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Abstract

HID lamps are efficient lamps that produce light from a compact source. In this work the energy
balance of HID lamps is studied both experimentally and theoretically. For the experiments an
integrating sphere setup was used. The experimentally determined energy balance and spectra
are compared with predictions of a simulation model. The four investigated lamps all contain
mercury. Three lamps also contain one metal halide additive. The additives are sodium, indium
and thallium iodide.

The integrating sphere setup has been calibrated for measurements ranging from 380 nm to
10µm. Such a large calibrated range enables the construction of an almost complete energy
balance. Being able to measure and analyze broadband spectra will help to improve lamps. The
accuracy of the calibration of the visible and infrared is estimated to be 5%.

A platinum ribbon was used as a calibration source for the infrared. The spectral power was
calculated theoretically. The infrared measurements require a correction for thermal background
radiation. Therefore temperature regulation systems were installed. A distinguishment between
thermal radiation of the discharge vessel and plasma radiation has been made. The energy flow
inside the discharge vessel was further investigated by applying Jack Koedam theory to estimate
the conduction losses and the amount of radiation which is absorbed in the outer mantle of the
plasma.

A one dimensional model for an infinitely long lamp was made which is capable of providing
a good qualitative description of the energy balance and the spectra. For the model calculations
LTE is assumed. The energy transported as radiation is calculated by a method called raytracing.
In this method the evolution of the spectral radiance is followed along multiple paths through
the discharge. The most important input parameters for the model are the broadening constants.
These constants were determined by fitting the predicted spectrum with a measured spectrum
from a reference lamp. Using these broadening constants quantitative predictions were made of
the amount of visible radiation for the 250W mercury calibration lamp operated at a wide range
of input powers.
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Chapter 1

General introduction

HID lamps are efficient light sources that are used in various indoor and outdoor applications.
These lamps produce light from a compact source. This makes them ideal for example in street
lighting, automotive lighting, retail lighting and lighting in projection systems. This research will
focus on metal halide lamps which are part of the HID lamp family.

1.1 High intensity discharge lamps
By applying a potential a gas can break down electrically and reach a conductive state. When
this happens a so-called discharge arc is formed. In such an arc electrons are accelerated by the
potential. Collisions with the gas transfer energy from the electrons to the gas. The electrons
orbiting a nucleus can be excited by collisions. Radiation is produced when these excited electrons
decay to a state with a lower energy. Lamps that produce radiation via this mechanism are called
discharge lamps.

The first discharge lamp was a carbon arc lamp built in 1850 [1] by Léon Foucault. Although
this lamp emitted light from the discharge arc most of the light still originated from the hot
anode as thermal radiation. In 1860 mercury was added to the discharge by J.T. Way [1]. By
adding mercury the discharge became the primary source of radiation. Mercury was added to the
discharge for its high vapor pressure at room temperature and the ability to make a substantial
contribution to visible radiation. Around 1900 the first low pressure mercury lamps were built. At
that time all lamps were incandescent lamps. Those lamps are resistively heated lamps that emit
thermal radiation. Mercury lamps were superior to the incandescent lamps in terms of efficiency
since incandescent lamps mostly emit in the infrared. Despite their higher efficiency these mercury
lamps were no success due to their bad color rendering. In 1906 Guercke [1] already noticed that
color rendering could be improved by adding some metals to the mercury discharge which can
emit visible radiation. One of the problems of those lamps was the very short lifetime. The quartz
glass was not resistant to the metal. Getting these solid metals into the discharge was another
problem.

Improvements in other areas shifted the focus of research [1]: The discovery of sodium resistant
glass in 1920 eventually resulted in the development of low and high pressure sodium lamps
and the usage of fluorescent materials improved the color rendering and efficiency of mercury
lamps. Decades later the interest in metal additives was given a boost when research turned to
metal-halogen compounds. These compounds have a higher vapour pressure in comparison with
the pure metals. In the centre of the discharge these compounds dissociate into their atomic
constituents making the metal atoms available for excitation by electron collisions. The ability to
form molecular compounds in the lower temperature region near the discharge wall also decreased
the demands for the wall material since corrosion by the pure metals was reduced. In 1961 the
first metal-halide lamp was patented [1]. Ever since, metal halide lamps have been used in various
applications. Domestic applications however were no success in the early years. The main reasons
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1.2. METAL HALIDE LAMP CHAPTER 1. GENERAL INTRODUCTION
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Figure 1.2.1: The CDM lamp has a cylindrical discharge tube which contains all of the metal-
halide additives and the buffer gas. This tube is mounted inside the outer bulb with a conducting
metallic framework. The outer bulb contains a low pressure environment. A getter is present in
the outer bulb to neutralize all contaminations that may be harmfull for the discharge tube.

were the high costs and the lack of the ability to turn the lamp on again shortly after being turned
off.

In the 80’s and 90’s research focussed on ceramic discharge tubes. In 1995 Philips launched
its CDM (ceramic discharge metal-halide) lamp series. This series covers a wide range of lighting
needs by using possible additives like sodium, thallium, dysprosium, holmium, thulium, calcium,
cerium and indium halides. Other companies like General electric and Osram now also produce
ceramic metal halide lamps. These lamps still contain mercury. The growing interest in sustainable
engineering currently motivates the lighting industry to invest in research for mercury free metal
halide lamps.

1.2 Metal halide lamp
In Figure 1.2.1 an image of a CDM lamp is shown. A few components have been named.

• The discharge tube contains the metal halide additives which are responsible for the pro-
duction of light. The tube is made from PCA (polycrystalline aluminum) to be able to
withstand the high temperatures.

• The electrode is generally made from tungsten. The feedthrough contains niobium and
molybdenum. The coefficient of thermal expansion must match with the expansion coefficient
of PCA. The potential between the electrodes is dependent on the gas pressure. The gasses
that have a large contribution to the resistance of the plasma are called buffer gasses.

• The discharge tube is contained within the outer bulb in a low pressure atmosphere. These
conditions are necessary to avoid corrosion of PCA. Some oxygen is still present within the
bulb. The getter is a highly reactive material which neutralises the remaining oxygen.

6
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1.3 Start up phase
In the lamp’s initial condition mercury and the metal-halide additives are present on the wall
in their liquid and solid forms. The gas phase in the discharge tube consists of a starter gas.
Generally these are one or more noble gases like Xenon or Argon. Sometimes a small amount of a
radioactive species is added to increase the number of free electrons in the gas. Antennas can also
help ignite the lamp [10]. The lamp is operated by an electronic device called a driver. The driver
attempts to ignite the lamp by applying high voltage pulses. These pulses accelerate the free
electrons. The free electrons undergo elastic and inelastic collisions with the starter gas. These
collisions produce more electrons and heat the gas. Eventually the gas will become conductive.

The heated starter gas transfers its energy to the wall via thermal conduction. In this phase
part of the input power is used to evaporate mercury and the metal-halide additives. Mercury
will be fully evaporated while the additives will be present in the gas phase in the discharge as
well as in the liquid and solid phase on the wall. This pool of salts on the wall is located at the
coldest spot of the discharge vessel, called the coldspot. Its temperature determines how much
of the additives will be present in the discharge. The coldspot temperature therefore has a large
impact on the radiation output of the lamp.

1.4 Steady state phase
The steady state of the lamp is reached after a few minutes of operation. The energy received by
the heavy particles due to collisions with electrons is balanced with the conduction, convection
and radiation losses.

The conduction losses are partly caused by transfer of energy by collisions. The remaining
part is caused by transport of chemical energy, called reactive conductivity.

Convection transports energy and particles due to changing densities. In specific conditions the
combination of convection with radial diffusion can cause an axial segregation of species.
More details are given in section 1.5.

Radiation can be separated in line radiation and continuum radiation. Line radiation is emitted
when intra atomic or intra molecular transitions occur. Intra atomic transitions are elec-
tronic transitions. Intra molecular transitions can be electronic, rotational and vibrational
transitions. In molecules every electronic state contains multiple rotational states and ev-
ery rotational state contains multiple vibrational states. The large number of rotational
and vibrational states can be approximated with a continuous distribution of energy states.
The spectrum of a molecule is therefore often observed as continuous radiation. ’Real’
continous radiation is caused by multi particle interactions. For example bremsstrahlung.
bremsstrahlung is caused by the deceleration of electrons. The energy of the electron de-
creases and the excess energy is radiated as bremsstrahlung.

1.5 Segregation
In specific conditions the combination of convection and radial diffusion results in an axial seg-
regation of species. The metal halide additives are not distributed homogeneously inside the
discharge tube. As a result the radiation output is not constant along the axis of the lamp. This
is undesirable. Axial segregation is investigated by examining convection and radial diffusion.

Radial segregation is driven by the density gradients of the species. In the absence of convection
in the outer part of the discharge the diffusive flux of atoms directed outward is balanced
by the molecules diffusing inwards. The diffusion of atoms is faster than the diffusion of
molecules. The flux can only be balanced if the molecular partial pressure is larger than the
atomic pressure. In the central part of the discharge the ionic flux outward is larger than the
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1.5. SEGREGATION CHAPTER 1. GENERAL INTRODUCTION

Figure 1.5.1: Fischer curve for a lamp containing Sn, I and Hg taken from Fischer [23]. The
segregation is minimized in the diffusion limit at very low pressures and in the convection limit at
very high pressures.

atomic inward flux due to ambipolar diffusion. As a consequence the atomic partial pressure
is larger than the ionic partial pressure.

Axial segregation is driven by the convective flow. The species in the bottom of the lamp
are heated on the axis of the discharge where the power input is high. Their temperature
increases and therefore their density decreases. Due to the decreased density the species
rise along the axis. Near the wall the opposite effect occurs. The species lose energy by
conduction to the wall and will descent back to the bottom. When radial diffusion can not
be neglected the radiating species reach the downward flow before they reach the top of the
lamp. In these conditions the amount of radiating species in the top is much lower than in
the bottom. These density gradients along the axis can create a non homogeneous luminous
output.

A well mixed lamp has a small axial temperature gradient and produces light homogeneously.
There are two regimes where such a mixed lamp exists. The first regime contains lamps with
small convective flows. These flows are not strong enough to cause an axial temperature gradient.
Those lamps are dominated by radial diffusion. The second regime contains lamps with strong
convective flows which provide a good axial mixing. The intermediate regime is axially segregated.

Fischer [23] investigated the vertical segregation as a function of pressure. Fischer expressed
the amount of segregation in a segregation parameter λ. By varying the pressure he could change
the transport from a diffusion dominated to a convection dominated system as shown in figure
1.5.1. For low pressures Fischer approximated the reduced segregation parameter as a function of
pressure p and lamp radius R by λ ∼ p2R3. For high pressures the parameter is approximated by
λ ∼

(
p2R3)−1.

The ratio of the convective and diffusive fluxes can be expressed by the Peclet number. Beks
[8] used Vz

L and D
R2 as a measure of the convective and diffusive rate respectively with V z the axial

bulk velocity on the axis halfway between the electrodes, L the inner length of the discharge tube,
D the effective diffusion coefficient of an additive and R the inner radius of the discharge tube.
He defined the Peclet number for HID lamps as

8
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Pe = VzR
2

DL
(1.1)

and concluded that axial segregation was strongest when the Peclet number was equal to one.
Typical metal halide lamps are operated with conditions in the intermediate regime close to this
segregation maximum.

1.6 Energy balance
The energy balance is a useful tool for lamp designers. It can be used to learn about the energy
flows in the discharge. This knowlegde can then be applied for further increases in efficiency and
color rendering. Current measurements generally only focus on the visible radiation. However,
even for the efficient HID lamps more than half of the input power ends up as IR radiation.
Therefore it is important to know where this radiation is lost and what processes are causing
these losses. Only a few studies [2, 3, 4] exist where parts of the infrared have been measured.
Not one of these studies contains spectrally resolved absolutely calibrated spectra above 2.5 µm
measured with an integrating sphere. Measuring further into the infrared is getting increasingly
more difficult due to the increasing influence of thermal radiation originating from the laboratory
environment.

The input power of the lamp is distributed among the arc and the electrodes. The resistivity of
the electrodes and the plasma determine how this power is distributed exactly. The power going
into the plasma is partially converted to radiation. The remaining energy is lost non-radiatively.
These losses are given by the heat flux to the wall. Thus the heat conductivity and the local
temperature gradient near the wall determine this heat flux.

The ultraviolet discharge radiation mainly originates from the hot centre of the arc. In a
commercial metal halide lamp the ultraviolet output is small due to reabsorption of this radiation
and a low transmittance of the outer bulb. The visible and infrared radiation is emitted by atomic
and molecular species. This radiation is emitted from the slightly cooler parts of the discharge arc
as well. Part of the IR radiation is also caused by electron-ion and electron-atom bremsstrahlung
which mainly originates from the centre of the arc.

The ceramic wall is heated due to absorption of parts of the UV, visible and IR discharge
radiation. The wall is heated as well by the thermal radiation from the electrodes and the con-
ductive heat flux from the plasma. The wall will mainly lose its energy as thermal radiation.
The remaining energy is lost by conduction to the metallic structure holding the ceramic tube.
Convection losses are neglected since the discharge tube is put in a low pressure environment. A
schematic form of such an energy balance is given in Figure 1.6.1.

An energy balance can be determined with an integrating sphere. An integrating sphere is a
sphere that can be used to quantify the spatially and angularly integrated spectral radiance. A
radiative source can be mounted inside the sphere. The radiation of the source is reflected multiple
times by the reflective surface of the sphere. A small hole is present in the sphere which allows
some of the radiation to escape. The sphere can be calibrated by comparing the radiation from
the sphere with the radiation from a reference source.

A calibrated setup can be used to determine the ultraviolet, visible and infrared contributions
directly. By using time resolved measurements after switching off the lamp it is possible to
distinguish between plasma discharge radiation and thermal radiation. The plasma radiation will
disappear much faster than the slowly decaying thermal radiation. The thermal radiation can
be determined by extrapolating the measured radiation back to the moment of switching off the
lamp.

The non-radiative losses can be estimated according to Elenbaas [6] and Jack and Koedam [7].
They have shown that in general a linear relation exists between applied power and total radiated
power. Lamps are measured at different powers. The radiated power can be plotted as a function
of input power. With an extrapolation of this curve to zero discharge radiation an estimate can
be made of the the conduction losses.

9



1.7. PROJECT GOALS CHAPTER 1. GENERAL INTRODUCTION

losses
Electrode

Input Power

Power in discharge arc

Discharge radiation

IR radiation+conduction

Thermal radiation Conduction

Non-
Radiative

losses

UV
discharge
radiation

IR
discharge
radiation

Visible 
discharge 
radiation

UV 
discharge 
radiation

IR discharge 
radiation

Visible 
discharge 
radiation

Figure 1.6.1: Example of an energy balance. The input power is distributed among the electrodes
and the discharge arc. The discharge loses its energy as radiation and by non-radiative processes
like convection and conduction. The discharge radiation can be divided in visible, ultraviolet and
infrared radiation. Part of this radiation is absorbed by the tube. The absorption of visible radiation
is neglected here. The energy absorbed by the wall of the tube is lost as thermal radiation and as
conduction to the metallic framework holding the tube.

1.7 Project goals
Ceramic metal halide lamps (CMH) are the focus of this research. Commercial CMH lamps contain
several metal-halide additives. Four lamps are discussed here which contain a simpler mixture of
additives. The first lamp is the pure mercury lamp. Besides mercury the other lamps only contain
one metal-halide additive. These additives are sodium iodide, thallium iodide and indium iodide.
The goal of this project is to determine the complete energy balance of these lamps. Such an
energy balance is used to aid in the development of better lamps.

A simulation model is made for these four lamps. This is a one-dimensional self-consistent
model. The model accountd for ohmic heating, conduction and radiation losses. Raytracing
according to Beks [8] and van der Heijden [9] accounts for the calculation of the radiative transport.
The simulated energy balances are compared to the experimentally determined energy balances
to verify the model’s accuracy.

The experimental part of this work includes the calibration of an integrating sphere and the
experimental determination of the energy balance of the previously mentioned four lamps. The
far infrared is calibrated using a resistively heated platinum ribbon as a calibration source [5]. An
analytical model is used to predict the spectral radiant flux of the strip based on literature data of
the resistivity and the emissivity of platinum. Below a certain wavelength the platinum strip can
not be used anymore as a calibration source since its thermal radiation rapidly decreases in the
near infrared region. Below this wavelength a halogen lamp calibrated at Philips OCM calibration
laboratories is used instead.

1.8 Thesis outline
In chapter 2 the theoretical concepts of the transport equations and the radiative energy transport
are discussed. This chapter also clarifies the Jack-Koedam theory. In chapter 3 is shown how these
equations are implemented in a one dimensional model. In chapter 4 the model is calibrated by

10
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comparing the simulated spectra with lamps which can be considered one dimensional. The
modeling results for the single salt lamps are shown as well. In chapter 5 the setup and the
experimental procedures are discussed. Chapter 6 contains the experimental results. These are
the calibrated spectra, powerscans and switch-off measurements. In chapter 7 a comparison is
made between the results obtained in experiments and in the model. Chapter 8 contains the most
important conclusions of this work.

11



Chapter 2

Theory

In this chapter the physics required for a basic understanding of a metal halide lamp is presented.
The assumption of local thermodynamic equilibrium is discussed first. Then the transport equa-
tions and transport constants that are important for our lamp plasmas are discussed. Special
attention is given to radiative transport due to its non-local nature. After that the Jack-Koedam
theory is considered.

2.1 Local thermodynamic equilibrium
The assumption of local thermodynamic equilibrium (LTE) simplifies the description of a lamp
system. In LTE all species have the same temperature. Additionally, the densities of the ground
state and all excited states can be described with this temperature. The lamp can therefore be
described by only a few parameters. These parameters are the input power, plasma temperature
distribution, the radius of the discharge tube and the vapour pressures of the species present in
the discharge.

Elenbaas [6] gives four statements which are required for a valid LTE assumption. Two of these
statements are discussed in this section. Those statements describe the validity of the Boltzmann
and Saha equations. These equations are assumed to be valid if processes restoring LTE are
much faster than processes which result in non LTE distributions. The Boltzmann distribution
can for example be used when electron impact excitation and deexcitation are much faster than
spontaneous radiation. The statements are:

1. The number of excitations by electron impact is large compared with the number of spon-
taneous transitions

2. The difference between the gas temperature and the electron temperature is small

Elenbaas derived scaling expressions for every statement for a pure mercury discharge. These
expressions are not valid for metal halide lamps in general. They are therefore used here as a
first approximation. The validity of the first statement scales with the electron density which is
rewritten by Elenbaas as

ne ∼
(P − Pcond)

2
3

p
1
6 d

4
3

, (2.1)

with P the input power per unit length, P cond the conduction losses per unit length, p the pressure
and d the diameter of the lamp. The input power minus the conduction losses per unit length
P − Pcond can also be expressed as Prad which are the radiation losses per unit length. Since the
number of electrons decays as a function of the radius statement 1 will always be unsatisfied from
a certain radius. Elenbaas states that if almost all of the radiation originates before this point the
radiation field can be considered to be in equilibrium with the gas.

12
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Figure 2.1.1: Electron and gas temperatures in the centre of the discharge as a function of
pressure for a mercury and a sodium lamp. At operating conditions above 0.1 bar the electron and
gas temperatures are considered to be equal. This result was taken from de Groot and van Vliet
[11].

The electron temperature always exceeds the gas temperature since energy is transfered from
the potential field to the electrons and then from the electrons to the gas by collisions. The scaling
expression for the difference between electron and gas temperature is given by

(Te − Tg) ∼
1

p
5
6 d

2
3 (P − Pcond)

2
3
. (2.2)

A conclusion from these scaling expressions is that a high input power per unit length is favourable
for all criteria. High pressures are favourable for statement 2 and sligthly unfavourable for state-
ment 1. Small diameters are favourable for statement 1 and unfavourable for statement 2. Since
metal halide lamps can be characterized by their high input power, high pressure and small diam-
eter statement 1 can be considered to be valid in the centre of the discharge. Statement 2 will be
investigated further.

De Groot and van Vliet [11] obtained the electron and gas temperatures in the centre of the
discharge as a function of pressure for a mercury lamp and a sodium lamp. Their results are shown
in Figure 2.1.1 and show that in the centre of the discharge the electron and gas temperatures for
pressures above 0.1 bar are approximately equal. A typical metal halide lamp contains mercury
pressures which are significantly above this limit. In the hot central core LTE can be assumed to be
valid. However closer to the wall the electron and gas temperatures start to deviate significantly.
A reasoning similar to Elenbaas can be applied here as well. If this significant deviation between
electron and gas temperatures occurs at a radius where emission of radiation is negligible and
almost no current passes through these outer parts the discharge can be considered to be in LTE.

2.2 Transport equations

The transport equations necessary to describe the local properties of a given species can be derived
from a general equation called the Boltzmann transport equation. These properties are for ex-
ample the local particle concentrations, velocity and temperature of a species in the plasma. The
Boltzmann transport equation is discussed first. After that the transport equations for the species
are derived. These species equations can be summed to describe the bulk behavior of the plasma.
The bulk equations are then reduced to a one dimensional system of equations. By following such
a procedure the number of equations is greatly reduced.

13
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2.2.1 Boltzmann transport equation
The Boltzmann transport equation for species i is expressed in the particle density function
fi (~x,~v). This function gives the number of particles of species i present in a volume d3x at
position ~x with velocities between ~v and ~v + d3v. The number of particles of species i at position
~x can thus be expressed as fi (~x,~v) d3xd3v. This six dimensional space is called phase space. The
Boltzmann equation for species i is given by

∂fi (~x,~v)
∂t

+ vi · ∇fi (~x,~v) +
~Fi
mi
· ∇vfi (~x,~v) =

(
∂fi (~x,~v)

∂t

)
collisions

. (2.3)

The first term in the Boltzmann transport equation describes the changes in density with
respect to time. The second and third term describe how the density in phase space changes with
respect to position and velocity respectively. The index v in the gradient in the third term means
that the gradient is taken with respect to the velocity. This gradient is caused by an external
volumetric force ~Fi. The last term describes changes in phase space which are caused by the
creation and destruction of particles of species i or by sudden changes in velocity which can for
example be caused by collisions.

2.2.2 Species transport equations
The species transport equations can be derived from the Boltzmann equation by considering
the first three moments. A moment can be derived from the Boltzmann transport equation by
multiplying the particle density function with a weight function g (v) and integrating over all
velocities. The first moment can be generated with g (v) = 1 and gives the particle density

ni (~x, t) =
ˆ
fi (~x,~v) d~v. (2.4)

The second moment is generated with g (v) = ~v and gives the particle flux

Γi (~x, t) = ni (~x, t) ~ui =
ˆ
fi (~x,~v)~vd~v, (2.5)

where ~ui is the average velocity of species i. The third moment is generated with g (v) =
1
2mi (~vi − ~ui)2 and gives the internal energy of species i. This is proportional to the random
motion of the particles

3
2kBni (~x, t)Ti (~x, t) =

ˆ
fi (~x,~v) (~vi − ~ui)2

d~v. (2.6)

The species transport equations can be derived by applying the same procedure as outlined
above to the Boltzmann transport equation. These equation are

• the species continuity equation

∂ni
∂t

+∇ · Γi = Si, (2.7)

with Si a source of species i. Particles can be created or destroyed by inelastic processes.

• the species momentum balance

∂

∂t
(ρi ~ui) +∇ · (ρi ~ui ~ui) = −∇ · Pi + ni ~Fi +

∑
j

~Rij + Smi , (2.8)

with ρi = mini is the mass density, Smi is a source of momentum generated by collisions,
~Rij is the friction force caused by other particle fluxes

~Rij =
ˆ
mi ~ui

(
∂fi (~x,~v)

∂t

)j
coll

d~vi
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and Pi is the pressure tensor

Pi = ρi 〈(~v − ~ui) (~v − ~ui)〉 .

• the species energy balance

∂ρiei
∂t

+ 1
2
∂ρiu

2
i

∂t
+∇ · (ρiei ~ui) + 1

2∇ ·
(
ρiu

2
i ~ui
)

+ (∇~ui) : Pi +∇ · ~qi − ni ~Fi · ~ui = SE , (2.9)

with ei is the thermal energy per unit mass, ~qi is the heat flux and SE is the energy source
term.

2.2.3 Local density calculation
The calculation time of species densities can be reduced by introducing an elemental density. A
general species transport equation can be expressed in these elemental densities. After that the
limits of strong convection and strong diffusion are considered to reduce this equation to a more
simple form.

