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Abstract

In conventional Diffusion Tensor Imaging (DTI), water diffusion is assumed to occur in a
free and unrestricted environment, in which the diffusion profile of water molecules can be
modelled to be Gaussian. However, in biological tissue the complex microstructure makes
the diffusion process highly hindered or even restricted. The aim of this study was to get
a better understanding of the non Gaussian diffusion profile in the ex vivo porcine heart
using different DW-MRI (Diffusion Weighted Magnetic Resonance Imaging) techniques
and different post processing approaches.
Previous studies showed a non mono-exponential signal decay in cardiac tissue due to the
effect of the applied b-values. Evidence was also found of dependence of the estimation of
diffusion parameters on the experimental diffusion time. In this study, experiments with
different diffusion times and different b-values were performed and the results connected
to microstructure at the cellular level. Based on experimental observation and data fitting
including both conventional DTI and bi-exponential models, it was speculated that water
moving in the direction perpendicular to the axis of the cell is always in regime of restricted
diffusion, while along the cell different regimes can be observed by tuning the experimental
diffusion time.
A second MRI approach used Diffusion Kurtosis Imaging (DKI), which quantifies the level
of diffusion restriction by providing a measure of deviation of the diffusion profile from
a Gaussian shape. This method was found to be more sensitive to tissue microstructure
than conventional DTI-based approaches, and kurtosis maps provided contrast between
left and right ventricle, which was not visualized in conventional diffusion maps.
The last approach was to try to connect regional differences of diffusion parameters across
the heart and deviations from a Gaussian diffusion profile with the presence of ”crossing
fibers”. Partial volume effects are in fact to be expected in MRI scans, since previous
histological studies showed the presence of intersecting myolaminae across the cardiac
wall, which are intersecting each others. Constrained Spherical Deconvolution (CSD)
method was proposed in order to overcome the ”crossing fibers” problem, and used for
data fitting and fiber tracking. The results show the presence of crossing fiber tracts at
the level of a single voxel, which are not correctly identified with standard DTI.
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Chapter 1

Introduction

Cardiac optimal function strongly depends on the geometrical structure and arrangement
of the cardiac muscle fibers (myocytes). Interestingly, despite cardiac anatomy has been
a topic of study for more than 4 centuries, some aspects of how myocytes are arranged
in the cardiac wall still are unknown and no consensus has been reached about a global
model of cardiac anatomy. One of the main difficulties in providing a general model is the
presence of myolaminae, which are groups of fibers arranged in sheet-like structures, sep-
arated by cleavage planes. These myolaminae are geometrically arranged in an extremely
complex way, which is not yet described and understood.
Many cardiac pathologies can affect myocardial mechanics, which may lead to dysfunc-
tion of the myocardium and suboptimal pump function of the heart. Therefore, a fuller
understanding of normal and abnormal myocardial structure and function could aid in im-
proving interpretations and predictions of changes in the diseased heart. The importance
of providing a geometrical model of cardiac architecture is then of paramount importance
not only for understanding how tension and electrical excitation propagates throughout
the myocardium during contraction in healthy hearts, but also to study how this optimal
propagation is affected by pathological conditions and diseases.
Diffusion MRI has been used as a tool for investigating cardiac fiber structure for about
20 years and offers great advantages over methods previously used, such as histology and
dissection. In fact it is a completely non invasive technique, fast and relatively easy to
implement. Furthermore it doesn’t require the use of any contrast agent, since the con-
trast in Diffusion MRI is provided by the movement of water molecules naturally present
in the body.
The most common Diffusion MRI technique used nowadays in cardiac muscles is Diffusion
Tensor Imaging (DTI), which exploits the characteristic anisotropy of cellular structure
to infer their orientation. However DTI heavily relies on a number of assumptions which
are not necessarily holding in cardiac muscle cells.
A first limitation of DTI is its intrinsic inability to correctly identify structure that due
to partial volume effects are crossing in a single image voxel. Since there are evidences
of myolaminae crossing in the cardiac wall, the technique is probably not suitable if one
wants to fully describe cardiac cell geometry, including the presence of myolaminae.
Some other Diffusion Imaging techniques such as HARDI have been applied in brain tis-
sue to solve the ”crossing fibers” problem, and to correctly identify crossing fibers within
a voxel. In this thesis the HARDI approach is implemented in cardiac tissue and some
preliminary results are shown.
Another assumption underlying the DTI model is that the diffusion profile in the tissue
of interest has a Gaussian profile, which is not necessarily the case in real biological tis-
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6 CHAPTER 1. INTRODUCTION

sues. There are some evidences in fact of deviation of the displacement profile of water
molecules from a Gaussian shape for high b-values, although no studies were carried out
to connect this deviation to characteristic of the cellular structure. Very little in fact is
known about the diffusion behavior in cardiac muscles for high b-values and which char-
acteristics influence the restricted water signal observed.
Nowadays in-vivo cardiac Diffusion MRI is becoming feasible for clinical studies [44], and
it is then of great importance to understand what is actually measured in a Diffusion
MRI experiment, which information can be correctly retrieved from the acquired data
and whether some characteristics could be used as a marker of cardiac diseases.
In order to provide some deeper knowledge about diffusion in cardiac muscles, in this
thesis the diffusion behavior for different b-values and different diffusion times is also
investigated, and data are fitted to a kurtosis and a slow-exchange limit two compart-
ments model to check whether more accurate information about microscale and cellular
characteristics can be inferred using different Diffusion MRI approaches.



Chapter 2

Structure of the heart

The general organization of cardiac tissue has been a topic of research for many centuries.
The heart is a muscular organ characterized by different levels of complexity[20]. While
the general gross anatomy and global function of the heart is well known, together with
detailed information about its micro- an ultra-structure, a detailed picture of the heart
as a whole is still lacking.
The fundamental contractile cell of the heart is the myocyte, also referred to as myofiber.
Myofibers are the building blocks of the heart, and there is general consensus on the fact
that the way they are geometrically organized is fundamental for optimal contraction.
Many observations have been made on myofiber architecture, but it is still not completely
understood how those fibers are precisely arranged and connected between each others
and how they determine the global heart function.
Much of the present knowledge about cardiac anatomy comes from traditional anatomical
techniques, such as dissection and histological studies. These techniques however have
several limitations: (i) they are often subjective, so hardly reproducible and qualitative,
rather than quantitative, (ii) they are destructive, (iii) time consuming and (iv) inherently
two-dimensional[19].
Improved knowledge about cardiac tissue architecture was reached in the last 20 years
thanks to DT-MRI. However, despite extensive efforts and recent advances in imaging
techniques, a complete model for cardiac architecture and functions is still lacking.
In this chapter an anatomical overview of the human heart at different levels will be given.

2.1 Gross morphology

The main function of the heart is to pump blood into the systemic and pulmonary cir-
culation. It is a muscular organ that consists of 4 cavities: 2 atria (left and right) and
2 ventricles (left and right). The right atrium (RA) collects blood from the systemic
circulation and returns deoxygenated blood from the body to the right ventricle (RV).
The right ventricle extends from the right atrium to the apex and has the main function
of sending deoxygenated blood from the body to the lungs. The blood flows from the
RA to the RV through the Tricuspid valve and is then pumped through the Pulmonary
valve into the respiratory system. Blood from the respiratory system is collected in the
left atrium from where it flows through the Mitral valve into the left ventricle (LV). The
blood in the left ventricle is then pumped through the Aortic valve into the systemic
circulation. The LV wall is much thicker than the RV wall, as we may expect considering
the fact that the systemic circulation is much larger than the respiratory circulation and
therefore gives more resistance to the outflowing blood. The atria are separated from the
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8 CHAPTER 2. STRUCTURE OF THE HEART

Figure 2.1: Schematic drawing of the gross anatomy of the heart.

respective ventricles by the base. The point farthest away from the base is called the
apex.
The heart wall enclosing the chambers is made up of three layers. Covering the cardiac
muscle is the epicardium, a serous membrane reducing the friction the heart experiences
as it beats. The inner surface of the heart chambers is covered with a sheet of endothelium
called the endocardium. It lines the ventricles as well as the valves and is continuous with
the endothelium of the vessels entering and leaving the heart. Situated in between these
sheets is the myocardium, the muscular layer that actually contracts. It is mainly com-
posed of cardiac muscle cells, also called myocytes. The way these myocytes are organized
in the myocardium is essential for optimal functioning of the heart.

Figure 2.2: Schematic drawing of the different layers that make up the heart wall.

2.2 Microstructure

Muscle cells (myocytes) are long cigar-shaped cells, with a length typically ranging from
50 to 150 µm and a diameter ranging from 10 to 20 µm. The cells of cardiac muscle have
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Figure 2.3: A) Schematic drawing of cardiac muscle cells. B) Electron microscopy of
connective tissue skeletal of the human heart (transversal section), where the cellular
elements have been dissolved. The perimysium (P) envelops groups of myocytes. The
endomysium, supports and connects individual cells. The endomysial weave (W) en-
velops each individual myocyte and is connected to adjacent myocytes by lateral struts
(s) presenting branches of variable size and extension. The size of the reference bar is
20µm.

typically only one or two nuclei and can be found only in the heart. Myocytes are joined
to their neighbors via the so called intercalated disc, and at their ends terminal abutments
are usually with more than one cell, resulting in a mesh-like structure. The intercalated
disc is a structure typical of cardiac muscle, and provides a strong mechanical connection
among the cells allowing the muscle impulses to travel fast from cell to cell. A schematic
drawing of the interconnections of myocytes between each others is shown in figure 2.3.
The extracellular space occupies only a limited amount of volume in skeletal muscles
(around 10%) and it consists of connective tissues. The connective tissue has a honeycomb-
like structure 2.3 and has a primary role in preserving the structure of the heart.

2.2.1 Fiber architecture

Due to the complex arrangement of cells in the heart, the definition of a main fiber di-
rection is not as straightforward as in the case of skeletal muscles. One of the most used
definitions of fiber directions is however the one proposed by Gilbert [19]: given the cylin-
drical shape, it is possible to define at every cardiac location, a principal direction of the
cell, that corresponds with its long axis. The nucleus of the myocyte, characterized by an
ellipsoidal shape, is normally aligned with this axis.
Seen from the apex the subepicardial fibers follow a left-handed helical path, while the
subendocardial fibers follow the path of a right-handed helix. In the midwall region the
fiber pathways are mainly circumferential. This fiber configuration has been shown to bal-
ance stress and strain across the ventricular wall, allowing the different tissue components
to operate in a optimal mechanical regime [54][11].
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2.3 Macrostructure

The myocytes in the myocardium are grouped together in layers 3 or 4 cells thick. These
groups are referred to as myolaminae or sheets and are shown in figure 2.4. Extracellu-
lar collagen fibers provide tight coupling within the sheets, but loose coupling between
adjacent sheets, which allows sliding of sheets during the cardiac cycle [40]. The general
laminar structure is not rigid, since different myolaminae are shown to merge and divide
and myofibers typically run from one sheet to another, surrounded by a collagen network.
During the ventricular contraction, transmural wall thickening is observed, and that has
a primary function in the ejection of blood toward the general body circulation. This is
in fact required to generate the force needed to overcome the resistance in the circulation.
The arrangement of myocytes in sheets has a really important role in the influence of
spread of activation in the myocardium and in the thickening mechanism. It is hypoth-
esized that the laminar model of the heart can be used to explain the general structural
change during systole, since the typical 14% myocyte shortening leads to only an ∼8%
increase in myocyte diameter, which cannot fully account for the observed 28–50% in-
crease in average wall thickness. Such amount of wall thickening can be explained only by
taking into account the secondary changes in fiber and sheet orientation. In particular,
the sliding of sheets with respect to each other is considered as a primary mechanism of
myocardial wall thickening [10].

Figure 2.4: Confocal microscopy of a rat heart. The outermost face of the tissue block is
the longitudinal—radial cardiac plane. Reproduced from [19]

2.3.1 Laminar structure

The geometrical arrangement of myocytes in the heart wall shows a high level of regular-
ity, with fiber orientations with respect to the main axis of the heart changing smoothly
from −60◦ at endocardium to +60◦ at epicardium and similar patterns shown across dif-
ferent species, as mentioned in the previous section.
This regularity is however lost if we consider the cardiac structure on a higher order. In
fact the arrangement of myolaminae in the heart wall does not show the same charac-
teristics in the different regions. This can be observed in figure 2.5. In this T1 weighted
image the natural contrast between collagen layers and surrounding tissue is enhanced by



2.4. MODELS 11

the use of Gd-DTPA contrast agent. The collagen layers, which appear brighter than my-
olaminae in the image, can be used to infer the myolaminae orientation. As can be seen,
the myolaminar orientation seems to change smoothly going from endo- to epicardium.
However close to endocardium we can observe these laminae branching and intersecting
at approximately 90◦. The laminar structure appears more loose at the subendocardium,
becoming more compact toward the subepicardium. Laminar structure is seen to be
absent closest to the epicardium.

Figure 2.5: Laminar architecture in a near-equatorial short-axis slice.A)Short-axis slice.
B)Magnified region of short axis slice Reproduced from [18]

2.4 Models

Due to the contradiction between the high level of symmetry of helical organization of
fibers and asymmetric branching and merging of laminae, several models of cardiac struc-
ture have been presented in literature, and they are often incompatible with each others.
Every model proposed so far refers to different levels of cardiac structure. i.e. focusing
more on the fibers, or on the laminae. Some of the models can be found in the review
paper by Gilbert et al.[19].
The recent debate about cardiac structure has focused mainly on two models: (i) the or-
thotropic myolaminar structure and (ii) the Helical Ventricular Myocardial Band (HVMB).
The first model [40] refers to the possibility, for every given point of the myocardium, to
define three principal orthogonal directions. These are oriented respectively along the axis
of the fiber, perpendicular to the axis of the fiber in the direction parallel to the fiber sheet
and perpendicular to the fiber sheet plane. The easiest version of the orthotropic model
is schematically illustrated in figure 2.6. Here muscle layers are represented as transmural
sheets, that are twisted in such a way to accommodate the known local fiber orientation.
This simple description can’t include the branches between adjacent layers. On the other
hand, the HVMB model describes the cardiac muscle as a continuous muscle band. This
band is oriented spatially as a helix formed by basal and apical loops [59]. According to
this model, the continuity of the muscle would allow the complete ”unwrapping” of the
heart along natural cleavage planes.
Whereas both models are somehow compatible with the known helical structure of my-
ofibers, they differ in the way the laminar organization is included. Further research
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Figure 2.6: Schematic drawing of cardiac microstructure. (A) Transmural segments of
myocardium contains layers of myofibers. (B) Adjacent layers are connected via colla-
gen layers. The white lines indicate the component of extracellular collagen matrix .
Reproduced from [40]

Figure 2.7: Consecutive stages of the unwinding or the ventricular myocardial band, as
described by the Helical Ventricular Myocardial Band model. Reproduced from [59]

is needed to get a better understanding of the laminar structure and we propose that
Diffusion Imaging with high angular resolution acquisition (HARDI) is one of the most
promising techniques to achieve this goal.



Chapter 3

Diffusion Imaging

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) refers to a family of MR
techniques used for measuring the dephasing of spins of protons in the presence of a
magnetic field gradient. The amount of spin dephasing in a given object can be exploited
to calculate diffusion of water molecules and, under certain assumptions, infer geometrical
characteristic of the object itself. DW-MRI techniques are commonly applied in a large
variety of fields, but they are of particular interest when used for studying biological
tissues.
In the first part of this chapter the basic physical principles of diffusion will be explained.
In the second part the techniques for measuring diffusion will be introduced. Finally,
applications of DW-MRI will be presented, with particular interest in the study of the
heart.

3.1 Principles of diffusion

Diffusion is the random displacement of molecules under the influence of temperature
and/or concentration gradients.
Let’s consider for example a solute that is present in a very low concentration in a fluid
solvent. Let n(r, t) be the non-equilibrium density of solutes (number of particle per
unit volume) at position r at time t. This density is related to the notion of flux by the
continuity equation:

∂

∂t
n(r, t) = −∇ · J(r, t) (3.1)

where J(r, t) is the non-equilibrium average flux of solute particles at position r at time
t.
The continuity equation expresses the conservation of mass, i.e. the density in a given
region of the fluid can change in time because particles flow in and out of the region, but
particles cannot be created or destroyed (we are here neglecting the possibility of chemical
reactions to occur), so that the total number of solute molecules is constant.
Equation 3.1 can be simply proved considering any arbitrary volume Ω within our system
(solute+solvent). The total number of solute molecules present in the given volume Ω is
by definition:

NΩ(t) =

∫

Ω

drn(r, t) (3.2)

13



14 CHAPTER 3. DIFFUSION IMAGING

Since mass flow trough the boundary S of the volume Ω is the only feasible mechanism
for changing NΩ(t), we have:

dNΩ(t)

dt
= −

∫

S
dS · J(r, t) = −

∫

Ω

dr∇ · J(r, t) (3.3)

where the second equality is derived using the divergence theorem. However, from 3.2:

dNΩ(t)

dt
=

∫

Ω

dr
∂n(r, t)

∂t
(3.4)

Putting the last two equations together gives:

0 =

∫

Ω

dr

[

∂n(r, t)

∂t
+∇ · J(r, t)

]

(3.5)

This equation must hold for any volume Ω since we didn’t make any specific assumption
about Ω. This means that the integrand must be 0 for every possible volume Ω. The
equation of continuity 3.1 follows then from this consideration.
The macroscopic thermodynamic mechanism for mass flow is a chemical potential gradient
or, equivalently, for a dilute solution, a solute concentration gradient. Hence a reasonable
phenomenological relationship is:

J(r, t) = −D∇n(r, t) (3.6)

Here D is the so called diffusion coefficient. It has the dimensions m2/s and generally
depends on particle size, solvent and temperature. Equation 3.6 is called Fick’s first law
of diffusion.
Combining 3.1 and 3.6 yields:

∂n(r, t)

∂t
= D∇2n(r, t) (3.7)

The last equation is known as Fick’s second law of diffusion.
Fick’s laws were developed to describe to motion of solute molecules as a consequence of
a non-uniform concentration, i.e. a non zero net flux of particle from regions with higher
concentration to regions with lower concentration, in order to equalize concentration
gradients. It was shown by Einstein in 1905 [13] that the general picture of Fick’s law
still holds for Brownian motion, where no net concentration gradient is present. In his
study it was shown that the random motion of particles suspended in a fluid may be
explained by considering the local concentration gradient, which is responsible for the
molecular motion on a local scale.

3.1.1 Free self diffusion

Self diffusion is caused by thermal mobility of the molecules in the medium, which collide
with each others and do not follow any preferential direction.
When the concentration gradient is zero, there is no net diffusive transport (net flux
J(r, t) = 0). However the diffusion process continues as self-diffusion: the solute is only
mixed, but there is no net solute displacement from one region to other regions of the
fluid. Free self diffusion is often referred to as Brownian motion. The random motion of
particles in this case arises from local concentration fluctuations, and not from macro-
scopic concentration gradients.
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Instead of considering the concentration of molecules in a given solution, it is in this
case better to use the probabilistic approach [8]. The motion of particles can in fact be
described by a displacement probability, that indicates how likely a given molecule is to
move from one given position to another one in a given time.
To learn how the self-diffusion constant is related to microscopic dynamics, we now con-
sider the correlation function:

c(r, t) = 〈δρ(r, t)δρ(0, 0)〉 (3.8)

c(r, t) obeys the same equation as n(r, t), that is:

∂c(r, t)

∂t
= D∇2c(r, t) (3.9)

But note that 〈ρ(r, t)ρ(0, 0)〉 is proportional to P (r, t), which is the conditional probability
distribution that a solute particle is at r at time t given that the particle was at the origin
at time zero. As a consequence:

∂P (r, t)

∂t
= D∇2P (r, t) (3.10)

Since P (r, t) and c(r, t) are well defined at the molecular level, these differential equations
provide the necessary connection between the self-diffusion constant D and microscopic
dynamics. It has to be noted that we could also consider the probability P (r|r′, t), which
is the probability for a given spin to move from r to r′ in the diffusion time t.
The partial differential equation in 3.10 can be solved given the initial condition P (r|r′, 0) =
δ(r′ − r). This results in a Gaussian profile:

P (r|r′, t) = (4πDt)−3/2 exp

(

−(r′ − r)2

4Dt

)

(3.11)

Let’s now consider:
∆R2(t) = 〈|r1(t)− r1(0)|〉 (3.12)

that is the squared displacement of a tagged molecule in a time t.
Clearly:

∆R2(t) =

∫

drr2P (r, t) (3.13)

Thus:

d

dt
∆R2(t) =

∫

drr2
∂P (r, t)

∂t

=

∫

drr2D∇2P (r, t)

= 6D

∫

drP (r, t)

(3.14)

Here the last equality is derived integrating by part twice. Since the probability distribu-
tion P (r, t) is normalized for every time t, we have:

∆R2(t) = 6Dt (3.15)

which is know as Einstein’s equation of diffusion. We carried out the calculation for the
3D case. More generally, Einstein equation can be rewritten for n dimensional case as:

∆R2(t) = 2NDt (3.16)
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where N represents the dimensionality of the system. This equation is strictly valid only
after an initial transient time, which is the time for the inertial regime to relax and the
time it takes for the diffusion regime to take over. The thermal motion at the molecular
level is really complicated and it has a small characteristic time (typically in the order
of picoseconds). On such small timescales we cannot consider the molecular motion as
the sum of several statistically independent steps. However, since the typical diffusion
time we can probe (i.e. in an MRI experiment) is on the order of milliseconds, we can
completely neglect the inertial behavior before the transient time and use the statistical
approach previously introduced.
We can state Einstein’s equation in a different way: provided that the number of molecules
in the area of interest is big (this is required by the Central Limit Theorem), and provided
that the molecules are free to diffuse, then the displacement probability functions assumes
a gaussian-shape and its variance (the width of the bell-shaped distribution) only depends
on the so-called diffusion coefficient and on the observation time (or diffusion time), as
indicated by Einstein’s equation. Gaussian diffusion profiles in 1 dimension as a function
of the diffusion time are shown in figure 3.1.

