... 42

Memory mapping algorithm .. 42

Header file for 3mm .. 43

4

Table of Figures

Figure 1-1 ASAM design flow ... 6

Figure 1-2 ASIP level DSE ... 7

Figure 1-3 ASIP architecture template ... 9

Figure 1-4 ASIP instance used in the project .. 10

Figure 1-5 Schematic of issue slot a) issue slot 1 b) issue slot 2 and 3 .. 10

Figure 2-1 System performance variances due to different mapping strategies 14

Figure 2-2 Arrays assignments of mapping strategies 1 and 5 .. 14

Figure 2-3 Memory accesses and array size of mapping strategies 1 and 5 14

Figure 2-4 Memory performance normalized with memory 3 .. 15

Figure 2-5 3mm a) conflict graph b) colored conflict graph .. 17

Figure 3-1 Partial code segment of 3mm ... 18

Figure 3-2 Partial code segment of 3mm after applying register files to reduce self-conflicts 20

Figure 3-3 Assign arrays in application 3mm to reduce parallel-conflicts.................................... 20

Figure 3-4 Original code segment of 3mm ... 22

Figure 3-5 Improvement of data locality for array E in 3mm a) original b) after loop fusion 23

Figure 3-6 Reduction of loop overhead for partial code segment of 3mm 23

Figure 3-7 Subset of data mapping strategies for 3mm .. 25

Figure 4-1 System flow of memory mapping tool... 27

Figure 4-2 Sub-parts of the memory mapping tool .. 28

Figure 4-3 Process flow of memory mapping algorithm ... 29

Figure 4-4 3mm a) Partial output of memory mapping tool b) Colored conflict graph according to

mapping strategy 1213321 .. 29

Figure 4-5 conflict graph of 3mm a) original b) reduced .. 30

Figure 4-6 Performance comparison between the original conflict graph and the reduced conflict

graph .. 31

Figure 4-7 Grouped conflict graph a) 3mm b) 2mm ... 32

Figure 4-8 Performance comparison between the original simulation method and the grouped

simulation method .. 32

Figure 5-1 Data mapping strategies for 3mm, 2mm and atax to eliminate parallel-conflicts 33

Figure 5-2 3mm a) Execution time b) Energy consumption .. 34

Figure 5-3 2mm a) Execution time b) Energy consumption .. 34

Figure 5-4 atax a) Execution time b) Energy consumption .. 35

Figure 5-5 Memory access for applications after each optimization step (normalized value) 35

Figure 5-6 Resource utilization for 3mm .. 36

Figure 5-7 Issue slot utilization of application 3mm, 2mm and atax ... 37

Figure 5-8 Improvements of code optimization after data conflicts are eliminated 37

Figure 5-9 Performance comparison between optimal mapping strategy and worst case mapping

strategy a) Execution time b) Energy consumption. ... 38

Figure 5-11 Memory performance normalized with memory 3 .. 38

5

1. Chapter 1: Introduction

This chapter introduces the project and presents relevant background information. It

starts with background of the reported research activities. Next, a brief introduction to

the Intel/Silicon Hive ASIP technology is given, consisting of discussion of general ASIP

architecture template and the ASIP instance used in this research activity. Finally, the

main problem addressed during this research activity and the organization of this report

are described.

1.1 Project background

Nowadays, people’s daily life is closely related to an extensive use of electronic systems,

which have to satisfy increasing demands related to their small size, energy efficiency

and high performance. Application-specific instruction-set processors (ASIPs), featured

as customized instruction processors for specific applications, are suitable for such

electronic systems, because they are able to meet the stringent demands for size, power

consumption and performance.

ASIPs are an intermediary solution between the Application-specific integrated circuits

(ASIC) and general purpose (GP) processors, having both the flexibility of the general

purpose processor and the high performance of ASICs. ASICs are able to efficiently

realize any kind of functionality, but they are extremely costly and not programmable.

ASIPs deliver greater computational efficiencies than GP processors and more flexibility

than fixed-function logic designs. As such, they are an appropriate technology to

consider for performance and power sensitive designs in next-generation SoCs –

particularly where flexibility provides a competitive advantage [1].

However, the stringent physical and economic requirements on hardware design

combined with the increasing complexity of modern applications, result in an extremely

complex problem of ASIP hardware design and application mapping when guaranteeing

a low power consumption and high performance. The ASIP design problem involves

application analysis, code optimization, scheduling and mapping, as well as, efficient

processor design with customized data paths and memory subsystem. The design of

memory subsystem, which involves the choice of the appropriate number and size of

parallel local memories and of the mapping of arrays into the local memories, influences

the performance of the processor to a high degree. This influence is even increased for

data dominated applications, i.e. applications processing large amount of data. A good

strategy for data memory mapping should make the full use of the allocated memory

and should optimize the system performances. The problem of finding a good data to

6

memory mapping strategy and deciding a minimum number of different memory

locations where to map the data, so that all possible conflicts in data access are

removed, can be referred to as the data mapping problem. The subject of the Master

project reported here is the automatic synthesis of parallel memories for VLIW ASIPs

and data to memory mapping problem for ASIPs. The project was performed as a part of

the European research project ASAM.

In the rest of this chapter, we describe the context of the Master thesis, i.e. the ASAM

project, and SH technology and give the problem statement.

Figure 1-1 ASAM design flow

1.2 ASAM project

1.2.1 Project introduction

ASAM stands for Automatic Architecture Synthesis and Application Mapping. It is a

European research project conducted in the framework of the ARTEMIS Program [2].

ASAM targets a uniform process of automatic architecture synthesis and application

mapping for heterogeneous multi-processor embedded systems based on adaptable

and extendable VLIW ASIPs. It aims to provide a tool suite for automatic multi-ASIP

system design. The new design environment allows a rapid exploration of the high-level

7

algorithm and architecture design spaces, as well as, an efficient automation of the final

system synthesis, and in consequence, a quick development of high-quality designs [3].

System DSE takes as its inputs: an application C-code, parametric and structural

requirements, and representative stimuli. ASIP DSE aims at the design of a single ASIP

and its associated software for the execution (of a part of) the whole application. GC&M

DSE aims at the exploration and optimization of the global communication and memory

structures for a multi-ASIP system. HW/SW synthesis accepts as input service requests

from the System DSE, ASIP DSE and GC&M DSE. It also takes as input the abstract

architecture description of the designed MPSoCs or their parts, and the corresponding

restructured application C-code [3]. It produces a corresponding actual hardware and

software. Rapid prototyping performs a simulation on FPGA evaluation of the

synthesized HW/SW design.

Figure 1-2 ASIP level DSE

This Master project is related to ASIP DSE. The ASIP level DSE in the ASAM project is

subdivided into the following three phases, as shown in Figure 1-2:

 Application analysis

 Application optimization and ASIP coarse design

8

 Refinement

This Master project is part of the refinement phase. It explores and proposes a solution

to the problem of parallel memory design and data to memory mapping for ASIPs to

optimize system performances. ASAM project targets the VLIW ASIP technology of Intel

Benelux (former Silicon Hive).

1.3 Intel/Silicon Hive ASIPs

Intel/Silicon Hive (SH) is a company of Intel's Mobile Communications Group (MCG),

providing generic customizable ASIPs, developing flexible system intellectual properties

(IP) modules based on ASIPs, as well as, for handling media processing in consumer

electronics and mobile terminals chipsets, designing application-specific solutions for

image, video processing and communications. SH provides a hive processor description

language and a hive system description language. TIM language, the processor

specification language, is a basis for SH’s programming and processor generation tools.

HSD language, which is the system description language, can be used to write

customized system descriptions and plug-in customized device into the system.

