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Development of a Wearable Free-Weight Exercise Assistant

Abstract

In this work, the effectiveness of a system that uses sinusoidal motion models
based on acceleration and orientation data to assess the quality of individual free-
weight exercise repetitions was explored. Two inertial measurement units, one
on each wrist, were worn by participants while performing correct and incorrect
repetitions based on five common mistakes. Data were analyzed and relevant
signals per exercise were selected. Based on readings from correct repetitions, the
sinusoidal motion models were developed. The models were then coupled into
three different systems that were evaluated based on the accuracy of counting
repetitions and on the predicted quality of the repetition. The results depend on
the system being evaluated, on the number and type of selected signals, and on
the exercise carried out. Acceleration and orientation signals, when used together,
yield an acceptable performance. For exercises without rotations, the sole use of
acceleration data produces unsatisfactory results. Further work needs to be done
before such a system can be used as a training tool with the purpose of improving
exercising technique and help prevent injuries.
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Chapter 1

Introduction

Physical activity is fundamental in order to achieve and maintain an adequate

state of health. It has been proven that it also contributes to the primary and sec-

ondary prevention of chronic diseases [24], aiding in the forestallment and treat-

ment of cancer, osteoporosis, cardiovascular diseases, obesity, and diabetes [19].

These conditions account for approximately a trillion dollars in healthcare costs

in the United States alone and are becoming the paramount cause of morbidity

and mortality in the Western nations [11].

An increasing number of wearable computing systems aimed at monitoring

physical activity has entered the market in recent years. Brands such as Fitbit [2],

Nike [7], and Jawbone [5] have established themselves as the activity-monitoring

solutions for walking and running. Garmin and Polar, on the other hand, offer

a more diverse set of systems aimed at professional users in areas such as cy-

cling, swimming, and climbing. All these solutions make use of sensors such as

accelerometers, gyroscopes, microphones, and GPS systems to adequately track

users’ activities.

The aforementioned wearable systems are a tool for attacking physical inac-

tivity, the single most important cause of chronic diseases [11]. However, man-

ufacturers have focused solely on developing devices aimed at cardio activities.

Resistance training has not received much attention even though studies show

that it complements cardio to achieve a complete exercise program [8]. Current
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resistance-training tracking applications lack the capabilities to detect which type

of exercise is being carried out, to automatically count the number of repetitions,

and to give feedback on the quality of these repetitions. At the moment, tracking

is based on manual input applications such as Jefit [6], Fitocracy [3], and Go-

rilla Workout [4]. Even though gamification techniques are used to engage users,

the manual input becomes tedious and could potentially decrease motivation for

regular usage and training.

Within the resistance-training domain, the free-weight exercise area is of par-

ticular interest. This subdomain involves the use of dumbbells and barbells, and

more than 90 percent of the resistance-training injuries are caused by incorrect

free-weight exercising [14]. Nonetheless, studies highlight how safe and benefi-

cial these exercises are when proper feedback on the technique and execution is

available [13]. Qualified fitness instructors are often the source of this feedback

and they are usually available at gyms and sports centers. People, for a variety of

reasons including gym membership costs, lack of time, and comfort, often prefer

to exercise at home and are thus unable to receive feedback on their exercising

technique.

It has been shown that it is possible to successfully recognize what type of

exercises are being carried out and to count the number of repetitions of these

exercises using data from acceleration and orientation sensors [12]. The next step

in developing a complete free-weight exercise assistant is to provide feedback on

the quality of the repetitions. By providing the feedback to the user a complete

training solution can be achieved, which can then be used for tracking progress

and to help improve the exercising technique and thus help reduce injuries.