The system of multiple species continuity equations 2.7 can be rewritten in terms of elemental
densities. In LTE the particle density can be described by the local elemental density, pressure
and temperature. The elemental density can be expressed as

nα =
∑
i

niRiα, (2.10)

with nα the elemental density, ni the species density and Riα the stoicheometric coefficient. For
example in a pure mercury lamp it’s sufficient to consider the following species: Hg, Hg+, Hg2.
The elemental density of mercury can then be expressed as

n{Hg} = nHg + nHg+ + 2nHg2 . (2.11)

Curly brackets are used to indicate that the elemental density is considered. An elemental pressure
can be introduced by using the ideal gas law as

pα = nαkBT. (2.12)

Summation of the species continuity equations results in the elemental continuity equation given
by

∇ ·
(
Dα

kBT
∇pα + pα

kBT
~cα

)
= 0, (2.13)

where Dα is the elemental diffusion coefficient and ~cα is the elemental velocity. In equation 2.13
the source term is absent. This means that the elemental flux is conserved and that elements can
not be created or destroyed.

In the diffusion and convection limits derived by Fischer [23] Eq 2.13 can be replaced by more
simple expressions.

The convection limit is achieved at high pressures and at large radii. The strong convection
makes sure that the additives are well mixed. As an approximation it can be assumed that
the elemental pressure is constant as a function of the radius [24]:∑

i

Riαpi = pα = nαkBT = constant, (2.14)

with pi the partial pressure of species i and α the element under consideration. The constant
value of the elemental pressure can be obtained at the coldspot since this value only depends
on the coldspot temperature.

15



2.2. TRANSPORT EQUATIONS CHAPTER 2. THEORY

The diffusion limit is achieved at low buffer gas pressures and at small radii. In this limit the
following approximation can be made [24]:∑

i

D∗iRiαpi = Cα =
∑
i

D∗iRiαnakBT = constant, (2.15)

with D∗i the reduced (temperature independent) binary diffusion coefficient calculated for
hard sphere interactions between species i and the buffer gas (mercury). By introducing the
effective elemental diffusion coefficient Deff defined as

Deff =
∑
iD
∗
iRiαpi∑

iRiαpi
=
∑
iD
∗
iRiαni∑

iRiαni
, (2.16)

the elemental pressure can be obtained from an iterative procedure. The first iteration uses
the result of the convection limit. The remaining iterations calculate the partial pressure
with an underrelaxation parameter δ as

pα = nαkBT = Cα
Deff

δ + (1− δ) pα,previous

until the final result is considered to be sufficiently converged.

The calculated elemental pressures, obtained from the convection or diffusion limit, can be supplied
to CHEMAPP which is a commercial program for Gibbs energy minimization. For all species the
chemical potential is set to zero as

µi = ∂G

∂Ni

∣∣∣∣
T,p

= 0, (2.17)

with the constraint that the summed elemental density inside the lamp is equal to an input value
Bα ∑

i

RiαNi = Bα. (2.18)

The Gibbs energy for species i in the gas can be expressed as

µi = µ0
i (T ) +RTln

(
Ni
N0

)
+ ln

(
pi
p0

)
(2.19)

and at the cold spot temperature with

µi = µ0
i (T ) . (2.20)

2.2.4 Bulk equations
The species transport equations can be summed to obtain the bulk transport equations. The
results in this section are similar to Beks [8]. By using the following relation for the average
species velocity

~ui = ~u+ ~ui
′
,

where ~u is the average bulk velocity and ~ui
′
is the deviation from this velocity and summing all

species force balances (2.8) the result is [32]

∂

∂t
(ρ~u) +

∑
i

∇ · ρi
(
~ui
′
~ui
′
+ 2~ui

′
~u+ ~u~u

)
=
∑
i

(
−∇ · Pi + ρi

mi

~Fi

)
. (2.21)

This expression can be rearranged to the Navier-Stokes equation
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∂

∂t
(ρ~u) +∇ · ρ~u~u = −∇ · P +

∑
i

(
ρi
mi

~Fi

)
, (2.22)

with the pressure tensor

P =
∑
i

(
Pi + ρi ~ui

′
~ui
′)

= Π + pI = Π + 1
3
∑
i

ρi

〈
(~vi − ~ui)2

〉
I,

where Π is the viscosity tensor and p is the scalar pressure. For a Newtonian fluid the viscosity
tensor can be related to the dynamic viscosity µ. The Navier-Stokes equation then reduces to

∂

∂t
(ρ~u) +∇ · ρ~u~u = −∇p+∇ · (µ∇~u) +

∑
i

(
ρi
mi

~Fi

)
. (2.23)

Similarly the species energy balances (2.9) can be summed. By subtracting the force balance and
the equation of mass conservation multiplied with 1

2ρv
2 the following equation can be obtained

[32]
∇ · (cV ~u∇T ) + P : ∇~u+∇ · ~q + p · ∇~u = σE2 − qrad, (2.24)

where cV is the volumetric heat capacity, σ is the electrical conductivity and ~q is the heat flux.
The terms in the energy balance represent: energy transported by convection, viscous dissipation,
energy transported by a heat flux, compression work, ohmic dissipation and qrad is the power
emitted or absorbed by the radiation field.

2.2.5 1D transport equations
Elenbaas [6] described the high pressure mercury lamp successfully using a one dimensional ap-
proach. In this section a similar approach is made to describe metal halide lamps. Due to the
inherent non 1D nature of most CMH lamps such an appoach can only give approximate results.
The discharge tube’s diameter to height ratio of the lamps that are discussed in this work indeed
result in non 1D behavior.

2.2.5.1 Momentum balance

When the axial velocity is known an estimate of the Peclet number can be made. The Peclet
number can be used as an indication of the validity of the convection or diffusion limit. Elenbaas
developed a method of solving the momentum balance, Eq 2.8 by neglecting the total derivative.
The bulk momentum balance then reduces to

−∇p+∇ · (µ∇~u) + ρg = 0. (2.25)

For a vertically operated lamp the velocity can be approximated to be a function of the radius
only. The velocity has one non zero component which is directed along the axis of the discharge.
The momentum balance for the axial component can then be written as

−∂p
∂z

+ 1
r

∂

∂r

(
µr
∂uz
∂r

)
+ ρg = 0. (2.26)

The pressure gradient along the axis is assumed to be independent of the radius. Multiplication
with the radius and integration over the radius then gives

−∂p
∂z

r2

2 + µr
∂uz
∂r

+ g

rˆ

0

ρr”dr” = C, (2.27)
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with C an integration constant. By evaluating the equation at r = 0 it is concluded that C = 0.
After dividing by the viscosity and the radius and integrating over the radius an expression for
the axial velocity is obtained:

uz (r) = uz (0) + ∂p

∂z

rˆ

0

r
′

µ
dr
′
−

rˆ

0

g

r′µ

 r
′ˆ

0

ρr”dr”

 dr′. (2.28)

The velocity at the axis can be calculated by applying the no slip condition at the wall

uz (0) = −∂p
∂z

R̂

0

r
′

µ
dr
′
+

R̂

0

g

r′µ

 r
′ˆ

0

ρr”dr”

 dr′. (2.29)

An expression for the pressure gradient can be obtained by calculating the total mass flow in axial
direction and setting it to zero. The results is

∂p

∂z
=
−
´ R

0 ρr
[´ R
r

1
r′µ

(´ r′
0 ρr”dr”

)
dr′
]
dr

1
2
´ R

0 ρr
[´ R
r

r′

µ dr
′
]
dr

. (2.30)

Due to the reduction of the momentum balance to one dimension the derived equations are only
valid for long and thin lamps. However for a metal halide lamp the axial velocity and pressure
gradient should still be a reasonable approximation in the plane halfway between the electrodes.

2.2.5.2 Energy balance

The energy balance equation, Eq 2.24, was reduced to one dimension by Elenbaas and Heller by
neglecting convection, viscous dissipation and compression work. That means the heat flux, ohmic
heating and the radiation losses make up the energy balance as

∇ · q = σE2 − qrad, (2.31)
with the heat flux given by Fourier’s law as

q = −λ∇T. (2.32)

The heat flux contains the thermal conductivity, λ, which can be expressed as the sum of the
reactive, λr, and the collisional, λc conductivity. The collisional conductivity represents the energy
transfered by particle collisions. The reactive conductivity accounts for the energy transfered via
chemical reactions. An example of such a reactive transport mechanism is the recombination
process: Neutral particles diffuse into the hot core and are ionized. At the same time ions and
electrons will diffuse out of the hot core and then recombine. This complete process effectively
results in the transport of the ionization energy from the hot core to the colder areas of the
discharge. Similar contributions result from dissociation and association reactions for molecular
species.

In the one dimensional approximation it is assumed that the electric field is constant along the
radius of the discharge tube. The electric field can then be calculated by integrating the ohmic
heating term as

Pdischarge = Pin − Pelec =
ˆ R

0
2πrhelecσ(r)E2dr, (2.33)

which results in an electric field of

E =
√

Pin − Pelec
helec

´ R
0 2πrσ(r)dr

. (2.34)
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In these equations Pin is used for the input power, Pelec is used for the dissipated power in the
electrodes, helec is used for the distance between the electrodes and σ represents the electrical
conductivity.

2.3 Transport constants
The calculations of the transport coefficients which appear in Eq 2.31 , the energy balance, are
discussed in this section. These transport coefficients are the electrical and reactive conductivities.
The electrical conductivity [12] can be expressed as

σe = nee
2

meνea
, (2.35)

with ne the electron density, e the elementary charge, me the mass of an electron and νea the sum
of the electron-heavy particle collision frequencies. The collision frequency [13] can be written as

νea = na

ˆ ∞
0

uf(u)Qea(u)du = na 〈uQea(u)〉 , (2.36)

with na the heavy particle density of species a, u the velocity, f(u) the Maxwell-Boltzmann velocity
distribution and Qea(u) the electron-heavy particle momentum transfer cross section. In LTE the
Maxwell-Boltzmann velocity distribution can be calculated exactly with

f(u) = 4π
(

m

2πkBT

) 3
2

u2e
mu2

2kB T . (2.37)

In metal halide lamps the additive densities are relatively low in comparison with the buffer gas
densities. The electron-heavy particle collision frequencies can therefore be approximated with
the electron-buffer gas collision frequency. For the lamps investigated in this project the buffer
gas is mercury.

The expression for the reactive conductivity is taken from Butler and Brokaw [14, 15]. They
reduce the system of chemical reactions to a system of χ independent reactions. An indepen-
dent reaction is defined as a reaction which can not be written as the sum of other reactions.
Independent reaction i can be written as

µ∑
k=1

nikX
k = 0, (2.38)

with nik the stoicheometric coefficient of species k in independent reaction i, Xk represents species
k and µ is the total number of species. If species k is not involved in reaction i then the stoicheo-
metric coefficient nik is zero. The reaction energy of independent reaction i can be written as

∆Hi =
µ∑
k=1

nikHk, (2.39)

with ∆Hi the reaction energy of independent reaction i and Hk the enthalpy of species k. For
such a system the reactive conductivity can be expressed as

λr = − 1
RT 2

∣∣∣∣∣∣∣∣∣
A11 · · · A1ν ∆H1
...

...
...

Aν1 · · · Aνν ∆Hν

∆H1 · · · ∆Hν 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A11 · · · A1ν
...

...
Aν1 · · · Aνν

∣∣∣∣∣∣∣
, (2.40)
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with R the gas constant. The vertical bars indicate that the determinant of the matrix is taken.
The matrix elements Aij are given by

Aij = Aji =
µ−1∑
k=1

µ∑
l=k+1

RT

Dklp
xkxl

[
nik
xk
− nil
xl

] [
njk
xk
− njl

xl

]
, (2.41)

with p the pressure of the gas, xk the partial pressure of species k and Dkl the binary diffusion
coefficient for species k and l.

The expression for the binary diffusion coefficient is taken from Johnston [16] and is given by

Dkl = 3
16

k2
BT

2

pµklΩ(1,1)
kl

, (2.42)

with µkl the reduced mass and Ω(1,1)
kl the collision integral. The collision integral can be calculated

as

Ω(1,1)
kl =

√
kBT

2πµkl

ˆ ∞
0

e−γ
2
γ5Qkl(g)dγ, (2.43)

with γ the dimensionless energy given by γ = µg2

2kBT
, g is the velocity difference between particles

k and l and Qkl is the momentum transfer cross section.
When determining momentum transfer cross sections in a plasma three types of interactions can

be distinguished. These are the neutral-neutral, charged-neutral and charged-charged interactions.
The momentum transfer cross section for neutral-neutral interactions is taken as

Qab = π

(
Ra +Rb

2

)2
, (2.44)

with Ri the hard sphere radius of particle i. The momentum transfer cross section for charged-
neutral interactions is given by the Langevin polarizability model [12] as

Qa+b =

√
παbq2

a

µabε0g2
ab

, (2.45)

with αb the polarizability of the neutral particle in m3, qa the charge of the charged particle, εo the
electrical permittivity and gab the velocity difference between particles a and b. The momentum
transfer cross section for charged-charged interactions is given by the shielded Coulomb cross
section as

Qa+b+ = 4πb20ln

√1 +
(
λD
b0

)2
 , (2.46)

with b0 given by

b0 = ZaZbe
2

12πε0kBT
, (2.47)

where Za is the charge of particle a expressed in elementary charges. In equation 2.46 λD is the
Debye length given by

λD =
√
ε0kBT

nee2 . (2.48)

2.4 Radiation
In this section the term qrad from the energy balance, Eq 2.31, is discussed. Due to the non local
nature of emission and absorption processes a calculation of this term is not straight forward.
The consequences of the LTE assumption are discussed here along with a discrete solution of the
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equation of radiative transport and a short summary of line broadening theory. A more detailed
discussion of radiation theory is given by van der Heijden [9].

All equations are derived in units of frequency (units: Hz), ν. In spectroscopy it is customary
to express spectra in wavenumbers (units: cm-1), ν̃. These quantities are related by

ν (Hz) = c

λ (m) =
cν̃
(
cm−1)
100 , (2.49)

with c the speed of light and λ the wavelength.

2.4.1 Radiative transport
The power transported by radiation can be expressed as a function of the radiative flux. The
radiative flux is a function of the radiance. The radiance is determined by the local properties of
the plasma and can be calculated with the equation of radiative transport. This equation is given
by

dI

ds
= j − κI, (2.50)

with j the emission (units: Wm-3Hz-1sr-1), κ the absorption (units: m-1), I the radiance (units:
Wm-2Hz-1sr-1) and s the path (units: m) traversed by the radiation. Its important to note that
the emission, absorption and the radiance all depend on the local composition of the plasma. The
radiative flux, Φ (units: WHz-1), passing through a surface area, A, in the direction ~s, covering a
solid angle, dΩ, is given by

Φ = I~s · ~AdΩ = I ~dΩ · ~A. (2.51)

The power density passing through that surface can then be calculated by integrating over the
frequency

Prad =
ˆ Φ
V
dν, (2.52)

with V the local volume of the considered gas.

2.4.2 Radiation in LTE
Three types of radiation are discussed in this section: Atomic, molecular and continuous radiation.
In general for none of these processes direct relations exist between the emission and absorption.
Both quantities have to be calculated separately before the equation of radiative transport can be
solved.

For atomic radiation the emission can be calculated as

j = hν

4πAnuφ (ν) , (2.53)

with h Planck’s constant, ν the frequency corresponding to the difference between the energy
levels of the radiator, A the Einstein coefficient of spontaneous decay, nu the density of species
in the upper energy state of the transition and φ (ν) is the line profile. The absorption should be
calculated independent of the emission as

κ = σabs (ν)nl − σstim (ν)nu, (2.54)

with σabs (ν) the cross section for absorption, σstim (ν) the cross section for stimulated emission
and nl the density of species in the lower energy state of the transition. However in LTE the
radiation field is in equilibrium with the gas. That means that equation 2.50 reduces to

j = κI, (2.55)
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which states that the amount of emitted radiation is equal to the absorbed radiation. From LTE
theory it is also known that the radiance emitted by an object is equal to the blackbody radiance,
IBB , given by

IBB = 2hν3

c2
1

exp
(
hν
kBT

)
− 1

, (2.56)

with c the speed of light in vacuum. These considerations lead to a direct relation of the absorption
with the emission given by

κ = j

IBB
. (2.57)

For atomic radiation the absorption is thus given by

κ = c2Anuφ (ν)
8πν2

(
exp

(
hν

kBT

)
− 1
)
. (2.58)

Molecular radiation can also be included with Eq 2.57 similar to atomic radiation if the molec-
ular emission can be calculated. However molecular radiation is more complex since the electronic
states are split up further in rotational and vibrational states. The calculation of molecular emis-
sion requires knowledge of the potential curves as a function of intermolecular separation and also
requires accurate transition probabilities. Due to the difficulty of obtaining this data molecular
radiation is out of the scope of this work.

Continuous radiation can also be included with Eq 2.57. This radiation arises from electron-ion
interactions. Electrons and ions can recombine to form atoms. The kinetic energy of the electron
and the ionization energy can be released as radiation:

A+ + e− + Ekin → A+ hν. (2.59)

A second interaction involves the ion reducing the speed of the electron. The energy lost by the
electron in this ’breaking process’ is radiated as bremsstrahlung:

A+ + e− + Ekin,1 → A+ + e− + Ekin,2 + hν. (2.60)

2.4.3 Discretized radiance calculation
The calculation of radiative energy transport can in general not be expressed as an analytical
expression. Computer models are required for these calculations. These models require a dis-
cretization of a system in control volumes. In this section an expression for the change in radiance
is calculated for an arbitrary direction through an arbitrary control volume.

The solution of Eq 2.50 can be written down in integral form as

I (s) =
ˆ s

s0

j
(
s
′
)
exp

(
−
ˆ s

s′
κ
(
s”) ds”

)
ds
′
, (2.61)

which can be simplefied as
I (s) =

ˆ s

s0

j
(
s
′
)
exp (−τ) ds

′
, (2.62)

by introducing the optical depth, τ , defined as

τ =
ˆ s

s′
κ
(
s”) ds”. (2.63)

An arbitrary discretization can be applied for the integration of Eq 2.62 through one control
volume. The following result can be obtained for the radiance originating in this single control
volume given by

ˆ s+∆sk

s

j
(
s
′
)
exp

(
−κ
(
s
′
)(

s+ ∆sk − s
′
))

ds′ = jk
κk

[1− exp (−κk∆sk)] , (2.64)
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with ∆sk the distance traversed through control volume k. This result has been obtained by
using constant values for the emission, jk and absorption, κk for the entire volume represented
by control volume k. By also considering the radiance which entered this control volume, Ik, the
radiation leaving this volume, Ik+1 is given by

Ik+1 = Ikexp (−κk∆sk) + jk
κk

[1− exp (−κk∆sk)] = Ikexp (−τk) + jk
κk

[1− exp (−τk)] . (2.65)

The change of the radiance in one control volume, ∆Ik, can then be expressed as

∆Ik = Ik+1 − Ik =
(
jk
κk
− Ik

)
[1− exp (−τk)] . (2.66)

By applying the LTE result for the absorption this equation can be rewritten as

∆Ik = (IBB,k − Ik) [1− exp (−τk)] , (2.67)

which makes the interpretation of the change in radiance easier. In LTE the difference between
the ingoing radiance, Ik and the local blackbody radiance, IBB,k is being reduced by a factor
[1− exp (−τk)] inside control volume k. Two limits can be distinguished. In the optical thick limit
τ ≫ 1 which means the outgoing radiance, Ik+1 is always equal to the local blackbody radiance,
IBB,k. In this case the power emitted as radiation can be calculated locally as

Prad =
ˆ ˆ ˆ

IBB ~dΩ· ~dAdν. (2.68)

In the optical thin limit τ ≪ 1 which means Eq 2.66 can be approximated by

∆Ik ≈
(
jk
κk
− Ik

)
κk∆sk = jk∆sk − Ikκk∆sk ≈ jk∆sk. (2.69)

The power emitted as thin radiation can be calculated locally as

Prad =
ˆ ˆ

j · 4πdV dν. (2.70)

In general a local calculation of the radation is not possible. The results will depend on the
geometry. In section 3.2.3 the implementation for a cylindrical geometry is discussed.

2.4.4 Line broadening
In this section a few mechanisms responsible for line broadening are discussed. These are natural,
Doppler, resonance, Stark and van der Waals broadening. Resonance, Stark and van der Waals
broadening are all considered in the impact limit. Additionally, van der Waals contributions in the
quasistatic limit are considered as well. Experimental broadening is not discussed in this section.

Line broadening is generally calculated in either the impact or the quasi static regime. The
impact regime assumes that collisions occur instantaneously: The time required for one collision
is much smaller than the average time between two collisions. In the quasi static theory the
perturbing particles are assumed to travel only a small distance during the lifetime of the excited
state and can thus be considered as static particles. Due to the differences in lifetime the impact
theory predicts the core of a line profile while the wings are described by quasi static theory [18].
Tortai [18] gives a short summary of the validity of the approaches. The transition from impact
to quasi static theory is predicted to occur at a wavelength limit, ∆λL given by

∆λL = λ2W

2πcρw
, (2.71)
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with λ the unperturbed wavelength of the transition, W the average thermal velocity of the
interacting species and ρw the Weisskopf radius. Sobelman [19] provides an expression for the
Weisskopf radius given by

ρw =
(
αnCn
W

) 1
n−1

, (2.72)

with αn a constant expressed in the gamma function, Γ, as

αn =
√
π

Γ
(
n−1

2
)

Γ
(
n
2
) (2.73)

and n and Cn are given by the type of interaction responsible for line broadening

V = ~
Cn
rn
. (2.74)

2.4.4.1 Natural and Doppler broadening

Natural line broadening is responsible for a Lorentzian profile and can be explained by applying the
Heisenberg uncertainty principle to the energy levels of the initial and final states of the transition.
The life time of the spectral line can be estimated by examining the rate of spontaneous decay.
Laux [25] calculates the FWHM as

∆λnat = λ2
ul

2πc

∑
j<u

Auj +
∑
j<l

Alj

 , (2.75)

with u and l the upper and lower energy state of the transition. These half-width are smaller than
10−12 nm and can therefore be neglected.

Doppler broadening is caused by the relative motion of the radiating gas and the observer. If
the velocity of the observer is neglected and the gas is assumed to have a Maxwellian velocity
distribution the line profile will be gaussian. The FWHM can be calculated as

∆λDop = λul

√
8kBT ln (2)

mc2
, (2.76)

with m the mass of the emitting particle.

2.4.4.2 Impact broadening

Impact broadening is taken into account for resonance, Stark and van der Waals interactions.
Regardless of the type of interaction the impact theory results in a Lorentzian profile given by

φ (λ) =
∆λ1/2

2π
1

(λ− λs − λ0)2 +
(

∆λ1/2
2

)2 , (2.77)

with ∆λ1/2 the full width half maximum (FWHM) , λs the shift of the line and λ0 the unperturbed
wavelength of the line.

Resonance broadening is caused by interactions between particles of the same species via the
dipole-dipole (C3) interaction. According to Bates [17], these dipole interactions can facil-
itate excitation exchange. Perturbing particles with an allowed transition from the upper
or the lower state of the transition to the energy state of the perturber can cause resonance
broadening. Since the contribution of a given perturber energy state to the broadening mech-
anism is proportional to the density of this state, it is generally sufficient to only consider
broadening caused by the ground state of the perturbers[25]. The transitions to the ground
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state are called resonant transitions [20]. According to the impact theory of Griem [26] the
FWHM for resonance broadening can be calculated with an expression [25] given by

∆λres = 3e2

8π2ε0mec2
λ2
ul

[
λlgfgl

√
gg
gl
ng + λugfgu

√
gg
gu
ng + λulflu

√
gl
gu
nl

]
, (2.78)

with gi the degeneracy of state i, the subscripts g,l and u indicating values for the ground,
lower and upper states respectively,λul the wavelength corresponding to a transition from
state u to state l, flu the absorption oscillator strength for a transition from state u to state
l and ni is the perturber density in energy state i. It is important to note that Tortai [18]
and Born [20] interpret Griem’s theory in such a way that they only include the last term in
equation 2.78 and use the total perturber density instead of nl . It is also important to note
that resonance broadening calculated from different theories results in the same expression
with a different proportionality constant given by kr

8 . One of them is discussed by Tortai
[18] who claims kr = 0.96 is the most commonly used value (calculated by Zaidi). Chien
[21] shows a longer list which includes Griem theory. In this work Griem theory is used
which calculates a value of kr = 3

2 [21]. By expressing the oscillator strength in the Einstein
coefficient as

flu = gu
gl

λ2
ulε0mecAul

2πe2 , (2.79)

Eq 2.78 can be rewritten as

∆λres = λ2
ul

c
(C3,lgng + C3,ugng + C3,ulnl) , (2.80)

with
C3,ji = 3

16π3

√
gj
gi
Ajiλ

3
ji, (2.81)

with j covering the upper state of the allowed transition and i covering the lower states of
the allowed transitions from state j to state i.

