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Abstract

Integer division is an important arithmetic operation on microprocessors. To derive integer
division algorithms we present an unconvential approach: a derivation technique in a calcula-
tional style, that guarantees that the derived algorithms are correct. Four different algorithms
are derived using this method: restoring division, non-restoring divsion, radix-4 division and
division by multiplication. We translate these to descriptions into combinatorial circuits, ex-
pressed in Verilog code. Then the circuits are compiled on a Spartan-3 Generation FPGA.
At the end, we compare the propagation delays and area requirements for these circuits. We
show that the division by multiplication is much faster than the other methods, however it
only works for 18 bit integers.
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Chapter 1

Introduction

Computer programs become more and more complex. To run these programs, microproces-
sors carry out massive mathematical computations mainly based on four basic arithmetic
operations: addition, subtraction, multiplication and division. According to Soderquist and
Leeser [9], division is the slowest operation compared to the other three. While division is
not used very often, ignoring division in the microprocessor can result in system performance
degradation and therefore division must be taken into account as well [6].

Implementing integer divisions with remainder on hardware is a classic problem that was al-
ready studied in the early days of the digital era [8,12]. Meanwhile, there are many approaches
to this problem, which can be divided into three classes: digit recurrence or subtractive meth-
ods, functional iteration and table based functions [10]. These algorithms differ in propagation
delay and area requirements, two relevant performance characteristics when implementing al-
gorithms in hardware. A survey by Oberman and Flynn [7] presents an overview of the main
division algorithms.

In this thesis we derive four algorithms for dividing integers using an unconventional approach.
This approach follows the methods of Hoogerwoord [4], which were teached during the course
Programming by Calculation at the TU/e. By using this approach, we prove the correctness
of the solution during the derivations. The notation together with the predicate calculus gives
us a tool to derive programs without introducing errors. This is useful to help with preventing
errors such as the infamous Pentium FDIV bug in 1994, an error in the division part of the
Intel P5 microprocessor floating point unit (FPU). This error was caused by a few missing
entries in a lookup table part of the chips circuitry [1, 5].

Starting from a specification, we derive a functional program involving integer operations in
a calculational style for each algorithm. We transform these functional programs such that
they represent the numbers in binary digits. These solutions are translated to descriptions of
combinatorial circuits, expressed in Verilog code [11]. Each of these circuits were tested on a
Spartan-3 Generation Field Programmable Gate Array (FPGA) and have obtained reliable
estimates of its propagation delay and area requirement.
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1.1 Division algorithms
We derive four different algorithms for dividing integers. The division algorithms should
compute for a (possible negative) integer A and positive integer B the quotient q (= A div B)
and remainder r (= A mod B) specified as:

(0) q, r: A = q∗B + r ∧ 0 ≤ r < B

For the first algorithm, we obtain from this specification an algorithm by formulating the
solution for 2∗A + b and B (with b ∈ {0, 1}) recursively in terms of the solution for A and B.
This algorithm is called restoring division as explained in many books discussing computer
arithmetic, such as [2, 3, 8].

For the second algorithm we weaken specification (0) to

(1) q, r: A = q∗B + r ∧ −B ≤ r < B

The solution we obtain is non-restoring division. The weaker specification admits more ma-
nipulative freedom, such that we can derive a faster algorithm that requires less area when
implemented. In the end, we only need a simple correction to get the actual quotient and
remainder as specified by equation (0).

The third solution, radix-4 division, is similar to restoring division, but carried out in the
quaternary number system. The algorithm is obtained by formulating the solution for 4∗A+ d
and B (with 0 ≤ d ≤ 3) recursively in terms of the solution for A and B. The resulting
algorithm is faster but also larger than restoring division.

The fourth algorithm is division by multiplication. The relation A/B = A ∗ (1/B) can be
exploited by obtaining an approximation for 1/B from a lookup table: Thus, a single multi-
plication suffices to obtain an approximation for A/B. This is attractive because the FPGA
contains fast multipliers as standard components. Of course, we need a simple correction at
the end to obtain the answer to A div B from the approximation. For this algorithm we have
derived two variants: one with a smaller table, but with more propagation delay and one with
a larger table and less propagation delay.

1.2 Overview
We introduce the notation in this thesis in Chapter 2; several useful definitions for lists are
given and from those some useful properties are derived. Restoring division, non-restoring
division, radix-4 division and division by multiplication are derived in Chapters 3 to 6. Each
of those chapters can be read independently, without reading the previous ones. In Chapter 7
the results of the propagation delays and the area requirements are presented and discussed.



Chapter 2

Notation

2.1 Lists

A list is a linearly ordered set of elements, usually with the same type. For the remainder of
this document, we use only finite lists: lists with a finite amount of elements. The empty list
is denoted with the symbol [ ]. A list with only element b is written down as [ b ]. We denote
the list composed from element b and list s as b . s. This operator is defined as follows:

Definition 0:

(b . s)·0 = b
(b . s)·(n+1) = s·n

We use the shorthand notation sn for s·n.

Now we can define several operators on lists. The count operator # returns the amount of
elements in a list. The operator is recursively defined as:

Definition 1:

#[ ] = 0
#(b . s) = #s + 1

From two lists s and t with length m and n we can construct a new list of length m + n
using the concatenation operator (++ ). The result of s ++ t is the list containing first all the
elements of s and then all the elements of t. This is recursively defined as:

Definition 2:

[ ] + t+ t = t
(b . s) + t+ t = b . (s+ t+ t)

The drop operator ( b ) removes the first n elements from a list s, for 0 ≤ n ≤ #s. This is
defined by:

3
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Definition 3:

s b 0 = s
(b . s) b (n+1) = s bn

The take operator ( d ) takes the first n elements from a list s, for 0 ≤ n ≤ #s, thus dropping
the last #s− n elements.

Definition 4:

s d 0 = [ ]
(b . s) d (n+1) = b . s dn

From the previous definitions 2, 3 and 4 we prove several useful properties such as:

Property 5: for any list s and natural number n: 0 ≤ n ≤ #s:

s = (s dn) + t+ (s bn)

Property 6: for any list s and t:

(s+ t+ t) b#s = t

and,

Property 7: for any list s 6= [ ] and natural number n: 0 < n ≤ #s:

s b (n−1) = sn−1 . s bn

Property 5 is proven using induction on n. We first prove the property for n = 0:

(s d 0) + t+ (s b 0)
= { definitions 3: b and 4: d }

[ ] + t+ s

= { definition 2: ++ }
s

Now we prove the property for 1 ≤ n ≤ #s. The list s has the shape b . t, for some b and a
list t, with length n− 1. Using this we derive:(

(b . t) d (n+1)
)

+ t+
(
(b . t) b (n+1)

)
= { definitions 3: b and 4: d }(

b . (t dn)
)

+ t+ (t bn)
= { definition 2: ++ }
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b .
(
(t dn) + t+ (t bn)

)
= { induction hypothesis }

b . t

Property 6 is proven using induction on list s. We first prove the property for s = [ ] and any
list t:

([ ] + t+ t) b#[ ]
= { #[ ] = 0 } { definition 2: ++ }

t b 0
= { definition 3: b }

t

With the induction hypothesis, we assume (s++ t) b#s = t. Now we prove the case s = b . s,
for any b and list s 6= [ ] as follows:(

(b . s) + t+ t
)
b (#s+1)

= { definition 2: ++ }(
b . (s+ t+ t)

)
b (#s+1)

= { definition 3: b }
(s+ t+ t) b#s

= { induction hypothesis }
t

By induction, property 6 holds for any list s and t.

Property 7 is derived as follows:

s b (n−1)
= { choose s = ss+ t+ [ sn−1 ] + t+ st, with #ss = n−1 }

( ss+ t+ [ sn−1 ] + t+ st ) b (n−1)
= { use property 6 }

[ sn−1 ] + t+ st

= { #(ss+ t+ [sn−1]) = n; use property 6 }
[ sn−1 ] + t+ ( ( ss+ t+ [ sn−1 ] + t+ st ) bn )

= { ss+ t+ [ sn−1 ] + t+ st = s }
[ sn−1 ] + t+ s bn

= { definition 2: ++ ( 2 × ) }
sn−1 . s bn
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2.2 Binary lists
To represent a natural number as a binary list, a list with elements in {0, 1}, we use the
abstraction function v2 : L2→ Int, where L2 is the binary list. An element in {0, 1} is called
a bit. The binary list in function v2, where the last bit is the most significant bit, is called
the binary representation of a natural number. Function v2 is declared as follows:

Declaration 8:

v2·[ ] = 0
& v2·( b . s ) = 2 ∗ v2·s + b , for all s in L2 and b in {0, 1}

To represent a signed integer as a binary list, we use the two’s complement representation. The
two’s complement representation is similar to the binary representation with one additional
bit, the sign bit. If the sign bit is 0, then the value is equal to the binary value of the first N
bits, where N + 1 is the total number of the bits. If the sign bit is 1, then 2N is subtracted
from the binary value of the first N bits. The abstraction function tc : L2→ Int to represent
the two’s complement value for a given binary list, is declared as follows:

Declaration 9:

tc·[ b ] = −b , for b in {0, 1}
tc·( b . s ) = 2 ∗ tc·s + b , for all s in L2− { [ ] } and b in {0, 1}

To remove the most significant bit in the binary representation from the a list, we use the
following properties:

Property 10: for any list s and b in {0,1}:

v2·( s+ t+ [b] ) = v2·s + 2#s ∗ b

and, in two’s complement representation:

Property 11: for any list s and b in {0,1}:

tc ·( s+ t+ [b] ) = v2·s − 2#s ∗ b

These properties are derived as follows using induction on s. For property 10 we first prove
the base case, where s is the empty list:

v2·( [ ] + t+ [b] )
= { definition 2: ++ }

v2·[b]
= { declaration 8: v2 (2×) }
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b

= { algebra }
0 + 20 ∗ b

= { declaration 8: v2 }
v2·[ ] + 2#[ ] ∗ b

With the induction hypothesis, we assume v2 · (s+ t+ [b]) = v2 · s+ 2#s ∗ b is satisfied for some
list s and bit b. We derive for c . s:

v2·
(

(c . s) + t+ [b]
)

= { definition 2: ++ }
v2·
(
c . (s+ t+ [b])

)
= { declaration 8: v2 }

2 ∗ v2·(s+ t+ [b]) + c

= { induction hypothesis }
2 ∗ (v2·s+ 2#s ∗ b) + c

= { algebra }
2 ∗ v2·s + c + 2#s+1 ∗ b

= { declaration 8: v2 }
v2·(c . s) + 2#(c . s) ∗ b

By induction, property 10 holds for all s and any bit b. The proof for property 11 is similar
to property 10 and therefore it is omitted.

When working with two’s complement representations, it is possible to use sign extension to
increase, or sign truncation to decrease the length of a list, without changing the value that
the list represents. To extend a list s with most significant bit b, add bits with value b to the
end of list s. Similar, to truncate a list s we remove bits with value b from the end of s, as
long as the most significant bit after the truncation has value b. More formally:

Property 12: for any list s and b in {0,1}:

tc ·( s+ t+ [b] ) = tc ·( s+ t+ [b] + t+ [b] )

Property 12 is derived as follows:



8 CHAPTER 2. NOTATION

tc ·( s+ t+ [b] )
= { property 11 }

v2 ·s − 2#s ∗ b
= { algebra }

v2 ·s + 2#s ∗ b − 2#s+1 ∗ b
= { property 10 }

v2 ·( s+ t+ [b] ) − 2#s+1 ∗ b
= { property 11 }

tc ·( s+ t+ [b] + t+ [b] )



Chapter 3

Restoring Division

For dividing two integers, we use the div and mod operators, where A div B equals the
quotient and A mod B equals the remainder of the division. In this Chapter we derive an
algorithm for computing the quotient and the remainder, called restoring division.

We are interested in computing the quotient and the remainder of an integer A and a positive
integer B, provided −2N ≤ A < 2N and 1 ≤ B < 2N ; we choose variable B to be constant.
We derive a function f : Int → 〈 Int , Int 〉, that computes the quotient and the remainder,
specified by:

Specification 13: for a given constant B: 1 ≤ B < 2N and variable a: −2N ≤ a < 2N :

f ·a = 〈 q , r 〉 whr q, r : a = q∗B + r ∧ 0 ≤ r < B end

Now f ·A gives the solution to the quotient and the remainder.

From Specification 13 we derive the declarations for the base cases f ·(−1) and f ·0 as follows:

f ·(−1 )
= { specification 13: f }
〈 q , r 〉 whr q, r : −1 = q∗B + r ∧ 0 ≤ r < B end

= { holds only for q = −1 and r = B − 1 }
〈 −1 , B − 1 〉

and,

f ·0
= { specification 13: f }
〈 q , r 〉 whr q, r : 0 = q∗B + r ∧ 0 ≤ r < B end

= { holds only for q = 0 and r = 0 }
〈 0 , 0 〉

9
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For the recursive case we assume that q and r satisfy: a = q∗B + r and 0 ≤ r < B. Now we
derive a declaration for the case 2∗a+ b, for all integers a and bits b, with b ∈ {0, 1}:

2 ∗ a + b

= { assumption }
2 ∗ ( q∗B + r ) + b

= { algebra }
( 2∗q ) ∗B + ( 2∗r + b )

= { introduce h = 2 ∗ r + b }
( 2∗q ) ∗B + h

The pair 〈 2∗q , h 〉 is a solution for f · ( 2∗a+ b ), provided 0 ≤ h < B.