Figure 3.1: Probability density function of displacement in one dimension for different
diffusion times in the situation of free diffusion. The diffusion coefficient D was set to
2.272× 10−9m2/s (diffusion coefficient of pure water at 25◦C, as reported in [24])

3.1.2 Hindered and restricted diffusion

As already mentioned, diffusion refers to random motion of fluid molecules under the ac-
tion of thermal energy. This random motion is described by a displacement distribution,
and that distribution indicates the probability of finding a particle at a given distance
from the starting point if we allow it to move for a given diffusion time tdiff . For free
diffusion, this distribution has a Gaussian shape. This is found by analytically solving
the diffusion equation imposing no geometric boundary conditions (i.e. diffusion barri-
ers). However, when biological tissues are studied, additional boundary conditions have
to be included in the description, in order to account for the effect of permeable and
semipermeable barriers and geometric microstructure properties of the tissue of interest.
Determining the boundary conditions may be extremely complicated, due to the difficul-
ties in modeling the complex interaction between water molecules and barriers and/or
obstacles.
As a simple example, we could for instance imagine to enclose the molecule system within
an impermeable sphere. The molecules of fluid inside the sphere will tend, if we wait long
enough, to occupy all the available space inside the sphere. However we would expect in
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this case a lower displacement distance, since the walls of the impermeable sphere do not
allow the spins to move further. Since the spins cannot go beyond the sphere walls, the
resulting displacement will still show a bell shape, but with well defined maximum values
for displacement. This limit case of diffusion is called restricted diffusion.
An intermediate situation in between free and restricted diffusion often used in the study
of biological tissues is the so called hindered diffusion, which refers to effects of high viscos-
ity, presence of macromolecules, semipermeable barriers and various tortuosity effects. In
this case we would expect to observe a lower displacement as a function of diffusion time.
The resulting displacement probability can then still be approximated with a Gaussian,
but with reduced ”spread”. According to 3.15 the spread of the Gaussian displacement
distribution is completely determined by the diffusion coefficient D and the diffusion time
interval, so in the situation where an semipermeable sphere is introduced in the medium
we would expect a lower diffusion coefficient. This new diffusion coefficient, which de-
pends on the physical and geometrical properties of the system in which self diffusion
takes place, is usually indicated as Apparent Diffusion Coefficient (ADC), in order to dis-
criminate it from the ”true” diffusion coefficient D that characterizes free self diffusion.
The nature of the diffusion processes is strongly determined not only by the properties
of the compartment in which it takes place, but also by other interconnected parameters.
Between them, the diffusion time is one of the most important. The effect of diffusion
time in the nature of diffusion processes is intuitively shown in figure 3.2. As can be seen,
the shape of the Gaussian profile of the displacement distribution strongly depends on
the diffusion time. With increasing time in fact we would expect from equation 3.11 the
height of the distribution to decrease and to become broader. In the case of restricted
diffusion, the displacement distribution will be constrained by a minimum and maximum
value for long diffusion times, reaching a constant profile for diffusion times becoming
much longer than the characteristic time scale of the system under consideration. How-
ever, if the diffusion time is too short compared to the length scale of the restriction, the
displacement probability with and without restriction will look the same, since particles
will practically never experience the effect of boundaries.
Another way of looking at the three phenomenological description of diffusion intro-

Figure 3.2: Schematic representation of diffusion displacement for free and restricted
diffusion and corresponding displacement distribution. The images are ordered from left
to right for increasing diffusion time.

duced is performing the so called ”restriction-test”, which consists of plotting the mean
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displacement calculated by using Einstein’s equation as a function of the square root of
diffusion time (see figure 3.3). If the correlation is linear, we are in the regime or free or
hindered diffusion, and the true (or apparent) diffusion coefficient can be determined by
the slope of the line. On the other hand, when the diffusion is restricted, two different
regimes are normally expected: for short diffusion times the mean displacement is still
proportional to the square root of time, since the system is in the regime of free diffusion,
while for increased diffusion time a plateau value is expected for the mean displacement,
reflecting the presence of impermeable boundaries.
In order to explain the interaction of water molecules with obstacles such as macro-

Figure 3.3: The three possible diffusion processes that can occur in biological tissues: free,
hindered, and restricted. While free and hindered diffusion will show a linear relation
between the mean displacement and square root of the diffusion time, partially restricted
(or highly hindered) and restricted diffusion will show non-linear dependency.

molecules, which results in hindered diffusion, the concept of tortuosity was borrowed
from solid porous media. Due to presence of obstacles, water molecules cannot travel
straight, but must travel longer paths to cover a given distance. This results in an appar-
ent decrease of the diffusion coefficient, according to:

ADC =
D

λ2
(3.17)

where D would be the diffusion coefficient observed in the absence of obstacles, and λ is
the dimensionless tortuosity coefficient.
It is not well understood yet which are the causes of restricted/hindered diffusion in car-
diac muscles, since there hasn’t been any true attempt to model the diffusion process in
this tissue. A schematic drawing of different diffusion processes that may take place in
the heart is shown in figure 3.4 as an example.
So far we only discussed situations in which diffusion is isotropic. However if the shape
of the object in which diffusion occurs is not spherical or if more obstacles are present in
one direction than in another one, an anisotropic diffusivity behavior is to be expected.
In this case the water in the structures will not move equally in every direction, but will
have a preferential pathway. The most intuitive way of representing this kind of diffusion
is an ellipsoid more or less elongated according to the degree of anisotropy. The ellipsoid
formalism will be introduced in section 3.3 in connection with the diffusion eigenvectors
derived from Diffusion Tensor Imaging.
MRI techniques are available to measure hindered and restricted diffusion without the
need of any tracer or exogenous agent. These techniques are called Diffusion Weighted
MRI (DW-MRI) and allow the visualization and quantification of the diffusion characteris-
tics. The theoretical background of DW-MRI, together with its practical implementation
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Figure 3.4: Possible effects of compartmentalization and presence of microstructures in
the diffusion behavior of water in cardiac tissue.

in an MRI scanner, will be introduced in section 3.2.
In general, during the diffusion time of a DW experiment, water molecules in the tissue of
interest will undergo a certain displacement, on a scale similar to the size of the cellular
structure in that area. DW-MRI can then be used to probe the microstructure of the
tissue and to get information about microstructures shape and orientation.
In general in biological tissues it is not possible to assume a priori a Gaussian profile for
the diffusion and so Einstein’s equation may not hold. In such tissues the diffusion may
be restricted. The mean displacement in this case may depend on the presence of obsta-
cles, on the diffusion time and in general on how the diffusion is measured, as already
discussed. The Apparent Diffusion Coefficient is still used in this case, but a connection
between it and the structure of the tissue is not easily made

3.2 Diffusion Weighted MRI

Diffusion can be detected using DW-MRI. The diffusion encoding requires two gradients
to be added in a sequence to first dephase and then rephase the spins in a given region. If
diffusion processes take place in that region, the rephasing will not be complete, leading
to a measurable signal attenuation. In this section the Stejskal-Tanner sequence, which
was the first DW-MRI experiment, will be introduced, together with the formula used to
quantify the diffusion coefficient or ADC from the results, in the assumption of Gaussian
profile for the diffusion. After that, the practical implementation and application of DW-
MRI will be discussed.

3.2.1 Stejskal-Tanner sequence

The first diffusion weighted sequence was used by Stejskal and Tanner in 1965 [53]. This
original sequence was a standard Spin-Echo sequence, with 90◦ and 180◦ RF pulses, where
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two diffusion gradients with the same strength G and duration δ were applied following
the 90◦, symmetrically placed around the 180◦ pulse, with a temporal spacing between
them given by ∆. This results in a magnetic labeling of the spin transverse magnetization
as a function of their position. A schematic drawing of that sequence is shown in figure
3.5. This sequence is often referred to as PGSE (Pulsed Gradient Spin Echo).

Figure 3.5: Schematic drawing of the Pulsed gradient sequence proposed by Stejskal and
Tanner [53]. Two rectangular gradients (G) of equal size are placed on both sides of
a 180◦ refocusing pulse. The parameters of the sequence are: TE = echo time, δ =
duration of the pulse gradients, ∆ = spatial separation between the starting point of the
two gradients, G = pulse gradient magnitude. Reproduced from [16].

3.2.2 Diffusion encoding

Almost any MRI pulse sequence can be modified to become sensitive to diffusion of water
molecules. One of the most used is the so called Spin Echo DW, where two diffusion
sensitizing gradients are incorporated in a standard spin echo sequence. This allows to
magnetically label the spins transverse magnetization as a function of their position.
After the first 90◦ pulse the spins precess in the xy plane with frequency equal to Larmor
frequency. After the phase and frequency encoding, the first diffusion gradient is applied.
The application of a single encoding causes the different spins to dephase, and such
dephasing is proportional to the average position of the spin during the time interval δ
in which the gradient itself is applied. We can then consider the application of the first
diffusion encoding gradient as a labeling of the spins according to their position along the
direction of the applied gradient. After the labeling, a 180◦ pulse is applied, that causes
the spins to rotate on the other half of the xy-plane. A second diffusion encoding gradient,
identical to the first one, is then applied after the 180◦ pulse, in order to compensate for
the first one and force the spins to rephase.
If we look at individual spins, assuming that the PFG are applied along the z-direction,
the first diffusion encoding gradients introduces a phase shift φ1, and the second one a
phase shift φ2 given by:

φ1 = γ

∫ γ

0

Gz1dt = γGδz1

φ2 = γ

∫ ∆+δ

∆

Gz2dt = γGδz2

(3.18)

The net phase difference is then given by:

φ2 − φ1 = γGδ(z2 − z1) (3.19)

For static spins (z2 = z1), the rephasing after the second gradient is complete, yielding a
maximum echo signal intensity. However, if spins have moved during the separation time
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∆, the magnetic field experienced during the application of the first gradient would be
different from the one experienced during the application of the second one, leading to
a non zero phase dispersion. The resulting phase dispersion will cause signal loss in the
diffusion weighted image (3.6). When diffusion is present in the area of interest then, the
resulting signal after the pair of diffusion encoding gradients will be attenuated exponen-
tially according to the Stejskal and Tanner formula
As already mentioned, other acquisition sequences derived from the standard spin echo

Figure 3.6: Schematic representation of dephasing for spins in a single voxel under the
influence of a standard Stejskal-Tanner sequence. M0 and φ0 are respectively the net
magnetization vector and the phase of magnetization at equilibrium, while M and φ
are the corresponding values after the pair of diffusion gradients is applied. A) For fixed
spins the dephasing due to the application of the first gradient is completely rephased after
the second gradient, resulting in no difference in phase and net magnetization (signal is
not attenuated) B) For flowing spins the dephasing due to the first gradient will not
be completely rephased, since the spins are displaced during the interval between the
gradients. Since the displacement due to flow will be the same for all the spins in a voxel,
this will result in a net phase shift, but no difference in the magnetization value. C)
For diffusing spins there is no preferential direction, since they move randomly. Thus
each individual spin will experience a different dephasing and rephasing, leading to a zero
phase shift but a measurable decrease in net magnetization. Reproduced from [16].

diffusion sequence can be used to encode diffusion. Most of them are based on the Pulsed
Field Gradient technique introduced by Stejskal and Tanner. Since for Diffusion Imaging
in general a lot of image acquisitions are required, often there is a need for faster acquisi-
tion techniques. This is especially valid for in vivo experiments, since the standard DW
spin echo sequence is really slow. One of the most widely used fast diffusion sequences is
PG-EPI (Pulsed Gradient Echo Planar Imaging). A schematic drawing of this sequence
is shown in figure 3.7.
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Figure 3.7: Single-shot diffusion-weighted spin echo echo planar imaging (EPI) pulse
sequence. The entire k-space is filled with a single EPI readout train, resulting in a fast
acquisition. Reproduced from [16].

The acquisition with the single shot echo planar imaging shown in figure 3.7 is often
problematic, since the technique is really sensitive to B0 susceptibility effects and prone
to eddy currents induced distortions, in particular for high magnetic field. Moreover
the T2∗ signal decay during the echo train limits the spatial resolution achievable and
often introduces severe blurring in the resulting images. Another issues relative to Single
Shot EPI in the Diffusion imaging framework is the poor SNR caused by the long echo
train required. The Diffusion Sensitizing module in fact introduces constraints about the
minimal achievable echo time and this results in a medium to strong T2 weighting of the
images in the sequence. Considering the typically short characteristic T2 time typical
of muscle tissue (in the order of 30 ms at 9.4 T, which may be further decreased by
fixation), the minimal echo time of a single shot EPI may strongly limit the signal in the
images. In order to shorten the echo train, often EPI with segmented k-space is required.
Multishot EPI is sometimes problematic for in vivo experiments, since the phase shifts
induced by motion needs to be coherent for different segments and robust phase navigation
techniques are required. Furthermore, a multi-shot EPI technique obviously requires a
longer acquisition time with respect to standard single shot EPI, but if acquisition time
is not an issue, as it is the case for ex vivo experiments, it is often preferred over single
shot. In fact it is much less sensitive to susceptibility artifacts and provides a better SNR,
which is usually one of the main issues in Diffusion Imaging.
In some circumstances it is useful to investigate the different diffusion behaviors as a
function of diffusion time. If a standard Pulsed Field Gradients encoding sequence is used,
an increase in the gradient spacing will necessary result in an increase in the minimum
achievable echo-time, and consequently in a lower SNR. This sets then a practical limit
to the diffusion times that can be used if the characteristic T2 time of the tissue is short.
A possible solution to this issue is the use of a Stimulated Echo sequences (STEAM).
In this case the magnetization decays with T1, which is typically much longer than T2,
allowing one to read the data out for a longer time. A disadvantage of this method is that
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50% of the signal is lost. A number of simulations have been carried out in literature to
determine for which sets of diffusion times the decrease in the minimum echo time can
overcome the lost of signal when STEAM is used. The conclusion is that STEAM offers
advantages over PFG sequence only in the case of tissues with typical T2 below 25 ms
(such as muscle). [56].

Stejskal-Tanner formula for signal attenuation

Diffusion processes in the liquid state are governed by the Bloch-Torrey equation, de-
rived by Torrey in 1965 adding the diffusion terms to the traditional Bloch equation for
magnetization [60]:

∂M+

∂t
= −iω0M+ − iγr ·Gm+ − M+

T2

+D∇2M+ (3.20)

Here M+ = Mx + iMy is the complex representation of the transverse magnetization,
r represents the position vector, G is the magnetic field gradient (diffusion encoding
gradient) and D is the apparent diffusion coefficient. This equation can be solved for a
spin echo experiment giving as a result the well known Stejskal-Tanner formula for signal
attenuation caused by diffusing spins:

S(G)

S(0)
= exp

(

−γ2δ2G2

(

∆− δ

3

)

D

)

(3.21)

where S(0) is the signal obtained when no diffusion gradient is applied and S(g) is the
attenuated signal. A complete derivation of formula 3.21 can be found in [34].
The previous formula is usually written as:

S(G)

S(0)
= exp(−bD) (3.22)

where b = γ2δ2G2(∆−δ/3) is called b-value and is a parameter depending on the protocol
used for acquiring the diffusion weighted images. This diffusion weighting factor was first
introduced by Le Bihan in 1986 [37].
Equation 3.22 is intrinsically monodimensional, since the original experiment was only
able to sample the diffusion along one direction, given by the direction of the applied pair
of diffusion encoding gradients.
Furthermore in the original derivation, rectangular-shaped pulses were used. This shape
is not achievable in real scanners, since the gradient pulse cannot rise instantaneously
from zero to its maximum value. The previous equation was corrected by [41] taking into
account the non zero pulse ramp time ε:

S(G) = exp{−γ2G2dδ2[(∆− δ/3) + ε3/30− δε2/6]} (3.23)

3.2.3 PGSE in the narrow pulse approximation

In the narrow-pulse approximation it is assumed that the duration of the two diffusion
encoding gradients is much smaller than the spacing between them (i.e. δ << ∆). In
this particular situation the motion of diffusing spins over the time δ can be neglected
and the two gradients can be mathematically considered as two delta functions. This
situation of course cannot be obtained in practice, where often the duration of the diffusion
encoding gradients is in the same order of magnitude of the temporal spacing between
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them. However it is interesting to study the narrow pulse approximation since it allows
to show some really important mathematical relationship between the measured signal
and the Probability Density Function (PDF) already introduced in the previous sections.
After the first gradient pulse, a spin located at position r at the instant of the pulse will
experience a phase shift equal to γδg · r. If during the diffusion time the labeled spin will
move to position r′, the net phase shift following the second diffusion encoding gradient
will be γδg · (r′ − r).
If we define E(g,∆) as the normalized signal at the echo center, we can write the total
signal as an ensemble average of the different phase terms exp[iγδg · (r′ − r)], each one
weighted by the probability for a given spin to begin at position r and end at position
r′. This probability is given by the product of P (r) and P (r|r′, t). They are respectively
the probability for a given spin to start at position r and the conditional probability to
move from r to r′ after time t. The term E(g,∆) is also called signal attenuation, and
represents the ratio between the signal measured in a sequence made sensitive to diffusion
and the same signal we would measure without diffusion encoding. Following the above
mentioned considerations, this signal attenuation can be written as:

E(g,∆) =

∫

P (r)

∫

P (r|r′,∆) exp(−γδg · [r′ − r])dr′dr (3.24)

It has to be noted here that this explicit formulation for the echo signal attenuation is
strictly valid only under the narrow pulse approximation. However in practice it has been
observed that introducing a non-negligible δ generally preserves the large-scale structure
and orientation of the inferred PDF [43].
At this point we can define the dynamic displacement R = r′ − r and define P (R, t)
as the probability that a spin will undergo a displacement R over a time interval t.
This distribution can be found by summing the contributions over all the possible start
positions (which means integrating over the all voxel volume) and using the substitution
r′ = r+R.

P (R, t) =

∫

P (r)P (r|r+R, t)dr (3.25)

Equation 3.24 can then be rewritten as:

E(g,∆) =

∫

P (R, t) exp(−γδg ·R)dR (3.26)

which is clearly a Fourier transform. We found then a fundamental relationship: the
signal attenuation E(g,∆) and P (R, t), the Probability Density Function of travelling a
given distance R in the diffusion time t, are related to each others via a Fourier transform.
This fact has really important implications for Diffusion Weighted MRI.
It has to be noted here that if we insert the probability density function of free diffusion
(equation 3.11) into equation 3.26, we find the well known Stejskal and Tanner equation,
used for DTI. It has to be clear then that the formula is strictly valid only under the
assumption of gaussian diffusion.

3.3 Diffusion Tensor Imaging

Although probing diffusion along a single direction can provide insight into many patho-
logical conditions, this lacks information about directionality of diffusion. As already
explained, we expect diffusion to be anisotropic in biological tissues, and in order to
probe directionality, a 3D approach has to be used. The way this is done in practice is
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by applying the diffusion encoding sequence along different non collinear directions.
In the case of an isotropic medium, the factor D present in the Stejskal and Tanner for-
mula (3.22) is a scalar, since it does not depend on the direction along which diffusion
is measured. However, in an anisotropic situation, like for instance in many biological
tissues, the direction of measurement has to be taken into account. In this case the dif-
fusion term can be replaced by a rank-2 tensor (a 3 × 3 matrix). The previous formula
then becomes:

S(g)

S(0)
= exp(−bgTDg) (3.27)

Here D is the so called Diffusion Tensor. This 3× 3 matrix assumes the form:





Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz





The diagonal components Dxx, Dyy and Dzz represent the diffusion along three mutually
orthogonal directions corresponding to the three axes of the magnet. The off-diagonal
terms represent the correlation between these 3 orthogonal directions. With the intro-
duction of the diffusion tensor formalism, equation 3.10 can be rewritten as:

∂P (r, t)

∂t
= ∇ · [D∇P (r, t)] (3.28)

P again represents the conditional probability distribution that a solute particle is at r at
time t given that the particle was at the origin at time zero.
From physical consideration it is easy to understand that this tensor has to be symmetric
(Dij = Dji), since the probability that a given molecule will move in the positive axis is
equivalent to the probability of a displacement in the opposite direction.
When diffusion is isotropic, the diagonal components of the tensor are the same (Dxx =
Dyy = Dzz = ADC) and the tensor assumes a diagonal form.
On the other hand, when diffusion is anisotropic, the diagonal components are in general
different from each others and non zero off-diagonal terms are present. However, it can
be proven that for every positive definite tensor, an orthogonal system can be defined
where the tensor itself assumes a diagonal form, with all the off-diagonal terms equal to
zero and the diagonal terms positive. The mathematical operation of finding this frame
of reference is called diagonalization. The diagonal elements in this new system are called
eigenvalues and denoted by λ1, λ2 and λ3 and the principal diffusion directions are the
corresponding eigenvectors e1, e2 and e3.