In this work, a wearable sensor was selected and data from wrist-worn ac-

celerometers and gyroscopes were obtained from ten different subjects perform-

ing five different free-weight exercises. The subjects were asked to perform correct

repetitions and then to perform incorrect repetitions based on five common mis-

takes. The data were used to develop an understanding of how quality could be

measured. Once this understanding was achieved, a sinusoidal motion model-
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based system was built around signal attributes of correct repetitions for each

person. The system’s input consists of acceleration and orientation signals of a

series of repetitions. This system is able to provide output feedback on the quality

of the input repetitions. A performance evaluation was then carried out on the

feedback output. The steps in this scheme are depicted in Figure 1-1.

wearable sensor
selection data acquisition visualization and

analysis
model

construction
performance
assessment

Figure 1-1: Scheme followed during the development of the system

In brief, the objectives during the development of this wearable system will be

the following:

1. Analyze acceleration and orientation measurements to understand which

signals are more appropriate to be used by the system for each type of

exercise. It is to be determined whether all the signals are necessary to

perform a quality assessment on individual repetitions.

2. Given the peculiar characteristics of the error types analyzed, the accel-

eration and orientation readings’ performance at detecting these mistakes

should differ.

3. Based on the previous point, the combination of the different signals should

provide means for a better judgement on the quality of an individual repe-

tition.

This report has the objective of documenting the progress in the development

of such a system. Chapter 2 analyzes previous similar works and offers a compar-

ison between these and the current system, presenting at the same time the novel

contributions achieved. In Chapter 3 the procedure that led to the sensor selection

is discussed. Wearable sensors have specific requirements and each of the options

that were contemplated offered different tradeoffs. The data acquisition steps are
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also presented in this chapter. An analysis based on the visualization of the data

is conducted in Chapter 4. The term quality is formally defined and the procedure

that led to the selection of the relevant signals is presented. The model design

and implementation, as well as the different types of testing systems used and

their differences are covered in Chapter 5. Chapter 6 discusses the outcome of

these experiments, while Chapter 7 presents concluding remarks and suggestions

for future research.
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Chapter 2

Related work

Different research related to resistance training has been done in the past. A

literature study was carried out in order to understand previous approaches and,

whenever possible, build upon them.

Fitlinxx [1] offers a solution that is able to monitor machine weight-lifting ex-

ercises. This system gives the user feedback on how fast or slow the repetition is

being carried out. Its mechanism, hooked to the machine’s weight-lifting trans-

mission system, captures the exercise signal and is then able to detect repetitions.

The main disadvantage of this system is that it has to be mounted on a specific

machine, limiting its versatility and is therefore not able to monitor free-weight

exercises.

The Personal Wellness Coach system [9] monitors aerobic and anaerobic ex-

ercises using data from accelerometers and a heart-rate monitor. Their system

counts repetitions of anaerobic exercises using a single peak acceleration foot-

print per repetition. Because of this, the system is able to count repetitions for a

wide variety of repetitions from different exercises.

In [15], Melzi et al. developed a wearable wireless sensor network to supervise

resistance training exercises. Their system uses two sensors, one on the elbow and

one on the wrist, using only accelerometers to obtain information on the exercises

being carried out. Their approach uses a personal computer to display the move-

ments being carried out by a virtual assistant. The synchronization between this

17



virtual assistant and the user allows the system to calculate uniformity and regu-

larity of the movement but decreases portability. Feedback on the exercise speed,

uniformity, regularity, and execution is provided. Suggestions on how to correct

errors is also provided.

The approach in [16] proved that exercise recognition can be achieved in a

user independent, multi-activity environment using only an arm holster-worn

smartphone as a sensor. For the first part of their experiment only acceleration

data was used with good results. When the gyroscope measurements were in-

troduced and combined with the acceleration data, the results outperformed the

acceleration-only tests by a modest amount. Nevertheless, their results indicate

that the addition of a gyroscope is beneficial for fitness activity recognition sys-

tems.

An algorithm based on dynamic time warping was introduced in [17] that

allows an acceleration stream to be processed in real time using a smartphone.

This technique makes it possible to calculate the number and the duration of

individual repetitions. Duration is one of the metrics that can be used to provide

feedback to the user. An interesting part of this work is that their solution is

able to monitor resistance training using exercise machines, free weights, and

resistance bands. In order to monitor exercise using machines, the smartphone is

placed on the stack of weights.

In [12], Chang et al. developed and compared a Naïve Bayes Classifier and

a Hidden Markov Model to count repetitions and distinguish between different

free-weight exercises. Data was obtained from an accelerometer mounted into

a workout glove and an accelerometer on the user’s waist. Even though their

approach was successful, in this work it was decided to use wrist-worn sensors.