Quadratic Stark broadening is caused by Coulomb interactions between charged particles and
the radiating species. It is proportional to the square of the electric field. Tortai [18]
presents an expression from Griem who writes Stark broadening as a combination of electron
contributions in the impact regime and ion contributions in the quasi static regime. The
FWHM is given by

∆λStark =
[
1 + 1.75α

( ne
1022

)1/4
(1− 0.75r)

]
2ω
( ne

1022

)
, (2.82)

with r the Debye shielding parameter given by

r = ρion
ρD

, (2.83)

with

ρion =
(

3
4πnions

)1/3
(2.84)

and
ρD =

√
ε0kBT

nee2 . (2.85)

Such a description relies on tabulated values of the ion parameter α the electron parameter
ω as a function of the temperature. The expression for Stark broadening is only accurate for
0.05 < α < 0.5 and r < 0.8. For the species which are important in this project tabulated
values of α and ω only exist for sodium. Therefore Stark broadening can generally only be
taken into account if experimental values are available.
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Van der Waals broadening is caused by the presence of other particles which interact with the
radiating species via the van der Waals potential (C6). The FWHM is given by Born [20] as

∆λvdW = λ2
ul

2πc8.08
∑
j

(
8kBT
πµj

)3/10
C

2/5
6,j Nj , (2.86)

with 8.08 being a constant which for example is given by Tortai [18] as 7.566, j is a summation
variable which represents all perturbing species (in practice only the buffer gas is considered),
µj is the reduced mass of the perturber and the radiator and C6,j is the van der Waals
constant which is given by Tortai as

C6 = 1
2hε0

e2α
∣∣〈r2

u

〉
−
〈
r2
l

〉∣∣ , (2.87)

with α the polarizability of the perturbing atom in m3 and
〈
r2
i

〉
the mean square radius of

the emitting atoms in state i given by

〈
r2
i

〉
= a2

0
(n∗i )

2

2Z2
a

〈
5 (n∗i )

2 + 1− 3li (li + 1)
〉
, (2.88)

with a0 the Bohr radius, li the orbital quantum number of state i, Za the hydrogen equivalent
charge of the atom which is equal to 1 for neutral atoms and n∗i is the effective quantum
number given by

(n∗i )
2 = EH

Eion − Ei
, (2.89)

with EH the ionization energy of hydrogen, Eion the ionization energy of the radiating
species and Ei the energy of state i. When calculating the van der Waals broadening a
hydrogen like approximation was made. It is important to note that this approximation is
not accurate for all atomic species.

2.4.4.3 Quasi-static broadening

In quasi static theory the spectral lines are broadened solely to the red side of the spectrum by
the van der Waals interaction. Stormberg [22] uses a line shape with a Levy distribution given by{

φ (λ) =
√

∆λ0
2(λ−λ0)3/2 exp

(
− π∆λ0

4(λ−λ0)

)
for λ > λ0

φ (λ) = 0 for λ < λ0
, (2.90)

with λ0 the unperturbed wavelength and ∆λ0 the characteristic wavelength of this interaction
given by

∆λ0 = λ2
0

2πcC6

(
4
3πN

)2
, (2.91)

with C6 the van der Waals broadening constant and N the perturber density.

2.4.4.4 General line profile

At low number densities the most important contributions for line broadening are Doppler broaden-
ing and pressure broadening from impact theory. The line profile can be calculated by convoluting
a Gaussian distribution with a Lorentzian distribution. The result is a Voigt profile which can be
calculated as

φ (λ) = Re (Erfc (Z))
∆λD

√
2π

, (2.92)
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with ∆λD the FWHM of the Doppler profile and Erfc is the Fadeeva function. The argument Z
is given by

Z =
λ− λ0 + i

∆λ1/2
2

∆λD
√

2
, (2.93)

with ∆λ1/2 the FWHM of the Lorentzian profile and λ0 the unperturbed wavelength.
For lamps in the high pressure limit neither the impact theory nor the quasi static theory are

sufficient to describe the line profile on their own. Stormberg [22] is followed who proposed to
convolute the line profiles from both theories to obtain the final line profile. Stormberg determined
an analytical solution for this line profile given by

φ (λ) = Re

(
1

π∆λ1/2 (1 + a2) − i
cπ

2 exp

(
−ab

1 + a2

)
A

)
, (2.94)

with A given by

A = Z
3/2
1 exp

(
− ib

1 + a2

)
Erfc

(√
Z1b
)
− Z3/2

2 exp

(
ib

1 + a2

)
Erfc

(√
Z2b
)
, (2.95)

with a, b,c, Z1 and Z2 given by
a = λ− λ0

∆λ1/2
, (2.96)

b = π∆λ0

4∆λ1/2
, (2.97)

c =
√

∆λ0

2π
(
∆λ1/2

)3/2 , (2.98)

Z1,2 = −a∓ i1 + a2 , (2.99)

with ∆λ0 the characteristic wavelength for the quasi static profile. It is important to note that
Stormberg [22] defined the c constant incorrect in the main text. In the appendix he gives the
correct expression. The differences with the expression in the main text are a factor π in the
denominator and λ − λ0 should be replaced with ∆λ1/2. Stormberg applied this line shape to
describe a mercury plasma with 18 different transitions. For the 254, 365, 436 and 546 nm lines
he makes a comparison between the simulated and measured lines and obtains a good agreement.

At intermediate number densities the Doppler broadening can not always be neglected. For
such densities the convolution of equation 2.94 with a Gaussian profile should be calculated. In
this work this convolution is approximated by

φ (λ) = Re

(
V (λ)− iV (λ)

L (λ)
cπ

2 exp

(
−ab

1 + a2

)
A

)
, (2.100)

with V (λ) the Voigt profile and L (λ) the Lorentzian profile. In the centre of the line the profile
is equal to the Voigt profile. In the far wings this expression reduces to the expression given by
Stormberg. The transition between these limits is made continuously by applying the ratio of the
Voigt and the Lorentz profiles to the complex perturbation function.

2.5 Jack-Koedam theory
Elenbaas [6] and Jack and Koedam [7] estimated the conduction losses in a lamp by measuring
lamps at multiple input powers. Elenbaas observed that the power in the discharge per unit length
Pdis is lost as conduction Pcond and radiation Prad losses per unit length. The conduction losses
per unit length are given by

Pcond = −2πrλ (T ) dT
dr
. (2.101)
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Elenbaas noted that the thermal conductivity is independent of the vapour pressure and that the
axis temperature is a weak function of pressure, input power and diameter. In a first approximation
the conduction losses per unit length can therefore be assumed to be independent of the input
power. The input power per unit length at the wall can be written as

Pdis (R) = Pcond (R) + Prad (R) , (2.102)

with R the radius of the discharge tube. Between the centre and the boundary of the hot centre
and the cooler outer mantle, r0, all power is dissipated. From this point on only absorption will
occur. The radiation losses at the wall are proportional to the radiation at r0 as

Prad (R) = αPrad (r0) , (2.103)

with α the transmission of the outer mantle. The radiation losses can thus be written as

Prad (R) = α (Pdis − Pcond (r0)) . (2.104)

The Pcond (r0) term is an estimate of the conduction losses of the hot centre to the outer mantle.
The Pdis term can be written as

Pdis = Pin − Pel
Lel

, (2.105)

with Pin the input power, Pel the electrode losses and Lel the electrode separation.
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Chapter 3

The model

In this chapter the solver for the one dimensional transport equations will be discussed. After
that the implementation of the transport equations is covered.

3.1 Transport solver
In this work a solver is used that is derived from the Plasimo team. It is also used in the course
’Computational plasma physics’ [27]. This code was converted from C++ to Matlab. The Matlab
models have recently been added to extend this course.

The code uses a fluid description of the plasma and is capable of solving a generalized trans-
port equation. In such a description different transport equations can be solved with the same
code expressed in a general variable which can for example represent a density, a velocity or a
temperature. This general equation is given by

∂ (αΦΦ)
∂t

+∇ · ΓΦ = SΦ = Sc + SpΦ, (3.1)

with Φ the generalized variable which will be called ’phi variable’ from now on, αΦ the time
variation constant, SΦ a source term which can be written as the sum of a constant source term
Sc and a source term which is proportional to the phi variable Sp and ΓΦ the generalized flux.
The generalized flux is given by

ΓΦ = βΦWΦΦ− λΦ∇Φ, (3.2)
with βΦ the velocity proportionality constant, WΦ the generalized velocity and λΦ the general-
ized conductivity term. The velocity is defined on the boundary points while the generalized
conductivity is defined on the nodal points.

For the numerical solution of equation 3.1 a discretization is required. In this case a discretiza-
tion with equally sized control volumes is used. Each control volume contains a grid point at the
centre of its volume. These points are called nodal points. Additionally on the outer left and outer
right boundaries of the grid an extra nodal point is placed. That means that for a grid with n
control volumes there will be n+ 2 nodal points. Points on the boundaries of a control volume are
called boundary points. There are n+ 1 boundary points. For clarification the discretized grid is
shown in figure 3.1.1.

The time independent phi equation given by

∇ · (βΦWΦΦ− λΦ∇Φ) = SΦ = Sc + SpΦ, (3.3)

can be discretized. In control volume np this discretization is given by

anpΦnp = aLΦL + aRΦR + b, (3.4)

with the indexes L and R referring to the control volumes at the left and the right of control
volume np. The constants anp, aL,aR and b can be expressed as a function of the parameters βΦ,
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1 2 3 n n+1 n+2

1 2 3 n-1 n n+1

Nodal points (black)

Boundary points (white)

Figure 3.1.1: Grid discretization. Nodal points are shown in black, boundary points in white.

WΦ, λΦ,Sc, Sp, Vnp, δi,np and Ai,np. The volume of control volume np is given by Vnp, δi,np is the
distance between the nodal points i and np and Ai,np the surface area between control volumes i
and np. Boundary conditions can be applied by setting the constants anp,aL,aR and b in the most
outer nodal points (1 and n+ 2). The system of n+ 2 equations can then be solved with the Tri
Diagonal Matrix Algorithm (TDMA) to obtain the Φ values on every nodal point. More details
about the solution procedure can be found in the syllabus [27].

3.2 Implementation
In this section is shown how the energy balance equation is translated into the generalized phi
equation. Then is shown how the phi equation terms are expressed in transport constants and
what literature values have been used. After that the method of calculating the interaction of the
radiation field with the gas is discussed for a cylindrical geometry.

3.2.1 Transport equations
The energy balance given by

∇ · (−λ∇T ) = σeE
2 − qrad, (3.5)

can be written as a phi equation by comparing both equations

∇ · (βΦWΦΦ− λΦ∇Φ) = SΦ = Sc + SpΦ. (3.6)

The non-zero values are Φ, λΦ and SΦ which are given by

Φ = T, (3.7)

λΦ = λ = λc + λr, (3.8)

Sc = σeE
2 − qrad. (3.9)

The boundary conditions for the energy balance in a cylindrical geometry are given by

∂T

∂r

∣∣∣∣
r=0

= 0, (3.10)

T (R) = Twall, (3.11)

with Twall the temperature of the discharge tube wall.

3.2.2 Transport constants
The calculation of the axial velocity according to equation 2.29 requires the input of a dynamic
viscosity. For the lamps investigated in this project it may be assumed that mercury dominates
the transport coefficients which means that the dynamic viscosity of the gas can be approximated
with the dynamic viscosity of mercury. Experimental results from Svehla [28] in the temperature
range of 200-5000K where used to make a third order polynomial fit. The fit is shown in figure
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Figure 3.2.1: Dynamic viscosity of mercury as a function of temperature. A third order polyno-
mial fit was made.
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Figure 3.2.2: Thermal conductivity as a function of temperature. An extrapolation of the litera-
ture data was made with a local cubic fitting procedure.

3.2.1. Extrapolations up to 6000K are required in a pure mercury lamp. For metal-halide lamps
the extrapolated temperature range is lower due to lower axis temperatures.

The thermal conductivity of the gas is also approximated by the thermal conductivity of mer-
cury. Again experimental results from Svehla [28] where used. This time matlab’s one dimensional
interpolation function ’interp1’ was used. This function appeared to give the most stable extrapo-
lation after 5000K since it uses a local cubic fitting procedure. The thermal conductivity is shown
in figure 3.2.2.

The calculation of the reactive conductivity is done according to the method of Butler and
Brokaw [14, 15]. This calculation requires a set of independent reactions. These reactions can not
be written as the sum of other reactions. An independent reaction is given by

∆Hi =
µ∑
k=1

nikHk. (3.12)

The Gibbs energy as a function of temperature for all species is acquired from Philips [24]. The
Gibbs energy G is related to the enthalpy by[

∂

∂T

(
G

T

)
p

]
= − H

T 2 . (3.13)
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Figure 3.2.3: 〈uQe−Hg〉 as a function of temperature. A ninth order polynomial fit function was
used.

In this work Rini’s [29] description of the reactive conductivity is followed who chose to write all
molecules as the sum of their atomic constituents. The stoicheometry matrix n , also required in
equation 2.41, is sorted in such a way that the first elements are the independent species and the
last elements are the dependent species. The matrix can then be written as

n =
[
I −BT
B I

]
, (3.14)

with I the identity matrix. The elements Bij are given by the number of dependent atoms of
species j which are present in independent molecular species i. Ionized species are considered as
molecular species where a deficit of electrons results in a negative value of Bij when j represents
the electron.

The calculation of the reactive conductivity requires an expression for the binary diffusion
coefficients. With equations 2.42 till 2.46 the diffusion coefficients can be written as a function
of the cross sections for neutral-neutral, neutral-charged and charged-charged interactions. These
cross sections require input for the interaction radius Ri which was acquired from Philips [24]
and the polarizability α. The atomic polarizablities were obtained from Patil [30]. The molecular
polarizabilities were estimated as the sum of the atomic polarizabilities. This approximation is
necessary since no molecular polarizabilities are available. The impact of this approximation on
the reactive conductivity is small since the molecular partial pressures are low in the centre of the
discharge and the diffusion coefficient is only dependent on the square root of the polarizability
for neutral-charged interactions.

The electrical conductivity can also be approximated to be completely determined by mercury
as

σe = nee
2

menHg 〈uQe−Hg (u)〉 . (3.15)

The elastic momentum transfer cross section of mercury with electrons, Qe−Hg (u), was taken from
the Landolt-Bornstein database who obtained their data from Buckman and Elford [31]. This
cross section was multiplied with the velocity and averaged over the Maxwell-Boltzmann velocity
distribution. By using the matlab interpolate function the averaged cross section was calculated
till 10000K with steps of 100K. The resulting fit for 〈uQe−Hg〉 as a function of temperature is
shown in figure 3.2.3.

3.2.3 Radiative transport
In section 2.4.3 it was shown how the radiance of a ray with an arbitrary direction vector changes
due to interaction with the gas in a control volume. In this section a method is described which is
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used to calculate the radiative energy transport in a cylindrical geometry. It is called raytracing.
The method samples the evolution of the radiance along a set of rays in multiple directions through
the discharge. This method is similar to the method used by van der Heijden [9].

Previously in section 3.2.3 was shown that the radiative flux can be calculated as

Φ = I~s · ~AdΩ = I ~dΩ · ~A, (3.16)

with I the radiance, ~A the area of the control volume the ray passes through and ~dΩ the solid
angle covered by the ray in direction ~s. The radiative flux passing through a small area ~dA on the
surface of a cylindrical shell can be discretized by following the evolution of the radiance along a
few rays. The direction vectors are chosen in a way that all rays originate on a boundary point
and form a tangent line to a different nodal point. These tangent lines are only drawn for nodal
points with a smaller radius than the radius of the boundary point. The first nodal point is not
included since it represents no volume. The discretization of the radiative flux through ~dA for the
two boundary points with the largest radii is shown in figure 3.2.4.

Azimuthal symmetry is used to reduce the number of rays required to cover the total angle in
the plane. For both cases the rays can be rearranged by making use of azimuthal symmetry. The
result is shown in figure 3.2.5. In this figure is shown that rays originating on the outer boundary
point follow the same path as rays originating on other boundary points. The number of rays
required to sample the radiance is thus reduced to the number of control volumes. The distance
through a control volume ∆sj,i shown in figure 3.2.7 for rays in a horizontal plane is given by∆sj,i =

√
R2
i − r2

j −
√
R2
i−1 − r2

j i > j

∆sj,i = 2
√
R2
j − r2

j i = j
, (3.17)

with j the nodal point number with the smallest radius the ray passes through and i the nodal
point number indicating in what control volume this distance is calculated. R is used to represent
the radius of the boundary points and r is used for the radius of the nodal points.

In a real lamp there will also be rays with a different zenith angle θ. This angle is discretized
as

θt = tmax − 0.5− t+ 1
tmax − 0.5

π

2 , (3.18)

with 1 ≤ t ≤ tmax and tmax the total number of points used for the discretization of θ. Only the
upper half of the zenith angle is considered due to the availability of a symmetry plane at θ = π/2.
The discretization was made in such a way that no ray has a zenith angle of zero. The first zenith
ray has a zenith angle with a value of π/2 and covers the part of the zenith angle which lies half
above and half below the symmetry plane. An image of the zenith angle points is shown in figure
3.2.6. The distance through a control volume ∆sj,i can now be expressed as∆sj,i =

√
R2

i
−r2

j
−
√
R2

i−1−r
2
j

sin(θ) i > j

∆sj,i = 2
√
R2

j
−r2

j

sin(θ) i = j
, (3.19)

The calculation of the radiative flux also requires the calculation of the inner product between the
normal of the area of the control volume and the ray. The angle in the plane αj,i can be expressed
as

sin (αj,i) = rj
Ri
, (3.20)

with the indices j and i defined similar to the indices in ∆sj,i. In figure 3.2.7 the calculations of
αj,i and ∆sj,i are clarified.

The radiative flux going through area ~ndA can be written as

~dΦ = I (~n · ~s) dAdΩ. (3.21)

33



3.2. IMPLEMENTATION CHAPTER 3. THE MODEL

(a) (b)

Figure 3.2.4: Discretization of the radiative flux at a point on the largest (a) and second largest
(b) boundary point. The nodal points are shown in dotted lines and the boundary points are shown
in full lines. A red line shows the direction vector. The direction vectors of the rays are chosen in
such a way that every ray is a tangent line to a different nodal point. The black lines preceeding
the red lines in figure b show were the lines used for the sampling of the second shell originated.
The green lines show the sampled angle in the cylindrical plane.

(a) (b)

Figure 3.2.5: Rays emerging at different boundary points can all be rearranged to the same set
of parallel rays. In figure a the rays emerging at the outer shell are shown and in figure b the rays
that emerge at the second largest shell are shown. The rays in figure a and in figure b follow the
same path. This means that the number of rays required to sample the radiance is reduced.

34



CHAPTER 3. THE MODEL 3.2. IMPLEMENTATION

θ

Figure 3.2.6: The red arrows indicate how the zenith angle has been discretized. All possible rays
with an angle between the adjacent black dots are represented by the red arrow. The ray at θ = π/2
covers a zenith angle that is half above and half below the symmetry plane.
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Figure 3.2.7: The distance a ray travels between control volumes is given by the line segment
between the red dots. For clarification the definition of the nodal and boundary points is included.
The curved blue lines indicate the angle between the normal of the area of the control volume and
the ray.
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The normal vector ~n and the ray’s direction vector ~s can be expressed in cartesian coordinates as

~n = cosαx̂+ sinαŷ, (3.22)

~s = sinθx̂+ cosθẑ. (3.23)

The dot product is thus given by sinθcosα. The solid angle can be written as

dΩ = sinθdθdα. (3.24)

The radiative flux can now be rewritten as

~dΦj,i = 2 · 2πRi∆zIsin2 (θ) cosαj,idαj,idθdν. (3.25)

This expression can be rewritten by taking the derivative of equation 3.20 to the nodal point
coordinate as

cosαj,idαj,i = drj
Ri

. (3.26)

The result is
d~Φj,i = 2 · 2π∆zIsin2 (θ) drjdθtdν (3.27)

The first factor 2 is the result of the application of azimuthal symmetry since the integration from
−Rwall till Rwall is rewritten as the integral from 0 till Rwall . The contribution of ray segment i
belonging to ray j can be calculated by integrating from one boundary point to the next boundary
point. This contribution to the power density is given by

dQj,i =
ˆ Ri

Ri−1

1
V

~dΦj,i
drj

drj = 4π∆z∆Ij,i,ν (θ) sin2 (θ) (Rj −Rj−1) dθtdν
π
(
R2
i −R2

i−1
)

∆z
. (3.28)

Since all boundary points have an equal spacing Rj−Rj−1 can be rewritten as ∆R. The contribu-
tion to the control volume with nodal point number i is given by summing all contributions from
all ray’s that reach this control volume. These contributions are given by

dQi =
4πsin2 (θ) ∆R

∑j=i
j=2

(
∆Ifirstj,i,ν (θ) + ∆Isecondj,i,ν (θ)

)
dθtdν

π
(
R2
i −R2

i−1
) , (3.29)

with ∆Ifirstj,i the contribution from the first time that ray j passes through control volume i and
∆Isecondj,i the contribution from the second passage. The total contribution is given by integrating
over the frequency and the zenith angle. The integral over the zenith angle uses a symmetry plane
to write

´ π
0 dQi as 2

´ π/2
0 dQi. The total contribution is given by

Qrad =
ˆ ˆ

d2Qi
dθdν

dθdν =

´∞
0
´ π/2

0 8πsin2 (θ) ∆R
∑j=i
j=2

(
∆Ifirstj,i,ν (θ) + ∆Isecondj,i,ν (θ)

)
dθdν

π
(
R2
i −R2

i−1
) ≈

(3.30)∑tmax

t=1
∑νmax

ν=1 8πsin2 (θt) ∆R
∑j=i
j=2

(
∆Ifirstj,i,ν,t + ∆Isecondj,i,ν,t

)
π
(
R2
i −R2

i−1
) .

3.3 Emission
In this section the calculation of the emission of atomic radiation and electron-mercury Bremsstrahlung
is discussed. The atomic radiation is calculated as

j = hν

4πAnuφ (ν) , (3.31)
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with the density of excited particles given by

nu = ntot
gu
Z
exp

(
− Eu
kBT

)
. (3.32)

The spectroscopic constants, ν, gu, Eu and A, are taken from the NIST database [39] or the
database from the university of Hannover [40]. The database from the university of Hannover is
only used when the parameters are unavailable on the NIST database. The partition function Z
is determined as a function of temperature via the NIST database.

The line profile requires a discretization of the spectral grid. For every line a spectral interval
is chosen manually. This interval is divided in equal blocks. The centre of each block contains the
spectral position of that block. This grid is similar to the discretization of the spatial positions
shown in figure 3.1.1. The nodal points are the equivalent of the spectral position and the difference
between the boundary points determines the ∆ν corresponding to that spectral position. Some
lines have an increased density of spectral points near the unperturbed wavelength to make sure all
details of the line centre are correctly taken into account. When the spectral positions of multiple
lines overlap all equal spectral positions are removed. For the remaining spectral points the new
spectral boundary points are calculated. The spectral positions are recalculated to make sure that
these points are placed in the centre of the new blocks. The emission of any line is calculated on
all spectral points of all lines which overlap either directly or indirectly.

The emission of electron-mercury Bremsstrahlung is calculated according to Lawler [?, ?]. He
expressed the emission as

jBremm = Kν,T IBBnenHg, (3.33)

with Kν,T a proportionality constant tabulated as a function of frequency and temperature, IBB
the blackbody function, ne the electron density and nHg the mercury density. The Bremsstrahlung
is calculated analytically. This radiation is optically thin which means only a small error is made
when Bremsstrahlung is not available for absorption.
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Chapter 4

Modeling results

In this chapter the simulation results for the single salt lamps are shown. First the model cali-
bration is considered. After that the results for the single salt lamps are shown. A comparison
between the simulated and measured spectra and the predicted and experimentally determined
energy balances is made in chapter 7.

