
 Eindhoven University of Technology

MASTER

Parallel code generation for non-preemptively scheduled systems

John, S.

Award date:
2012

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b9d291ad-d0b7-4256-8f4d-36a3495d2285

Electronic Systems, Department of Electrical Engineering

Master’s Thesis

Parallel Code Generation for
Non-Preemptively Scheduled

Multiprocessor Systems

Author:
Sunil John
0755704

Supervisors:
Prof. Dr. Henk Corporaal
Prof. Dr. ir. Marco Bekooij
ir. Stefan Geuns

November, 2012

Abstract

Streaming applications often have real-time constraints like throughput. In order to
meet these real-time constraints, task-level parallelism is exploited. However, manual
partitioning of sequential code to parallel tasks is time-consuming and error prone.
Therefore it is beneficial to automatically generate parallel code from a sequential
description of the application, while guaranteeing the same functional behavior. The
automatic parallelization tool Omphale, extracts a parallel task graph from a
sequential nested loop program, which can then be executed on a multiprocessor
platform. Non-preemptive scheduling is beneficial as it enables fast context-switching,
and is essential in processors that do not support preemption. In this thesis, we
introduce techniques in Omphale to generate code for a shared-memory multiprocessor
platform, which uses non-preemptive scheduling and a communication library with
buffers supporting only a single producer and consumer.

Streaming applications often contain if or switch statements. These statements can
contain multiple assignment statements in different branches, writing to the same
variable. After parallelization, such a variable corresponds to a buffer having multiple
producers. Also, certain variables can be read multiple times. These variables
correspond to buffers having multiple consumers. A method to transform such buffers
having multiple producers and consumers, to buffers with only a single producer and
consumer is introduced. Streaming applications can also contain arrays wherein the
different elements in an array are read and written in a different order. The order in
which a producer task writes data into a circular buffer, may not be the order in
which the consumer task reads data from the buffer. This leads to a reordering
problem. A modified sliding windows approach is presented to solve this issue, when
only buffers with a single producer and consumer are supported.

In order to prevent race conditions between tasks and deadlock, synchronization is
done by means of acquire and release statements. The acquire statements are
blocking whereas the release statements are non-blocking. Acquire statements check
for availability of space or data in a buffer. When a blocking acquire call in a task
fails due to lack of space or data, it must return control back to the non-preemptive
scheduler. On the next execution of this task, it begins execution from the first
statement in the task and not at the point at which it was blocked. This happens
because the state of the task is not saved. It is shown that not saving the state of the
task, can lead to erroneous functional behavior of the application and even a deadlock.
Therefore, this thesis also introduces a method to save the state of the task by means
of a finite state machine (FSM). Automatic parallelization approaches presented in
literature, have not yet addressed these issues, when generating code for

multiprocessor systems using non-preemptive schedulers and blocking synchronization
statements.

If variables are accessed across states in a FSM, they are stored statically in the
task-state. This prevents the value from being lost, when control is returned to the
scheduler on a blocking acquire call. Such variables potentially increase the memory
usage, which is limited in an embedded system. The presence of a large number of
states in the FSM leads to an increase in code size, and may lead to a decrease in
throughput. Optimization techniques to reduce the number of states and the size of
the task-state are developed. In order to reduce the number of states and task-state,
acquire statements are moved or combined. Fine-grained synchronization on circular
buffers can lead to a high synchronization overhead. By reordering the acquire calls in
a task, the synchronization overhead in acquiring data in a buffer can be reduced. An
attempt at a formal proof, showing that these transformations involving moving
acquire statements over release statements or non-synchronization statements, and
reordering acquires preserves deadlock-freedom, is presented.

A Digital Video Broadcast - Terrestrial (DVB-T) Decoder is used as a case-study.
Parallel tasks are extracted from a sequential description of a DVB-T decoder. These
parallel tasks are executed on the NXP MARS multiprocessor platform. By moving
acquire calls, the number of states in the tasks of the DVB-T decoder are reduced by
60%. The size of the task-state is reduced by moving or combining acquires. The
number of synchronization statements acquiring data in buffers is reduced by 30% by
reordering the acquire calls in tasks.

iii

Acknowledgements

I would like to express my gratitude for the people who offered me guidance and support
during the course of my graduation project at NXP Semiconductors. Firstly, I wish to
thank my supervisors, Prof.Henk Corporaal and Prof.Marco Bekooij for their guidance
and constructive recommendations during the course of this project.

Prof. Henk Corporaal was my supervisor at Eindhoven University of Technology. He
motivated me to think of alternate approaches at solving the various sub-problems in
the project. I appreciate his valuable feedback to improve my presentations.

Prof. Marco Bekooij was my supervisor at NXP Semiconductors. I am grateful to
him for offering the opportunity to work on this project. I would like to express my
appreciation for the valuable time that he spent patiently, in explaining concepts and
clarifying doubts. His insights in the subject played a role in guiding me towards
interesting problems related to my project, that could be addressed.

I thank Dr. Pieter Cuijpers, for showing interest in my project and being part of the
assessment committee.

I am deeply grateful to Stefan Geuns, who was also my supervisor at NXP
Semiconductors. I appreciate the valuable feedback that he gave for this thesis, which
has helped improve its quality. I thank him for all the guidance that he provided
through the course of the project. I also wish to thank Joost Hausmans for his
valuable time and efforts in clarifying doubts regarding related topics.

I wish to acknowledge the various suggestions provided by Umar Waqas during the
course of the project and also for the thesis. I appreciate Sohan Walimbe for the inputs
he provided during our discussions. I wish to thank my friends Siddharth Chunduri and
Bhargava Puvvula for their help in proof-reading parts of the thesis. I am grateful to my
friends from church, Jubin Jacob and Jonathan Vasu for their help and encouragement.
Last, but not the least, I thank my parents and grandparents for their love and support.
Above all, I thank and praise God Almighty, for His sustained grace and mercy, during
the course of this project and in my life.

Contents

1 Introduction 1

1.1 Streaming Applications . 1

1.2 Architecture . 3

1.3 Automatic Parallelization . 3

1.4 Problem Statement . 4

1.5 Contributions . 5

1.6 Outline . 6

2 Omphale 7

2.1 Motivation . 7

2.2 Tool Flow . 8

2.2.1 Parallelization . 8

2.3 Scope . 10

3 Target Platform 13

3.1 Architecture . 13

3.2 Communication/Scheduling Infrastructure 14

3.2.1 Components . 15

4 Problem Description 17

4.1 Inter-task communication via circular buffers 17

4.1.1 Reordering Problem . 18

4.1.2 Multiple Producers . 18

4.1.3 Multiple Consumers . 19

4.2 Non-Preemptive Scheduling . 20

5 Inter-Task Communication via Circular Buffers 23

5.1 Reordering Problem . 23

5.1.1 Related Work . 23

CONTENTS CONTENTS

5.1.2 Proposed Solution . 25

5.2 Multiple Producers . 27

5.2.1 Related Work . 28

5.2.2 Proposed Solution . 29

5.2.3 Implementation in Omphale . 31

5.3 Multiple Consumers . 32

5.3.1 Related Work . 32

5.3.2 Proposed Solution . 33

5.3.3 Implementation in Omphale . 33

6 Non-Preemptive Scheduling 35

6.1 Infinite While Loop . 37

6.2 Conditional While Loop . 38

6.3 Nested While Loop . 39

6.4 For Loop . 40

6.5 Function Statement . 41

6.6 Assignment Statement . 41

6.7 If-Else Statement . 41

6.8 Nested If-Else Statements . 43

7 Optimizations 47

7.1 Reduction of States in FSM of tasks . 47

7.1.1 Moving Acquire/Release outside if-else statements 47

7.1.2 Combining Acquires . 49

7.2 Reducing Task-State . 56

7.3 Reducing Synchronization Overhead . 57

7.3.1 Reordering Acquires . 58

8 Case Study 63

9 Conclusion 71

Bibliography 75

vii

Chapter 1

Introduction

In recent years, there has been a surge of embedded applications that employ digital
signal processing. These range from miniature wireless sensors, cellular phones, to
rockets being sent to space. A notable property of these applications is that they are
centered around streams of data; involving real-time acquisition, processing and
subsequent output of data. These applications are commonly referred to as streaming
applications, which is the application domain under consideration in this work. This
thesis is concerned with enhancement of the scope of the multiprocessor compiler,
Omphale. It performs automatic parallelization of a sequential description of a
real-time streaming application such that it can be executed on an embedded
multiprocessor system. Omphale currently supports kernels with preemptive
scheduling and a communication library which supports buffers with multiple
producers and consumers.

In this thesis, the scope of Omphale is enhanced to target commercial kernels
employing non-preemptive scheduling and buffers with only a single producer and
consumer. The following section describes streaming applications in more detail.
Section 1.2 describes an architecture onto which such streaming applications are
mapped. Section 1.3 presents the motivation for automatic parallelization and how it
is applicable to this work. Section 1.4 gives a brief description of the problems
addressed in this thesis. Section 1.6 gives an overview of the remaining chapters in
this thesis.

1.1 Streaming Applications

Streaming applications are characterized by an infinite stream of input data [1]. They
can be found on embedded devices, desktops and servers with high computing power.
They are applicable in the domains of digital signal processing, networking, encryption
etc. More specifically, they are used in wireless baseband processing (DVB-T, DAB,
DRM), medical image processing, sensor processing and phased array radar systems
[2]. In the remainder of this thesis, references to streaming applications and stream
processing applications are used interchangeably.

1

Introduction 1.1. Streaming Applications

Streaming applications have certain properties [2] which characterize their behavior.
They perform relatively simple local processing of a large amount of data. So usually,
the energy costs for data communication dominate the energy cost of processing. Data
arrives at the incoming nodes at a fixed rate. The communication bandwidth is
application dependent and so a large variety in communication bandwidth is required.
The size of the data items and the data rates are also application dependent.

Streaming applications exhibit input-data dependent behavior. They can contain if-
statements or while-loops where the condition depends upon input data values from
the stream. Also, the result of an index-expression used to access array elements may
depend upon input data values. At compile time, the value of such a condition or
index-expression cannot be evaluated. Such statements are referred to as non-manifest
[3] statements.

These applications usually have strict real-time constraints such as throughput and
end-to-end latency which have to be met. In addition, embedded devices have
concerns like minimizing energy consumption to increase their battery life. Since the
memory available on such devices is limited, the architecture on which such streaming
applications are mapped, should be capable of handling these concerns.

A block diagram of a streaming application, namely a Digital Video Broadcast -
Terrestrial (DVB-T) receiver, can be seen in Figure 1.1. As can be seen, a stream of
data (RF signal) is obtained from an external source such as a wireless receiver. In
each stage, the data items are processed for a limited amount of time. The
independent processing stages can be executed on multiple processors in parallel.

Figure 1.1: Example of a streaming application - DVB-T Receiver [4]

2

1.2. Architecture

1.2 Architecture

A streaming application needs to be mapped on to a suitable architecture which can
satisfy its performance requirements. This section describes an architecture which can
meet these requirements. In order to meet the high throughput requirements of these
applications on a single processor, it has to be clocked at a high frequency. However,
this leads to high energy consumption, resulting in a low battery life. An alternative is
to increase the number of processors, and reduce the frequency, thereby obtaining the
same performance at a lower energy consumption. This has led to the use of
multiprocessors in modern day systems. Most of the processor vendors are now
moving towards multiprocessors [5]. As scaling technologies have improved, it
facilitates the integration of multiprocessors on a single silicon chip, known as a
Multiprocessor System-on-Chip (MPSoC). This aids in reducing the chip area. Most
embedded systems have requirements of high computational power and low power
consumption, which can be met efficiently by using MPSoCs. They are widely used in
networking, communications, signal processing and multimedia applications [6]. At
NXP, such an MPSoC namely, Multi Application Radio System (MARS) has been
developed, targeting Software Defined Radio (SDR) applications. It has been chosen
as the target platform to be used in this work. The MARS MPSoC has been described
in detail in Chapter 3.

The tasks running on an MPSoC have to be scheduled for execution on the multiple
processors. Non-preemptive scheduling is beneficial as it enables fast context-switching
as compared to preemptive schedulers. It is essential if the processors do not support
preemption. It is desired that our automatic parallelization tool Omphale, is able to
support non-preemptive scheduling. Therefore, we consider an architecture which
employs non-preemptive scheduling.

An MPSoC has a lot of potential in terms of the parallel processing that it can offer.
However, in order to utilize it efficiently, the application has to be parallelized. This
means that the following issues have to be solved to map the application on the available
resources [7],

1. Dividing a program consisting of a single task into one with multiple balanced and
communicating tasks. This process should also take the properties of the target
platform into account.

2. Managing inter-task communication and synchronization. This needs to be
considered carefully in order to avoid serialization of the parallel program and
the occurrence of race conditions. Furthermore, it can introduce the risk of
deadlocks.

Solving these issues manually is a time-consuming, labor-intensive and error-prone
process. Therefore it is beneficial to address these issues through automatic
parallelization.

1.3 Automatic Parallelization

Automatic parallelization involves automated partitioning of a sequential application to
parallel tasks. This section motivates the need for automatic parallelization and how
it is beneficial to include it in a multiprocessor compiler. A multiprocessor compiler

3

1.4. Problem Statement

creates an executable of an application, which can be executed on a multiprocessor
system. It maps parallel tasks onto the processors of the MPSoC in such a way that
the temporal requirements of the application are met. It also ensures that inter-task
communication and synchronization are handled correctly.

As described in section 1.1, streaming applications exhibit stages while processing the
streaming data. This renders them a suitable candidate for function or task-level
parallelism (TLP). These applications are usually described in sequential programming
languages such as C and C++. In order to execute such an application on an MPSoC,
it has to be partitioned into tasks that can run in parallel on the MPSoC.

A multiprocessor compiler maps the parallel tasks onto different processors of an
MPSoC. It could obtain the parallel partitioned tasks of the application as input or
obtain a sequential description of the application and perform the partitioning itself.
If the partitioned tasks are obtained as input, it is difficult to guarantee deadlock
freedom. In this case, the process of partitioning and inserting appropriate
communication and synchronization statements would have been done manually by
the system designer or application developer. In this approach, it is also possible to do
optimizations manually and exploit the architecture available. Also, the granularity of
the tasks can be decided in an optimized manner [3]. These optimizations require the
system designer or application developer to have a thorough understanding of the
application. The downside of this approach is that it is time-consuming and
error-prone. Thereby, it will increase the time-to-market of the application.

On the other hand, if a sequential description is taken as an input, the partitioning of
tasks can be done by the compiler. By starting with a sequential description of the
application, the advantage is that it is deadlock-free, deterministic and free of race
conditions. The input description of the application should be in a manner that the
data dependencies in the application are analyzable [3]. This would enable the
partitioning of the application into parallel tasks. Also, the inter-task communication
and synchronization statements can be inserted automatically by the compiler, such
that there is no deadlock. Deadlock-freedom can be checked if the multiprocessor
compiler is able to generate a suitable model of the input application which supports
this check. This also enables temporal analysis of the application for throughput
requirements.

The multiprocessor compiler Omphale, is a research tool currently under development
by PhD students at NXP. Given a sequential description of a streaming application,
it carries out automatic parallelization, generates an analysis model and produces an
executable for a target multiprocessor system. The aim of this work is to enhance the
scope of Omphale to be able to target a wider class of multiprocessor systems with non-
preemptive scheduling and communication libraries having buffers with only a single
producer and consumer. This is further discussed in the next section.

1.4 Problem Statement

The problems addressed in this thesis are described briefly in this section. A detailed
problem description is given in Chapter 4.

The automatic parallelization tool Omphale generates parallel code for a
multiprocessor system, from a sequential description of a streaming application.
However, it currently supports multiprocessor systems with only preemptive
schedulers and a communication library built in-house, with buffers supporting

4

1.5. Contributions

multiple producers and multiple consumers. It is desired that Omphale can target the
NXP MARS multiprocessor platform. The problem is that MARS uses a
non-preemptive scheduler and a communication library having buffers, with only a
single producer and consumer, which are not supported by Omphale. Each of these
sub-problems is described briefly in the following paragraphs.

Non-preemptive scheduling is beneficial as it enables fast context-switching in
comparison to preemptive schedulers. It is essential if the processors do not support
preemption. However, Omphale does not support non-preemptive schedulers. When a
non-preemptive scheduler is used and a task blocks due to a blocking synchronization
call, it must return control back to the scheduler to prevent indefinite blocking and
allow other tasks to execute. When the task executes again, it starts from the
beginning of the task and not at the point, where it had yielded control back to the
scheduler. This could lead to erroneous functional behavior of the application and
even deadlock.

The sequential description of a streaming application taken as input by Omphale, can
contain multiple assignment statements writing to a single variable. It can also contain
multiple statements reading from a variable. These would correspond to buffers with
multiple producers and consumers. However, the communication library used on MARS
does not support such buffers. It only supports buffers with a single producer and
consumer. Omphale is unable to handle such input applications to generate code for
multiprocessor systems, which use a communication library with buffers having only a
single producer and consumer.

1.5 Contributions

This project aims at augmenting the usability of the multiprocessor compiler Omphale,
to target multiprocessor systems utilizing communication and scheduling frameworks
with certain properties. These properties include the use of circular buffers having only
a single producer and consumer and non-preemptive scheduling. The Multi Application
Radio System (MARS) MPSoC, developed at NXP, is the chosen target platform which
utilizes such a communication and scheduling framework. The contributions of this
thesis are as follows.

• Developed a wrapper synchronization library, containing a modified sliding
windows buffer implementation, to handle circular buffers with producers and
consumers having different access patterns in an array.

• Developed methods in Omphale to transform circular buffers with multiple
producers and consumers to buffers with only a single producer and consumer

• Developed a mechanism to save the state of the task in non-preemptively scheduled
multiprocessor systems, to prevent erroneous functional behavior of an application
when using blocking synchronization statements

• Proposed optimizations to reduce the number of states in the generated FSMs in
tasks, the size of the task-state and the number of synchronization statements.