The reason for this was that a wrist-worn device could be converted easier into an

ankle-worn device for leg resistance training and used as part of a future study.

In [22] and [23] a model-based system was developed using a body motion

tracking approach. This approach, successful nonetheless, requires a Microsoft

Kinect or a similar sensor. These type of sensors have additional requirements
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such as minimum space needs and are also not very portable.

A system used for COPD rehabilitation was developed by Spina et al. in

[21]. This system uses orientation data to model rehabilitation exercises using a

smartphones’ built-in sensors. Our system builds on this approach by including

acceleration signals and the ability to assess two limbs simultaneously.

The previously discussed systems have all contributed to the field of recog-

nition and tracking in resistance training exercises. Some of these papers use

accelerometers and gyroscopes [16], others use only accelerometers and possibly

other non-gyro sensors [9], [15], [17], [22], and [23]. Feedback to the user is also

given in [9], [15], [22], and [23]. The aim of this project is to build upon these

approaches by using both accelerometers and gyroscopes and to extend the feed-

back provided based on the quality of the repetition and on five different common

mistakes.

The novel contribution of this project is a pioneer study on the effectiveness of

model-based methods using accelerometer and orientation data with the purpose

of detecting free weight mistakes in order to help the user improve the exercising

technique and aid in injury prevention.
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Chapter 3

Sensor Selection and Data

Acquisition

A specific set of requirements needs to be met by a sensor in order to be useful

for a wearable application. Once the sensor is deemed as appropriate, the data

acquisition phase can begin. This chapter explains in detail the procedure that

led to the selection of the used sensor and the data acquisition method, as well as

other related aspects. Figure 3-1 shows in green the sections of the scheme that

will be covered in this chapter.

wearable sensor
selection data acquisition visualization and

analysis
model

construction
performance
assessment

Figure 3-1: Steps covered in Chapter 3

3.1 Sensor selection

When building a wearable sensing system it is necessary to have an understand-

ing of the precise movements that will be carried out. In this case, each of the dif-

ferent free-weight exercises has a distinctive motion in the 3D coordinate system.

There are also a number of desired characteristics a wearable sensor should have.

They should be small and lightweight in order to be as unobtrusive as possible
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and to allow movements and activities to be unrestrained. However they should

be able to sense different relevant physical quantities. In this case, they should

fit comfortably on the users’ wrists. Ideally they should be within an affordable

price range, looking ahead to a possible application. With these requirements

three different sensing elements were considered for this system.

The first alternative studied was the use of a smartwatch. An off-the-shelf

smartwatch has a series of advantages. The first one is the unobtrusiveness of-

fered, which would allow a user to perform movements without many additional

restrictions. The second advantage would be robustness. Most of these smart-

watches are water and sweat resistant. The long battery life and the Bluetooth

connection are also convenient. There are two big disadvantages though: cost

and lack of orientation sensors. A price tag in the $150-$350USD range for a

single device is not very appealing. More importantly, the smartwatches avail-

able only have accelerometers. Smartwatches with gyroscopes that would allow

for orientation monitoring are either not commercially available or there is no

support offered for developers by the vendors.

A second alternative that has been seen before in [16], [17], and [21] is using

the smartphone as both a sensing and a processing device. Smartphones offer

higher processing power than smartwatches, an excellent battery life, and contain

not only accelerometers but gyroscopes as well that could be used to monitor

the orientation of the exercises carried out. A disadvantage of this approach is

that it is uncommon for a person to own two smartphones in order to wear them

simultaneously to keep track of the arms’ movements. Additionally, smartphones

are bulkier and might restrict motion.

The third option consists of using an inertial measurement unit (IMU) such as

the MPU-9150 by Invensense. An IMU contains an accelerometer, a gyroscope,

and a magnetometer and is thus able to monitor the acceleration and orientation

of the movements carried out. The IMU would then send the data to a smartphone

for processing. An IMU is significantly smaller than a smartphone, being less

obtrusive. They are also cheaper than a smartwatch, making it feasible to monitor
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the movements of both arms with one unit per arm. For these reasons, an IMU

was chosen for this project.