= { algebra }
( 2∗q + 1 ) ∗B + h−B

And, the pair 〈 2∗q+ 1 , h−B 〉 is a solution for f ·(2∗a+ b), provided 0 ≤ h−B < B. Now,
from 0 ≤ r < B we derive the range of h:

0 ≤ r < B

≡ { algebra }
0 ≤ r ∧ r ≤ B − 1

≡ { algebra }
0 ≤ 2 ∗ r ∧ 2 ∗ r ≤ 2∗B − 2

⇒ { 0 ≤ b } { b ≤ 1 }
0 ≤ 2∗r + b ∧ 2∗r + b ≤ 2∗B − 1

≡ { algebra }
0 ≤ 2∗r + b < 2∗B

≡ { definition h }
0 ≤ h < 2 ∗B

We conclude that 0 ≤ h < 2 ∗ B. This proposition is split in two cases: 0 ≤ h < B, and
B ≤ h < 2 ∗B. The second case is equal to 0 ≤ h−B < B, thus both cases yields a solution
for f · ( 2∗a+ b ). Combining these cases, we obtain:

if 0 ≤ h−B < B → 〈 2 ∗ q , h 〉
[] 0 ≤ h−B < B → 〈 2 ∗ q + 1 , h−B 〉
fi

= { algebra, using 0 ≤ h < 2 ∗B }
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if h−B < 0 → 〈 2 ∗ q , h 〉
[] h−B ≥ 0 → 〈 2 ∗ q + 1 , h−B 〉
fi

Now we obtain the following declarations for function f , that computes the quotient and
remainder for a given integer A and a divisor B.

Declaration 14:

f · (−1 ) = 〈 −1 , B − 1 〉
& f · 0 = 〈 0 , 0 〉

& f · ( 2∗a+ b ) = if h−B < 0 → 〈 2 ∗ q , h 〉
= [] h−B ≥ 0 → 〈 2 ∗ q + 1 , h−B 〉
= fi whr h = 2 ∗ r + b
= fi & 〈 q , r 〉 = f ·a
= fi end

3.1 From integer to binary (part 1)

We have derived a function f that computes the quotient and the remainder, following the
restoring division method. In this section we implement function f that computes A div B
and A mod B in the binary system.

First we represent the value A in binary, list as, with length N+1, provided −2N ≤ A < 2N .
Thus, the list as is the two’s complement representation of A. Now we introduce a function,
g1, that computes for a natural number n, with 0 ≤ n ≤ N , the quotient and the remainder
for the value of as without the least significant n bits.

The function g1 : Int → 〈 Int , Int 〉 is specified by:

Specification 15: for 0 ≤ n ≤ N , a given constant B: 1 ≤ B < 2N and a given list as
with #as = N+1:

g1·n = f ·( tc·( as bn ) )

For f ·A we derive:

f ·A
= { A = tc·as }

f ·( tc·as )
= { definition 3: b }

f ·( tc·as b 0 )
= { specification 15: g1 }

g1·0
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So, g1·0 implements f ·A.

Now, we derive the declaration for g1 from specification 15. For the base case n = N , we
derive:

g1·N
= { specification 15: g1 }

f ·( tc·( as bN ) )
= { property 7: b , because n− 1 < N holds }

f ·( tc·( asN . as b (N+1) ) )
= { #as = N + 1; property 6 }

f ·( tc·( asN . [ ] ) )
= { definition 0: . }

f ·( tc·[ asN ] )
= { declaration 9: tc }

f ·( −asN )
= { declaration 14: f } { asN ∈ {0, 1} }

if asN = 0 → 〈 0 , 0 〉
[] asN = 1 → 〈 −1 , B − 1 〉
fi

and, for n: 0 ≤ n < N :

g1·n
= { specification 15: g1 }

f ·( tc·( as bn ) )
= { property 7 }

f ·( tc·( asn . as b (n+1) ) )
= { declaration 9: tc }

f ·( 2 ∗ tc·( as b (n+1) ) + asn )
= { declaration 14: f }

if h−B < 0 → 〈 2 ∗ q , h 〉
[] h−B ≥ 0 → 〈 2 ∗ q + 1 , h−B 〉
fi whr h = 2 ∗ r + asn
fi & 〈 q , r 〉 = f ·( tc·( as b (n+1) ) )
fi end

From specification of g1, we rewrite f ·( tc·( as b (n+1) ) ) to g1·(n+1). Together with the
result for the case n = N , we obtain the following declarations for the function g1:
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Declaration 16:

g1·N = if asN = 1 → 〈 −1 , B − 1 〉
= [] asN = 0 → 〈 0 , 0 〉
= fi

g1·n = if h−B < 0 → 〈 2 ∗ q , h 〉
= [] h−B ≥ 0 → 〈 2 ∗ q + 1 , h−B 〉
= fi whr h = 2 ∗ r + asn
= fi & 〈 q , r 〉 = g1·( n+1 )
= fi end

3.2 From integer to binary (part 2)

We have derived a function that computes A div B and A mod B, where A is represented as
a binary list. Here we present function g2, that represents B, the quotient and the remainder
in the declaration of g1 as binary lists.

The remainder r in the declaration of g1 satisfies 0 ≤ r < 2N , hence, we specify the length of
rs, the binary list representing r, to be N ; thus rs is in binary representation. The quotient
q in the base case of g1 is either −1 or 0, which is represented by one bit in two’s complement
representation. In the recursive case, where n < N , the quotient is divided by 2 with each
increase of n; in binary this is achieved with a bitshift. As a result, we specify the length of
the binary list representing q to be N−n+ 1.

The function g2 : Int → 〈 L2 , L2 〉 is specified by:

Specification 17: for 0 ≤ n ≤ N , a given list bs: v2 · bs = B ∧ #bs = N and a given list
as with #as = N + 1:

g2·n = 〈 qs , rs 〉 whr qs, rs : 〈 tc·qs , v2·rs 〉 = g1·n
= ∧ #qs = N−n+ 1 ∧ #rs = N
= end

Following specification 17 we formulate first the quotient and the remainder of declaration 16
for the case n = N in binary. The quotient q is −1 or 0. In two’s complement representation
with length N − n+ 1 = 1, the quotient is represented by [ 1 ] or [ 0 ] respectively.

For the remainder, we formulate the values 0 and B−1 in binary representation with length
N . We introduce for these values, respectively, the lists zero and bs1, as defined by:

0 = v2 · zero ∧ #zero = N
B−1 = v2 · bs1 ∧ #bs1 = N

* * *
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For the recursive case 0 ≤ n < N , we formulate first the quotient in binary. The quotient
2 ∗ q is rewritten as follows:

2 ∗ q
= { q = tc·qs }

2 ∗ tc·qs
= { declaration 9: tc }

tc·(0 . qs)

and 2 ∗ q + 1:

2 ∗ q + 1
= { q = tc·qs }

2 ∗ tc·qs + 1
= { declaration 9: tc }

tc·(1 . qs)

For the remainder, we derive hs, the binary representation of h, as follows:

h

= { h = 2 ∗ r + asn }
2 ∗ r + asn

= { r = v2·rs }
2 ∗ v2·rs+ asn

= { declaration 8: v2 }
v2·(asn . rs)

Now hs is defined as asn . rs.

Furthermore, for the remainder we introduce a list ks, which represents the value h−B in
two’s complement representation:

tc·ks = v2·hs−v2·bs

The length of ks is derived from 0 ≤ h < 2∗B as follows:

0 ≤ h < 2 ∗B
= { algebra }
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−B ≤ h−B < B

= { definition ks }
−B ≤ tc·ks < B

⇒ { B < 2N }
−2N ≤ tc·ks < 2N

We conclude that #ks = N+1.

With ks, not only the remainder, but also the guards are rewritten:

h−B < 0
≡ { h = v2 · hs and B = v2 · bs } { definition ks }

ks < 0
≡ { the sign bit is on position N }

ksN = 1

As a result, the other guard 0 ≤ h−B is rewritten to ksN = 0.

The guards in declaration 16 for 0 ≤ n < N provides 0 ≤ r < B, hence 0 ≤ r < 2N . As a
result, the remainder rs can be expressed in N bits. Hence, we use sign truncation (property
12), such that #rs = N .

Now, by combining the guards, quotients and remainders, we obtain the following declaration
for g2:

Declaration 18:

g2·N = if asN = 1 → 〈 [ 1 ] , bs1 〉
= [] asN = 0 → 〈 [ 0 ] , zero 〉
= fi

g2·n = if ksN = 1 → 〈 0 . qs , hs dN 〉
= [] ksN = 0 → 〈 1 . qs , ks dN 〉
= fi whr hs = asn . rs
= fi & ks = hs− bs
= fi & 〈 qs , rs 〉 = g2·( n+1 )
= fi end
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3.3 Verilog implementation
From declaration 18 we construct the following Verilog program:

////////////////////////////////////////////////////////////////////////
//
// created by: Wouter de Koning
//
// This Verilog program implements g2; the restoring division
//
// as, bs, rs and qs are in two’s complement representation (N + 1 bits)
//
////////////////////////////////////////////////////////////////////////

module DivModRestoring(as, bs, qs, rs);
parameter N = 17;

input [N:0] as;
input [N:0] bs;

output [N:0] qs;
output [N:0] rs;

wire [N-1:0] rss[N:0]; // rss[n] is the result of rs in g2 n
wire [N:0] hss[N-1:0]; // hss[n] is the result of hs in g2 n
wire [N:0] kss[N-1:0]; // kss[n] is the result of ks in g2 n

// - rss[0] is the result of rs in g2 0
assign rs = { {1’b0} , rss[0] };

// - The case g2 N
assign qs[N] = as[N];
assign rss[N] = (bs - 1) & {N{as[N]}};

// - The case g2 n for 0 = n < N
genvar n;

generate
for (n=0; n<N; n=n+1)
begin: RestDivMod

assign hss[n] = {rss[n+1],as[n]};
assign kss[n] = hss[n] - bs;
assign rss[n] = kss[n][N] ? hss[n][N-1:0] : kss[n][N-1:0];
assign qs[n] = !kss[n][N];

end
endgenerate

endmodule



Chapter 4

Non-restoring Division

In Chapter 3 we derived an algorithm for implementing A div B and A mod B, following the
restoring division method. Instead of ensuring that the remainder in the intermediate steps
remains non-negative, we create a function, which allows the remainder to be negative. In
the postprocessing step, it is ensured that the remainder is non-negative. By weakening the
specification, we derive a faster algorithm for division, called non-restoring division.

The functions in this chapter are very similar to the functions in Chapter 3, for this reason
we use the same function names. So, we (re)derive a function f : Int → 〈 Int , Int 〉, that
computes the non-restoring division of A and B, specified by:

Specification 19: for a given constant B: 1 ≤ B < 2N and variable a: −2N ≤ a < 2N :

f ·a = 〈 q , r 〉 whr q, r : a = q∗B + r ∧ −B ≤ r < B end

Now f ·A gives the solution to the non-restoring division of A and B.

For the base case f · (−1), we obtain the solutions 〈0 , −1 〉 and 〈−1 , B−1 〉. And, for f ·0 we
obtain the solutions 〈 0 , 0 〉 and 〈 1 , −B 〉. In a later stage of the derivation of the algorithm,
the solutions 〈 −1 , B − 1 〉 and 〈 1 , −B 〉 turn out to give better results.

* * *

For the recursive case we assume that q and r satisfy: a = q∗B + r and −B ≤ r < B. We
derive a solution for the case 2∗a+ b, for all integers a and bits b, with b ∈ {0, 1}:

2 ∗ a + b

= { assumption }
2 ∗ ( q∗B + r ) + b

= { algebra }

17
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( 2∗q ) ∗B + ( 2∗r + b )
= { introduce h = 2 ∗ r + b }

( 2∗q ) ∗B + h

Now the pair 〈 2∗q−1 , h+B 〉 is a solution for f · ( 2∗a+ b), provided −B ≤ h+B < B, and
the pair 〈 2∗q + 1 , h−B 〉 is a solution, provided −B ≤ h−B < B. From −B ≤ r < B we
derive the range of h:

−B ≤ r < B

≡ { algebra }
−B ≤ r ∧ r ≤ B − 1

≡ { algebra }
−2∗B ≤ 2 ∗ r ∧ 2 ∗ r ≤ 2∗B − 2

⇒ { 0 ≤ b } { b ≤ 1 }
−2∗B ≤ 2∗r + b ∧ 2∗r + b ≤ 2∗B − 1

≡ { algebra }
−2∗B ≤ 2∗r + b < 2∗B

≡ { definition h }
−2∗B ≤ h < 2 ∗B

So, we conclude that −2 ∗ B ≤ h < 2 ∗ B. This proposition is split in two different cases:
−2 ∗ B ≤ h < 0 and 0 ≤ h < 2 ∗ B. The first is equal to −B ≤ h+B < B and the second
to −B ≤ h−B < B, thus each of those cases yields a solution for f · ( 2∗a+ b ). Combining
both cases, we obtain:

if − 2 ∗B ≤ h < 0 → 〈 2 ∗ q − 1 , h+B 〉
[] 0 ≤ h < 2 ∗B → 〈 2 ∗ q + 1 , h−B 〉
fi

= { logica, using −2 ∗B ≤ h < 2 ∗B }
if h < 0 → 〈 2 ∗ q − 1 , h+B 〉
[] h ≥ 0 → 〈 2 ∗ q + 1 , h−B 〉
fi

Now we obtain the following declarations for function f , which computes the quotient and
remainder for a given integer A and a divisor B:
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Declaration 20:

f · (−1 ) = 〈 −1 , B − 1 〉
& f · 0 = 〈 1 , −B 〉

& f · ( 2∗a+ b ) = if h < 0 → 〈 2 ∗ q − 1 , h+B 〉
= [] h ≥ 0 → 〈 2 ∗ q + 1 , h−B 〉
= fi whr h = 2 ∗ r + b
= fi & 〈 q , r 〉 = f ·a
= fi end

4.1 From integer to binary (part 1)

We have derived a function f that computes the quotient and the remainder, following the non-
restoring division method. In this section we implement function f that computes A div B
and A mod B in the binary system.