• Implemented the proposed solutions in Omphale, and evaluated them on the
MARS multiprocessor platform using DVB-T decoder as a case-study.

5

1.6. Outline

1.6 Outline

An outline of the remainder of the thesis is presented in this section. Chapter 2 describes
the tool flow used in Omphale, starting from a sequential description of a streaming
application, and obtaining an executable as an output. Chapter 3 highlights the features
of the NXP MARS MPSoC which is used as the target platform. Chapter 4 presents a
detailed problem description. Chapter 5 describes the proposed solutions to the issues
concerned with inter-task communication via circular buffers. These issues include the
reordering problem and the handling of buffers with multiple producers and multiple
consumers. In Chapter 6, the problem of explicit state management for tasks when
using non-preemptive scheduling and means of solving it are discussed. In Chapter 7,
optimizations are proposed to reduce the static memory requirements in tasks and
improve the performance of streaming applications on a target architecture. A case-
study which illustrates the use of the proposed solutions is presented in Chapter 8.
Finally, Chapter 9 concludes the thesis and presents future work.

6

Chapter 2

Omphale

A multiprocessor compiler takes a streaming application as input and produces an
executable which can run on a multiprocessor system. In this chapter, the
multiprocessor compiler Omphale is described in detail. Omphale, currently under
development at NXP, takes a sequential description of a streaming application along
with its real-time constraints such as throughput and produces an executable that can
be executed on a target multiprocessor system. The advantages of starting with a
sequential description of the streaming application have been highlighted in
section 1.3. The various phases that are followed in transforming a sequential
streaming application to a parallel task graph, which is executable on a multiprocessor
system, are described in this chapter.

2.1 Motivation

This section provides the motivation for using Omphale over other multiprocessor
compilers. By starting with a sequential description of a streaming application, it
relieves the programmer of the burden of manual insertion of communication and
synchronization statements in the parallel tasks. The semantics of Omphale Input
Language (OIL) are such that the data dependencies can be extracted [3]. Omphale
also supports non-manifest statements in the NLP, which correspond to input-data
dependent behavior. A parallel task graph can be extracted by analyzing the data
dependencies. A task graph comprises of a dependency graph with inter-task
communication and synchronization statements inserted into the tasks. A dataflow
model is extracted from the input streaming application such that temporal
requirements can be analyzed. Thereby, on providing the temporal requirements of
the application as input, sufficient buffer capacities can be computed if the temporal
requirements can be met.

7

Omphale 2.2. Tool Flow

2.2 Tool Flow

Omphale takes a sequential description of a streaming application as input. This is
expressed as a nested loop program (NLP) in OIL. The temporal constraints of the
application are also provided as input along with the NLP using OIL. The compiler
operates on these inputs and produces an executable targeting a multiprocessor system
as an output. This process is carried out in three phases [3], as shown in Figure 2.1. In
the parallelization phase, the data dependencies in the input NLP are analyzed to create
a parallel task graph. A dataflow model, corresponding to this task graph is extracted in
this phase. This dataflow model is used to calculate sufficient buffer capacities such that
the temporal requirements of the application are met [8]. Following this, the resource
allocation phase assigns the parallel tasks to processors. Buffers are then allocated in
memory according to the buffer sizes obtained from the parallelization phase. In the
linking phase, the parallel tasks are linked with the communication library and the
kernel. In the following subsection, a detailed description of the parallelization phase is
furnished.

Parallelization

Task graph + Buffer capacities

OIL NLP

Resource Allocation

Linking

Task graph + mapping

Architecture
template

Function Definitions,
Communication Library,
Kernel

Executable

Temporal constraints

MPSoC

Figure 2.1: Omphale Tool Flow

2.2.1 Parallelization

In the parallelization phase, a task graph along with its corresponding Cyclo-static
Synchronous Dataflow (CSDF) graph are extracted from the input NLP. This process
is carried out in three sub-phases [3]. In the first sub-phase, a dependency graph is
extracted from the input NLP, highlighting the data dependencies between tasks. Then
inter-task communication and synchronization statements are inserted into the tasks,
thereby forming a task graph in the second sub-phase. Subsequently, based on the
inserted synchronization statements, a CSDF model is extracted in the third sub-phase.
The first sub-phase is described in more detail. For more details about the other sub-
phases, the reader is referred to [3].

8

Omphale 2.2. Tool Flow

2.2.1.1 Extraction of Dependency Graph

The extraction of a dependency graph requires the identification of tasks that can be
executed in parallel. The assignment statements and function calls in the input NLP
are made into parallel tasks. In case of sequential execution, the order of execution of
the statements in the NLP guarantees functional correctness. After parallelization, the
dependencies have to be maintained, to guarantee the same functional behavior as the
sequential application. The data dependencies can be found if the statements in the
NLP satisfy single assignment (SA) [9].

Single Assignment Single assignment means that a scalar or a element in an array
is written only once. There are two forms of single assignment, static single assignment
(SSA) and dynamic single assignment (DSA). SSA [10] requires that there is at most one
statement that writes to a scalar or array. DSA requires that a scalar or an element of
an array is written only once during the entire execution of a program [11]. A program
that satisfies SSA need not satisfy DSA or vice-versa.

For while loops with an unknown iteration bound, both SSA and DSA may not be
satisfied [12]. SSA requires that a variable is written only once. However, in streaming
applications, there can be several writes to the same variable in the branches of an if
statement or a switch statement. Therefore, SSA is not satisfied. In different iterations
of a while loop, a variable may be written more than once. Therefore DSA is not
satisfied. If automatic renaming is done, and a corresponding array is made to store the
values of every iteration, it would require an array of infinite size. Hence a new form of
single assignment, namely single assignment section (SAS) [12] is introduced. During
the execution of a SAS, each scalar and array element can be written at most once. In
the NLP, multiple SASs may exist and each scalar or array can have multiple SASs. At
the end of a SAS, the value of the variable in the SAS is lost. The reader is referred to
[13] for further description about SASs.

Omphale Input Language (OIL) In order to extract a dependency graph, the data
dependencies in the input NLP must be analyzed. To analyze the data dependencies,
the input language OIL requires that they must be made explicit. Therefore OIL does
not support pointers. An NLP expressed in OIL must also satisfy the notion of single
assignment specified by SAS. For the first iteration of a while loop, the SAS also includes
the statements prior to the loop in the NLP.

OIL permits the use of external C-functions thereby enabling re-use of existing function
implementations. The requirement is that these C-functions should be side-effect free
[3]. This implies that the functions do not have any implicit data dependencies. OIL
supports the use of the following statements in a NLP, namely assignments, functions,
if-else, while loops and for-loops. It also supports non-manifest if statements and while
loops. For the examples shown in this thesis, the symbol ’~’ is used to represent code
that has been omitted for clarity. It also includes code that is non-manifest.

An example of the extraction of a dependency graph is shown in Figure 2.2. An example
NLP is shown in Figure 2.2a, where a variable x is the data dependency between two
functions input and output. In the corresponding dependency graph in Figure 2.2b, it
is illustrated how assignment statements and function calls become tasks, sharing the
data dependency.

After a dependency graph has been extracted, inter-task communication and

9

2.3. Scope

loop{
x = input () ;
output (x) ;

}while (1)

(a) NLP Code (b) Corresponding
Dependency Graph

Figure 2.2: Extraction of Dependency Graph

synchronization statements have to be inserted into the tasks. Here the shared
variables (data dependencies) between tasks are replaced by circular buffers.
Figure 2.3c shows the task graph corresponding to the dependency graph in
Figure 2.2. Here, the variable x has been replaced by a circular buffer. The inter-task
communication and synchronization statements for the input and output tasks are
inserted as shown in Figure 2.3a and Figure 2.3b respectively. The communication
statements pertain to obtaining a reference to the circular buffer using
getWriteAddressCB and writing to it. The synchronization statements acquireSpace
and acquireData are used to check the availability of space and data respectively in
the buffer. Similarly releaseData indicates that the data has been written to and is
available for reading, and releaseSpace indicates that data has been read and is now
available for writing.

i n t ∗ xWrite ;
CB ∗xCB;
xCB = openCB(CBNumber) ;
acqui reSpace (xCB) ;
xWrite = getWriteAddress (xCB) ;
∗ xWrite = input () ;
r e l e a s e D a t a (xCB) ;

(a) Task_input

i n t ∗xRead ;
CB ∗xCB;
xCB = openCB(CBNumber) ;
acquireData (xCB) ;
xRead = getReadAddress (xCB) ;
output (∗ xRead) ;
r e l e a s e S p a c e (xCB) ;

(b) Task_output (c) Task Graph

Figure 2.3: Extraction of Task Graph

An example of a channel decoding application and its corresponding task graph are
shown in Figure 2.4. From the NLP code in Figure 2.4a, it can be seen that the
application can either be in the acquisition (acq) phase or the decoding phase depending
on the variable state. The decode phase can have several stages forming a pipeline, as
shown by the functions decode1, decode2 and output. The keyword out is used to
represent the output of a function. In this example, out state’ refers to a write to the
variable state in the next iteration of the while loop. From Figure 2.4a, it can be seen
that circular buffers can have multiple producers and multiple consumers. The buffer
x has multiple consumers and the buffer state has multiple producers and consumers.
The fact that multiple producers are mutually exclusive is no longer visible in the task
graph, but can only be seen in the input NLP.

2.3 Scope

In the multiprocessor platforms that Omphale currently supports, the communication
library and the kernel have been developed in-house for the target platform. In being

10

2.3. Scope

s t a t e =0;
loop{

x = input () ;
switch (s t a t e) {

case 0 : {
acq (x , out s t a t e ’) ;
}
case 1 : {
y = decode1 (x , out s t a t e ’) ;
z = decode2 (y) ;
output (z) ;
}

}
}while (1)

(a) NLP Code (b) Task Graph

Figure 2.4: Extraction of Task Graph

able to use commercial kernels and communication libraries, a wrapper has to be
generated around the commercial communication library so as to support the required
communication and synchronization behavior. Such a wrapper generation is essential
in the work carried out in this project. The kernels supported currently by Omphale
are developed in-house and they use preemptive schedulers such as Time Division
Multiplexing (TDM) schedulers, which belong to the category of budget schedulers.
Budget schedulers provide tasks with a minimum budget for every shared resource
such that real-time guarantees can be given.

11

Chapter 3

Target Platform

The Multi Application Radio System(MARS) MPSoC, developed at NXP, is the target
platform used in this work. It uses the Sea-of-DSP (SoD) infrastructure which has a
streaming kernel with non-preemptive scheduling. The communication library offered
by SoD supports only buffers with a single producer and consumer. MARS facilitates
the implementation of software defined radios (SDR).

Software Defined Radio

A software-defined radio system, or SDR, is a radio communication system where
components that have been typically implemented in hardware like mixers, filters,
amplifiers, modem and detectors are instead implemented by means of software on a
personal computer or embedded system [14].

The processing stages in a typical SDR transceiver [15] are shown in Figure 3.1. In
the case of an SDR receiver, the first stage is the RF block. The incoming signal is
sampled by an analog-to-digital (ADC) converter. The digitized signal is passed to
the baseband processing section which consists of the digital front end (DFE), Modem
and Codec blocks. The output from this section is passed to the application layer for
further processing. The digital front-end consists of filters that are used to remove the
unwanted frequencies and suppress the noise present in the signal. The modem block
performs the demodulation followed by decoding, which is done by the codec block.
In the case of a transmitter, the data flows in the reverse direction starting from the
application layer towards the transmitter RF block.

3.1 Architecture

MARS facilitates the implementation of SDRs. The architecture of the MARS platform
is shown in Figure 3.2. It consists of a Digital Front End (DFE) which receives the data
provided by the transmitter. There are two Vector Digital Signal Processors (VDSPs)
which execute the filtering and demodulation operations in the baseband processing. A

13

3.2. Communication/Scheduling Infrastructure

Figure 3.1: SDR Transceiver [16]

hardware accelerator, FLORA implements the decoding functions. In order to configure
the VDSPs and the FLORA , a general purpose processor namely the ARM is used.
There are two Static random access memories (SRAMs) to store data. An external
SDRAM is also present in case storage space is not sufficient in the other memories.
The various processors and memories in the MARS are interconnected by a high speed
Arm Extensible Interface (AXI) bus. The processed output data from the MARS is
available to a host system through a USB connection.

Figure 3.2: MARS

3.2 Communication/Scheduling Infrastructure

Sea-of-DSP (SoD) is the communication and scheduling infrastructure used by the ARM
and VDSPs in the MARS platform. It facilitates the creation and modification of signal
processing task graphs during run-time of the application. It efficiently dispatches the
signal processing tasks onto the different processors.

14

3.2. Communication/Scheduling Infrastructure

3.2.1 Components

To facilitate creation, modification and dispatch of the signal processing tasks on
different processors, SoD has two components namely the network manager and a
streaming kernel. Figure 3.3 shows the block diagram of the components in SoD and
their presence on the different processors. The network manager is present on the
general purpose CPU, which is ARM in case of the MARS. The streaming kernels are
present on all the processors and manage the function tasks that are executed on these
processors. The DSP hardware corresponds to the VDSPs present in the MARS. The
functions of these SoD components are described below.

Figure 3.3: Sea-of-DSP (SoD)

3.2.1.1 Network Manager

The Network Manager provides an API for managing the signal processing tasks running
on different processors. It provides the following facilities to the user.

• Create, delete processing tasks

• Setting up task graph by connecting or disconnecting tasks via communication
channels

• Suspend, resume tasks

• Exchange of commands and status information with tasks

3.2.1.2 Streaming Kernel

The streaming kernel is responsible for dispatching the signal processing tasks onto the
various processors. It uses a non-preemptive round robin scheduler. It executes the
task schedule and supports the data communication required by the tasks. The data
exchange between tasks is done through software buffers. It provides a communication
library with API calls to facilitate exchange of data between tasks.

Communication Library The communication library provides buffers and API calls
to check the availability of data or space in the buffer and to read/write data from/to

15

3.2. Communication/Scheduling Infrastructure

the buffer. Every task has a port which is its point of access to a channel. A single task
may have multiple ports. A unidirectional channel is created by connecting two ports
of tasks together. Every channel can have only a single producer and consumer.

16

Chapter 4

Problem Description

This thesis is concerned with the enhancement of the scope of the multiprocessor
compiler Omphale, which performs automatic parallelization. Omphale takes a
sequential description of a real-time streaming application as input and parallelizes it,
such that it can be executed on an embedded multiprocessor system. Omphale
currently supports kernels with preemptive scheduling and a communication library
with buffers supporting multiple producers and consumers. The scope of Omphale is
now enhanced to target commercial kernels employing non-preemptive scheduling and
buffers with only a single producer and consumer. The MARS multiprocessor
platform, developed at NXP, is a target platform which uses such a commercial kernel.
A parallel task graph of a stream processing application needs to be generated such
that it can be executed on MARS.

4.1 Inter-task communication via circular buffers

Motivation

Parallel tasks are extracted from a sequential description of streaming application
expressed in OIL [3][12]. These tasks communicate via circular buffers. As shown
previously in Figure 2.4, these circular buffers can have multiple producers and
consumers. Also, in the case of reading and writing to arrays, the producer task could
write to the circular buffer corresponding to the array in a particular order and the
consumer task could read from the buffer in a different order. The array index could
also be non-manifest, i.e. it is dependent on the input data and therefore not known at
compile time. Therefore the order of access in the array is not known at compile time.

In the above cases, the communication library on the multiprocessor system should be
capable of handling buffers with multiple producers and consumers and also provide a
means for out-of-order accesses for arrays. However, the communication library used
on our target platform MARS, supports only buffers with a single producer and
consumer. A possible approach to solving this incompatibility is to change the existing
communication library and replace it with a new one. This would be challenging as

17

Problem Description 4.1. Inter-task communication via circular buffers

f o r (0 <= i <= 5)
x [i] = ~ ;

f o r (5 >= j >= 0)
~ = x [j] ;

(a) NLP Code Snippet (b) Corresponding Task Graph

Figure 4.1: Illustration of Reordering Problem

applications using these libraries would contain legacy code and would require a lot of
effort to change it. The alternative is to build a wrapper around the existing library.
This is the approach followed in this work. Moreover, building a wrapper makes it
easier to target other commercial kernels which have their own communication
libraries. The following subsections discuss each of the sub-problems in more detail.

4.1.1 Reordering Problem

The reordering problem occurs when a producer and consumer of an array have different
access patterns, when accessing a circular buffer. This is illustrated with an example
shown in Figure 4.1. Figure 4.1a shows a code snippet of a nested loop program (NLP).
Here it can be seen that the array x is written to inside the first for loop and corresponds
to the producer task (P). The array x is read inside the second for loop and this
corresponds to the consumer task (C). The corresponding task graph showing the data
dependencies between the two tasks is shown in figure 4.1b. It can be seen that the
first element that the producer task would write to the buffer is the array index of 0,
whereas the consumer task reads an array index of 5.

4.1.2 Multiple Producers

The multiple producers problem is encountered when there are two tasks which write to
the same buffer. OIL supports if and switch statements which leads to the possibility of
having multiple mutual exclusive producers to a buffer. The problem is illustrated with
an example shown in Figure 4.2. It can be seen from the code snippet of the NLP in
Figure 4.2a that there is a mutual exclusive write to the variable x, depending on the if
condition. After parallelization, each of the reading and writing statements correspond
to different tasks as seen in Figure 4.2b. The producer tasks f and g write to the buffer
and the consumer task out reads from the buffer. The issues of concern are listed below.

loop{
i f (~)

x = f () ;
else

x = g () ;
out (x) ;

}while (1)

(a) NLP Code Snippet (b) Corresponding
Task Graph

Figure 4.2: Illustration of Multiple Producers Problem

18

Problem Description 4.1. Inter-task communication via circular buffers

• The communication library in the target platform does not support buffers with
multiple producers. Buffers having multiple producers should be transformed such
that buffers with a single producer and consumer are used.