Figure 3-2a shows the MotionFit SDK, which was chosen for this project. The

SDK is optimized for wearable applications and includes a Bluetooth radio for

wireless communication and a lithium battery. An additional benefit is that the

size of the SDK fits commercially available wrist straps for music players, as

shown in Figure 3-2b.

Bluetooth
Radio
Module

Serial Flash
MSP430
MCU

MicroUSB
Connector

BMP085
Pressure
Sensor

MPU-9150

ON/OFF
Switch

(a) Hardware diagram (b) SDK within wrist strap

Figure 3-2: MotionFit SDK

3.2 Communication implementation

An overview of the communication can be seen in Figure 3-3. The two MPU-9150

units connect via Bluetooth to the smartphone. The packets are then received and

processed by CRNTC+ [10], a toolbox for prototyping applications for sensing

systems.

A meticulous investigation was carried out with the final goal of understand-

ing the communication details of the IMU. The first step was to understand the

packets’ format. This was possible by studying the code from a Python appli-
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Figure 3-3: Communication overview

cation found on the manufacturer’s web site1. A dollar sign in the first byte

indicates a valid data packet. There are three types of packets: debug packets,

quaternion packets, and data packets. It is possible to distinguish them by an-

alyzing the contents of the second byte. A "1" indicates a debug packet, a "2"

indicates a quaternion packet, and a "3" indicates a data packet. For the purpose

of this project only data packets are relevant.

Seven different types of data packets exist. Of these, only the acceleration and

quaternion packets are used. Acceleration packets are identified by a "0" in the

third byte, while quaternion packets contain a "4". Acceleration data is included

in the next twelve bytes, where each of the three dimensions requires four bytes.

Quaternion packets, on the other hand, require sixteen bytes. All packets consist

of 23 bytes. The remaining bytes are used in debug packets or with other data

packets which are not used in this study and therefore their contents will not be

detailed. Figures 3-4 and 3-5 show a graphical representation of acceleration and

quaternion packets.

After understanding the packet format it was possible to start porting the

Python application to Java, the language used by CRNTC+. A simple Android

example application, Bluetooth Chat2, served as a first attempt to verify the func-

tionality. This application was used to detect and correct minor errors and it also

served as a model for implementing the MotionFit SDK module within CRNTC+.

A workaround for connectivity with more than one MotionFit SDK was de-

1http://www.invensense.com/developers/downloads
2http://developer.android.com/tools/samples/
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vised, since they all share the same universally unique identifier (UUID) and Blue-

tooth in Android searches for devices and connects via UUIDs. This workaround

consists of noting individual media access control (MAC) addresses. In Android

it is possible to iterate over a list of paired devices, and when a UUID match

is found, that device can be polled for its MAC address. If the MAC address

matches, then it is possible to connect to this device. There is one minor disadvan-

tage that arises from this implementation: the IMUs have to be paired manually

before connecting. This prevents the smartphone from automatically discovering

new IMUs.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

$ 3 0 x y z ...

Figure 3-4: Data packet containing acceleration values

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

$ 3 4 q1 q2 q3 q4 ...

Figure 3-5: Data packet containing quaternion values

3.3 Selected free-weight exercises and mistakes

A set of common, representative free-weight exercises was selected in order to be

used for the recording of the data set. Table 3.1 shows these exercises, the muscle

group they exercise, and the respective posture.

Exercise Muscle group Posture

1 Lying Fly Chest Lying

2 Palms-In Shoulder Press Shoulder Standing

3 Shoulder Press Shoulder Standing

4 Lateral Raise Deltoid Standing

5 Biceps Curl Biceps Standing
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Table 3.1: Exercises used for the recording of the data set

These exercises will be carried out correctly by the volunteers and are shown

in Figure 3-63 . Additionally, five common exercise mistakes will be replicated to

obtain their data. These common mistakes were obtained from [18] and [20], and

confirmed by personnel from the Student Sport Centre Eindhoven. They include:

1. Rushing repetitions, which raises blood pressure, increases risk for joint

injury and compromises results

2. Incorrect range of motion due to over stretching, which damages the joints

3. Incorrect range of motion due to under stretching, minimizing exercise ben-

efits

4. Not keeping dumbbells leveled on exercises with symmetric movements

5. Bouncing and using momentum or gravity instead of a smoothly controlled

motion

3Images taken from www.dumbbell-exercises.com
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(a) Lying fly (b) Palms-In Shoulder
Press

(c) Shoulder Press

(d) Lateral Raise (e) Biceps Curl

Figure 3-6: Exercises used for the recording of the data set

3.4 Data acquisition

Ten participants were chosen for this experiment, with five female and five male

subjects. The mean age is 26.8 years and the corrected sample standard deviation

is 2.89 years. The recordings took place in the Student Sport Centre Eindhoven.

While the participants were performing the exercise script, the data was being

labeled by an observer. The participants wore the wrist straps housing the IMUs

in both wrists. Special care was taken to ensure that the IMU placement within

the wrist strap was always constant.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Gender F M F M F F F M F M

Repetitions 223 243 230 256 249 244 248 271 241 224

The complete details of the process can be seen in the Data Recording Plan in

Appendix A.
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Chapter 4

Data analysis

Once the data has been recorded it is possible to visualize it. An analysis was car-

ried out in order to have a better understanding of which signals better represent

each exercise and are thus better at determining a repetition’s quality. Figure 4-1

shows the scheme’s sections that will be covered in this chapter. First, the re-

sults of the recordings will be presented for selected exercises and mistakes. The

definition of quality will also be formalized in this chapter. Then the signals that

contribute the most in the quality assessment for each exercise will be presented.

wearable sensor
selection data acquisition visualization and

analysis
model

construction
performance
assessment

Figure 4-1: Steps covered in Chapter 4

4.1 Data visualization

As it was previously mentioned, each exercise and each mistake have a unique

acceleration and orientation signature. The IMU made it possible to monitor

acceleration values Ax, Ay, and Az and to obtain quaternions which were then

converted to Euler angles Ex, Ey, and Ez for easier interpretation. Figure 4-2

shows the axes relative to the SDK. Blue represents the x axis, green represents y,

and z can be seen in red.
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X

Y

Z

Figure 4-2: The axes: x in blue, y in green, z in red

Figure 4-3 shows the acceleration and orientation data graphs from the left

hand for the lying fly and palms-in shoulder press exercises in their correct form.

The graphs show eight repetitions of the lying fly and ten repetitions of the palms-

in shoulder press. This data was taken from a 33-year-old female participant.

Note that since the exercises shown are symmetric for both hands, the data from

the right hand has a similar yet non-identical shape.

From the graphs it can be clearly seen that the movements are periodic and

that the values for the different axes vary between exercises. A simple, intuitive

visual inspection reveals individual traits that can be used to distinguish between

the different exercises. For example, the acceleration in z for the palms-in shoul-

der press (Figure 4-3c) appears very noisy and is constrained between a small

range of values. On the other hand, the lying fly’s acceleration in z (Figure 4-3a)

has more variation and shows a more smooth and periodic form. Additionally,

the y and z acceleration values of the lying fly (Figure 4-3a) and of the palms-in

shoulder press (Figure 4-3c) show a negative correlation. The mean value of each

axis also differs per exercise. Perhaps this is better illustrated now with the Euler

angle graphs. Since the palms-in shoulder press presents almost no rotation, the

values depicted in Figure 4-3d do not vary a lot. The angles in Figure 4-3b change

much more due to the nature of the movement required to perform lying fly rep-
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etitions. Similar comparisons can be carried out with the other exercises. These

differences and similarities were used by the authors in [12] in order to automat-

ically detect which exercise was being carried out. The remaining graphs for the

complete set of correct exercises for this participant can be seen in Appendix B.

(a) Acceleration for lying fly (b) Euler angles for lying fly

(c) Acceleration for palms-in shoulder press (d) Euler angles for palms-in shoulder press

Figure 4-3: Correct lying fly and palms-in shoulder press. The x axis is shown in
blue, y in green, and z in red.