Moreover, a software development kit (SDK) is provided, including toolsets and

application libraries to allow users to create fully programmable systems on chips that

can be adapted to different application fields.

SH ASIP consists of one or more interconnected Cells. A single cell defines a Very Long

Instruction Word (VLIW) machine that is capable of executing parallel software with a

single thread of control. A cell template is shown in Figure 1-3, taken from [4].

A cell consists of a Core that performs computations under software program control,

including:

 Datapath, which contains several function units, organized in a number of

parallel issue slots to realize functional operations.

 Sequencer, which is a simple state machine containing a program counter

register as well as a status register, can enable special processor modes under

software control

Another part is a CoreIO that provides subsystems of memories and I/O allowing the

core to be easily integrated in any system. CoreIO contains:

 Local data memories, comprised of one or more storage or I/O devices, allowing

the function units’ access to local physical memory in CoreIO or to perform

memory mapped I/O with the system.

9

 Interfaces, providing communication and easy integration of a processor in a

wide variety of system architectures

 FIFO, used with a stream interface to deal with a data stream.

Figure 1-3 ASIP architecture template

The processors used in the scope of this project are instances of the ASIP architecture

template of Figure 1-4. Every issue slot has an associated register file. The register files

are part of storage elements in the VLIW architecture. The read ports of a register file

are connected with relevant Function Units (FUs) in the issue slot the register file is

deployed in. For the write ports, they are fully connected with each other through buses.

Memories are single ported, which cannot be accessed concurrently. For the purpose of

this project, we considered that maximally one memory is connected with one issue slot.

FUs are used for different operations. Issue slot 1 consists of 9 FUs, as shown in Figure 1-

5a. A BRanch Unit (bru) and a Status Update Unit (suu) form the sequencer, which are

used for program control. ARithmetic Unit (aru), Bit Management Unit (bmu), LoGic Unit

(lgu), Multi Accumulate (mac), PaSs Unit (psu) and SHift Unit (shu) are able to provide

the instructions for general purpose processing. Load Store Unit (lsu) is used for data

transmission. Issue slot 2 and issue slot 3, as shown in Figure 1-4b, have the same

10

structure, consisting 6 FU’s: ARithmetic Unit (aru), Bit Management Unit (bmu), LoGic

Unit (lgu), Multi Accumulate (mac), PaSs Unit (psu) and SHift Unit (shu).

Figure 1-4 ASIP instance used in the project

Figure 1-5 Schematic of issue slot a) issue slot 1 b) issue slot 2 and 3

1.4 Problem statement

Memory subsystem design and data to memory mapping are main concerns in ASIP

design, especially for data-intensive applications. To realize these applications with high

performance and high energy efficiency in a small size ASIP, the following two main

problems, being the subject of this Master project have to be solved:

 Elimination of data conflicts when accessing memories. Conflicts in data access

appear, if different parts of same data array or different data arrays mapped to

the same memory are accessed simultaneously. To solve these conflicts, data

accesses are rescheduled and some of them are delayed in time. This introduces

stall cycles in the execution of processes waiting to be fetched with data, and it

11

degenerates the overall system performance. Adequate methods need to be

found to reduce the data conflicts. There are two kinds of conflicts when

accessing data into memory: self conflicts and parallel conflicts. Self conflicts

appear when there are simultaneously accesses to the same array variable.

Parallel conflicts appear when there are simultaneously accesses to different

array variables mapped into the same memory.

 Deciding the proper number of parallel memories and appropriate data

mapping to memories. Data mapping involves exploration of various possible

placements of data in memories. This is an error-prone and time consuming

process, requiring a lot of iterative analysis passes and a long experimental time,

due to large solution space simulation. Automation of this process is therefore

very important.

The research reported in this Master report addresses the automatic synthesis of

parallel memories for VLIW ASIPs and data to memory mapping problem for ASIPs,

focusing on the problems mentioned above, the aims of the project are the followings:

 To analyze the problem of parallel memory synthesis and data mapping for VLIW

ASIPs, when focusing on the above listed two main sub problems of this problem.

 To propose and implement a method to reduce the memory access conflicts.

 To develop an automatic memory mapping tool to deal with the data mapping

problem. The tool has to automatically find an appropriate number of memories

needed for a specific application, as well as, an optimal data mapping strategy.

 To perform experimental research to analyze how the data conflicts elimination

method improves the system performance and to analyze the efficiency of the

automatic memory mapping tool.

The research activity builds upon these aims and is developed as described below.

Applications used in this project are ported onto an ASIP instance and their performance

is evaluated. Then methods are proposed and implemented to deal with self-conflicts

and parallel-conflicts. Thereafter, certain code optimizations are performed to obtain

the power efficiency and high performance. Subsequently, an automatic memory

mapping tool is designed and implemented to find the minimum number of local

memories required for a specific application and an optimal data mapping strategy,

which improves both the performance and power consumption. Finally, a grouping

method is proposed and implemented to reduce the data memory mapping solution

space, and in this way, to speed up the exploration time. In parallel to the above listed

activities and after finalizing implementations of particular methods, an extensive

12

experimental research has been performed which is discussed in the corresponding

sections of the report.

1.5 Report organization

The reminder of this thesis is structured as follows.

In Chapter 2, the introduction for automatic synthesis of parallel memories for ASIPs is

given. Then, a motivational example is used to explore the influences of different data

to memory mapping strategies on system performance. Thereafter, related works are

summarized and one method to deal with the data to memory mapping problem is

proposed.

In Chapter 3, the data conflict problems of data mapping onto local memories are

analyzed, and strategies are proposed to reduce the data conflicts. Moreover, some

code optimizations are applied to make better use of the VLIW architecture in order to

improve the system performance.

In Chapter 4, a memory mapping tool proposed by us and its implementation are

discussed. At first, the motivation to the design of this tool and its general design are

given. Then, the implementation details of the memory mapping tool and also the

algorithm used for the tool are presented. Thereafter, the memory mapping tool is

applied to test benches to explore how the tool benefits the selection of a mapping

strategy. Finally, the bottleneck of the tool is discussed, and a grouping method is

proposed to reduce the solution space of data mapping to overcome the bottleneck.

In Chapter 5, the experiments results for data conflicts elimination and memory

mapping tool are described. First part describes how the system performance improved

by eliminating data conflicts and then, the efficiency of the memory mapping tool is

illustrated.

In Chapter 6, this report is concluded providing a summary and discussion of the

presented work and a discussion. Also, several ideas for future research and

development are discussed.

13

2. Chapter 2: Automatic synthesis of parallel memories for

ASIPs

In this chapter, the introduction for automatic synthesis of parallel memories for ASIPs is

given. Then, a motivational example is used to explore the influences of different data to

memory mapping strategies on system performance. Thereafter, related works are

summarized and one method to deal with the data to memory mapping problem is

proposed.

2.1 Introduction

In order to realize data-intensive applications with high performance and high energy

efficiency on a small sized ASIP, the following two main problems have to be solved: 1)

Elimination of data conflicts when accessing memories, since data conflicts introduces

stall cycles in the execution of the overall process. 2) Selection of the appropriate

number of parallel memories and appropriate data to memory mapping.

We will use the 3mm application for benchmark to illustrate our discussion. The 3mm is

3 matrixes multiplication distributed in three independent loops, each realizing one of

the following matrix multiplications: E = A*B; F = C*D; G = E*F.We explain the impact of

memory mapping on system performance by using the simplified models of application

execution time and energy consumption taken from [5] [6] and reported below:

Estimated execution time calculation formula:

 ∑

Estimated energy consumption calculation formula:

 ∑

14

 equals to the total size of arrays mapped to and is the

normalized value for energy consumption per cycle(8.98642E-08 J/cycle). Access time

can be get from application simulation result.