Similar to Section 3.1, we start by representing the value A in binary. We introduce as,
the two’s complement representation of A, with length N +1, provided −2N ≤ A < 2N .
We introduce a function, g1, which computes for a natural number n, with 0 ≤ n < N ,
the quotient and the remainder for the value of as without the least significant n bits. The
maximal value of n is N − 1; in the non-restoring division it is better to combine the two
most significant bits of as in the base case.

The function g1 : Int → 〈 Int , Int 〉 is specified by:

Specification 21: for 0 ≤ n < N , a given constant B: 1 ≤ B < 2N and a given list as
with #as = N+1:

g1·n = f ·( tc·( as bn ) )

For f ·A we derive:

f ·A
= { A = tc·as }

f ·( tc·as )
= { definition 3: b }

f ·( tc·as b 0 )
= { specification 21: g1 }

g1·0

So, g1·0 implements f ·A.

Now, from specification 21, we derive the declaration for g1. For the base case n = N−1, we
derive:
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g1 · ( N−1 )
= { specification 21: g1 }

f ·( tc·( as b (N−1) ) )
= { property 7: b ( ×2 ) }

f ·( tc·( asN−1 . asN . as b (N+1) ) )
= { #as = N + 1, property 6 with t = [ ] }

f ·( tc·( asN−1 . asN . [ ] ) )
= { definition 9: tc ( ×2 ) }

f ·( 2 ∗ (−asN ) + asN−1 )

We distinguish two cases for asN . The first case, if asN = 0:

f ·( 2 ∗ ( 0 ) + asN−1 )

We use declaration 20, with a = 0 and b = asN−1. To find 〈 q , r 〉 we use declaration 20 for
f · 0, hence 〈 q , r 〉 = 〈 1 , −B 〉. Now, for h we derive:

h

= { h = 2∗r + b }
2∗(−B) + asN−1

≤ { 1 ≤ B }
−2 + asN−1

< { asN−1 ∈ {0, 1} }
0

Applying h < 0, we derive for f · ( 2∗0 + asN−1 ) the solution as follows:

f ·( 2 ∗ ( 0 ) + asN−1 )
= { h < 0 }
〈 2∗q − 1 , h+B 〉

= { q = 1 } { h = 2∗(−B) + asN−1 } { algebra }
〈 1 , −B + asN−1 〉

And for the second case, if asN = 1:

f ·( 2 ∗ (−1 ) + asN−1 )

We use declaration 20, with a = −1 and b = asN−1. To find 〈 q , r 〉 we use declaration 20 for
f · (−1), hence 〈 q , r 〉 = 〈 −1 , B − 1 〉. Now, for h we derive:
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h

= { h = 2∗r + b }
2∗(B − 1) + asN−1

≥ { 1 ≤ B }
asN−1

≥ { asN−1 ∈ {0, 1} }
0

Applying 0 ≤ h, we derive for f · ( 2∗(−1) + asN−1 ) the solution as follows:

f ·( 2 ∗ (−1 ) + asN−1 )
= { 0 ≤ h }
〈 2∗q + 1 , h−B 〉

= { q = −1 } { h = 2∗(B − 1) + asN−1 } { algebra }
〈 −1 , B − 2 + asN−1 〉

Both solutions combined we obtain:

g1·(N−1) = 〈 1 , −B + asN−1 〉 , if asN = 0
g1·(N−1) = 〈 −1 , B − 2 + asN−1 〉 , if asN = 1

* * *

For the recursive case, we derive for 0 ≤ n < N−1:

g1·n
= { specification 21: g1 }

f ·( tc·( as bn ) )
= { property 7 }

f ·( tc·( asn . as b (n+1) ) )
= { declaration 9: tc }

f ·( 2 ∗ tc·( as b (n+1) ) + asn )
= { specification 19: f }

if h < 0 → 〈 2 ∗ q − 1 , h + B 〉
[] h ≥ 0 → 〈 2 ∗ q + 1 , h−B 〉
fi whr h = 2 ∗ r + asn
fi & 〈 q , r 〉 = f ·( tc·( as b (n+1) ) )
fi end
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From specification of g1, we rewrite f ·( tc·( as b (n+1) ) ) to g1·(n+1). Together with the
result for the case n = N−1, we obtain the following declarations for the function g1:

Declaration 22:

g1·(N−1) = if asN = 1 → 〈 −1 , B − 2 + asN−1 〉
= [] asN = 0 → 〈 −1 , −B + asN−1 〉
= fi

g1·n = if h < 0 → 〈 2 ∗ q − 1 , h+B 〉
= [] h ≥ 0 → 〈 2 ∗ q + 1 , h−B 〉
= fi whr h = 2 ∗ r + asn
= fi & 〈 q , r 〉 = g1·(n+1)
= fi end

4.2 From integer to binary (part 2)

We have derived a function that computes A div B and A mod B, where A is represented as a
binary list. Here we present function g2, which represents B, the quotient and the remainder
in the declaration of g1 as binary lists.

The remainder r in the declaration of g1 satisfies −2N ≤ r < 2N , hence, we specify the length
of rs, the binary list representing r, to be N+1; thus rs is in two’s complement representation.
The quotient q in the base case of g1 is -1 or 1, which is represented by two bits in two’s
complement representation. In the recursive case, where n < N−1, the quotient is divided
by 2 with each increase of n; in binary this is achieved with a bitshift. As a result, we specify
the length of the binary list representing q to be N−n+ 1.

Now the function g2 : Int → 〈 L2 , L2 〉 is specified by:

Specification 23: for 0 ≤ n ≤ N , a given list bs: v2 · bs = B ∧ #bs = N and a given list
as with #as = N + 1:

g2·n = 〈 qs , rs 〉 whr qs, rs : 〈 tc·qs , tc·rs 〉 = g1·n
= ∧ #qs = N−n+ 1 ∧ #rs = N
= end

Following specification 23 we formulate the quotient and the remainder of declaration 22 for
the case n = N − 1 in binary. The quotient q is −1 or 1. In two’s complement representation
with length N − n+ 1 = 2, this is represented by ( 1 . [ 1 ] ) and ( 1 . [ 0 ] ) respectively.

For the remainder we formulate the values B − 2 + asN−1 and −B + asN−1 in two’s comple-
ment represenation with length N+1. We introduce for these values, respectively, the lists
bmin2plusas and minbplusas, as defined by:

B − 2 + asN−1 = tc · bmin2plusas ∧ #bmin2plusas = N + 1
−B + asN−1 = tc ·minbplusas ∧ #minbplusas = N + 1
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* * *

The operations on the quotient in the recursive definition of g1 are 2∗q + 1 and 2∗q − 1. The
latter expression does not match the definition of tc. However, we observe that the result of
both expressions are odd. Every odd number q can be written as 2 ∗ q1 + 1, with q1 ∈ Z.
Substituting this into the expression 2 ∗ q + 1, we derive the following:

2 ∗ q + 1
= { substitute q = 2 ∗ q1 + 1 }

2 ∗ ( 2 ∗ q1 + 1 ) + 1
= { introduce q1s: the two’s complement representation of q1 }

2 ∗ ( 2 ∗ tc·q1s + 1 ) + 1
= { definition 9: tc (×2) }

tc·( 1 . 1 . q1s )

and, for the expression 2 ∗ q − 1:

2 ∗ q − 1
= { substitute q = 2 ∗ q1 + 1 }

2 ∗ ( 2 ∗ q1 + 1 ) − 1
= { algebra }

2 ∗ ( 2 ∗ q1 ) + 1
= { definition q1s: the two’s complement representation of q1 }

2 ∗ ( 2 ∗ tc·q1s ) + 1
= { definition 9: tc (×2) }

tc·( 1 . 0 . q1s )

Now we express q in the recursive call of declaration 22 in terms of q1s as follows:

q

= { qs is the two’s complement representation of q }
tc · qs

= { q = 2 ∗ q1 + 1 }
2 ∗ tc·q1s+ 1

= { definition 9: tc }
tc·( 1 . q1s )

All expressions for the quotient in the base case and in the recursive case are in the form
tc · ( 1 . . . . ); thus, 1 . q1s is a viable expression for q in the recursive call.

For the remainder and the guard, we derive hs, the two’s complement representation of h, as



24 CHAPTER 4. NON-RESTORING DIVISION

follows:

tc·hs
= { h = 2 ∗ r + asn }

2 ∗ tc·rs+ asn

= { declaration 9: tc }
tc·(asn . rs)

Now hs is defined as asn . rs.

To verify whether the guard h < 0 is satisfied, one could check the value of the sign bit of
hs, namely hsN+1. But, because hs is defined as asn . rs, the sign bits of rs and hs have the
same value. So, instead of checking bit hsN+1, we check rsN .

For h+B and h−B in the remainder we introduce two lists, hplusb and hminb , respectively.
If −2∗B ≤ h < 0, the remainder is equal to h + B. Now the length of hplusb is derived as
follows:

−2 ∗B ≤ h < 0
= { algebra }

−B ≤ h+B < B

= { tc · hplusb is equal to h + B }
−B ≤ tc · hplusb < B

⇒ { B < 2N }
−2N ≤ tc · hplusb < 2N

The minimal length of hplusb is N + 1, and following a similar proof, the minimal length of
hminb is also N + 1. Now we define hplusb and hminb by:

h+B = tc · hplusb ∧ #hplusb = N + 1
h−B = tc · hminb ∧ #hminb = N + 1

The list hplusb is the result of the sum of two lists, namely hs with length N+2 and bs with
length N . Then the last bit of the list is removed. However, we first remove the last bit of
hs and then add list bs instead, as it gives the same result. Similar for the list hminb , we
first remove the last bit of hs before bs is subtracted.

Because we first remove the last bit of hs before using it in the remainder, we do not use the
last bit of hs at all. Hence, we redefine hs as asn . ( rs dN ).

Now, by combining the guards, quotients and remainders, we obtain the following declaration
for g2:
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Declaration 24:

g2 · (N−1) = if asN = 1 → 〈 1 . [ 1 ] , bmin2plusas 〉
= [] asN = 0 → 〈 1 . [ 0 ] , minbplusas 〉
= fi

g2 · n = if rsN = 1 → 〈 1 . 0 . qs , hplusb 〉
= [] rsN = 0 → 〈 1 . 1 . qs , hminb 〉
= fi whr hs = asn . ( rs dN )
= fi & 〈 1 . qs , rs 〉 = g2·(n+1)
= fi end

4.3 Post-processing step
The remainder r satisfies −B ≤ r < B. To implement the div and mod operators, the
remainder in the end should be non-negative. Therefore, we add a post-processing step to
add value B to the remainder if this remainder is negative. We introduce list rplusb defined
by:

tc·rs+ v2·bs = tc · rplusb ∧ #rplusb = N + 1

When we increase the remainder with B, the quotient decreases by one. A decrease of a list
(1 . s) results in a list (0 . s), because tc · (1 . s) = tc · (0 . s) + 1. The function post is now
declared as follows:

Declaration 25:

post · 〈 1 . qs , rs 〉 = if rsN = 1 → 〈 0 . qs , rplusb 〉
= [] rsN = 0 → 〈 1 . qs , rs 〉
= fi
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4.4 Verilog implementation
From declaration 24 and declaration 25, we construct the following Verilog program:

////////////////////////////////////////////////////////////////////////
//
// created by: Wouter de Koning
//
// This Verilog program implements g2; the non-restoring division
//
// as, bs, rs and qs are in two’s complement representation (N + 1 bits)
//
////////////////////////////////////////////////////////////////////////

module DivModNonRestoring(as, bs, qs, rs);
parameter N = 17;

input [N:0] as;
input [N:0] bs;

output [N:0] qs;
output [N:0] rs;

wire [N:0] rss[N-1:0]; // rss[n] is the result of rs in g2 n
wire [N:0] hss[N-1:0]; // hss[n] is the result of hs in g2 n

// -- Post-processing step
assign qs[0] = !rss[0][N];
assign rs = rss[0][N] ? rss[0][N:0] + bs : rss[0][N:0];

// -- The case g2 (N-1)
assign qs[N] = as[N];
assign rss[N-1] = as[N] ? bs - 2 + as[N-1] : -bs + as[N-1];

// -- The case g2 n for 0 = n < N - 1
genvar n;

generate
for (n=0; n<N-1; n=n+1)
begin: NonRestDivMod

assign hss[n] = {rss[n+1][N-1:0],as[n]};
assign rss[n] = rss[n+1][N] ? hss[n] + bs : hss[n] - bs;
assign qs[n+1] = !rss[n+1][N];

end
endgenerate

endmodule
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Radix-4 Division

In Chapter 3 we have derived an algorithm, called restoring division, for computing A div B
and A mod B in the binary number system. Essentially the same algorithm can be formulated
in any number system. In this chapter we present a version of this algorithm for radix 4.

The advantage of using radix 4—or radix 2k, for any natural number k—is that the digits
0,1,2,3 can be represented in binary, by groups of two bits—or groups of k bits, in the general
case. As a result we obtain an algorithm that processes 2 bits of A at a time, instead of
one bit at a time for the binary version of the algorithm. Thus, the algorithm will require
roughly half the amount of steps compared to the binary; every step, however, will be more
complicated, but nevertheless the algorithm may be expected to be faster.

Similar to the restoring division, we derive a function f : Int → 〈 Int , Int 〉 that computes the
quotient, A div B, and the remainder, A mod B, specified by:

Specification 26: for a given constant B: 1 ≤ B < 2N and variable a: −2N ≤ a < 2N :

f ·a = 〈 q , r 〉 whr q, r : a = q ∗B + r ∧ 0 ≤ r < B end

Now f ·A gives the solution to the quotient and the remainder.