DE = EA where E = (e1|e2|e3)

A =

∣

∣

∣

∣

∣

∣

λ1 0 0
0 λ2 0
0 0 λ3

∣

∣

∣

∣

∣

∣

(3.29)

A common way of representing the diffusion tensor is the diffusion ellipsoid formalism.
An example of these diffusion ellipsoids for free and restricted diffusion is shown in 3.8.
The term ”restricted diffusion” is often used in the context of DTI as a synonym of
hindered diffusion, but while the diffusion parameters are influenced by both restricted
and hindered diffusion, the tensor model assumed Gassianity of the diffusion profile, so it
shouldn’t theoretically be used when the diffusion is purely restricted. The term restricted
will still be used in some occasions in this thesis, but the reader must keep in mind that
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Figure 3.8: Schematic representation of free and restricted diffusion. Here the arrows
represent the 3 eigenvectors (e1, e2 and e3), which indicate the directions of the prin-
cipal axes of diffusion in a voxel, and the corresponding eigenvalues (λ1, λ2 and λ2)
the magnitude of the apparent diffusion coefficients along these principal axes. (A) Free
isotropic diffusion, equal probability of displacement in all directions, represented by a
sphere (λ1 = λ2 = λ3). (B) Isotropic hindered diffusion, equal probability of displacement
in all directions, represented by a smaller sphere (λ1 = λ2 = λ3). (C) Anisotropic diffu-
sion, hindered in one direction, represented by a disc (λ1 ∼ λ2 >> λ3). (D) Anisotropic
diffusion, hindered in two directions, represented by an ellipsoid (λ1 >> λ2 ∼ λ3).

when it refers to the tensor model, then restricted translates into hindered diffusion.

The eigenvectors represent the principal axes of diffusion and the corresponding eigen-
values the (square of the) magnitude of the diffusion coefficients along these directions. To
relate this graphical representation to the physics of diffusion, we can state the previous
concepts in a different way: the radius at any given point of the diffusion ellipsoid relates
to the probability of water molecules to diffuse along that direction (PDF). Since for
many applications (i.e. fiber tractography) only the principal direction of diffusion, which
represents the principal axis of the fiber, is of interest, the PDF is radially integrated to
give the so called Orientation Distribution Function (ODF). This function only contains
information about the average principal diffusion direction in the voxel.

3.3.1 Obtaining the diffusion tensor from MR signal

In order to obtain the diffusion tensor D, we need at least 7 measurements: 1 un-
weighted measurement (S0) and 6 weighted measurements Si, (i=1,....,n) with gradients
gi =(xi, yi, zi) applied in 6 different directions. The six components of the diffusion tensor
can be calculated using the following relation:
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Often in practice more than 6 diffusion encoding directions are used in order to increase
the quality of the data. In this case the previous relationship cannot be used because the
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matrix containing the diffusion parameters is not a square matrix and then cannot be
inverted. There are several methods for calculating the so called pseudoinverse matrix,
which allows to fit the acquired data to a rank-two tensor with 6 degrees of freedom. The
most common are LLS (Linear Least Squares), WLLS (Weighted Linear Least Squares),
and NLLS (Non linear Least Squares) with their constrained counterparts, which force the
diffusion tensor to be positive definite. Recently also the RESTORE (Robust Estimation
of Tensors by Outlier Rejection) approach has been presented in literature. A detailed
description of these fitting methods is beyond the scope of this thesis. A literature review
about this topic can be found in [30],[9],[17].

3.3.2 Scalar parameters from the diffusion tensor

Since the data obtained from DTI are difficult to interpret, some additional parameters
were introduced to quantitatively analyze and visualize the data[5]. Some of the more
common scalar parameters derived from DTI are the apparent diffusion coefficient (ADC),
the fractional anisotropy (FA) and the mode of anisotropy and they are invariant under
rotation and scaling.
The ADC indicates the mean diffusion in a voxel and is expressed in units of mm2/s. In
literature the ADC is often referred to as mean diffusivity.

ADC =
traceD

3
=

Dxx +Dyy +Dzz

3
=

λ1 + λ2 + λ3

3
(3.30)

A second scalar measure is the fractional anisotropy, that indicates how much the profile
of diffusion deviates from the isotropic case, or how much the diffusion ellipsoid deviates
from a spherical shape. It is adimensional and its value is comprised between 0 (isotropic
case) and 1 (completely anisotropic).

FA =
1

2

√
2

√

(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

(λ1)2 + (λ2)2 + (λ3)2
(3.31)

Another parameter often used in DTI is the mode of anisotropy. It is defined as:

mode(D) = 3
√
6det

(

D

norm(D)

)

(3.32)

The anisotropy mode is defined over the interval [-1,+1] and provides complementary
information to FA. A value of −1 indicates a planar anisotropic tensor (λ1 ∼ λ2 >> λ3),
0 indicates an orthotropic tensor, 1 indicates a linear anisotropic tensor (λ1 >> λ2 ∼ λ3).
Orthotropic tensors indicate a diffusive state in between linear and planar anisotropy
wherein the three eigenvalues are distinct. A graphic illustration of the glyphs for a single
voxel characterized by different fractional anisotropies and anisotropy modes is shown in
figure 3.9.

Although derived from the DTI model, the mode of anisotropy is often used as an indicator
of complex fiber organization, since a planar glyph geometry is expected is the presence
of crossing fibers.

3.3.3 Fiber tractography

Fiber tractography refers to the ensemble of techniques to identify fiber pathways in a
given tissue. Tractography is of fundamental importance in the study of fibers, since it
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Figure 3.9: Graphical illustration of a diffusion tensor with constant norm represented
with superquadratic glyphs for different values of fractional anisotropy and mode of
anisotropy. Glyphs are shown for increasing FA (from top to bottom) and increasing mode
(from left to right). Glyphs along constant radii are of constant fractional anisotropy, but
of varying mode. This figure explicitly demonstrates that increases in FA do not neces-
sarily indicate increasing linear anisotropy. Reproduced from [14]

is the only available tool to asses their structure and the way they are connected in vivo
and in a non-invasive way.
The fundamental assumption of fiber tractography is that the tangent to the curve repre-
senting the fiber tract is always and everywhere parallel to the local peaks of the orienta-
tion density function (ODF) estimated from the data for that given point. The concept
of ODF will be explained in details in the next chapter. In the case of DTI, however,
the ODF peak is simply given by the direction of the main eigenvector (λ1). Since the
ODF is relative to a single voxel, the level of information is discretized. If continuous
tract trajectory need to be estimated from the discrete ODF, then interpolation is re-
quired. Different algorithms have been presented in literature on they way the tract can
be interpolated from the ODF. The two main categories of algorithms for tractography
are probabilistic and deterministic .
In addition to the algorithm used, other assumptions play an important role in the way
the tracts are drawn and stopped. At each stage of the iteration process, in fact, a certain
number of assumption is made about the nature of the tract. Typical example of these
additional assumptions are maximum curvature along the tract, maximum and minimum
length and ODF peak threshold. They usually provide ”stopping criteria” that don’t
allow the tracks to be calculated further if one of the given conditions is not met. In
the case of DTI a stopping criteria based on the value of fractional anisotropy is often
used. The need of providing additional parameters for the fiber tracking, requires then in
general some arbitrary assumptions or a previous knowledge of tissue structure coming
from imaging modalities different from DW-MRI (i.e. dissection, microscopy, histological
studies, etc).



3.4. DTI OF THE HEART 29

Figure 3.10: Principle of fiber tracking in 2 dimensions. The average orientation is rep-
resented for every voxel by the red arrows. The blue lines represent the fiber tracts
estimated from the diffusion tensor.

3.4 DTI of the heart

Diffusion Tensor MRI has been validated as a valuable tool for rapid and non destructive
analysis of the 3D myocardial structure in both normal and diseased hearts.
The primary diffusion tensor eigenvector has been directly correlated to the myocardial
fiber orientation [26]. Furthermore there are some evidences that the fiber tracts form
laminar sheets, and the second and third eigenvectors of the diffusion tensor have been
shown to relate to the sheet direction and sheet normal direction [63][23][50].
A recent study from Kung et al. [35] showed that DTI can be used to infer the exis-
tence of two different populations of myolaminae of different orientation. By measuring
the myolaminae orientations from the secondary and tertiary eigenvectors, two different
angles were observed, which related to the two different orientations of myolaminae in the
left ventricle. These angle showed good correspondence to each of the two myolaminae
orientations observed in histology. The histological study showed that these myolaminae
exist throughout the all LV, although the number of observation of double sheet popu-
lation was higher in the region between the midwall and the endocardium. In this area
the different myofibers population appeared to be crossing each others with an angle of
approximately 90◦.
It has been shown that myofibers in the subendocardium have a positive (or right-handed
helix), those in the mid-myocardium are circumferential and those in the subepicardium
have a negative (or left-handed helix). The transmural helix angle typically ranges from
−60◦ at the epicardium to +60◦ at the endocardium with a smooth angular variation [22].
DTI has been often used also to study the remodeling of infarcted myocardium in dif-
ferent species, such as pigs [69], mice [54] and human, sheeps and rats [42] ex vivo. The
remodeling involves both structural and functional changes and they have been shown to
occur in both infarcted myocardium and adjacent and remote zone.
Some parameters for cardiac muscle derived from DTI, such as eigenvalues, mean diffu-
sivity and fractional anisotropy are indicated in table 3.1. However, care has to be taken
if one wants to compare different data, since they are not strictly a property of tissues,
but also have a dependence on the acquisition parameters, such as SNR of the B0 image,
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Table 3.1: DTI-derived parameters for cardiac muscles reported in literature.

Reference λ1 × 10−3mm2/s λ2 × 10−3mm2/s λ3 × 10−3mm2/s ADC ×10−3mm2/s FA

[29] a 0.75 ± 0.13 0.60 ± 0.13 0.51 ± 0.13 0.62 0.19

[23] b 1.05 0.55 0.45 0.68 0.44

[? ] c 1.70 1.25 0.95 1.30 0.28

[71] d 0.92 ± 0.05/0.81 ± 0.05 0.25 ± 0.01/0.27 ± 0.01

[71] e 0.74 ± 0.03/0.67 ± 0.03 0.27 ± 0.01/0.29 ± 0.01

[69] f 1.20 ± 0.15 1.0 ± 0.14 0.82 ± 0.13 1.00 ± 0.14 0.20 ± 0.03

[69] g 0.92 ± 0.19 0.62 ± 0.10 0.48 ± 0.09 0.67 ± 0.01 0.32 ± 0.01

[54] h 1.03 ± 0.03 0.70 ± 0.02 0.46 ± 0.03 0.70 ± 0.03 0.39 ± 0.02

[54] i 0.78 ± 0.05 0.55 ± 0.05 0.36 ± 0.02 0.56 ± 0.02 0.38 ± 0.02

[54] j 1.06 ± 0.01 0.70 ± 0.06 0.38 ± 0.04 0.71 ± 0.06 0.48 ± 0.04

[70] k 1.78 ± 0.06 0.67 ± 0.05 0.53 ± 0.07 0.33 ± 0.02

a
Formalin fixed mouse heart

b
Formalin fixed canine hearts. Values estimated from graphs

c
Perfused arrested rabbit hearts. Values estimated from graphs

d
17 patients with recent myocardial infarction (infarct zone/remote zone)

e
17 patients with chronic myocardial infarction (infarct zone/remote zone)
f
Formalin fixed porcine hearts (infarcted region)

g
Formalin fixed porcine hearts (infarcted region)

h
Formalin fixed mouse heart (control)
i
Formalin fixed mouse heart (7 days after myocardial infarction)
j
Formalin fixed mouse heart (28 days after myocardial infarction)

k
Formalin fixed canine heart

number of diffusion encoding directions in the acquisition scheme, and b-values used [16].
The scalar anisotropy indices have mostly been assumed to be uniform throughout the
cardiac wall, and often the values are presented in literature as an average over the entire
wall. However some studies suggest that they have a transmural heterogeneity. In the
work of Jiang et al. [29] it is shown that the fractional anisotropy in the sheep myocardium
has a constant value from the epicardium to the midwall, but decreases from the midwall
(region where the fibers run circumferentially) to the epicardium (see figure 3.11). This
heterogeneous behavior can be caused by different diffusion properties at the microscale,
such as different water fraction, and could also suggest the presence of multiple fiber pop-
ulation in the region going from the midwall to the endocardium.
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Figure 3.11: A)Color-coded fractional anisotropy map of formalin-fixed sheep heart.
B)Plot of FA profile in the same slice as in figure A as a function of the normalized
transmural depth. The cardiac wall is schematically divided in 4 regions, labeled Z1-Z4,
starting at the epicardium. Reproduced from [29])

Also the quantification of helix angle of the cardiac myofibers has been object of
several studies. The helix angle is usually defined as the angle between the short-axis
plane and the local fiber orientation projected onto the local endocardial tangent plane.
A schematic drawing of the helix angle is presented in figure 3.12

Figure 3.12: Part of the left ventricle with the definition of helix angle αh and transverse
angle αt.



Chapter 4

Beyond DTI

DTI is a powerful imaging technique, that can provide anisotropy information, from which
we can infer the structure of the tissue of interest. However the Stejskal-Tanner formula
3.22, which is the base of the DTI formalism, is only strictly valid in situations of free
diffusion. In this case the PDF has a Gaussian shape and the normalized signal decay
is purely mono-exponential, with the decay constant given by the Apparent Diffusion
Coefficient (ADC). This simplified model of free diffusion can only approximate the real
structure of biological tissues under certain conditions. Some findings [15],[55] suggest
that heart muscles show a non mono-exponential behavior of diffusion, analogously to
other tissues. While this behavior is typically observed for much higher b-values than
normally used in clinical and research practice, it nevertheless shows that DTI is an over-
simplified model of diffusion in the cardiac muscles.
DTI assumes water protons to move randomly in a single compartment in which diffusion
is hindered but not restricted. However, since the previous studies showed the presence
of a restricted behavior for high b-values, more sophisticated models of diffusion need to
be introduced (i.e. multiple compartments of diffusion and possibly exchange between
them). A short introduction about some models of diffusion will be presented in section
4.6.
Another important situation in which the DTI model is not valid, is the presence of differ-
ent fiber populations within a single voxel. In general partial volume effects are extremely
likely to occur, since the minimal spatial resolution achievable with DTI techniques is far
larger than the typical diffusion scale. Hence in every imaged voxel several fibers with
different diffusion behavior are typically present. Since the diffusion tensor can posses
only a single maximum, it is therefore unable to identify multiple diffusion maxima aris-
ing from the presence of multiple fiber bundles within a single voxel. The main direction
of the fiber, that is inferred from the main eigenvector of the diffusion tensor as measured
in a typical DTI experiment, gives then information only about an average value of pref-
erential direction in fibers in the voxel, and cannot be referred to the specifical spatial
position of a given fiber. A simple graphical explanation of this effect is shown in figure
4.1.
This limitation has important implications in fiber tractography. It has been shown for
instance that more than 60% of white matter tracts in the brain are likely to traverse
regions with multiple fiber orientations at some point along their path. Also in the car-
diac muscle there is evidence, from various imaging technique, of regions with crossing
bundles of fibers. In such regions, the orientation extracted from the diffusion tensor
(which always corresponds to the first eigenvector), is unreliable and may cause false neg-
atives, in which tracking terminates, or false positives, in which tracking switches to an
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Figure 4.1: Voxel with two fiber populations intersecting at an angle of approximately 60◦.
The bright green line represents the estimation of fiber direction as obtained with DTI
model, while the two lobes represent the real directions of the two populations crossing
in that voxel.

unrelated adjacent tract. This is problematic when looking for structural information and
especially in case an attempt is made to compare healthy and diseased tissues according
to the different tract characteristics. Since this comparisons often rely on the difference
in fiber lengths, the inability in following the real direction can easily lead to uncorrect
diagnosis.
The presence of multiple fiber populations as a consequence of partial volume effects does
not only have consequences in tractography, but also on the analysis of scalar indices
parameters. Fractional Anisotropy (FA) is for instance often used as a marker for patho-
logical conditions since it is supposed to reflect the degree of elongation of a fiber and
often pathologies affect the physiology of cell structures. We already discussed why care
has to be taken in comparing FA indexes between different scans, since it has been proven
to depend on the SNR, conditions in which measurements are performed and postpro-
cessing of the data. However, also the comparison of FA values within the same scan can
lead to misinterpretations. In fact the presence of partial volume effects can decrease the
apparent FA value, without any underlying tissue abnormality.

Figure 4.2: Different fiber configurations within a single voxel. From left to right: sin-
gle fiber, 2 fibers crossing at a small angle and fibers crossing at 90◦ represented with
DTI (left box) and high angular resolution techniques (right box). In the situation of
two fibers intersecting exactly at 90◦, the FA value may result close to zero (spherical-
shaped ellipsoid) because of partial volume effects. Retrieved from http://www.wias-
berlin.de/research/ats/imaging/

Since the 6 degree of freedom of the DTI model are not sufficient to resolve and anal-
yse complicated structure, novel techniques based on high angular resolution approaches
such as Diffusion Spectrum Imaging (DSI) or HARDI have been proposed to overcome
these limitations. They can be considered as an extension of DTI. In this chapter a brief
overview of these techniques will be given.
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4.1 Introduction to q-space

The q-space analysis forms an interesting supplement to DTI. q-space formalism is the
most natural framework to work with when diffusion data are involved, since it represents
diffusion weighting as a function of the strength and direction of the diffusion encoding
gradient applied during the MRI acquisition [52, 21]. DTI is a sampling of 6 points in
q-space, since 6 different diffusion encoding directions are normally used. The effect of
adding diffusion encoding gradients in a classical image acquisition sequence is to add
additional dimensions to the sampling space [67]. In this section a short introduction to
the q-space formalism will be given.
The image data acquired with MRI are usually 3D data, in the sense that for every position
of 3D space is associated a single level of gray, that indicates the signal intensity at that
given position p. When diffusion encoding is added to the MR acquisition sequence, a
different local displacement distribution of water molecules is obtained for every imaged
voxel, giving information about the directionality and amount of diffusion taking place
in that voxel. The combination of position information, together with the displacement
probability gives rise to a 6D image. To put it in other words, in a normal anatomical MR
image, a scalar measure is associated to each imaged voxel (different level of gray) that
gives a measure of signal attenuation. The image is then 3 dimensional. When diffusion
encoding is added, at each position p a new 3D image is added, where the molecular
displacement is encoded over 3 dimensions. The resultant 6D images contains then 3
position variables and 3 spin displacement variables.
q-space is then the needed formalism to describe diffusion, like k-space is the natural
formalism required to understand the formation of MR anatomical images.
For analysing the q-space, an important parameter to be introduced is the gradient wave
vector or q-vector (sometimes also referred to as displacement vector):

q = γδg (4.1)

where γ is the proton gyromagnetic ratio for a water molecule, g is the applied diffusion
weighting gradient and δ is the duration of such a gradient. The b-value used in DTI is
related to the q-value with the relationship b = τq2, where τ = ∆− δ

3
. In anatomical MRI

measurements, the data are stored in the so called k-space, and a 2-dimensional inverse
Fourier transform of the data can be performed to get the anatomical image. In an anal-
ogous manner, also q-space can be Fourier transformed to get the directional information
about diffusion. The transform of the q-space gives a PDF (Probability Density Function)
that describes the probability that water molecules in the tissue of interest will undergo
a certain displacement due to diffusion in a given diffusion time. This PDF shows local
maxima along the axis of fiber orientation at the single voxel level [51, 21]. In contrast
with DTI technique, q-space formalism is then able to resolve different fiber populations
within a voxel, exploiting the multiple local maxima of the probability density function,
with an increased angular resolution. The number of directions in which the 3D diffu-
sion function (q-space) is sampled translates into the maximum angular resolution of the
technique[52].
A condition for q-space analysis is that the diffusion gradient pulses must be sufficiently
narrow so that motion over their duration can be neglected. In other words the condition
δ << ∆ must be fulfilled (this condition is referred to as narrow pulse approximation).
With an NMR spectrometer and its strong gradients it is possible to achieve this condition
and even cell microscopic structures and their sizes can be studied. However, considering
the weak gradients in a clinical MRI scanner and the rise time needed for the gradients
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to achieve their maximum values, this condition has to be violated. The consequences of
this violation have already been discussed in section 3.2.3.

4.2 Multiple tensor approaches

The probability Density Function of displacement of water molecules relates to the NMR
signal attenuation via a Fourier transform:

E(q) =

∫

P (x|τ) exp(−iq · x)dx (4.2)

When enough measurements of the signal attenuation S(q) are acquired over a large range
of q, the PDF can be reconstructed. However often a given model for water diffusion is
assumed, which allows a much faster sampling of the q-space. The zeroth-order model
assumes the diffusion to be isotropic. The simplest model for the PDF P (x|t) that
describes anisotropic diffusion is a multivariate, zero mean Gaussian distribution, with
covariance 2Dt, according to Einstein equation 3.15:

P (x|τ) = 1
√

(4πt)3|D|
exp

(−xTD−1x

4t

)

(4.3)

This is the behavior that is normally assumed in the Single Tensor Model (DTI).
In order to model the diffusion processes in a voxel with more than one fiber population,
the multitensor approach has been proposed in literature. The gaussian model here is
replaced by a mixture on n gaussian densities, each one characterized by a given water
volume fraction f s.t. 0 ≤ f ≤ 1 and

∑

n = 1. Each gaussian density relates to a different
fiber population, which is described by a rank-2 tensor. This assumes the n population
to be distinct, thus no water exchange between them. The measured signal can then
be seen as a combination of the signal that would arise from a single fiber. The Multi
Tensor approach belongs to the group of the so called model based approaches, since
a priori information is needed regarding the nature of diffusion (like in DTI, diffusion
is here assumed to be Gaussian within every single fiber) and the number of distinct
fiber orientations present, since for every fiber population a different rank-2 tensor is
needed. The multitensor analysis is made further complicated by the presence of different
compartments showing different diffusion behavior (i.e. hindered and restricted) and this
should be ideally included in the model.
This approach has many limitations: first of all it is really prone to artifacts and may
produce unreliable data since the estimation of the number of fiber populations in a voxel
is not straightforward. Furthermore it is shown to be unstable if more than two fiber
populations are present[66] [1].