Figure 2-1 shows the variances in system performance due to different mapping

strategies. From the figure, we explain strategies 1 and 5 with respect to the previous

formula. Figure 2-2shows the arrays assignments of mapping strategies 1 and 5.

Strategy Memory 1 Memory2 Memory3
Execution

time
Energy

consumption

1 BDG AF CE 733684 80470

2 CDG EF AB 733620 80560

3 AF BCG DE 700884 77280

4 AE DF BCG 700852 77250

5 CE BF ADG 700852 77170
Figure 2-1 System performance variances due to different mapping strategies

Figure 2-2 Arrays assignments of mapping strategies 1 and 5

Strategy
Accesses Size

Data memory Program memory Memory 1 Memory 2 Memory 3

1 396288 730516 3096 2048 2048

5 396288 698708 2048 2048 3096
Figure 2-3 Memory accesses and array size of mapping strategies 1 and 5

According to the above estimated calculation formulas for execution time and energy

consumption. The execution times for strategies 1 and 5 are 1126804 and 1094996. The

energy consumptions for strategies 1 and 5 are 85.4+0.065*size(pmem) and 85.4+0.063

*size(pmem). The variances on system performance are caused due to the influence of

the sequencer, which is used to realize control related interactions, as well as data

accesses into the local memory. The interactions create a delay in accessing the memory

connected with the sequencer. Consequently, the local memory connected to the

sequencer is always slower than the others. We say that an architecture allocating

memories with different speeds is asymmetric. The delay can be modeled by assigning

15

different speeds to the different local memories, as shown in Figure 2-4. The figure

shows the ratio of each memory’s performance compared to memory 3 and in this case,

memory 1 is connected with the sequencer. The factor is a normalized value with

respected to the value obtained from memory 3. Memory 1 is the slowest memory and

has the highest energy consumption, so when arrays are mapped to memory 1, the

system performance will be degenerated. This is the main reason why the system

performance varies with different data mapping strategies.

Performance Memory 1 Memory 2 Memory 3

Accessing time 1.35 1 1

Energy consumption 1.28 1 1
Figure 2-4 Memory performance normalized with memory 3

2.2 Related work

Memory subsystem plays a dominant role in the design of electronic systems, and it is a

major contributor to the overall energy consumption of the entire system. As

applications get more and more complex, the number of local memories used in the

system and data to memory mapping strategy influence the system performance

significantly.

One idea that can be applied to reduce energy consumption is memory partition, which

is to divide the address space and to map the blocks to local memory. This idea has been

applied to several prior works. Kandermir et al. [7] proposed a compiler-controlled

dynamic on-chip scratch-pad memory management framework that uses both loop and

data transformations to maximizing the reuse of data portions. Memory space

partitioning strategy is applied to utilize the memory space efficiently. Benini et al. [8]

proposed a recursive partitioning of the on-chip SRAMs address space into multiple

banks and achieved an exploration of banking solution. Angiolini et al. [9] optimized the

solution in [8], the cost function was shown to exhibit properties that allow applying a

dynamic programming paradigm. Prior work illustrates that the memory partitioning is

an effective method to reduce energy consumption. In this Master project, loop

transformation – loop fusion, is applied to improve the reuse of memory locations.

Moreover, memory partition is also applied to partition the address space of memory to

fit the size of different arrays that mapped into local memory, in order to deal with the

data to memory mapping problem.

2.3 Proposed solution

One solution to deal with the data to memory mapping problem is using graph coloring.

Graph coloring is a way of coloring the nodes of a conflict graph such that no two

16

adjacent nodes in the graph share the same color. The graph coloring problem can be

defined as follows: For a given conflict graph G = (V, E), and m colors, color all the nodes

in all possible ways, so that no adjacent nodes have the same color. By apply the graph

coloring algorithm, data mapping problem can be solved. Data mapping strategy can be

found after completing the conflict graph coloring. It is possible to iterate the solution of

the graph coloring problem, while iterating the number of used colors. This allows for

exploring the impact of the number of memories on the improvements of the

application mapping.

The input graph of the memory mapping analysis is a conflict graph among the arrays of

an application. The conflict graph is able to model the conflict relation among different

arrays in the application. The conflict graph can be built according to the following rules:

 The nodes of the conflict graph represent the arrays being used in a given

application.

 The edges of the graph indicate that two arrays can be used in parallel, and

therefore, they should not share the same memory.

 An array assigned into a certain memory location corresponds to a node

assigned with a color, corresponding to this memory. Thus, two adjacent

nodes should never be assigned with the same color.

In this way, the data mapping problem has been translated into the graph coloring

problem, with the following attributes:

 The number of nodes in the conflict graph equals to overall number of

arrays used in the application.

 The number of colors that can be used to coloring the conflict graph is the

same as the overall number of memories provided in the processor.

 Two adjacent nodes, i.e. with edges between them indicate that two arrays

access one memory simultaneously. Therefore, they should not be colored

with same color.

In order to complete the conflict graph coloring, the conflict graph needs to be colored

with the provided colors. Different graph coloring strategies indicate different solutions

for data mapping.

3mm application is taken as an example to illustrate the building of the conflict graph.

There are 7 arrays in the 3mm application. So the number of nodes in the conflict graph

is 7. In our case, the arrays with data conflicts have to be distributed into 3 memories,

which indicate that 3 colors have to be used to color the conflict graph. Nodes are used

17

to represent arrays that can be accessed simultaneously, and then edges are added

indicating that these arrays have possible data conflicts.

Figure 2-5a shows the conflict graph for the 3mm application. There are 7 indexed

nodes in the conflict graph, corresponding to 7 arrays used in the application. 3

memories are used and they are represented by 3 colors. Color blue, green and pink are

used to represent memory 1, memory 2 and memory 3, respectively. The edges

corresponding to the sunset of arrays that have parallel conflicts, such as array E, array

A and array B, have edges between them indicating that node E, node A and node B

cannot be colored with the same color. To complete the conflict graph coloring, the

conflict graph needs to be colored with 3 provided colors without breaking constrains of

the graph coloring problem. Figure 2-5b shows a coloring example. It is shown that node

A, node B and node E are colored with different colors. Similarly, node C, node D and

node E are colored with different colors, and the same for node E, node F and node G.

This coloring strategy indicates that array A, array C and array G are mapped to memory

1; array B and array F are mapped to memory 2; array E and D are mapped to memory 3.

Figure 2-5 3mm a) conflict graph b) colored conflict graph

18

3. Chapter 3: Data conflict problem

In this chapter, data conflict problem arising when mapping data onto local memories is

introduced and the strategies to reduce data conflicts are described. Thereafter, some

code optimizations are discussed which were applied to make better use of the VLIW

architecture in order to improve the system performance. Three applications are used as

benchmarks to see how good the system performs after reducing the data conflicts and

applying the code optimizations. The performances after each optimized steps are

compared in terms of the execution time and energy consumption.

3.1 Problem analysis

The arrays used in the application are stored in the memory, so the memory will be

accessed every iteration during data reading and writing. There are two kinds of conflict

problems when accessing the memory: self conflicts problem and parallel conflicts

problem. Self conflicts refer to simultaneous access of the same data array and parallel

conflicts refer to simultaneous access of two or more different data arrays mapped into

the same memory. A code segment taken from 3mm application is used as an example

of data conflicts.

The code segment performs the computation of E+=A*B, which can also be written as

E=E+A*B. It is shown that array E is self-conflicted, because it accesses the same

memory both in reading and writing. Moreover, array E, A and B need to be accessed

simultaneously to complete the computation, leading to the parallel-conflicts if the

arrays are stored in the same memory.