• On using buffers with a single producer and consumer, the consumer task is unable
to identify which of the producers wrote to its corresponding buffer. As can be
seen from Figure 4.3, task out is unable to identify whether task f or task g wrote
to their corresponding buffers.

Figure 4.3: Multiple Producers Problem - Separate buffers

4.1.3 Multiple Consumers

The problem with multiple consumers occurs when there are two tasks which need to
read from the same buffer. This is illustrated in the example in Figure 4.4. It can be
seen from the code snippet of the NLP in Figure 4.4a that the variable x is written
once and read twice. The second read of the variable x is a conditional read. After
parallelization, each of the reading and writing statements correspond to different tasks
as seen in Figure 4.4b. The producer task f writes to the buffer and the consumer tasks
out1 and out2 read from the buffer. The issues of concern are listed below.

loop{
x = f () ;
out1 (x) ;
i f (~)

out2 (x) ;
}while (1)

(a) NLP Code Snippet (b) Corresponding
Task Graph

Figure 4.4: Illustration of Multiple Consumers Problem

• The communication library in the target platform does not support buffers with
multiple consumers. Buffers having multiple producers should be transformed
such that buffers with a single producer and consumer are used.

• On using buffers with a single producer and consumer, if at least one of the tasks
conditionally reads its corresponding buffer, there is an accumulation of data in

19

4.2. Non-Preemptive Scheduling

that buffer. This would lead to the need for infinite size buffers. This is illustrated
in Figure 4.5. The task f writes data to the buffers corresponding to the producer-
consumer pairs (f,out1) and (f,out2). However, if the condition in task out2 is not
satisfied, it would not read from its corresponding buffer. Therefore, there would
be an accumulation of data in this buffer, which means an infinite size buffer is
required.

.

Figure 4.5: Multiple Consumers Problem - Separate buffers

4.2 Non-Preemptive Scheduling

Omphale currently supports preemptive schedulers. It is desired to extend Omphale
to support non-preemptive schedulers. Non-preemptive schedulers enable fast context-
switching and are needed in cases when the processors do not support preemption.

When a non-preemptive scheduler is used and any of the generated parallel tasks blocks
on encountering a blocking synchronization call, the task returns control back to the
scheduler so that other tasks can execute. When the task is executed again, it executes
from the beginning because the state of the task was not saved. This could lead to an
erroneous functional behavior of the application.

The blocking calls found in the generated tasks are the acquire statements namely,
acqSpace and acqData which check for the availability of space or data respectively in
a circular buffer. When there is no space or data available in the buffer, these calls
return control back to the scheduler. Consider a task containing an acqData statement
followed by another acquire statement, with a releaseSpace in between. If this task
blocks on execution of the second acquire statement, the data corresponding to the first
acquire statement, is already removed from the buffer. This data cannot be obtained on
the next execution of the task. This is illustrated in the example shown in Figure 4.6.
The input NLP is shown in Figure 4.6a. After parallelization, two tasks, namely task_f
and task_g are generated. A snippet of task_g is shown in Figure 4.6b. In task_g, the
value of x is read into a variable condition. On executing task_g, if condition is true
and the acqSpace call fails due to lack of space, then task_g returns control back to the
scheduler. On the next execution of task_g, it executes from the beginning and not at
the point where the task had got blocked. When task_g executes from the beginning,
a new value of x is read from xCB and the function g() is conditionally executed based
on this value of x. This is erroneous as the execution of the function g() should depend
on the previous value of x which was read from xCB. However, the previous value of x
was lost as it was removed from the buffer.

20

4.2. Non-Preemptive Scheduling

loop{
x=f () ;
i f (x)

y=g () ;
}while (1)

(a) Example NLP

do{
acqData (xCB) ;
read (xCB, c o n d i t i o n) ;
r e l S p a c e (xCB) ;
i f (c o n d i t i o n) {

acqSpace (yCB) ;
w r i t e (yCB, g ()) ;
re lData (yCB) ;

}
else {

acqSpace (yCB) ;
re lData (yCB) ;

}
}while (1)

(b) Task_g corresponding to the
statement y=g() in the example
NLP

Figure 4.6: Non-Preemptive Scheduling

If the state of the task is not saved, it could even lead to a deadlock. This is illustrated
by an example in Figure 4.7. The input NLP shown in Figure 4.7a consists of two
functions f and g, with two data dependencies between them. After parallelization, two
tasks task_f and task_g are obtained and their corresponding task graph is shown in
Figure 4.7c. When sliding window [3] buffers are used for inter-task communication,
a read window (RW) and a write window (WW) determine which locations of the
buffers are accessible. The read window is defined by rˆ at the head and r at the tail.
Similarly, a write window is defined by wˆ at the head and r at the tail. A snippet
of the code in task_f and task_g are shown in Figure 4.7b. When acqData(xCB) is
called in task_g, if there is data in the location after rˆ, rˆ is moved forward by one
location. When executing task_g, if acqData(xCB) succeeds and acqData(yCB) fails,
then task_g is blocked and returns control back to the scheduler. On the subsequent
executions of task_g, if the same scenario repeats, then rˆ coincides with w and task_g
cannot proceed as there is no new data written that is available for reading. Similarly,
wˆ coincides with r and cannot proceed. This leads to a deadlock as the read window
and the write window occupy the entire buffer and both cannot advance. The deadlock
occurs as some locations in the buffer are acquired by the acqData statement but not
released by the corresponding relSpace statement. This occurs because on subsequent
executions of the task after being blocked, it resumes execution from the beginning and
not from the point where it had got blocked.

21

4.2. Non-Preemptive Scheduling

loop{
f (out x , out y) ;
g (x , y) ;

}while (1)

(a) Example NLP

Task_f
do{

acqSpace (xCB) ;
acqSpace (yCB) ;
w r i t e (xCB, x_out) ;
w r i t e (yCB, y_out) ;
re lData (xCB) ;
re lData (yCB) ;

}while (1)

Task_g
do{

acqData (xCB) ;
acqData (yCB) ;
read (xCB, temp_x) ;
read (yCB, temp_y) ;
r e l S p a c e (xCB) ;
r e l S p a c e (yCB) ;

}while (1)

(b) Output Tasks

f g

RW

WW

r r^

w^w

RW

WW

r r^

w^w

xCB

yCB

(c) Corresponding Task Graph with Sliding Window
Buffers

Figure 4.7: Illustration of Deadlock with Non-preemptive scheduling

22

Chapter 5
Inter-Task Communication via

Circular Buffers

In this chapter, the various issues in dealing with inter-task communication via
circular buffers and the solutions proposed to solve them are discussed. The solutions
proposed in literature in dealing with these issues are described in corresponding
sections. Section 5.1 discusses the reordering problem and the generation of a wrapper
synchronization library. In Section 5.2, the multiple producers problem and proposed
solutions are described. Section 5.3 contains a description about the issues with
multiple consumers and proposed solutions to solve them.

5.1 Reordering Problem

The producer and consumer of an array can have different access patterns while accessing
the array, thereby leading to the reordering problem. A sequential NLP can contain
statements reading and writing to an array, which after parallelization, correspond to
parallel tasks reading and writing to a buffer corresponding to the array. It is noteworthy
to mention that if the order in which the different elements in the array are read and
written is the same, then the reordering problem does not occur. This is because the
elements of the array are written and read in FIFO order and the FIFO buffer present
in the communication library supports this behavior.

5.1.1 Related Work

To solve the reordering problem, FIFO buffers in combination with a reordering task and
reordering memory can be used [3]. This is illustrated in Figure 5.1. The producer task
writes the values in the order it produces, to a FIFO buffer. Then the reordering task
which has the knowledge of both the write access pattern and the read access pattern
of the array writes them to a reordering memory. From the reordering memory, the
reordering task writes to another FIFO buffer following the read access pattern of the
array. In this case, the producer task and the reordering task execute sequentially as the
elements of the entire array have to be written into the reordering memory before the

23

Inter-Task Communication via Circular Buffers 5.1. Reordering Problem

reordering task can reorder them. This approach has the disadvantage that it prevents
parallel execution of both the tasks. Also there is the overhead of the reordering task
and reordering memory. Furthermore, two FIFO buffers are required.

Figure 5.1: Reordering task with reordering memory [3]

Another method using FIFO buffers has been proposed in [17] by Turjan et al. A special
controller unit is designed that takes care of restoring the order of the tokens. Also
additional memory is required in the consumer task. Though in this case, no reordering
task is required, it faces the overhead of a complex controller unit and also reading from
the reordering memory. In [18], Huang et al. propose the concept of a windowed FIFO.
A windowed FIFO requires local buffers or containers in the reading and writing tasks.
Dedicated logic is used to control the writing of elements of the array into the local
container on the producer side, after which the contents of the container are transferred
to the FIFO between the producer and consumer tasks. Similarly, dedicated logic is used
to control the writing to the container on the consumer side, after which the consumer
task can read from it. This has been illustrated in Figure 5.2. In this approach, there
is the overhead of the local containers which can be likened to reordering memory.

Figure 5.2: Windowed FIFO [18]

A buffer which supports out-of-order access can also be used to solve the reordering
problem. Such a buffer enables reading and writing to any location in the buffer.
Synchronization is needed to prevent locations in the buffer being read, before they have
been written [3]. Bijlsma et al. developed two such buffers, namely Sliding windows
[19] and Overlapping windows [20]. Sliding windows consist of a read window for every
reading task and a write window for every writing task. The read windows are not
allowed to overlap with the write windows. However, sliding windows cannot be applied
always for cyclic data dependencies as it can cause a deadlock. Overlapping windows can
be used even for latency critical cyclic data dependencies [3]. In the case of overlapping
windows, a location is removed from the window as soon as it has been accessed.

24

Inter-Task Communication via Circular Buffers 5.1. Reordering Problem

5.1.2 Proposed Solution

The reordering problem occurs due to different access patterns in an array by the
producer and consumer tasks. The solutions proposed in literature as shown in
section 5.1.1 used FIFO buffers with the overhead of additional control logic and
reordering memory. By using buffers permitting out of order access, the reordering
problem was solved using sliding windows. The SoD communication library, used in
our target platform permits out of order access. Therefore, the approach using sliding
windows [20] seems applicable. However, due to certain issues which are described
subsequently the sliding windows buffer is not directly applicable. Therefore, a
modified version of sliding windows is developed.

Sliding windows consist of a read window and a write window in a circular buffer as
shown in Figure 5.3. The read window (RW) is formed by the rˆ pointer at the head
and the r pointer at the tail. Similarly, a write window (WW) is formed by the wˆ
pointer at the head and the w pointer at the tail. These windows advance when a task
calls the appropriate synchronization statements, which are described subsequently.

r r^ w w^

RW WW

Circular Buffer

Direction of advance of sliding windows

Figure 5.3: Sliding windows Buffer

Tasks executing on different processors and communicating via shared memory need
a memory consistency model to prevent the reading of a location before it is written
[3]. The memory consistency model defines the order in which write accesses complete.
The sliding windows approach employs a streaming consistency model [21], wherein
shared memory accesses can be reordered so that they can be pipelined for better
performance. In order to prevent race conditions between the read and write accesses
to shared memory, synchronization has to be performed. The synchronization ensures
that a shared location is read only after it has been written. Similarly, synchronization
ensures that a shared location has been read before it is overwritten. In the streaming
consistency model, synchronization is performed using acquire and release statements.

An acquire statement precedes the access to a shared location and blocks until the
location becomes available. A release statement is inserted after the access to a shared
location, indicating that it is now available. An empty location in the buffer is referred
to as space and a location filled with data is referred to as data. Before writing data
to an empty location, a producer acquires it by a acquireSpace call. After data has
been written to this location, the producer executes a releaseData call signaling that
the location is now available for reading by the consumer. Subsequently, the consumer
can acquire the location with a acquireData call. Once the data has been read, the
consumer releases the location with a releaseSpace call.

The acquire and release synchronization statements advance the read and write windows
in the buffer. The write window should always be ahead of the read window in order to
prevent the reading of a location that has not been written. The advancement of the

25

Inter-Task Communication via Circular Buffers 5.1. Reordering Problem

windows by the producer and consumer are described below.

The following synchronization statements are employed by the producer task.

• acquireSpace(n) increments wˆ by n locations

• releaseData(n) increments w by n locations

The acquireSpace synchronization statement moves the head of WW forward by
acquiring a space in the buffer. The corresponding releaseData call moves the tail of
WW forward after having written a value in the corresponding location(s), implying
that the data can now be read.

The following synchronization statements are employed by the consumer task.

• acquireData(n) increments rˆ by n locations

• releaseSpace(n) increments r by n locations

The acquireData synchronization statement moves the head of RW forward by acquiring
n locations in the buffer. The corresponding releaseSpace call moves the tail of RW
forward after having read the value from the corresponding location(s), implying that
it can now be written.

In the sliding windows buffer, the buffer administration stores the four pointers for the
RW and WW [3]. This is the case when using the buffer implementation and
communication library built in-house for Omphale. However, implementations
supporting a single producer and consumer have no notion of the head pointers, rˆ
and wˆ pointers. Their buffer administration would store only a r and a w pointer.
The SoD buffers used in our target platform also do not store the head pointers in the
buffer administration. Due to this issue, the sliding windows approach cannot be used
directly.

The lack of the head pointers poses a second issue when acquiring locations in the sliding
windows buffer. When an acquire statement is executed, it checks for the availability
of space or data in the buffer from the current head pointer of WW or RW. However,
the SoD buffers do not contain the head pointers. The SoD API provides functions
namely checkWrite and checkRead which can check for the availability of space or data
respectively from the current w and r pointers only. These functions have to be used in
such a manner as to provide the ability to check for space or data from the head pointers
of WW or RW. A mechanism is derived to account for the lack of these head pointers in
the buffer administration while still being able to provide the required synchronization.
This is explained in the following section.

Wrapper Generation

The synchronization statements use SoD API to implement their functionality. Hence
a wrapper library has been built which makes use of the required SoD API. The lack
of head pointers in the buffer administration is accounted for in the modified sliding
windows buffer. The following listing gives a basic idea about the synchronization
statements used in the modified sliding windows approach.

26

5.2. Multiple Producers

• AcquireSpace(n, countSpace)
Check for ’n + countSpace’ available spaces from w
If available, countSpace is incremented by n

• ReleaseData(n, countSpace)
Decrement countSpace by n
Increment w by n

• AcquireData(n, countData)
Check for ’n + countData’ available data from r
If available, countData is incremented by n

• ReleaseSpace(n, countData)
Decrement countData by n
Increment r by n

On executing AcquireSpace, it checks for the availability of n + CountSpace spaces
in the buffer. If spaces are available, it increments countSpace by n. countSpace is a
counter which maintains the number of spaces that have been acquired in the buffer.
On a subsequent releaseData call, it decrements countSpace. Similarly on executing
AcquireData, it checks for the availability of n+CountData data in the buffer. If data
are available, it increments countData by n. countData is a counter which maintains
the number of data that have been acquired in the buffer. On a subsequent releaseSpace
call, it decrements countSpace.

The implementation of the synchronization wrapper library functions are shown in
Figure 5.4a. Here, it can be seen that all the functions also take port as a parameter.
The port refers to SoD ports that are part of SoD tasks. An SoD buffer is formed by the
channel connecting two ports. CheckRead is a SoD API function that enables to check
that there are n filled data locations from the current r pointer. Similarly, CheckWrite
is a SoD API function that enables to check that there are n empty locations from
the current w pointer. UpdateWrite and UpdateRead are SoD API functions that
increment the w and r pointers respectively. It can be seen here that the acquire
synchronization calls return control to the scheduler immediately, when there is not
enough space or data available in the buffer.

A sample sequence of operations is shown in Figure 5.4 to illustrate the use of r and w
pointers and the counters countSpace and countData when the synchronization calls
are encountered. The value of the head pointers can be obtained by summing the
corresponding tail pointers and counters as shown in Figure 5.4. The values that change
on every step are shown in red. On executing acqS twice, a space is acquired and the
values of cnt_S and the wˆ pointers are incremented by one each time. After a write is
done, then an execution of relD increments the w pointer and cnt_S is decremented.
In this case, the head of the write window has not moved and this is shown by wˆ
retaining a value of 2.

5.2 Multiple Producers

Two tasks writing to the same buffer leads to the multiple producers problem.
However, if the underlying communication library does not support a buffer with
multiple producers, then two separate buffers need to be used. On using separate
buffers, the consumer task does not know which of the two producers wrote to its
corresponding buffer.

27

5.2. Multiple Producers

acquireDataSod (port , nrData , countData) {
i f (OK != CheckRead (port , nrData + countData)

r e t u r n BLOCKED;
else {

i f (countData + nrData >= buf_s ize)
coundData = (countData + nrData) % (buf_s ize)

else
countData = countData + nrData ;

}
}

r e l e a s e S p a c e S o d (port , nrData , countData) {
countData = countData + nrData ;
updateRead (port , nrData) ;

}

acquireSpaceSod (port , nrSpace , countSpace) {
i f (OK != CheckWrite (port , nrSpace + countSpace)

r e t u r n BLOCKED;
else {

i f (countSpace + nrSpace >= buf_s ize)
countSpace = (countSpace + nrSpace) % (buf_s ize)

else
countSpace = countSpace + nrSpace ;

}
}

re leaseDataSod (port , nrSpace , countSpace) {
countSpace = countSpace + nrSpace ;
updateRead (port , nrSpace) ;

}

(a) Wrapper Synchronization Library

Sequence of
operations

W cnt_S r cnt_D Space/Data
available

w^=w+
cnt_S

r^=r+
cnt_D

Initial 0 0 0 0 NA 0 0

acq_S(1,cnt_S) 0 1 0 0 Yes 1 0

acq_S(1,cnt_S) 0 2 0 0 Yes 2 0

Write 1 value

relD(1,cnt_S) 1 1 0 0 NA 2 0

Figure 5.4: Example

5.2.1 Related Work

An approach using additional buffers [3] was described to solve the issue with multiple
producers in an array. This shown in Figure 5.5. As can be seen, apart from the FIFO
buffers sx0 and sx1, two additional buffers sx0’ and sx1’ are added. The producer tasks
write a value to these additional buffers indicating the indexes of the array which they
have written to in the corresponding buffers. The consumer task checks the indexes in
these additional buffers and compares it with the index that it needs to read, and reads
the corresponding buffer. However, this approach cannot handle the case where there
are multiple producers to the same array index.