We distinguish four base cases for f ; we choose as arguments −2,−1, 0 and 1, which are the
different values of a 2 bit group in the two’s complement representation. We have already
derived the declarations for the case f · 0 and f · (−1) in Chapter 3:

f ·0 = 〈 0 , 0 〉
f ·(−1) = 〈 −1 , B − 1 〉

For the case f · 1 we derive:

f ·1
= { specification 13: f }

27
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〈 q , r 〉 whr q, r : 1 = q ∗B + r ∧ 0 ≤ r < B end
= { if B = 1, the only solution is q = 1 and r = 0, otherwise q = 0 and r = 1 }

if 1 = B → 〈 1 , 0 〉
[] 2 ≤ B → 〈 0 , 1 〉
fi

and,

f ·(−2 )
= { specification 13: f }
〈 q , r 〉 whr q, r : −2 = q ∗B + r ∧ 0 ≤ r < B end

= { if B = 1, the only solution is q = −2 and r = 0, otherwise q = −1 and r = B − 2 }
if 1 = B → 〈 −2 , 0 〉
[] 2 ≤ B → 〈 −1 , B − 2 〉
fi

* * *

For the recursive case we assume that q and r satisfy: a = q ∗B + r and 0 ≤ r < B. Now we
derive a declaration for the case 4 ∗ a + d, for all integers a and digits d, with 0 ≤ d < 4:

4 ∗ a + d

= { assumption }
4 ∗ ( q∗B + r ) + d

= { algebra }
( 4∗q ) ∗B + ( 4 ∗ r + d )

= { introduce h = 4 ∗ r + d }
( 4∗q ) ∗B + h

= { algebra; introduce integer x }
( 4∗q + x ) ∗B + h− x∗B

For any integer x, the pair 〈 4∗q + x , h − x∗B 〉 is a solution for f ·(4∗a + d), provided
0 ≤ h− x∗B < B. Now, from 0 ≤ r < B we derive the range of h:

0 ≤ r < B

≡ { algebra }
0 ≤ r ∧ r ≤ B − 1

≡ { algebra }
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0 ≤ 4 ∗ r ∧ 4 ∗ r ≤ 4∗B − 4
⇒ { 0 ≤ d } { d ≤ 3 }

0 ≤ 4∗r + d ∧ 4∗r + d ≤ 4∗B − 1
≡ { algebra }

0 ≤ 4∗r + d < 4∗B
≡ { definition h }

0 ≤ h < 4 ∗B

We conclude that 0 ≤ h < 4 ∗B holds. This proposition is split in the following four cases:

0 ≤ h < B , B ≤ h < 2∗B , 2∗B ≤ h < 3∗B , and 3∗B ≤ h < 4∗B

Each of these cases can be denoted in the form: 0 ≤ h− x∗B < B, for x ∈ {0, 1, 2, 3}. Thus,
each of these cases yields a solution for f · (4∗a+ d). Combining these cases, we obtain:

if 0 ≤ h− 0∗B < B → 〈 4∗q + 0 , h− 0∗B 〉
[] 0 ≤ h− 1∗B < B → 〈 4∗q + 1 , h− 1∗B 〉
[] 0 ≤ h− 2∗B < B → 〈 4∗q + 2 , h− 2∗B 〉
[] 0 ≤ h− 3∗B < B → 〈 4∗q + 3 , h− 3∗B 〉
fi

Now we obtain the following declarations for function f , which computes the quotient and
remainder for a given integer A and a divisor B.

Declaration 27:

f ·(−2 ) = if 1 = B → 〈 −2 , 0 〉
= [] 2 ≤ B → 〈 −1 , B − 2 〉
= fi

& f ·(−1 ) = 〈 −1 , B − 1 〉
& f ·0 = 〈 0 , 0 〉
& f ·1 = if 1 = B → 〈 1 , 0 〉

= [] 2 ≤ B → 〈 0 , 1 〉
= fi

& f ·( 4∗a+ d ) = if 0 ≤ h < B → 〈 4 ∗ q , h 〉
= [] 0 ≤ h−B < B → 〈 4∗q + 1 , h−B 〉
= [] 0 ≤ h− 2∗B < B → 〈 4∗q + 2 , h− 2∗B 〉
= [] 0 ≤ h− 3∗B < B → 〈 4∗q + 3 , h− 3∗B 〉
= fi whr h = 4∗r + d
= fi & 〈 q , r 〉 = f ·a
= fi end
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5.1 From integer to binary (part 1)
We have derived a function f that computes the quotient and the remainder. In this section
we implement function f that computes A div B and A mod B in the binary system.

First we represent the value A in binary, as, with length N+1, provided −2N ≤ A < 2N . We
assume N is odd, hence #as is even. Now we introduce a new function, g1, which computes
for a natural number n, 2∗n < N+1, the quotient and the remainder for the value of as
without the least significant 2 ∗ n bits.

The function g1 : Int → 〈 Int , Int 〉 is specified by:

Specification 28: for 0 ≤ 2 ∗ n < N+1, a given constant B: 1 ≤ B < 2N and a given list
as with #as = N + 1:

g1·n = f ·( tc·( as b (2 ∗n) ) )

For f ·A we derive:

f ·A
= { A = tc·as }

f ·( tc·as )
= { definition 3: b }

f ·( tc·as b 0 )
= { specification 28: g1 }

g1·0

So, g1·0 implements f ·A.

Now, from specification 28, we derive the declaration for g1. For the base case n = M , where
M is the maximal value of n—hence, M = (N−1) div 2—we derive:

g1 ·M
= { specification 28: g1 }

f ·( tc·( as b (2∗M) ) )
= { (N−1) is even, hence 2 ∗M = N−1 }

f ·( tc·( as b (N−1) ) )
= { property 7: b (×2) }

f ·( tc·( asN−1 . asN . as b (N+1) ) )
= { #as = N+1; property 6 }
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f ·( tc·( asN−1 . asN . [ ] ) )
= { definition 0: . }

f ·( tc·( asN−1 . [ asN ] ) )
= { declaration 9: tc (×2) }

f ·( asN−1 − 2∗asN )
= { declaration 27: f } { (asN−1 − 2∗asN ) ∈ {−2,−1, 0, 1} }

if asN−1 = 0 ∧ asN = 0 → 〈 0 , 0 〉
[] asN−1 = 1 ∧ asN = 0 → if 1 = B → 〈 1 , 0 〉
[] asN−1 = 0 ∧ asN = 1 → [] 2 ≤ B → 〈 0 , 1 〉
[] asN−1 = 0 ∧ asN = 1 → fi
[] asN−1 = 0 ∧ asN = 1 → if 1 = B → 〈 −2 , 0 〉
[] asN−1 = 0 ∧ asN = 1 → [] 2 ≤ B → 〈 −1 , B−2 〉
[] asN−1 = 0 ∧ asN = 1 → fi
[] asN−1 = 1 ∧ asN = 1 → 〈 −1 , B−1 〉
fi

and, for the case 0 ≤ n < M :

g1·n
= { specification 28: g1 }

f ·( tc·( as b (2∗n) ) )
= { property 7 (×2) }

f ·( tc·( as2∗n . as2∗n+1 . as b (2∗n+ 2) ) )
= { declaration 9: tc (×2) }

f ·( 4 ∗ tc·as b (2 ∗n+ 2) + 2 ∗ as2∗n+1 + as2∗n )
= { specification 26: f , with h = as2∗n + 2 ∗ as2∗n+1 + 4 ∗ r }

if 0 ≤ h < B → 〈 4 ∗ q , h 〉
[] 0 ≤ h−B < B → 〈 4 ∗ q + 1 , h−B 〉
[] 0 ≤ h− 2 ∗B < B → 〈 4 ∗ q + 2 , h− 2 ∗B 〉
[] 0 ≤ h− 3 ∗B < B → 〈 4 ∗ q + 3 , h− 3 ∗B 〉
fi whr 〈 q , r 〉 = f ·( tc·( as b (2 ∗n+ 2) ) ) end

From specification of g1, we rewrite f · ( tc · ( as b (2∗n+ 2) ) ) to g1 · (n+1). Together with
the result for the case n = M , we obtain the following declarations for function g1, with
0 ≤ n < M :



32 CHAPTER 5. RADIX-4 DIVISION

Declaration 29:

g1·M = if asN−1 = 0 ∧ asN = 0 → 〈 0 , 0 〉
= [] asN−1 = 1 ∧ asN = 0 → if 1 = B → 〈 1 , 0 〉
= [] asN−1 = 1 ∧ asN = 0 → [] 2 ≤ B → 〈 0 , 1 〉
= [] asN−1 = 1 ∧ asN = 0 → fi
= [] asN−1 = 0 ∧ asN = 1 → if 1 = B → 〈 −2 , 0 〉
= [] asN−1 = 0 ∧ asN = 1 → [] 2 ≤ B → 〈 −1 , B−2 〉
= [] asN−1 = 0 ∧ asN = 1 → fi
= [] asN−1 = 1 ∧ asN = 1 → 〈 −1 , B−1 〉
= fi

& g1·n = if 0 ≤ h < B → 〈 4 ∗ q , h 〉
= [] 0 ≤ h−B < B → 〈 4 ∗ q + 1 , h−B 〉
= [] 0 ≤ h− 2 ∗B < B → 〈 4 ∗ q + 2 , h− 2 ∗B 〉
= [] 0 ≤ h− 3 ∗B < B → 〈 4 ∗ q + 3 , h− 3 ∗B 〉
= fi whr h = as2∗n + 2 ∗ as2∗n+1 + 4 ∗ r
= fi & 〈 q , r 〉 = g1·(n+1)
= fi end

5.2 From integer to binary (part 2)

We have derived a function that computes A div B and A mod B, where A is represented as a
binary list. Here we present function g2, which represents B, the quotient and the remainder
in the declaration of g1 as binary lists.

The remainder r in the declaration of g1 satisfies: 0 ≤ r < 2N , hence, we specify the length of
rs, the binary list representing r, to be N ; thus rs is in binary representation. The quotient
q in the base case of g1 is one of the digits −2,−1, 0, 1, which can be represented by two bits
in two’s complement representation. In the case where n 6= M , the quotient q is divided by 4
with each increase of n; in binary this is achieved with a bitshift of 2 to the left. As a result,
we specify the length of the binary list representing q to be (M−n) ∗ 2 + 2.

Now the function g2 : Int → 〈 L2 , L2 〉 is specified by:

Specification 30: for 0 ≤ n ≤ M , where M = (N−1) div 2, a given list bs: v2 · bs = B
∧ #bs = N and a given list as with #as = N + 1:

g2·n = 〈 qs , rs 〉 whr qs, rs : 〈 tc·qs , v2·rs 〉 = g1·n
= ∧ #qs = 2 + (M−n) ∗ 2 ∧ #rs = N
= end

Following specification 30 we first formulate the quotient and the remainder of declaration 29
for the case n = M in binary. The quotient q is one of the integers −2,−1, 0, 1. The length
of the quotient in two’s complement representation, qs, is 2 + (M−n) ∗ 2 = 2. By using the
declaration of tc twice (declaration 9) we get the following equations:
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0 = tc·[ 00 ]
1 = tc·[ 10 ]
−2 = tc·[ 01 ]
−1 = tc·[ 11 ]

For the remainder, we formulate the values 0, 1, B−1 and B−2 in binary representation
with length N . We introduce for these values, respectively, the lists zero , one , bs1 and
bs2. The value B−2 could be negative, therefore, we use in this case the two’s complement
representation instead of the binary representation. These lists are defined as follows:

0 = v2 · zero ∧ #zero = N
1 = v2 · one ∧ #one = N
B−1 = v2 · bs1 ∧ #bs1 = N
B−2 = tc · bs2 ∧ #bs2 = N+1

If 0 ≤ B−2, which is true for B−2 in the remainder, then bs2 can be expressed in binary
representation with length N . Hence, we use sign truncation (property 12), such that the
length of the remainder is N .

The list bs2 is also useful for rewriting the guards. Whether a list in two’s complement
representation is negative or non-negative, can be verified by the value of the sign bit. This
is used for verifying whether a guard holds. The guard 1 = B is rewritten as follows:

1 = B

≡ { 1 ≤ B }
B ≤ 1

≡ { algebra }
B − 2 < 0

≡ { B−2 = tc · bs2 }
tc·bs2 < 0

≡ { sign bit of bs2 is on position N }
bs2N = 1

As a result, the other guard 2 ≤ B is rewritten to bsN = 0.

* * *

We formulated the remainder, quotient and the guards for the case n = M in binary. Now,
for the recursive case 0 ≤ n < M , we formulate first the quotient in two’s complement
representation. The quotient (declaration 29) is of the form 4∗q + x, where x ∈ {0, 1, 2, 3};
consequently, it is rewritten in the two’s complement representation as follows:
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4 ∗ q + x

= { q = tc·qs }
4 ∗ tc·qs + x

= { declaration 9: tc (×2) }
if x = 0 → tc·(0 . 0 . qs)
[] x = 1 → tc·(1 . 0 . qs)
[] x = 2 → tc·(0 . 1 . qs)
[] x = 3 → tc·(1 . 1 . qs)
fi

For the remainder, we derive hs, the binary representation of h, as follows:

h

= { definition h }
as2∗n + 2 ∗ as2∗n+1 + 4 ∗ r

= { r = v2·rs }
as2∗n + 2 ∗ as2∗n+1 + 4 ∗ v2·rs

= { declaration 8: v2 (×2) }
v2·(as2∗n . as2∗n+1 . rs)

Now hs is defined as as2∗n . as2∗n+1 . rs.