3mm_partial

1 /* E := A * B */

2 for (i = 0; i < 32; i++)

3 for (j = 0; j < 32; j++)

4 {

5 E[i][j] = 0;

6 for (k = 0; k < 32; ++k){

7 E[i][j] += A[i][k] * B[k][j];

8 }}

Figure 3-1 Partial code segment of 3mm

The conflict relations between arrays of an application can be captured by a

conflict matrix, where n is the number of arrays used in the application. The elements

on diagonal position represent self-conflicts and the other elements represent possible

parallel-conflicts for particular arrays. The conflict matrix below shows the conflicts

among arrays E, A and B. Rows and columns of the matrix represent E, A and B in order.

19

In the conflict matrix, taking first row as an example, it is shown that E conflicts 32768

times with itself, while it conflicts 32768 times both with A and B. The total number of

conflicts for arrays E, A and B are 98304, 65536 and 65536, respectively.

03276832768

32768032768

327683276832768

C

3.2 Reduce data conflicts

3.2.1 Self-conflicts

The memory in the ASIP instance considered is single ported, which means it can only

have one single access at a time, either in reading or in writing. To solve the data self-

conflict problem, data with self-conflicts need to be placed into a multi-ported memory

to allow data to be read and written simultaneously. Due to the single port attribute of

the memory, it is not possible to solve this kind of conflict from the hardware side alone,

so we take advantage of the register files to deal with the data self-conflict problem.

The calculations in the application use accumulation methods, to reduce the memory

accesses to arrays that have self-conflicts are replaced with integers stored in the

register file, and assign only the final computation results to the arrays stored in the

memory.

As shown in Figure 3-2, integer temp_E is used instead of array E to store the

intermediate computation result derived the iterations of the recursive process. By

taking advantage of the register files, the number of memory accesses are reduced since

the memory has no need to be accessed every time to read and write elements in array

E in each iteration. Also, the overhead of data is reduced because self-conflicts of array

E are eliminated, which benefits the execution time and energy consumption.

3.2.2 Parallel - conflicts

Parallel-conflicts appear when two or more different data arrays are mapped to the

same memory and are accessed simultaneously. Application execution time will increase

duo to the extra cycles cost for waiting. The parallel-conflicts can be reduced through

distributing arrays that have parallel-conflicts in different local memories, so that they

can be accessed simultaneously.

20

3mm_partial_register

1 /* E := A * B */

2 for (i = 0; i < 32; i++){

3 for (j = 0; j < 32; j++)

4 {

5 temp_E = 0;

6 for (k = 0; k < 32; ++k){

7 temp_E += A[i][k] * B[k][j];

8 }

9 E[i][j] = temp_E;

10 }}

Figure 3-2 Partial code segment of 3mm after applying register files to reduce self-conflicts

Normally, the number of memories in the ASIP is fixed by the allocation, and it is equal

to or fewer than the overall number of arrays having parallel-conflicts in an application.

In our case, the number of memories is also constrained by the issue slots’ number.

Therefore, memory re-use is needed. For application 3mm with conflict matrix in page

20, one strategy to distribute arrays with parallel-conflicts to different memories is

shown in Figure 3-3 below. It is shown that array E, array A and array B are assigned to

different memories, as well as array F, array C and array D, and array G, array E and

array F are assigned to different memories. With this mapping, arrays that have parallel-

conflicts can be accessed in parallel in the execution.

Figure 3-3 Assign arrays in application 3mm to reduce parallel-conflicts

3.2.3 API for data transfer

To map data from host memories to memories in the processor, the Hive Run-Time (HRT)

Application Program Interface (API) can be used. HRT API can be used to control SH

processor from a host processor. With the help of HRT, the host processor can upload

and execute programs on SH processor. Also, data can be passed and stored in

memories of SH processor [10]. A common reason for accessing variables in a

processor’s memory is to pass data to the application running on the processor. The

following two functions can be used for data passing:

21

 Pass data from host to processor

o void hrt_mem_store(hive_cell_id cell, hrt_mem_id mem, hrt_address dst,

void* src, hive_uint size)

 Pass data from processor to host

o void hrt_mem_load(hive_cell_id cell, hrt_mem_id mem, hrt_address src,

void* dst, hive_uint size)

The first API function can be used to pass data from the host into arbitrary memory

locations in the processor, meaning it copies copy size bytes from src into dst in memory

mem of processor cell. The source address, src, is a host address, and the destination

address, dst is a processor memory address. In the same way, the other API function can

be used to copy data back from an arbitrary memory location of a processor into the

host. The examples below show the usage of the API, for data transfer between host

memory and processor memory.

 hrt_mem_store(c_2mm_fully, cluster01_cec0_dmem_mem, 0x100, A, 32*32*

sizeof(int))

In this command, array E of size 32*32*sizeof(int) is passed from address E in host to

memory cluster01_cec0_dmem_mem in processor c_2mm_fully in address 0x100.

 hrt_mem_load(c_2mm_fully, cluster02_cec0_dmem_mem, 0x100+5*sizeof(int)

+ 6*32*32+sizeof(int), G, 32*32* sizeof(int))

In this command, array G of size 32*32*sizeof(int) is passed from address 0x100 +

5*sizeof(int) + 6*32*32 + sizeof(int) in memory cluster02_cec0_dmem_mem processor

of processor c_2mm_fully back to address G in host.

By setting the source and destination memory address, the needed data can be mapped

in the appropriate location and realize arbitrary data mapping. These two data transfer

functions are the basis for the automatic data mapping discussed in Chapter4.

3.3 Code optimization

After the above described methods were applied to eliminate the data conflicts in an

application, several application code optimizations are applied in order to increase the

instruction level parallelism. The original application is written in a sequential C format,

which may prevent the scheduler to find optimized schedules and to exploit the ILP, for

instance, due to too many functional calls and recursive functions. The code

optimizations allow to remove some redundant overhead and to better exploit the VLIW

architecture to obtain power efficiency and high performance. Also, for a specific

22

allocation, the code optimizations help to find optimized data mapping solution on a

VLIW ASIP.

3.3.1 Loop fusion

Loop fusion is used to change the execution order of iterations or data accesses in the

application where the iteration space is traversed. The loop fusion can be applied by

merging adjacent loops with identical control into one loop or tiling the iteration space

or inverting the execution order of a given loop, etc. Application 3mm is taken as an

example.

3mm_orignal

1 /* E := A * B */

2 for (i = 0; i < 32; i++)

3 for (j = 0; j < 32; j++)

4 {

5 E[i][j] = 0;

6 for (k = 0; k < 32; ++k){

7 E[i][j] += A[i][k] * B[k][j];

8 }}

9

10 /* F := A * B */

11 for (i = 0; i < 32; i++)

12 for (j = 0; j < 32; j++){

13 F[i][j] = 0;

14 for (k = 0; k < 32; ++k){

15 F[i][j] += A[i][k] * B[k][j];

16 }}

17

18 /* G := E * F */

19 for (i = 0; i < 32; i++)

20 for (j = 0; j < 32; j++){

21 G[i][j] = 0;

22 for (k = 0; k < 32; ++k){

23 G[i][j] += E[i][k] * F[k][j];

 }}

Figure 3-4 Original code segment of 3mm

Originally, the matrix operations E+=A*B and G+=E*F are distributed in two

independent loops, since there control are the same, these two loops can be merged

into to one loop. The execution of E+=A*B, F+=C*D, G+=E*F are sequential in original

code, so maximally, only 3 arrays can be accessed in parallel, and the execution time is

long due to latencies in computation of intermediate data. After loop fusion is applied,

there are 5 arrays that can be accessed in parallel. Loop fusion gives more parallelization

possibilities, and these potential possibilities can be actually enhanced when more

memories are allocated to the processor. If new memories are not allocated, the

23

performance of the system is not decreased by the application of loop fusion, if the total

amount of data conflicts stays the same as original, no extra conflicts are generated.