Turjan et al. [22] propose a method to solve a similar issue as the previous one with

28

5.2. Multiple Producers

Figure 5.5: Addition of Additional buffers

multiple producers to an array. It is applicable only to NLPs with affine
index-expressions. Affine expressions are a linear combination of loop parameters and
a constant. By using affine index-expressions, exact data dependencies can be
calculated and so the additional buffers are not needed. However, as in the previous
approach, multiple producers to the same array index is not handled. Also, streaming
applications contain non-manifest statements which cannot be handled by this
approach.

In [23], Gangwal et al. propose a synchronization protocol which uses point-to-point
FIFOs for communicating between tasks. However, they do not solve the multiple
producers problem. Also in [24], a Task Transation Level (TTL) interface is provided
to facilitate inter-task communication and synchronization. However, even in this case,
the multiple producers problem is not solved.

Bijlsma et al. [3] solve the multiple producers problem by using a single buffer capable
of having multiple producers. Multiple sliding windows are used per producer, and a
consumer cannot read until all the multiple producers have indicated that the location
which has multiple producers is not needed by all of them. However, in our case,
the communication library supports only buffers with a single producer and consumer.
Hence this approach is not applicable.

An approach that is directly applicable to solve the multiple producers problem could
not be found.

5.2.2 Proposed Solution

To solve the multiple producers problem several approaches were proposed as discussed
in section 4.1.2. However, these approaches address a related issue and not the exact
problem that we would like to address. When separate buffers are used in the case
of multiple producers, the problem is that the consumer task needs to identify which
of the multiple producers wrote a value to its corresponding buffer. Due to single
assignment requirement on the NLP it is known that these writes are mutually exclusive.
Two approaches to solve the multiple producers problem are shown in the subsequent
sections.

29

5.2. Multiple Producers

5.2.2.1 Data Valid Boolean

The consumer task has to identify which of the two producers wrote a value to its
corresponding buffer. A data structure can be created encompassing a data valid
boolean and the actual data to be passed in the buffer. This data structure is
henceforth referred to as a container that is passed through the buffer. This is
illustrated in Figure 5.6. Here the producer tasks are P1 and P2, and the consumer
task is denoted as C. The producer task (P1) which actually writes a value sets the
data valid boolean to true and writes the data into the container. The other producer
task (P2) which does not write actual data to the container sets the data valid boolean
to false. The consumer task extracts the data valid boolean from the containers in
both the buffers. It reads the data from the buffer which has the data valid boolean set
to true. In this approach, an empty data structure has to be passed through the
buffers, corresponding to producers that do not need to write a value. If these buffers
are located on the local memories of other processors, they could use up unwarranted
bandwidth on the interconnect. The amount of bandwidth used depends on the size of
the data that needs to be passed. Also, the overhead of the data valid boolean is
smaller if bigger data structures need to be passed through the buffer as compared to
smaller ones. This approach can be used for both shared memory and distributed
memory systems.

P1 P2

C

Sx1 Sx2

D
DV DV D-Data

DV- Data valid boolean

Figure 5.6: Multiple Producers - Data Valid Boolean

5.2.2.2 Valid / NULL Pointer

In order to identify which of the two producers wrote a value to its corresponding buffer,
a valid/NULL pointer can be used. This is shown in Figure 5.7. The producer task
which actually writes a value, passes a pointer to the data that has to be passed through
the buffer. The data is stored in a shared memory which is accessible by the consumer
task. The other producer tasks which do not need to write a value to the buffer, write
a NULL value into the buffer. The consumer task reads the buffers corresponding to
the different producer tasks, and checks which of them contain a valid pointer. Then
the valid pointer is dereferenced to obtain the data stored in the shared memory. This
approach can be used only for shared memory systems and not distributed memory
systems. This is because, in distributed memory systems a pointer to a local memory
location is not accessible remotely.

30

5.2. Multiple Producers

P1 P2

C

Sx1 Sx2

P

Shared Memory
D

NP

D-Data
P – Pointer to D
NP – NULL Pointer

Figure 5.7: Multiple Producers - Valid/NULL Pointer

5.2.3 Implementation in Omphale

The proposed solution with NULL pointers has been implemented in Omphale. The
existing implementation of Omphale is changed to obtain separate buffers for every
producer. Figure 5.8 shows how a task is transformed so that multiple buffers can be
generated per producer. The variable x is written twice, thereby making it a multiple
producer. We create two new unique pointers x_unq_p0 and x_unq_p1 which replace
the first and second occurrences of x where they are being written respectively. A
conditional assignment statement is used in a seq block along with the statement that
reads x. It assigns the value of x based on whether x_unq_p0 or x_unq_p1 has a
valid address assigned to it. A seq block ensures that the statements in that block are
made into a single task. As discussed earlier, it is known that only of the two producers
would write a valid pointer pointing to data value, into its corresponding buffer. The
other producer would write a NULL pointer to the buffer. The function isV alid checks
for the valid pointer and assigns x by dereferencing the pointer.

loop{
i f (~)

x = f () ;
else

x = g () ;
output (x) ;

}while (1)

(a) Input Task

loop{
i f (~)

∗x_unq_p0 = f () ;
else

∗x_unq_p1 = g () ;
seq {

x = i s V a l i d (x_unq_p0) ?
∗x_unq_p0 : ∗x_unq_p1 ;

output (x) ;
}

}while (1)

(b) Transformed Task

Figure 5.8: Multiple Producers - Task Transformation

After parallelization, three tasks are obtained as seen in Figure 5.9. It can be observed
that a NULL pointer is written into the buffer in task_f and task_g when a valid data
value is not being written into the buffer.

31

5.3. Multiple Consumers

do{
i f (~)

∗x_unq_p0 = f () ;
else

x_unq_p0 = NULL;
}while (1)

(a) Task_f

do{
i f (~)

x_unq_p1 = NULL;
else

∗x_unq_p1 = g () ;
}while (1)

(b) Task_g

do{
x = i s V a l i d (x_unq_p0) ?

∗x_unq_p0 : ∗x_unq_p1 ;
output (x)

} while (1)

(c) Task_Output

Figure 5.9: Parallel Tasks

5.3 Multiple Consumers

A buffer having multiple consumers leads to a multiple consumers problem. Separate
buffers can be used for each consumer if the underlying communication library does not
support buffers with multiple consumers. If one of the consumers does a conditional
read, then the producer has to decide which of the two buffers should be written to and
when it should be written.

5.3.1 Related Work

An approach using additional buffers [3] was described to solve a similar issue with
multiple consumers in an array. This shown in Figure 5.10. As can be seen, apart
from the FIFO buffers sx0 and sx1, two additional buffers sx0’ and sx1’ are added.
The consumer tasks write a value to these additional buffers indicating the indexes of
the array which they want to read from the producer. The producer task reads the
additional buffers and writes a value to the corresponding buffer only when needed. In
this case, the producer task has to perform additional synchronization and wait for the
consumer task before being able to execute. Turjan et al. [22] address this issue only in
the case of NLPs with affine-index expressions. In this approach, the additional buffers
can be avoided. However, non-manifest statements are not supported.

Figure 5.10: Addition of Additional buffers

As in the case of the multiple producers problem, in [23], Gangwal et al. propose a
synchronization protocol which uses point-to-point FIFOs for communicating between
tasks. However, they do not solve the multiple consumers problem. Also in [24], a Task
Transation Level (TTL) interface is provided to facilitate inter-task communication
and synchronization. However, even in this case, the multiple consumers problem is not
solved.

32

5.3. Multiple Consumers

Bijlsma et al. [3] solve the multiple consumers problem by using a single buffer capable
of having multiple consumers. Multiple read sliding windows are used corresponding
to every consumer. Nevertheless, this approach is not directly applicable as our
communication library supports only buffers with a single producer and consumer.

Few approaches for automatic parallelization do not solve the reordering problem or
the issue with multiple producers and consumers. Sprint [25] and MAPS [26] perform
automatic parallelization by taking C code as input. They use FIFO buffers for
communication between tasks. However, they do not solve the above issues.

5.3.2 Proposed Solution

The approaches to solve the multiple consumers problem were presented in
section 4.1.3. The demerits of these approaches were also discussed. To avoid the
overhead of additional buffers, an approach is proposed whereby data is written to the
buffers corresponding to all the consumers. The consumer which does not require the
data due to a conditional read does not read the data, but updates the corresponding
read pointer indicating that the particular location can now be used for writing. This
can be referred to as unconditional synchronization, which has been proposed in [3].

5.3.3 Implementation in Omphale

loop{
x=f () ;
output1 (x) ;
i f (~)

output2 (x) ;
}while (1)

(a) Input Task

loop{
seq {

x=f () ;
x_unq_c0 = x ;
x_unq_c1 = x ;

}
output1 (x_unq_c0) ;
i f (~)

output2 (x_unq_c1) ;
}while (1)

(b) Transformed Task

Figure 5.11: Multiple Consumers - Task Transformation

The problem of multiple consumers is solved with unconditional synchronization. The
existing implementation of Omphale is changed to have two separate buffers, one per
consumer. An input task is shown in Figure 5.11. Here the variable x is read by two
functions output1 and output2. It is to be noted that output2 does a conditional read
of x. In order to create separate buffers, we create two unique variable x_unq_c0 and
x_unq_c1. They are assigned to x and made part of a seq block. A seq block ensures
that the statements in that block are contained in a single task, after parallelization.
x_unq_c0 and x_unq_c1 also replace the first and second occurrences respectively,
where x is being read. After parallelization, the three generated tasks are shown in
Figure 5.12. It can be noted that an else branch is added in task_output2 where
there is a conditional read of x. This branch contains synchronization statements that
perform the unconditional synchronization.

Another alternative is to move the condition which leads to the conditional read, to
the producer task such that the producer task now conditionally writes to the buffer
corresponding to the consumer task that needs to read it. In this case, the producer

33

5.3. Multiple Consumers

do{
x = f () ;
acqSpace (x_unq_c0) ;
x_unq_c0 = x ;
re lData (x_unq_c0) ;
acqSpace (x_unq_c1) ;
x_unq_c1 = x ;
re lData (x_unq_c1) ;

}while (1)

(a) Task_f

do{
acqData (x_unq_c0) ;
output1 (x_unq_c0) ;
r e l S p a c e (x_unq_c0) ;

}while (1)

(b) Task_output1

do{
i f (~)

acqData (x_unq_c1) ;
output2 (x_unq_c1) ;
r e l S p a c e (x_unq_c1) ;

else
acqData (x_unq_c1) ;
r e l S p a c e (x_unq_c1) ;

}while (1)

(c) Task_output2

Figure 5.12: Parallel Tasks

task would not write to buffers corresponding to consumer tasks that do not require it,
thereby saving unwanted writes. This is illustrated with an example shown in
Figure 5.13. However, in this case, there is an increase in the number of buffers
required. Here, two buffers are created for the variables c and d whereas only one is
required in the previously proposed solution. The producer task now has to read the
conditions from the appropriate buffers before writing to it. The tasks which write the
conditions now have to write to two buffers as compared to a single one in the
previously proposed solution. Due to these reasons, it is not preferred over the
proposed solution.

loop{
c = g () ;
d = h () ;
x = f () ;
i f (c)

output1 (x) ;
i f (d)

output2 (x) ;
}while (1)

(a) Input NLP

loop{
seq {

c = g () ;
c_unq_c0 = c ;
c_unq_c1 = c ;

}
seq {

d = g () ;
d_unq_c0 = d ;
d_unq_c1 = d ;

}
seq {

x = f () ;
i f (c_unq_c0)

x_unq_c0 = x ;
i f (d_unq_c0)

x_unq_c1 = x ;
}
i f (c_unq_c1)

output1 (x_unq_c0) ;
i f (d_unq_d1)

output2 (x_unq_c1) ;
}while (1)

(b) Transformed Task

Figure 5.13: Multiple Consumers - Alternate Solution

34

Chapter 6

Non-Preemptive Scheduling

In non-preemptively scheduled systems, tasks yield the processor voluntarily. When
blocking synchronization calls do not succeed in such tasks, they yield the processor
voluntarily and return control back to the scheduler. Generated parallel tasks can
contain multiple blocking synchronization statements to acquire space or data in the
buffer. When a task blocks on executing one of them, control is returned back to the
scheduler. However, the state of the task where it yielded control is not saved. When
the task executes again, it starts from the beginning of the task. This can even lead
to a deadlock as shown in section 4.2. In this chapter, a method for saving the state
of the task, in order to prevent deadlock is proposed. A finite state machine (FSM) is
generated wherein each state contains at most one blocking synchronization call.

Motivation

In high-performance embedded systems, non-preemptive scheduling is preferred over
preemptive scheduling [27]. Non-preemptive scheduling algorithms are easier to
implement than preemptive algorithms and have dramatically lower overhead at
run-time. Non-preemptive scheduling is more efficient than preemptive scheduling
since preemption incurs a context-switching overhead which can be significant in
fine-grained multi-threaded systems [28]. Nonetheless, even in multiprocessor systems
with preemptive processors, some co-processors or accelerators are non-preemptive.
Some scheduling techniques also employ a combination of preemptive and
non-preemptive scheduling approaches to provide efficient schedules [29]. It is
therefore important that automatic parallelization tools are able to support
non-preemptive multiprocessor systems.

Generated parallel tasks contain synchronization statements to prevent race conditions
and deadlock. The acquire synchronization statement is blocking whereas the release
synchronization statement is non-blocking. There are two acquire synchronization
statements that are used in Omphale, namely acquireSpace and acquireData, which
check for the availability of space or data respectively in the buffer. When space or
data is not available in the buffer, the task blocks. On using a non-preemptive

35

Non-Preemptive Scheduling

scheduler, the task continues to wait until there is space or data available in the
buffer. If the other task which releases space or data is scheduled on the same
processor, it can lead to a deadlock. When a preemptive scheduler is used, the
blocking task is preempted and a deadlock does not occur. In order that a task does
not block indefinitely, causing a deadlock, a task yields control back to the scheduler
voluntarily, when there is a lack of space or data in the buffer. This is helpful even on
using preemptive schedulers as it might lead to better performance by preventing
unnecessary waiting time for the task until it is preempted.

On using a preemptive scheduler, a higher priority task preempts a lower priority task.
If the budget or time-slice within which a task can execute is exhausted, the task is
preempted by the scheduler and the next task in the schedule is executed. In both cases,
the state of the preempted task is saved implicitly by the scheduler. As a result, the task
resumes from the statement at which it was preempted, on its next execution. When
a preemptive scheduler is used, and a task gets blocked at a blocking synchronization
statement, it yields control back to the scheduler and the state of the task is saved
implicitly. On the next execution of the task, it resumes from the point at which it got
blocked.

When a non-preemptive scheduler is used and a task blocks on a blocking
synchronization statement, the task yields control back to the scheduler and the state
of the task is not saved. When the same task is executed again, it resumes from the
beginning of the task and not from the point where it was blocked. When the state of
the task is not saved, it could lead to a deadlock as shown in section 4.2.

By generating an FSM inside the task, the state of the task can be saved. To the best
of our knowledge, current automatic parallelization tools do not deal with the issues
concerned with using non-preemptive schedulers along with blocking synchronization
statements in tasks.

FSM Generation

In order to save the state of a task, an FSM is generated inside every task. From
the input sequential description of a streaming application, Omphale generates parallel
tasks. The extracted tasks generated by Omphale are part of a task graph and each task
is organized as a tree containing the statements in a task. These statements include
while loops, for loops, if statements, assignments, functions etc. The tree in every
task is traversed recursively and a new tree of task statements is created which includes
the state information. The states are generated such that there is at most one blocking
synchronization call per state. The FSM is organized as if statement blocks containing
statements which ought to execute, based on the value of a state variable st. The
if blocks also contain a value for the next state to which the FSM should transition.
A template of a generated FSM is shown in Figure 6.1. The FSM is organized in
this manner so that if blocking synchronization calls succeed, they can proceed to the
next state. If these calls fail, the task returns to the same state where it was blocked
earlier. Once a task finishes its execution, it should return control back to the scheduler.
Therefore, the last state in the FSM contains a return statement.

The state values are constants which are represented starting with the letter c in the task
templates with states. These are computed at compile time in Omphale by keeping track
of the number of states as the new tree is generated for the FSM. The states generated for
every statement are denoted by States_Statement as shown in Figure 6.2. Depending

36

6.1. Infinite While Loop

i f (s t == ~) {
. .
s t = ~ ;

}
.
.
i f (s t == ~) {

. .
s t = ~ ;

}

Figure 6.1: FSM template

on the type of statement, there could be one or more states generated for a statement.
The states generated for a statement are captured in a tree containing if blocks. The
if statements check for the value of the st variable and do an update of the st variable
corresponding to the next state.

i f (s t == c_1) {
. .
s t = ~ ;

}
.
.
i f (s t == c_n) {

. .
s t = ~ ;

}

Figure 6.2: States_Statement

The approach for generating states for different statements is described in the following
sections.

6.1 Infinite While Loop

An infinite while loop corresponds to a do{} while(1) loop. In a streaming application,
the infinite while loop is usually the outermost loop. Especially in the case of the SoD
kernel, the scheduler calls each of the tasks to be run on a processor in a round-robin
fashion. Hence this outermost while loop can be removed. However, after finishing the
execution of a task, control should be returned to the scheduler by means of a return
statement. Thereby, the last state in the case of an infinite while loop has a return
statement at the end. Also the next state is assigned as the first state in the while
loop. The statements inside the while loop can be either if-else, assignment
statements, function statements or for loops. The generation of states for these
statements is explained in the corresponding sections.