With bs and hs we introduce the lists h0b, h1b, h2b and h3b in two’s complement representation
with length N + 3. These lists are useful to express the remainders and the guards:

tc·h0b = v2·hs
tc·h1b = v2·hs − v2·bs
tc·h2b = v2·hs − 2 ∗ v2·bs
tc·h3b = v2·hs − 3 ∗ v2·bs

The four guards in the recursive part of declaration 29 are rewritten as follows:

( 0 ≤ h < B ) ∨
( 0 ≤ h−B < B ) ∨
( 0 ≤ h− 2 ∗B < B ) ∨
( 0 ≤ h− 3 ∗B < B )

≡ { algebra } { 0 ≤ h < 4 ∗B }
( h−B < 0 ) ∨
( 0 ≤ h−B ∧ h− 2 ∗B < 0 ) ∨
( 0 ≤ h− 2 ∗B ∧ h− 3 ∗B < 0 ) ∨
( 0 ≤ h− 3 ∗B )

≡ { h = v2·hs and B = v2·bs } { definition h0b, h1b, h2b and h3b }
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( tc·h1b < 0 ) ∨
( 0 ≤ tc·h1b ∧ tc·h2b < 0 ) ∨
( 0 ≤ tc·h2b ∧ tc·h3b < 0 ) ∨
( 0 ≤ tc·h3b )

≡ { the sign bit of each list is on position N+2 }
( h1bN+2 = 1 ) ∨
( h1bN+2 = 0 ∧ h2bN+2 = 1 ) ∨
( h2bN+2 = 0 ∧ h3bN+2 = 1 ) ∨
( h3bN+2 = 0 )

The guards in declaration 29 for 0 ≤ n < M provide 0 ≤ r < B, hence 0 ≤ r < 2N . As a
result, the remainder rs can be expressed in N bits. Hence, we use sign truncation (property
12), such that #rs = N .

By combining the guards, quotients and remainders, we obtain the following declaration for
g2:

Declaration 31:

g2·M = if asN−1 = 0 ∧ asN = 0 → 〈 [ 00 ] , zero 〉
= [] asN−1 = 1 ∧ asN = 0 → if bs2N = 1 → 〈 [ 10 ] , zero 〉
= [] asN−1 = 1 ∧ asN = 0 → [] bs2N = 0 → 〈 [ 00 ] , one 〉
= [] asN−1 = 1 ∧ asN = 0 → fi
= [] asN−1 = 0 ∧ asN = 1 → if bs2N = 1 → 〈 [ 01 ] , zero 〉
= [] asN−1 = 0 ∧ asN = 1 → [] bs2N = 0 → 〈 [ 11 ] , bs2 dN 〉
= [] asN−1 = 0 ∧ asN = 1 → fi
= [] asN−1 = 1 ∧ asN = 1 → 〈 [ 11 ] , bs1 〉
= fi

& g2·n = if ( h1bN+2 = 1 ) → 〈 0 . 0 . qs , h0b dN 〉
= [] ( h1bN+2 = 0 ∧ h2bN+2 = 1 ) → 〈 1 . 0 . qs , h1b dN 〉
= [] ( h2bN+2 = 0 ∧ h3bN+2 = 1 ) → 〈 0 . 1 . qs , h2b dN 〉
= [] ( h3bN+2 = 0 ) → 〈 1 . 1 . qs , h3b dN 〉
= fi whr h0b = as2∗n . as2∗n+1 . rs
= fi & h1b = h0b − bs
= fi & h2b = h0b − 2 ∗ bs
= fi & h3b = h0b − 3 ∗ bs
= fi & 〈 qs , rs 〉 = g2·(n+1)
= fi end
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5.3 Verilog implementation

We have derived a function that computes A div B and A mod B in binary. Next we for-
mulate this function in an efficient Verilog program: however, the declaration is still fairly
complex. To resolve this, we express the first and second bit of the quotients independently
as boolean equations, which can be implemented straightforward in Verilog. Moreover, we
simplify the computation for the remainders.

For the case n = M in declaration 31, we create the following truth table:

bs2N asN−1 asN qsN−1 qsN rs

0 0 0 0 0 zero
1 0 0 0 0 zero
0 1 0 0 0 one
1 1 0 1 0 zero
0 0 1 1 1 bs2 dN
1 0 1 0 1 zero
0 1 1 1 1 bs1
1 1 1 1 1 zero

Table 5.1: truth table for g2 with n = M

If the value of a bit b is 1, we write b, otherwise, we write ! b. From the truth table shown in
Table 5.1, we obtain the following equations:

Equations 0:

qsN = asN
qsN−1 = (asN−1 ∧ bs2N ) ∨ (asN ∧ ! bs2N )
rs = if bs2N → zero

= [] ! bs2N → if asN−1 ∧ asN → bs1
= [] ! asN−1 ∧ asN → bs2 dN
= [] asN−1 ∧ ! asN → one
= [] ! asN−1 ∧ ! asN → zero
= fi
= fi

And, for the case 0 ≤ n < M , we create the following truth table where the non-valid
combinations of booleans are omitted:

h1bN+1 h2bN+1 h3bN+1 qs2∗n qs2∗n+1 rs

0 0 0 1 1 h3b dN
0 0 1 0 1 h2b dN
0 1 1 1 0 h1b dN
1 1 1 0 0 h0b dN

Table 5.2: truth table for g2 with 0 ≤ n < M
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We obtain from the table the following equations, where N2 = N + 2:

Equations 1:

qs2∗n+1 = !h2bN2
qs2∗n = ( !h3bN2 ∨ h2bN2) ∧ !h1bN2
rs = if h2bN2 ∧ h1bN2 → h0b dN

= [] h2bN2 ∧ !h1bN2 → h1b dN
= [] !h2bN2 ∧ h3bN2 → h2b dN
= [] !h2bN2 ∧ !h3bN2 → h3b dN
= fi

* * *

Now from declarations 31 and equations 0 and 1 we construct the following Verilog program:

////////////////////////////////////////////////////////////////////////
//
// created by: Wouter de Koning
//
// This Verilog program implements g2; the radix-4 division
//
// as, bs, rs and qs are in two’s complement representation (N + 1 bits),
// where N must be odd
//
////////////////////////////////////////////////////////////////////////

module DivModRadix4(as, bs, qs, rs);
parameter N = 17; // must be odd

localparam M = (N-1)/2;
input [N:0] as;
input [N:0] bs;

output [N:0] qs;
output [N:0] rs;

wire [N-1:0] B;
wire [N-1:0] Bs1;
wire [N:0] Bs2;
wire [N:0] Btimes2;
wire [N+1:0] Btimes3;

wire[N-1:0] rss[M:0];
wire[N+2:0] h0b[M-1:0], h1b[M-1:0], h2b[M-1:0], h3b[M-1:0];
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// -- assign constants
assign B = bs[N-1:0];
assign Bs1 = B - 1;
assign Bs2 = B - 2;
assign Btimes2 = { B , {1’b0} };
assign Btimes3 = Btimes2 + B;

assign rs = rss[0];

// -- The case g2 M
assign qs[N] = as[N];
assign qs[N-1] = (as[N] & !Bs2[N]) | (as[N-1] & Bs2[N]);
assign rss[M] = ( (Bs2[N] | (!as[N] & !as[N-1]))

? 0
: ( as[N-1] ? (as[N] ? Bs1 : 1) : Bs2[N-1:0] )
) ;

// -- The case g2 n for 0 <= n < M
genvar n;

generate
for (n=0; n<M; n=n+1)
begin: RadixDivMod

assign h0b[n] = { {1’b0} , rss[n+1] , as[2*n+1:2*n] };
assign h1b[n] = h0b[n] - B;
assign h2b[n] = h0b[n] - Btimes2;
assign h3b[n] = h0b[n] - Btimes3;

assign qs[2*n+1] = !h2b[n][N+2];
assign qs[2*n] = (!h3b[n][N+2] | h2b[n][N+2]) & !h1b[n][N+2];

assign rss[n] = ( h2b[n][N+2]
? ( h1b[n][N+2]

? h0b[n][N-1:0]
: h1b[n][N-1:0]
)

: ( h3b[n][N+2]
? h2b[n][N-1:0]
: h3b[n][N-1:0]
)

) ;
end

endgenerate
endmodule



Chapter 6

Division by Multiplication

In the other chapters we have derived programs for the restoring division, non-restoring divi-
son and radix 4 division, relatively. Another way to divide integers is by using multiplications.
We wish to exploit the Spartan-3 Generation FPGA’s fast dedicated 18 × 18 multipliers for
this. Therefore, we are particularly interested in computing A div B and A mod B, with A
and B in the two’s complement representation with 18 bits (−217 ≤ A < 217 and 1 ≤ B < 217).
We use the following alternative definitions for quotient q and remainder r:

q: A div B =
⌊
A

B

⌋
, if 1 ≤ B

r: A mod B = A − q ∗B, if 1 ≤ B

With the quotient we can compute the remainder with one additional multiplier and sub-
tracter, hence our main focus is to compute the quotient. For the quotient we observe that:

A

B
= A ∗ 1

B

A very fast solution is to create a lookup table with for each possible value of B the value
of 1/B. However, there are 131071 possible values of B. Such a table will be too large to
be practical; the amount of storage on a FPGA is limited. Therefore, we investigate whether
we can use a smaller table. A table with p-bits indices and elements of w bits gives rise to
a table containing 2p × w bits. Our goal now is to find sufficiently small values for p and w,
and still obtain a fast algorithm.

For the algorithm, it suffices to compute an approximation for q, named q1. The remainder
of q1 is defined as: r1 = A − q1∗B. If q1 differs at most 1 from q, it is possible to obtain q
from r1 with only two comparisons as follows:

q−1 ≤ q1 ≤ q+1
≡ { q1 and q are integers }

39
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q1 ∈ { q−1, q, q+1 }
≡ { algebra }

A− q1 ∗B ∈ { r+B, r, r−B } whr r = A − q ∗B end
≡ { definition remainder r; definition remainder r1 }

r1 ∈ { r+B, r, r−B }

Because 0 ≤ r < B, we obtain q and r from q1 and r1 as follows:

r1 q r

r1 < 0 q = q1− 1 r = r1 +B

0 ≤ r1 < B q = q1 r = r1
B ≤ r1 q = q1 + 1 r = r1−B

So, if q1 satisfies q−1 ≤ q1 ≤ q+1, then we consider q1 a good approximation for q. We first
remove A out of this equation, where q = A div B.

For the implementation of q1 we wish to use multipliers, hence we define q1 as bA ∗xc, for
some x still to be chosen. Now we derive boundaries for x:

q − 1 ≤ q1 ≤ q + 1
≡ { definition of q and q1 }⌊

A

B

⌋
− 1 ≤ bA ∗xc ≤

⌊
A

B

⌋
+ 1

≡ { property ’b c’ }⌊
A

B
− 1

⌋
≤ bA ∗xc ≤

⌊
A

B
+ 1

⌋
⇐ { monotonicity of ’b c’ }

A

B
− 1 ≤ A ∗x ≤ A

B
+ 1

We have three cases for A: If A = 0, then the above proposition is always true, independent
of x. For A > 0 the derivation continues as follows:

1
B
− 1
A
≤ x ≤ 1

B
+ 1
A

⇐ { A < 217 }
1
B
− 1

217 ≤ x ≤ 1
B

+ 1
217

And, for A < 0:

A

B
− 1 ≤ A ∗x ≤ A

B
+ 1

≡ { algebra }
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−
(
A

B
− 1

)
≥ −(A ∗x) ≥ −

(
A

B
+ 1

)
≡ { algebra }

−A
B
− 1 ≤ −A ∗x ≤ −A

B
+ 1

≡ { 1 ≤ −A }
1
B

+ 1
A
≤ x ≤ 1

B
− 1
A

⇐ { −217 ≤ A }
1
B
− 1

217 ≤ x ≤ 1
B

+ 1
217

By combining the cases for A = 0, A < 0 and A > 0, we obtain the following boundaries for
x:

(2) 1
B
− 1

217 ≤ x ∧ x ≤ 1
B

+ 1
217

So, the algorithm should compute some value x satisfying the boundaries of equation (2),
before multiplying this value by A. For every applicable B we wish to obtain x by using a
table of size 2p × w. In the table we can only store 1/B for 2p different values of B. So,
we investigate for which subset of all applicable B’s to store 1/B. We observe that when B
is small, the value 1/B is relatively large; a small change in B has a greater effect on value
1/B. On the contrary, when B is large, a small change in B has less effect on 1/B. The
choice for the index of p bits should take this into account. Therefore, we choose as index the
value of the p most significant digits of the binary representation of B. We wish to ignore the
leading zeroes. Consequently, different B’s with different amounts of leading zeroes in the
binary representation could have the same significant digits, while the difference between the
B’s is large. Therefore we use normalization; we shift bs to the right until there are no more
leading zeroes. As a result, the difference between all B’s with the same significant digits is
small after the normalization. In a later stage, we have to remove the amount of added bits
to get the correct result.

To normalize B, we define:

Bk = B ∗ 2k

where 0 ≤ k ≤ 16 and 216 ≤ Bk < 217. This k exists and is unique, because 20 ≤ B < 217.
We define Bk = B ∗ 2k. Because 216 ≤ Bk ≤ 217−1, the last bit—at position 17—of the
binary representation of Bk always is 1. Hence, the binary representation of Bk is a list of
the form: [ b0 b1 . . . b14 b15 1 ]. As index in the table we use bits [ b16−p . . . b14 b15 ]. The
right-most bit always equals 1, hence this bit gives no information: there is no point in using
this constant bit in the index. The value of those p bits is named β and the value of the
remaining 16−p bits is named ε. An example how to obtain β and ε is shown in Figure 6.1.
The values β and ε are defined by:
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Bk = 216 + β ∗ 216−p + ε , with 0 ≤ β < 2p and 0 ≤ ε < 216−p

B = [ 0101 0011 1011 0000 0−−−−→ ]

Bk = [ 0000 0010 10︸ ︷︷ ︸
ε

01 1101︸ ︷︷ ︸
β

1 ]

Figure 6.1: obtaining β and ε for a given B = 3530 and p = 6

Now, we wish that value x only depends on β and k, not on ε. Hence, we introduce a function
f , with β and k as parameters only and choose x = f · β · k. In the next section we derive a
function f , which satisfies:

1
B
− 1

217 ≤ f ·β ·k ∧ f ·β ·k ≤ 1
B

+ 1
217

for all B, that correspondends with these k and β.