The total amount of mercury and metal halides in the lamp is known. The lamps are saturated
with salts. This means that the coldspot temperature determines what amount of metal halides is
actually available in the gas phase. The coldspot temperature is unknown for all lamps. Therefore
the density profiles can not be calculated accurately and will be estimated.

The reactive conductivity is currently not included for the simulations which contain iodide
species. Adding the reactive conductivity is expected to result in a slightly lower axis temperature.
The effect will be small since the diffusion coefficients are relatively low due to the high mercury
pressure.

It is important to note that the mercury simulation was calibrated for the visible radiation
only. The ultraviolet radiation in mercury lamps is crucial for the radiative energy transport
and thus has a significant impact on the energy balance. The sodium iodide simulation was only
calibrated for the self reversal width of the sodium D-lines. The thallium iodide and indium iodide
simulations are not calibrated at all. As a consequence the results for the thallium iodide and
indium iodide simulations are less accurate than for the mercury and sodium iodide simulations.

4.1 Model verification
In this section the results of the simulations will be shown for the 250W mercury lamp and the
70W and 400W SON lamps. All of these lamps can be considered one dimensional. A SON lamp
contains both mercury and sodium but no iodide.

4.1.1 250W Mercury lamp
The 250W mercury lamp’s discharge tube has a radius of 7.75mm and an electrode separation of
58mm. The heigth to diameter ratio is approximately four. The lamp can therefore be considered
one dimensional. The mercury pressure is around 5 bar.

This lamp was measured at Philips OCM. The calibrated visible spectrum was used to deter-
mine the broadening constants of the 404, 436 and 546 nm lines. The broadening constants of
these self reversed lines1 were chosen such that the energy of the simulated visible lines matched
the measured energy. The broadening constants of the resonant 185 and 254 nm lines were tuned
to obtain the correct energy in the 577 and 579 nm lines. Since these lines are optically thin and
therefore not self reversed the line shape has no influence on the energy in these transitions. In

1Self reversed lines have a lower radiative output in the line centre than in the line wings because part of the
radiation from the line centre is absorbed in the outer mantle.
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LTE at a given mercury pressure the energy in these lines is solely determined by the temperature
distribution. The shape of the resonant lines has the largest influence on the temperature distri-
bution therefore their broadening constants are adjusted. As an additional restriction the shape
of the 254 nm line adjusted to make sure that is resembles the shape measured by Stormberg [43].

The simulated mercury side-on spectra for the ray going through the centre control volume
are shown in figures 4.1.1-4.1.3 for several atomic transitions. The resonant lines have a red wing
which is severely broadened by van der Waals interactions. The radiative output from the left
wing and the line centre of the 185 nm line are negligible. The radiation from these wavelengths
follows the blackbody radiance almost perfectly due to the high optical depth. As indicated in
eq 2.57 the low temperature near the wall and the small wavelengths decrease the blackbody
radiance which increases the optical depth. The evolution of two distinct spectral points for the
185 nm line for the ray going through the centre control volume are shown in figure 4.1.4. The
spectral area close to the line centre is able to follow the radiance of a blackbody. Just beyond the
centre of the discharge a point is reached where the radiance exceeds the radiance of a blackbody.
Along the remaining path of the ray more radiation is absorbed than emitted. Further away from
the line centre the optical depth is smaller because the line profile has decreased. The radiance
therefore increases slowly. The point where absorption is dominant is reached close to the wall.
For resonant transitions in this lamp the optical depth increases at positions closer to the wall
because the temperature decreases. As a result the mercury density increases. Therefore close to
the wall the radiance decreases most for wavelengths far away from the line centre. The reasoning
is as follows:

τ ∼ φ (λ, T )nHg
exp

(
hc

λkBT

)
− 1

exp
(
Eu

kBT

) , (4.1)

φ (λ, T ) ∼ C6n
2
Hg λ� λ0, (4.2)

nHg ∼
pHg
T

, (4.3)

τ ∼
p3
Hg

T 3

exp
(

hc
λkBT

)
− 1

exp
(
Eu

kBT

) . (4.4)

At lower temperatures for a resonant transition the ratio of the exponents is equal to one. For this
lamp the convection limit was assumed which means the elemental pressure is constant through
the entire lamp. For mercury the elemental density is almost equal to the atomic mercury density
and can be assumed to be constant as well. This means the optical depth increases with decreasing
temperature.

For the spectral part closer to the line centre the broadening calculated from impact theory is
dominant. For a transition where resonance broadening is most important the proportionality is
given by

φ (λ, T ) ∼ C3nHgexp

(
− El
kBT

)
λ� ∆λ1/2 (4.5)

τ ∼
p2
Hg

T 2

exp
(

hc
λkBT

)
− 1

exp
(
Eu+El

kBT

) , (4.6)

this shows that for resonant transitions the optical depth increases towards the wall since El = 0J.
For non-resonant transitions the optical depth decreases since Eu + El >

hc
λ . Similar expressions

can be derived for Stark and van der Waals broadening for impact theory. The optical depth for
Stark broadening always decreases towards the wall because of the decreasing electron density
and for van der Waals broadening the optical depth increases because of the increasing perturber
density.
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Figure 4.1.1: The 185 and 254 nm resonant mercury lines along a ray passing through the centre
of the discharge. The 185 nm line is completely absorbed in its left wing and in its line centre. Its
right wing survives because the maximum radiance, equal to the radiance of a blackbody source with
the axis temperature shown in red in the upper left corner, is much higher for these wavelengths.
The 254 nm line is self reversed and has also got a significantly broadened right wing.

Close to the wall LTE will be no longer valid. At these positions the radiance of a blackbody
at the gas temperature will not describe the ratio of emission to absorption accurately. A more
accurate value could be obtained by considering a two temperature system of heavy particles and
electrons. The density of excited states is determined by electron impact. The distribution of the
excited states can be approximated with a Boltzmann distribution with the electron temperature.
The equation of radiative transport can then be approximated to be a function of the radiance
of a blackbody at the electron temperature. In the centre of the discharge such a calculation will
result in similar values for the emission and the absorption. In the outer mantle of the discharge
the amount of radiation which is absorbed is currently overestimated for lines with a high optical
depth. For lines with a low optical depth the impact of a two temperature calculation will be
small since these lines do not have a significant interaction with the gas in the outer mantle.
The difference between the evolution of the radiance for an optical thin line and an optical thick
line is shown in figures 4.1.5 and 4.1.6. The isosurfaces of the radiance of the optical thick line
show significant curvature near the wall which indicates strong absorption. The isosurfaces of the
radiance of the optical thin line are straight lines near the wall. This means that in the outer part
of the discharge there is no interaction between the radiation and the gas.

The temperature distribution and the cumulative energy for radiation, conduction and ohmic
heating are shown in figure 4.1.7. The shape of the temperature distribution is similar to the
profiles shown by Elenbaas [6] for different mercury discharges. The calculated axis temperature is
5800W. A wall temperature of 900K was taken from Stormberg and Schäfer [43]. The cumulative
energy transported as radiation decreases from a certain radius. This radius is called r0. At this
radius more radiation is absorbed than emitted. The absorption of radiation reaches a maximum
and then slightly decreases towards the wall. The maximum in the amount of radiation that is
absorbed for a given wavelength occurs at the position where the gradient with respect to the
blackbody curve is largest. Beyond this radius the absorption of radiation decreases because the
radiance in the line centre has already been decreased significantly. The smaller gradient of the
blackbody curve thus limits the absorption. In the most outer part of the discharge there is a
sudden increase of absorption. This is related to the low number of grid points used to cover
the strong temperature gradient near the wall. Such a sudden increase is unphysical and can be
removed by adding more grid points near the wall. Between the centre of the discharge and r0
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Figure 4.1.2: The self reversed 404 and 436 nm mercury lines. The broadening constants of both
lines were adjusted to obtain the correct energy in the lines.
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Figure 4.1.3: a) The self reversed 546 nm line is shown. Its broadening constants were chosen
such that the simulated energy matches the measured energy in the line. b) The optically thin
577 and 579 nm lines. The broadening constants of the resonant lines were matched to obtain the
correct energy output in the 577 and 579 nm lines.
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Figure 4.1.4: a) The evolution along a ray passing through the centre of the discharge for a
wavelength close to the unperturbed wavelength. The optical depth is high enough to follow the
blackbody curve. At a certain position when the ray is moving away from the centre of the discharge
the radiance of the ray is above the radiance of the blackbody curve. From this point on more
radiation is absorbed than emitted. b) The evolution along a ray passing through the centre of
the discharge for a wavelength far from the unperturbed wavelength. The optical depth is not high
enough to follow the blackbody curve. The position where the radiance of the ray is above the
radiance of the blackbody curve is reached at a point close to the wall. From this position on the
optical depth increases due to the strong temperature gradients.
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Figure 4.1.5: The evolution of the optical thin 577 and 579 nm mercury lines through the dis-
charge. The radiance of these lines increases untill a certain point where the optical depth is to
low to interact with the gas.
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Figure 4.1.6: The evolution of the 185 nm line through the discharge. The contour curves are
not symmetrical due to strong van der Waals broadening. The strong temperature gradient near
the wall causes significant reabsorption of radiation.

Energy (W)
UV 63.0
VIS 28.6
IR 37.0

Non-radiative losses 95.9
Electrodes 25.0

Total 249.6

Table 4.1.1: The output energy balance of the 250W mercury lamp. The ultraviolet is responsible
for a large part of the radiation. The infrared radiation is almost completely caused by Bremm-
strahlung. The only included atomic infrared transition is the 1014 nm line. Other infrared lines
were not included because no transition probability was available. The contribution of the remain-
ing infrared lines is in the order of the energy in the 1014 nm line as is indicated in table 6.1.2.
This means that only a small error is made by neglecting these lines.

almost all ohmic heating takes place. For radii larger than r0 the radiation losses are partially
converted to conduction losses.

The thermal conductivity as a function of the radius is shown in figure 4.1.8. The thermal
conductivity is dominated by collisional transport. The reactive conductivity in the centre of the
discharge due to ionization reactions is small since mercury has a high ionization potential. An
output energy balance is shown in table 4.1.1. A comparison can be made with an energy balance
of a 400W mercury lamp measured by Jack and Koedam [7]. Although the dimensions of this
lamp are not similar the normalized energy balance should still exhibit the same trends. The
ultraviolet output is in the order of 25%. This value is relatively large in comparison to the 18%
determined by Jack and Koedam. The visible contribution is approximately 11% where Jack and
Koedam determined 15%. The infrared is in both cases approximately 15%. Jack and Koedam
estimated the non-radiative losses with 45% while in this simulation these losses are around 38%.
The electrode losses are estimated with 10% while Jack and Koedam determined 7.5%. Since
both lamps are not completely the same these differences are acceptable.

The visible spectrum of this lamp is measured at Philips for multiple input powers ranging from
190W to 310W. The broadening constants of the simulation model were calibrated by matching
the energy in the simulated visible lines with the energy in the measured lines at an input power
of 250W. With these constants the energy in the visible lines was predicted for the other input
powers. The results are shown in table 4.1.2. The energy of the 404, 407 and the 435 nm lines are
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Figure 4.1.7: a) The calculated temperature profile for the 250W Hg lamp. The axis temperature
is 5800K and the wall temperature is 900K. b) The cumulative energy for radiation and conduction
losses and ohmic heating. The cumulative radiation losses are decreasing from a certain radius
on. This means that more radiation is absorbed than emitted. In the most outer point of the
discharge the absorption of radiation increases again. This sudden increase is unphysical and can
be removed by using more grid points near the wall.
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Figure 4.1.8: The thermal conductivity of the 250W mercury lamp. The reactive conductivity
makes a small contribution to the total thermal conductivity. In the centre of the discharge the
chemical transport of energy is caused by the species involved in the ionization reaction: Hg, Hg+

and e-.
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190W 210W 230W 250W 270W 290W 310W
M: 404+407 nm (W) 3.00 3.14 3.75 3.96 4.31 4.45 4.97
S: 404+407 nm (W) 2.90 3.27 3.64 4.02 4.39 4.76 5.14
M: 435 nm (W) 5.13 5.35 6.41 6.83 7.38 7.65 8.52
S: 435 nm (W) 4.91 5.50 6.09 6.69 7.28 7.88 8.47
M: 546 nm (W) 6.17 6.44 7.31 7.60 7.92 8.08 8.56
S: 546 nm (W) 5.74 6.35 6.97 7.60 8.20 8.81 9.41

M: 577+579 nm (W) 6.28 6.59 8.22 8.79 9.61 9.92 11.35
S: 577+579 nm (W) 5.68 6.66 7.64 8.66 9.71 10.78 11.87

M: total (W) 20.58 21.52 25.69 27.19 29.22 30.09 33.40
S: total (W) 19.23 21.78 24.35 26.96 29.58 32.23 34.89

Table 4.1.2: The results for the measurements and the simulations of the powerscan of the 250W
Hg lamp. In the first column an M indicates the measured energy and an S indicates the energy
acquired from the simulation. The output of the visible lines in the simulations were matched
with the measured output for the 250W measurement. With the same broadening constants the
predictions were made for the other powers. The total energy error is smaller than 1.5W for every
input power.

predicted accurately for all input powers. The differences between the simulated and measured
energy for the 546 nm line are approximately 0.8W for the highest input powers. For the 577
and 579 nm lines the the predictions are also less accurate. Since these two lines are not self
reversed the energy difference between measurement and simulation indicates that the predicted
temperature profile is not completely correct. The temperature profile is strongly dependent on
the broadening constants of the 185 and 254 nm lines. These differences indicate that a calibrated
ultraviolet spectrum is required to determine the broadening of the resonant mercury lines more
accurately. Despite the lack of knowledge of the exact shape of the resonant lines the energy in
the visible lines was predicted within 1.5W for various input powers.

4.1.2 SON lamp

In this section the results for the SON 70W and SON 400W lamp simulations are shown. These
lamps can be considered one dimensional. The radius of the SON 70W discharge tube is 1.9mm
and the electrode separation is 40mm. The radius of the SON 400W discharge tube is 3.75mm
and the electrode separation is 82mm. Both lamps have a ratio of the electrode separation to the
radius which is more than 20. The SON 70W lamp is used to calibrate the self reversal width of
the sodium D-lines.

The simulated and measured spectrum of the SON 70W lamp are shown in figure 4.1.9. The
setup was realigned but not recalibrated. The measured spectrum is thus not completely correct.
The sum of the spectral energy and the conduction losses can not account for 12.5W. Therefore
the broadening constants for the sodium D-lines were adjusted to match the self reversal width of
the measured spectrum. The sodium pressure in the discharge was estimated by using an empirical
relation from De Groot and van Vliet [11] given by

pNa = 2.7± 0.5√
R

2∆λB , (4.7)

with PNa the sodium pressure in kPa, R the radius of the discharge tube in mm and ∆λB the
width between the blue self reversal maximum and the line centre in nm. The sodium pressure is
estimated as (9.8± 1.8) kPa. The mercury pressure was adjusted to obtain agreement between the
measured voltage of 75.1V and the simulated voltage. The required mercury pressure is 1.3 bar.
The luminous efficacy η is a measure of the efficiency of the production of useful radiation. It can
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Figure 4.1.9: The simulated and measured SON 70W spectra. The measured spectrum can
not be used as an absolute comparison because the setup was realigned but not recalibrated. The
broadening constants of the sodium D-lines were adjusted to obtain the same self reversal width as
in the measurement.

be calculated as

η =
683.002

´∞
0 Prad (λ)V (λ) dλ

Pin
, (4.8)

with Prad (λ) the spectral power density, V (λ) the eye sensitivity curve and Pin the input power.
With the estimated pressures the luminous efficacy of the simulated lamp is 108 lumens/W. Ac-
cording to De Groot and Van Vliet [11] the luminous efficacy is around 90 lumens/W. The lumi-
nous efficacy determined from the measured spectrum is 86 lumens/W which indicates that the
realignment of the setup hardly changed the visible calibration.

The simulated temperature profile and cumulative integrated source terms are shown in figure
4.1.10. The thermal conductivity is shown in figure 4.1.11. The combination of the large amount
of radiation from the sodium lines and the increased reactive conductivity in the centre of the
discharge due to ionization of sodium decreases the temperature profile drastically in comparison
with the pure mercury lamp. The calculated axis temperature is 4600K and a wall temperature
of 1500K was assumed similar to the SON 400W lamp described by de Groot and van Vliet [11].
The cumulative radiated energy reaches a maximum at approximately 2/3 of the tube radius.
From this point on about 7W of radiation is absorbed.

The same broadening constants were used to predict the spectrum of the SON 400W lamp.
The spectrum is shown in figure 4.1.12. By using the same broadening constants as for the SON
70W lamp the self reversal width for the simulated SON 400W sodium D-lines is also in agreement
with the measured width. The simulated efficacy is 158 lumens/W. According to de Groot and
van Vliet [11] the efficacy of this lamp is 120 lumens/W. The output of most of the sodium lines
is overestimated similar to the energy in the SON 70W simulation. A better calibration of the
sodium broadening constants of the SON 70W model will therefore also improve the SON 400W
model. Including reflections from the discharge tube will specifically reduce the radiative output
of the self reversal maxima [24]. These are currently slightly overestimated.

The simulated temperature profile is similar to the SON 70W lamp. The axis temperature
is 4700K and the wall temperature is set to 1500K. According to de Groot and van Vliet [11]
the axis temperature for this lamp should be around 4000K. The overestimated axis temperature
explains the overestimated luminous efficacy. Since the axis temperature of the 400W SON lamp
is overestimated the axis temperature of the 70W lamp is most likely overestimated as well. The
mercury pressure in the 70W SON lamp may be overestimated too since the potential between
the electrodes was used as a fitting parameter. The potential is dependent on the temperature in
the centre of the discharge.
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Figure 4.1.10: a) The temperature profile of the SON 70W simulation. The axis temperature
is around 4600K and the wall temperature is set to 1500K. b) The energy dissipated as ohmic
heating and radiation or conduction losses. From approximately 2/3 of the radius of the discharge
tube the absorption of radiation is more dominant than emission.
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Figure 4.1.11: The thermal conductivity of the SON 70W lamp. In the centre of the discharge the
reactive conductivity is responsible for almost half of the total thermal conductivity due to ionization
reactions. Close to the wall the reactive conductivity increases again due to the formation of
molecular sodium.
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Figure 4.1.12: The measured and simulated spectra of the SON 400W lamp. The same self
reversal width for the simulated sodium D-lines is obtained as in the measurement. Similar to the
SON 70W lamp the output of most lines is overestimated.

PUV (W) (%) Pvis (W) (%) PIR (W) (%) Pnon rad at R (W) (%)
SON 70W sim 0.6 0.9 16.6 24 13.1 19 33.2 47
SON 400W sim 0.5 0.1 139 35 105 26 116 29
SON 400W [11] 1 0.3 123 31 84 21 169 42
400W Hg+Na [7] 2 0.5 118 30 80 20 176 44

Table 4.1.3: The energy balance for the simulated SON 70W and SON 400W. As a reference the
energy balance for the SON 400W determined by de Groot and van Vliet [11] is included as well.
Their IR losses only cover 780-2500 nm and also include thermal radiation from the electrodes and
discharge tube. The total power in these processes was estimated as 16 W and substracted from
the 100W which was measured. The sodium lamp measured by Jack and Koedam [7] has a radius
of 23mm and is 220mm long which means the height to radius ratio is smaller for that lamp.

An output energy balance for the simulated SON 70W and SON 400W lamps and the measured
SON 400W [11] and 400W sodium lamp [7] is shown in table 4.1.3. The energy balance also shows
that the predicted radiative output for the SON 400W lamp is slightly overestimated. The energy
balance of the 400W Hg+Na lamp is similar to the SON 400W lamp. The non-radiative losses
of the 400W Hg+Na lamp should therefore be representative for the SON 400W lamp. In the
simulation this contribution is currently strongly underestimated. The non-radiative losses at R
is the sum of the energy which is directly transported by conduction and the energy which is
absorbed. In the 400W SON lamp the energy which is directly transported by conduction is
62W. For the 400W Hg+Na lamp these losses are 66W according to Jack and Koedam [7] which
is in agreement with the simulation. The remaining 110W in their lamp is the result of absorption
of radiation. In the simulation only 44W was absorbed in the outer mantle. This indicates that
the broadening constants of the sodium D-lines should be reconsidered.

The energy balance of the SON 70W lamp deviates from the SON 400W lamp because of the
significant increase of the non radiative losses. For the SON 70W lamp the ratio of the surface
area to the volume of the tube is larger which enhances conduction losses. The radiated energy is
therefore lower.
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4.2 Hg
The pure mercury lamp contains 8.5mg of mercury. The mercury pressure is estimated from the
ideal gas law as

pHg = MHg

mHg

kBTeff
V

, (4.9)

withMHg the mercury dosage, mHg the mass of one mercury atom, V the volume of the discharge
tube and Teff the effective temperature defined by

Teff = V´ R
0

dV
T

. (4.10)

For a mercury discharge the effective temperature is estimated with 2500K. The resulting mercury
pressure is approximately 30 bar. The simulated temperature profile and cumulative integrated
source terms for this discharge are shown in figure 4.2.1. The temperature profile is more flat
in the centre of the discharge in comparison with the 250W mercury lamp. The higher pressure
in the 70W lamp increases the radiation losses while the conduction losses are independent of
pressure. As a result the radiative heating of the area close to the centre of the discharge is
stronger and the temperature profile is flattened. The predicted axis temperature is 5800K. The
simulated potential between the electrodes is 63.3V. A potential of 89.8V was measured. From
these values it is concluded that either the predicted temperature profile is too high which results
in an overestimated electron density or the mercury pressure is slightly underestimated.

The calculated integrated spectrum is shown in figure 4.2.2. The increase of mercury pressure
from 5bar for the 250W lamp to 30 bar for the 70W lamp strongly increases the van der Waals
broadening of the red wings of the resonance lines. The self reversal maximum of the red wing of
the 185 nm line moved from 207 nm for the 250W lamp to 226 nm for this 70W lamp. The far wing
of these resonance lines even extends somewhat into the visible part of the spectrum. Such strong
broadening is not observed in measured spectra which indicates that the van der Waals broadening
constant is overestimated. In comparison with the recommended values from Hartel et al [44] the
broadening constants for van der Waals broadening were already reduced by more than an order
of magnitude. The exact shape of the resonant mercury lines at high pressures is unknown. For
example Hartel et al [44] summarize multiple values for the van der Waals broadening constant
of the 254 nm line. The highest value is about 15 times larger than the lowest value. For the
resonance broadening constant of this line the highest reported value is 35 times larger than the
lowest value which shows how difficult it is to determine these constants.

4.3 Hg+NaI
The sodium iodide lamp contains 8.5mg of mercury and 5mg of sodium iodine. Due to the lower
temperature in the sodium discharge the mercury pressure has decreased. The mercury pressure
is estimated to be 25 bar which corresponds to an effective temperature of around 2100K. The
coldspot temperature is estimated to be 1200K. The convection limit is used to calculate the
density profile. At a temperature of 4000K the sodium pressure is 2.6 kPa which is about a
quarter of the sodium pressure in the SON lamps.

The simulated temperature profile and cumulative integrated source terms for this discharge
are shown in figure 4.3.1. The calculated axis temperature is approximately 5300K and the wall
temperature is set to 1375K. The axis temperature is higher in comparison with the SON lamps
because of the lower sodium dosage. The temperature profile near the wall first shows a small
increase of the slope and than a larger decrease of the slope. The increase of the slope is related
to the absorption of radiation. The subsequent decrease is caused by the formation of sodium
iodine. This limits the amount of atomic sodium that is available for absorption of radiation. The
cumulative radiation losses show that around 5W of radiation is absorbed in the outer mantle.

The calculated integrated spectrum for the sodium iodine discharge is shown in figure 4.3.2.
The mercury density and temperature are increased in comparison with the SON lamp. As a
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Figure 4.2.1: a) The simulated temperature profile of the pure mercury lamp. The axis temper-
ature is around 5800K and the wall temperature is set to 1200K. b) The cumulative integrated
source terms. Starting from the point where the cumulative radiated energy reaches a maximum
an additional 6.6W is absorbed in the outer mantle.
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Figure 4.2.2: The resonant lines for the 70W mercury lamp. In comparison with the 250W
mercury lamp the van der Waals broadening of the red wings of the resonant lines has increased
considerably.
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Figure 4.3.1: a) The temperature profile of the sodium iodine lamp. Near the wall the slope
of the temperature profile first increases slightly due to an increase in absorption of radiation.
Even closer to the wall the absorption decreases because of the sodium that is bound in molecular
compounds. Therefore the slope decreases again. b) The cumulative integrated source terms for
the sodium iodine discharge. Close to the wall the same increase and decrease of absorption can
be observed as in the temperature profile.

consequence the mercury radiation of several transitions in the visible can be observed. The much
higher mercury density also increases the broadening of the red wing of the sodium D-lines and
the 818-819 nm lines.