A template of a task, with and without states is shown in Figure 6.3. This highlights
how a task without states is transformed into a task with an FSM. It can be seen from
Figure 6.3b that the last state has a return statement and an assignment of the next
state as the first state in the loop. Here, st is a variable which keeps track of the current
state in the FSM. Let Nwb be the number of states in the body of the infinite while loop.
Nwb corresponds to the number of if blocks present in States_Statements shown in
Figure 6.3b. The number of states corresponding to an infinite while loop statement

37

6.2. Conditional While Loop

do{
Statements

}while (1)

(a) Task template without
states

States_Statements
i f (s t == c_1) {

s t = c_while_first_statement ;
r e t u r n ;

}

(b) Task template with states

Figure 6.3: While Loop Template

do{
acqData (x) ;
acqData (y) ;
xVal = read (x) ;
yVal = read (y) ;
f (xVal , yVal) ;
r e l S p a c e (x) ;
r e l S p a c e (y) ;

}while (1)

(a) Task without state

i f (s t == 0) {
acqData (x) ;
s t ++;

}
i f (s t == 1) {

acqData (y) ;
xVal = read (x) ;
yVal = read (y) ;
f (xVal , yVal) ;
s t ++;

}
i f (s t == 2) {

s t = 0 ;
r e t u r n ;

}

(b) Task with state

Figure 6.4: While loop Example

Nw can be calculated from Figure 6.3b and is given in Equation 6.1.

Nw = Nwb + 1 (6.1)

An example of a task with a while loop and a function statement is shown in Figure 6.4.
Here the function f reads needs two values x and y which it reads from corresponding
buffers. There are two blocking acquire statements which leads to two different states
in the FSM. The last state in the FSM contains a return statement and an assignment
of the next state as the first state in the FSM.

6.2 Conditional While Loop

A conditional while loop corresponds to a do{} while(condition) loop. The loop is
executed as long as the condition is satisfied. A template of a task with a conditional
while loop, with and without states is shown in Figure 6.5. In the last state of the
while loop, if the condition is satisfied, the next state is assigned as the first state in
the loop. Otherwise, the next state is assigned as the state after the while loop by a
st++. An example of a conditional while loop with states is shown in Figure 6.6. Let
Nwcb be the number of states in the body of a conditional while loop. Nwcb corresponds
to the number of if blocks present in States_Statements shown in Figure 6.5. The
number of states corresponding to a conditional while loop statement Nwc is given in
Equation 6.2.

Nwc = Nwcb + 1 (6.2)

38

6.3. Nested While Loop

do{
Statements

}while (cond)

(a) Task template without
states

States_Statements
i f (s t == c_1) {

i f (cond) {
s t = c_while_cond_first_statement ;
r e t u r n ;

}
else {

s t ++;
}

}

(b) Task template with states

Figure 6.5: Conditional While Loop Template

do
do{

acqData (x) ;
acqData (y) ;
xVal = read (x) ;
yVal = read (y) ;
f (xVal , yVal) ;
r e l S p a c e (x) ;
r e l S p a c e (y) ;
acqData (whileCondn) ;
whileCondnVal = read (whileCondn) ;
r e l S p a c e (whileCondn) ;

}while (whileCondnVal) ;
}while (1) ;

(a) Task without state

i f (s t == 0) {
acqData (x) ;
s t ++;

}
i f (s t == 1) {

acqData (y) ;
xVal = read (x) ;
yVal = read (y) ;
f (xVal , yVal) ;
r e l S p a c e (x) ;
r e l S p a c e (y) ;
s t ++;

}
i f (s t == 2) {

acqData (whileCondn) ;
whileCondnVal = read (whileCondn) ;
r e l S p a c e (whileCondn) ;
s t ++;

}
i f (s t == 3) {

i f (whileCondnVal) {
s t = 0 ;
r e t u r n ;

}
else {

s t ++;
}

}
i f (s t == 4) {

s t = 0 ;
r e t u r n ;

}

(b) Task with state

Figure 6.6: Conditional While loop Example

6.3 Nested While Loop

A nested while loop can comprise of an conditional while loop nested inside an infinite
while loop. Alternatively, conditional while loops can be nested inside each other. An
example of FSM generation for a nested while loop is shown in Figure 6.7.

39

6.4. For Loop

do{
do{

do{
acqData (x) ;
acqData (y) ;
xVal = read (x) ;
yVal = read (y) ;
f (xVal , yVal) ;
r e l S p a c e (x) ;
r e l S p a c e (y) ;
acqData (whileCondn_1) ;
whileCondnVal_1 = read (whileCondn_1) ;
r e l S p a c e (whileCondn_1) ;

}while (whileCondnVal_1) ;
acqData (whileCondn_2) ;
whileCondnVal_2 = read (whileCondn_2) ;
r e l S p a c e (whileCondn_2) ;

}while (whileCondVal_2) ;
}while (1) ;

(a) Task without state

i f (s t == 0) {
acqData (x) ;
s t ++;

}
i f (s t == 1) {

acqData (y) ;
xVal = read (x) ;
yVal = read (y) ;
f (xVal , yVal) ;
r e l S p a c e (x) ;
r e l S p a c e (y) ;
s t ++;

}
i f (s t == 2) {

acqData (whileCondn_1) ;
whileCondnVal_1 = read (whileCondn_1) ;
r e l S p a c e (whileCondn_1) ;
s t ++;

}
i f (s t == 3) {

i f (whileCondnVal_1) {
s t = 0 ;
r e t u r n ;

}
else {

s t ++;
}

}
i f (s t == 4) {

acqData (whileCondn_2) ;
whileCondnVal_2 = read (whileCondn_2) ;
r e l S p a c e (whileCondn_2) ;
s t ++;

}
i f (s t == 5) {

i f (whileCondnVal_2) {
s t = 0 ;
r e t u r n ;

}
else {

s t ++;
}

}
i f (s t == 6) {

s t = 0 ;
r e t u r n ;

}

(b) Task with state

Figure 6.7: Nested While Loop Example

6.4 For Loop

The for loop supported in OIL is of the following type -
forloop(lower_iterator <= var <= upper_iterator). This is translated to a for loop in
C, of the following type for(var=lower_iterator; var <= upper_iterator; var++). For
loops can be used to access the different indices of an array. The template of a for
loop with and without states is shown in Figure 6.8. A for loop can be represented
with a single state, as can be seen in Figure 6.8b. An if statement is generated in this
state to ensure that the statements inside the loop are executed as long as the upper
and lower boundary conditions in the for loop are satisfied. The index variable is
declared as static and initialized with the lower bound of the for loop. If a task blocks
inside a for loop due to lack of space or data, the control is returned back to the
scheduler. When the task executes again, it jumps to the state corresponding to the

40

6.5. Function Statement

for loop and resumes execution based on the value of the index variable. An example
of the generation of an FSM for a for loop is shown in Figure 6.9.

f o r (index = lb ; index < ub ; index++){
Statements ;

}

(a) Task template without states

i f (s t == c_1) {
i f (index >= lb && index < ub) {
Statements ;
index = index + 1 ;

}
else {

s t ++;
}

}

(b) Task template with states

Figure 6.8: For Loop Template

f o r (i = 0 ; i < 4 ; i ++){
acqData (x) ;
read (x , i) ;
r e l S p a c e (x) ;

}

(a) Task without state

i f (s t == 0) {
i f (i >= 0 && i < 4) {

acqData (x) ;
read (x , i) ;
r e l S p a c e (x) ;
i = i + 1 ;

}
else {

s t ++;
}

}

(b) Task with state

Figure 6.9: For Loop Example

6.5 Function Statement

A function statement can contain more that one blocking acquire statement. A state
is generated per blocking acquire statement. The template for a function statement
having n acquires is shown in Figure 6.10. The number of states generated for a
function statement is equal to the number of blocking acquire statements.

6.6 Assignment Statement

An assignment statement can also contain more that one blocking acquire statement. As
in the case of a function statement, a state is generated per blocking acquire statement.
The template for an assignment statement having n acquires is shown in Figure 6.11.
The number of states generated for an assignment statement is equal to the number of
blocking acquire statements.

6.7 If-Else Statement

The template of a task with an if − else statement is shown in Figure 6.12a. Before
checking the condition of an if statement, the value of the condition is read from

41

6.7. If-Else Statement

Function_Statement

(a) Task template without States

i f (s t == c_1) {
Acq_1
s t ++;

}
.
.
i f (s t == c_n-1) {

Acq_n−1
s t ++;

}
i f (s t == c_n) {

Acq n
Function_Statement
s t = ~ ;

}

(b) Task template with States

Figure 6.10: Function Statement

Assignment_Statement

(a) Task template without States

i f (s t == c_1) {
Acq_1
s t ++;

}
.
.
i f (s t == c_n-1) {

Acq_n−1
s t ++;

}
i f (s t == c_n) {

Acq n
Assignment_Statement
s t = ~ ;

}

(b) Task template with States

Figure 6.11: Assignment Statement

corresponding buffer(s). These statements are denoted as Read_cond_Statements.
The corresponding states generated are referred to as States_Read_cond_Statements.
The following state in the FSM is used to decide the next state to which the FSM should
transition based on the satisfiability of the condition. If the condition is satisfied, it
transitions to the following state, which corresponds to the statements in the if body.
In case the condition is not satisfied, the FSM transitions to the first state corresponding
to the statements in the else branch. After the last state corresponding to the statements
in the if branch, the FSM transitions to the state after the statements in the else branch.
An example of the generation of an FSM for an if-else statement is shown in Figure 6.13.

Let Nib be the number of states corresponding to States_If_body_Statements in
Figure 6.12b. Let Nib be the number of states corresponding to
States_Else_body_Statements in Figure 6.12b. Let Nrc be the number of states
corresponding to States_Read_cond_Statements in Figure 6.12b. Then the number
of states corresponding to a if − else statement, Nie is given in Equation 6.3.

Nie = Nib +Neb +Nrc + 2 (6.3)

42

6.8. Nested If-Else Statements

Read_cond_Statements
i f (cond) {
If_Body_Statements

}
else {

If_Body_Statements
}

(a) Task template without
states

States_Read_cond_Statements
i f (s t == c_1) {

i f (cond) s t ++;
else s t = c_1 + Nib + 2 ;

}
States_If_Body_Statements
i f (s t == c_2 {

s t = c_2 + Neb + 1 ;
}
States_Else_Body_Statements

(b) Task template with states

Figure 6.12: If-Else Statement

do{
acqData (x) ;
cond = read (x) ;
r e l S p a c e (x) ;
i f (cond) {

acqSpace (y) ;
w r i t e (y , g ()) ;
re lData (y) ;

}
else {

acqSpace (y) ;
re lData (y) ;

}
}while (1)

(a) Task without states

i f (s t == 0) {
acqData (x) ;
cond = read (x) ;
r e l S p a c e (x) ;
s t ++;

}
i f (s t == 1) {

i f (cond) s t ++;
else s t = 4 ;

}
i f (s t == 2) {

acqSpace (y) ;
w r i t e (y , g ()) ;
re lData (y) ;
s t ++;

}
i f (s t == 3) {

s t = 5 ;
}
i f (s t == 4) {

acqSpace (y) ;
re lData (y) ;
s t ++;

}
i f (s t == 5) {

s t = 0 ;
r e t u r n ;

}

(b) Task with state

Figure 6.13: If-Else Example

6.8 Nested If-Else Statements

In the case of nested if-else statements, it should be ensured that transitions in the FSM
are made to the correct statements for each of the corresponding nested if statements.
An example of nested if statements is shown in Figure 6.14. It can be seen that with a
level of nesting of two (if inside if) and one blocking acquire per if branch, the number
of states is 11.

43

6.8. Nested If-Else Statements

do{
acqData (condBuf_1) ;
cond_1 = read (condBuf_1) ;
r e l S p a c e (condBuf_1) ;
i f (cond_1) {
acqData (condBuf_2) ;
cond_2 = read (condBuf_2) ;
r e l S p a c e (condBuf_2) ;
i f (cond_2) {

acqSpace (y) ;
w r i t e (y , g ()) ;
re lData (y) ;

}
else {

acqSpace (y) ;
re lData (y) ;

}
}
else {

acqData (condBuf_2) ;
r e l S p a c e (condBuf_2) ;
acqSpace (y) ;
re lData (y) ;

}
}while (1)

(a) Task without states

i f (s t == 0) {
acqData (condBuf_1) ;
cond_1 = read (condBuf_1) ;
r e l S p a c e (condBuf_1) ;
s t ++;

}
i f (s t == 1) {

i f (cond_1) s t ++;
else s t = 8 ;

}
i f (s t == 2) {

acqData (condBuf_2) ;
cond_2 = read (condBuf_2) ;
r e l S p a c e (condBuf_2) ;
s t ++;

}
i f (s t == 3) {

i f (cond_2) s t ++;
else s t = 6 ;

}
i f (s t == 4) {

acqSpace (y) ;
w r i t e (y , g ()) ;
re lData (y) ;
s t ++;

}
i f (s t == 5) {

s t = 7 ;
}
i f (s t == 6) {

acqSpace (y) ;
re lData (y) ;
s t ++;

}
i f (s t == 7) {

s t = 1 0 ;
}
i f (s t == 8) {

acqData (condBuf_2) ;
r e l S p a c e (condBuf_2) ;
s t ++;

}
i f (s t == 9) {

acqSpace (y) ;
re lData (y) ;
s t ++;

}
i f (s t == 10) {

s t = 0 ;
r e t u r n ;

}

(b) Task with state

Figure 6.14: Nested If-Else Example

44

6.8. Nested If-Else Statements

Saving Variables in Task-State

Once an FSM is generated inside a task, there would be variables that are accessed
across states. It has to be ensured that the values written to these variables are not lost,
when control is returned to the scheduler on encountering a blocking synchronization
statement. This is done by saving them to the task-state, which is maintained by the
SoD kernel for every task. The values of variables stored in the task-state are held for the
life-time of the application, like static variables. The state variable st and the counter
variables used in the modified sliding windows buffer are saved in the task-state. When
there are variables with multiple readers , the producer task contains different writes of
the produced value to each of the multiple consumers. Therefore, this produced value
has to be maintained across states and is thereby stored in the task-state.

45

Chapter 7

Optimizations

In this chapter, different optimizations to improve the performance or reduce the
static memory requirements of the generated tasks are discussed. Section 7.1 presents
how the states in the FSMs generated in tasks are reduced. Section 7.2 presents how
the task-state can be reduced. Section 7.3 discusses how the synchronization overhead
can be reduced. In the remainder of the thesis, acquire statements are also referred to
as acquires and release statements as releases. These statements constitute the
synchronization statements in the task. All the other statements are referred to as
non-synchronization statements (NSS).

7.1 Reduction of States in FSM of tasks

The number of states in a task depend mainly on the number of blocking (acquire)
synchronization statements. If the number of states can be reduced, then the
corresponding check for the state and the update of the state variable can be removed.
This could result in an increase in throughput.

7.1.1 Moving Acquire/Release outside if-else statements

The number of states can reduced by removing a pair of acquire/release statements
from an if block and moving another pair out of the corresponding else block or vice-
versa. In order to perform unconditional synchronization on a buffer, acquire and
release statements are also placed in the if block or the else block where data is
not read or written to that buffer. Therefore there are two pairs of acquire, release
statements, one in the if block, and the other in the else block. If these if−else blocks
do not contain loops, then one pair of acquire/release statements can be removed.
Then the acquire of the other pair can be moved just before the if − else block and
the corresponding release, can be moved after the if − else block. This reduces the
number of acquires by a factor of 2, thereby reducing the number of states. It is
important to note that we still perform unconditional synchronization after making the
above changes.

47

Optimizations 7.1. Reduction of States in FSM of tasks

do{
acqData (x) ;
cond = read (x) ;
r e l S p a c e (x) ;
i f (cond) {

acqSpace (y) ;
w r i t e (y , g ()) ;
re lData (y) ;

}
else {

acqSpace (y) ;
re lData (y) ;

}
}while (1)

(a) Task without states

i f (s t == 0) {
acqData (x) ;
cond = read (x) ;
r e l S p a c e (x) ;
s t ++;

}
i f (s t == 1) {

i f (cond) s t ++;
else s t = 4 ;

}
i f (s t == 2) {

acqSpace (y) ;
w r i t e (y , g ()) ;
re lData (y) ;
s t ++;

}
i f (s t == 3) {

s t = 5 ;
}
i f (s t == 4) {

acqSpace (y) ;
re lData (y) ;
s t ++;

}
i f (s t == 5) {

s t = 0 ;
r e t u r n ;

}

(b) Task with states

Figure 7.1: Before moving acquires out of if-else statements

do{
acqData (x) ;
cond = read (x) ;
r e l S p a c e (x) ;
acqSpace (y) ;
i f (cond) {

w r i t e (y , g ()) ;
}
re lData (y) ;

}while (1)

(a) Task without states

i f (s t == 0) {
acqData (x) ;
cond = read (x) ;
r e l S p a c e (x) ;
s t ++;

}
i f (s t == 1) {

acqSpace (y) ;
i f (cond) {

w r i t e (y , g ()) ;
}
re lData (y) ;
s t ++;

}
i f (s t == 2) {

s t = 0 ;
r e t u r n ;

}

(b) Task with states

Figure 7.2: After moving acquires out of if-else statements

The reduction in states by the above mentioned approach is illustrated by an example.
Figure 7.1 shows the generation of states before moving acquires out of an if − else
block. It can be seen that there are two pairs of acqSpace(y)/relData(y) statements
inside the if − else block in Figure 7.1a. The corresponding FSM in Figure 7.1b has
six states. Figure 7.2 shows the generation of states after moving acquires out of the
if −else block. It can be observed that out of the two pairs of acqSpace(y)/relData(y)
statements in Figure 7.1a, one has been removed and the other has been moved outside
the if − else block. Since there are no other statements inside the else block, it has
been removed. The number of states in the corresponding FSM, seen in Figure 7.2b is

48

Optimizations 7.1. Reduction of States in FSM of tasks

three. Therefore the number of states has been reduced by three. However, it can be
seen that the variable cond is used across states containing blocking acquire statements
and therefore has to be saved in the task-state.