The above equation requires 7 ≤ p ≤ 16, see Appendix 9.1. For these values of p, we know a
function f exists that satisfies the above equation. Although the minimal value of p is 7, we
start with p = 8. Using this larger table size an algorithm is produced that is both simpler
and faster. Moreover, the analysis is easier to follow.

6.1 Derivation for p = 8

We have shown that from an approximation, q1, the quotient q can be computed. To calculate
q1, we multiply A by a value computed by function f with arguments β and k, both unique
variables for a given B. It is important that the value given by f is computed as fast as
possible, while it is precise enough to calculate q1.

In function f we use a 2p × w table. Here, we investigate the case where p = 8. Now β and
ε, with 0 ≤ β < 28 and 0 ≤ ε < 28, are defined as follows:

(3) B ∗ 2k = 216 + β ∗ 28 + ε

We derive function f , with arguments β and ε, such that

(4) 1
B
− 1

217 ≤ f ·β ·k ∧ f ·β ·k ≤ 1
B

+ 1
217

is satisfied for all B, that correspondends with these k and β. We derive the smallest value
for f · β · k that is at least the lower bound. Then, we prove the correctness for the upper
boundary. First we eliminate ε as follows:
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1
B
− 1

217 ≤ f ·β ·k

≡ { equation (3) }
2k

216 + 28 ∗β + ε
− 1

217 ≤ f ·β ·k

⇐ { the left-hand side is maximal if ε = 0 }
2k

216 + 28 ∗β
− 1

217 ≤ f ·β ·k

This left-hand side is a candidate for f · β · k. However, we wish to remove the division. We
continue as follows:

2k

216 + 28 ∗β
− 1

217

= { algebra }
2k−8 ∗ 1

28 + β
− 1

217

We use a table, which contains the value of 1
28 + β

as accurately as needed.

0 ≤ β < 28

≡ { algebra }
28 ≤ 28 + β < 29

≡ { algebra }
2−9 <

1
28 + β

≤ 2−8

We choose the value of w to be 16, thus the elements in the table consist of 16 bits.

≡ { algebra }

216 <
225

28 + β
≤ 217

≡ { algebra }

0 <
225

28 + β
− 216 ≤ 216

This value is not necessarily an integer. By rounding down we obtain:

0 ≤ 225 div (28+β) − 216 ≤ 216

These values, except when β = 0, are representable in 16 bits. In the case β = 0, we store
216 − 1 instead and accept the additional error. Now the lookup table of 256× 16 is defined
as follows:
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tab·β = 225 div (28+β)− 216 , for 1 ≤ β < 28

tab·β = 216 − 1 , for β = 0

We use this definition of tab in the derivation of f , as follows:

2k−8 ∗ 1
28 + β

− 1
217

= { algebra }
225

28 + β
− 216−k

233−k

= { algebra }
225

28 + β
− 216 + 216 − 216−k

233−k

≤ { x ≤ bxc + 1 }⌊
225

28 + β

⌋
− 216 + 1 + 216 − 216−k

233−k

≤ { 1 ≤ 216−k }⌊
225

28 + β

⌋
− 216 + 216

233−k

Now we have two cases.

Case 1 ≤ β:

= { definition tab·β with 1 ≤ β }
tab·β + 216

233−k

= { choose f ·β ·k = tab·β + 216

233−k }

f ·β ·k

Case β = 0:

= { β = 0 }⌊
225

28

⌋
− 216 + 216

233−k

= { algebra }
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216 + 216

233−k

= { definition tab · β with β = 0 }
tab·β + 1 + 216

233−k

≥ { remove the +1; additional proof requirement (see below) }
tab·β + 216

233−k

= { choose f ·β ·k = tab·β + 216

233−k }

f ·β ·k

To justify the removal of the + 1, we need to prove for β = 0 that the following inequality
still holds:

2k

216 + 28 ∗β
− 1

217 ≤ f ·β ·k

The proof is in Appendix 9.2.

* * *

We have now derived a function f with a 256 × 16 table, such that 1
B
− 1

217 ≤ f · β · k for

any B. In Appendix 9.4 it is verified that f · β · k ≤ 1
B

+ 1
217 holds for any B. As a result,

we know that q − 1 ≤ bA ∗ f ·β ·kc ≤ q + 1. Hence, we define q1 as follows:

Definition 32:

q1 = bA ∗ f ·β ·kc

= whr f ·β ·k = tab·β + 216

233−k

= & tab·β = 225 div (28 + β) − 216 , for 1 ≤ β < 28

= & tab·β = 216 − 1 , for β = 0

In Section 6.3 we implement this definition as a Verilog program.

6.2 Derivation for p = 7
We have now derived a definition for computing q1 with p = 8. Here, we investigate the case
p = 7. The values β and ε, with 0 ≤ β < 27 and 0 ≤ ε < 29, are defined as follows:

(3) B ∗ 2k = 216 + β ∗ 29 + ε

Similar to Section 6.1, we derive function f , with arguments β and ε, such that:
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(4) 1
B
− 1

217 ≤ f ·β ·k

is satisfied for all B, that correspondends with these k and β. We derive the smallest value
for f · β · k by first eliminating ε as follows:

1
B
− 1

217 ≤ f ·β ·k

≡ { equation (3) }
2k

216 + 29 ∗β + ε
− 1

217 ≤ f ·β ·k

⇐ { the left-hand side is maximal if ε = 0 }
2k

216 + 29 ∗β
− 1

217 ≤ f ·β ·k

This left-hand side is a candidate for f · β · k. However, the left-hand side still contains a
division, that we wish to remove. We continue as follows:

2k

216 + 29 ∗β
− 1

217

= { algebra }
2k−9 ∗ 1

27 + β
− 1

217

We use a table containing the value of 1
27 + β

as accurately as needed.

0 ≤ β < 27

≡ { algebra; we use similar steps of Section 6.1 with w = 13 }

0 <
221

27 + β
− 213 ≤ 213

≡ { rounding down }
0 ≤ 221 div (27+β) − 213 ≤ 213

These values are representable in 13 bits, except for β = 0. In this case we store 213−1 instead
and accept the additional error. Now the lookup table of 128× 13 is defined as follows:

tab·β = 221 div (27+β)− 213 , for 1 ≤ β < 27

tab·β = 213 − 1 , for β = 0

We use this definition of tab in the derivation of f , as follows:
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2k−9 ∗ 1
27 + β

− 1
217

= { algebra }
221

27 + β
− 213−k

230−k

= { algebra }
221

27 + β
− 213 + 213 − 213−k

230−k

≤ { x ≤ bxc + 1 }⌊
221

27 + β

⌋
− 213 + 1 + 213 − 213−k

230−k

Now we have two cases.

Case 1 ≤ β:

= { definition tab·β with 1 ≤ β }
tab·β + 1 + 213 − 213−k

230−k

= { 213−k is not an integer; algebra }
23 ∗ tab·β + 216 + 8 − 216−k

233−k

= { choose f ·β ·k = 23 ∗ tab·β + 216 + 8 − 216−k

233−k }

f ·β ·k

Case β = 0:

= { β = 0 }⌊
221

27

⌋
− 213 + 1 + 213 − 213−k

230−k

= { algebra }
213 + 1 + 213 − 213−k

230−k

≥ { remove the +1; additional proof requirement (see below) }
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213 + 213 − 213−k

230−k

= { definition tab·β with β = 0 }
tab·β + 1 + 213 − 213−k

230−k

= { 213−k is not an integer; algebra }
23 ∗ tab·β + 216 + 8 − 216−k

233−k

= { choose f ·β ·k = 23 ∗ tab·β + 216 + 8 − 216−k

233−k }

f ·β ·k

To justify the removal of the + 1, we need to prove for β = 0 that the following inequality
still holds:

2k

216 + 29 ∗β
− 1

217 ≤ f ·β ·k

The proof is in Appendix 9.2.

* * *

We have now derived a function f with a 128 × 13 table, such that 1
B
− 1

217 ≤ f · β · k for

any B. In Appendix 9.5 it is verified that f · β · k ≤ 1
B

+ 1
217 holds for any B. As a result,

we know that q − 1 ≤ bA ∗ f ·β ·kc ≤ q + 1. Hence, we define q1 as follows:

Definition 33:

q1 = bA ∗ f ·β ·kc

= whr f ·β ·k = 23 ∗ tab·β + 216 + 8− 216−k

233−k

= & tab·β = 221 div (27 + β) − 213 , for 1 ≤ β < 27

= & tab·β = 213 − 1 , for β = 0

In the next section we implement this definition as a Verilog program.
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6.3 Verilog implementation with a larger table
First we implement the version with the 256× 16 table as described in Section 6.1.

To implement q1, we first obtain value β from bs, the binary representing of B. We use the
module normalizeS as developed by R.R. Hoogerwoord (see Appendix 9.6), which returns the
list bk from the input bs. The bits of bk from the second position to the ninth position are
β. We use β as index for the table to retrieve tab · β. The list tab · β contains 16 bits. To
add 216 to the binary representation of this list, we add a 1 as significant bit (property 10).
This is list c in the Verilog program. Next we multiply list c with as, the two’s complement
representation of A, using a 18×18 multiplier. Therefore, the length of c should be 18, which
is obtained by adding a 0 as most-significant bit.

After the multiplication, we still have to divide the result by 233−k and round it down to
obtain q1. This is done by doing a bit shift of 33−k places to the right, where a bit shift of x
bits to the right means, that the least significant x bits are removed from the list and x bits
with value 0 are inserted at the most significant side. Likewise, a bit shift of x bits to the
left means that x bits with value 0 are inserted as the least significant bits; thus, it multiplies
the value of the list by 2x. To perform a bitshift of 33−k, we first shift 33 places to the right
and then, by using the module normalizeS , shift it k places to the left. After the bitshift we
reconstruct q from q1 by calculating the remainder of q1 and compare it to the value B and
0 as mentioned at the start of this chapter.

* * *

We construct the following Verilog program:

////////////////////////////////////////////////////////////////////////
//
// created by: Wouter de Koning
//
// This Verilog program implements the division by multiplication
// using a table with 256 x 16 bits
//
// as, bs, rs and qs are in two’s complement representation (18 bits)
//
// Dependencies: DivTable256x16, NormalizeS
//
////////////////////////////////////////////////////////////////////////

module DivModMultiply256(as, bs, qs, rs) ;
input [17:0] as, bs ;

output [17:0] qs, rs ;

wire [16:0] bk ;
wire [ 7:0] beta ;
wire [15:0] tab ; // value of tab[beta]
wire [17:0] c ; // value of tab[beta] + 2^16
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wire [35:0] amulc ;
wire [17:0] preq1 ; // before shifting k bits to left
wire [33:0] postq1 ; // after shifting k bits to left
wire [35:0] q1mulb ;
wire [17:0] q1 ;
wire [18:0] r1 ;

wire [18:0] aminb ;
wire [18:0] aplsb ;
wire [17:0] q1min1 ;
wire [17:0] q1pls1 ;
wire [18:0] r1minb ;
wire [18:0] r1plsb ;

NormalizeS NormB(bs[16:0],bk,preq1,postq1) ;

assign beta = bk[15:8] ;

// -- DivTable returns the value of tab[beta]
DivTable256x16 Ctab(beta,tab) ;

assign c = {{2’b01},tab} ;

MULT18X18 atimc(amulc,as,c) ;

assign preq1 = amulc[34:17];

// -- postq1 is calculated in NormB
assign q1 = postq1[33:16];

MULT18X18 QtimB(q1mulb,q1,bs);

assign aminb = {{as[17]},{as}} - {{1’b0},{bs}};
assign aplsb = {{as[17]},{as}} - {{1’b0},{bs}};
assign r1 = {{as[17]},{as}} - q1mulb[18:0];
assign r1minb = aminb - q1mulb[18:0];
assign r1plsb = aplsb - q1mulb[18:0];

// -- in the case q1min1 or q1pls1 overflows it is not used in the final step
assign q1min1 = q1 - 1;
assign q1pls1 = q1 + 1;

assign qs = ( r1[18] ? q1min1 : ( r1minb[18] ? q1 : q1pls1 ) ) ;
assign rs = ( r1[18] ? r1plsb[17:0] : ( r1minb[18] ? r1[17:0] : r1minb[17:0] ) ) ;

endmodule
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6.4 Verilog implementation with a smaller table
Now we implement the version with the 128× 13 table as described in Section 6.2.

The program is very similar to the version with the 256 × 16 table. The implementation of
the list c is a bit different. The multiplication by 23 is implemented with 3 zeroes as least-
significant bits. Furthermore, we add the value 8 − 216−k to c, which is implemented in the
module NormalizeX as described in Appendix 9.7.