4.4 Hg+TlI
The thallium iodide lamp contains 8.5mg of mercury and 3.33mg of thallium iodide. Measure-
ments of the thallium spectrum show that the spectrum is dominated by continuum radiation.
This continuum reduces the axis temperature in such a way that the emission of mercury radiation
is no longer visible. Currently this continuum can not be taken into account in the model. This
section therefore only covers a thallium iodide simulation without molecular radiation. Due to the
low temperature the mercury pressure is estimated with 15 bar. At 4000K the thallium pressure
is 0.65 bar when a coldspot temperature of 1200K is used in the convection limit.

The simulated temperature profile and cumulative integrated source terms are shown in figure
4.4.1. The calculated axis temperature is around 5300K and the wall temperature is set to 1375K.
The temperature profile exhibits a similar shape in comparison with the temperature profile of
the sodium iodide lamp. Close to the wall the decay of the temperature profile decreases due
to absorption of radiation. When the thallium which is responsible for the absorption is bound
to form thallium iodide the amount of radiation which is absorbed decreases. As a result the
temperature profile decays faster near the wall. This ’bump’ in the temperature profile appears
at a lower radius in comparison with the sodium lamp. This is an indication that the amount
of radiation absorbed near the centre of the discharge is higher in the thallium lamp. In the
outer mantle only 3.8W of radiation is absorbed. In the measured thallium iodide lamp the
535 nm thallium line also absorbs a part of the continuum radiation which is emitted close in the
wavelength interval close to the line centre.

The calculated integrated spectrum is shown in figure 4.4.2. The resonance and van der Waals
broadening constants used for this simulation are all calculated theoretically. The spectrum is
dominated by thallium radiation. The thallium spectrum has two strong ultraviolet transitions at
352 and 378 nm. In lamps thallium is mainly used for the 535 nm line radiation. Measurements
show that thallium also has some significant infrared lines. These lines were not included because
no transition probability is available.
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Figure 4.3.2: The integrated spectrum for the sodium iodine lamp. In comparison with the SON
lamp the mercury lines are visible because of the higher mercury density and temperature. The
van der Waals broadening of the sodium D-lines is also more prominent.
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Figure 4.4.1: a) The temperature profile of the thallium iodide simulation. The temperature
profile is similar to the sodium iodide lamp. There is an increase of the slope of the temperature
profile close to the wall related to absorption and a decrease of the slope where the thallium atoms
are forming thallium iodide. b) The cumulative integrated source terms for the thallium iodide
lamp. In the outer mantle 3.8W of radiation is absorbed.
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Figure 4.4.2: The simulated thallium iodide integrated spectrum. The output of the 352, 378 and
535 nm thallium lines dominate the spectrum. Due to the high mercury pressure all of these lines
have a strongly broadened red wing.

4.5 Hg+InI
The indium iodide lamp contains 8.5mg of mercury and 3.33mg of indium iodide. Measurements
of the indium spectrum show that the amount of indium radiation is relatively low. Therefore it
is assumed that the same effective temperature which was used for the pure mercury lamp can be
used to estimate the mercury pressure in the indium iodide lamp. The mercury pressure thus is
taken to be 30 bar. By using a coldspot temperature of 1200K the indium pressure at 5000K is
2.6 bar in the convection limit. With this indium pressure the calculated spectrum is dominated
by indium radiation as shown in figure 4.5.1. The indium dosage in the simulation was therefore
reduced with a factor 10000 to obtain better agreement with the experiment. The indium dosage
had to be adjusted since the lowest available coldspot temperature still resulted in a pressure
which was too high. This strongly suggests that the specified amount of indium is incorrect. The
indium pressure with the adjusted dosage is 37Pa at 5000K. The measured calibrated spectrum
of the indium iodide lamp is shown in figure 6.4.1.

The simulated temperature profile and cumulative integrated source terms for the simulation
with the adjusted dosage are shown in figure 4.5.2. The predicted axis temperature is 5700K and
the wall temperature is set to 1375K. The temperature profile is more flat in comparison with the
sodium iodide lamp. This difference is caused because the indium iodide spectrum is dominated
by mercury radiation. The optical depth of this radiation is very high which means absorption
already takes place close to the centre of the discharge. In the outer mantle 6.7W of radiation is
absorbed.

The calculated integrated spectrum is shown in figure 4.5.3. The van der Waals and resonance
broadening constants of the indium lines are calculated theoretically. The model contains seven
indium transitions. These are the 256, 271, 303, 325.6, 325.9, 410 and 451 nm lines. All of these
lines are self reversed. None of these lines has a line centre which is completely absorbed similar
to the 185 and 254 nm mercury lines. The reabsorption of this radiation therefore mainly occurs
close to the centre of the discharge and is negligible in comparison with the reabsorption of the
mercury radiation.

4.6 Conclusion
Simulations of all four single salt lamps were made. The broadening constants of the species in the
discharge are important input parameters. These parameters have been obtained by comparing
simulated spectra with measured spectra. Such a comparison is possible for the pure mercury
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Figure 4.5.1: The spectrum for the indium iodide simulation with a coldspot temperature of
1200K. The radiation from the indium 271, 303, 325, 410 and 451 nm lines dominate the spectrum.
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Figure 4.5.2: a) The temperature profile of the indium iodide lamp. The temperature profile in
the centre is very flat. This is caused by strong radiative heating of the area close to the centre of
the discharge by absorption of mercury radiation. b) The cumulative integrated source terms. In
the outer mantle 6.7W of radiation is absorbed.
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Figure 4.5.3: The integrated spectrum for the indium iodide lamp for a reduced dosage. All
indium lines are self reversed. None of these lines has a line centre which is completely absorbed.
As a consequence most of the absorption of the indium lines takes place close to the centre of the
discharge. The reabsorption of the mercury radiation therefore controls the temperature profile.

lamp and the sodium iodide lamp. The lamps which are used for this comparion are the 250W
mercury lamp and the 70 and 400W SON lamps. For these lamps the reactive conductivity is
included in the model. This means that for these one dimensional lamps all important phenomena
are accounted for and a comparison of the spectrum is thus meaningfull.

Only for mercury broadening constants from literature are available. A comparison of the
constants from literature with the constants used in the model shows that the van der Waals
broadening constants for the resonant mercury lines are reduced considerably to obtain the correct
energy in the 577 and 579 nm lines. With these constants a good agreement was reached between
the measured and simulated energy in the visible mercury lines of the 250W mercury lamp. The
70W mercury lamp showed a strong broadening of the red wings of the resonant lines. The
mercury model should therefore be recalibrated with an ultraviolet spectrum.

The luminous efficacy of the 70W SON lamp could be predicted with an accuracy of 20%.
This lamp was only calibrated for the self reversal width of the sodium D-lines. With the same
broadening constants the luminous efficacy of the 400W SON lamp was predicted within 30%.
This difference is related to the uncertainty in the broadening constants of the sodium D-lines and
the mercury pressure in the 70W SON lamp.

Predictions for the sodium, thallium and indium iodide lamps are difficult because the coldspot
temperature is unknown and the reactive conductivity is not included. For the indium lamp the
species dosage differs from the specified dosage. For all of these lamps a temperature profile is
obtained which can be expected from these lamps. Depending on the optical depth of the dominant
radiating species there is a point in the discharge where the absorption of radiation is strongest.
At this point the gradient of the temperature profile increases. If the dominant radiating species
can be bound with iodide this absorption decreases rapidly which results in a decrease of the
temperature gradient.
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Chapter 5

Setup and methods

In this chapter the setup and the experimental methods are discussed. The setup will be exam-
ined first. The most important components are discussed in more detail. These components are
the integrating sphere and the fourier transform spectrometer. After that the calibration and
measurement procedure are considered. An error analysis for the calibrated spectra is given as
well.

5.1 Setup
In this section the setup is discussed in more detail. The primary components of the setup are the
integrating sphere and the fourier transform spectrometer. These components are discussed first
before the complete setup is addressed.

5.1.1 Integrating sphere
An integrating sphere measures the spectral radiant flux of a lamp. This is the spatially and
angularly integrated spectral radiance. First some basic integrating sphere theory is discussed.
After that the most important design considerations for a good integrating sphere are considered.
These design considerations are compared with the design of the integrating sphere in our setup.

5.1.1.1 Theory

Ideally an integrating sphere has a perfectly diffusive surface. Such a surface reflects the incoming
radiation with a cosine angular dependency as a Lambertian surface. The total radiant flux Φt
emitted by the surface of the sphere is given by

Φt = ΦL
∞∑
i=1

ρi (1− f)i = ΦLρ (1− f)
∞∑
i=0

ρi (1− f)i = ΦLρ (1− f)
1− ρ (1− f) . (5.1)

with ΦL the radiant flux of the source, ρ the reflectivity of the surface and f the ratio of the area
of the gap to the total area given by

f = Ag
A

= Ag
As +Ag

, (5.2)

with Ag the area of the gap and As the surface area of the sphere and A the total area given by
A = As +Ag. The total radiance of the sphere surface is given by [33]

Is = Φt
πAs

= ΦL
πA

ρ

1− ρ (1− f) = Φs
πA

M, (5.3)
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Figure 5.1.1: a) The integrating sphere contains a few foreign objects. These are a holder and
a baffle. The lamp can be mounted in the holder and the baffle prevents the radiation of the
lamp from leaving the sphere without any reflections. The detector is focused on the baffle. The
radiance of the baffle can be approximated with the radiance of the sphere surface. The solid angle
which is projected on the detector is a function of the zenith angles θ1 and θ2. These angles are
approximately equal. b) A picture of the integrating sphere. The cylindrical part and one concave
part are shown. A discharge tube was removed from the outer bulb and mounted in the holder.
The baffle shielding the gap is visible as well.

with M the sphere multiplier. It is important to note that this equation is derived for an empty
sphere. A real integrating sphere always contains foreign objects. As a result the predicted
radiance is overestimated. Equation 5.3 shows that the surface radiance increases in the following
cases:

• A smaller radius of the sphere which decreases the surface area

• A smaller ratio of the area of the gap and the area of the sphere

• A higher reflectance

The radiative flux that reaches the detector is given by

Φd = IsAdΩd, (5.4)

with Is the radiance of the sphere surface, Ad the focus area of the detector on the baffle and Ωd
the solid angle which is projected on the detector. The solid angle can be approximated by

Ωd =
ˆ θ

0
sinθ

′
cosθ

′
dθ
′
ˆ 2π

0
dφ = πsin2 (θ) , (5.5)

when it is assumed that the surface is a Lambertian radiator. The drawing presented in figure
5.1.1 defines the angle θ.

5.1.1.2 Design considerations

The performance of an integrating sphere is influenced by the baffle, the radius, the reflectivity
and the holder. These properties are discussed by Bergmann and Ohno [34]. A summary is given
here.

The baffle is an object that is placed before the gap to prevent a direct passage of the radiation
from the lamp towards the detector. This means that any radiation reaching the detector
is reflected at least twice inside the sphere. The introduction of the baffle results in an area
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behind the baffle which can not be reached directly by the radiation of the lamp. Such
an area also exists at the other side of the baffle. This area has no direct passage to the
detector. The presence of these areas disturbs the uniform integrating performance. The
baffle is coated with a reflective coating to minimize absorption.

The radius should be as large as possible since a larger radius reduces the relative area of foreign
objects like the baffle, the lamp and the lamp holder. The absorption of these objects disturbs
a uniform integrating performance. The size of the sphere is limited since an increase of the
radius reduces the surface radiance.

The reflectivity is dependent on the application. A high reflectivity, 0.95-0.98, is required for
reducing the spatial non-uniformity and increasing the surface radiance. A drawback of
higher reflectivity is the increased sensitivity to self absorption by foreign objects. Lower
reflectance, 0.8-0.9, is more stable in the long term since for these reflectivities the sphere
multiplier is less sensitive to small changes in the reflectance.

The holder can mount the lamp. The absorption of this object can be minimized using a high
reflectance coating.

5.1.1.3 The integrating sphere

The integrating sphere used for the experiments described in this report consists out of three
sections. Two sections are concave parts and the section in between is cylindrical. The cylindrical
part has a 14 cm radius and a height of 10 cm. A hatch is made in one of the concave parts. This
is where the lamp can be mounted in the sphere by placing it in the holder.

The coating of the sphere is chosen to ensure measurements in a wide spectral range. An
aluminium coating is used since aluminium has a good reflectivity in the visible and the infrared.
Prior to the coating the inner surface of the sphere was made diffuse by pearl blasting it.

A large amount of radiation is absorbed by the sphere. Measurements in the infrared require a
setup with a stabilized temperature. Therefore the sphere is made of a 4mm thick wall of copper
to ensure a good thermal conductivity. A system of square tubes is wound around the sphere as
a temperature regulation system. Square tubes are chosen to maximize the contact area of the
temperature regulation system with the sphere. By pumping water through the tubes the sphere
can be maintained at a constant temperature with an estimated error of 0.1K. The baffle and
the holder are cooled with a separate system. The water flows through the baffle. The holder
is cooled from the outer surface of the sphere. The holder contains the electrical wiring which
provides the input power to the lamp. One rod of the holder also contains a thermo couple to
be able to measure the temperature at the top side of the rod. This temperature will be used to
estimate the conduction losses through the rods of the holder. A picture of the inner side of the
sphere is shown in figure 5.1.1.

5.1.2 Fourier transform spectroscopy
In this section the principles of Fourier transform spectroscopy are discussed. Fourier transform
spectroscopy, or FTIR, modulates every wavelength by a different frequency and obtains a spec-
trum by Fourier transforming the result. These modulations can be achieved with a Michelson
interferometer. A schematic drawing of the FTIR is presented in figure 5.1.2. The radiation in-
cident on the FTIR is divided in two beams by a beamsplitter. One of these beams traverses a
constant path. The path of the other beam is dependent on the position of a continuously moving
mirror. As a result both beams interfere. The detector thus measures an interferogram.

The interference of monochromatic radiation with wave number ν̃, spectral radiance I0 (ν̃) and
optical path difference x can be expressed as

I (x, ν̃) = 1
2I0 (ν̃) [1 + cos (2πν̃x)] . (5.6)
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Moving 
mirror

Detector

BMS

Figure 5.1.2: The path of the radiation inside the FTIR. The Michelson interferometer separates
the incoming beam with a beam splitter (BMS). One beam traverses a constant path while the
path length of the other beam is dependent on the position of the moving mirror. As a result an
interferogram is measured at the detector.

The varying part of the radiance can then be expressed as

I (x) = 1
2

ˆ ∞
0

I0 (ν̃) cos (2πν̃x) dν̃ =
ˆ ∞
−∞

B (ν̃) exp (i2πν̃x) dν̃, (5.7)

with B (ν̃) = 1
4I0 (ν̃). Therefore it is concluded that the radiance reaches a maximum for all

wavenumbers when the path difference is zero1. The varying part of the radiance is equal to the
Fourier transform of B (ν̃). This function can be calculated by taking the inverse Fourier transform
of the interferogram as

B (ν̃) = 1
2π

ˆ ∞
−∞

I (x) exp (−i2πν̃x) dx. (5.8)

In reality the interferogram can only be measured over a finite length L. The resolution of the
resulting spectrum can be approximated with ∆ν̃ ≈ 1

L . In an ideal case only one side of the
interferogram has to be measured since I (x) = I (−x). In general this relation is not valid due
to experimental imperfections [42]. Dispersion in the beamsplitter is an example of one of these
imperfections. These imperfections can be calculated by measuring a small double sided interval
around x = 0. When this information is applied in a one sided interferogram the measurement
time can be decreased or the resolution can be increased.

5.1.3 Setup
A schematic view of the complete setup is shown in figure 5.1.3. The integrating sphere surface is
cooled with circulating water. The holder and the baffle are cooled with a separate system. The

1The beamsplitter used in the FTIR has only one reflecting side. That means the reflections on the low pressure-
BMS interface are external and reflections on the BMS-air interface are internal . The externally reflected beam
is phaseshifted by π rad. The interferogram is therefore asymmetric and actually reaches a minimum at a path
difference of zero.
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Figure 5.1.3: The complete setup: The integrating sphere is kept at a constant temperature with
a cooling system. The holder and the baffle are cooled with a separate system. The lamp is operated
by a driver. The driver regulates the input power for the lamp as a function of the potential applied
to it. A power analyzer measures the lamp current. Simultaneously the lamp voltage is measured
at the positions indicated on the holder with green dots. The four red dots indicate the positions
where the temperature is measured. The complete path of the radiation from the sphere to the
FTIR is in a vacuum environment. The sphere reaches a low pressure of approximately 10−3 Pa
with a multistage roots pump. The FTIR is a separated vacuum system. Its pressure is maintained
at a few mbar.
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water flows through the baffle. The holder is cooled via conduction through the surface of the
sphere. The consequence is that a small temperature gradient exists across the rods of the holder.
The conduction losses are estimated by measuring the temperature at the top of one of the rods of
the holder. The temperature at the bottom of the rod is taken as the temperature of the cooling
water. Temperature measurements are also made at the baffle, the top of the sphere and a side of
the sphere to estimate temperature stability and temperature uniformity.

The lamp is operated by a driver. The lamp power supplied by the driver can be regulated.
The lamp voltage and the lamp current are measured with a power analyzer.

The sphere is placed in a vacuum vessel. The vacuum environment prevents corrosion of the
discharge tube and absorption of radiation. The vacuum vessel is kept at a pressure of a few
millipascal by a multistage roots pump. A tube connects the optical path of the FTIR and the
sphere with each other. The tube is a part of the vacuum vessel. The environment of the FTIR
is a separate vacuum system. Its pressure is kept at a few mbar.

Insulation material is used to built a box around the FTIR. Inside this box a heating system
is placed which regulates the temperature of the air surrounding the FTIR. This will improve
the stability of the FTIR temperature and makes it less sensitive to seasonal and day to night
variations of the laboratory temperature.

5.2 Measurement procedures
The sphere calibration procedure and the calibration sources are discussed first. Then the mea-
surement procedures along with the detectors and beamsplitters used to cover the spectral range
from 380 nm to 10µm are considered. After that an estimate of the error of the calibrated spectra
is given.

5.2.1 Calibration sources and procedures
No standard calibration procedure is present for integrating sphere measurements in the infrared.
A calibration requires a stable infrared source with a known output. Tests indicated that a
platinum ribbon was most stable. The radiative flux emitted by the ribbon is calculated using a
numerical model. The remaining part of the spectrum is calibrated with a halogen lamp. The
radiative flux of the halogen lamp is determined at Philips OCM calibration laboratories.

The spectral power can be determined from the measured signal at the detector. It is important
to note that each measured signal Sν̃ is an average of multiple individual measurements. Each
individual measurement is determined by taking the average of at least one hundred spectra. The
total number of spectra sampled to obtain Sν̃ is therefore in the order of a few hundred. The
measured signal at the detector can be expressed as

Sν̃,source = k1Φν̃,source + k2Φν̃,sphere (Tsphere) + k3Rν̃ , (5.9)

with kx a proportionality function, Φν̃,source the spectral power emitted by the source, Φν̃,sphere (Tsphere)
the spectral power emitted by the sphere and Rν̃ the spectral power emitted by objects outside the
integrating sphere. The proportionality function of the measured signal with the spectral power
of the source can be extracted by making a background measurement:

k1 = Sν̃,source − Sν̃,BG
Φν̃,source − Φν̃,BG

≈ Sν̃,source − Sν̃,BG
Φν̃,source

, (5.10)

where it was assumed that the spectral power of the source at the sphere temperature in the
background measurement can be neglected when compared with the spectral power of the source
in operation. A calibrated spectrum can be obtained as

Φν̃,lamp = Sν̃,lamp − Sν̃,BG
k1

= (Sν̃,lamp − Sν̃,BG)kν̃,ref , (5.11)

with Φν̃,lamp the calibrated spectral power, Sν̃,lamp and Sν̃,BG the measured signals of a lamp
turned on and a lamp turned off and kν̃,ref the calibration function defined as 1

k1
.
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5.2.1.1 Platinum ribbon

The calibration function for the spectral part calibrated with the platinum ribbon is defined as

kν̃,ribbon = Φν̃,ribbon
Sν̃,ribbon − Sν̃,BG

. (5.12)

The spectral power of the platinum ribbon, Φν̃,ribbon, is calculated with a numerical model. First
the energy balance for the ribbon is solved to obtain the temperature profile. After that the
temperature profile is used to calculate the spectral radiance.

The thickness and the width of the ribbon are small compared to its length. In the calculations
the ribbon can thus be considered as a one dimensional object. A numerical solution can be
obtained with equation 3.6. The energy balance for the platinum ribbon contains ohmic heating,
thermal radiation and conduction terms:

I2 ∆x
A
ρribbon = εribbonσ

(
T 4 − T 4

0
)
− λribbon∇2T, (5.13)

with I the current, ∆x the length of one control volume, A the cross section of the ribbon, ρribbon
the resistivity of platinum [37], εribbon the effective emissivity [35], σ is the Stefan-Boltzmann
constant, T0 the sphere temperature and λribbon the conductivity of platinum [36]. Convection is
neglected because the platinum ribbon will be measured in an evacuated integrating sphere. The
temperature profile can be calculated for different currents as shown in figure 5.2.1.

When the temperature profile is known the spectral radiance emitted by the surface of one
control volume can be calculated as

Φν̃,ribbon = π∆xp (x) ε (ν̃, T ) IBB (ν̃, T ) , (5.14)

with p (x) the perimeter at position x, ε
( ˜ν, T

)
the spectral emissivity [38] and IBB (ν̃, T ) the

spectral radiance of a blackbody. The spectral emissivity is only known for a few wavelengths.
Therefore the spectral emissivity is interpolated. The spectral emissivity can be related to the
effective emissivity as

εribbon (T ) =
π
´∞

0 ε (ν̃, T ) IBB (ν̃, T ) dν̃
σT 4 , (5.15)

where it was assumed that the surface is a Lambertian radiator. In general the integrated spectral
emissivity is not equal to the effective emissivity. Therefore the spectral radiance is corrected
with the ratio of the effective emissivity to the integrated spectral emissivity. The calculated
spectral power for several currents is shown in figure 5.2.1. The part of the spectrum that can
be calibrated with the ribbon is determined by two constraints. The first constraint concerns the
possibility of separating the measured background signal from the measured signal of the strip.
For wavenumbers below 1000 cm-1 the accuracy of this operation decreases rapidly. The second
constraint is that the spectral power of the strip is sufficiently high. For wavenumbers above
12821 cm-1 this criterium is no longer fulfilled.

5.2.1.2 Halogen lamp

The calibration function for the spectral part calibrated with the halogen lamp is given by

kν̃,halogen = Φν̃,halogen
Sν̃,halogen − Sν̃,BG

. (5.16)

The spectral power of the halogen lamp Φν̃,halogen is measured at Philips OCM calibration labo-
ratories. The spectral power is plotted in figure 5.2.2. The spectral part which can be calibrated
with the halogen lamp is limited by the sensitivity of the detectors and the transmittance of the
beamsplitters that are available. In this setup the halogen lamp can be used as a calibration source
until 26316 cm-1.
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Figure 5.2.1: a) The calculated temperature profile of the platinum ribbon is shown for 3 different
currents. b) The spectral power emitted by the platinum ribbon for 3 different currents. The spectral
power decays fast for high wavenumbers which means that a different calibration source is required
for the visible spectrum. The platinum ribbon is used as a calibration source in the spectral range
1000− 12821 cm-1.
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Figure 5.2.2: The spectral power of the halogen lamp used in the visible calibration. The spectral
range which is calibrated with the halogen lamp is 12821− 26316 cm-1.

5.2.2 Calibrated measurements
Measurements in the spectral range from 1000−26316 cm-1 require the usage of multiple detectors
and beamsplitters. In this section the detector and beamsplitter combinations that have been
used for a good coverage of the spectrum are discussed. The calibration function will be used
to demonstrate the accuracy of the calibration. The calibration function for the spectral part
calibrated with the platinum ribbon is made for multiple currents. Since the calibration function of
the system should not be dependent on the current sent through the ribbon this is a way of verifying
the accuracy of the calibration. The calibration function has a reciprocal proportionality with the
sensitivity which means that low values of the calibration function indicate a high sensitivity. For
every lamp measurement an estimate will be made for the conduction losses as well.