The original application has high storage and bandwidth requirements, since elements

in array E need to be written into a memory during the execution of the first loop and to

be read back from the memory during the second loop executing when calculating the

value of array G. This is repeated by Figure 3-5b, when the production consumption of

the whole array E are degenerated. After loop fusion is applied, data locality is improved

by combining loops references to the same array locality. As shown in Figure 3-5b that

array E is consumed shortly after it has been produced. This optimizes the locality of

data and reduces the requirements of memory and bandwidth.

Figure 3-5 Improvement of data locality for array E in 3mm a) original b) after loop fusion

Also, the loop overhead can be reduced, since the loop overhead is cut down due to

more compact code. Take array E as an example, loop fusion optimizes the loop nest by

removing redundant overheads generated by the initialization, comparison and self-

increment of variables. From Figure 3-6, it can be seen that the loop overhead

decreased from 206115 times for the original code to 137379 times for the merged

loops, which is 33.3% reduction.

Figure 3-6 Reduction of loop overhead for partial code segment of 3mm

24

3.3.2 Software Pipelining

One of the important features of VLIW is allowing for software pipelining, which reduces

cycles per instruction (CPI) by assigning operations that can be executed in parallel to

resources of the targeted processor. With software pipelining, the processor allows

instructions of the next iterations to be fetched and partially executed while the

processor is performing the instruction of the current iteration. As a result, instructions

are allowed to be executed in parallel.

Instruction scheduling determines which instructions to execute in parallel. Silicon Hive

compiler, HiveCC, is an instruction scheduling complier, which can group the operations

that are able to be execute in parallel into one instruction, and the VLIW hardware

executes the instruction containing parallelized operations. The principle of software

pipelining is to schedule the code of the loop body and determine an integer number

called initiation interval (II), which is the minimum interval between the beginnings of

two successive loop iterations. HiveCC supports automatic software pipelining and it

can be enabled by adding software pipelining pragma before the closing curly brace at

the end of the loop in the code. For example:

 #pragma hivecc pipelining=0

o The complier tries to initiate a new loop iteration every cycle. Otherwise,

it finds the minimum number of cycles for the II.

3.4 Influence of data to memory mapping strategy

In section 3.3.2, data matrixes with parallel conflicts are assigned to different local

memories to reduce the parallel conflicts. After data conflicts have been eliminated,

loop fusion and software pipelining are applied to better exploit the VLIW architecture

in order to further increase the energy efficiency and performance. However, for an

application, many possible data mapping strategies may exist. For example for 3mm

application mapped on an ASIP with 3 issue slots, there are 24 possible mapping

strategies. A subset of possible mapping strategies is shown in Figure 3-7. Different data

mapping strategies result in different system performance and energy consumption,

due to the speed variance and different memory access times, as shown in Figure 2-4. In

the previous work to eliminate parallel conflicts, a hand-designed mapping strategy

assigning data to a specific memory is used, to distribute each array of the application

manually onto a chosen memory. Thereafter, the application is simulated and the

execution time and power consumption data are obtained. This method can be iterated

in an exploration approach to discover the best mapping strategy with respect to system

performance. However, it is inefficient and ineffective, as data need to be mapped

25

manually to the targeted memory and the application has to be simulated repeatedly.

Consequently, this method requires a lot of iterative analysis passes and a long

experimental time, which is very time-consuming and error-prone. Also, the code

optimizations are applied based on the result after parallel conflicts are reduced, so the

automation of data to memory mapping process and find a mapping strategy giving

better system performance are therefore very important.

Figure 3-7 Subset of data mapping strategies for 3mm

26

4. Chapter 4: Memory mapping tool design

In this chapter, the proposed memory mapping tool is described. At first, the motivation

for designing this tool is presented. Then, in section 4.2, the algorithm used for the tool

and the implementation details of the memory mapping tool and are described.

Thereafter, in section 4.3, the memory mapping tool is applied to applications from

Polybench to explore how the tool performs the selection of optimal mapping strategy.

Finally, a bottleneck of the tool is analyzed and a grouping method to reduce the

solution space of data mapping is introduced, to eliminate the bottleneck.

4.1 Introduction

The research reported in this Master thesis explores and proposes a solution to the

problem of automatic synthesis of parallel memories to VLIW ASIPs, and especially of

data to memory mapping for ASIPs. Given a specific ASIP instance, with a fixed number

and type of issue slots and an application C code, we want to find the minimal number

of local memories and decide the mapping of arrays in the application into the ASIP local

memories in order to make good use of the allocated memories and to get high

performance and low energy consumption.

To efficiently and correctly deal with the data mapping problem, a memory mapping

tool is proposed and implemented, that can automatically explore the solution space for

the data mapping problem and simulate the application. After automating the solution

space exploration, the proposed method can much more efficiently find Pareto optimal

solutions of the memory mapping problem, with respect to the execution time and

power consumption. The proposed design and exploration flow is shown as Figure 4-1.

The input for the tool is an adjacency matrix, which can be computed from the data

conflict graph of an application. The tool reads its input and based on a brute-force

algorithm, computes the minimal number of colors needed to color the conflict graph

without breaking the constrains. Given the minimal number of colors and the conflict

graph, the possible mapping strategies are exhaustively enumerated and simulated. An

output file that contains all the possible coloring strategies and relevant execution time

and power consumption data is generated. According to the output, the Pareto mapping

strategies with the highest performance and lowest energy consumption will be found.

For each Pareto mapping strategy, the header file defining the source and destination

address for each array in the SH APIs is generated. This defines the data mapping

strategy, so that the application can be directly simulated.

27

Figure 4-1 System flow of memory mapping tool

4.2 Memory mapping tool construction

4.2.1 Input

The input for the memory mapping tool is an adjacency matrix of the conflict graph,

which indicates the adjacency relation among different nodes in the conflict graph. The

adjacency matrix summarizes the information about the parallel conflicts. The elements

of an adjacency matrix of a conflict graph are 0 and 1. The elements in the diagonal

element are all 0, because there is no edge exists for one single node. If a graph has n

nodes, the adjacency matrix can be given as by a matrix M.

 {

For Figure 2-5a, the adjacency matrix is as following:

0110000

1011100

1100011

0100100

0101000

0010001

0010010

Rows and columns of the adjacency matrix represent node A, B, C, D, E, F and G in order.

For example, the first row represents the relation between node A and all other nodes.

Since node A is in conflict with node B and node E, in the position of node B and E, the

values are set to 1 and the rest of values are set to 0.

4.2.2 Memory mapping tool

The memory mapping tool consists of two sub-parts: solution space exploration and

application simulation, as shown in Figure 4-2. For the solution space exploration part,

the tool reads the input adjacency matrix, and using the memory mapping algorithm,

28

finds the minimal number of colors needed to color the conflict graph without breaking

the constrains. Subsequently, the solution space of coloring strategies is explored and all

possible coloring strategies (data mappings) are found. The results are stored in a file.

For the application simulation part, at beginning, a header file containing one mapping

strategy extracted from the solution space is automatically generated that can be used

to simulate the application. Thereafter, the application is automatically simulated

according to the mapping strategy contained in the header file generated before, and

subsequently, a power estimation tool is run, delivering information about the

execution time and power consumption for the coloring strategy. Finally, the

information on the possible solutions and related execution time and power

consumption characteristics is stored in the output file. This process is iteratively

executed until all the strategies in the solution space are simulated.

Figure 4-2 Sub-parts of the memory mapping tool

To find the solutions of the conflict graph coloring, the brute force algorithm is applied.