* * *

We construct the following Verilog program:

////////////////////////////////////////////////////////////////////////
//
// created by: Wouter de Koning
//
// This Verilog program implements the division by multiplication,
// using a table with 128 x 13 bits
//
// as, bs, rs and qs are in two’s complement representation (18 bits)
//
// Dependencies: DivTable128x13, NormalizeX
//
////////////////////////////////////////////////////////////////////////

module DivModMul128(as, bs, qs, rs) ;
input [17:0] as, bs ;

output [17:0] qs, rs ;

wire [16:0] bk ;
wire [ 6:0] beta ;
wire [12:0] tab ; // value of tab[beta]
wire [17:0] c ; // value of tab[beta] + 2^16
wire [35:0] amulc ;
wire [17:0] preq1 ; // before shifting k bits to left
wire [33:0] postq1 ; // after shifting k bits to left
wire [35:0] q1mulb ;
wire [17:0] q1 ;
wire [18:0] r1 ;
wire [17:0] ex ; // value of 8 - 2^(16-k)

wire [18:0] aminb ;
wire [18:0] aplsb ;
wire [17:0] q1min1 ;
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wire [17:0] q1pls1 ;
wire [18:0] r1minb ;
wire [18:0] r1plsb ;

NormalizeX NormB(bs[16:0],bk,preq1,postq1,ex) ;

assign beta = bk[15:9] ;

// -- DivTable returns the value of tab[beta]
DivTable128x13 Ctab(beta,tab) ;

// -- ex is calculated in NormB
assign c = {{2’b01},tab,{3’b000}} + ex ;

MULT18X18 atimc(amulc,as,c) ;

assign preq1 = amulc[34:17];

// -- postq1 is calculated in NormB
assign q1 = postq1[33:16];

MULT18X18 QtimB(q1mulb,q1,bs);

assign aminb = {{as[17]},{as}} - {{1’b0},{bs}};
assign aplsb = {{as[17]},{as}} - {{1’b0},{bs}};
assign r1 = {{as[17]},{as}} - q1mulb[18:0];
assign r1minb = aminb - q1mulb[18:0];
assign r1plsb = aplsb - q1mulb[18:0];

// -- in the case q1min1 or q1pls1 overflows it is not used in the final step
assign q1min1 = q1 - 1;
assign q1pls1 = q1 + 1;

assign qs = ( r1[18] ? q1min1 : ( r1minb[18] ? q1 : q1pls1 ) ) ;
assign rs = ( r1[18] ? r1plsb[17:0] : ( r1minb[18] ? r1[17:0] : r1minb[17:0] ) ) ;

endmodule
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Results and Discussion

In the previous chapters we have derived five circuits: restoring division, non-restoring di-
vision, radix-4 division and two variants of division by multiplication. We have obtained
the performance of these five circuits by compiling them on a Spartan-3 Generation FPGA.
Specifically, we are interested in the propagation delay and area requirement in amount of
LUTs for each circuit. A LUT is a LookUp Table with four inputs and one output, the stan-
dard building block of the Spartan-3 Generation FPGAs. The amount of LUTs used on a
FPGA gives us a good measure for the area requirement. We obtain the propagation delays
and area requirements from the synthesis reports, produced by the Xilinx compiler. The
results are shown in Table 7.1.

Verilog program Maximum delay (in ns) Number of 4 input LUTs
DivModRestoring 88 629
DivModNonRestoring 75 441
DivModRadix4 54 975
DivModMultiply256 32 622
DivModMultiply128 33 538

Table 7.1: propagation delay and area requirement for the Verilog programs

Non-restoring division is faster than restoring division. When we take a closer look at the
synthesis reports of both circuits, the difference in delay can be explained by the fact that
each recursive step of the non-restoring version takes approximately 4.2 ns and the restoring
version approximately 5.1 ns. Hence, the recursive steps of the non-restoring division are
implemented more efficiently than the steps of the restoring division.

Radix-4 division has fewer but more complicated recursive steps than the (non-)restoring
versions. As expected, radix-4 division is a lot faster, but also requires more LUTs. From the
synthesis reports we obtain a propagation delay of approximately 6.2 ns for each recursive
step. The relatively low delay for this complicated step can be explained by the fact that
several computations are executed in parallel.
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The multiplication circuits give better results than the recursive circuits. This is because these
circuits do not need to perform multiple additions/subtractions. The multiplication with the
larger table has a slightly lower delay than the one using the smaller table. The circuit with
the smaller table has one additional adder, which adds more delay than the speed-up gained
by using the smaller table. However, the circuit with the smaller table needs fewer LUTs to
store the actual table.

For the multiplication circuits, we also tried different versions of the normalize module. We
were able to speed-up the normalize module, such that the propagation delay of the multipli-
cation circuit with the larger table decreases with 5%. However, the amount of LUTs increases
with 73%, which is a relatively large increase for a small decrease in delay. Therefore we did
not include these versions for the normalize module in this thesis.



Chapter 8

Conclusion

We have derived five circuits for dividing integers using a calculational approach. The calcu-
lational style of reasoning is a very convenient method to derive algorithms. It is immediately
verified that the algorithms are correct. However, at all times one needs to be careful, mistakes
are easily made. One could derive other algorithms by starting with a different specification
or making different design decisions in the process. For example, if one chooses to use the
specification of the restoring division and formulate the solution for 16 ∗ A + b and B with
0 ≤ b ≤ 15, recursively in terms of A and B, instead of 2∗A + b with 0 ≤ b ≤ 1, one probably
would obtain a radix 16 algorithm.

We only derived algorithms of the classes digit recurrence (subtractive method) and table
based functions as mentioned in the introduction. It is worthwile to derive algorithms from
the functional iteration methods as described in [7]. The functional iteration method utilizes
the multiplication as the fundamental operator, instead of the subtractor. By using this
multiplication, in each recursive step the number of correct quotient bits is doubled, while in
the digit recurrence method the amount of correct quotient bits is increased with a constant.
In theory, this should be faster than the digit recurrence, especially with the fast dedicated
multipliers as provided by the Spartan-3 Generation FPGAs.

From all the algorithms we have derived, the multiplication method is by far the most in-
teresting. The main disadvantage of our multiplication method is that the input and output
lists are fixed to 18 bits. It is interesting to investigate how to extend this method, such that
it works with lists containing more bits and what the effect is on the maximal propagation
delay and area requirement. It could be possible to use a hybrid version of two methods, such
as first using a few recursive steps of radix 4, before using the multiplication method, and
then to combine the results to obtain a division method for more than 18 bits.
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Appendices

9.1 Appendix: Derive range of p

Derive the range of p, such that 1
B1 −

1
217 ≤

1
B2 + 1

217 holds for any β, ε1, ε2 and k

where B1 = ( 216 + 216−p ∗β + ε1 ) ∗ 2−k

& B2 = ( 216 + 216−p ∗β + ε2 ) ∗ 2−k

The following ranges are given for integers k, p, ε1, ε2 and β:

- 0 ≤ k ≤ 16
- p ≤ 16
- 0 ≤ ε1 ≤ εmax < 216−p

- 0 ≤ ε2 ≤ εmax < 216−p

- 0 ≤ β < 2p

First we derive a definition for εmax in terms of p and k. We know from the definition of
B1 and B2 that 2k is a divisor of εmax. As a result, if εmax < 2k, then the only possible
value for εmax is 0. We know from εmax < 216−p, that 16 − p ≤ k is satisfied. Otherwise, if
k < 16− p, then εmax is the largest number smaller than 216−p, which is divisble by 2k, hence
εmax = 216−p − 2k. In summary, we get the following definition for εmax:

εmax = 216−p − 2k , for k < 16−p
εmax = 0 , for 16−p ≤ k

* * *
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We solve the inequality as follows:

1
B1 −

1
217 ≤

1
B2 + 1

217

≡ { algebra }
1
B1 −

1
B2 ≤

1
216

≡ { definition B1 and B2 }
2k

216 + 216−p ∗β + ε1
− 2k

216 + 216−p ∗β + ε2
≤ 1

216

⇐ { choose minimal ε1 and maximal ε2 }
2k

216 + 216−p ∗β
− 2k

216 + 216−p ∗β + εmax
≤ 1

216

≡ { algebra }

2k + 2k ∗ εmax
216 + 216−p ∗β

− 2k ≤ 1 + 2−p ∗β + εmax
216

≡ { algebra } { worst case if β = 0 }
2k ∗ εmax

216 ≤ 1 + εmax
216

≡ { algebra }
2k ∗ εmax − εmax ≤ 216

If 16−p ≤ k, then εmax = 0, hence the proposition holds for any p. If k < 16−p, the proof
continues as follows:

2k ∗ (216−p − 2k) − (216−p − 2k) ≤ 216

⇐ { worst case: k is maximal, hence k = 16−p−1 }
216−p−1 ∗ (216−p − 216−p−1) − (216−p − 216−p−1) ≤ 216

≡ { algebra }
215−p ∗ 215−p − 215−p ≤ 216

This is true if and only if 7 ≤ p. Hence, the total range of possible p values is 7 ≤ p ≤ 16



9.2. APPENDIX: JUSTIFY THE REMOVAL OF THE +1 FOR p = 8 59

9.2 Appendix: Justify the removal of the +1 for p = 8

To prove for β = 0: 2k

216 + 28 ∗β
− 1

217 ≤ f · β · k

where f ·β ·k = tab·β + 216

233−k

and tab · 0 = 216 − 1

The range for integer k is:

- 0 ≤ k ≤ 16

* * *

First we simplify the proposition as follows:

2k

216 + 28 ∗ 0 −
1

217 ≤ f ·0·k

≡ { algebra }
2k

216 −
1

217 ≤ f ·0·k

The function f is rewritten as:

f · 0 · k
= { definition f }

tab · 0 + 216

233−k

= { definition tab }
216 − 1 + 216

233−k

= { algebra }
2k

216 −
1

233−k

≤ { 0 ≤ k ≤ 16 }
2k

216 −
1

217

Hence, the proposition holds.
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9.3 Appendix: Justify the removal of the +1 for p = 7

To prove for β = 0: 2k

216 + 29 ∗β
− 1

217 ≤ f · β · k

where f ·β ·k = 23 ∗ tab·β + 216 + 8 − 216−k

233−k
and tab · 0 = 213 − 1

* * *

First we simplify the proposition as follows:

2k

216 + 29 ∗ 0 −
1

217 ≤ f ·0·k

≡ { algebra }
2k

216 −
1

217 ≤ f ·0·k

The function f is rewritten as:

f · 0 · k
= { definition f }

23 ∗ tab · 0 + 216 + 8 − 216−k

233−k

= { algebra }
tab · 0 + 213 + 1 − 213−k

230−k

= { definition tab }
213 − 1 + 213 + 1 − 213−k

230−k

= { algebra }
2k

216 −
1

217

Hence, the proposition holds.
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9.4 Appendix: The upper boundary for f ·β ·k, if p = 8

To prove: f ·β ·k ≤ 1
B

+ 1
217

where f ·β ·k = tab·β + 216

233−k

The following ranges are given for integers B, k, ε and β:

- 1 ≤ B < 217

- 0 ≤ k ≤ 16
- 0 ≤ ε ≤ εmax < 28

- 0 ≤ β < 28

We use the following definitions:

B = ( 216 + 28 ∗β + ε ) ∗ 2−k

tab[β] = 225 div (28 + β) − 216 , for 1 ≤ β
tab[β] = 216 − 1 , for β = 0
εmax = 28 − 2k , for k ≤ 7
εmax = 0 , for 8 ≤ k

* * *

To prove the inequality, we first rewrite it to a proposition, where the outcome only depends
on the variables β and k. Then we prove that the proposition holds for β = 0 and any k,
followed by a proof for 1 ≤ β and any k. The proof starts as follows:

f ·β ·k ≤ 1
B

+ 1
217

≡ { definition f and definition B }
tab·β + 216

233−k ≤ 2k

216 + 28 ∗β + ε
+ 1

217

≡ { algebra }

tab·β + 216 ≤ 233

216 + 28 ∗β + ε
+ 216−k

⇐ { worst case if ε = εmax }

tab·β + 216 ≤ 233

216 + 28 ∗β + εmax
+ 216−k
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Proof for β = 0:

tab · 0 + 216 ≤ 233

216 + 28 ∗ 0 + εmax
+ 216−k

≡ { definition tab for β = 0; algebra }

217 − 1 ≤ 233

216 + εmax
+ 216−k

If 8 ≤ k, then εmax = 0 and because −1 ≤ 216−k the proposition holds. If k ≤ 7, the proof
continues as follows:

≡ { algebra }
233 + 217 ∗ εmax − 216 − εmax ≤ 233 + 232−k + 216−k ∗ εmax

⇐ { algebra; 0 ≤ 216−k ∗ εmax }
217 ∗ εmax − 216 − εmax ≤ 232−k

Because εmax < 28 and k ≤ 7, the proposition holds.

* * *

Proof for 1 ≤ β:

tab·β + 216 ≤ 233

216 + 28 ∗β + εmax
+ 216−k

The left-hand side of the inequality can be rewritten as follows:

tab·β + 216

= { definition tab for 1 ≤ β }
225 div (28 + β) − 216 + 216

= { algebra }
225 div (28 + β)

≤ { x div y ≤ x/y }
225

28 + β

= { algebra }
233

216 + 28 ∗β

Now the inequality is proven as follows:
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tab·β + 216 ≤ 233

216 + 28 ∗β + εmax
+ 216−k

⇐ { rewrite left-hand side }
233

216 + 28 ∗β
≤ 233

216 + 28 ∗β + εmax
+ 216−k

If 8 ≤ k, then εmax = 0 and because 0 ≤ 216−k the proposition holds. If k ≤ 7, the proof
continues as follows:

233

216 + 28 ∗β
≤ 233

216 + 28 ∗β + εmax
+ 216−k

≡ { multiply by 216 + 28 ∗β + εmax }

233 + 233 ∗ εmax
216 + 28 ∗β

≤ 233 + 232−k + 216−k ∗ (28 ∗β + εmax)

⇐ { algebra; 0 ≤ 216−k ∗ (28 ∗β + εmax) }
233 ∗ εmax

216 + 28 ∗β
≤ 232−k

⇐ { εmax < 28 }
241

216 + 28 ∗β
≤ 232−k

Because 241

216 + 28 ∗β
≤ 225 and 225 ≤ 232−k for k ≤ 7, the inequality holds.
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9.5 Appendix: The upper boundary for f ·β ·k, p = 7

To prove: f ·β ·k ≤ 1
B

+ 1
217

where f ·β ·k = 23 ∗ tab·β + 216 + 8 − 216−k

233−k

The following ranges are given for integers B, k, ε, β:

• 1 ≤ B < 217

• 0 ≤ k ≤ 16
• 0 ≤ ε ≤ εmax < 29

• 0 ≤ β < 27

We use the following definitions:

B = ( 216 + 29 ∗β + ε ) ∗ 2−k

tab[β] = 221 div (27 + β) − 213 , for 1 ≤ β
tab[β] = 213 − 1 , for β = 0
εmax = 29 − 2k , for k ≤ 8
εmax = 0 , for 9 ≤ k

* * *

To prove the inequality, we first rewrite it to a proposition, which outcome only depends on
the variables β and k. Then we prove that the proposition holds for β = 0 and any k, followed
by a proof for 1 ≤ β and any k. The proof starts as follows:

f ·β ·k ≤ 1
B

+ 1
217

≡ { definition f and definition B }
23 ∗ tab·β + 216 + 8 − 216−k

233−k ≤ 2k

216 + 29 ∗β + ε
+ 1

217

≡ { algebra }
tab·β + 1 + 213

230−k ≤ 2k

216 + 29 ∗β + ε
+ 1

216

⇐ { worst case if ε = εmax }
tab·β + 1 + 213

230−k ≤ 2k

216 + 29 ∗β + εmax
+ 1

216
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Proof for β = 0:

tab·0 + 1 + 213

230−k ≤ 2k

216 + 29 ∗ 0 + εmax
+ 1

216

≡ { definition tab with β = 0 }
213 − 1 + 1 + 213

230−k ≤ 2k

216 + 29 ∗ 0 + εmax
+ 1

216

≡ { algebra }
2k

216 ≤
2k

216 + εmax
+ 1

216

If 9 ≤ k, then εmax = 0 and because 0 ≤ 1
216 the proposition holds. If k ≤ 8, the proof

continues as follows:

2k

216 ≤
2k

216 + 29 − 2k + 1
216

≡ { algebra }

1 ≤ 216

216 + 29 − 2k + 1
2k

≡ { algebra }
216 + 29 − 2k ≤ 216 + 216−k + 29−k − 1

≡ { algebra }
29 − 2k + 1 ≤ 216−k + 29−k

For 0 ≤ k ≤ 8 it holds that 29 − 2k ≤ 216−k and 1 ≤ 29−k, thus the proposition holds.