5.2.2.1 Far infrared

In this work the far infrared is defined as the spectral range from 1000− 2500 cm-1 which is equiv-
alent to 10− 4 µm. The measurements in the far infrared are made with a DLaTGS detector and
a KBr beamsplitter. A DLaTGS detector measures the potential of a crystal. This potential is
dependent on the spectral radiant flux incident on the cell. Small temperature changes influence
the polarization of the crystal. This principle is called pyroelectricity. In a background measure-
ment the polarization of the crystal is proportional to the temperature difference between the
integrating sphere and the detector. That means when both objects have the same temperature
no signal is measured.

The temperature of the DLaTGS detector in operation conditions is approximately 305K.
The sphere temperature is kept at an approximate temperature of 308K. This temperature is the
highest temperature which can be reached by the current temperature regulation system. Lower
sphere temperatures can not be used because the temperature of the DLaTGS detector should
always be lower than the integrating sphere to perform a correct background correction. When the
temperature of the sphere is below the temperature of the detector a dip appears in the infrared
spectrum. As a consequence the measurements are sensitive to the stability of the cooling system
of the sphere and the stability of the temperature regulation system of the spectrometer. Currently
the detector temperature is ineffectively kept stable by placing the FTIR in an environment with a
regulated air temperature. In the future this problem is reduced by cooling the DLaTGS detector
directly with a Peltier element.

The calibration function is shown in figure 5.2.3. The calibrations made with multiple currents
show the same calibration function. For wavenumbers above 2500 cm-1 the signal to noise ratio

64



CHAPTER 5. SETUP AND METHODS 5.2. MEASUREMENT PROCEDURES

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
0

10

20

30

40

50

wavenumber(cm−1)

ca
lib

ra
tio

n 
fu

nc
tio

n 
(W

/c
m

−
1 /S

ig
na

l)

 

 

I=10A
I=9.5A
I=9A

Figure 5.2.3: The calibration function for the DLaTGS detector and the KBr beamsplitter.
The calibration function was determined with the platinum ribbon which was operated at different
currents. The calibration function is the same for all currents. This combination is used for
1000− 2500 cm-1. Above 2500 cm-1 the DLaTGS sensitivity decays which results in a bad signal to
noise ratio and below 1000 cm-1 the systematic errors in the background correction are too large.

rapidly decreases. For wavenumbers below 2000 cm-1 the systematic errors in the background cor-
rection are increasing since the integrating sphere is not maintained at the exact same temperature
for the background and lamp measurements. This temperature error is estimated to be 0.1−0.2K.

The energy in the spectral part below 1000 cm-1 is estimated by integrating a blackbody curve
which was scaled to match the calibrated spectral point at 1000 cm-1. This is an accurate estimate
since the emissivity of the PCA is equal to one for this spectral part. The wall temperature used
in this extrapolation is 1300K.

5.2.2.2 Near infrared

The near infrared is defined in this work as 2500− 12821 cm-1 which is equivalent to 4− 0.78 µm.
This range is covered with the MCT and Si detectors. Both detectors are semiconductors. For
the MCT detector the principle of detection is the measurement of the resistance while for the Si
detector the current is measured. Both detectors are used in combination with a CaF2 beamsplit-
ter. The MCT detector is cooled with liquid nitrogen to minimize thermal excitations due to its
own temperature.

The MCT detector covers 2500−8500 cm-1 which is equivalent to 4−1.18 µm. The calibration
function for the MCT detector and CaF2 is shown in figure 5.2.4. Again the calibrations determined
for different currents provide the same calibration function. The MCT detector delivers a higher
sensitivity in parts of the spectrum calibrated with the DLaTGS detector. However the DLaTGS
detector is still prefered in this spectral area. In the far infrared the amount of thermal radiation of
the sphere is much larger than the infrared radiation emitted by the lamp. For the MCT detector
the background and lamp measurements therefore provide roughly the same amount of signal.
The DLaTGS detector is not able to measure most of the sphere radiation. With the DLaTGS
detector the difference between the amount of signal in the background and lamp measurements
is thus larger. This larger difference decreases the errors made in the calibration. The upper limit
of the spectral range calibrated with the MCT detector is set by the sensitivity of the detector.
From a certain wavenumber on the signal to noise ratio is not sufficient anymore to obtain an
accurately calibrated spectrum.

The Si detector covers 8500 − 12821 cm-1 or 1.18 − 0.78 µm. The calibration function for the
Si detector calibrated with the platinum ribbon is shown in figure 5.2.5. Again the calibration
functions are equal for all settings. The stability of the Si detector is not good for wavenumbers
below 8500 cm-1. This results in the undesirable situation with bad overlap between the calibrated
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Figure 5.2.4: The calibration function determined with the platinum ribbon and measured with
the MCT detector and CaF2 beamsplitter. The spectral part calibrated with these settings is 2500−
8500 cm-1. In this range the calibration function is the same for all currents. The spectrum is not
calibated with these settings below 2500 cm-1 because background and lamp measurements provide
approximately the same amount of signal. Therefore relative errors are large in the calibration
procedure. For high wavenumbers the accuracy of the calibration function is decreasing since the
MCT detector can not measure the weak platinum ribbon radiance.

spectrum measured with the MCT and the Si detectors. This makes a cross verification more
difficult. The upper limit of the spectral range is determined by the lack of sufficient signal from
the calibration source at wavenumbers above 12821 cm-1.

5.2.2.3 Visible

The visible part is defined as 380 − 780 nm. This part is calibrated with a halogen lamp and is
measured with a Si detector and a CaF2 beamsplitter. The calibration function for these settings
is shown in figure 5.2.6. The lower stability of the calibration function limits the range which
can be calibrated accurately to approximately 24000 cm-1 or 417 nm. That means a small part of
the visible spectrum is calibrated with a lower accuracy. Around 16000 cm-1 a disturbance of the
calibration function can be observed. This disturbance is caused by the laser beam which is used
to determine the position of the moving mirror in the FTIR. Part of the laser beam was removed
from the signal by placing an object in the beam path. The laser signal could not be removed
completely and therefore an interpolation is made for this small spectral interval.

5.2.2.4 Conduction

The conduction losses through the holder can be estimated by assuming a linear temperature
gradient. The bottom of the holder is kept at a constant temperature due to the temperature
regulation system of the holder. The temperature at the top of one of the rods of the holder
is measured. This temperature is also assumed for the top of the other cylindrical part. The
conduction losses qcond for both cylindrical parts can then be calculated as

qcond = −2λcopper
Ttop − Tsphere

L
πR2

holder, (5.17)

with λcopper the conductivity of copper, Ttop the temperature measured at the top of one of the
cylindrical parts of the holder, Tsphere the sphere temperature, L the length of the cylindrical part
and Rholder the radius of the cylindrical part.
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Figure 5.2.5: The calibration function for the spectral part calibrated with the platinum ribbon
and measured with the Si detector and CaF2 beamsplitter. The spectral range 8500 − 12821 cm-1

is calibrated with this detector. The accuracy of the calibration functions is decreasing above
12000 cm-1because the spectral radiance of the ribbon is very low in this spectral part.
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Figure 5.2.6: The calibration function for the spectral part which is calibrated with a halogen
lamp and measured with a Si detector and CaF2 beamsplitter. The stability of the calibration
function is decreasing at 24000 cm-1. A small part of the visible spectrum is therefore calibrated
with a lower accuracy. Around 16000 cm-1 the calibration function is disturbed by the alignment
laser beam of the FTIR. This signal is partly removed from the beam incident on the detector by
placing an object in the beam. Since this signal could not be removed completely this part of the
spectrum is interpolated.
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Figure 5.3.1: The relative error for the spectral range considered in this work. The calibration
errors made with the platinum ribbon increase towards the visible part of the spectrum. The
calibration error made with the halogen lamp is constant in the visible part of the spectrum. In
the far infrared additional errors are made because of the temperature stability problem of the
integrating sphere. In the ranges 7500− 8700 cm-1 and 11000− 12821 cm-1 the lower sensitivity of
the detectors limits the accuracy of the calibrated spectrum. Therefore a small additional error is
added in those ranges. Above 24000 cm-1 the sensitivity of the Si detector is decreasing.

5.3 Error analysis
In this section an estimate of the error of the calibration is made. The total relative error is sum-
marized in figure 5.3.1. The errors are caused by four factors. These factors are the temperature
stability of the sphere and DLaTGS detector, errors in the spectral radiance of the calibration
source, the reproducibility of the measured lamp signal and errors caused by a non uniform inte-
gration inside the integrating sphere.

The temperature stability is taken into account for wavenumbers up to 3000 cm-1. As indi-
cated in section 5.2.2.1 the measured signal of the DLaTGS detector is sensitive to variations
in temperature of the detector and the sphere. This error is estimated at 8% at 1000 cm-1

for the calibration measurement. This error is smaller in the lamp measurement because the
spectral radiance of the lamp is higher. The error in the lamp measurement is estimated as
2%. This amounts to a total error of 10%. The peak of the background signal is measured at
this wavenumber. For higher wavenumbers the measured background signal decreases. The
measured signal in the calibration and lamp measurements reaches a maximum at approx-
imately 2000 cm-1. The contribution of the error caused by a background correction thus
rapidly decreases. At 1250 cm-1 the total error is reduced to about 5%. At 1500 cm-1 the
error is expected to be around 2.5% and at 1750 cm-1 the contribution decreases to below
1.25%. From this point on a linear relation of the temperature stability error is assumed
until 3000 cm-1 where it is no longer important.

Errors in the radiance of the calibration source are caused by small errors in the literature
values of the platinum ribbon. The relative errors in the calculated spectral radiance of the
platinum ribbon are caused by four factors. One of these factors is caused by an error in
the predicted temperature profile of the ribbon. The other errors are caused by errors in the
spectral emissivity. These errors are caused by the interpolation of the spectral emissivity, a
different roughness of the platinum surface described in [38] and measurement errors of the
spectral emissivity.

• The estimated error of the temperature of the ribbon is 5K. The error of the radiance can be
calculated by taking the derivative of the blackbody function with respect to temperature.
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Figure 5.3.2: The relative reproducibility error for the platinum ribbon signal measured with the
DLaTGS detector and KBr beamsplitter. The relative error is below 2% for the calibrated range
given by 1000− 2500 cm-1.

The relative error can be written as

dIBB
IBB

≈ 100hcν̃
kBT

dT

T
. (5.18)

The temperature error is proportional to the wavenumber and increases from 0.5% at
1000 cm-1 to 5% at 13000 cm-1.

• The interpolation of the spectral emissivity values with a linear function is responsible for
an error of 1% for the entire range.

• The roughness of the platinum ribbon from Rowling [38] was slightly different from the
ribbon used for calibration. The literature set was measured with a root mean square
(RMS) peak-to-peak variation of 25 µm while measurements of the calibration ribbon gave
RMS peak-to-peak values of 40 µm. Rowling also measured platinum ribbons which were
glass-shot blasted to increase the roughness. From these measurements it is concluded that
the relative change is largest at 1000 cm-1 and decreases to a stable value at 4000 cm-1.
The error is estimated to be 2% at 1000 cm-1 since the roughness is still comparable to the
calibration ribbon. The error decreases linearly and reaches a constant value of 0.5% at
4000 cm-1.

• According to Rowling the temperature measurements required for the spectral emissivity
calculation were accurate up to 1%. The spectral error can be calculated with equation 5.18.
The error increases from approximately 0% at 1000 cm-1to 1% at 13000 cm-1.

The spectral radiance of the halogen lamp measured at Philips OCM calibration laboratories has
a relative error of 4% for the entire visible range.

Reproducibility errors are differences in measured signal when the same source is measured
with the same settings on a different time or date. The measured signal Sν̃ is an average of
individual measurements. These individual measurements in turn are an average of multiple
spectra. In general the individual measurements are made immediately after each other.
Their standard deviation divided by their average is a measure of the relative reproducibil-
ity error. The relative reproducibility error is investigated for all four parts of the spectrum
calibrated with different detectors, beamsplitters and calibration sources. This relative error
can be smoothed by averaging this error over a small wavenumber interval. The relative re-
producibility errors of these four parts for the calibration measurements are shown in figures
5.3.2-5.3.5.
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Figure 5.3.3: The relative reproducibility error for the platinum ribbon signal measured with the
MCT detector and CaF2 beamsplitter. The relative error is increases from 1% at 2500 cm-1 to 2%
at 7500 cm-1. The error increases linearly to 6% at 8500 cm-1 because the radiance of the platinum
ribbon is to weak to be measured with the MCT detector.
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Figure 5.3.4: The relative reproducibility error for the platinum ribbon signal measured with the
Si detector and CaF2 beamsplitter. The relative error is decreases from 6% at 8500 cm-1 to 1%
at 8750 cm-1. The increases linearly from 1% at 11000 cm-1 to 6.5% at 12821 cm-1 because the
radiance of the platinum ribbon is to weak to be measured with the Si detector.
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Figure 5.3.5: The relative reproducibility error for the halogen lamp signal measured with the
Si detector and CaF2 beamsplitter. The relative error is approximately 0% at 19000cm−1 and
increases to 2% at 24000cm−1. The error then increases linearly to 7% at 26361cm−1 because the
radiance of the halogen lamp is to weak to be measured with the Si detector and CaF2 beamsplitter.
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The random noise of the measurements made with the DTGS and Si detector are approxi-
mately 0.5% for both the lamp and calibration measurements. For measurements made with
the MCT detector the random noise is typically 1% of the total signal. It is assumed that
this error disappears when the total spectrum is integrated.
Parts of the spectrum are calibrated with a detector and beamsplitter combination which
are used at or beyond the limit of their intended range. For these spectral parts the er-
rors will be higher. Above 7500 cm-1 the MCT detector is not able to measure the weak
ribbon radiance accurately. The error is approximately 2% at this wavenumber. Due to
a higher sensitivity the Si detector is able to measure this signal up to the visible part of
the spectrum. However the Si detector can only measure accurately above 8750 cm-1 where
the error is reduced to 1%. The additional error is estimated to be 6% at 8500 cm-1. A
similar contribution is added between 11000 and 12821 cm-1 because the Si detector can not
measure the radiance of the ribbon accurately above 11000 cm-1. The error of the ribbon
measurement increases from 1% at 11000 cm-1 to 6.5% at 12821 cm-1. At 24000 cm-1 the
signal to noise ratio of the measurements made with the Si detector is decreasing. The last
part of the visible spectrum is expected to be measured with an error of 2% at 24000 cm-1

which increases to 7% at 26361 cm-1.

Not uniform integration errors are caused because radiation reaching certain areas of the
sphere surface can not leave the integrating sphere with two reflections. The path from
these areas towards the focus point of the detector on the baffle can not be reached. The
radiation therefore always requires at least one additional reflection. This decreases the signal
strength from the radiation radiated in these solid angles. The contribution from these areas
to the total signal is decreased by the sphere reflectance. The main contribution of the
radiance of the platinum ribbon is radiated normal to the surface of the longest part of the
ribbon. The halogen lamp mainly radiates normal to the axis of the coil and the single salts
lamps mainly radiate normal to the axis of the cylinder. The non uniform integration error
is neglected in the analysis since both the calibration sources and the lamps are mounted in
the sphere in a way that nearly all radiative output is facing these less sensitive parts of the
sphere. Almost all radiation therefore requires at least three reflections. It is assumed that
the contribution of the radiation emitted in the solid angles that can reach the detector in
two reflections is negligible.

Errors in the conduction calculation are caused by absorption of radiation by the holder
while the calculation only includes a conduction term. Emission of the holder can be ne-
glected at temperatures between 300−350K. The total errors in the calculation are estimated
to be 20%.
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Chapter 6

Experimental results

In this chapter the experimental results for the four single salts lamps are presented. All lamp
spectra are calibrated. For all spectra a short energy balance is made and an estimate of the
line and continuum radiation is given. In this work continuum radiation is defined as the sum
of thermal radiation and plasma continuum radiation. A qualitative estimate of the temperature
of the plasma at the lamp axis is obtained by comparing the spectral power of several mercury
lines. Switch off measurements were made to separate the thermal radiation from the plasma
radiation. After that the conduction losses per unit length are estimated with a powerscan. A
short introduction to these switch-off measurements is given first. After that the Jack-Koedam
theory is briefly summarized.

Switch-off measurements are quick low resolution measurements made after switching off the
lamp. The plasma radiation will disappear much faster than the thermal radiation of the discharge
tube. At a certain moment all plasma radiation has disappeared and only thermal radiation is
measured. The spectra containing only thermal radiation are extrapolated back to the time of
switching off the lamp. The result is the thermal radiation emitted by a burning lamp. The
ratio of the extrapolated curve to a reference measurement made when the lamp was still on is
multiplied with the calibrated spectrum to obtain the calibrated thermal radiation. It is assumed
that the radiation emitted in a wavenumber interval decays with an exponential function. For
every interval a different time constant τν̃ will be fitted with

I (ν̃, t) = I (ν̃, 0) exp
(
−t
τν̃

)
. (6.1)

Jack and Koedam [7] estimated the conduction losses in a lamp by measuring lamps at multiple
input powers. They introduce a position in the lamp which indicates the boundary of the hot centre
and the cooler outer mantle, r0, where the cumulative dissipated power is approximately equal to
the input power. From this point on only absorption will occur. The radiation losses at the wall
can then be written as

Prad (R) = α (Pdis − Pcond (r0)) . (6.2)

with α the transmission of the outer mantle. In this work only the plasma radiation measured
in the visible and infrared will be included in the Prad (R) term. The thermal radiation from the
discharge tube is subtracted from the infrared contribution. The ultraviolet radiation can not
be measured and is therefore not included. The Pcond (r0) term is an estimate of the conduction
losses of the hot centre to the outer mantle. The Pdis term can be written as

Pdis = Pin − Pel
Lel

, (6.3)

with Pin the input power, Pel the electrode losses and Lel the electrode separation. The electrode
losses are estimated with 10% of the nominal input power.
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Energy(W) Error(W)
IR (0.78-10 µm) 43.2 2.3

Visible (380-780 nm) 13.8 0.6
Far IR (>10 µm 0.7 0.1
Conduction 3.9 0.8

Total 62 4
Input 70.5 0.1

Table 6.1.1: The energy balance of the pure mercury lamp. About 9W of input power is unac-
counted for. The discrepancy is most likely caused because the ultraviolet radiation is not measured.
For mercury these ultraviolet contributions are significant.

6.1 Hg
In this section the calibrated spectrum, the switch-off measurements and the powerscan are shown
for the Hg lamp. This lamp will be used as a reference for the other single salt lamps since mercury
is still the main ingredient in these lamps.

6.1.1 Calibrated spectrum
The calibrated spectrum for the Hg lamp is shown in figure 6.1.1. An output energy balance is
given in table 6.1.1. Continuum radiation is defined as thermal radiation and plasma continuum
radiation. The continuum radiation can be obtained by interpolating the line radiation. In certain
cases the continuum interpolation exceeds the lamp radiation. In those cases the continuum
radiation is set to the spectral power of the complete spectrum. The continuum radiation is
shown in figure 7.1.2. The total amount of continuum radiation is 46W. The continuum radiation
can be subtracted from the total spectrum to obtain the line radiation. The total amount of line
radiation is approximately 11W. The energy in the mercury lines is shown in table 6.1.2. The
contributions of the most important lines in this spectrum are in the order of 2− 3W. These lines
are the 404, 436 and the 546 nm lines. The energy balance can not account for all of the input
energy. The ultraviolet could not be measured. This spectral part contains the energy which was
unaccounted for. Most of the unaccounted energy is emitted via the 185 and 254 nm lines.

A similar energy balance was made by Jack and Koedam [7] for a 400W mercury lamp. Their
lamp has a height to diameter ratio of about 4.5 while the single salt lamp has a height to diameter
ratio around 1. The conduction losses for the 400W lamp are therefore larger than for the single
salt lamp. Jack and Koedam measured 15% of visible radiation and 67% of infrared radiation.
The visible output of the mercury reference lamp is roughly 20% and the infrared output is
approximately 62%.

6.1.2 Thermal radiation
In this section the thermal radiation of the discharge tube is estimated with the switch-off pro-
cedure. The results of the switch-off measurements are shown in figure 6.1.2. For wavenumbers
above 2000 cm-1 the calibrated spectrum is multiplied with the ratio of the extrapolated signal to
the reference signal. Below this wavenumber it is assumed that all radiation is thermal radiation.
The total amount of thermal radiation is estimated as (26± 2)W. This is 37% of the input power.
Jack and Koedam [7] measured 52% of thermal radiation from their 400W mercury lamp. These
results are different because the 400W lamp has relatively larger conduction losses because of the
higher height to diameter ratio. The infrared discharge radiation is 24% for the reference lamp
and 15% for the 400W lamp. These differences are caused by the larger pressure in the reference
lamp. As a result the amount of Bremsstrahlung radiation is much larger in the reference lamp.
Most of the Bremsstrahlung radiation is radiated as infrared radiation.
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Wavelength(nm) Energy (W)
404 1.5
407 0.1
436 2.6
546 2.9
577 0.8
579 0.8
1014 0.6
1129 0.2
1359 0.1
1369 0.2
1395 0.1
1531 0.1
1692 0.1
1707 0.1

Table 6.1.2: The energy of the most important atomic lines for the pure mercury lamp. The
most important lines are the 404, 436 and 546 nm lines.
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Figure 6.1.1: The infrared and visible spectrum of the pure mercury lamp in the range 1000 −
26381 cm-1 are shown. The wavelength of the mercury lines are shown in black.
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Figure 6.1.2: The results of the switch-off measurements for the mercury lamp. Below
2000 cm-1all radiation is assumed to be thermal radiation. Above this wavenumber the ratio of
the extrapolated to the reference curve is multiplied with a calibrated spectrum. The total thermal
radiation is (26± 2)W.

6.1.3 Power scan
In this section an estimate is made for the conduction losses. The result for the power scan is
shown in figure 6.1.3. The proportionality constant α is equal to 0.53. This constant would have
a value closer to one if the ultraviolet could also be measured. The conduction losses from the hot
centre to the colder outer mantle are estimated as (10± 2)W.

6.2 Hg+NaI
In this section the calibrated spectrum, the switch-off measurements and the powerscan are shown
for the sodium iodide single salt lamp.

6.2.1 Calibrated spectrum
The calibrated spectrum for the sodium iodide lamp is shown in figure 6.2.1. For a comparison
with the pure mercury lamp both spectra have been plotted in the same graph. This plot is shown
in figure 6.2.2. The decreased radiation from the 546 and 436 nm mercury lines is a clear indication
that the axis temperature of the single salt lamp is much lower than that of the mercury lamp.
The differences in the height of the thermal radiation peak at 2000 cm-1 indicates that the wall
temperature of the sodium lamp is lower than that of the mercury lamp. The plasma continuum
radiation is similar for both lamps because the sodium pressure is negligible in comparison with
the mercury pressure. The amount of radiated visible energy is increased significantly due to the
sodium D-lines. The strong van der Waals broadening of the red wing provides excellent color
rendering in that part of the spectrum. The color rendering of the blue part of the spectrum is
barely affected by adding sodium.

An output energy balance is shown in table 6.2.1. The most important conclusion is that
the energy balance can account for the total input power. The ultraviolet contribution can be
neglected. Jack and Koedam [7] for example measured only 2W of ultraviolet radiation from a
400W lamp containing sodium and mercury. A fit was made to separate the continuum radiation
from the line radiation. This fit is shown in figure 6.2.3. The total amount of continuum radiation
is 42W. The continuum radiation for the mercury lamp and the sodium iodide single salt lamp is
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Figure 6.1.3: The powerscan of the Hg lamp. The proportionality constant α is given by 0.53
and the conduction losses are (10± 2)W.

similar. The higher thermal radiation for the mercury lamp explains the small difference between
both lamps. The total line radiation is estimated with 26W. An estimate of the contributions
of the most important atomic transitions is shown in table 6.2.2. From these tables it can be
concluded that the difference between the visible output of the single salt lamp and the mercury
lamp is solely caused by the sodium D-lines. The small difference in infrared output is caused by
the higher thermal radiation losses in the mercury lamp.
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Figure 6.2.3: The continuum radiation of the single salt lamp containing sodium iodide and
mercury. The total amount of continuum radiation is 42W. The total amount of line radiation is
approximately 26W.