4.3 DSI

The analysis of fiber architecture with Diffusion Spectrum Imaging techniques is based
on the same fundamental assumption used in all diffusion encoded imaging models: the
level of diffusion is greater along the fiber direction[67].
DSI is a model-free methodology, in the sense that generalizes all the known diffusion
techniques and doesn’t need any hypothesis about the diffusion behavior, such as Gaus-
sianity as assumed by DTI (see section 3.3), or multi-Gaussianity as assumed by the
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multiple tensor approach (see section 4.2).
For an idealized pulse sequence with infinitesimally short gradient pulses, the probability
density function (PDF) is simply the Fourier transform of the amount of signal attenua-
tion as was already shown. The PDF may present several local maxima, each indicating
a different fiber population. The PDF is then radially integrated to get the Orientation
Distribution Function.
Different sampling schemes have been used for DSI, however the most common technique
reported in literature is the one proposed by Kuo [36], with 515 different q-values, uni-
formly distributed on a regular cartesian grid inside a sphere.
From a theoretical point of view, DSI can be considered as the gold standard for diffusion
imaging technique, since it is hypothesis free and its capability to resolve fiber crossing
depends only on the angular resolution, i.e. on the number of diffusion weighted images
acquired [67, 51, 21]. However the hardware requirements are high and its application
is also severely limited by the very long acquisition time required, making this routine
not feasible for patient studies. Furthermore, as it has already been remarked [64], the
cartesian sampling of q-space is not efficient, because the signal is acquired even in re-
gions where we know the SNR to be low, because it does not provide a natural framework
for describing angular resolution and because the available acquisition time can be spent
more efficiently in increasing the angular resolution.
In order to overcome these limitations, different acquisition schemes have been proposed
in literature. One of the most common is the so called HARDI acquisition scheme, that
will be introduced in the next section and that will be one of the main topics of this thesis.

4.3.1 DSI of the heart

To the best of our knowledge, only few attempts of studying the cardiac muscles with
higher order approaches have been presented in literature. In [52] DSI tractography of
the myocardium is performed on a rat heart, and remodeling after infarction is compared
to normal fiber structure. In the control heart the double helical structure, already shown
in previous studies using DTI, is observed, with smooth changes from the endocardium to
the epicardium. The myofibers are seen in fact to spiral around the long axis of the left
ventricle, with a left-handed helix at the subepicardium, which becomes a right-handed
helix at the subendocardium. On the other hand, fiber architecture in the infarcted heart
was severely perturbed. In particular residual myofibers extending from within the infarct
to the border zone were observed. This residual myofibers intersect and form nodes with
the transversely oriented fibers, forming a meshlike structure. This modified architecture
could have important implications, since it may resist mechanical remodeling.
As previously explained, since DSI is able to resolve multiple fiber population within a
single voxel, the 3D fiber structure can be reconstructed in greater detail. An example of
fiber tractography for the control rat heart is shown in figure 4.3. The ex vivo rat heart
3 weeks after myocardial infarction showed a loss in myofibers, and reduced myofiber
length. Furthermore the normal smooth evolution of myofiber orientation was lost, and
replaced by myofiber strands with highly dispersed helix angles. A visual comparison of
healthy and remodeled rat heart 3 weeks after myocardial infarction is shown in figure
4.4. The data from the fiber tractography were validated with histological analysis.
Another attempt of using DSI for the study of the mouse myocardium ex vivo can be found
in [58]. In this work a fast spin echo diffusion spectrum sequence was used and diffusion
glyphs for a short axis plane were calculated. A region of interest at the intersection of
right ventricle and left ventricle was presented. Crossings at the region of intersection
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Figure 4.3: Variation of myofiber helix angle across the lateral wall. In figure D, E and
F fibers intersecting a spherical region of interest are displayed. The different orientation
of the helical structure could be observed, from positive at the subendocardium (D) to
negative at the subepicardium (F). Zero helix angle was observed at the midmyocardium
(figure E), where the fibers run circumferentially. Reproduced from [52].

Figure 4.4: Whole volume tractograms of (A) normal and (B) infarcted rat heart. The
high density of fibers, with smooth variation in the helix angle, was lost in the infarcted
heart, where strands of residual myofibers extended from the infarct to the border zone.
The residual myofibers were far fewer at the apex than at the base. Reproduced from
[52].

with the RV could be clearly observed.

4.4 HARDI

DSI is in theory the ”gold standard” for diffusion weighted imaging, since it involves
a dense sampling of k-space. However this approach is time consuming and for many
practical applications good results can be also obtained by undersampling the q-space
over a sphere. HARDI (High Angular Resolution Diffusion Imaging) techniques are all
based on the same principle: acquiring a large number of diffusion weighted samples with
a constant q-value but along different directions. The q-space in this case is then sampled
over a sphere, while in the case of DSI a cartesian sampling is required. Starting from
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Figure 4.5: ODF for a single slice of the mouse heart obtained with DSI. Reproduced
from [58].

spherical acquisition of diffusion data, the ODF (Orientation Distribution Function) can
then be reconstructed with different algorithms. Two of the most known and reported
techniques belonging to the HARDI family are q-ball imaging and Spherical Deconvolution
(with its constrained version). These two techniques will be explained in the next sections.

4.4.1 q-ball imaging

q-ball imaging techniques was introduced by Tuch [65] in 2004. In its original formulation
only one shell in q-space is required. q-ball imaging is, like DSI, directly based on the
q-space formalism, but unlike DSI, its ODF is reconstructed directly from the diffusion
weighted signal, without calculating the PDF (Probability Density Function) from the
signal attenuation via an inverse Fourier transform. The ODF can in fact be recovered
from the signal attenuation in q-space using the so called Funk-Radon transform. q-
ball imaging belongs to the model-free algorithms, since does not require any particular
modeling of the diffusion process inside the tissue.
The different HARDI methods differ between each others in the way they estimate the
ODF and their (possible) multiple maxima, but also on the physical meaning of the
relative ODF. The ODF that is normally recovered with q-ball imaging (and with DSI) is
more properly called diffusion Orientation Density Function or dODF and is a spherical
function that for every point on the sphere represents the statistical relative number of
particles that have diffused along the vector joining that point with the center of the
sphere. If we assume the different fibers to be aligned along the same axis, the dODF
will then show a peak along that axis, indicating a greater level of diffusion along that
direction. The dODF will in general be non zero in the other directions, due to the fact
that diffusion also occurs, although in a smaller extent, in the direction perpendicular to
the fiber direction and also to blurring arising from the estimation of the function from
the data.
The q-ball reconstruction techniques uses q-vectors that have the same b-value, typically
ranging from 1000 to 3000 s/mm2. The required b-values are high, but lower than b
values required for DSI [36]. The q-ball technique is much simpler and faster than DSI,
but assumes that the selected b-value is optimal for the kind of tissue to be visualized
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and is generally speaking really sensitive to noise [51]. However q-ball maintains many of
the potential of DSI, but it’s faster and easier to implement.

4.4.2 SD and CSD

The Spherical Deconvolution techniques was introduced for the first time in 2004 [61]
and is currently one of the most widely used methods in literature for estimating fiber
orientation in the brain from HARDI acquired data. The main underlying assumption of
this method is that all the fiber bundles in the tissue of interest share the same diffusion
characteristic. This means that all the differences in diffusion anisotropy are caused by
partial volume effects. Thanks to this assumption, we can define the so called response
function R(θ), which is the diffusion-weighted signal attenuation that would be measured
from a single coherently oriented fiber population. It can be proved that the signal at-
tenuation due to diffusion measured over the sphere is given by the convolution of the
response function with the Orientation Distribution Function (ODF). The ODF can then
be reconstructed from the measured data with a spherical deconvolution. The ODF calcu-
lated with the Spherical Deconvolution technique is more properly called fiber Orientation
Density Function (fODF) and represents the relative number of fibers that are oriented
along a given axis. Unlike the dODF, typical of the q-space based approach as DSI and
q-ball, the fODF is theoretically not supposed to present peaks along orientations differ-
ent from the main orientation of the fibers in the voxel of interest. For instance, if all the
fibers in a voxel are oriented along the z-direction, we should expect the fODF to present
a delta function along the z-axis and to be zero in all the other directions. This is of
course not the case in practical implementation, since the ODF is typically blurred and
presents different spurious peaks. For this reason, a peak threshold is often imposed in
order to exclude small peaks that do not represent any underlying characteristic of the
tissue.
One of the main differences between q-space imaging and SD (or CSD) is the fact that
the latter are not model free, in the sense that specific assumptions are made about the
diffusion profile, although the assumptions are much less stringent than the ones required
for DTI. Since the average diffusion displacement is expected to be in the order of 10µm
for a typical diffusion experiment, we can assume that there is no exchange between spa-
tially distinct fiber bundles, so that the diffusion weighted signal arising from different
populations can be considered to add up linearly.
In order to provide an intuitive idea of how the SD fitting works, a schematic drawing is
presented in figure 4.6. Let’s suppose n different fiber populations are enclosed within a

Figure 4.6: Schematic illustration of SD for a voxel containing two different fiber popula-
tions with distinct orientation

given voxel, each with volume fraction f . The measured diffusion-weighted attenuation
signal S(θ, φ) is given by the sum of the response functions for each population, weighted
by their respective volume fraction and rotated in such a way that any single response
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function is aligned along the direction of the respective fiber population. This can be
expressed by following summation:

S(θ, φ) =
∑

i

fiÂiR(θ) (4.4)

where Âi is the operator representing a rotation onto the direction (θi, φi). this operation
can be expressed as a convolution over the unit sphere of a response function R(θ, φ) with
the fiber ODF.

S(θ, φ) = F (θ, φ)⊗R(θ) (4.5)

A good estimation of the response function is necessary for correctly determine the ODF.
We would generally expect the FA, as defined in the DTI framework, to be higher in
voxels with a single fiber population. This assumption is often used for the estimation
of the response function: the voxel with the highest FA is selected and assumed to rep-
resent the diffusion characteristics of a single fiber population. Although the DTI model
could be used to estimate the response function, the Constrained Deconvolution method
does not directly rely on the Gaussian model of diffusion. The response function, in fact,
can and should be estimated directly from the data by measuring the diffusion-weighted
profile in regions likely to contain a single coherently oriented fiber population. Most of
the currently available techniques for the estimation of the response function start from
a fractional anisotropy value, although some different approaches have been proposed to
make the CSD approach more robust and completely independent on the tensor model
[57].
One of the drawbacks of the spherical deconvolution based techniques, regardless of the
mathematical algorithm used for the calculation of the response function from the signal
decay in a voxel, is that the correct selection of the voxel to be used for the estimation of
the response function requires some a priori knowledge about the structure of the tissue
of interest coming from other imaging techniques, such as histology. Nevertheless, CSD
is becoming more and more popular thanks to computational simplicity and speed.
The spherical deconvolution approach itself does not set an upper limit for the maximum
number of fiber population that can be resolved, but this is done by the maximum har-
monic order used in the calculation. The maximum harmonic order that can be estimated
from the data is limited by the number of noncollinear diffusion encoding directions used
to sample the q-space. In general, for fitting the data to the harmonic order 2n, at least
(2n + 1)(n + 1) diffusion directions are required. We observe that for the second order

Table 4.1: Minimum number of noncollinear diffusion encoding directions required for a
reliable estimation of the harmonic order nmax

nmax # of directions

2 6
4 15
6 28
8 45
10 66
12 91

spherical harmonics, the number of directions needed is 6, as in the case of the DTI model.
However it has to be observed that the spherical deconvolution operation is more sen-
sitive to noise for higher order spherical harmonics. There is therefore a practical limit
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to the maximum angular resolution that can be achieved using spherical deconvolution
techniques. Although filtering can significantly reduce the noise effects, terms higher than
Lmax = 8 often need to be attenuated to such an extent that they no longer introduce
significant improvements in the reconstructed fiber ODF. For this reason Lmax = 8 is of-
ten the highest order used in practice [61]. While the best estimation for the orientational
behavior of the different fiber populations is obtained for intersection occurring at 90◦,
the technique is often unable to resolve fiber populations whose orientations are too close.
In the first version of the technique, the presence of negative side lobes was often observed,
and this situation is of course nonphysical. This is mainly caused by the high level of noise
typical of diffusion weighted images. In a later version this issues was however solved, by
introducing a non-negativity constraint of the estimated ODF [62]. This version of the
algorithm, know as Constrained Spherical Deconvolution (CSD) is nowadays the most
widely used technique in literature for estimating the multiple maxima of the FOD from
HARDI acquired data. CSD offers some advantages over SD: it can resolve fiber orien-
tations separated by smaller angles than can be resolved with SD, without affecting too
much the computational cost.

4.5 Diffusion Kurtosis

Diffusion Kurtosis Imaging (or DKI) refers to a relatively new diffusion imaging technique
[28] which allows the quantification of how much water diffusion in biological tissues is
non-Gaussian. In the simplest model, used for DTI, the PDF of water displacement is
modeled to have a Gaussian shape, with width proportional to the diffusion coefficient.
However, due to the complex structure of the tissue, that creates diffusion barriers and
compartments, the distribution can deviate from a Gaussian and this level of deviations
can be used to infer micro-characteristics of the tissue of interest.
In this section a short mathematical introduction is presented, together with practical
implementation and possible added value of DKI over DTI.

4.5.1 DKI

The kurtosis is a dimensionless statistical metrics for quantifying the non-Gaussianity
of an arbitrary statistical distribution. In particular, it is the normalized forth central
moment of the water displacement distribution. In the case of molecular diffusion the
kurtosis along a direction n (with |n| = 1) is defined as:

K(n) =
< (r · n)4 >
< (r · n)2 >2

− 3 =
κ4
κ22

(4.6)

where kn are the cumulants of the distribution. In an analogous manner the diffusion
tensor D along the direction n can be defined as:

D(n) =
1

2t
< (r · n)2 > (4.7)

Diffusion kurtosis is much more sensitive to tissue microstructure characteristics[68]. In
fact, since it quantifies the deviation of the water diffusion profile from the Gaussian profile
of unrestricted diffusion, it provides a measure the degree of hindrance and restriction.
In the case of isotropic Gaussian diffusion the kurtosis vanishes. If the distribution is
more sharply peaked than a Gaussian, K is negative, while if the distribution is less
sharply peaked than a Gaussian, K becomes positive. The theoretical lower bound for
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K is −2. An example of isotropic displacement probability distribution with identical
diffusion coefficients but different kurtosis values, is shown in figure 4.7

Figure 4.7: Three isotropic diffusion displacement probability distribution with the same
diffusion coefficient but different kurtosis values. Adapted from [28]

Kurtosis can be determined by using a standard pulsed field gradients sequence, as the
ones typically used for DTI. In general the signal attenuation in a PGSE experiment (in
the narrow pulse approximation), given by:

S(g)

S(0)
=

∫ +∞

−∞

eiγδgrp(r,∆)dr (4.8)

can be rewritten as a summation of the cumulants of the distribution:

ln
S(g)

S(0)
=

∞
∑

p=1

κp
(iγgδ)p

p!
(4.9)

Since the diffusion displacement can be considered symmetric, all the odd order cumulants
are equal to zero and the previous equation can be expanded as:

ln
S(g)

S(0)
= −κ2

(γgδ)2

2
+ κ4

(γgδ)4

4!
− κ6

(γgδ)6

6!
+ · · · (4.10)

When the distribution is Gaussian, the second cumulant is defined by κ2 = 2∆D. By
substituting this in the definition of kurtosis (eq. 4.6), we find then:

κ4 = 4KD2∆2 (4.11)

By formally substituting the two previous expressions for κ2 and κ4 and defining the
b-value as b = γ2g2δ2∆, the normalized signal attenuation can be expressed as a serie in
powers of b:

ln[S(b)]

ln[S(0)]
∼ −bD +

1

6
b2D2K (4.12)
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For b sufficiently small the last term can be neglected and we can still think the Stejskal-
Tanner equation to hold1. For increasing b the deviation of the signal attenuation from
this simple form is supposed to become more and more pronounced.
It as been shown [28] that the kurtosis presents directional behavior as does the diffusion
coefficient, in the sense that is changes according to the direction where the diffusion
encoding gradients are applied. We normally refer then to Mean Kurtosis (MK), in
analogy with the Mean Diffusivity, to indicate the average of the kurtosis over all possible
directions (see figure 4.8).

Figure 4.8: Schematic illustration of the diffusion ellipsoid (blue), representing the 3D
diffusion distribution in a voxel, as calculated from the Diffusion Tensor. The three
eigenvectors e1, e2 and e3 represent the principal direction of diffusion. The 3D kurtosis
distribution, derived by the Kurtosis tensor, is represented in green and provides extra
information to the Diffusion Tensor. Reproduced from [68]

The coefficient of kurtosis along the different directions can be arranged in a rang 4
tensor, with 34 = 81 components, that can be reduced to 15 independent components due
to symmetry. Since the diffusion tensor has 6 degrees of freedom, the combined number
of degrees of freedom for kurtosis tensor and diffusion tensor is fixed to 6 + 15=21.
If a diffusion weighted MRI experiment is performed, with at least 2 different b-values
along any different direction (plus a non diffusion-weighted image), K and D can then be
calculated on a voxel by voxel basis by fitting the previous equation to the experimental
signal decay as a function of the b-value. The b-values chosen for DKI experiment need
to be bigger than the ones used in DTI (because we have to take into account the second
order terms), but can be generally smaller than the typical values used in q-space imaging
[27].
In order to obtain accurate estimation of the DKI parameters, the maximum b-values has
to be chosen carefully. A common empirical approach to make the choice is to acquire
the same image using a range of b-values, and then choose a b-value in the range where
the signal decay can be approximately fit with a exponential curve, and one in the region
where the non-exponential behavior becomes more pronounced. For the brain, the decay
appears to be exponential up to around 2000s/mm2 and normally the typical b-values
used are 0, 2000 and 3000 s/mm2. Since there are no studies about DKI in tissues other

1Here the definition ”sufficiently small” refers to the nature of the tissue
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than brain, a guideline for the correct b-values to be used has not been presented yet, and
an appropriate b-value range as to be established before starting the acquisition protocol.

4.6 Models of diffusion

In the framework of DTI, molecules are considered to be moving almost freely and expe-
rience hindered diffusion (Gaussian diffusion). If this model was strictly valid, we would
expect the signal decay due to the application of a diffusion encoding sequence to be
exactly exponential as a function of the applied b-values. While this approximation can
be considered to hold for small b values, for high b-values a clear deviation from an ex-
ponential decay can be seen[3]. An example of this behavior in a slice of the left ventricle
of a pig heart is shown in figure 4.9.

Figure 4.9: Normalized signal decay plotted in a logarithmic scale as a function of the
effective b-value applied.

The simplest model that takes into account the non mono-exponential decay is the bi-
exponential model. Two water pools are here considered, characterized by a fast and a
slow diffusion coefficient respectively. In every compartment the diffusion is modeled to
be Gaussian and there is no interaction between different compartments. In other words,
every compartment can be thought as having completely non permeable barriers.
In the case of bi-compartment model, the signal decay as a function of b-value can be
fitted to a bi-exponential curve [3]:

S

S0

= fslowe
−bDslow + ffaste

−bDfast (4.13)

where f and D are the volume fractions and the diffusion coefficients associated with the
fast and slow diffusion compartments, with ffast+fslow = 1. Some authors considered the
fast-diffusing compartments to be related to water molecules in the extracellular space,
while the slow-diffusing components was associated to intracellular space. This model,
although interesting, does not account for the residence time of the molecules in the fast
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and slow compartment according to the measurement time. It has been observed in fact
that the values of f and D in the previous model change as a function of the diffusion
time td = ∆ − δ

3
, suggesting that exchange occurs during the experiment between the

different compartments. Furthermore, despite a good fitting of the signal attenuation
with a bi-exponential model in a wide range of tissues and organs, the water volume
fractions calculated did not correspond with the known ratio between intra-cellular and
extra-cellular compartments [68].
A more complicated model of water diffusion, that takes into account water exchange,
was introduced by Lee and Springer [38]. In this model a temporal factor is introduced,
in such a way that water fractions are not only related to physical compartments of water
molecules, but rather connected to the ”residence time” of those molecules in each com-
partments during the acquisition.
Some complex multi-compartment models of diffusion have been presented in literature
(such as CHARMED, AxCaliber and Ball and Stick) to estimate fiber diameter, fiber
density and fiber orientations, but they mainly refer to microstructural parameter in the
brain tissue. Only few studies have been presented addressing the problem of modeling
diffusion behaviors in the myocardium.
In the study of Forder et al. [25] isolated perfused rat hearts were measured along 10
different diffusion encoding directions and multiple b-values for a single diffusion time
(tdiff = 10.5 ms) and the data fitted to a simple bi-exponential tensor model. The diffu-
sion tensor parameters were then estimated for each of the two compartments. The results
showed an higher degree of anisotropy for the slow diffusion compartment, suggesting that
this contribution may arise from the extracellular space, while the fast component may
arise from intracellular space. However the possibility of the fast diffusion compartment
to be related with the microvasculature of the heart cannot be completely excluded, since
these microcapillaries run almost parallel to the fibers, in such a way that the fiber track-
ing would present the same results. Although the FA values were different for the two
compartments, the directional information derived from the diffusion tensor were highly
comparable. In fact the helix angle calculated from the first eigenvectors for the two
different compartments didn’t show differences, suggesting that the bias introduced in
DTI-based tractography when the slow component of diffusion is neglected (i.e. for small
b-values) is negligible.
In the study of Kim et al. [55] the dependence of diffusion time on apparent diffusion
tensor parameters was investigated for fresh calf hearts. The results show an increase in
λ1 and decrease of λ2 and λ3 as a function of increasing diffusion time. However this
study has an important limitation, which are the low b-values investigated (up to 1400
s/mm2) which are not enough to show the non-mono-exponential decay.
To the best of our knowledge only these studies addressed the problem of a more sophis-
ticated modelling of diffusion in the myocardium. The research in this sense is far behind
than in the brain, and basically the only model used in present research is the one of DTI.
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In this study different diffusion MRI experiments were performed in order to get a
deeper knowledge about the myofiber and laminar architecture of the heart. The acqui-
sition parameters and the processing steps used in each experiment will be introduced in
the corresponding chapters.