* * *

Proof for 1 ≤ β:

tab·β + 1 + 213

230−k ≤ 2k

216 + 29 ∗β + εmax
+ 1

216

The left-hand side of the inequality is rewritten as follows:

tab·β + 1 + 213

230−k

= { definition tab with 1 ≤ β }
221 div (27 + β) − 213 + 1 + 213

230−k

≤ { x div y ≤ x/y }
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221

27 + β
− 213 + 1 + 213

230−k

= { algebra }
2k

216 + 29 ∗β
+ 1

230−k

Now the inequality is proven as follows:

tab·β + 1 + 213

230−k ≤ 2k

216 + 29 ∗β + εmax
+ 1

216

⇐ { rewrite left-hand side }
2k

216 + 29 ∗β
+ 1

230−k ≤
2k

216 + 29 ∗β + εmax
+ 1

216

We have three different cases for k.

Case k ≤ 8.
As a result, εmax = 29 − 2k and the proof continues as follows:

2k

216 + 29 ∗β
+ 1

230−k ≤
2k

216 + 29 ∗β + 29 − 2k + 1
216

≡ { multiply by 216 + 29 ∗β + 29 − 2k }

2k + 2k ∗ (29 − 2k)
216 + 29 ∗β

+ 216 + 29 ∗β + 29 − 2k

230−k ≤ 2k + 1 + β

27 + 1
27 −

2k

216

≡ { algebra }
2k ∗ (29 − 2k)
216 + 29 ∗β

+ 2k

214 + 2k ∗β
221 + 2k

221 −
2k ∗ 2k

230 + 2k

216 ≤ 1 + β

27 + 1
27

⇐ { worst case, β = 1 }
2k ∗ (29 − 2k)

216 + 29 + 2k

214 + 2k

221 + 2k

221 −
2k ∗ 2k

230 + 2k

216 ≤ 1 + 1
26

⇐ { worst case, k = 8 }
216

216 + 29 + 1
26 + 1

213 + 1
213 −

1
214 + 1

28 ≤ 1 + 1
26

Verification shows that this inequality is true.

Case 9 ≤ k ≤ 14.
As a result, εmax = 0 and the proof continues as follows:

2k

216 + 29 ∗β
+ 1

230−k ≤
2k

216 + 29 ∗β + 0 + 1
216

≡ { algebra }
1

230−k ≤
1

216

Which holds for k ≤ 14, thus also for 9 ≤ k ≤ 14.
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Case 15 ≤ k.
As a result, εmax = 0 and the proof continues as follows:

2k

216 + 29 ∗β
+ 1

230−k ≤
2k

216 + 29 ∗β + 0 + 1
216

≡ { definition tab with 1 ≤ β }
221 div (27 + β) + 1

230−k ≤ 2k

216 + 29∗β
+ 1

217

According the definition of B, a combination of β and k should satisfy 2k|29∗β. Because 1 ≤ β,
there is only one possible combination of β and k left, i.e. β = 64 and k = 15. Verification
shows that this inequality is true.
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9.6 Appendix: NormalizeS
The module NormalizeS is developed by Hoogerwoord. The module normalizes a given input
list; in other words, it shifts the given input list to the left until the most significant bit is a
1. Furthermore, a second input list will be shifted to the left by the same amount of bits.

The module creates a list xx with only zeroes and exactly one 1. This list is obtained by
linearly traversing bs. The bit with value 1 is on the same position as the most significant bit
of bs with value 1. We name the position of this bit l. If l = 0, then the least significant bit
is the most significant bit of bs with value 1.

To obtain bk, we have to shift bs an amount of 16 − i bits to the left, where xxi = 1. This
is implemented as follows: For all i, the module copies the value xxi 17 times and uses an
and-operation on this bundle with the list bs shifted 16 − i places to the left. If xxi = 0,
then the list contains after the and-operation only zeroes. If xxi = 1, then the list after the
and-operation is equal to bs shifted 16− i places to the left. Then the or-operation is used on
all those outputs, and as result, it produces list bs shifted 16− l positions to the left, which
is exactly the list bk.

The list xx is used a second time, to shift a second input list the same amount of bits to the
left as the list bs.

* * *

////////////////////////////////////////////////////////////////////////////////
//
// Engineer: R.R. Hoogerwoord
//
// This Verilog program normalizes B;
// NB = B * 2^k
// PostQ = PreQ * 2^k
//
////////////////////////////////////////////////////////////////////////////////

module NormalizeS(B, NB, PreQ, PostQ);
input [16:0] B;
input [17:0] PreQ;

output [16:0] NB;
output [33:0] PostQ;

wire [16:0] xx, yy ;
wire [33:0] PreQExt;

assign xx[16] = B[16] ;
assign yy[16] = ~B[16] ;
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genvar i;
generate

for (i=0; i<16; i=i+1)
begin: AndStep

MUXCY muxcystep(yy[i],yy[i+1],1’b0, ~B[i]);
assign xx[i] = yy[i+1] && B[i] ;

end
endgenerate

assign NB =
({17{xx[16]}} & B) | ({17{xx[15]}} & B[15:0]<<1) |
({17{xx[14]}} & B[14:0]<<2) | ({17{xx[13]}} & B[13:0]<<3) |
({17{xx[12]}} & B[12:0]<<4) | ({17{xx[11]}} & B[11:0]<<5) |
({17{xx[10]}} & B[10:0]<<6) | ({17{xx[ 9]}} & B[ 9:0]<<7) |
({17{xx[ 8]}} & B[ 8:0]<<8) | ({17{xx[ 7]}} & B[ 7:0]<<9) |
({17{xx[ 6]}} & B[ 6:0]<<10) | ({17{xx[ 5]}} & B[ 5:0]<<11) |
({17{xx[ 4]}} & B[ 4:0]<<12) | ({17{xx[ 3]}} & B[ 3:0]<<13) |
({17{xx[ 2]}} & B[ 2:0]<<14) | ({17{xx[ 1]}} & B[ 1:0]<<15) |
({17{xx[ 0]}} & B[ 0:0]<<16) ;

assign PreQext = {{16{PreQ[17]}},{PreQ}};

assign PostQ =
({34{xx[16]}} & PreQext) | ({34{xx[15]}} & PreQext<<1) |
({34{xx[14]}} & PreQext<<2) | ({34{xx[13]}} & PreQext<<3) |
({34{xx[12]}} & PreQext<<4) | ({34{xx[11]}} & PreQext<<5) |
({34{xx[10]}} & PreQext<<6) | ({34{xx[ 9]}} & PreQext<<7) |
({34{xx[ 8]}} & PreQext<<8) | ({34{xx[ 7]}} & PreQext<<9) |
({34{xx[ 6]}} & PreQext<<10) | ({34{xx[ 5]}} & PreQext<<11) |
({34{xx[ 4]}} & PreQext<<12) | ({34{xx[ 3]}} & PreQext<<13) |
({34{xx[ 2]}} & PreQext<<14) | ({34{xx[ 1]}} & PreQext<<15) |
({34{xx[ 0]}} & PreQext<<16) ;

endmodule



70 CHAPTER 9. APPENDICES

9.7 Appendix: NormalizeX

This is an extension of the module NormalizeS as described in Appendix 9.6.

Now, the module also implements 8− 216−k, which is needed in the module DivModMul128.

////////////////////////////////////////////////////////////////////////////////
//
// Engineer: R.R. Hoogerwoord
// Modified by: Wouter de Koning
//
// This Verilog program normalizes B;
// NB = B * 2^k
// PostQ = PreQ * 2^k
// con = 8 - 2^(16-k)
//
////////////////////////////////////////////////////////////////////////////////

module NormalizeX(B, NB, PreQ, PostQ, con);
input [16:0] B;
input [17:0] PreQ;

output [16:0] NB;
output [33:0] PostQ;
output [17:0] con;

wire [16:0] xx, yy ;
wire [33:0] PreQExt;

assign xx[16] = B[16] ;
assign yy[16] = ~B[16] ;

genvar i;
generate

for (i=0; i<16; i=i+1)
begin: AndStep

MUXCY muxcystep(yy[i],yy[i+1],1’b0, ~B[i]);
assign xx[i] = yy[i+1] && B[i] ;

end
endgenerate

assign NB =
({17{xx[16]}} & B) | ({17{xx[15]}} & B[15:0]<<1) |
({17{xx[14]}} & B[14:0]<<2) | ({17{xx[13]}} & B[13:0]<<3) |
({17{xx[12]}} & B[12:0]<<4) | ({17{xx[11]}} & B[11:0]<<5) |
({17{xx[10]}} & B[10:0]<<6) | ({17{xx[ 9]}} & B[ 9:0]<<7) |
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({17{xx[ 8]}} & B[ 8:0]<<8) | ({17{xx[ 7]}} & B[ 7:0]<<9) |
({17{xx[ 6]}} & B[ 6:0]<<10) | ({17{xx[ 5]}} & B[ 5:0]<<11) |
({17{xx[ 4]}} & B[ 4:0]<<12) | ({17{xx[ 3]}} & B[ 3:0]<<13) |
({17{xx[ 2]}} & B[ 2:0]<<14) | ({17{xx[ 1]}} & B[ 1:0]<<15) |
({17{xx[ 0]}} & B[ 0:0]<<16) ;

assign PreQext = {{16{PreQ[17]}},{PreQ}};

assign PostQ =
({34{xx[16]}} & PreQext) | ({34{xx[15]}} & PreQext<<1) |
({34{xx[14]}} & PreQext<<2) | ({34{xx[13]}} & PreQext<<3) |
({34{xx[12]}} & PreQext<<4) | ({34{xx[11]}} & PreQext<<5) |
({34{xx[10]}} & PreQext<<6) | ({34{xx[ 9]}} & PreQext<<7) |
({34{xx[ 8]}} & PreQext<<8) | ({34{xx[ 7]}} & PreQext<<9) |
({34{xx[ 6]}} & PreQext<<10) | ({34{xx[ 5]}} & PreQext<<11) |
({34{xx[ 4]}} & PreQext<<12) | ({34{xx[ 3]}} & PreQext<<13) |
({34{xx[ 2]}} & PreQext<<14) | ({34{xx[ 1]}} & PreQext<<15) |
({34{xx[ 0]}} & PreQext<<16) ;

// - con implements 8 - 2^16-k
assign con =

({18{xx[16]}} & { {2{1’b1}} , {12{1’b0}} , {4’b1000} }) |
({18{xx[15]}} & { {3{1’b1}} , {11{1’b0}} , {4’b1000} }) |
({18{xx[14]}} & { {4{1’b1}} , {10{1’b0}} , {4’b1000} }) |
({18{xx[13]}} & { {5{1’b1}} , {9{1’b0}} , {4’b1000} }) |
({18{xx[12]}} & { {6{1’b1}} , {8{1’b0}} , {4’b1000} }) |
({18{xx[11]}} & { {7{1’b1}} , {7{1’b0}} , {4’b1000} }) |
({18{xx[10]}} & { {8{1’b1}} , {6{1’b0}} , {4’b1000} }) |
({18{xx[ 9]}} & { {9{1’b1}} , {5{1’b0}} , {4’b1000} }) |
({18{xx[ 8]}} & { {10{1’b1}} , {4{1’b0}} , {4’b1000} }) |
({18{xx[ 7]}} & { {11{1’b1}} , {3{1’b0}} , {4’b1000} }) |
({18{xx[ 6]}} & { {12{1’b1}} , {2{1’b0}} , {4’b1000} }) |
({18{xx[ 5]}} & { {13{1’b1}} , {1{1’b0}} , {4’b1000} }) |
({18{xx[ 4]}} & { {14{1’b1}} , {4’b1000} }) |
({18{xx[ 2]}} & { {14{1’b0}} , {4’b0100} }) |
({18{xx[ 1]}} & { {14{1’b0}} , {4’b0110} }) |
({18{xx[ 0]}} & { {14{1’b0}} , {4’b0111} }) ;

endmodule
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