7.1.2 Combining Acquires

The number of states in a FSM in a task mainly depends on the number of acquire
statements in the task. By combining acquires, the number of states can be reduced.
This is illustrated in Figure 7.3 where n acquires are combined together. The acquire
function is split into two functions, one performing the check for space or data, which
is called acquireCheck and the other which performs an update of the corresponding
countSpace and countData counters, which we call Update. Therefore the
AcquireData function is split into AcquireDataCheck and UpdateData. Similarly,
the the AcquireSpace function is split into AcquireSpaceCheck and UpdateSpace. In
Figure 7.3, acquireDataCheck and AcquireSpaceCheck are represented by AcqC.
The checking of space or data accordingly is done for all the acquires and only if all of
them succeed, it proceeds to updating the count variables present in the corresponding
Upd functions. This is done by means of the and operator. Even if one of the acquire
calls gets blocked due to lack of space or data, control is returned back to the
scheduler. Only if all the calls succeed, the corresponding countSpace or countData
counters are incremented.

Acq 1
Acq 2
..
Acq n
NSS
Rel n
.
Rel 2
Rel 1

AcqC 1 & AcqC 2 & .. AcqC n
Upd 1
.
Upd n
NSS
Rel n
.
Rel 2
Rel 1

Transformation

Figure 7.3: Combining Acquires

The code transformations as seen in Figure 7.3 involve moving acquires above NSS and
releases. According to Theorem 7.1 and Theorem 7.2 these transformations preserve
deadlock freedom, provided the conditions mentioned in the theorems are satisfied.
These theorems are detailed in the subsequent sections.

Combining acquires can result in a decrease in throughput. For example, consider the
task in Figure 7.3 with n acquires combined together. Consider the case that a task
can get blocked on the last acquire and returns control back to the scheduler. On the
next execution of the task, the n − 1 acquires have to be executed again which may
lead to a decrease in throughput. Also combining acquires requires that they are first
moved over NSS or releases which may also decrease the throughput. The reason for
the probable decrease in throughput is mentioned in the following sections on moving
acquires.

In order to combine acquires, certain code transformations need to be applied so that
they do not cause deadlock. These code transformations include moving acquires above
NSS or releases, to be able to combine them. The conditions under which these code
transformations can be applied are analyzed in section 7.1.2.1 and 7.1.2.2.

49

Optimizations 7.1. Reduction of States in FSM of tasks

7.1.2.1 Moving Acquires - Type I

In order to combine acquire statements, they have to be moved over other statements,
so that they can be executed one after another. Type I refers to acquire statements
that can be moved above NSS. A task template containing acquires is shown before
and after transformation in Figure 7.4. The acquire statements and the corresponding
release statements in the task are numbered from 1 to n as seen in Figure 7.4. The NSS
are also numbered accordingly from 1 to n. The transformation step involves moving
the acquires above the NSS. After transformation, it can be noted from Figure 7.4, that
the n-1 acquires have been moved above the other NSS so that the acquires can be
executed one after another. It is important to note here that none of the acquires have
been moved over a release statement.

Acq 1
NSS 1
Acq 2
NSS 2
.
Acq n
NSS n

Rel n
.
Rel 2
Rel 1

Acq 1
Acq 2
.
Acq n
NSS1
NSS2
.

NSSn
Rel n
Rel 2
Rel 1

Transformation

Figure 7.4: Task Transformation - Moving Acquires - Type I

Deadlock Freedom

We should prove that moving acquires above NSS, does not cause a deadlock. Here
we prove deadlock freedom by creating an HSDF model of the tasks before and after
the transformation. The tasks contain a sequence of Acquires, Releases and NSS.
Conditional statements such as if − else and conditional while loops having acquire
and releases in them cannot be represented using an HSDF model.

Construction of HSDF Model

A task graph contains various tasks that communicate via circular buffers. The tasks
contain acquire and release synchronization statements and NSS. An HSDF model is
created such that every acquire statement is represented by an acquire actor. Similarly
every release statement is represented by a release actor and every NSS by an NSS
actor. From a task graph TG, an HSDF model G is created as follows. For every
task Tn present in TG, an HSDF model Gn is created containing acquire, release and
NSS actors which belong to Tn. These actors are connected by edges representing the
sequential dependencies between them. An edge is created from the last actor in G_n
to the first actor with an initial token. Thereby a cycle is created with an initial token.
This cycle ensures that the next execution of the task can happen only after finishing
the current execution.

After all the tasks in TG have been represented in G, a directed edge is created from
every releaseSpace actor to its corresponding acquireSpace actor. Similarly, a directed

50

Optimizations 7.1. Reduction of States in FSM of tasks

edge is created from every releaseData actor to its corresponding acquireData actor.
By doing so, cycles are formed across sub-graphs. These are called external cycles. To
prevent deadlock, initial tokens are added on every cycle. The initial token is not placed
on any of the edges inside Gn between acquire,release and NSS actors. It is placed on
edges that are outside Gn.

Figure 7.5 shows the HSDF model of the tasks shown in Figure 7.4 with two acquires
and two releases. We have actors corresponding to acquires,releases and NSS in a task.
The edges denote dependencies between execution of actors. Each actor has a positive
execution time. An actor fires when it has input tokens on all its incoming edges. The
sequential execution of the statements in a task is guaranteed by the edges between
their corresponding actors. It can be seen from Figure 7.5 that the actors are ordered
in the same manner as the statements in the corresponding task. The acquire actors
have incoming edges from corresponding release actors (not shown) of the corresponding
buffer. Similarly, release actors have outgoing edges to acquire actors (not shown) of
the corresponding buffer. It can be seen from Figure 7.5 that after transformation,
the actor Acq 2 has been moved above NSS1 and NSS2. We will now introduce some
definitions which would be used in the proof for deadlock freedom.

Figure 7.5: Moving Acquires - Type I - Dataflow Model

Definitions

Definition 7.1 (Actor) : Assume P is a set of Ports. An actor a is a tuple (I,O, t, id)
consisting of I ⊆ P input ports denoted by I(a) and set of O ⊆ P output ports
denoted by O(a) with I ∩O = φ. Assume A is a set of actors. The type of an actor
is given by the function t : A → Type where Type = {Acq,Rel,NSS}. A set of
acquire actors is denoted by AcqS = {a ∈ A|t(a) = Acq} and a set of release actors
is denoted by RelS = {a ∈ A|t(a) = Rel}. Every actor has a task-id given by the
function id : A→ N.

Definition 7.2 (HSDF Graph) : An HSDF graph G is a tuple (A,D) consisting of a
finite set A of actors and a finite set D ⊆ Ports × Ports of dependency edges. The

51

Optimizations 7.1. Reduction of States in FSM of tasks

source of a dependency edge is an output port of some actor, the destination is an
input port of some actor. The operator SrcA gives the source actor of a dependency
edge and correspondingly DstA gives the destination actor of a dependency edge.
The operator SrcP gives the source port of a dependency edge and similarly DstP
gives the destination port of a dependency edge. All ports of all actors are connected
to precisely one edge, and all edges are connected to ports of some actor. For every
actor a = (I,O, t, id) ∈ A, we denote the set of all dependency edges that are
connected to the ports in I by InD(a). Similarly the set of all dependency edges
connected to the ports in O are denoted by OutD(a).

Definition 7.3 A task Tn is modeled by an HSDF graph Gn = (An, Dn) which is a
sub-graph of the HSDF graph G = (A,D) which models the complete task graph. Gn

is a sub-graph of G with An = {a ∈ A | id(a) = n}, AcqSn = {a ∈ AcqS | id(a) = n},
RelSn = {a ∈ RelS | id(a) = n}

Definition 7.4 (Acquire-Release path) : An acquire − release path is defined as
a simple directed path within a sub-graph Gn from an acquire actor to a release
actor containing actors belonging to Gn. It is denoted as (cpsrc, .., cpdst) where
cpsrc ∈ AcqSn and cpdst ∈ RelSn. No initial tokens are present on this path
by construction. There exists at least one dependency edge (a, cpsrc) ∈ D such
that InD(cpsrc) = (a, cpsrc) where id(a) 6= n. This refers to the incoming edge
of an acquire actor from an actor outside Gn. Similarly, there exists at least one
dependency edge (cpdst, a) ∈ D such that OutD(cpdst) = (cpdst, a) where id(a) 6= n.
This refers to the outgoing edge of a release actor to an actor outside Gn.

For example in Figure 7.6, G1 has four acquire − release paths namely
(Acq1, Rel1), (Acq1, Rel2), (Acq2, Rel1), (Acq2, Rel2). It can also be noted that
there are no initial tokens on any of these acquire− release paths.

Definition 7.5 : An external cycle is formed by two paths, namely an acquire −
release path (cpsrc, .., cpdst) belonging to Gn, and an external path from cpdst to
cpsrc containing actors belonging to Gm wherem 6= n. Such an external cycle can be
observed in Figure 7.6, consisting of the acquire− release path (Acq1, Rel2) within
G1 and a path through G2 from Rel2 to Acq1.

Lemma 7.1 When acquire actors are moved above NSS actors in a sub-graph Gn of
G to obtain Gn’, the number of initial tokens on every corresponding external cycle
remains the same.

Proof : Assume G is deadlock-free. This implies that all cycles in G have initial
tokens. In the sub-graph Gn, there exists an acquire− release path from every acquire
actor to every release actor (by definition 7.4). No initial tokens are present on this
path by construction, as mentioned in definition 7.4. Therefore, all initial tokens on
external cycles formed by acquire − release paths in Gn are present on paths outside
Gn. This implies that this transformation does not change the number of initial tokens
present on external cycles.

Lemma 7.2 : When acquire actors are moved above NSS actors in a sub-graph
Gn of G, Gn’ is obtained wherein cardinality of the set of acquire − release paths
remains the same.

Proof : Given a set of acquire − release paths CP which belong to Gn. We have
to prove that after acquire actors are moved above NSS actors, |CP ′| = |CP |. A

52

Optimizations 7.1. Reduction of States in FSM of tasks

Acq 1

NSS1

Acq 2

NSS2

Rel 1

Rel 2

I1

I2

O2

O1

SubGraph G1 SubGraph G2

Figure 7.6: Illustration of External cycle

NSS actor has no dependency edges from any actor outside Gn by definition. By
definition 7.4, an acquire-release path is denoted by (cpsrc, cpdst) where cpsrc ∈ AcqS
and cpdst ∈ RelS.Therefore, though the actual path between cpsrc and cpdst might
change upon moving acquire actors above NSS actors, the number of acquire−release
paths do not change.

Theorem 7.1 An HSDF model G of a task graph TG, transformed to G’ by moving
acquire actors above NSS actors, is deadlock-free, provided G is deadlock-free and
none of the acquire actors is moved over a release actor.

Proof : Given a deadlock-free graph G implies that the all the cycles present in this
graph have initial tokens. To prove deadlock freedom after moving acquires above NSS,
we should prove that all cycles in G’ have initial tokens.

We consider a sub-graph G′n of G′ corresponding to a task T ′n within which acquire
actors are moved above NSS actors. The rest of the graph G′ remains intact. The
number of possible external cycles is equal to the number of acquire − release paths
in Gn. By Lemma 7.2, the number of acquire − release paths remain the same. This
implies that no additional external cycle is added in G′n because external cycles are
formed by acquire− release paths. By Lemma 7.1 the number of initial tokens present
on external cycles remain the same. Therefore all external cycles of G′n contain initial
tokens and thereby the transformation in Gn does not cause a deadlock.

Similarly, for every sub-graph G′n the transformation does not cause a deadlock.
Therefore all cycles in G′ have initial tokens and G′ is deadlock-free after this
transformation.

An illustration of the proof can be seen in Figure 7.7. It shows the HSDF models of a
task with two acquires and two releases, before and after an acquire has been moved
over NSS. The initial tokens are not present on cycle paths
(Acq1, Rel1), (Acq1, Rel2), (Acq2, Rel1), (Acq2, Rel2) and hence they remain intact on

53

Optimizations 7.1. Reduction of States in FSM of tasks

Acq 1

NSS1

Acq 2

NSS2

Rel 1

Rel 2

I1

I2

O2

O1

Acq 1

Acq 2

NSS1

NSS2

Rel 1

Rel 2

I1

I2

O2

O1

Transformation

Figure 7.7: Illustration of Proof

the external cycles after transformation. It can also be seen that when Acq2 is moved
over NSS1, some acquire − release paths have different paths between their source
and destination actors. For example, (Acq2, Rel2) has a new actor NSS1 in its path.
However the number of acquire − release paths remains the same. Since the number
of possible external cycles corresponds to the number of acquire − release paths and
this has not changes, no additional external cycle has been added. Therefore all the
external cycles contain initial tokens and hence the transformation does not introduce
a deadlock.

7.1.2.2 Moving Acquires - Type II

Type II refers to acquire statements that can be moved above other statements including
release statements. A task template containing acquires is shown before and after
transformation in Figure 7.8. The transformation step involves moving the acquires
above the NSS and release statements . After transformation, it can be noted from
Figure 7.8, that Acq2 has been moved above NSSa and NSSb so that the Acq1 and
Acq2 can be executed one after another.

Acq 1
NSSa
Rel 1

NSSb

Acq 2
NSSc
Rel 2
..

Acq 1
Acq 2

NSSa
Rel 1
NSSb
NSSc
Rel 2
..

Transformation

Figure 7.8: Task Transformation

54

Optimizations 7.1. Reduction of States in FSM of tasks

Deadlock Freedom

We prove deadlock freedom by creating an HSDF model of the tasks before and after
transformation. Every SDF graph can be converted into its equivalent HSDF graph as
described in [6]. Figure 7.9 shows the HSDF model of the tasks shown in Figure 7.8
with two acquires and two releases. We have actors corresponding to acquires,releases
and NSS in a task. It can be seen from Figure7.9 that after transformation, the actor
Acq 2 has been moved above NSS1 and NSS2 and Rel1.

Transformation

Acq 1

NSS1

Rel 1

Acq 2

Rel 2

NSS2

Acq 1

Acq 2

NSS1

Rel 1

Rel 2

NSS2

Figure 7.9: HSDF Model

Lemma 7.3 When acquire actors are moved above release actors in a sub-graph
Gn of G to obtain Gn’, the initial tokens present on external cycles remain intact.

Proof : It is given that G is deadlock-free. This implies that all cycles in G have
initial tokens. In the sub-graph Gn, there exists a acquire − release path from every
acquire actor to every release actor (by definition 7.4). No initial tokens are present on
an acquire − release path by construction, as mentioned in definition 7.4. Therefore,
all initial tokens on external cycles formed by acquire−release paths in Gn are present
on paths outside Gn. This implies that this transformation does not alter the initial
tokens present on external cycles.

Lemma 7.4 : When an acquire actor is moved above a release actor in a sub-graph
Gn of G, Gn’ is obtained wherein the number of acquire−release paths is increased.

Proof : Given a set of acquire− release paths CP which belong to Gn. We have to
prove that after an acquire actor is moved above a release actors, acquire−release paths
|CP ′| 6= |CP |. By definition 7.4, a acquire− release path is denoted by (cpsrc, cpdst)
where cpsrc ∈ AcqS and cpdst ∈ RelS. On moving an acquire actor above a release
actor, a new acquire− release path (cpsrc, cpdst) is added where cpsrc is the acquire
actor and cpdst is the release actor. Therefore, the number of acquire− release paths
is increased by one.

Theorem 7.2 An HSDF model G of a task graph TG, transformed to G’ by moving
an acquire actor above a NSS actor and a release actor, is deadlock-free, provided G
is deadlock-free and

55

7.2. Reducing Task-State

• There is no path from the release actor to the acquire actor involving actors
outside the sub-graph in which the acquire and release actors are present or

• A path with initial tokens exists from the release actor to the acquire actor
involving actors outside the sub-graph in which the acquire and release actors
are present.

Proof : Given a deadlock-free graph G implies that all the cycles present in this graph
have initial tokens. To prove deadlock freedom after moving an acquire actor above a
NSS actor and release actor, we should prove that all cycles in G’ have initial tokens.

We consider a sub-graph G′n of G′ corresponding to a task T ′n within which acquire
actors are moved above NSS actors. The rest of the graph G′ remains intact. The
number of possible external cycles is equal to the number of acquire− release paths in
Gn. By Lemma 7.1 and Lemma 7.3 the initial tokens present on external cycles remains
intact. According to Lemma 7.2, by moving an acquire actor above a NSS actor,
the number of acquire − release paths remains the same. However,by Lemma 7.4, by
moving an acquire actor above a release actor, the number of acquire− release paths
has increased by one. This implies the possibility of an additional external cycle in G′n
if there exists a path from the release actor to the acquire actor involving actors outside
G′n. If such a path does not exist, then G′n is deadlock-free as no additional external
cycle is added and all external cycles contain initial tokens. Even if such a path exists,
but with initial tokens, then G′n is deadlock-free as the additional external cycle added
contains initial tokens. Similarly, for every sub-graph G′n of G, the transformation does
not cause a deadlock, provided the above conditions are satisfied.

An illustration of the proof is provided in Figure 7.10. It shows the HSDF models of a
task with two acquires and two releases, before and after an acquire has been moved
over a NSS and release. It can be seen that when Acq2 is moved over NSS1 and Rel1,
a new cycle path (Acq2, Rel1) is added. This leads to the possibility of an additional
external cycle if there exists a path from Rel1 to Acq2 through another sub-graph
than the one containing these actors. If such a path exists with initial tokens, then
G′n is deadlock-free as the additional external cycle added also contains initial tokens.
If such a path does not exist, then G′n is also deadlock-free as no additional external
cycle is added and all external cycles contain initial tokens. The existence of this path
can be determined by using path-finding graph algorithms such as depth-first search or
breadth-first search.

7.2 Reducing Task-State

By moving acquires or combining acquires, the task-state can also be reduced. The
generation of states inside a task requires that variables that are read and written
across states are saved in the task-state. This occurs especially in the case when there
are buffers with multiple consumers. The task-state is reduced by moving acquires
together, so that the variable that is used across multiple states can now be read and
written in a single state. However, this may result in a decrease in throughput as the
NSS corresponding to each acquire can now be executed only after all the acquires have
succeeded. Combining acquires has an extra overhead compared to moving acquires.
This happens because in the case of combining acquires, even if one check fails, all
the successful checks have be to repeated again. An illustration of the reduction in
task-state is shown in the case-study.