4.6.1 Tissue preparation

A total of 5 pig hearts obtained from a local slaughterhouse were studied. The excised
hearts were rinsed with normal saline in order to remove the blood excess. The procedure
was carried out within 4 hours after the animals were killed. Afterwards, the hearts were
stored in 4% paraformaldehyde for at least three weeks before scanning.
24 hours before the first MRI scan, the hearts were rinsed with water to remove the
paraformaldehyde excess and placed in a water bath for rehydration of the tissues. Im-
mediately before the MRI scan, the hearts were dried carefully and placed in a well sealed
plastic bag.
Additional experiments were performed on tissue samples with size of approximately
4× 2× 2 cm cut from heart 1. The specimens were placed in an polycarbonate cylindri-
cal container, slightly smaller than the inner diameter of the coil, which was filled with
Fomblin (Solvay Solexis S.p.A. Italy) in order to prevent sample dehydration and the
generation of susceptibility artifacts arising from tissue-air interfaces. In order to avoid
movements during acquisition, the sample were kept in place by surrounding it with a
medical gauze drenched in Fomblin.

4.6.2 Imaging

Experiment on the complete hearts were performed with a clinical 3 TMR scanner (Philips
Achieva, Best, The Netherlands) and a preclinical 9.4 T scanner (Bruker BioSpin Gmbh,
Germany) was used for high resolution scans of small heart specimens.

3 T

The 5 hearts were imaged on a clinical 3 T MR scanner (Philips Achieva, Best, The
Netherlands). A 8-channels head coil was used for signal reception. For each complete
heart 3 different experiments were performed:

• Experiment 1a: Mixing time experiment (diffusion maps acquired with different
mixing times and different b-values)

• Experiment 1b: Kurtosis analysis (dataset acquired with 30 diffusion encoding di-
rections and 4 different b-values)

• Experiment 1c: HARDI and DTI analysis (dataset acquired with 100 diffusion
encoding directions and one single b-value)

The processing algorithm for HARDI analysis (Experiment 1c) was validated using a
phantom of crossing fibers. The acquisition details for each experiment will be given in
the corresponding sections.
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9.4 T

The tissue specimens dissected from heart 1 were imaged with a 9.4 T Bruker preclinical
scanner (Bruker BioSpin Gmbh, Germany). A quadrature birdcage coil with a 35 mm
inner diameter was used for RF transmission and signal reception.
The additional experiments were performed in order to provide additional insight into the
results obtained at 3 T and can be classified as follows:

• Experiment 2a: Mixing time experiment (diffusion maps acquired with different
mixing times and different b-values)

• Experiment 2c: HARDI and DTI analysis (dataset acquired with 100 diffusion
encoding directions and one single b-value)

4.6.3 Data processing

All data were preprocessed using DTITools, a toolbox developed by Martijn Froeling in
Wolfram Mathematica 9. The first step was to convert the DICOM image data into Nifti
format [46], a standard data format for diffusion MRI data. The data in Nifti format were
then imported in DTITools. The MRI images were first denoised, using a Rician noise
suppression algorithm, and then registered to the average of the non-diffusion weighted
images for each dataset. b-matrix re-orientation was taken into account into the process
of image registration.
Signal to Noise ratio was calculated with the difference method in two identically acquired
unweighted images [49].



Chapter 5

Mixing time experiment

In this chapter the dependence of measured parameters on the applied b-value and ex-
perimental diffusion times, and its connection with underlying properties of cardiac tissue
was investigated for the whole heart at 3 T and for heart specimens at 9.4 T. A simple
bi-exponential model of diffusion was used to fit the signal decay.
Different ranges of b-values and diffusion times were then also used for standard DTI
fitting. Most of the cardiac MRI studies presented in literature generally neglect effects
of non-Gaussian diffusion in their analysis. If the diffusion would be purely free and
Gaussian, the signal would have a mono-exponential decay as a function of b-value and
the b-value chosen wouldn’t cause any difference in DTI index quantification. However,
since a deviation of signal decay from mono-exponential is expected, it is also of interest
to investigate the influence of b-value in the characterization of DTI-derived parameters,
which would then allow an optimization of the range of b-values used in future DTI studies.

5.1 Ex vivo heart at 3 T

5.1.1 Imaging

Experiments for studying the influence of diffusion time and b-values on diffusion char-
acteristics were performed. The diffusion weighted images were acquired on a 3T Philips
Achieva human scanner. A standard clinical 8-channels head coil was used. Water diffu-
sion was probed using a stimulated echo sequence (STEAM), as shown in figure 5.1.
A multishot echo planar imaging readout was used in order to reduce T2 losses and spatial
distortions typical of singleshot EPI.
The acquisition matrix was 64×64 for a FOV of 128×128 mm2 with 2 mm slice thickness,
yielding a spatial resolution of 2× 2× 2 mm3. In order to improve SNR, each acquisition
was averaged 4 times. 9 short axis slices with 5 mm spacing were selected. 8 datasets
were acquired with varying mixing time, keeping all the other parameters constant. The
repetition time (TR) was set to 3500 ms, which was the minimum achievable value allowed
by the acquisition of the dataset with the longest mixing time (TM=300 ms). The echo
time (TE) was also set to its minimum achievable value, 55 ms, which was imposed by
the acquisition with the shortest mixing time (TM=30 ms). SENSE factor 2 reduction
and SPIR fat suppression were used.
For constant mixing time, the multishell acquisition (14 different b-values) was obtained
by changing the value of the gradient strength. The gradient strengths required for achiev-
ing the same b-value decreased with increasing mixing time.

49
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Figure 5.1: Schematic drawing of a stimulated echo diffusion weighted sequence (STEAM).
The first diffusion-encoding gradient is placed between the first and the second 90◦ pulse
and the second one after the third 90◦ pulse. The characteristic Echo Time (TE) and
the mixing time (TM) are indicated. The diffusion time is given by TE/2 + TM − δ/3.
Reproduced from [4]

For each experiment the diffusion time was varied by keeping TE fixed while changing the
mixing time. The duration of the pulsed gradient δ was set to 15.99 ms. The 8 different
datasets were acquired with mixing time (TM) of 30, 50, 70, 110, 150, 200, 250 and 300
ms resulting in a diffusion time (tdiff ) of approximately 53.26, 73.26, 93.26 133.26, 173.26,
223.26, 273.26, 323.26 ms respectively (tdiff ∼ TE

2
+ TM − δ

3
).

The b-values for each experiment were 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250,
2500, 2750, 3000, 3250 and 3500 s/mm2. Diffusion encoding module was applied along
8 non-collinear directions calculated with the electrostatic repulsion algorithm in such a
way to include the x,y and z directions in the scanner frame of reference. In addition to
that, for each acquisition of the 8 diffusion encoded images, a non-weighted image was
acquired. Each dataset consisted then of 14 B0 images and 112 diffusion weighted images.
A summary of the acquisition parameters used is presented in table 5.1.

Table 5.1: Acquisition parameters for the mixing time STEAM experiment at 3 T. For
each mixing time, the minimum gradient strength (corresponding to a b-value of 250
s/mm2) and the maximum gradient strength (corresponding to a b-value of 3500 s/mm2)
are included.

TM(ms) tdiff (ms) gmin ( mT/m) gmax( mT/m)

30 53.26 ms 3.94 59.94
50 73.26 ms 3.65 51.11
70 93.26 ms 3.23 45.30
110 133.26 ms 2.70 37.89
150 173.26 ms 2.37 33.23
200 223.26 ms 2.09 29.28
250 273.26 ms 1.75 26.46
300 323.26 ms 1.73 24.33

The total acquisition time for each dataset was ∼ 58 minutes, resulting in a total scan
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time of ∼ 8 hours.
The acquisition of the 8 dataset was randomized in time (the data were acquired in this
order: TM = 30, 70, 150, 50, 250, 200, 300, 110 ms). This was done to make sure that
changes in ADC were not caused by an increase in the temperature of the sample due to
RF heating or an other time-dependent drift in the scanner signal acquisition pipeline,
which could cause a systematic shift of ADC towards higher or lower values for increasing
scan time if the acquisitions were not randomized.

5.1.2 Data processing

Before processing the data, the b-matrix was corrected for the effects of imaging gradi-
ents using an algorithm written in Mathematica. This was done in order to evaluate the
influence of cross-terms in the effective b-values.
A second preprocessing step was to register all the images for all the datasets to the first
image in the dataset acquired for TM = 30 ms. In fact the images within each dataset
didn’t show any evident distortion, thanks to the use of multishot readout, but a system-
atic shift of the images in the phase direction was present.
In the datasets acquired for the mixing time experiment, the algorithm of noise suppres-
sion was not applied.

Bi-exponential fitting

For bi-exponential fitting, the registered images were then joined in a single dataset, and
the signal was measured in ROIs in which the fiber orientations were known.
Along each direction, the Apparent Diffusion Coefficients (ADC) were calculated by fitting
the measured attenuation of the signal to the slow-exchange limit two compartments
model (eq. 5.1):

S

S0

= f exp(−bDfast) + (1− f) exp(−bDslow) (5.1)

where S and S0 are the signal intensities in the presence and absence of diffusion sen-
sitizing gradients, Dfast and Dslow are the ADC of the two possible water populations
and b indicates the true b-value obtained after correction of the b-matrix. The data were
fitted using the LM (Levenberg-Marquardt) routine provided by Origin 8.5.1 (OriginLab
Corporation., Northampton, MA) in order to determine S0, f , Dfast and Dslow.

Mono-exponential fitting of different shells

The dataset previously used for bi-exponential fitting was also used for standard single b-
value DTI fitting, in order to study the influence of different b-values on the DTI-derived
diffusion properties.
Single tensor measurement was performed for each shell with two b-values: the first one
was zero and the second one was 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2750,
3000, 3250 and 3500 s/mm2 respectively (the b-values effective used in the calculation
were corrected taking into account the cross terms as previously mentioned, and do not
exactly correspond to the theoretical b-values indicated here. However for simplicity
from now on all the shells will be denoted by their theoretical b-value). Each tensor
was estimated with a conventional DTI model (S(b)/S(0) = e−bD), using a WLLS fitting
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algorithm. The DTI indices (λ1, λ2, λ3, MD and FA) were calculated on a pixel-by-pixel
basis for each of the 9 slices. The values were then averaged over the complete cardiac
wall and over all the slices. All the average values for the DTI parameters are expressed
as mean±standard deviation (SD).

5.2 Ex vivo heart at 9.4 T

In order to investigate the diffusion properties at shorter mixing times than the ones
previously used, specimens were cut from the heart and scanned at higher field strength
(9.4 T).

5.2.1 Imaging

A similar acquisition protocols to the one at 3 T was used at 9.4 T. A standard STEAM
sequence was used with multishot EPI readout. The acquisition matrix was 100×80 for a
FOV of 5×4 cm2 with 0.5 mm slice thickness, yielding a spatial resolution of 0.5×0.5×0.5
mm3. Each acquisition was averaged 3 times. 8 datasets were acquired with changing
diffusion time (tdiff=13.5, 23.5, 33.5, 43.5, 53.5, 63.5 and 73.5 ms), keeping all the other
parameters constant. Diffusion was encoded along three perpendicular directions (x, y
and z). The repetition time (TR) was set to 20000 ms and the echo time (TE) was set to
its minimum achievable value, 18.74 ms.
For constant diffusion time, the multishell acquisition (15 different b-values) was obtained
by changing the value of the gradient strength. The theoretical b-values used were 250,
500, 1000, 1250, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500 and 6000 s/mm2.
The gradient duration was δ=4.5 ms and the gradient separation was 15, 25, 35, 45, 55,
65 and 75 ms respectively.
For each experiment at constant diffusion time, the acquisition time was 2.5 hours, re-
sulting in a total acquisition time of 17.5 hours.

5.2.2 Data processing

The images acquired were registered to the non-diffusion weighted image acquired for
diffusion time of 13.5 ms. The b-matrix correction in phase of post processing was not
required, since the effective b-values were already calculated by the software of the scan-
ner.
The data were fitted to a bi-exponential model, as explained for the data acquired at 3T,
from which two different diffusion coefficients were estimated. From these diffusion coef-
ficients the mean displacement was calculated for each diffusion time by using Einstein’s
equation.
All the data presented in the Results section refer to the same acquisition of a specimen
of the left ventricular free wall.

5.3 Results

The results of b-values correction for the acquisition at 3 T, taking into account the imag-
ing gradients shows a significant offset between the theoretical and the effective b-values.
Table 5.2 shows the effective b-values corresponding to theoretical b-value of 0 s/mm2
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and 3500 s/mm2 in the direction in which the offset is bigger (slice direction).

Table 5.2: Effective b0 and bmax at 3T corresponding to the direction in which the offset
is bigger (slice direction)

TM tdiff Effective b0 Effective bmax

30 ms 53.26 ms 6.38 s/mm2 3664.41 s/mm2

50 ms 73.26 ms 9.99 s/mm2 3746.77 s/mm2

70 ms 93.26 ms 13.60 s/mm2 3815.48 s/mm2

110 ms 133.26 ms 20.81 s/mm2 3929.84 s/mm2

150 ms 173.26 ms 28.03 s/mm2 4025.89 s/mm2

200 ms 223.26 ms 37.05 s/mm2 4130.38 s/mm2

250 ms 273.26 ms 46.07 s/mm2 4223.31 s/mm2

300 ms 323.26 ms 55.09 s/mm2 4308.09 s/mm2

5.3.1 Bi-exponential fitting

Figure 5.2 shows the normalized signal intensity decay of a region of interest located in
the area of papillary muscles for the three perpendicular directions x, y and z. Each curve
is normalized by the signal intensity S0 determined by bi-exponential fitting.

x-direction z-directiony-direction

FD E

B CA

Figure 5.2: Normalized signal decay in a ROI in the region of papillary muscles. A) to C)
Data measured at 3 T along x, y and z directions respectively. D) to F) Data measured
at 9.4 T along x,y and z directions respectively.
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In the ROI analyzed, containing papillary muscles, the principal direction of the fibers
was approximately parallel to the z-azis.
A departure from mono-exponential behavior is evident for all diffusion encoding direc-
tions and for both 3 T and 9.4 T, indicating a substantial deviation from a Gaussian
diffusion profile. Clear dependence of the measures signal attenuation on the diffusion
time can be observed, with a general decrease in signal decay for increasing diffusion
times. The general signal decay behavior is also observed to depend on the direction in
which diffusion is encoded. In fact the deviation from a mono-exponential slope is more
pronounced in the direction parallel to the principal direction of diffusion in the ROI
(z-direction in case of papillary muscles) when compared to the radial direction.
For the directions perpendicular to the main fiber orientation, the deviation from a mono-
exponential decay is small for the data acquired at 3 T, due to the relatively small b-values
used in the investigation. At 9.4 T, where the more powerful gradient system allows the
use of higher b-values, the deviation becomes more evident.
The separation of the curves obtained for different diffusion times is seen to be generally
bigger for x and y directions than for z directions. Furthermore the variation of signal at
constant b-value is smaller at 3 T, where longer mixing times are used.
The water fraction of the fast component of diffusion, indicated by f in eq. 5.1, is pre-
sented in table 5.3.
The water fractions obtained show a small trend of increase in x and y directions as a

Table 5.3: Water fraction relative to the fast component of diffusion, determined by
fitting the experimental signal decay to a bi-compartment model. Results are presented
separately for the 3 direction of diffusion (x, y and z) as a function of diffusion time.

tdiff (ms) fx (%) fy (%) fz (%)

13.5 94.1±5 95.2±2 89.2±2
23.5 94.2±5 94.4±2 86.8±1
33.5 94.5±5 95.4±2 85.0±1
43.5 95.0±6 95.2±2 87.3±2
53.5 94.2±6 95.0±2 84.9±1
63.5 96.0±6 95.5±2 85.4±1
73.5 96.0±6 95.6±2 84.4±2

function of diffusion time. The water fraction calculated along the z-direction does not
show any specific correlation with diffusion time, and the results obtained are substan-
tially small when compared to water fractions in the radial direction.

In order to evaluate the effects of restrictions of diffusion, the restriction test was
performed for the three orthogonal directions for the dataset acquired at 9.4 T (figure
5.3). The mean displacement was calculated using Einstein’s equation from the diffusion
coefficients previously calculated by fitting the signal decay to a bi-exponential model.
The data show the presence of two compartments of diffusion for encoding gradients ap-
plied along the axial directions of fibers (z-direction). The fast component in this case has
a linear increase as a function of diffusion time, while the slow component has a regime of
free diffusion for short diffusion times, and reaches then a constant value of displacement
for long diffusion times. On the other hand, in the radial direction a dominant component
is shown, which is restricted (or highly hindered). A second component is present in the
radial directions, which is characterized by constant low displacement as a function of
diffusion time. It has to be observed that this displacement, although small, is not equal
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Figure 5.3: Restriction test indicating the mean displacement as a function of diffusion
time along A) x, B) y and C) z direction respectively

to zero.

5.3.2 Mono-exponential fitting of different shells

After bi-exponential fitting, the data acquired at 3 T for the complete heart were an-
alyzed with a tensor model and DTI parameters were estimated. The color coded FA
maps obtained using the zero b-value and the 14 different shells (DTI model) are shown
in figure 5.4 for the mixing time of 50 ms of a single slice. The myocardial fiber orientation
inferred from the color map looks comparable for all b-values above 500 s/mm2 and no
apparent differences are shown. On the other hand the color map obtained for b=250
s/mm2 shows a much higher irregularity in the color coded FA map and some regions
in the left ventricle wall do not display color encoding for fiber orientation that seems
anatomically correct.

Figure 5.5 shows the color coded FA maps obtained for constant b-value (b=1000 s/mm2)
and changing mixing time. Even though the SNR is significantly decreasing for increasing
mixing times, the general overall fiber orientation indicated by the colors is preserved.

The variations of DTI indices with b-value and mixing time are presented in figure 5.6.
The results indicate mean value over the 9 short axis view slices and over all the voxels
across the cardiac wall. Different colors corresponding to the same shell indicate the DTI
parameter obtained for constant theoretical b-value and changing mixing time.
The first eigenvalue shows a gradual decrease with increasing b-value for all the different
mixing times. At constant b-value, the first eigenvalue increases with increasing mixing
time. The change in ADC along the principal direction of diffusion as a function of diffu-
sion time increases for increasing b-value. The change in ADC, calculated as λmax-λmin,
is shown in table 5.4. Here the first two shells (b=250 s/mm2 and b=500 s/mm2) were
not included, since the low b-values used are probably not suitable for an accurate diffu-
sion contrast ex vivo.
For low b-values, the difference in λ1 as a function of mixing time is negligible, and is
seen to increase at a constant rate for increasing mixing time (see table 5.4).

The second eigenvalue shows a linear decrease as a function of b-value and the change
in ADC as a function of b-value is less pronounced for the second eigenvalue than for the
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Figure 5.4: Color coded FA maps obtained from DTI fitting of different shell for the
mixing time TM=50 ms. The colors indicate the direction of the fibers, determined from
the first eigenvalue of the respective tensor. In the standard color convention used here
red, green and blue represent fibers running left-right, up-down and in plane- out of plane
respectively.

first one (see table 5.4).
The third eigenvalue for low mixing times shows an initial small decrease as a function of
b, after which a plateau value is reached. On the other hand, at high mixing times the
value is observed to be the same over the whole range of b-values.
The MD shows a decrease as a function of the applied b-value, with a trend similar to
λ1. FA also shows a general decrease as a function of b-value. The FA value is higher
for longer mixing times at constant b-value but the difference between different mixing
times becomes negligible for b-values greater that 3000 s/mm2. For the shortest mixing
time (TM=30 ms) the FA shows only a very small decrease as a function of b, while the
decrease rate becomes more and more pronounced for increasing mixing times.
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Figure 5.5: Color coded FA maps obtained from DTI fitting of a single shell (b=1000
s/mm2) for changing mixing times. The colors indicate the direction of the fibers, deter-
mined from the first eigenvalue of the respective tensor. In the standard color convention
used here red, green and blue represent fibers running left-right, up-down and in plane-
out of plane respectively.