A similar analysis was carried out between the correct version of the exercises

and the different mistakes. This analysis allowed to identify the characteristics

that differentiate between correct and incorrect repetitions. Figure 4-4 shows two

of the common mistakes while performing the lying fly. Comparing them to Fig-
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ure 4-3a and Figure 4-3b, it is evident that there is a difference in the magnitude

for the rushing repetitions case in the acceleration values. Since repetitions were

carried out faster in the same range of motion, an acceleration of higher magni-

tude took place. This is evident in all of the three axes. Moreover, the period of

each repetition is much shorter. Over stretching shows a slightly less notorious

difference in the acceleration graph; the peak magnitudes are slightly higher. Fig-

ure 4-4d reveals a much more pronounced difference in the orientation readings.

Considerable magnitude changes can be seen in the values of all three axes due

to an excessive range of motion. Similar analyses were carried out for the remain-

ing errors and for the remaining exercises, revealing analogous results. Refer to

Appendix C for the remaining common mistake-graphs for the lying fly.

A particular type of mistake occurs due to the individual’s laterality. Normally

one hand or leg is stronger than the other. This becomes evident when performing

symmetric exercises, such as the ones performed in this study. The strong hand

carries out the exercise more smoothly and in the complete range of motion.

The weak hand, after a number of repetitions, starts struggling and the range of

motion decreases. The corresponding graphs can be found in Appendix D.

4.2 Defining quality

Before tackling more technical issues, the definition of quality needs to be for-

malized. Previous works in activity recognition have analyzed topics from a

qualitative point of view, but there is still no common understanding as to what

characterizes the quality of an activity, in this case, the execution of a repetition.

One of the main contributions listed in [23] is precisely a formalization of

the term quality in the activity recognition context. After analyzing a series of

definitions for the term they found that a shared trait is that "one starts with a

product specification and a quality inspector measures the adherence of the final

product to this specification." The definition makes it obvious that to measure

quality, a standard to measure against is required. If a specification of how an
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(a) Acceleration for rushing lying fly (b) Euler angles for rushing lying fly

(c) Acceleration for over stretching lying fly (d) Euler angles for over stretching lying fly

Figure 4-4: Incorrect lying fly. The x axis is shown in blue, y in green, and z in
red.
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activity has to be performed can be obtained, then it is possible to measure the

quality of a repetition by comparing its execution against this specification.

The formal definition of quality is then defined as the adherence of the execution

of an activity to its specification. One of the benefits of this specification is that if

there are multiple ways of performing an activity, as long as a specification is

available, quality can be measured. This definition was developed by Velloso et

al. and was deemed as appropriate for this assignment, thus being selected.

4.3 Signal selection

The exercises selected for this study make use of both arms simultaneously. Ac-

celeration and orientation data was gathered from each arm, totaling six signals

per arm.

Recall that a model-based approach is being followed. A model, in essence, is

an abstraction or approximation that should fit the problem at hand. Determining

the right level of abstraction that makes a good model was one of the key issues

faced during the development of this system, particularly because predictability

and complexity are normally conflicting.

Due to the nature of the movements carried out, some of the signals might

not be as significant as others when determining the quality of a repetition. By

analyzing the movements of each exercise it was possible to select the signals that

contribute to determining the quality of a repetition. Consequently, trivial signals

were also identified and their use in the model was prevented, simplifying the

approach greatly. A summary of this analysis is presented next for each exercise.

Review Figure 3-6 and Figure 4-2 to recall the exercises and the axes orientations.

4.3.1 Lying fly

The main motion of the lying fly occurs in the z axes. There is no movement in

the x direction and, depending on the lying fly variation, there might or might

34



not be movement in the y direction. As for the angles, the main changes occur in

the x and z axes.

4.3.2 Palms-in shoulder press

The movement for this exercise is mainly in the x axis. The y and z axes present

minimal movement. There are slight rotations around the three axes, since the

sensor mostly moves in one axis. In this case, because of the position of the arms,

the x axis is in the up-down direction.