56

7.3. Reducing Synchronization Overhead

Transformation

Acq 1

NSS1

Rel 1

Acq 2

Rel 2

NSS2

I1

O1

I2

O2

Acq 1

Acq 2

NSS1

Rel 1

Rel 2

NSS2

I1

I2

O1

O2

Figure 7.10: Illustration of Proof

7.3 Reducing Synchronization Overhead

Multiprocessor systems using a shared memory require synchronization to ensure
correct functional behavior of applications. Especially in applications where the tasks
perform little calculation, this synchronization overhead can become dominant [30].
By increasing the synchronization granularity, the synchronization overhead can be
reduced, but this often comes at the cost of an increase in buffer capacity. Therefore
efforts are being made to reduce the synchronization overhead. An approach is
proposed in [31] where adding synchronization edges makes other synchronization
edges redundant. If the number of synchronization statements that have become
redundant, is higher than the number of added statements, the resynchronization is
effective and a reduction of the synchronization overhead is achieved. In order to
reduce the synchronization overhead, the number of synchronization statements that
acquire data or space in a buffer can be reduced. By reordering acquires, a
synchronization statement that acquires data or space in a buffer may become
redundant. On removing redundant synchronization statements, the synchronization
overhead is reduced.

An HSDF model of a task graph is shown in the figure on the left side of Figure 7.11.
The HSDF model contains actors corresponding to 3 tasks A,B and C. The task C has
been modeled to a finer extent, by a sub-graph Gn showing the acquire, release and
NSS actors explicitly. The actors A and B are outside Gn belonging to another task.
Acq1 has a dependency edge from A and Acq2 has a dependency edge from B. Since
actors have positive execution time, it can be seen that a token arrives on edge (B,Acq2)
later than it arrives on the edge (A,Acq1). If Acq1 and Acq2 could be reordered, then
we obtain an HSDF graph as shown in the figure on the right side in Figure 7.11. Here it
can be seen that the synchronization on edge (A,Acq1) is redundant because by the time
Acq1 executes, the token would have already arrived, as explained earlier. Hence this
redundant synchronization can be removed and it reduces the synchronization overhead.

57

7.3. Reducing Synchronization Overhead

Acq 1

NSS1

Acq 2

NSS2

Rel 1

Rel 2

A

B

Acq 2

Acq 1

NSS1

NSS2

Rel 1

Rel 2

A

B

Transformation

Figure 7.11: Basic Idea - Method I

To identify redundant synchronization edges, the algorithm described in [32] can be
applied. However, it can be seen from Figure 7.11 that NSS1 can no longer execute
in parallel with B and this may decrease the throughput. An example illustrating this
approach is presented in the case-study.

In this approach, one of the actors (A) had to have a direct edge with an acquire actor
(Acq1) and a path through at least one another actor (B) to another acquire actor
(Acq2). However, such a direct edge does not exist, then if the best case and worse case
execution times of actors are available, the following approach can be used to reduce the
synchronization overhead. Consider the dataflow model shown in Figure 7.12. Actor D
has two inputs, each input having a different path from A, with at least one actor in the
path. Then if the sum of best case execution times of actors in path1 is greater than or
equal to the sum of worst case execution times of actors in path2, then data will arrive
in the buffer corresponding to edge B −D, always later than the buffer corresponding
to the edge C − D. So the corresponding acqCheck for the buffer corresponding to
the edge C −D can be removed. This reduces the synchronization overhead. However,
this approach is only stated here but not detailed further as best-case and worst-case
execution times are not available currently for evaluation.

7.3.1 Reordering Acquires

In order to reduce the synchronization overhead one of the acquires may have to be
moved ahead of the other. This requires that acquires should be reordered. Before
carrying out this code transformation, it is essential to check that it does not cause a
deadlock. Figure 7.13 shows a task before and after reordering the acquries.

58

7.3. Reducing Synchronization Overhead

A

B

C

D

a1 a2

a3 a4

Path 1

Path 2

Figure 7.12: Basic Idea - Method II

Acq 1
Acq 2
..
Acq n
NSS
Rel n
..
Rel 2
Rel 1

Acq n
..
Acq 2
Acq 1
NSS
Rel n
..
Rel 2
Rel 1

Figure 7.13: Task Transformation

Deadlock Freedom

We prove deadlock freedom by creating an HSDF model of the tasks before and after
transformation. Figure 7.14 shows the HSDF model of the tasks shown in Figure 7.13
with two acquires and two releases. We have actors corresponding to acquires,releases
and NSS in a task.

Acq 1

Acq 2

NSS

Rel 2

Rel 1

Acq 2

Acq 1

NSS

Rel 2

Rel 1

Transformation

Figure 7.14: HSDF Model

Lemma 7.5 When acquire actors are reordered in a sub-graph Gn of G to obtain
Gn’, the initial tokens present on corresponding external cycles remain intact.

59

7.3. Reducing Synchronization Overhead

Proof : It is given that G is deadlock-free. This implies that all cycles in G have
initial tokens. In the sub-graph Gn, there exists an acquire− release path from every
acquire actor to every release actor (by definition 7.4). No initial tokens are present on
an acquire − release path by construction, as mentioned in definition 7.4. Therefore,
all initial tokens on external cycles formed by acquire−release paths in Gn are present
on paths outside Gn. This implies that this transformation does not change the initial
tokens present on corresponding external cycles.

Lemma 7.6 : When acquire actors are reordered in a sub-graph Gn of G, Gn’ is
obtained wherein the number of acquire− release paths remains the same.

Proof : Given a set of acquire − release paths CP which belong to Gn. We have
to prove that after acquire actors are reordered, |CP ′| = |CP |. A NSS actor has no
dependency edges from any actor outside Gn by definition. By definition 7.4, a cycle
path is denoted by (cpsrc, cpdst) where cpsrc ∈ AcqS and cpdst ∈ RelS.Therefore,
though the actual path between cpsrc and cpdstmight change upon reordering acquires,
the number of acquire− release paths do not change.

Theorem 7.3 Assume that an HSDF model G derived from a task graph TG is
deadlock-free, then reordering acquires in TG to TG’ preserves deadlock freedom

Proof : Given a deadlock-free graph G implies that the all the cycles present in this
graph have initial tokens. Assume G’ is the HSDF model derived from TG’. To prove
deadlock freedom after reordering acquires, we should prove that all cycles in G’ have
initial tokens.

We consider a sub-graph G′n of G′ corresponding to a task T ′n within which acquire
actors are reordered. The rest of the graph G′ remains intact. The number of possible
external cycles is equal to the number of acquire−release paths in Gn. By Lemma 7.6,
the number of acquire−release paths remain the same. This implies that no additional
external cycle is added in G′n because external cycles are formed by acquire− release
paths. By Lemma 7.5 the initial tokens present on external cycles remains intact.
Therefore all external cycles of G′n contain initial tokens and thereby the transformation
in Gn does not cause a deadlock.

Similarly, for every sub-graph G′n the transformation does not cause a deadlock.
Therefore all cycles in G′ have initial tokens and G′ is deadlock-free after this
transformation.

An illustration of the proof can be seen in Figure 7.15. It shows the HSDF models
of a task with two acquires and two releases, before and after an acquire has been
reordered with another. The initial tokens are not present on acquire − release paths
(Acq1, Rel1), (Acq1, Rel2), (Acq2, Rel1), (Acq2, Rel2) and hence they remain intact on
the external cycles after transformation. It can also be seen that when Acq2 is reordered
with Acq1, some acquire−release paths have a different path between their source and
destination actors. For example, (Acq2, Rel2) has a new actor Acq1 in its path. However
the number of acquire− release paths remains the same. Since the number of possible
external cycles corresponds to the number of acquire− release paths and this has not
changed, no additional external cycle has been added. Therefore all the external cycles
contain initial tokens and hence the transformation does not introduce a deadlock.

60

7.3. Reducing Synchronization Overhead

Acq 1

Acq 2

NSS

Rel 2

Rel 1

I1

I2

O2

O1

Acq 2

Acq 1

NSS

Rel 2

Rel 1

I2

I1

O2

O1

Transformation

Figure 7.15: Illustration of Proof

61

Chapter 8

Case Study

In this chapter, a case-study is presented to illustrate the applicability of the proposed
solutions in this thesis. A DVB-T decoder is used as a case-study. The transformation
of buffers with multiple producers and consumers to buffers with only a single producer
and consumer is illustrated in this case-study. The generation of FSMs in tasks, is also
shown. The possible reduction in states, task-state and synchronization overhead is also
illustrated using the case-study.

A DVB-T decoder can expressed as a sequential NLP in OIL having five modes of
operation, namely IQ, ACQ, CFO, SY NC and DECODE. Initially, the decoder is in
the IQ mode. In this mode, the decoder estimates the In-phase and Quadrature-phase
(IQ) imbalance to obtain the channel response [4]. Once the IQ balance is estimated,
the DVBT decoder switches to the ACQ mode. Acquisition (ACQ) is performed to find
the OFDM symbol boundary and the FFT window size used by the transmitter. Once
these parameters are found, the DVBT decoder switches to the CFO mode wherein
the Carrier Frequency Offset (CFO) is computed. Once CFO is estimated, the DVBT
decoder switches to the SYNC mode. In this mode, the DVBT decoder estimates the
time tracking parameter e.g. common phase estimation, frequency tracking etc. This
estimation is performed by the channel estimation and TPS decoding blocks. Once
the parameter estimation is complete, the DVBT decoder switches to the DECODE
mode in which QAM demapping is carried out. Then the subsequent blocks after QAM
demapping, as seen in Figure 1.1 decode the incoming MPEG stream.

For illustration purposes, we use a simplified version of the DVB-T decoder, as shown
in Figure 8.1. Here we combine the IQ and ACQ modes from the more descriptive
OIL expression of the DVB-T decoder, into a single mode ACQ. Similarly the CFO,
SY NC and DECODE modes are combined into a single mode,namely
CFO_SY NC_DECODE. The dfe_isr function returns a data packet, namely
dfe_out. This data packet is used in the functions present in the above two modes.
The decoder remains in the ACQ mode until acq_complete is asserted. When
acq_complete is asserted, frame_boundary, which corresponds to the OFDM symbol
boundary is passed onto the cfo_sync_decode function. Subsequently, a transition is
made to the CFO_SY NC_DECODE mode. The decoder remains in
CFO_SY NC_DECODE mode, unless the decoding fails and decode_failed is

63

Case Study

asserted. If the decoding fails, it returns to the ACQ mode.

task{

def i n t x , mode
def i n t acq_complete , decode_fa i led ,
def data dfe_out , frame_boundary ;

mode = ACQ;
loop{

dfe_out = d f e _ i s r () ;
x = mode ;
switch (x) {

case ACQ: {
acq_complete = acq_measure (dfe_out) ;
i f (acq_complete) {

mode ’ = CFO_SYNC_DECODE;
frame_boundary = extract_boundary (dfe_out) ;

}
else {

mode ’ = ACQ;
}

}
case CFO_SYNC_DECODE: {

d e c o d e _ f a i l e d = cfo_sync_decode (dfe_out , frame_boundary) ;
i f (d e c o d e _ f a i l e d) {

mode ’ = ACQ;
}
else {

mode ’ = CFO_SYNC_DECODE;
}

}
}

}while (1) ;
}

Figure 8.1: DVB-T Decoder

The task graph that is generated after parallelization is shown in Figure 8.2. It can
be seen that the value of mode which is transferred to the variable x is required in
all the tasks generated from functions inside the switch statement. This is because
mode determines whether each of these tasks should execute or not. The variable
x in this case has six readers and therefore six buffers have been created, one per
producer-consumer pair. Similarly the variables dfe_out and acq_complete have three
corresponding buffers each, one per producer-consumer pair. In the task graph, these
buffers with multiple consumers are named with a trailing unq_cn where n is the number
of the consumer. Similarly, buffers with multiple producers are named with a trailing
unq_cn where n is the number of the producer. From Figure 8.1, it can be seen that
variable mode has five assignment statements writing values to it. Therefore, there are
five buffers corresponding to each producer-consumer pair, as can be seen in Figure 8.2.

The switch statements in the NLP are transformed to if − else statements in the
generated tasks. It can be seen that the maximum level of nested if statements is
two. Therefore, we expect the number of states to be high, because unconditional
synchronization has to be performed in every branch. For a task present in the ACQ
mode in the complete description of the DVB-T decoder, 35 states are obtained. This
highlights the difficulty in manually creating an FSM to avoid deadlock.

64

Case Study

ta
sk
_
d
fe
_
is
r

ta
sk
_
e
x
tr
a
ct
_
b
o
u
n
d
a
ry

ta
sk
6
d
v
b
tt

ta
sk
4
d
v
b
tt

ta
sk
_
a
cq
_
m
e
a
su
re

ta
sk
9
d
v
b
tt

ta
sk
2
d
v
b
tt

ta
sk
_
cf
o
_
sy
n
c_
d
e
co
d
e

ta
sk
0
d
v
b
tt

ta
sk
8
d
v
b
tt

in
it
0
d
v
b
tt

d
fe
_
o
u
t_
u
n
q
_
C
1

d
e
c
o
d
e
_
fa
il
e
d
_
u
n
q
_
c0

d
fe
_
o
u
t_
u
n
q
_
C
2

fr
a
m
e
_
b
o
u
n
d
a
ry

d
fe
_
o
u
t_
u
n
q
_
C
0

d
e
co
d
e
_
fa
il
e
d
_
u
n
q
_
c1

m
o
d
e
_
u
n
q
_
p
0

x
_
u
n
q
_
c2

m
o
d
e
_
u
n
q
_
p
4

x_
u
n
q
_
c5

x
_
u
n
q
_
c0

x
_
u
n
q
_
c3

x
_
u
n
q
_
c1

x
_
u
n
q
_
c6

x
_
u
n
q
_
c4

m
o
d
e
_
u
n
q
_
p
3

a
cq
_
c
o
m
p
le
te
_
u
n
q
_
c
1

a
cq
_
co
m
p
le
te
_
u
n
q
_
c2

a
cq
_
c
o
m
p
le
te
_
u
n
q
_
c
0

m
o
d
e
_
u
n
q
_
p
2

m
o
d
e
_
u
n
q
_
p
1

It
e
ra
ti
o
n
+
1

It
e
ra
ti
o
n
+
1

It
e
ra
ti
o
n
+
1

It
e
ra
ti
o
n
+
1

F
ig

ur
e

8.
2:

Ta
sk
-G

ra
ph

65

Case Study

Reducing Number of States

The number of states can be reduced by moving acquires out of if and corresponding
else blocks. In order to perform unconditional synchronization, an acquire statement is
also placed in the block that does not read or write to a buffer which is being accessed
in the other block. If these if − else blocks do not contain loops, then the acquire can
be moved just before the if − else block and the corresponding release can be moved
after the if − else block. This reduces the number of acquires, thereby reducing the
number of states.

By combining acquire statements in the tasks, the number of states can be reduced. For
moving an acquire over a release, the corresponding HSDF model of the task should be
checked, to see if there is path from the acquire actor to the release actor through any
other task. This can be done by path-finding algorithms such as depth-first search and
breadth-first search. Currently, this has been performed manually, but it is very tedious
and error-prone. The complexity increases with the increase in the number of tasks as
more paths have to be traversed. It is considered as future work to automatically create
a dataflow model, containing acquire, release and NSS actors, such that the existence
of these paths can be checked by applying the above path-finding algorithms.

Figure 8.3: Reduction in States

The graph in Figure 8.3 shows the reduction in states in different tasks in the DVB-T
decoder. There is a reduction of 60% in the total number of states present in all the
tasks. There is a trade-off with the throughput, because acquires have been moved
above some of the NSS. Therefore, these NSS have to wait until all the acquires that
were moved above it have suceeded. In order to exploit this trade-off, the reduction in
throughput should be analyzed. It is considered as future work to measure the reduction
in throughput, and reduce the states accordingly, such that throughput constraints can
be met.

Reducing Task-State

By moving acquires or combining acquires, the task-state can be reduced. This can
be seen in the task dfe_isr, shown in Figure 8.4. It can be seen that since dfe_out is
required across multiple states, its value has to be stored in the task-state. By moving

66

Case Study

the acquires or by combining acquires, these statements accessing dfe_out can be
moved together, so that this variable does not have to be stored in the task-state. The
task obtained on moving acquires can be seen in Figure 8.5. Alternatively, a pointer to
dfe_out can be stored in task-state, in which case the task-state can still be reduced
without combining or moving acquires. Combining acquires has an extra overhead
compared to moving acquires. This happens because in the case of combining acquires,
even if one check fails, even the successful checks have be to repeated again. This is
however, not the case with moving acquires. When moving or combining acquires, there
could be a decrease in throughput. This is because acquires have been moved above
some of the NSS. Therefore, these NSS have to wait until all the acquires that were
moved above it have succeeded, thereby causing a possible reduction in throughput. The
throughput would decrease if the maximum cycle mean (MCM) in the corresponding
HSDF model increases by moving or combining acquires. The trade-off can between
throughput and the reduction in task-state should be exploited, such that throughput
constraints can be met. This is considered as future work.