6.2.2 Thermal radiation
The thermal radiation of the discharge tube is estimated with the switch-off procedure. The results
are shown in figure 6.2.4. For wavenumbers above 2000 cm-1 the thermal radiation is obtained
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Figure 6.2.1: The calibrated spectrum for the single salt lamp containing sodium iodide and
mercury. Sodium lines are labeled in blue and mercury lines are labeled in black. The sodium 589
and 589.6 nm lines are an example of strong quasi static broadening.
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Figure 6.2.2: The spectra for the single salt lamp containing sodium iodide and mercury and the
pure mercury lamp. The amount of thermal radiation of the Hg lamp is higher than the sodium
lamp; its wall temperature must be larger. The amount of plasma continuum radiation is similar
for both lamps. The lamp containing sodium emits much more visible radiation than the mercury
lamp because of the resonant sodium D-lines. The decreased emission from the 546 and 436 nm
mercury lines indicates that the axis temperature decreased significantly.
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Energy(W) Error(W)
IR (0.78-10 µm) 45.3 2.7

Visible (380-780 nm) 22.7 0.9
Far IR (>10 µm) 0.7 0.1

Conduction 3.7 0.7
Total 73 5
Input 71.2 0.1

Table 6.2.1: The energy balance for the single salt lamp containing sodium iodide and mercury.
For such a lamp the ultraviolet contributions can be neglected since the axis temperature is much
lower in comparison with a mercury lamp. The total energy is equal to the input power within the
experimental error.

Radiating particle Wavelength(nm) Energy(W)
Hg 404 0.4
Hg 436 0.9
Na 498 0.2
Hg 546 0.9
Na 568 0.8
Hg 577 0.2
Hg 579 0.3
Na 589 13.9
Na 616 0.1
Na 818 4.3
Hg 1014 0.2
Na 1140 1.7
Na 1846 0.4
Na 2208 0.2
Na 2349 0.1

Table 6.2.2: An estimate of the radiated energy per line. The most important lines are the
sodium D-lines. Other strong lines are the 818 and 1140nm lines.
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Figure 6.2.4: The switch-off measurements for the single salt lamp containing sodium iodide and
mercury. Below 2000 cm-1all radiation is assumed to be thermal radiation. Above this wavenumber
the ratio of the extrapolated to the reference curve is multiplied with a calibrated spectrum. The
total thermal radiation is (23± 2)W.

by multiplying the calibrated spectrum with the ratio of the extrapolated curve to the reference
measurement. Below 2000 cm-1 all radiation is assumed to be thermal radiation. The total thermal
radiation is (23± 2)W.

6.2.3 Power scan
In this section an estimate is made of the conduction losses. The results of the powerscan are
shown in figure 6.2.5. The proportionality constant α is given by 0.84. The conduction losses from
the hot centre to the colder outer mantle are estimated by (10± 2)W. The axis temperature of
the sodium iodide lamp is lower in comparison to the mercury lamp. The collisional conduction
is therefore decreased. This reduction is compensated by the chemical transport of energy via
the sodium ionization reactions. Since α for the sodium iodide lamp is higher in comparison with
the mercury lamp less radiation is absorbed in the outer mantle. The total heat flux to the wall
therefore is lower than for the mercury lamp hence the wall temperature is lower as well.

6.3 Hg+TlI
In this section the calibrated spectrum, the switch-off measurements and the powerscan are shown
for the thallium iodide single salt lamp.

6.3.1 Calibrated spectrum
The calibrated spectrum for the thallium iodide single salt lamp is shown in figure 6.3.1. A
comparison is made with the mercury lamp by plotting both curves simultaneously. This plot
is shown in figure 6.3.2. The only mercury line which is still visible in the thallium lamp is the
546 nm line. The axis temperature of the thallium lamp thus decreased considerably in comparison
with the mercury lamp. The decrease in the peak at 2000 cm-1 shows that the wall temperature of
the thallium lamp is lower in comparison with the mercury lamp. The spectrum of the thallium
lamp contains much more continuum radiation. The radiation is most likely radiation from photo
dissociation of TlI [46]. The dissociative recombination of the TlI ions with free electrons will
result in highly excited Tl neutrals. The continuum seems to cover the spectral range from 3000
to 22000 cm-1. The strong continuum radiation provides excellent color rendering in almost the
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Figure 6.2.5: The powerscan of the sodium iodide single salt lamp. The proportionality constant
is given by α = 0.84. The conduction losses are (10± 2)W.

complete visible range. A drawback of such a strong and widespread continuum is a low luminous
efficacy.

An output energy balance is shown in table 6.3.1. For this lamp the experimentally determined
energy balance is also in agreement with the input power. A fit is made to separate the continuum
radiation from the line radiation. This fit is shown in figure 6.3.3. The total amount of continuum
radiation is estimated with 63W. Based on this fit it is concluded that almost al of the radiation is
continuum radiation. The amount of continuum radiation is large because the main contribution
to the spectrum is from photo dissociation of TlI. The contribution from atomic lines is only 5W.
The photo dissociation radiation is included in the total continuum radiation. It is difficult to
determine the difference between the photo dissociation radiation and the red wing of the atomic
lines. This is especially difficult for the 535 nm thallium line radiation. This line is subject to
strong van der Waals broadening in its red wing. An estimate of the contributions of the most
important atomic lines is given in table 6.3.2. The contributions of the strongest lines are in the
order of 1W. These lines are the 535, 1151 and 1301 nm lines.
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Figure 6.3.1: The calibrated spectrum of the thallium iodide single salt lamp. The thallium lines
are labeled in blue. The other lines which can be observed are potassium, sodium and mercury
lines. The thallium spectrum contains a self reversed line at 535 nm.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.005

0.01

0.015

0.02

wavenumber (cm−1)

S
pe

ct
ra

l p
ow

er
 (

W
/c

m
−

1 )

 

 

Hg+TlI
Hg

Figure 6.3.2: The spectra of the mercury lamp and the thallium iodide single salt lamp in the
same figure. Most of the mercury lines are no longer visible therefore the axis temperature of the
single salt lamp is very low. The thermal radiation of the thallium lamp emitted by the discharge
tube is lower in comparison with the mercury lamp. The wall temperature has thus decreased as
well. The most important difference is the large amount of continuum radiation present in the
thallium lamp spectrum. This radiation is most likely photo dissociation radiation from TlI.
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Energy(W) Error(W)
IR (0.78-10 µm) 53.9 3.0

Visible (380-780 nm) 13.7 0.6
Far IR (>10 µm) 0.7 0.1

Conduction 3.7 0.7
Total 72 4
Input 70.1 0.1

Table 6.3.1: The energy balance for the thallium iodide single salt lamp. The ultraviolet contri-
bution is negligible for this lamp since the axis temperature is very low. The total input power is
equal to the input power within experimental error.

Radiating particle Wavelength(nm) Energy(W)
Tl 535 1.0
Na 589 0.1
K 770 0.2
Tl 1151 1.4
Tl 1301 0.8
Tl 1443 0.1
Tl 1612 0.2
Tl 1635 0.3
Tl 2185 0.1
Tl 2793 0.1

Table 6.3.2: The estimated contributions to the energy balance of the most important atomic
lines. The atomic radiation is not very important in the thallium lamp. The biggest contributions
are from the 535, 1151 and 1301 nm thallium lines. These contributions are in the order of 1W.
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Figure 6.3.3: The continuum radiation for the thallium iodide single salt lamp. Continuum
radiation includes molecular radiation, thermal radiation and Bremsstrahlung. The total amount
of continuum radiation is 63W. The atomic radiation only contributes 5W to the energy balance.

82



CHAPTER 6. EXPERIMENTAL RESULTS 6.4. HG+INI

2000 3000 4000 5000 6000 7000 8000
0

0.002

0.004

0.006

0.008

0.01

0.012

wavenumber (cm−1)

S
ig

na
l (

a.
u.

)

 

 

Extrapolated result
Lamp on
Switch−off data

Figure 6.3.4: The results of the switch-off measurements for the thallium iodide single salt lamp.
Below 2000 cm-1all radiation is assumed to be thermal radiation. Above this wavenumber the ratio
of the extrapolated to the reference curve is multiplied with a calibrated spectrum. The total thermal
radiation is (26± 2)W.

6.3.2 Thermal radiation

In this section the thermal radiation of the discharge tube is estimated with the switch-off pro-
cedure. The results are shown in figure 6.3.3. For wavenumbers above 2000 cm-1 the thermal
radiation is estimated by multiplying the calibrated spectrum with the ratio of the extrapolated
curve to the reference measurement. For wavenumbers above 1000 cm-1 and below 2000 cm-1 it
is assumed that all radiation is thermal radiation. The emitted thermal energy is (26± 2)W. It
seems as if the energy above 2500 cm-1 is overestimated when compared to the mercury discharge.
According to figure 6.3.2 the discharge tube of the mercury lamp radiates more thermal energy
between 1000 and 2500 cm-1 but has a smaller contribution above 2500 cm-1. A cooler discharge
wall only emits more radiation in the near infrared if the emissivity of the wall increases. The
emissivity of the wall can change due to wall blackening. This is a process where tungsten from
the electrodes is deposited on the wall. The discharge tube of the thallium iodide lamp appeared
to be slightly darker than the mercury discharge tube. Thus wall blackening possibly plays a role.

The infrared plasma radiation of the thallium iodide lamp is approximately 28W. The in-
frared plasma radiation from the mercury and the sodium iodide lamp amounts to 17 and 22W,
respectively. The difference is caused by the strong photo dissociation continuum. This strong
continuum in the infrared decreases the luminous efficacy.

6.3.3 Power scan

In this section an estimate of the conduction losses is made. The results of the powerscan are
shown in figure 6.3.5. The proportionality constant α is given by 0.84. The resulting conduction
losses from the hot arc to the colder mantle are (13± 2)W. The conduction losses in the thallium
lamp are larger in comparison with mercury lamp because of additional energy transported via
chemical reactions.

6.4 Hg+InI

In this section the calibrated spectrum, the switch-off measurements and the powerscan are shown
for the indium iodide single salt lamp.
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Figure 6.3.5: The results of the powerscan of the thallium iodide single salt lamp. The propor-
tionality constant is given by α = 0.84. The conduction losses are (13± 2)W.

6.4.1 Calibrated spectrum

The calibrated spectrum of the indium iodide single salt lamp is shown in figure 6.4.1. A compar-
ison can be made with the mercury lamp by showing both spectra in the same figure. This plot
is shown in figure 6.4.2. The indium spectrum is similar to the mercury spectrum. The spectral
power of the mercury lines has decreased a little which implies that the axis temperature is slightly
lower. The wall temperature of both discharges is similar since the spectral power at 2000 cm-1 is
equal. At this wavenumber the emissivity of the discharge tube is close to one which means almost
all emitted radiation is thermal radiation at this wavenumber. The largest difference between the
discharges is the presence of a continuum between 2500 and 8000 cm-1. From the typical shape
of this continuum is concluded that this difference is caused by wall blackening. The tungsten
from the electrode is deposited on the discharge tube which alters the emissivity of the material.
A comparison of the indium iodide discharge tube with the mercury discharge tube indeed shows
that the wall is much darker.

A simple energy balance is shown in table 6.4.1. The energy that is accounted for is not equal
to the input power. Since the mercury part of the indium iodide lamp is similar to the mercury
lamp the ultraviolet radiation from the mercury lines will also be present in the indium iodide
lamp. Besides the ultraviolet radiation from mercury there will be a small contribution from the
indium 256, 271, 303 and 325 nm lines as well.

A fit is made to separate the continuum radiation from the line radiation. This fit is shown in
figure 6.4.3. The total amount of continuum radiation is 53W. The continuum radiation of the
indium iodide lamp is higher in comparison with the mercury lamp due to wall blackening. The
total line radiation amounts to 13W . The contributions for the most important atomic lines are
shown in table 6.4.2. The contributions of the strongest atomic lines are in the order of 1− 2W.
These lines are the 404, 436 and 546 nm lines.

84



CHAPTER 6. EXPERIMENTAL RESULTS 6.4. HG+INI

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

wavenumber (cm−1)

S
pe

ct
ra

l p
ow

er
 (

W
/c

m
−

1 )

16
92

−
17

07
nm

15
31

nm
13

59
−

13
69

−
13

95
nm

11
29

nm
10

14
nm

K
:7

67
−

77
0n

m

57
7−

57
9n

m

45
1n

m
43

6n
m

41
0n

m
40

4−
40

7n
m

546nm

Figure 6.4.1: The calibrated spectrum for the indium iodide single salt lamp. The indium lines
are labeled in blue. The mercury and potassium lines are labeled in black. The indium lines only
make a small contribution to the total spectrum.
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Figure 6.4.2: The calibrated spectra for the mercury and the indium iodide single salt lamp. The
spectral power of the mercury lines has decreased which means the axis temperature has dropped.
The thermal radiation peak at 2000 cm-1 is similar which indicates the wall temperatures are ap-
proximately equal. The thermal radiation of the discharge tube in the indium iodide lamp is larger
because of wall blackening. Tungsten from the electrodes has been deposited on the wall of the
discharge tube which alters the emissivity of the wall.
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Energy(W) Error(W)
IR (0.78-10 µm) 50.5 2.5

Visible (380-780 nm) 9.5 0.4
Far IR (>10 µm) 0.7 0.1

Conduction 4.6 0.9
Total 65 4
Input 70.9 0.1

Table 6.4.1: The energy balance of the indium iodide lamp. The total energy does not match
with the input power. The ultraviolet contribution was not measured. This contribution can not
be neglected for the indium iodide lamp.

Radiating particle Wavelength(nm) Energy(W)
Hg 404 0.8
Hg 407 0.1
In 410 0.5
Hg 436 1.5
In 451 0.6
Hg 546 1.8
Hg 577 0.5
Hg 579 0.5
Hg 1014 0.4
Hg 1129 0.1
Hg 1359 0.1
Hg 1369 0.1
Hg 1692 0.1
Hg 1707 0.1

Table 6.4.2: The contributions to the energy balance of the most important atomic lines. The
404, 436 and 546 nm lines are the most important lines in the spectrum. These contributions are
in the order of 1− 2W.
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Figure 6.4.3: The continuum radiation for the indium iodide single salt lamp. The total amount
of continuum radiation is 53W. The total amount of line radiation is 13W.
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Figure 6.4.4: The results of the switch-off measurements of the indium iodide lamp. Below
2000 cm-1all radiation is assumed to be thermal radiation. Above this wavenumber the ratio of the
extrapolated to the reference curve is multiplied with a calibrated spectrum. The total amount of
thermal radiation is (38± 4)W.

6.4.2 Thermal radiation
In this section the thermal radiation of the discharge tube is estimated with the switch-off pro-
cedure. The results are shown in figure 6.4.4. For wavenumbers above 2000 cm-1the energy is
estimated by multiplying the calibrated spectrum at regular settings with the ratio of the extrap-
olated curve to the reference curve at switch-off settings. Below 2000 cm-1 al radiation is assumed
to be thermal radiation. For this range the calibrated spectrum at regular settings is integrated.
The total thermal energy is (38± 4)W. The large amount of thermal radiation is caused by severe
wall blackening.

6.4.3 Power scan
In this section an estimate of the conduction losses is made. The results of the powerscan are
shown in figure 6.4.5. The proportionality constant α is given by 0.42. The conduction losses from
the hot centre to the outer mantle are given by (9± 2)W. The wall temperature has a comparable
temperature as the discharge tube of the mercury lamp but radiates more thermal energy. The
heat flux to the wall must therefore be larger. This heat flux to the wall is fed by strong absorption
in the outer mantle.

6.5 Complete energy balance
In this section the results of the four single salt lamps are summarized in one table. These results
are shown in table 6.5.1. All relevant formulas will be shown as well. The total input power Pin
is divided among the electrodes Pel and the discharge Pdis as

Pin = Pel + Pdis. (6.4)

The electrode losses are estimated with 10% of the input power. The power in the discharge is
lost by radiation Prad (r0) and by non-radiative processes Pnon,rad as

Pdis = Pnon,rad + Prad (r0) . (6.5)

The non-radiative processes are estimated with the conduction losses at the boundary between
the hot centre and colder outer mantle determined in the powerscan. The radiation losses in the
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Figure 6.4.5: The results of the powerscan of the indium iodide single salt lamp. The propor-
tionality constant α is given by 0.42 and the conduction losses are given by (9± 2)W.

discharge can be related to the measured radiation losses Prad (R) as

Prad (R) = αPrad (r0) . (6.6)

The amount of absorbed radiation Pabs can then be written as

Pabs = (1− α)Prad (r0) = 1− α
α

Prad (R) . (6.7)

The discharge radiation can be written as the sum of the spectral contributions

Prad (R) = Pdis,vis (R) + Pdis,UV (R) + Pdis,IR (R) . (6.8)

An error is introduced since Pdis,UV (R) is not measured.
The sum of the non-radiative losses, the electrode losses and the absorption of radiation

should be dissipated as either thermal radiation Pthe, or as conduction through the metallic wires
Pcond,wires. To verify that this is indeed the case a parameter PDiff is defined as

PDiff = Pnon,rad + Pabs + Pel − Pthe − Pcond,wires. − Pfar,IR. (6.9)

In a correct energy balance this parameter is equal to zero. The thermal radiation is obtained
from the powerscan. The thermal radiation in the far infrared Pfar,IR is not measured but is
estimated by extrapolating the calibrated spectrum below 1000 cm-1. The conduction through the
metallic wires is estimated by calculating the heat flux through the holder based on the measured
temperature difference between the top of the holder and the integrating sphere. The total energy
which is accounted for in the experiment Ptot can be written as

Ptot = Pdis,vis (R) + Pdis,IR (R) + Pthe + Pfar,IR + Pcond,wires. (6.10)

An analysis of table 6.5.1 shows that for all lamps both expressions for calculating Prad (r0)
provide similar results. The parameter PDiff is not equal to zero within experimental error for
every lamp. The mercury lamp has a value which is significantly above zero. This deviation
is caused because the powerscan is not based on all discharge radiation. Since the ultraviolet
contributions were not taken into account the powerscan can only provide an estimate of α and
Pnon,rad. The effective quantity plotted on the vertical axis of the powerscans is Prad − Puv. The
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Hg Hg+NaI Hg+TlI Hg+InI
Pin (W) 70.5± 0.1 71.2± 0.1 70.1± 0.1 70.9± 0.1
Pel (W) 7.1 7.1 7.0 7.1
Pdis (W) 63.4 65.2 63.1 63.8

Pnon,rad (W) 9.5± 2 10.0± 2 13.0± 2 9.3± 2
Prad (r0)1 (W) 53.9± 2 54.1± 2 50.1± 2 54.5± 2
Prad (r0)2 (W) 58.4± 4 54.1± 6 50.0± 5.6 53.5± 6.9

α 0.53 0.84 0.83 0.42
Pabs (W) 25.5± 2 8.8± 2 8.1± 2 24.9± 2
Pdis,vis (W) 13.8± 0.6 22.7± 0.9 13.7± 0.6 9.5± 0.4
Pdis,IR (W) 17.0± 4 22.6± 5 28.2± 5 12.9± 6.5
PIR (W) 43.2± 2.3 45.3± 2.7 53.9± 3.0 50.5± 2.5
Pthe (W) 26.2± 2 22.7± 2 25.7± 2 37.6± 4

Pfar,IR (W) 0.7± 0.1 0.7± 0.1 0.7± 0.1 0.7± 0.1
Pcond,wires (W) 3.9± 0.8 3.7± 0.7 3.7± 0.7 4.6± 0.9
PDiff (W) 11.3± 6.9 −1.2± 5.7 −2.0± 6.8 5.2± 7.0
Ptot (W) 62± 4 73± 5 72± 4 65± 4

Table 6.5.1: The energy balance for the four discharges. Prad (r0)1is calculated with equation 6.5
and Prad (r0)2 is calculated with equation 6.6. Both ways of calculating Prad (r0) provide the same
result within experimental error. The PDiff parameter is a measure of the internal consistency of
the energy balance. For the mercury lamp this quantity is significantly larger than zero. This is
related to not taking the ultraviolet into account in the powerscan. The transmittance calculated
from the visible and the infrared radiation is thus not representative for the ultraviolet.

result is that when the ultraviolet term can not be neglected it appears in the non-radiative and
absorption losses. A similar problem occurs for the indium iodide lamp. Due to the lower axis
temperature the ultraviolet contributions for this lamp are smaller. The estimate obtained from
the powerscan is therefore more accurate for the indium iodide lamp.

To obtain better results for the mercury and the indium iodide lamp the powerscan has been re-
calculated with estimated ultraviolet contributions. The ultraviolet term is estimated by assuming
that at each power, all unaccounted energy is ultraviolet radiation:

PUV (R) = Pin − Ptot. (6.11)

The new powerscan for the mercury lamp is shown in figure 6.5.1. The proportionality constant
α is given by 0.67 and the conduction losses are estimated with (4± 2)W. The conduction losses
for the mercury lamp are reduced considerably in comparison to the value from the powerscan
without ultraviolet contributions. The calculated absorption decreases by a similar amount. These
reductions improve the consistency of the energy balance.

The new powerscan for the indium iodide lamp is shown in figure 6.5.2. The proportionality
constant α is given by 0.50 and the conduction losses are estimated with (7± 2)W. The energy
balance of the indium iodide lamp is improved since both the absorption and the non-radiative
losses are reduced with the new parameters. The parameter PDiff therefore has a value closer to
zero.
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Figure 6.5.1: The powerscan with ultraviolet contributions for the mercury lamp. The propor-
tionality constant α is equal to 0.67 and the conduction losses are (4± 2)W.
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Figure 6.5.2: The powerscan with ultraviolet contributions for the indium iodide lamp. The
proportionality constant α is given by 0.50 and the conduction losses are estimated with (7± 2)W.

The new energy balance for these lamps is more self consistent. It is shown in table 6.5.3.
The differences between the old and the new energy balance for the mercury and indium iodide
lamp are shown in table 6.5.2. For mercury the sum of the non-radiative losses and the amount
of absorbed radiation decreases. For indium the non-radiative losses also decrease. The amount
of absorbed radiation increases. For both lamps the result of including the ultraviolet term brings
the PDiff term closer to zero.
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Hg Hg corrected Hg+InI Hg+InI corrected
Pnon,rad (W) 9.5± 2 4.4± 2 9.3± 2 7.1± 2
Prad (r0)1 (W) 53.9± 2 59.0± 2 54.5± 2 56.7± 2
Prad (r0)2 (W) 58.4± 4 59.2± 4 53.5± 5.6 55.8± 6.9

α 0.53 0.67 0.42 0.50
Pabs (W) 25.5± 2 19.4± 2 24.9± 2 28.2± 2
PDiff (W) 11.3± 6.9 0.1± 6.9 −5.2± 6.8 −0.7± 7.0

Table 6.5.2: The differences in the energy balance if the ultraviolet is included in the powerscan
for the mercury and the indium iodide lamp. The most significant differences are the reduced
absorption losses for both lamps.

Hg Hg+InI Hg+NaI Hg+TlI
Pin (W) 70.5± 0.1 70.9± 0.1 71.2± 0.1 70.1± 0.1
Pel (W) 7.1 7.1 7.1 7.0
Pdis (W) 63.4 63.8 65.2 63.1

Pnon,rad (W) 4.4± 2 7.1± 2 10.0± 2 13.0± 2
Prad (r0)1 (W) 59.0± 2 56.7± 2 54.1± 2 50.1± 2
Prad (r0)2 (W) 59.2± 4 55.8± 6.9 54.1± 6 50.0± 5.6

α 0.67 0.50 0.84 0.83
Pabs (W) 19.4± 2 28.2± 2 8.8± 2 8.1± 2

Pdis,UV (W) 9.0± 4 5.6± 4 - -
Pdis,vis (W) 13.8± 0.6 9.5± 0.4 22.7± 0.9 13.7± 0.6
Pdis,IR (W) 17.0± 4 12.9± 6.5 22.6± 5 28.2± 5
PIR (W) 43.2± 2.3 50.5± 2.5 45.3± 2.7 53.9± 3.0
Pthe (W) 26.2± 2 37.6± 4 22.7± 2 25.7± 2

Pfar,IR (W) 0.7± 0.1 0.7± 0.1 0.7± 0.1 0.7± 0.1
Pcond,wires (W) 3.9± 0.8 4.6± 0.9 3.7± 0.7 3.7± 0.7
PDiff (W) 0.1± 6.9 −0.7± 7.0 −1.2± 5.7 −2.0± 6.8
Ptot (W) 62± 4 65± 4 73± 5 72± 4

Table 6.5.3: The corrected energy balance for the mercury and the indium iodide lamp. The
difference term PDiff is now equal to zero within experimental error indicating that the energy
balance is internally consistent.