Table 5.4: Variation of λ1, λ2, λ3, MD and FA with diffusion time as a function of the
applied b-values (λmax − λmin), where the maximum value corresponds to a mixing time
of 30 ms, and the minimum value corresponds to a mixing time of 300 ms. ∆λ1, ∆λ2,
∆λ3 and ∆MD are expressed in mm2/s.

b-value (s/mm2) ∆λ1 × 10−3 ∆λ2 × 10−3 ∆λ3 × 10−3 ∆MD × 10−3 ∆FA

750 0.042 0.0802 0.144 0.0855 -0.118
1000 0.056 0.081 0.137 0.088 -0.099
1250 0.071 0.085 0.125 0.100 -0.088
1500 0.077 0.084 0.116 0.100 -0.079
1750 0.081 0.080 0.110 0.096 -0.066
2000 0.093 0.089 0.111 0.099 -0.064
2250 0.094 0.088 0.103 0.099 -0.050
2500 0.102 0.088 0.098 0.097 -0.047
2750 0.109 0.085 0.091 0.098 -0.033
3000 0.107 0.089 0.091 0.096 -0.030
3250 0.110 0.086 0.094 0.098 -0.036
3500 0.106 0.088 0.089 0.100 -0.024

5.4 Discussion

In this chapter, the effect of different diffusion times and different b-values on the pa-
rameters derived from the diffusion tensor model was investigated. The signal decay as
a function of the applied b-value was also analyzed by using a bi-exponential model de-
scribing two compartments in slow exchange.

In the phase of data processing, it was observed that the differences between the input
and the effective b-values were non negligible, therefore the corrected b-matrix was used
in the calculation. B-matrix correction for data acquired at 3 T was required since the
gradients used for imaging in diffusion MRI add diffusion weighting and the so called
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Figure 5.6: Diffusion tensor parameters calculated from DTI fitting for different b-values
for mixing times (TM) of 30, 50, 70, 110, 150, 200, 250 and 300 ms. A)First eigenvalue.
B)Second eigenvalue. C)Third eigenvalue. D)Mean Diffusivity. E)Fractional anisotropy.
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”cross-terms” in the b-matrix. The most significant contributions are usually from the
crusher and slice-selection gradients. In PGSE, their contribution to the diffusion weight-
ing is non-zero as well, but usually negligible in practice. On the other hand, in STEAM
that contribution is typically much more significant and the difference between the theo-
retical and the effective b-matrix increases for increasing diffusion time. This could lead, if
the effect is not compensated for, to overestimation (typically along the slice direction) or
underestimation of the ADC and significant bias in the estimation of the diffusion imag-
ing derived parameters, as already shown for simulations and fixed monkey brain data [2].

Usually one of the most common applications of DTI is fiber tractography, therefore it
is of interest to know whether different diffusion times and different b-values could affect
the directionality of the tracked fibers. Interestingly, as shown in figure 5.4 and 5.5, the
general orientation behavior of myocytes derived from the diffusion tensor model does
not depend on the b-value used and on the diffusion time of the experiment. The only
exceptions are the images obtained for b=250 s/mm2, in which color coded FA maps
show the inability to identify the correct fiber orientation in some regions within the left
ventricle wall. This is probably due to the fact that such a low b-value cannot correctly
encode diffusion in the ex vivo fixed heart. Although the presented diffusion maps do
not provide quantitative indication about fiber angles, they nevertheless indicate that the
b-value and the diffusion time do not have a strong influence in determining the fiber
orientation in DTI model. Fiber angle evaluation was not performed because the used
spatial resolution (2×2×2 mm3) was too low to provide enough voxels across the cardiac
wall, but quantitative analysis of helix angle can be found in chapter 6.

Since diffusion times and b-values have little influence in the direction estimation of
the first eigenvalue, for the solely purpose of myocytes tractography obtained from DTI
it could be probably more favourable to use a PGSE sequence, in order to keep the sig-
nal higher (the use of STEAM causes in fact a loss of 50% of the signal compared to
PGSE). Intermediate diffusion times can then be preferred over high diffusion times, in
such a way to keep the TE of the experiment short. On the other hand, for some other
higher order approaches, such has HARDI, it can be beneficial to increase the apparent
fractional anisotropy of the tissue, since this would lead to a fiber estimation less suscep-
tible to noise. In this case then the STEAM acquisition approach could be preferred over
standard PGSE.

The decrease of the DTI-derived parameters as a function of b-values (figure 5.6) gives
us further evidence that the signal loss in cardiac tissue is not only caused by Gaussian
diffusion. The general decrease of λ1 and λ2 as a function of b-value experimentally ob-
served was already reported for rabbit cardiac tissue ex vivo in [72] at constant diffusion
time. This behavior is usually explained in literature with the presence of a ”fast” and
a ”slow” diffusion pool. For shells acquired at low b-value, the fast component domi-
nates the overall diffusion process, resulting in a bigger value for the ADC. For increasing
b-value, the slow component gets more emphasized, leading to a decrease in apparent
diffusivity. The effect of stronger diffusion encoding gradients (which result in higher b-
values) is to dephase more and more the water component that is moving faster, leading to
a progressive attenuation of the signal coming from this component. The slow component
is hardly detectable for low b-values, but becomes prominent the more the signal from the
fast component gets attenuated. This explains the general drop in the DTI eigenvalues
as a function of b-values.
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It is interesting to note that the differences between the maximum and minimum value
for λ1, obtained for TM=30 ms and TM=300 ms respectively, depend on the experimen-
tal b-value. In pure Gaussian diffusion regime, we would’t expect the diffusion coefficient
to strongly depend on the diffusion time, although a small effect is to be expected as
a consequence of lower SNR for increasing experimental diffusion time. This regime of
almost free diffusion can be observed for λ1 at low b-values, in which the different ADCs
present a small change as a function of diffusion time. After this regime of almost free
diffusion, ∆λ1 is observed to substantially increase with increasing b-value. This shows
at first the presence of two different regimes of diffusion along the radial direction, which
may be caused by water exchange between the diffusion compartments, and a different
permeability through the membranes that would obstruct the motion of molecules.

Different behaviors in terms of change in ADC as a function of diffusion time were
observed for the radial and axial component, suggesting a more pronounced effect of
boundaries and restrictions in the direction parallel to the fiber orientation that in the
one perpendicular to it. In fact for the first eigenvalue an increased ∆λ is observed for
increasing b-value, while for the second and third eigenvalues this quantity has a much
smaller variation with b-value and can be seen as a first approximation to be constant.
Another difference between the radial and axial component of diffusion, is the different
deviation from mono-exponential decay in the axial direction, observed both at 3 T and
9.4 T (figure 5.2), in which the signal decay along the axial direction of fibers is observed
to have a much more pronounced deviation from a linear slope (the graph is plotted in
logarithmic scale) than along the two radial directions.

It has to be observed that in the curves of signal decay as a function of b-value, the
amplitude of the signal-versus-b curves increases for prolonged diffusion time. This be-
havior has been already simulated for brain diffusion [45] and attributed to the fact that
restricted diffusion dominates. In fact, in the same set of simulations it was observed that
the amplitude of the curves was decreased for increasing mixing times when the effect
of exchange was dominant. When comparing the curves obtained along the radial and
axial directions, for the latter a great change in the curve slope is observed as a function
of the diffusion time, indicating that along the radial direction the effect of restriction is
more pronounced. On the other hand, along the radial direction the general trend is con-
firmed, but with much lower dispersion between the curves. This could be an indication
of a combination of highly hindered (or restricted diffusion) and water exchange between
different compartments along the axis parallel to the cell.

The combination of the previous finding suggests the presence of two components of
diffusion in the direction parallel to the axis of the cell. This observation, together with
the unchanged color-coded maps of the first eigenvalue shown in figure 5.4 and 5.5, would
suggest that the fast and slow component of diffusion are aligned and coexist along the
muscle cell. Although a precise correlation of the components with biological structures is
not easily made, this could be explained by considering that water diffuses almost freely
in the cell between the actin and myosin filaments for short lengthscales compared to
the size of sarcomeres, which is normally estimated to be approximately 2 µm, and is of
the same order of magnitude of the experimental value found for the displacement within
the restricted component in the axial direction (∼ 4µm). For increased diffusion times,
the water molecules experience the obstacle provided by the z-disc, which greatly reduce
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the water mobility. In this case, instead of talking about ”fast” and ”slow” diffusion
compartment and exchange between them, it would be more appropriate to talk about
time-dependent diffusion: for short diffusion times the diffusion has a Gaussian profile,
and the non Gaussianity becomes evident only for diffusion times substantially bigger
that the typical size of a sarcomere.
The Gaussian behavior of diffusion in this case can also be observed in figure 5.3c, in
which for the fastest component a linear correlation is shown between displacement and
diffusion time up to 70 ms.
On the other hand, for the radial component of diffusion, the ADC calculated from the
diffusion tensor model is shown to depend on the diffusion time for all b-values, suggest-
ing that, for the investigated range of mixing times of the experiment at 3T, the water
is almost constantly in regime of slow (or restricted) diffusion. A free (fast) component
of diffusion can however be expected for shorter diffusion times than the ones used in the
experiment at 3 T, as indirectly suggested by the constant small rate of change in the
∆λ2 and ∆λ3 (see table 5.4).

In order to probe the displacement of water along the radial direction in fast diffusion
regime, which is less influenced by boundaries and restrictions, the use of shorter mixing
times was required. For this reason the restriction test was performed on the dataset
acquired at 9.4 T for diffusion times ranging from 13.5 to 73.5 ms (figure 5.3). Here the
presence of a partially restricted dominant component of diffusion in radial direction is
shown. If we look at the first component, diffusion displacement increases linearly as a
function of time up to approximately 43.5 ms, indicating almost free diffusion for short
timescales. Since the minimum diffusion time used in the experiment at 3T was ∼ 53
ms, this explains why little dependence on diffusion time was shown for the signal decay.
This hypothesis is further strengthened by the observation that in the plot of normalized
signal decay as a function of b-value at 3 T (see figure 5.2) the curves corresponding to
different mixing times show almost no dispersion, while great dispersion is observed for
the signal decay at 9.4 T.

If we look at the restriction test plotted for the radial direction (figure 5.3), after a tran-
sient time in which diffusion is almost free, a constant value for displacement is reached,
which could be comparable to cellular diameter size. The association of restricted dif-
fusion along the radial direction with the intracellular space is further strengthened by
the evidence of a second component of diffusion in the radial direction, that although
non-dominant is not characterized by zero displacement. Since the water fraction for this
non-dominant component is estimated to be 5±1%, we can think of it as water diffusion
in the extracellular space, and the rest (restricted component or highly hindered) to be
associated with the intracellular space.

It could be interesting to decrease the mixing time even further in order to probe
diffusion at the nuclear scale. However this can be difficult to investigate practically in a
clinical system, due to hardware limitations. Extremely short diffusion times cannot be
achieved at the moment with a standard PGSE sequence (Pulsed Gradient Spin Echo)
in a clinical setting, due to the high gradient strengths required. The use of a preclinical
system with more powerful gradients allows us to study shorter diffusion times, but still
on a bigger length scale than the one typical of cellular structure in the radial direction,
suggesting that these diffusion times cannot be reached with PGSE of STEAM. On the
other hand, OGSE (Oscillating Gradients Spin Echo) diffusion encoding has been proved
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to be able to provide diffusion times one order of magnitude shorter than with PGSE
[73]. In this way DW-MRI measurements can be made much less sensitive to large scale
restriction effects.

In relation to the effect of b-value on the tensor parameters, it has to be mentioned
that DTI indices in muscles are susceptible to noise, as shown in [17]. The values of λ1,
λ2, λ3, MD and FA can be misestimated due to the effect of experimental noise and sig-
nificantly deviate from their ”true” value. However it was also shown that the error in the
estimation becomes negligible for SNR of the non diffusion-weighted images above 20. In
this study, the SNR of the non diffusion weighted images calculated with the ”difference
method” was 35 ± 5. Therefore the errors introduced by noise should have little to no
influence in the general trend of DTI parameters previously described.

This study showed that important properties at different lenghtscales can be investi-
gated with the use of multiple shells and different mixing times, and this could be applied
in the future to provide a better understanding of cardiac anatomy and physiology, also
in relation to diseases. On the other hand, although a multiple b-value approach could
be beneficial in ex vivo experiment to better discriminate diffusion properties of different
compartments, it can be difficult to apply in vivo, due to acquisition time requirements.
Standard DTI is then more suitable, but one has to know which diffusion properties are of
interest before performing diffusion MRI experiments and tune the b-value and diffusion
time accordingly.

As a final consideration, it has to be noted that diffusion properties observed in this
experiment may not hold in the in vivo case. Although a general decrease was found for
all DTI-parameters as a function of b-value, these findings may not directly apply to the
in vivo heart. In in vivo hearts in fact a third component of diffusion is to be expected,
beside the ”slow” and the ”fast”. This third component, also called pseudodiffusion com-
ponent, arises from the effects of perfusion and is enhanced for low b-values. The analysis
of the perfusion effects and the discrimination of perfusion from true water diffusion is
usually made in-vivo by using the IVIM (Intravoxel Incoherent Motion) model ([7] and
[12]), which describes the signal decay as the sum of two mono-exponential decay terms,
each characterized by its own diffusion constant and its own water volume fraction. b-
value optimization in this case would be more complicated since the diffusion parameters
would also be influenced by the perfusion (or pseudo-diffusion) component. High b-values
studies have not yet been performed in the in vivo beating heart, mainly because of the
high cost to be paid in terms of TE increase and consequent signal loss. However, a
complete study of diffusion in the myocardium should include both very low and high
b-values, in order to probe both microflow and microstructural complexity.

5.5 Conclusions

Non mono-exponential diffusion behavior in myocardium was confirmed, both by bi-
exponential fitting and indirectly by DTI fitting of the diffusion MRI data. In particular
the presence of two components of diffusion was more evident for the principal direc-
tion of diffusion than for the directions perpendicular to it. Dependence of the signal
decay on diffusion time was observed, with general decrease of ADC for both fast and
slow component as a function of diffusion time. The clear presence of two components
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in the axial direction was explained by considering both fast and diffusion components
to coexist within the cell and to be more or less enhanced according to the time scale of
the diffusion experiment. On the other hand, several evidences suggest that the radial
component of diffusion for diffusion times used in clinical and research practice is always
restricted within the cell. Taken together, these findings may provide useful information
for acquisition optimization in the future.



Chapter 6

Kurtosis and Multishell analysis

In this chapter Diffusion Kurtosis Imaging (DKI) is applied in the study of the ex vivo
porcine heart. Since kurtosis is a measure of the degree to which water molecules diffusion
in biological tissues is non Gaussian, it could provide a more specific measure of tissue
structure than conventional methods based on the diffusion tensor.
In the second part of this chapter, multhishell DTI fitting was performed in order to eval-
uate the regional differences in diffusion parameters across the cardiac wall and between
right and left ventricle.

6.1 DKI

6.1.1 Imaging

For kurtosis analysis, the hearts were scanned along 30 non-collinear diffusion encoding
directions with different b-values (b=1000, 1500, 2000 s/mm2). In each dataset 12 non-
diffusion weighted images were also recorded. Diffusion along each direction was encoded
with a twice refocused spin echo sequence in order to reduce image distortions due to
eddy currents (∆1=64.22 ms, δ1= 15 ms, ∆2= 19.30 ms and δ2=19.13 ms). Along any
given direction the different b-values were obtained by varying the strength of the diffu-
sion encoding gradients and keeping the diffusion time constant. The acquisition matrix
was 144 × 144 and the resulting voxel size was 0.97 × 0.97 × 2 mm3. The number of
slices was varied for each dataset, between 61 and 73, in order to cover the entire long
axis of the heart with the smallest possible number of slices. The timing parameters
were TE=88 ms and TR=5700 ms. Multishot EPI readout (EPI factor=13) was used in
order to minimize image distortions and shorten TE (compared to singleshot EPI). The
minimum achievable TE was determined by the maximum b-values (b=2000 s/mm2). A
factor 2 SENSE reduction and SPIR fat suppression was used. In order to increase the
SNR, NSA was set to 5. The total acquisition time for each dataset was ∼10 hours.

6.1.2 Data processing

After denoising and image registration, the kurtosis tensors for each dataset were cal-
culated using ExploreDTI [39]. Data were evaluated by visual inspection of diffusion
weighted images and residuals from the tensor fitting calculation.
The rank-4 kurtosis tensor was determined by fitting the signal intensity on a voxel-by-

64
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voxel basis to the equation:

S(b)

S(0)
= exp

(

−bDAPP +
1
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b2D2

APPKAPP

)

(6.1)

From this tensor the Apparent Diffusion Coefficients (DAPP ) and Apparent Kurtosis
Coefficient (KAPP ) were determined for both axial and radial direction.
The data were also fitted to a standard rank-2 diffusion tensor, from which axial diffusivity
(λ1) and radial diffusivity (λ2+λ3

2
) were estimated.

Each map was masked based on a lower and upper threshold for FA values, in order to
remove the background noise.
In order to evaluate statistical differences between diffusion parameters in the right and
left ventricle, they were segmented in 5 short axis slices and for 4 different datasets
acquired with the same acquisition parameters. Data are reported as mean±SD (over
five slices and 4 datasets). The data were tested for statistically significant differences
with one-way ANOVA, where p < 0.05 was considered significant. Statistical analysis was
performed with Origin 8.5.1 (OriginLab Corporation., Northampton, MA).

6.1.3 Results

All datasets were evaluated for artifacts and were considered of good quality for DKI
analysis. The residuals for DTI fitting were constant for the same shell and increasing for
increasing b-values of the shell, indicating appropriate data fitting. Analysis of outliers
didn’t show any evident error in any of the diffusion weighted images.
The average values for kurtosis and Dapp (derived from the kurtosis tensor) and the pa-
rameters derived from the diffusion tensor are plotted in figure 6.1 for a representative
dataset.

Figure 6.1: Left DKI- and DTI-derived parameters for the axial diffusivity, radial diffu-
sivity, mean diffusivity and fractional anisotropy. Right Axial kurtosis, radial kurtosis,
mean kurtosis and kurtosis anisotropy derived from the kurtosis tensor.

The diffusion parameters derived from the kurtosis tensor are observed to be higher
than the corresponding values estimated from mono-exponential DTI fitting. The change
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in the axial direction is 18%, while the change in the axial direction is 13%. This similar
rate of increase results in negligible differences in the two values of FA.
The second graph of figure 6.1 shows that the kurtosis in the diffusion profile is signifi-
cantly different from zero along all directions. In particular, the kurtosis along the radial
direction is observed to be higher than the kurtosis along the axis of the fibers.
In order to visualize the regional differences of kurtosis and diffusion coefficients in the
heart, kurtosis maps for 2 representative datasets are shown in figure 6.2 and compared
to the diffusion maps. The diffusion maps here represent the ADC, as calculated from
the standard DTI tensor.
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Figure 6.2: Diffusion and kurtosis maps calculated for two different dataset. A) and
E) Axial diffusivity (×10−3mm2/s). B) and F) Axial kurtosis (-). C) and G) Radial
diffusivity (×10−3mm2/s). D) and H) Radial kurtosis (-).

The diffusion maps for axial diffusivity and radial diffusivity in the short axis view
do not show regional differences across the left ventricle wall and really small differences
are observed between right and left ventricle. On the other hand, kurtosis maps for both
radial and axial components show a large contrast between the right and the left ventri-
cle. For each data set and each slice, the kurtosis in the right ventricle was lower than in
the left ventricle. When comparing the axial kurtosis and the radial kurtosis, the latter
shows an average bigger value, indicating that the deviation from gaussian diffusion for
the combination of acquisition parameters used is more pronounced perpendicular to the
fiber direction than parallel to it.
The average values for the left and right ventricle over 4 datasets and 5 slices for apparent
diffusivity and apparent kurtosis are presented in figure 6.3.

A significant difference is present between kurtosis parameters in the left and right
ventricle, both for axial and radial direction. Significant difference is also observed be-
tween the axial and radial kurtosis. When kurtosis is calculated along the radial direction
of fibers, larger differences between the right and left ventricle are present than in the
axial direction.
However, no significant changes were observed in the calculated diffusion coefficient, in
which the only significant difference is found between the axial and radial diffusivity.
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Figure 6.3: Diffusion and kurtosis parameters calculated in ROIs containing the segmen-
tation of right and left ventricle. Left Axial and Radial Diffusivity (×10−3mm2/s) Right
Axial and radial kurtosis. ?=p<0.05.

6.2 Two-Component Diffusion Tensor Analysis

6.2.1 Data processing

The same datasets used for kurtosis fitting were also used for two-component diffusion
tensor analysis. After the denoising and registration steps, single tensor measurements
were performed for diffusion weighted images corresponding to two b-values, namely 0
vs 1000, 0 vs 1500, 0 vs 2000 and 1500 vs 2000 s/mm2 respectively. A fifth tensor was
computed by fitting all diffusion weighted images (b=0, 1000, 1500 and 2000 s/mm2) to a
single mono-exponential model (ME). Each tensor was estimated with a conventional DTI
model (S(b)/S(0) = e−bD), using a WLLS fitting algorithm. The tensor calculation was
performed using DTITools. The DTI indices ( λ1, λ2, λ3, MD and FA) were calculated
on a pixel-by-pixel basis for each tensor and shown in a diffusion map for a characteristic
dataset.
In order to quantify the changes in diffusion parameters, they were averaged over the
complete heart, with the exception of the area of heart valves. All the average values for
the DTI parameters presented here are expressed as mean(±standard deviation) over all
pixels in one representative dataset.
For each tensor the helix angle was calculated from the first eigenvector. The helix angle
in a given point P is defined as the angle between the local circumferential direction and
the projection of the fiber orientation (first eigenvector) on the plane parallel to the wall.