To simplify the process, numbers instead of letters are used to index the nodes in the

conflict graph and colors to color the graph. The following steps are taken to color the

conflict graph:

 Choose the first node as the starting point and color the node with color 1.

 For the rest of nodes, it is checked if a node can be colored with color 1, in other

words, if the adjacent nodes of this node are not colored or colored with a color

different from 1, then, this node is colored with color 1.

 If the node cannot be colored with color 1, a new color – color 2 is introduced to

color this node. If color 2 is not allowed to color the node, then color 3 is

introduced and so on. Repeatedly, new color is introduced until the node can be

colored properly.

 The above steps are repeated until all the nodes in the conflict graph are

colored.

Figure 4-3 shows the design flow of the memory mapping algorithm and detailed

processes are shown in appendix.

29

Figure 4-3 Process flow of memory mapping algorithm

4.2.3 Output

The output of the memory mapping tool is stored in an excel file. The file contains the

following 3 parameters: mapping strategy, execution time and energy consumption.

Figure 4-4a below gives a part of the output for the expectation of Figure 2-5a in section

3.2. As mentioned before, numbers are used instead of letters to index nodes and colors.

For example for the first mapping strategy 1213321, it means that array A, array C and

array G are mapped to memory 1; array B and array E are mapped to memory 2; array C

and array D are mapped to memory 3. The colored conflict graph corresponding to this

strategy is shown in Figure 4-4b.

Figure 4-4 3mm a) Partial output of memory mapping tool b) Colored conflict graph according to
mapping strategy 1213321

Based on the output, an optimised mapping strategy with high performance and low

energy consumption can be found. Then, according to the index of the optimal strategy,

the coresponding header file containing the memory mapping differences can be

generated. The header file can be used to customize the SH ASIPs and for the simulation

the application, detailed information can be found in Appendix.

30

4.3 Memory reduction

As we know, using more memories brings extra energy consumption, and at the same

time, increases the size of the processor, so we want to reduce the number of memories

allocated to the processor without influencing the system performance. One possible

method is to take advantage of register files. As described in section 3.2.1, register files

are used to eliminate the data self-conflicts. At the same time, the self-conflicts

reduction can also reduce the number of used memories. For example, let’s consider

the operation E = A*B, after eliminating self-conflicts, the operation becomes temp_E =

A*B. Now, instead of three memories, only two memories are needed to further

eliminate the parallel-conflicts. Therefore, the total number of needed memory is

reduced.

Reducing the memory’s number also influences the relation among different conflict

graph nodes, leading to changes in the conflict graph. For application 3mm taken as an

example, the reduced conflict graph is show in Figure 4-5b. By applying the memory

mapping tool on the reduced conflict graph, the minimal number of colors needed to

color the conflict graph is two instead of three, what corresponds to one memory less

than for the original conflict graph.

Figure 4-5 conflict graph of 3mm a) original b) reduced

This method is applied to application 3mm, 2mm and atax to explore the performance

of the system after the number of memories allocated in the processor has been

reduced. Figure 4-6 shows that reducing the memory’s number substantively benefits

the system’s total area of the processor and can also benefits its execution time and

energy consumption.

4.4 Solution space reduction

When using the memory mapping tool, the whole solution space of data mapping

strategies can be explored and all possible solutions found. Thereafter, to test the

performance of each mapping strategy, the application needs to be repeatedly

simulated to get the corresponding execution time and energy consumption. For

reasonably simple applications, if we only focus on the minimal number of memories,

31

the solution space can be small, and the optimized mapping strategy can be found easily.

However, if we consider complex applications or larger than minimum number of

memories, the solution space of data mapping becomes large, and the simulation time

becomes the bottleneck of the whole exploration, since it takes time to simulate many

different application mapping versions with different mapping strategies. One method

to decrease the simulation time is proposed by Roel Jordans1, being a member of the

ASAM project team. The method reuses the statistics.txt file, which contains the cycle

count per instruction and overall program cycle count. The statistics.txt file is an output

of application simulation and also can serve as an input to power estimation tool. This

method can be used to predict simulation results when the control flow of the

application is not modified. It is usefully for example to shrink down the ASIP HW to the

minimum requirements of a given version of the SW. In this case, it can save up to 60%

of the simulation time. However, this method cannot be applied in our case, as the SW

mapping changes, because different data mapping strategies influence the application’s

instruction scheduling, and in a consequence, the cycle count per instruction. For this

reason, another solution is proposed.

Application #memory
Execution

time(#cycles)
Energy

consumption(nJ)
Total area

3mm

2 280910 32710 97123944

3 278898 33220 145230419

Ratio 1.007:1 0.98:1 0.67:1

2mm

2 182647 19800 97123944

3 210298 23140 145230419

Ratio 0.87:1 0.86:1 0.67:1

atax

2 5488 634.4 97123944

3 5490 653.3 145230419

Ratio 1:1 0.97:1 0.67:1
Figure 4-6 Performance comparison between the original conflict graph and the reduced conflict graph

To reduce the solution space, the nodes of the conflict graph are partitioned into groups

and partial optimal mapping strategy for each group is found. Figure 4-7a shows the

partitioned groups of Figure 4-5b. First, the memory problem for group 1 is solved,

mapping all the other arrays in a default memory. Then, keeping the optimal strategy of

group 1 as constraint and keeping the arrays of group 3 and group 4 mapped in the

default memory, the optimal strategy for group 2 is found. First, the optimal mapping

strategy for group 1 is found. Then, mapping strategy of group 1 is kept as a constraint

and the optimal strategy for group 2 is explored. This process is repeated to find the

mapping strategy for the whole graph.

1 http://www.es.ele.tue.nl/~rjordans/

32

Figure 4-7 Grouped conflict graph a) 3mm b) 2mm

Application of this method reduces the solution space of the data mapping and makes

the number of solutions limited. This method allows us to explore the system

performances for more complex applications and when the number of memories in the

processor increases. This method is applied to applications 3mm, 2mm and atax for

different number of memories, to explore how this method reduces the solution space

and computes the relevant system performances. Figure 4-8 shows the results for

applications mapped to different number of memories and related number of solutions.

The execution time and energy consumption in the table is the value of the optimal

mapping strategy for each case. Due to a long simulation time, we only simulated the

2mm, 3mm and atax with the reduced conflict graph, mapped to three memories. The

solution space is reduced to a large extent and the performance of the optimal mapping

strategy found by grouping method is almost the same as the results found by

simulating all the solutions.

Application
conflict
graph

#solution
Execution time

(#cycles)
Energy

consumption (nJ)

2mm

original 108 181561 20240

grouped 15 181561 20240

Ratio 7.2:1 1:1 1:1

3mm

original 648 276849 33220

grouped 21 278801 33220

Ratio 30.8:1 0.99:1 1:1

atax

original 36 5488 649.5

grouped 15 5488 649.5

Ratio 2.4:1 1:1 1:1
Figure 4-8 Performance comparison between the original simulation method and the grouped
simulation method

33

5. Chapter 5: Experimental results

This chapter describes the experiments results for data conflicts elimination and memory

mapping tool. First part describes how the system performance improved by eliminating

data conflicts and then, the efficiency of the memory mapping tool is illustrated.

5.1 Data conflicts elimination

In this section, 3 applications are used as benchmarks to apply the described strategies

in Chapter 3 to eliminate data conflicts and to apply code optimizations to get better

performance for the ASIP system. The applications are chosen from the Polyhedral

Benchmark suite [11]: PolyBench/C, including 3mm, 2mm and atax.

 3mm. Three matrix multiplications distributed in three independent loops.