ProgressCode_t task_dfe_isr (void) {

i f (pState−>s t a t e == 0) {
acqSpace (dfe_out_unq_c1) ;
pState−>dfe_out = d f e _ i s r () ;
pState−>buffer_dfe_out_unq_c2 [pState−>c2WriteOf f se t] = pState−>dfe_out ;
re lData (dfe_out_unq_c1) ;
pState−>s t a t e = pState−>s t a t e + 1 ;

}
i f (pState−>s t a t e == 1) {

acqSpace (dfe_out_unq_c2) ;
pState−>buffer_dfe_out_unq_c1 [pState−>c1WriteOf f se t] = pState−>dfe_out ;
re lData (dfe_out_unq_c2) ;
pState−>s t a t e = pState−>s t a t e + 1 ;

}
i f (pState−>s t a t e == 2) {

acqSpace (dfe_out_unq_c3) ;
pState−>buffer_dfe_out_unq_c0 [pState−>c0WriteOf f se t] = pState−>dfe_out ;
re lData (dfe_out_unq_c3) ;
pState−>s t a t e = pState−>s t a t e + 1 ;

}

}

Figure 8.4: Task dfe_isr

It can be seen that in the case of multiple consumers, there is a reduction of x bytes in
the task-state of the producing task, where x is the size of the data being communicated
to the multiple consumers. In the case of multiple producers, there is a reduction of
4.(n − 2) bytes in the consumer task, where the value four corresponds to the size of
the pointer and the n corresponds to the number of multiple producers. In the case
of multiple producers, the consumer task identifies which producer wrote to the buffer
by checking for valid/NULL pointers. These pointers have to be saved across the
states. By moving or combining acquires, these pointers do not have to be saved in the
task-state.

Reducing Synchronization Overhead

The synchronization overhead can be reduced by a reduction in the number of
synchronization statements that acquire data or space in a buffer. By reordering
acquires, some of these synchronization statements may become redundant. A selected

67

Case Study

ProgressCode_t task_dfe_isr (void) {

i f (pState−>s t a t e == 0) {
acqSpace (dfe_out_unq_c1) ;
pState−>s t a t e = pState−>s t a t e + 1 ;

}
i f (pState−>s t a t e == 1) {

acqSpace (dfe_out_unq_c2) ;
pState−>s t a t e = pState−>s t a t e + 1 ;

}
i f (pState−>s t a t e == 2) {

acqSpace (dfe_out_unq_c3) ;
dfe_out = d f e _ i s r () ;
pState−>buffer_dfe_out_unq_c2 [pState−>c2WriteOf f se t] = dfe_out ;
re lData (dfe_out_unq_c1) ;
pState−>buffer_dfe_out_unq_c1 [pState−>c1WriteOf f se t] = dfe_out ;
re lData (dfe_out_unq_c2) ;
pState−>buffer_dfe_out_unq_c0 [pState−>c0WriteOf f se t] = dfe_out ;
re lData (dfe_out_unq_c3) ;
pState−>s t a t e = pState−>s t a t e + 1 ;

}
}

Figure 8.5: Task dfe_isr after moving acquires

portion of the the task graph shown in Figure 8.2 is shown in Figure 8.6. The
corresponding HSDF model showing only the actors of interest is shown in Figure 8.7.
This graph is obtained after reordering the acquires AcqD frame_b and AcqD
dfe_out_c2 in the task cfo_sync_decode. After reordering, it can be seen that there
are two paths from RelD dfe_out_c2 in the dfe_isr task, to AcqD dfe_out_c2 in
the task cfo_sync_decode. The shorter path shown in orange between the two actors
is redundant as the longer path, which is shown in maroon, enforces the required
dependency between the two actors. Such redundant synchronization edges can be
found by the algorithm specified in [32].

An acquireData function can be split into two functions, acquireDataCheck and
UpdateData, as mentioned in section 7.1.2. The removal of this redundant
synchronization edge, means that the corresponding acquireDataCheck is not
required, and only UpdateData corresponding to the update of the counter variables
has to be done.

cfo_sync_decode

dfe_out_unq_c2

dfe_out_unq_c1 frame_boundary

dfe_isr

extract_boundary

Figure 8.6: Reduction in Synchronization Overhead

An HSDF model corresponding to the task graph given in Figure 8.2 contains 21
acquireData synchronization edges. Out of these, six cases have been identified
manually, where the acquireData synchronization edges may be redundant and can be
removed. Thereby it results in a 30% reduction in the number of acquireData

68

Case Study

AcqS

dfe_out_c2

RelD

dfe_out_c2

AcqS

dfe_out_c1

RelD

dfe_out_c1

AcqS

frame_b

AcqD

dfe_out_c1

RelS

dfe_out_c2

RelD

frame_b

AcqD

frame_b

AcqD

dfe_out_c2

RelS

dfe_out_c2

RelS

frame_b

dfe_isr extract_boundary cfo_sync_decode

Figure 8.7: Reduction in Synchronization Overhead

synchronization statements. There may be more redundant synchronization
statements that are obtained by reordering acquires. However, it is difficult to
manually identify them by traversing the HSDF graph.

Execution on MARS

The DVB-T decoder expressed as a sequential NLP in OIL, is used as input to Omphale.
A parallelized task graph is created, one for the MARS simulator and the other for the
MARS platform. The parallelized task graph is combined with an Application file,
which creates SoD buffers corresponding to the buffers obtained after parallelization,
and connects the ports of these buffers using the SoD API. An executable is created,
which is then executed on the NXP MARS multiprocessor platform. A fragment of
the output obtained on this execution is shown here for reference in Figure 8.8. The
figure shows the transition of the states in the tasks in the DVB-T decoder. This is
advantageous for debugging errors as it is possible to see the current state of each of
the tasks, and this would ease the debugging effort.

69

Case Study

Figure 8.8: DVB-T Decoder on MARS - Console Output

70

Chapter 9

Conclusion

The automatic parallelization tool Omphale, generates parallel tasks from a sequential
description of a streaming application, along with the required communication and
synchronization statements. In this thesis, techniques are introduced in Omphale, to
generate parallel code for a shared-memory multiprocessor platform which uses a non-
preemptive scheduler and a communication library with buffers supporting only a single
producer and consumer.

In streaming applications, we often encounter if and switch statements which contain
multiple assignment statements in different branches, writing to the same variable, based
on the condition. After parallelization, we obtain a buffer with multiple producers,
corresponding to this variable. There could also be variables which are read more than
once. These would correspond to buffers which have multiple consumers. However,
the used communication library, SoD, only supports buffers with a single producer and
consumer. In this thesis, we introduced techniques to support buffers with multiple
producers and consumers, such that they can use an underlying communication library
with buffers, supporting only a single producer and consumer. Moreover, in the case of
multiple producers, we need to identify which of the multiple producers has written a
value. A technique is introduced using valid/NULL pointers for shared memory systems
and a data valid boolean for both shared and distributed memory systems. In the case
of multiple producers, an alternative is to combine the statements writing to the same
variable into a single task. However, this limits the available parallelism.

A sequential NLP can also contain arrays in which the order of accessing its elements
is different when reading and writing to it. On parallelization, the array corresponds
to a circular buffer with producer tasks writing data to it, in a different order than
the order in which the consumer tasks read data. This leads to the reordering problem.
Approaches using a FIFO buffer have the overhead of a reordering task and a reordering
memory. A sliding windows buffer supports out-of-order access and has windows inside
the buffer within with data can be read or written into. We present a modified sliding
windows implementation to account for the lack of head pointers of the windows in
the buffer administration, by generating corresponding counters, which are stored in
the task-state. A wrapper synchronization library is created with blocking acquire and
non-blocking release functions, which use the SoD API functions.

71

Conclusion

When a non-preemptive scheduler is used with blocking synchronization calls, it can
lead to incorrect functional behavior of the application and even deadlock, if the state
of the task is not saved. A mechanism is developed to save the state of the task by
generating a finite state machine (FSM) inside a task. The extracted tasks generated
by Omphale are part of a task graph and each task is organized as a tree containing
the statements in a task. The tree contains different types of statements such as while
loops, for loops, if statements, assignments, functions etc. The FSM is generated by
traversing recursively through the old tree, and creating a new tree of task statements
such that the state information is included. The advantage of generating the FSMs in
an automatic parallelization tool is that the manual time-consuming and error-prone
step of adding states can be avoided.

The generation of states inside a task also requires that variables that are read and
written across states are saved in the task-state, such that their values are not lost.
This occurs especially in the case when there are buffers with multiple producers or
consumers. The size of the task-state is reduced by moving acquires together, such
that the variable that is used across multiple states can now be read and written in a
single state. The number of states is reduced by combining acquires together, such
that all the corresponding checks for space or data in the buffer are done together.
Only if these checks succeed, the corresponding windows are moved forward. However,
this may result in a decrease in throughput, thereby creating a trade-off between
performance and memory usage. Due to the fine-grained synchronization present in
tasks, the synchronization overhead can become dominant. A technique is introduced
to reduce the synchronization overhead in acquiring data or space in a buffer, by
reordering acquires in a task. An attempt at a formal proof showing that the
transformations involving moving or reordering acquires preserves deadlock-freedom,
is presented.

A sequential NLP of a simplified DVB-T decoder is used as a case-study. It is shown
that the extracted tasks can be executed on the NXP MARS multiprocessor platform.
The number of states and the task-state is reduced by applying the optimizations of
moving acquires and combining acquires. By moving acquire statements, the number
of states in the tasks of the DVB-T decoder are reduced by 60%. The size of the task-
state is reduced by moving or combining acquires. The synchronization overhead in
acquiring data in buffers is reduced by 30% by reordering the acquire statements in
tasks.

Future Work

The optimizations proposed required the creation of an HSDF model with acquire,
release and NSS actors, from the task graph of the DVB-T decoder. This was done
manually and it is tedious and error prone. If the task graph contains a large number
of tasks, the corresponding HSDF model would be complex and difficult to create
manually. Therefore, it is essential that an HSDF model for a task graph is generated
from Omphale. Once an HSDF model has been generated, the proposed optimizations
can be implemented in Omphale. An HSDF model cannot be created if a task
contains a conditional while loop. An interesting future work is to see how to
overcome this limitation such that the optimizations can also be applied to tasks
containing such loops.

In order to reduce the size of the task-state, acquires can be moved or combined. The
number of states in FSMs in tasks can also be reduced by moving acquires. When

72

Conclusion

moving or combining acquires, there could be a decrease in throughput because the
non-synchronization statements have to wait until all the moved or combined acquires
have succeeded. This results in a trade-off between reduction in memory usage and
throughput. Similarly there is a trade-off between the reduction in states and
throughput. These trade-offs can be exploited and the reduction in task-state and
number of states in FSMs should be done such that throughput constraints can be
met. This is considered as future work.

For moving an acquire over a release in a task, the corresponding HSDF model of the
task graph should be checked, to see if there is a path from the acquire actor to the
release actor through actors not belonging to the same task. Currently, the existence of
such paths has been performed manually, but it is very tedious and error-prone. Such
paths can be found by path-finding algorithms, if a corresponding HSDF model of the
task graph is generated.

Currently, the redundant synchronization edges in the corresponding HSDF model of
a task graph, have been found by traversing the HSDF model manually. If an HSDF
model is generated, then an algorithm [32] to find synchronization edges can be applied,
to find more redundant edges by reordering acquires.

73

Bibliography

[1] E.A. Lee and T.M. Parks. Dataflow process networks. Proceedings of the IEEE,
83(5):773–801, 1995.

[2] G.J.M. Smit, A.B.J. Kokkeler, P.T. Wolkotte, and M.D. Van De Burgwal.
Multi-core architectures and streaming applications. In Proceedings of the 2008
International Workshop on System Level Interconnect Prediction, pages 35–42.
ACM, 2008.

[3] T. Bijlsma. Automatic parallelization of nested loop programs for non-manifest
real-time stream processing applications. Phd Thesis, University of Twente, 2011.

[4] Y. Jiang, W. Xu, and C. Grassmann. Implementing a dvb-t/h receiver on a
software-defined radio platform. Intl. J. of Digital Multimedia Broadcasting, 2009.

[5] A.A. Jerraya, O. Franza, M. Levy, M. Nakaya, P. Paulin, U. Ramacher, D. Talla,
and W. Wolf. Roundtable: envisioning the future for multiprocessor soc. Design
& Test of Computers, IEEE, 24(2):174–183, 2007.

[6] S. Sriram and S.S. Bhattacharyya. Embedded multiprocessors: Scheduling and
synchronization, volume 3. CRC, 2009.

[7] Y. Iosifidis, A. Mallik, S. Mamagkakis, E. De Greef, A. Bartzas, D. Soudris,
and F. Catthoor. A framework for automatic parallelization, static and dynamic
memory optimization in mpsoc platforms. In Proceedings of the 47th Design
Automation Conference, pages 549–554. ACM, 2010.

[8] M.H. Wiggers, M.J.G. Bekooij, and G.J.M. Smit. Buffer capacity computation
for throughput constrained streaming applications with data-dependent inter-
task communication. In Real-Time and Embedded Technology and Applications
Symposium, 2008. RTAS’08. IEEE, pages 183–194. IEEE, 2008.

[9] L.G. Tesler and HJ Enea. A language design for concurrent processes. In
Proceedings of the April 30–May 2, 1968, Spring Joint Computer Conference, pages
403–408. ACM, 1968.

[10] B. Alpern, M.N. Wegman, and F.K. Zadeck. Detecting equality of variables in
programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 1–11. ACM, 1988.

75

Bibliography Bibliography

[11] P. Vanbroekhoven, G. Janssens, M. Bruynooghe, and F. Catthoor. Transformation
to dynamic single assignment using a simple data flow analysis. Programming
Languages and Systems, pages 330–346, 2005.

[12] S.J. Geuns, M.J.G. Bekooij, T. Bijlsma, and H. Corporaal. Parallelization of
while loops in nested loop programs for shared-memory multiprocessor systems.
In Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2011.

[13] S.J. Geuns. Parallelization of While-Loops in Nested Loop Programs for Real-time
Multiprocessor Systems. Master Thesis, Eindhoven University of Technology, 2010.

[14] Software defined radio. http://en.wikipedia.org/wiki/Software-defined_
radio. Accessed: 10/09/2012.

[15] K. Van Berkel, F. Heinle, P.P.E. Meuwissen, K. Moerman, and M. Weiss. Vector
processing as an enabler for software-defined radio in handheld devices. EURASIP
Journal on Applied Signal Processing, 2005:2613–2625, 2005.

[16] W. Tong. Channel Decoder Architecture for Mobile Applications. Master Thesis,
Eindhoven University of Technology, 2009.

[17] A. Turjan, B. Kienhuis, and E. Deprettere. Realizations of the extended
linearization model. Domain-specific processors: systems, architectures, modeling,
and simulation, 2002.

[18] K. Huang, D. Grunert, and L. Thiele. Windowed fifos for fpga-based multiprocessor
systems. In Application-specific Systems, Architectures and Processors, 2007.
ASAP. IEEE International Conference on, pages 36–41. IEEE, 2007.

[19] T. Bijlsma, M. Bekooij, P. Jansen, and G. Smit. Communication between nested
loop programs via circular buffers in an embedded multiprocessor system. In
Proceedings of the 11th International Workshop on Software & Compilers for
Embedded Systems, pages 33–42. ACM, 2008.

[20] T. Bijlsma, M.J.G. Bekooij, and G.J.M. Smit. Inter-task communication via
overlapping read and write windows for deadlock-free execution of cyclic task
graphs. In Systems, Architectures, Modeling, and Simulation, 2009. SAMOS’09.
International Symposium on, pages 140–148. IEEE, 2009.

[21] J.W. van den Brand and M. Bekooij. Streaming consistency: a model for efficient
mpsoc design. In Digital System Design Architectures, Methods and Tools, 2007.
DSD 2007. 10th Euromicro Conference on, pages 27–34. IEEE, 2007.

[22] A. Turjan, B. Kienhuis, and E. Deprettere. Translating affine nested-loop programs
to process networks. In Proceedings of the 2004 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, pages 220–229.
ACM, 2004.

[23] O.P. Gangwal, A. Nieuwland, and P. Lippens. A scalable and flexible data
synchronization scheme for embedded hardware-software shared-memory systems.
In Proceedings of the 14th International Symposium on Systems Synthesis. ACM,
2001.

76

Bibliography

[24] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G. Essink.
Design and programming of embedded multiprocessors: an interface-centric
approach. In Proceedings of the 2nd IEEE/ACM/IFIP international conference on
Hardware/Software Codesign and System Synthesis, pages 206–217. ACM, 2004.

[25] J. Cockx, K. Denolf, B. Vanhoof, and R. Stahl. Sprint: a tool to generate concurrent
transaction-level models from sequential code. EURASIP Journal on Applied Signal
Processing, 2007(1):213–213, 2007.

[26] J. Ceng, J. Castrillón, W. Sheng, H. Scharwächter, R. Leupers, G. Ascheid,
H. Meyr, T. Isshiki, and H. Kunieda. Maps: an integrated framework for mpsoc
application parallelization. In Proceedings of the 45th annual Design Automation
Conference, pages 754–759. ACM, 2008.

[27] K. Jeffay, D.F. Stanat, and C.U. Martel. On non-preemptive scheduling of period
and sporadic tasks. In Real-Time Systems Symposium, 1991. Proceedings., Twelfth,
pages 129–139. IEEE, 1991.

[28] W. Li, K. Kavi, and R. Akl. A non-preemptive scheduling algorithm for soft real-
time systems. Computers & Electrical Engineering, 33(1):12–29, 2007.

[29] B.P. Dave and N.K. Jha. Casper: concurrent hardware-software co-synthesis
of hard real-time aperiodic and periodic specifications of embedded system
architectures. In Proceedings of the Conference on Design, Automation and Test
in Europe, pages 118–124. IEEE Computer Society, 1998.

[30] J.P.H.M. Hausmans, M.J.G. Bekooij, and H. Corporaal. Resynchronization of
dataflow graphs. In Proc. DeAutomation and Ts n Europe Conference and
Exhibition (DATE), 2011.

[31] S.S. Bhattacharyya, S. Sriram, and E.A. Lee. Self-timed resynchronization: A post-
optimization for static multiprocessor schedules. In Parallel Processing Symposium,
1996., Proceedings of IPPS’96, The 10th International, pages 199–205. IEEE, 1996.

[32] S.S. Bhattacharyya, S. Sriram, and E.A. Lee. Minimizing synchronization overhead
in statically scheduled multiprocessor systems. In Application Specific Array
Processors, 1995. Proceedings., International Conference on, pages 298–309. IEEE,
1995.

77