6.2.2 Results

Figure 6.4 shows the DTI parameters (λ1, λ2, λ3, mean diffusivity and fractional anisotropy)
maps calculated for different shells in a representative dataset.
All DTI indices derived from 0 vs non zero b-values are observed to gradually decrease
with increasing b-value, as shown already in chapter 5.
Within the first 3 shells, in each map the right and left ventricle have an almost uniform
value, but contrast is provided between them. All the parameters (excluding FA) show a
decrease with increasing b-value. Larger changes are however observed in the left ventricle
than in the right ventricle. By visual inspection of the diffusion maps for λ1, λ2 and λ3,
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0-1000 0-1500 1500-20000-2000 ME

Figure 6.4: Diffusion tensor parameter (λ1, λ2, λ3, Mean diffusivity and Fractional
anisotropy) maps calculated from DTI fitting for 4 different shells (b=0-1000 s/mm2,
b=0-1500 s/mm2, b=0-2000 s/mm2, b=1500-2000 s/mm2).

the right ventricle appears to be almost insensitive to the change in b-value, although a
small decrease is observed. This causes the contrast between left and right ventricle to
increase for increasing b-value. Diffusion contrast between right and left ventricle is more
evident in the radial direction (λ2 and λ3) than in the axial direction.
FA maps show no significant regional differences between left and right ventricle. For
each heart however, a region of increased FA for the shell 0-1000 was observed at the
endocardium in the free wall. FA value is observed to decrease with increasing b-value,
however the changes are really small.
The forth column of figure 6.4 shows maps calculated by fitting only the shell 1500-2000.
Substantial decrease of all ADC values with respect to the first 3 shells was observed,
combined with an increase in contrast between left and right ventricle. In this shell the
average FA values results bigger than in the shell 0 vs non zero b-value.
The diffusion maps obtained for mono-exponential fitting are almost identical to the cor-
responding maps obtained for the shell 0-1500.
The previous observations were quantified by plotting an histogram of diffusion param-
eters for different shells. The error bars indicate standard deviation calculated over the
complete heart (complete slice package).

The parameters derived from mono-exponential fitting of multiple shells are nearly
identical to the parameters derived for the second shell (b=0-1500 s/mm2). The fourth
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Figure 6.5: Diffusion tensor parameters calculated from DTI fitting for different shells
(b=0-1000 s/mm2, b=0-1500 s/mm2, b=0-2000 s/mm2, b=1500-2000 s/mm2 and mono-
exponential (ME) fitting.)

shell (b=1500-20000 s/mm2) shows a general trend of decrease for the 3 eigenvectors and
the mean diffusivity when compared to the 3 single shell parameters. However FA shows
a significant increase with respect to the FA calculated for the other tensors.

For each tensor, helix angles were calculated. A map of helix angles for the same slice
calculated from different tensors is shown in figure 6.6, together with a plot of helix angle
distribution as a function of normalized transmural depth calculated in the septal region.
In general all helix angle maps show a smooth change in orientation from inclination angle
of ∼ −50◦ at epicardium to ∼ +80◦ at endocardium. The change in orientation is uniform
across all wall regions and in different short axis slices (not shown).
The helix angle maps derived from different tensors do not show important differences
between fiber orientation estimated at different shells. The plot of helix angle as a function
of the normalized transmural depth in the septum shows that the helix angle profile
determination is not affected by the choice of b-values used in the calculation.

6.3 Discussion

From the DKI maps it is possible to observe that a deviation from a Gaussian shape,
quantified by the kurtosis of diffusion displacement profile, is present in all directions.
This indicates that even at relatively low b-values the approximation of free diffusion is
substantially incorrect.
The diffusion parameters derived from the kurtosis tensor are larger than those derived
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Figure 6.6: Helix angle derived from the first eigenvector of different tensors. A) to
E) helix angle map for a slice in the mid-ventricular region calculated from DTI fitting
for different shells (b=0-1000 s/mm2, b=0-1500 s/mm2, b=0-2000 s/mm2, b=1500-2000
s/mm2 and mono-exponential fitting). F) Scatter plot of the helix angle as a function of
the normalized transmural depth in the septal region.

from DTI tensor. The difference in the values indicates that directional diffusivity de-
rived from the mono-exponential DTI fitting reflects the combined effect of Gaussian and
non-Gaussian diffusion displacement.

The deviation of the diffusion displacement profile from a Gaussian shape is more
pronounced in the radial direction than in the axial direction of fiber orientation. In
particular, by looking at the maps of kurtosis along a given direction, contrast can be ap-
preciated between the left and the right ventricle, which is not observed in the eigenvalues
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maps. The difference in kurtosis between the right and the left ventricle also shows that
the ADC provides little indication of the specific biophysical mechanism contributing to
signal decay in a diffusion MRI experiment. From this point of view, kurtosis can be a
better tool to investigate cardiac tissue microstructure, since it provides more insight into
small length-scales and is a relatively robust method when compared to bi-exponential
fitting [33].

The differences in kurtosis between right and left ventricle could be explained by a
decreased cellularity level in the right ventricle with respect to the left one. It is in fact
reasonable that the right ventricle is characterized by an increased cellularity, since the
resistance to the outflowing blood provided by the systemic circulation is much larger
than the one from the respiratory circulation. However the differences in diffusion kur-
tosis profiles can be both explained with an increase in cellular volume (bigger cells) or
an increase in the ratio between cellular and extracellular volume. The latter hypothesis
could be experimentally verified by investigating the possible multi-exponential T2-decay
in the tissue. In fact, if the ratio between intracellular and extracellular space is decreased
in the right ventricle, a more pronounced multi-exponential T2 decay is to be expected.
This experiment was however not performed. As an indication for future research, UTE
mapping could be performed and compared to the kurtosis maps in order to investigate
the correlation between compartmentalization of diffusion and T2 decay.

The general bigger kurtosis value along the radial direction is in agreement with re-
sults of chapter 5. In fact it was already speculated that the diffusion along the radial
direction is always restricted for b-values and diffusion times achievable with a clinical
scanner, while the axial direction shows more the effects of high hindrance or restriction as
a function of increasing mixing time. The high positive value of kurtosis along the radial
direction can be then considered as an indication of restricted diffusion. On the other hand
for the axial direction, where restricted and hindered diffusion coexist, a smaller deviation
from a Gaussian slope is to be expected, and this is indeed observed in experimental data.

It is important to stress that the kurtosis coefficients, like the diffusion coefficients, are
apparent, in the sense that they depend on the experimental diffusion time and b-values
used. A general decrease of kurtosis along a given direction is to be expected for increas-
ing diffusion times, reflecting the different diffusion regimes at different time scales. Also
the b-value is expected to play an influence. Thus it could be interesting to perform DKI
experiments in which both the experimental b-value and diffusion time are changed and
study their influence on derived kurtosis parameters.

Like the diffusion coefficients, also the kurtosis coefficients can be misestimated as a
consequence of imaging noise. To the best of my knowledge no studies have been per-
formed in order to asses the role of changing SNR in the accuracy of kurtosis estimation.
Although the SNR calculated from the non-diffusion weighted images after denoising re-
sulted to be 72 ± 6, which is a high value in the framework of muscle DTI, the presence
of a bias in kurtosis determination due to noise cannot be completely excluded.

A limitation of the kurtosis analysis approach used in this section is the assumption
that radial kurtosis is a good measure of kurtosis in the two directions perpendicular to
the axis of the cell. This was done following the approach commonly used in DKI of the
brain, in which kurtosis values along the second and third eigenvectors are not presented
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separately, but only as an average over the plane spanned by the two vectors (radial kur-
tosis). In this way differences between K2 and K3 are neglected. This assumption can be
well justified in brain imaging since the second and third eigenvectors do not correlate to
any specific cellular structure. In this case it can also be reasonable to assume that ana-
lyzing kurtosis along these two distinct directions does not provide extra information. On
the other hand, in cardiac DTI it was already shown that the second eigenvector correlates
with the direction parallel to myolaminar sheets, while the third one indicates the direc-
tion perpendicular to myolaminae. Due to the different information indicated by λ2 and
λ3 in cardiac muscles, it can probably be more meaningful to study K1 and K2 separately.

The tensor analysis of data acquired with different b-values and constant diffusion
time showed a clear dependence of the parameters derived from the tensors on the com-
bination of b-values used in the calculation.
The general trend of decrease of all the DTI-derived parameters as a function of b-value
is a clear indication of non mono-exponential decay and can be explained by the presence
of a ”slow” and a ”fast” component of diffusion, as already discussed in chapter 5. Since
the non mono-exponential signal decay as a function of the applied diffusion encoding is
normally only visible at intermediate b-values (∼ 1000 s/mm2, depending on the diffusion
time of the DW experiment) we can consider the signal attenuation between b=0 s/mm2

and b=1000 s/mm2 to reflect the fast diffusion component, and the signal attenuation
between b=1500 s/mm2 and b=2000 s/mm2 to reflect the slow component of diffusion.
This probably is a meaningful assumption, since if we compare figure 6.1 and 6.5, the
apparent diffusion coefficients calculated from the kurtosis tensor are almost equal to the
parameters calculated from the DTI fitting in the first shell. When comparing the diffu-
sion parameters obtained from the first and forth tensor, a decrease of approximately 30%
is observed for the diffusion coefficient along the fiber direction (first eigenvalue), while the
radial diffusivity decreased by approximately 40%. This causes a substantial increase of
the anisotropy level (27%) in the slow component when compared to the fast component.
This is in disagreement with typical diffusion behavior described by the ”ball and stick”
model in brain tissue, in which the fast component (usually attributed to intra-axonal
water) is strongly anisotropic, while the slow component (extracellular space) is almost
isotropic [6]. Another important effect to notice is the similarity of the ADC parameters
between the 0-1500 shell and the mono-exponential fitting (ME) of the data, indicating
that the slow dephasing component is not taken into account when DTI fitting is per-
formed for moderate b-value, such those applied in clinical research. However it could
be interesting to focus investigation on the effect of probing slow component of diffusion,
since its increased FA value with respect to the fast component could be beneficial for
fiber tractography using higher order approaches (such as HARDI).
Another interesting aspect to analyze about the ”fast” and ”slow” component of diffusion
as described by DTI fitting of the shells 0-1000 and 1500-2000 is the contrast present in
the latter shell between right and left ventricle along the radial direction. If we hypoth-
esize that in the range 1500/2000 s/mm2 the spins belonging to the fast component are
completely dephased, the smaller value of diffusion coefficient along the radial direction in
the left ventricle could be seen to arise from water diffusing inside the cell and experienc-
ing the restriction effects of z-discs. If the ratio between the extracellular and intracellular
space is negligible in the left ventricle, all water displacement measured can be thought
confined inside the cell. On the other hand, in the right ventricle, where the extracellular
space volume is more significant, diffusion can occur both along the cell and in the extra-
cellular matrix and the measured signal decay would reflect the combination of the two
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phenomena. Since it is reasonable to hypothesize that diffusion in the extracellular space
is less restricted than within the cell, this could be an explanation of the average increase
in λ1 in the right ventricle when compared to the left ventricle. The same reasoning can
hold true for the radial components of diffusion as well.

In the maps of helix angles calculated from the principal eigenvectors of the five dif-
ferent tensors, no differences are shown between different b-value ranges. The fibers here
are seen to have a smooth change in orientation from epicardium to endocardium, within
an angular range of approximately 130 degrees, as already shown in previous DTI and
histological studies. This confirms the hypothesis that the water molecules in the different
compartments have an anisotropic displacement and that the principal direction of diffu-
sion is parallel for both hindered and restricted diffusion behavior, as already suggested by
the color-coded FA maps presented in chapter 5 for changing mixing times and b-values.
The directions of fibers derived from the tensor model is then, within the investigated
range, not dependent on the choice of diffusion encoding strength experimentally applied.

In conclusion, it was observed that the apparent fast and slow diffusion measurement
by conventional DTI probe different microstructure information of cardiac tissue. The
DTI-derived indices are shown to be dependent on the b-values used, suggesting that the
optimal DTI acquisition protocol should be tuned according to the physiological target
of the study.

6.4 Conclusions

In this chapter, an experimental protocol for Diffusion Kurtosis Imaging of the ex-vivo
porcine heart was presented for the first time. Cardiac DKI looked to be feasible in a
clinical scanner and to provide complementary information to the standard DTI model
of diffusion. Significant contrast between the two ventricles was observed in all kurtosis
maps, which was explained considering the differences in microstructure parameters be-
tween the left and the right ventricle.
Multitensor approach provided a further indication of the compartmentalization of water
along the fiber direction, showing that DTI derived parameters strongly depend on the
b-value range used in acquisition and that the diffusion experiment can be designed in
order to probe the diffusion regime of interest.
Helix angle maps showed that the different compartments of diffusion along the cardiac
cells are aligned, and that fiber tractography is not directly affected by the choice of
experimental b-values.



Chapter 7

HARDI and DTI

In this section HARDI acquisition and reconstruction are implemented for the study of
the ex vivo porcine heart. Reconstruction techniques (CSD and q-ball) are validated for
a phantom of crossing fibers.

7.1 Phantom of crossing fibers

In order to assess the role of the different reconstruction algorithms in the quality of
the resulting image and their ability to image crossing fibers within a voxel, a custom-
made phantom of crossing wires was used. The interdigitating wires, crossing at an angle
of approximately 60◦, were enveloped in a rubber shell and placed in a plastic syringe
completely filled with water [48].

7.1.1 Imaging

The MRI experiment on the phantom was conducted on a 9.4 T Bruker horizontal-bore
MRI scanner. The syringe containing the phantom was inserted in a birdcage quadrature
coil with the main axis of the syringe parallel to the coil axis. A standard 2D multislice spin
echo DW sequence was used to acquire the images (40 × 40 × 40 mm FOV, TE=27.433
ms and TR=1355 ms) for the DTI and HARDI reconstruction. The image resolution
was chosen to be isotropic (0.4 mm voxel size in x, y and z directions). The unipolar
diffusion sensitizing gradients were placed symmetrically around the 180◦ radiofrequency
pulse. Diffusion encoding was performed along 100 non-collinear directions equally spaced
over the surface of a sphere. The b-value was set to 1400s/mm2 (∆=11 ms, δ=5ms).
Furthermore 10 non-diffusion weighted images were also acquired for each dataset. The
acquisition time for a single shell dataset was ∼ 15 hours
A T1-weighted multislice sequence was also used, with double resolution to be used as a
reference.

7.1.2 Data processing

The data were first pre-processed using DTITools. A Rician-noise suppression algorithm
was applied to the images. By looping through the DW images at high frame rate, no
evident signal dropouts and geometric distortions were found, so the computationally ex-
pensive and time consuming algorithm for image registration was not applied.
After the pre-processing step the data were exported to ExploreDTI[39] for DTI and
HARDI calculation and fiber tractography.

74
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The tensor was calculated from the data using a WLLS (Weighted Linear Least Squares)
algorithm. In order to check the quality of the fitting to the diffusion tensor model, resid-
uals were calculated. Since the residuals were observed to be low and the residuals map
to be uniform, the data and their fitting were considered of good quality.
After tensor calculation, for each voxel the eigenvalues (λ1, λ2 and λ3), mean diffusivity
(MD) and fractional anisotropy (FA) were calculated.
For the CSD approach, the maximum harmonic degrees (Lmax) of the estimated fibers
were 2, 4, 6, 8 and 10. The response function was estimated from a ROI of 100 pixels
drawn in one of the arms of the cross, where a single fiber population is known to be
present (FA = 0.56± 0.05). The FOD peak threshold was empirically determined in or-
der to exclude the possibility of voxels with multiple fiber populations outside the central
area of the phantom where fibers are crossing. The value of the peak threshold was set
to 0.25 for Lmax up to 8, and to 0.35 for Lmax = 10. The QBI analysis was based on the
spherical harmonics formalism and the value used was Lmax = 8.
For the fiber tracking, seed points where spaced evenly with a 0.5 mm isotropic dis-
tribution. The predefined minimum and maximum tract length were 20 and 40 mm
respectively. The tracts were stopped when a curvature of more than 20◦ was reached per
0.2 mm integration step. For DTI-based tractography fiber tracts were forced to continue
for FA between 0.4 and 0.6.

7.1.3 Results

High-resolution T1-weighted images of the phantom showed distinct intersecting wires
orientation. The four regions of interest used for fiber tractography are indicated in
figure 7.1.
In figure 7.2 a region of interest (ROI) located within the crossing fibre region is shown.

Figure 7.1: T1 weighted image of the phantom of crossing fibers used as a reference. 4
regions of interest drawn in two axial slices of the phantom are indicated. Each ROI
corresponds to a different arm of the cross.

For each method, the fODF (in the case of spherical deconvolution) or dODF (in the case
of QBI) were estimated for each voxel in the ROI. The glyphs corresponding to the fODF
were drawn for different Lmaxs by keeping all the estimation parameters constant and
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changing the maximum spherical harmonics order. For each voxel the first eigenvector,
estimated from DTI model, was also drawn. The first eigenvector of the diffusion tensor
is parallel to the reconstructed glyphs in case of single fiber population (red glyphs) and
approximately parallel to the sum of the two main peaks direction for multiple maxima
ODF (green glyphs).
If we compare the glyphs drawn in figure 7.2 and the T1 weighted image acquired along

Figure 7.2: Region of crossing fiber of the phantom acquired for b=1400s/mm2 recon-
structed using CSD with different harmonics orders and QBI. Color coding in red, green
and blue represents single fiber population, double fiber population and three fiber popula-
tion respectively. The green lines superimposed to HARDI glyphs represent the direction
of the first eigenvector as derived from DTI fitting of the dataset. A) CSD Lmax=4. B)
CSD Lmax=6. C) CSD Lmax=8. D) QBI Lmax=6.

the same imaging plane, CSD reconstruction showed stellate patterns of ODF with their
main orientation almost parallel to the known orientation of the crossing wires. In DTI,
the first eigenvectors of the diffusion tensors is parallel to the wires in region of single
fiber population. In the regions of crossing fibers, however, the first eigenvectors failed to
align with either one of the intersecting capillaries.
The angular resolution of the ODF is shown to increase with the spherical harmonic
order used. With Lmax=6 the two peeks corresponding to the two fiber orientations
can be already identified as distinct. The effect of increasing the harmonic order is to
provide more sharply peaked maxima, both in regions of crossings and in regions of single
fiber population. The data reconstructed with QBI are able to provide two local maxima
which look comparable to the results obtained with CSD fitting, but the overall angular
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resolution is low.
The results of fiber tractography of the complete phantom for the same dataset are shown
in figure 7.3. Here 4 inclusive regions of interest were drawn and tracts were coded with
different colors, according to the inclusive ROIs used.

DTI CSD 2 CSD 4 CSD 6

CSD 8 CSD 10 DTI CSD 10

A B C D

E F G
H

Figure 7.3: Fiber tracking of the complete phantom using DTI and CSD method for
different spherical harmonics orders. A) to F) Red and blue represent fibers passing
through the regions of interest A-D and B-C respectively. A) DTI. B) CSD Lmax=2.
C) CSD Lmax=4. D) CSD Lmax=6. E) CSD Lmax=8. F) CSD Lmax=10. In G) and
H) light blue and purple represent fibers passing through the regions of interest A-C and
B-D respectively. G) DTI. H) CSD Lmax=10.

The number of tracts identified as crossing fibers is seen to increase for increasing harmonic
order up to Lmax=8 (fig:7.3A-F). Results obtained for Lmax=10 are highly comparable
to the ones obtained for Lmax=8 both in terms of number of tracked fibers and visual
appearance. In sub-figure G it can be observed that DTI fails to correctly describe the
fiber orientation, and the reconstructed tracts are seen to be ”kissing” but not intersecting
each others. On the other hand, for CSD Lmax=10 (sub-figure H) only few fibers are
incorrectly identified as kissing, and all the tracts are seen to cross each others in the
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central region of the phantom.

7.1.4 Discussion and conclusion

The CSD reconstruction algorithm was validated for a phantom of crossing fibers and
fiber tractography was performed. The imaging parameters used looked to be suitable for
HARDI reconstruction.
In the glyphs map of the central area of the phantom, QBI was observed to provide worse
angular resolution than CSD for the same spherical harmonic order. For this reason QBI
was not used for tractography and for HARDI reconstruction of the heart.
The CSD analysis of the data showed the presence of crossing fibers in the central area of
the phantom, which were not correctly visualised by using a simple DTI data fitting. The
angular resolution of the CSD glyphs obtained for the higher b-values was strongly depen-
dent on the spherical harmonics order used, as is to be expected. The results obtained for
Lmax=10 were almost identical to results for Lmax=8, but the peak selection threshold
had to be set to an higher value in order to exclude spurious peaks in the reconstructed
ODF. Since the increase in computation and acquisition time when going from Lmax=8
to Lmax=10 does not seem to be justified, this spherical harmonics order was not used
for myocardium fiber tracking.
The images reconstructed with DTI and CSD Lmax=2 present few tracts passing through
ROI A and D. This is not to be expected, because the orientation distribution function
reconstructed with both algorithms does not allow the presence of multiple maxima. How-
ever, since this spurious tracts bundle is observed to be the same for both reconstruction
algorithms, it can be caused by non uniform arrangements of wires in the phantom and
actually corresponds to an existing fiber configuration.

7.2 Ex vivo heart at 3 T

In this study the benefits of HARDI acquisitions protocols were investigated, and CSD
and DTI tractography were performed.
The 5 complete porcine hearts were scanned at 3 T in order to identify the presence and
location of regions of crossing fibers.