E = A*B; F = C*D; G = E*F

 2mm. Two matrix multiplications distributed in two independent loops.

tmp = A*B; D = C*tmp

 Atax. Matrix transposition and vector multiplication distributed in two

independent loops.

tmp = A*x; y = A*tmp

Figure 5-1 Data mapping strategies for 3mm, 2mm and atax to eliminate parallel-conflicts

For each application, the earlier discussed strategies used to eliminate the data conflicts

and code optimizations are applied. Both execution time and energy consumption of

each optimization step are compared. The data mapping strategies for dealing with

34

parallel-conflicts and applying loop fusion and software pipelining are shown in Figure 5-

1. These mapping strategies assign data with conflict to different memories. For

simplicity, Memory 1, memory 2 and memory 3 are used to represent real names of

memory ali0_dmem_mem, cluster01_cec0_dmem_mem and cluster02_cec0_dmem

_mem, respectively.

Execution time

We take advantage of the register files to reduce the data self-conflicts and we

distribute data that have parallel-conflicts to different local memories to reduce

parallel-conflicts. In this way, the stall cycles caused by conflicting simultaneous data

accesses to the same memory are eliminated. This causes the execution time decrease.

Also, loop fusion and software pipelining are applied to the code to optimize the data

locality and instruction level parallelism. This increases the amount of parallelism

available among instructions and gives the complier more flexibility to schedule the

operations in a more effective way. Therefore, the number of clock cycles for execution

drops. Figure 5-2a, Figure 5-3a and Figure 5-4a shows the execution time and

improvements after optimization each step.

Figure 5-2 3mm a) Execution time b) Energy consumption

Figure 5-3 2mm a) Execution time b) Energy consumption

13.26% 5.15%

43.27%

13.96% 3.64%

45.69%

12.95% -3.88%

47.07%

12.88% -1.48%

40.17%

35

Figure 5-4 atax a) Execution time b) Energy consumption

From the figures one can conclude that removing the data conflicts and applying loop

fusion and software pipelining benefit the execution time. Eliminating the data self-

conflicts and parallel-conflicts gives 17.73%, 17.1% and 17.77% improvement on

execution time for applications 3mm, 2mm and Atax, respectively.

With the decrease of the number of accesses to memories, as shown in Figure 5-5, the

execution time decreases at the same time. After applying the code optimizations,

43.27%, 45.69% and 41.82% extra improvements are achieved in the execution time for

applications 3mm, 2mm and atax, respectively.

step
total access to memory(normalized value)

3mm 2mm atax

1. Original 1 1 1

2. Self-conflict 0.74 0.73 0.83

3. Parallel-conflict 0.71 0.73 0.78

4. Code optimizations 0.54 0.48 0.78

Figure 5-5 Memory access for applications after each optimization step (normalized value)

Energy consumption

As shown in Figure 5-3b, Figure 5-4b and Figure 5-5b, reducing data conflicts also

substantially decreases the energy consumption. The reduction in energy consumption

for applications 3mm, 2mm and atax, is 11.57%, 9.58% and 17.53%, respectively. Also,

after applying of the code optimization, 40.17%, 47.07% and 46.87% extra

improvements on execution time are achieved for applications 3mm, 2mm and atax,

respectively. We notice that for application 2mm and 3mm, after data parallel-conflicts

are eliminated, the energy consumption increases, which is different from expectation.

One reason for this is two extra memories added to reduce parallel-conflicts, which

brings extra dynamic and static energy consumption. Although elimination of the

parallel-conflicts decreases the memory accesses and overheads, which reduces the

energy consumption, the extra energy consumption generated by additional memories

8.88%
9.76%

41.82%

9.27% -0.03%

46.87%

36

exceeds the energy consumption reduction, leading to the increase of total energy

consumption.

Another aspect that will influence the system performance is hardware utilization.

Hardware utilization indicates the system design efficiency. High architecture utilization

corresponds to a low waste of energy. In this Master thesis, hardware utilization is

considered and measured as the utilization of the processor Issue Slots. There also exist

other utilization aspects and measures, such as the interconnected network utilization,

register file write-port and read-port utilizations. The Issue Slot utilization considered in

this thesis is the average utilization in each cycle during the whole execution process of

one application. Therefore, the issue slot utilization is the sum of utilization of all issue

slots for all cycles against the total number of cycles. The corresponding utilization

calculation formula is shown as below:

∑

Figure 5-6 Resource utilization for 3mm

We take the original 3mm application to show how the utilization is calculated. The

utilization for each cycle is shown in Figure 5-6. For one cycle, the utilization is 33%, 67%

and 100% for the usage of one issue slot, two issue slots and three issue slots,

respectively. The utilization for this application can be calculated as below:

∑

The issue slot utilization benchmark results are shown in Figure 5-7. The red bar is the

final result after reducing the data conflicts and applying the code optimization. The

improvement of the hardware utilization indicates the more efficient hardware usage,

which is beneficial for the system performance.

37

Figure 5-7 Issue slot utilization of application 3mm, 2mm and atax

Also, reducing the data conflicts allows the code optimization to result in better

performance, as shown in Figure 5-8.

5.2 Application of the tool to benchmark applications

The memory mapping tool is applied to benchmark applications 3mm, 2mm and atax to

analyze and evaluate the influence of different data mapping strategies on the system

performance and energy consumption. The ASIP instance is the same as used before in

relation to eliminate the parallel-conflicts elimination. The best case and worst case

values used to compare the execution time and energy consumption were computed for

the same data mapping strategy for each application. Figure 5-9 shows that the

execution time and energy consumption are both substantially influenced by the

mapping strategy. For the execution time, compared to the worst cases, the values of

the best cases have 19.03%, 23.77% and 0.56% improvements for 3mm, 2mm and atax,

respectively. For energy consumption, the values of best cases have 16.93%, 27.73% and

1.74% improvements for 3mm, 2mm and atax respectively, versus worst case. With the

help of the memory mapping tool, the hand-designed, time-consuming and error-prone

Application

Execution time Energy consumption

with data

conflicts

no data

conflicts
ratio

with data

conflicts

no data

conflicts
ratio

3mm 22.62% 53.32% 1:2.4 20.84% 47.11% 1:2.6

2mm 28.08% 54.97% 1:1.9 23.62% 52.14% 1:2.2

atax 9.13% 52.16% 1:5.7 13.13% 50.21% 1:3.8

Figure 5-8 Improvements of code optimization after data conflicts are eliminated

35.08%

11.16%

10.8%

38

process is automated and the optimized mapping strategy can be found among all

possible mapping strategies.

Figure 5-9 Performance comparison between optimal mapping strategy and worst case mapping
strategy a) Execution time b) Energy consumption.

The variance in the results of different mapping strategies is due to the asymmetry of

the ASIP architecture, i.e. the issue slots connected to the different memories are not

equivalent. In the case of 3 issue slots ASIP, issue slot 2 (cluster01_cec0_cec_is) and

issue slot 3 (cluster02_cec0_cec_is) are uniform, with same function units. However,

issue slot 1 (alio_ali_is) is different, with more function units. Issue slot 1 is the

sequencer and it needs to be connected to the program memory. This influences the

performance when accessing memory 1 (ali0_dmem_mem). To test the speed of each

memory, all the data of the application are mapped firstly on memory 1, then on

memory 2 and then on memory 3, respectively, to evaluate the system performance.

Figure 5-11 shows the ratio of each memory’s performance compared to memory 3. The

factor is a normalized value with respected to the value obtained from memory 3.

Memory 1 is the slowest memory and has the highest energy consumption, so when

arrays are mapped to memory 1, the system performance will be degenerated. This is

the main reason why the system performance varies with different data mapping

strategies.

Application Memory 1 Memory 2 Memory 3

3mm
time 1.35 1 1

energy 1.28 1 1

2mm
time 1.17 1 1

energy 1.27 1.05 1

atax
time 1.18 1 1

energy 1.15 1 1
Figure 5-10 Memory performance normalized with memory 3

19.03%

23.77%.