The non-radiative losses are caused by thermal conduction and reactive conduction. The reac-
tive conduction in the hot centre is mainly caused by ionization reactions. Sodium has the lowest
ionization potential, 5.14 eV, and therefore is expected to have the largest reactive contribution.
Indium, 5.79 eV, has a lower ionization potential than thallium, 6.11 eV. The reactive contribution
from thallium however is much stronger because the amount of thallium in the discharge is much
higher than the amount of sodium and indium.

The absorption in the outer mantle is very high for the indium iodide and the mercury lamp.
This contribution is large because a large portion of the emitted ultraviolet is absorbed in the outer
mantle. The absorption in the indium iodide lamp is larger than in the mercury lamp because the
indium lamp suffered from wall blackening. The wall blackening reduces the transmission of the
discharge vessel. This disturbs the results of the powerscan. The absorption in the sodium lamp
is low because sodium has no strong ultraviolet radiation. Most of its absorbed radiation will be
from the sodium D-lines. The absorption in the thallium lamp is caused by thallium ultraviolet
absorption and absorption of the 535 nm line. Thallium is able to radiate 378 nm radiation from
the same excited state that is responsible for the 535 nm line. The low temperature in the thallium
lamp means that most of the ultraviolet radiation is absorbed.

The predicted amount of absorbed radiation and non-radiatively transported energy obtained
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Ped(W) = 0.10 · Pin Ped(W) = constant
Pabs(W) Pnon,rad(W) Pabs(W) Pnon,rad(W)

Hg 13.0 10.6 19.4 4.4
Hg+NaI 1.0 17.5 8.8 9.9
Hg+InI 20.6 14.0 28.2 7.1
Hg+TlI 4.2 16.9 8.1 13.0

Table 6.5.4: The results of the powerscan for two conditions: Electrode losses which are pro-
portional to the input power and constant electrode losses. When electrode losses which are used
which are dependent on the input power the absorbed radiation decreases and the non-radiative
losses increase.

from Jack Koedam theory is dependent on the assumptions made for the electrode losses. Therefore
a comparison is made between two cases. In the first case the electrode losses are set to 10% of
the input power. In the second case the electrode losses are set to a constant value which is
independent of the input power. As shown in table 6.5.4 this assumption does not influence the
sum of the absorbed and non-radiatively transported energy but how the energy is distributed
among these two terms. By assuming electrode losses which are dependent on the input power the
estimated non-radiatively transported energy is significantly increased and the predicted amount
of absorbed radiation is considerably decreased. The electrode losses are a weak function of the
input power. The predictions made with constant electrode losses are therefore believed to be most
accurate. More research on the electrode losses is required to make more accurate predictions.

For an implementation in a real lamp the dosage of the indium iodide and the thallium iodide
should be adjusted since both lamps do not emit significantly more visible radiation than the pure
mercury lamp. For thallium iodide this means the dosage should be reduced to decrease the strong
photo dissociation continuum in the infrared. The indium dosage should be increased to obtain
more radiation from the 451 nm line. At a higher buffer pressure the broadening of this line can
produce better color rendering in this spectral range.
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Chapter 7

Comparison

In this chapter a comparison is made between the simulations and the experiments for the four
single salt lamps. For each lamp the energy balance and the spectra are compared. It is important
to note that the mercury simulation was calibrated for the visible and the infrared radiation. The
ultraviolet radiation dominates the mercury radiation and has a significant impact on the energy
balance. The sodium iodide simulation was only calibrated for the self reversal width of the sodium
D-lines. The thallium iodide and indium iodide simulations are not calibrated at all.

7.1 Hg
The simulated and measured integrated spectra for the pure mercury 70W lamp are shown in
figure 7.1.1. The broadening constants were tuned to make sure that the energy in the visible
mercury transitions of the Hg 250W lamp matched with the measured energy in these lines. The
available spectrum of the 250W lamp was made at a low resolution. As a consequence the exact
shape of the mercury lines could not be captured for the calibration of the model. The resemblance
of the simulated mercury lines with the measured lines at a completely different pressure is still
good. The resonance broadening constant of the 404, 436 and 546 nm lines appears to be slightly
underestimated at this pressure. The van der Waals broadening constant for all of these lines
is strongly underestimated. The 577 and 579 nm lines are not self reversed which means that
the energy difference between the measured and simulated lines is a measure of the accuracy of
the predicted temperature profile and estimated pressure. This agreement is quite good since
the measured energy is 1.6W and the simulated energy is 1.63W. The luminous efficacy of the
simulation is 48 lumens/W. In the measurement a luminous efficacy of 56 lumens/W is obtained.
The difference is related to the underestimated pressure broadening of the 404, 436 and 546 nm
lines.

The energy balance for the simulated and measured mercury lamp is shown in table 7.1.1.
The predicted 23W ultraviolet radiation differs significantly from the estimated 9W from the
measurement. These differences are caused by the very strong broadening of the resonant mercury
lines in the model. In reality these lines will not be as broad as in the simulation. In the future
it is interesting to determine the exact shape of these lines from ultraviolet measurements. Better
broadening constants can than be determined to improve the mercury simulation.

The predicted 10.5W radiated visible energy is lower in comparison with the measured 13.8W
of energy because the pressure broadening of the visible lines was underestimated. The predicted
15.4W infrared radiation is in agreement with the measurement which resulted in 17±4W. Most of
this radiation is emitted as Bremsstrahlung. The only included infrared transition is the 1014 nm
line which contains only 0.8W. Measurements indicate that the energy of the remaining mercury
lines is in the order of the energy in the 1014 nm line. Not including the other infrared lines causes
the infrared radiation to be underestimated by approximately one Watt.

The conduction losses are underestimated by approximately 9W. The cumulative energy trans-
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Figure 7.1.1: a) The measured and simulated 404 and 436 nm lines. Both simulated lines have
a smaller FWHM than the measured lines. The van der Waals broadening of these lines is also
underestimated. b) The measured and simulated 546, 577 and 579 nm lines. The FWHM of all
lines is slightly underestimated. The van der Waals broadening of the 546 nm line is strongly
underestimated.

ported directly as thermal conduction is correct within experimental error. The absorption of ra-
diation however is strongly underestimated. Decreasing the broadening constants of the resonant
mercury lines will increase the amount of radiation which is emitted close to the line centre. This
will increase the optical depth and thus the absorption of radiation. The additional energy ab-
sorbed in the centre will flatten the temperature profile. This will decrease the thermal conduction
losses at r0. A better understanding of the electrode losses as a function of input power will also
have an impact on the results from the powerscan.
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Figure 7.1.2: The continuum radiation for the pure mercury lamp. The energy in the continuum
is estimated with 46W. The remaining 11W is line radiation.
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simulation (W) measurement (W)
PUV 22.8 9±4
Pvis 10.5 13.8±0.6
PIR 15.4 17±4

Pnon,rad (r0) 6.3 4.4±2
Pabs 6.6 19.4±2

Pcond(R) 14.4 23.8±4

Table 7.1.1: The measured and simulated energy balances for the mercury 70W lamp. The
discrepancies between the simulation and the measurement mainly occur in the ultraviolet and the
total conduction losses.

7.2 Hg+NaI

The simulated and measured integrated spectra for the sodium iodide 70W lamp are shown
in figure 7.2.1. The broadening constants for the sodium D-lines were adjusted to match with
the self reversal width of a not perfectly calibrated 70W SON lamp. More accurate constants
can be obtained with a correct calibrated spectrum. An analysis of the sodium D-lines shows
that the simulated left wing is much broader than the measured left wing. The product of the
resonance broadening constant and the sodium density is thus overestimated. The right wing
shows several peaks between 640 and 700 nm. These peaks are satellite peaks. They occur when
the interaction potential curves of the excited and ground state have the same derivative with
respect to the distance to the perturbing particle. These peaks can be included by considering
the energy levels of the Na+Hg quasi molecule [45]. Such a calculation is considered out of the
scope of this work. A further analysis of the spectrum shows that the radiation of the 577 and
579 nm lines of mercury is not visible in the simulated spectrum. This is related to the high
sodium pressure which significantly reduces the temperature profile and thus the radiation from
the mercury lines. The radiation from the 818 and 819 nm lines shows that the resonance and the
van der Waals broadening constants are underestimated for the second most important sodium
lines. The measured luminous efficacy is 90 lumens/W. The simulated efficacy is 122 lumens/W.
The largest contribution of the overestimated efficacy is caused by the overestimated left wing of
the sodium D-lines.

The energy balance for the simulated and the measured sodium iodide lamp is shown in table
7.2.1. The predictions of the radiated energy are close to the measured values. The overestimated
2W of visible radiation is caused by the sodium D-lines. The energy in the simulation of the
sodium D-lines amounts to 22.7W which is almost the entire visible contribution. The measured
13.9W of radiation from these lines is significantly lower. The difference can be reduced by
improving the calibration of the SON 70W lamp. The predicted infrared energy is a few Watt
above the measured energy. The infrared sodium lines are all underestimated in comparison with
the measured lines. The infrared Bremsstrahlung is therefore overestimated.

The conduction losses are significantly underestimated. This could be expected since this was
also the case for the SON lamps. The axis temperature is currently too low because the sodium
density is overestimated. Decreasing the sodium density will increase the axis temperature. As
a result the non-radiative losses and the absorption will increase. An increase in the simulated
non radiative losses can be obtained by including the reactive conductivity in the model for the
sodium iodide system. The resulting increase in conduction losses will be small because the
mercury pressure is high. The diffusion coefficients will thus be small. This limits the transport
of chemical energy.
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Figure 7.2.1: a) The measured and simulated sodium D-lines. The broadening of the left wing of
the sodium D-lines indicates that the sodium pressure is too high in the simulation. The right wing
is not in agreement with the experiment since the quasistatic van der Waals broadening can not
account for satellite peaks. b) The measured and simulated 818 and 819 nm lines are shown. Both
the resonance and van der Waals broadening parameters are underestimated in this simulation.

simulation (W) measurement (W)
PUV 2.2 -
Pvis 24.7 22.7±0.9
PIR 26.6 22.6±5

Pnon,rad (r0) 4.2 10.0±2
Pabs 5.0 8.8±2

Pcond(R) 9.6 18.8±4

Table 7.2.1: The simulated and measured energy balances for the sodium iodide 70W lamp. The
discrepancies are mainly caused by the conduction losses.
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Figure 7.3.1: The simulated 535 nm line. A parabolic temperature profile is used with an axis
temperature of 4600K and a coldspot temperature of 900K. When the photo dissociation continuum
is included as well the optical depth and thus the self reversal width of the 535 nm thallium line
will increase.

7.3 Hg+TlI
The simulated and measured spectra for the thallium iodide discharge are not in agreement because
the strong photo dissociation continuum radiation is not included in the model. A comparison of
the predicted and measured energy balance is therefore not meaningfull. Instead the simulated
535 nm line is matched with the measured line by using a parabolic temperature profile, normal
dosages and theoretical broadening constants to obtain an estimate of the axis temperature. The
coldspot required to obtain a reasonable spectrum is 900K. This value is very low which is an
indication that the error in the dosage may be very large. The spectrum is shown in figure 7.3.1.
Fitting the thallium line is difficult since there is a large uncertainty in the thallium and mercury
densities and in the temperature profile. The 546 nm mercury line is used to estimate the axis
temperature. The mercury pressure was estimated to be 15 bar. An error of the mercury pressure
thus results in an error of the axis temperature. At an axis temperature of 4600K the thallium
density is 16 kPa. When the photo dissociation continuum is also included the optical depth of
the line centre of the thallium line will increase further. As a consequence the self reversal width
will increase. In the line centre it is unknown what radiation is emitted as line radiation and
what radiation is emitted as continuum radiation. As a result a more accurate estimate of the
temperature profile can not be made.

7.4 Hg+InI
The simulated and measured spectra for the indium iodide 70W lamp are shown in figure 7.4.1.
The obtain a better agreement with the experiment the indium dosage was reduced considerably
in comparison to the specifications. Most likely only a small amount of the specified indium
dosage was put in the lamp. Since the energy in the mercury lines is overestimated the axis
temperature should be lower. The axis temperature can be reduced by increasing the indium
dosage. However the energy in the indium lines is also overestimated which is an indication that
the indium density is still too high. Including the reactive conductivity in the simulation will reduce
the axis temperature. At a mercury pressure of 30 bar this contribution will be small. Measuring a
lamp with an unsaturated amount of indium iodide will avoid the problems encountered with the
coldspot. When the dosage is known accurately the indium pressure can be calculated similarly
to the mercury pressure.

The simulated and measured energy balances are shown in table 7.4.1. The ultraviolet losses
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Figure 7.4.1: a) The 410 nm indium line. The radiative output of the mercury 404 and 407 nm
lines and the indium 410 nm line are overestimated. b) The 451 nm indium line. The radiative
output of the indium 451 nm line and the mercury 436 nm line are overestimated.

simulation (W) measurement (W)
PUV 20.3 5.6±4
Pvis 14.7 9.5±0.4
PIR 13.7 13.9±6.5

Pnon,rad (r0) 5.8 7.1±2
Pabs 6.7 28.2±2

Pcond(R) 14.3 35.3±4

Table 7.4.1: The measured and simulated energy balances for the indium iodide 70W lamp. The
largest discrepancies are the conduction losses and the ultraviolet losses.

are overestimated by approximately 15W. This is related to the overestimated axis temperature
and the uncertainty in the broadening constants of the resonant mercury lines. The high axis
temperature is also the reason why the visible radiation is overestimated. The conduction losses
at the wall are strongly underestimated. The conduction losses at r0 are equal within experimental
error. The conduction losses at r0 in the simulation will be increased when the reactive conductivity
is included. This increase will be small since the chemical transport is limited at high mercury
pressures. The amount of absorbed radiation determined from the measurements is overestimated
due to wall blackening. Another reason for these differences are the incorrect broadening constants
of the resonant mercury lines in the simulation. More accurate estimates of the non-radiative losses
and the absorbed radiation can be made when the exact electrode losses are known.

7.5 Conclusion
A comparison between the simulated and experimentally determined spectra and energy balances
is made. Due to the strong photo dissociation continuum of the thallium iodide which is not
included in the model a comparison for this lamp is not possible.

The predicted spectrum of the pure mercury lamp shows underestimated van der Waals broad-
ening of the visible lines. The energy emitted as visible radiation is therefore slightly underesti-
mated. The simulations also show strong broadening of the red wing of the resonant lines. As a
consequence the energy emitted as ultraviolet radiation is overestimated. The ultraviolet energy
is overestimated by roughly the same amount as the absorption of radiation is underestimated.
Decreasing the broadening constants of the resonant mercury lines reduces the ultraviolet output
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and will increase the amount of radiation which is absorbed in the outer mantle. The temperature
will increase when more radiation is absorbed and thus also the visible output will be closer to
the measured output.

The sodium iodide simulation shows good agreement between the predicted and measured in-
frared and visible radiation. A more detailed analysis of the spectrum shows that the predicted
energy in the lines differs from the measured energy. This difference is largest for the sodium D-
lines were 13.9W was measured and 22.7W was predicted. The predicted self reversal maxima are
not in agreement with the measured self reversal maxima. From their positions can be concluded
that the amount of sodium is overestimated and that the amount of mercury is underestimated.
This is related to the unknown coldspot temperature. Another important factor are the not cali-
brated broadening constants for the sodium lines. The agreement of the predicted and measured
energy in the sodium D-lines already differed for the sodium calibration lamp. Improving this
calibration will also improve the sodium iodide simulation. The underestimated absorption in the
outer mantle is related to the calibration of the broadening constants. The underestimated non
radiative losses can be increased by including the reactive conductivity.

The indium iodide simulation is similar to the pure mercury simulation due to the low indium
iodide content in the lamp. The simulated energy balance is therefore roughly equal to the
simulated energy balance of the mercury lamp. In the simulation more visible radiation is obtained
for the indium iodide lamp. This difference is not caused by the indium lines but by the more
efficient mercury lines. Due to the slighly lower temperature the mercury density is higher which
means the mercury lines are broader in the indium lamp. As a consequence the optical depth
decreases and the visible efficiency increases. This is not observed in the measurement. The
measured radiated energy in the indium lamp is lower than for the mercury lamp. This is caused
by the strong wall blackening of the indium iodide lamp. It is impossible to determine what
amount of radiation is absorbed in the outer mantle and what amount is absorbed on the wall.
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Conclusion

In this work the energy balance of HID lamps was studied both experimentally and theoretically.
Part of the experimental work was the calibration of an integrating sphere setup. By using
switch-off measurements and powerscans a more detailed energy balance could be determined.
The theoretical work involved the construction of a lamp model which is capable of calculating
the radiatively transported energy through the plasma. This lamp model has been made. In the
future this lamp model will be calibrated more elaborately.

8.1 Experimental work
An integrating sphere setup was calibrated from 380 nm till 10µm. This setup is operated in
vacuum conditions to minimize heat losses and oxidation from the discharge vessel. Absorption
of radiation is also decreased. The infrared part of the spectrum was calibrated with a platinum
ribbon. The spectral power of this ribbon was calculated theoretically from a one dimensional
model. The resistivity, thermal conductivity, effective emissivity and the spectral emissivity of
platinum as a function of temperature were obtained from literature. The visible part of the
spectrum was calibrated with a halogen lamp. The halogen lamp was calibrated at Philips OCM
laboratories.

The accuracy of the infrared calibration depends on the temperature stability of the setup and
the detectors. A temperature regulation system was added to the integrating sphere to make sure
that its temperature could be kept constant within ±0.1K. The Fourier transform spectrometer
was surrounded with a box made of insulation material. The air inside this box is kept at a constant
temperature by a heating system to improve the temperature stability of the spectrometer.

A measurement scheme was developed for lamp calibrations. By using this scheme an energy
balance can be determined based on measurements of the entire visible and infrared up to 10µm
with an accuracy of roughly 5%. Apart from a constant error which is present over the entire
spectral range there are four spectral parts which are currently measured at a lower accuracy. The
most important part is the spectral interval where a background correction is required for thermal
radiation of the integrating sphere. The temperature stability of the integrating sphere and the
DLaTGS detector determine the errors in this spectral interval. The errors in the remaining three
intervals are caused by a lower signal to noise ratio of the detector used in that particular spectral
interval. The overlap of the useful measurement range which can be covered by the available
three detectors and two beamsplitters is not perfect. However these three spectral intervals are
relatively small which limits the contribution to the total measurement error.

The thermal radiation was separated from the discharge radiation by using switch-off mea-
surements. The switch-off measurements were not calibrated. As a consequence the ratio of
the switch-off measurements to a reference measurement was applied to a calibrated spectrum to
obtain the thermal radiation. This extra step may result in small additional errors.

To obtain more insight in the energy flows inside the burner, the Jack Koedam theory was
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applied. The Jack Koedam plots provide an estimate of the energy which is absorbed in the outer
mantle and the conduction losses at the position where the radiation losses reach a maximum.
A drawback of this method is that the energy dissipated in the electrodes should be known. A
different assumption for these losses thus changes the predicted internal energy flows.

8.2 Lamp modeling

A model for an infinitely long lamp was made. Local thermodynamic equilibrium was assumed.
The mercury pressure is much larger than the pressure of the other species for the investigated
lamps. The thermal and electrical conductivities of mercury were therefore used to describe the
dissipation and the transport of energy. The transport of chemical energy is currently available
for systems without iodine species. The transport of radiative energy is calculated with a method
called raytracing.

The models give a good qualitative description of a lamp which is dominated by atomic ra-
diation. In the future a more quantitative description will be possible when a more elaborate
comparison can be made with a complete spectrum. Most lamp models suffer from the uncer-
tainty in the broadening constants of the resonant mercury lines. The ultraviolet part of the
spectrum of the mercury lamp intented for calibrating the mercury model could not be measured.
Therefore the broadening constants had to be estimated. The broadening constants of these res-
onant lines were chosen to obtain the correct energy in an optically thin visible transition. For a
given pressure the energy in thin lines is only dependent on the temperature. The shape of the
resonant lines was adjusted since they have a strong influence on the temperature profile. The
shape of the 254 nm line was also matched with a shape described in literature for the same lamp.
As a consequence the predictions of the radiative output of these resonant lines provides accurate
results for mercury pressures close to the pressure of the calibration lamp. Predictions of the vis-
ible energy of the mercury 250W calibration lamp at input powers ranging from 190W to 310W
were in agreement with the experiment. The predicted radiative output of the resonant lines is
overestimated at mercury pressures which are significantly above the pressure of the calibration
lamp.

The sodium iodide model was calibrated with a SON 70W lamp which is a high pressure
sodium lamp. The broadening constants of the sodium D-lines were calibrated to obtain the
same self reversal width as in the experiment. For the SON 400W lamp the self reversal width
was correctly predicted with the same broadening constants. Considering that the sodium and
mercury pressures are difficult to estimate in the sodium iodide lamp the predictions of the self
reversal width for this lamp were in reasonable agreement. For the indium iodide and the thallium
iodide lamp models no calibration lamp is available. Calibrating these models with the spectra
of the single salt lamps is difficult because the coldspot temperature and the exact salt dosage
is unknown. As a consequence the density profiles can not be calculated accurately. Since the
pressure broadening mechanisms are dependent on these densities an accurate broadening constant
can not be determined.

The predicted and measured energy in the visible and infrared part of the spectrum are in
reasonable agreement. The predictions and the estimated ultraviolet energy showed larger devia-
tions. These deviations are related to the lack of knowledge of the shape of the resonant mercury
lines. The conduction losses also showed larger deviations. This can partly be explained by the
underestimated absorption of radiation due to the uncertainty in the resonant mercury lines. The
thermal conductivity is currently also slightly underestimated by not including the reactive con-
ductivity for the single salt lamps. Adding the reactive conductivity for the single salt lamps will
have a small impact on the predicted thermal conductivity since the transport of chemical energy
is limited due to the high mercury pressure.
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8.3 Outlook and recommendations
In the future the temperature stability of the DLaTGS detector will be improved by adding a
cooling system for this detector. The detector will also be mounted in a separate measurement
slot for the FTIR. Currently only two of these measurement slots are available for the three
detectors. Obtaining a third slot with a temperature stability system will increase the number of
measurements which can be made.

Currently calibrated measurements can be made from 380 nm till 10µm. In the future part
of the ultraviolet will also be calibrated. Being able to measure the ultraviolet will improve the
results for the mercury model since the resonant lines can be calibrated. The measurement range
of the new detector also coincides with one of the three spectral intervals which currently suffer
from a reduced signal to noise ratio.

The infrared part of the spectrum is calibrated with a calculated spectral power of a platinum
ribbon. The spectral power depends on literature values of the resistivity, thermal conductivity
and emissivity. Especially the spectral and effective emissivity are dependent on local conditions
like surface roughness and can therefore deviate from literature values.

The thermal radiation is currently calculated by multiplying a calibrated spectrum with the
ratio of the switch-off measurements to a reference measurement made with the lamp still on. By
directly calibrating the setup with the settings used for the switch-off measurements the errors
which are introduced with the additional conversion are removed.

The results of the Jack Koedam analysis are dependent on the assumptions of the electrode
losses. These assumptions change the predicted distribution of energy between the absorbed
radiation in the outer mantle and the conduction losses from the centre to the outer mantle. A
theoretical calculation of the electrode losses will be possible with the electrode model Eldes.

The lamp models should be extended with a calculation of molecular radiation. This extension
requires accurate interaction potential curves of the molecular energy states as a function of the in-
ternuclear distance. The transition probabilities for these states should also be available. Including
the reactive conductivity for the systems containing metal halides is another improvement.

Making an accurate estimate of the temperature and density profiles in the lamps is difficult. A
good calibration of the broadening constants depends on the accuracy of these profiles. Therefore
an experimental setup which is capable of determining these profiles is required.
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Appendix A

Experimental work

In this chapter additional results obtained in experiments are shown. This result is a plot of the
powerscans for all lamps in the same figure.

A.1 Powerscans: All lamps
The UV corrected powerscans for all lamps are shown in figure A.1.1. For high input powers
per unit length the lamps with the highest transmission of the outer mantle provide the largest
amount of visible radiation. At low input powers the relative contribution of the conduction losses
is increasing. For very low input powers the assumption that the conduction losses are independent
of the input power is no longer valid. All powerscans assume that the electrode losses are 10% of
the nominal input power.
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Figure A.1.1: The results of the powerscans for all single salt lamps. The results show the
conduction losses per unit length on the Pin/L-intercept. The slope of the curves indicates the
transmission of the outer mantle.
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