7.2.1 Imaging

The diffusion imaging acquisition was performed using a fat-suppressed multishot spin
echo EPI sequence. Multishot EPI readout was used because it offers a good compromise
between the T2 losses and spatial distortion of single-shot EPI and the excessive scan time
of a conventional spin echo acquisition. A variable number of slices without gaps oriented
along the short axis view was used for the different scans, keeping the spatial resolution
constant (1 × 1 × 2 mm3 ) in the phase, frequency and slice direction. Twice refocused
diffusion encoding gradients were placed symmetrically around the 180◦ pulse to produce
a b-value of 1000 s/mm2. (∆1=53.60 ms, δ1=11.47 ms, ∆2=15.76 ms and δ2=15.60 ms).
Diffusion was encoded along a high number of non-collinear directions equally spaced over
the surface of a sphere. The number of diffusion encoding directions was 70 (with 11 B0

images) for the first heart and 100 (with 11 B0 images) for heart number 2, 3, 4, and
5. The EPI factor was kept constant, while the number of signal averages was changed
between 4 and 6 for the different scans in order to keep the acquisition time constant
(∼ 9.5 hours). Other acquisition parameters were TR/TE=5775/73.5 ms.
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7.2.2 Data processing

The b-values used in the calculation of the diffusion parameters were 0 s/mm2 for the
non-diffusion weighted images and 1000 s/mm2 for the diffusion weighted images (input
values), since the contribution of crossing terms in the effective b-values was considered
to be negligible for the acquisition parameters used.
For each dataset the diffusion tensor was calculated by using a WLLS algorithm. From
the diffusion tensor, the three eigenvalues and the FA value were determined.
DTI and CSD fitting was performed for the complete heart. The maximum spherical har-
monic order used for estimating the fiber orientation distribution function was Lmax=6.
For the estimation of the response function, it was assumed that the epicardium region
of the free wall only shows single fiber population. For each dataset FA values were av-
eraged in a ROI within this region and used for the estimation of the correct response
function to be used for deconvolution. The peak threshold was fixed to 0.25. This value
was empirically determined in order to exclude the possibility of spurious peaks due to
noise within the cardiac chambers.
Fiber tractography was performed in some ROIs using both DTI and CSD. For both tech-
niques, tracts were drawn with step size of 0.5 mm and were stopped when the curvature
reached 20◦ per integration step. For FA based tractography, the tracts continued for
FA between 0.1 and 0.5. Different minimum and maximum tract lengths were imposed.
Since these parameters were changed for different images, they will be indicated in the
results section for each figure.

7.2.3 Results

Visual inspection of the data showed good overall quality and no artifacts. In one dataset
outliers were identified for images diffusion weighted along 7 encoding directions. These
images were discarded before applying the denoising and the registration algorithm.
FA maps derived from the diffusion tensor showed a common pattern of enhanced FA in
the region of the lateral wall, as can be observed in figure 7.4. This was empirically con-
sidered as an indication of the presence of single fiber population in that area. Therefore
the response function for the CSD calculation was estimated from FA values in this area.

From the color coded maps a smooth change in fiber orientation can be seen within
each heart, and similar color patterns can be appreciated for the different hearts.
CSD fitting was performed on the same datasets using Lmax = 6. Glyphs representing the
ODF are shown in figure 7.5 for the three different hearts presented in the previous pic-
ture. Glyphs are color coded according to the number of peaks of the corresponding ODF.

The images obtained for the different hearts show, within the inter-subject variabil-
ity, similar patterns in terms of presence and locations of single fiber populations. Long
axis views for the different hearts show clearly the presence of two populations of fibers
crossing in the region of the free wall. In the short-axis views, double fiber population
are generally present in the left ventricle, and in particular at the endocardium and in
the midwall region. The epicardial region of the left ventricle and the right ventricle are
observed to have only single fiber populations. Within the same heart, no significant
differences in the distribution of the voxels characterized by crossing fibers is observed in
the short axis view at different base-to-apex locations.
Fiber tractography was performed for the heart indicated by number 3 in figure 7.5.
Figure 7.6 shows fiber tractography in the mid ventricular slice. The maximum and min-
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Figure 7.4: A) to C) FA maps and D) to F)color coded FA maps for three different
hearts. Color coded maps indicate the orientation of the first eigenvector according to
the standard color convention, where blue indicates in plane-out of plane, red indicates
left-right direction and green indicates top-bottom direction.

imum tract lengths were fixed to 5 and 6 mm respectively. Images of fiber tractography
obtained for CSD and DTI do not show significant differences in terms of fiber orienta-
tion. In both reconstructions the helical structure can be observed, with fibers running
counterclockwise at the epicardium, almost in plane at the midwall and clockwise at the
endocardium. Small differences can be observed in the epicardial region of the inferior
wall.
In order to better appreciate the differences between DTI and CSD data fitting, magnifi-
cations of fiber tracts in these two regions is presented (see figure 7.7).
Green glyphs in the image represent voxels in which the ODF reconstructed with CSD

present multiple maxima. As can be observed, fibers tracked with CSD present a second
population of fibers at the endocardium, which is crossing the main population and that
is not detected by using a DTI based approach.

7.3 Ex vivo heart at 9.4 T

In order to gain more insight into the fiber structure of the heart, additional experiments
were performed on small heart specimens with higher resolution with a 9.4 T pre-clinical
scanner.

7.3.1 Imaging

The MRI experiment on small heart specimens cut from heart 1 were conducted on a 9.4
T Bruker horizontal-bore MRI scanner. A standard 2D multislice multishot EPI sequence
(6 segments) was used to acquire the images. The FOV was set to 30×40 mm2, with a



7.3. EX VIVO HEART AT 9.4 T 81

A B C

D E F

G H I

LONG AXIS VIEW BASAL MID

H
E

A
R

T
 1

H
E

A
R

T
 2

H
E

A
R

T
 3

B C

E F

H I

Figure 7.5: CSD glyphs calculated with Lmax=6. Green glyphs and red glyphs represent
double fiber and single fiber voxels respectively. Glyphs are presented for three different
hearts in different slices. A), D) and G) Long axis view. B), E) and H) Basal slice.
C), F) and I) Mid-ventricular slice.
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Figure 7.6: Fiber tractography of a mid ventricular slice of heart 3. A) DTI based
tractography. C) CSD Lmax=6 based tractography. Tracts are color coded according to
the standard color convention.

matrix size of 60×80. A variable number of slices, without gaps, was acquired in order
to cover the complete volume of the sample. The imaging parameters yielded a isotropic
voxel resolution of 0.5×0.5×0.5 mm2. A diffusion encoding module was applied using a
standard Steijskal-Tanner sequence (∆=8.5 ms and δ=4.5 ms), along 100 non-collinear
directions equally spaced over the surface of a sphere. The b-value was set to 1500 s/mm2.
Other imaging parameters were TE=18.67 ms, TR=12500 ms and NSA=4. In addition
to the 100 diffusion images, 16 non-diffusion weighted images were also acquired for each
slice. The acquisition time for a single shell dataset was ∼ 9 hours
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A BB

Figure 7.7: Fiber tractography in a ROI located in the inferior wall region of the mid
ventricular slice of heart 3. A) DTI based tractography. C) CSD Lmax=6 based tractog-
raphy. Tracts are color coded according to the standard color convention.

7.3.2 Data processing

After denoising and image registration in Mathematica, the images were exported to Ex-
ploreDTI for HARDI calculation and fiber tractography. For HARDI based tractography,
only the CSD approach was used, since q-ball didn’t show satisfactory results in the
phantom of crossing fibers (see section 7.1). DTI fitting was performed using a WLLS
algorithm.
For each tissue sample, a ROI going from endocardium to epicardium in the short axis
view was selected. For CSD and DTI fiber tractography seed point were spaced with
0.5 mm resolution. The predefined maximum and minimum value for fiber length was
set to 10 and 15 mm respectively, and the tracts were stopped when a curvature grater
than 20◦ per 1 mm integration step was reached. For DTI the tracts continued for FA
values between 0.15 and 0.4. For CSD approach the response function was estimated for
each dataset in a region of interest at the subepicardium. Since the subepicardial region
in each dataset presented a higher FA value than in other locations, this was empiri-
cally considered as an indication of single fiber population in that area. The maximum
spherical harmonics order used were 2, 4, 6 and 8. The peak threshold was empirically
determined for each dataset in order to exclude spurious peaks. Fiber tracts and glyphs
obtained using DTI and CSD with different spherical harmonics order were compared for
each ROI.
The results presented in this section refer to a single scan of a sample of tissue cut from
heart 1 in the region of inferior wall. For this specific dataset the FA value for estimation
of the response function was set to 0.35 and the peak threshold was set to 0.25.

7.3.3 Results

The diffusion acquisition was evaluated for artifact and was considered of good quality.
The residues maps of DTI fitting were uniform in all 3 image planes (x, y and z) and no
outliers were shown. The SNR for the non diffusion weighted images was 35±4.
Analogously to the data acquired at 3 T, the epicardial region presented regions of en-
hanced anisotropy. Figure 7.8 shows FA and color coded FA maps of a block of tissue cut
from inferior wall in its short axis and long axis view. Yellow areas represent regions in
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which the FA value is larger than the mean value±standard deviation of FA values across
the complete sample.

A B

C D

B

D

FADEC-FA

Figure 7.8: FA maps and color coded FA maps of a specimen of the inferior wall. A) and
B) Short axis view. C) and D) Long axis view.

In order to investigate the differences between DTI and CSD at the level of a single
voxel in regions in which single fiber population and double fiber population are expected,
attention was focused on two small regions of interest located at the subendocardium and
subepicardium respectively. In each voxel CSD and DTI glyphs were drawn. DTI glyphs
are color coded according to their principal direction (red: up-down, green: left-right and
blue: in-out). CSD glyphs were color coded in red for single fiber crossing the voxel, in
green for 2 fibers and blue for three or more fibers. For each CSD glyph, the corresponding
DTI glyph was also drown as a line for more immediate comparison of orientation (see
figure 7.9).

In the epicardial region, where a single fiber population is expected, CSD and DTI
provide similar results in terms of orientation and the well known helical orientation of
fibers can be inferred. All the glyphs show in fact a smooth change in orientation from
left handed helix to a more planar geometry in the midwall. The effects of increasing
the spherical harmonics order is a progressive change from a ”fat” glyphs towards a more
elongated structure. Increasing the Lmax has also the effect to increase the effect of noise,
as can be seen form the two green glyphs in figure 7.9I.
On the other hand, in the endocardium region only DTI and CSD with Lmax=2 provide
similar results. For Lmax=4 the angular spacing between two different peaks becomes
evident and some of the glyphs are identified to represent a double fiber population. For
Lmax=6 and Lmax=8 the glyphs show the presence of double fiber population in each
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Figure 7.9: DTI and CSD glyphs in two different regions of interest located at the subepi-
cardium and subendocardiun. A) and F) DTI cylinder glyphs. B) and G) CSD glyphs
for Lmax=2. C) and H) CSD glyphs for Lmax=4. D) and I) CSD glyphs for Lmax=6.
E) and L) CSD glyphs for Lmax=8.

voxels and the results between them are highly comparable. In both cases, the DTI
glyphs appears to be located in between the two CSD peaks.
The results of fiber tractography with DTI and CSD (Lmax=6 and Lmax=8) for the region
of interest going from epicardium to endocardium is shown in figure 7.10.
For DTI based tractography, the double helical organization of fibers can be observed in

A B C

Figure 7.10: Fiber tracking in a region of interest in the inferior wall. A) DTI recon-
struction. B) CSD Lmax=6. C) CSD Lmax=8.

great details, and all the fibers present a smooth change in orientation from endocardium
to epicardium. On the other hand, for CSD-based tractography, a second population
of fibers is observed in addition to the main population depicted by DTI. This second
population of fibers crosses the main population with an angle of approximately 90◦,
creating a mesh-like structure. Regions of crossing are localized in the endocardial region,
up to the midwall. In the epicardial region the results obtained from CSD and DTI are
in agreement and both indicate the presence of a single fiber population. The results
obtained for Lmax=6 and Lmax=8 look highly comparable in terms of number of tracked
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fibers and angular spacing between them.

7.4 Discussion

In this section the implementation of Constrained Spherical Deconvolution in diffusion
MRI of the ex vivo pig heart was presented. It was shown that the technique is able to
resolve myocardial fiber architecture in the intact pig heart with a great level of details.
The results obtained at 9.4 T from the same dataset for DTI and HARDI reconstruction
algorithm in terms of fiber tracking were almost identical in the epicardial region of the
LV, for every spherical harmonics order used. On the other hand, substantial differences
were observed in the subendocardium region, in which double fiber population crossing
at approximately 90◦ were tracked using the CSD approach.

For the data acquired at 9.4 T, the analysis of the Orientation Distribution Function,
represented by the glyphs, shows that the order 2 and 4 spherical harmonics are unable to
identify the location of crossing. For the order 2 this is indeed expected since the model
has only 6 degrees of freedom (the same as DTI) and cannot show multiple maxima. For
the higher spherical harmonics 6 and 8, the results looked extremely similar both at the
single voxel level and in the fiber tractography. This would suggest that order 6 has to be
preferred in this case, since it has less degrees of freedom and consequently the process on
deconvolution is less susceptible to experimental noise. Furthermore, if less parameters
have to be fitted, it could also be possible to encode diffusion along a reduced number of
directions, and spend the acquisition time more conveniently on more image averages, in
order to increase the SNR.

For the data acquired at 3 T for the complete hearts, the reconstructed CSD glyphs
show the presence of double fiber population across the left ventricle wall in the region
going from subendocardium to midwall. This is in agreement with the results shown for
the small heart specimen acquired at 9.4 T. Fiber tractography performed in the region
of inferior wall at 3 T and 9.4 T show comparable results, in fact in the left ventricle wall
the presence of a secondary fiber population crossing the main population and creating a
meshlike structure was observed for both acquisitions. However, the level of details in the
reconstructed tracts and the tract density shows somehow worse results when compared
to the results for the small heart specimen. In fact, while the main fiber population as
depicted by DTI can be easily tracked using a CSD approach, the crossing tracts are
observed to be much shorter. The differences in the density of tracked fibers can be at-
tributed to the different spatial resolution used for the different scans and to the lower
SNR of the data acquired at 3 T. In addition to that, another factor could explain the
differences in the quality of the reconstructed tracts: the voxels of the data acquired at 3
T for the complete heart were not isotropic (1×1×2 mm3), while the resolution obtained
at 9.4 T was 0.5×0.5×0.5 mm3. In fact it has already been discussed that the use of
isotropic voxel in fiber tractography is beneficial, in particular when HARDI and higher
order techniques are applied and that non isotropic voxel resolution can introduce a bias
in the tracked fibers using CSD approaches [32].

On the point of view of the MRI methods, the relatively high spatial resolution ob-
tained allowed a good estimation of the fiber orientation for tractography and the char-
acteristic helical structure of the myocytes was observed in great details. However this
was done at expenses of acquisition time. This study however showed the feasibility of
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CSD DW-MRI tracking of the ex vivo heart using a clinical system with relatively low
b-value. The choice of b-value was based on empirical observation, and was mainly based
on finding a tradeoff between a short TE and a strong enough diffusion encoding. The
empirical b-value optimisation in this study was carried out by changing the gradient
strength, leaving the diffusion time unchanged. However, since it was shown in chapter
5 that the FA value is bigger for longer diffusion time at constant b-value, an increase in
mixing time could be beneficial in order to enhance differences in anisotropy level between
single fiber and multiple fiber voxels.

On the point of view of the data processing, CSD method looked suitable for a good
estimation of the fiber orientation distribution function and the crossings observed (both
in terms of CSD glyphs and fiber tracts) correlate well with previous histological stud-
ies [35] and contrast enhanced MRI [18]. QBI reconstruction was not performed since
it was shown for the phantom of crossing fibers that QBI performs worse than CSD for
the same data. However it has to be observed that, while QBI is a relatively model free
approach, CSD estimation is based on the assumption that changes in the observed FA
scalar index in different locations of the heart are only caused by partial volume effects
and that all the fibers share the same diffusion and structure characteristics. Different FA
values were indeed observed as a function of transmural depth in the left ventricle both
for small specimens at 9.4 T and for the complete heart at 3 T, as already reported by
Jiang [29] for fixed sheep heart. In this study the enhanced FA in the subepicardial region
of free wall was connected with the presence of a single fiber population. The absence
of myolaminae in the subepicardial region of the free wall was already reported for the
rat heart using confocal microscopy [47], so the hypotesis that the enhanced FA values
in this area can connect with the presence of a single fiber population can be reasonable.
Although this assumption may not hold true, the increased FA values in the epicardial
region reflects true characteristics of the tissue and it is not only due to noise effects. It
has already been discussed in fact that noise can cause higher artificial FA, and that the
bias between the true and experimental value due to noise increases for lower true FA
values [31]. In this case, the mid-myocardium and some epicardial regions exhibit lower
FA value, and these regions should be theoretically more sensitive to the effect of noise.
The region specific differences observed experimentally for FA across the wall are then
likely a lower estimation of real FA differences and can be considered as a representation
of the real tissue properties.
In general, this effect of enhanced FA in the epicardial region, could be explained by the
existence of “complex” tissue structure, such as bifurcating myolaminae structures in the
subendocardium, which would then allow the use of the CSD algorithm for processing
the data. On the other hand, the decrease in FA at the endocardium can also reflect dif-
ferences in myocyte organization in terms of different volumes between intracellular and
extracellular space and or/differences in myocytes cross sections between endocardium
and epicardium. The different workload of the internal part of cardiac wall compared
to the external part could justify in fact the presence of an increased cellular density
and/or with increased cross radius. A complete histological knowledge that would allow
to explain the changes of FA with the presence of complex tissue structure or structural
differences or a combination of both is however still lacking. Further research is needed
in that sense to better evaluate the compatibility between the general cardiac structure
and the assumptions underlying the CSD method.

Another important consideration is that the response function (RF) has a strong in-
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fluence in the deconvolution process and then in determining the correct number of fibers
crossing the voxel of interest, and this is particularly true when high order spherical har-
monics are used. The RF is currently estimated through defining a FA value, below which
the voxel contains double fiber population. An inaccurate calibration of the response func-
tion (RF), can lead to the detection of spurious fODF peaks which could than cause false
positive in fiber tractography. In addiction to that, certain voxel could present low FA
values, due to presence of membranes or other restriction effects, and the latter effect is
especially present when high b-values are applied. The response function then heavily
relies on the DTI model in general and on previous knowledge of the tissue of interest.
Further research is needed in that sense in order to make the deconvolution process more
robust and less dependent on user defined settings. Recursive approaches for the estima-
tion of the response function, like the one proposed in [57] could be promising in that sense.

7.5 Conclusion

In this study CSD analysis and fiber tracking of the ex vivo pig heart were performed for
the first time. The results show that CSD estimation is possible for diffusion MRI data
acquired ex vivo using a clinical scanner with limited gradient strength. Furthermore it
was also shown that the CSD fiber reconstruction offers an added value over conventional
DTI, since it allows to identify crossing fiber structures that DTI fails to correctly de-
scribe. For high resolution data acquired at 9.4 T a mesh like pattern of crossing fiber
was successfully identified in the subendocardium, in agreement with previous study per-
formed using different imaging techniques. In the midwall and epicardium region the well
know double helical fiber structure was observed in great detail due to the high spatial
and angular resolution used.
Further work is needed in terms of optimization of acquisition parameters, such as number
of directions and b-value used, and in a more robust deconvolution and response function
estimation techniques. Nevertheless, the preliminary results obtained show that CSD may
be suitable to obtain a better 3D characterization of the heart and get more insight into
fiber and laminar anatomy.



Chapter 8

General conclusions and future work

In this work different Diffusion Weighted MRI acquisitions and different processing tech-
niques were successfully applied to the study of the ex vivo porcine heart.
Different diffusion MRI approaches were used, providing information both at the local
scale and on the gross anatomy in order to get a deeper understanding of cardiac (mi-
cro)structure. While technical discussions and some suggestions for future work were
already discussed in the related experimental chapters, it is appropriate to make some
general considerations.
Experimental results obtained at changing diffusion times and b-values showed that diffu-
sion in cardiac tissue is more complicated than as simply described by the DTI model. It
is in fact speculated that restriction effects and compartmentalization of water can play
a role in the overall measured diffusion profile. Future work is needed in order to increase
the range of investigated b-values and mixing times, and to try to incorporate the findings
in a global model, that could allow to predict diffusion behaviors in normal cardiac tis-
sue and also to better appreciate differences due to diseases and pathological conditions.
Since the in vivo implementation of most of the approaches presented in this thesis is
not possible yet, further research has to focus ex vivo in order to establish under which
assumptions and experimental conditions the Gaussian profile of diffusion described by
DTI is a good approximation of the real diffusion profile. These investigations have to
include different shells of b-values and different experimental diffusion times. Ideally the
proposed model should also be used for numerical simulations.
Experiments also suggested that the dynamic of diffusion along the cells and perpendic-
ular to them has a different behavior. While the effect of restrictions is more pronounced
along the radial direction, as it was expected, also the axial component of diffusion is
shown to depend on diffusion time and b-values used. Modelling of diffusion in cardiac
tissue has to include this behavior, which for instance has never been observed in DW-
MRI of white matter of the brain.
With regard to the evidence of restriction along the main direction of cardiac cell, it is of
interest to investigate this behavior further. This could in fact be relevant for fiber trac-
tography, that usually makes use only of the diffusion in radial direction. Further research
should focus on optimization of acquisition and different fiber reconstruction techniques
such as CSD (as preliminarily shown in this thesis) and multiple tensor approaches.
Although further studies will be required, fiber tractography with Diffusion MRI can be
an extremely valuable tool in order to validate mechanical and electric conduction mod-
els of the heart, and higher order DW-MRI approaches can provide, under the correct
assumptions, additional information to understand cardiac function and modelling.
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