16%

0.56%

16.39%

27.73%.

16%

1.74%

39

6. Chapter 6: Conclusion

This chapter concludes the report. In the first part, the work and contributions of the

Master project are summarized. The second part provides several ideas for future

research and development.

6.1 Work and contribution

The research reported in this Master project addressed the automatic synthesis of

parallel memories for VLIW ASIPs and data to memory mapping problem for ASIPs,

when focusing on the problems mentioned in section 1.4. The aims of the project were

the following:

 To analyze the problem of parallel memory synthesis and data mapping for VLIW

ASIPs, when focusing on the above listed two main sub problems of this problem.

 To propose and implement a method to reduce the memory access conflicts.

 To develop an automatic memory mapping tool to deal with the data mapping

problem. The tool has to automatically find an appropriate number of memories

needed for a specific application, as well as, an optimal data mapping strategy.

 To perform experimental research to analyze how the data conflicts elimination

method improves the system performance and to analyze the efficiency of the

automatic memory mapping tool.

All the above aims have been satisfactorily realized. In particular, the project produced

the following results:

 Data conflicts when data accessing to memory are reduced.

There are two kinds of data conflicts when accessing the memory: self-conflicts

and parallel-conflicts. The self-conflicts have been reduced through placing the

data that have self-conflicts into the register files instead of placing them in the

local memory. The parallel-conflicts have been reduced through distributing

arrays that have parallel-conflicts into different local memories. Thereafter,

some code optimizations were applied to make a better use of the VLIW

architecture in order to improve the system performance. Benchmark results

show that elimination of the data conflicts saves up to 18% of the execution time

and 13% of the energy consumption. After the application of the code

optimization, 46% and 47% extra improvements are achieved in the execution

time and energy consumption, respectively.

 The automatic memory mapping tool is designed and implemented.

40

The tool is able to automatically explore and decide an adequate number of

memories needed for a specific application, as well as, perform the solution

space exploration for the data mapping problem and simulation of the results.

Benchmark results show that among the different solution for data mapping

problem, there are up to 27% and 28% variances on system performance

between the best case solution and the worst case solution. With the help of the

tool, the hand-designed, error-prone and time consuming mapping method

became automatic, and an optimal solution for the data mapping problem can

be obtained.

 A method to deal with the simulation time bottleneck is proposed.

If the solution space is large, the simulation is the bottleneck of the whole

exploration. To deal with the bottleneck, a grouped method is applied to reduce

the solution space in order reduce the simulation time. This method considers

only a limited number of solutions. Benchmark results shows that up to 96% of

the solution space can be reduced, while roughly maintaining the same system

performance.

6.2 Ideas for further work

The input for the memory mapping tool is an adjacency matrix of the conflict graph,

which indicates the adjacency relation among different nodes in the conflict graph. For

the purpose of this project, the adjacency matrix is constructed by hand. To improve the

efficiency, one possible method is to use the C-to-Array-OL tool to automatically

generate the adjacency matrix from Array_OL of the application.

In section 4.5, to reduce the solution space of mapping strategies, the nodes in the

reduced conflict graph are partitioned into groups and an optimal mapping strategy by

is found by searching for partial optimal mapping strategies of each group. However, for

some applications, the reduced conflict graph cannot be partitioned into groups. One

possible solution is to redefine and solve this problem as the Clique problem [12]. The

nodes in the conflict graph can be partitioned by finding maximal cliques.

41

Bibliography

[1] ASIPs [Online]. Available:

http://deep3.pkl.net/Files/Research%20Documents%20and%20Papers/ASIPs/ASIPs.doc

[2] "ARTEMIS," [Online]. Available: http://www.artemis-ju.eu/.

[3] "ASAM - Automatic Architecture Synthesis and Application Mapping,” 2010 [Online].

Available: http://www.asam-project.org/.

[4] Jozwiak, Lech, Menno Lindwer, Rosilde Corvino, Paolo Meloni, Laura Micconi, Jan

Madsen, Erkan Diken et al. "ASAM: Automatic Architecture Synthesis and Application

Mapping." In Digital System Design (DSD), 2012 15th Euromicro Conference on, pp. 216-

225. IEEE, 2012.

[5] Corvino, Rosilde, and Abdoulaye Gamatié. "Abstract Clocks for the DSE of Data-

Intensive Applications on MPSoCs." Parallel and Distributed Processing with Applications

(ISPA), 2012 IEEE 10th International Symposium on. IEEE, 2012.

[6] Florin Balasa, Noha Abuaesh, Cristian V. Gingu, Ilie I. Luican, Doru V. Nasui.

“Energy-Aware Scratch-Pad Memory Partitioning for Embedded Systems”American

University in Cairo, Fermilab, Microsoft, Inc., American International Radio, Inc.

[7] Kandemir, Mahmut, et al. "Dynamic management of scratch-pad memory space."

Design Automation Conference, 2001. Proceedings. IEEE, 2001.

[8] Benini, Luca, et al. "Layout-driven memory synthesis for embedded systems-on-

chip." Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 10.2 (2002): 96-

105.

[9] Angiolini, Federico, Luca Benini, and Alberto Caprara. "An efficient profile-based

algorithm for scratchpad memory partitioning." Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on 24.11 (2005): 1660-1676.

[10] Intel Benelux (Silicon Hive), "Silicon hive software development kit user manual".

[11] PolyBench/C: the Polyhedral Benchmark suite [Online].

Available: http://www.cs.ucla.edu/~pouchet/software/polybench/

[12] Clique problem [Online]. Available: http://en.wikipedia.org/wiki/Clique_problem/

http://deep3.pkl.net/Files/Research%20Documents%20and%20Papers/ASIPs/ASIPs.doc
http://www.artemis-ju.eu/
http://www.cs.ucla.edu/~pouchet/software/polybench/
http://en.wikipedia.org/wiki/Clique_problem/

42

Appendix

Memory mapping algorithm

The main part of the memory mapping algorithm is shown below. In the table, matrix

means the adjacency matrix of the conflict graph and array color store the color for each

node. Integer m is the number of color needed to color the graph and n is total number

of nodes. In line 2, a flag is used to identify if the number of current colors is enough. In

line 5, the function colorchecking() is used to check whether color t can be used to color

the current node. If color t can be used to color current node, graph coloring process is

continued to color the rest of the nodes in the graph. The function graphcolor() is called

again in line 8 to perform graph coloring for the next node. In line 9, if all existing colors

fail to color the node, then, the index of color will be increased, introducing a new color.

The colorchecking() function is used to check if the current color can be applied to color

the node, in other words, the function check coloring conflicts. If there is a coloring

conflict, the return value is false, meaning current color cannot be used to color the

node. If there is no coloring conflict, the returned value is true, and the current color is

used to color the node.

1 def graphcolor(matrix,i,m,color):

2 flag = 0
3 if i<n:
4 for t in range(0,m):
5 if colorchecking(matrix,i,t,color):
6 flag=1
7 color[i]=t
8 graphcolor(matrix,i+1,m,color)
9 if(flag!=1):
10 m+=1
11 color[i]=m-1
12 graphcolor(matrix,i+1,m,color)
13 else:
14 for j in range(0,n-1):
15 print(color[j])
16
17 def colorchecking(matrix,i,t,color):
18 for j in range(0,i+1):
19 if (matrix[i][j]==1 and color[j]==t):
20 return False
21 return True

43

Header file for 3mm

In the head file, information in Line 1 to Line 7 represents the indexes of memories

where arrays are allocated and information in Line 8 to Line 14 represents the indexes

of memories where arrays are mapped to.