4.3.3 Shoulder press

This exercise is similar to the palms-in shoulder press, but with the palms now

facing the front. The movement is only up-down, again in the x axis. Again,

slight movements are present in the y and z axes. Minimal orientation changes

take place in all three axes.

4.3.4 Lateral raise

Motion in this exercise is mostly limited to the z axis. Nonetheless, it can be seen

from the data that the acceleration signature of the x axis is less noisy. When the

arms are lowered, gravity causes a value of one in the x axis, and as the arms are

raised, the value changes smoothly. The main angle change takes place around

the y axis. Less significant changes also occur on the x and z axes.

4.3.5 Biceps curl

The acceleration signature depends on the particular type of biceps curl being

carried out. It was observed, however, that the values of the x axes fluctuate

smoothly between [−1, 1]. This happens because the up and down positions of

the exercise flip the sensors in the x axis, causing a positive and a negative mea-

surement of gravity. The main rotation occurs around the y axis.
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This analysis was done with the ten participants, confirming that the signals

selected were always descriptive and that the majority of the signals can be omit-

ted. In some cases, only one signal out of the six is considered representative.

These signals are presented in Table 4.1. Acceleration signals are labeled with an

A and orientation signals are labeled with an E. The respective axis is indicated

as a subscript.

Exercise Signals

1 Lying Fly Az, Ex, Ez

2 Palms-In Shoulder Press Ax

3 Shoulder Press Ax

4 Lateral Raise Ax, Ey

5 Biceps Curl Ax, Ey

Table 4.1: Signals selected for each exercise
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Chapter 5

Model design and implementation

Having an understanding of the data makes it possible to design a better model.

The model needs to be generic enough to suit different exercises but at the same

time it needs to have an acceptable performance. Once it has been designed, it

has to be implemented and coupled to the system in order to test it and verify its

effectiveness. Figure 5-1 shows the scheme’s sections covered in this chapter.

wearable sensor
selection data acquisition visualization and

analysis
model

construction
performance
assessment

Figure 5-1: Steps covered in Chapter 5

5.1 Design

Formalizing a correct repetition from a particular exercise provides a means to

assess the quality of other repetitions from that same exercise. By observing in

which ways and how much a different repetition coincides or differs it is possible

to deem it as appropriate or unsuitable.

The signals from Table 4.1 all follow a repetitive, sinusoidal-like behavior.

Therefore a sinusoidal motion model, based on the one implemented by Spina

et al. in [21], was selected. A model will be created for each arm due to the

differences of movements between arms.
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To predict the quality of a repetition a model based on the data of a single

signal will be used. The Ey signal from a series of correct biceps curl repetitions

will be used as an example. Figure 5-2 shows this signal for both arms. At a first

glance it can be seen that it takes approximately 2 seconds to perform a repetition.

Its peak values are around 75 degrees for the left arm and around 50 degrees for

the right arm. The minimum values, on the other hand, are around -50 degrees

for the left arm and -75 for the right arm. The crossover point for the left arm is

around 20 and for the right arm it is located around -20. Additionally, there is

some synchronization between both signals. Note that these are just estimations

obtained from a quick glance.

(a) Left arm (b) Right arm

Figure 5-2: Ey signal to be modelled

The precise values of these parameters will be computed from the series of

correct repetitions. The standard deviations of some of these parameters will also

be computed. Table 5.1 shows the notation that will be used from now on, the

values of these parameters for this particular example, and the corresponding

units. The symbols and values for the standard deviations of each parameter are

shown in parentheses.
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Symbol Description Value Units

1 T(σT) Period of the signal 198.7 (±4.9) samples

2 ε+L (σε+L
) Mean peak for the left signal 83.3 (±1.8) degrees

3 ε+R (σε+R
) Mean peak for the right signal 54.3 (±2.6) degrees

4 ε−L (σε−L
) Mean valley for the left signal -53.7 (±2.1) degrees

5 ε−R (σε−R
) Mean valley for the right signal -83.6 (±1.5) degrees

6 αL Mean crossover for the left signal 14.8 degrees

7 αR Mean crossover for the right signal -14.6 degrees

8 ∆(σ∆) Synchronization value 94.2 (±48.1) degrees

Table 5.1: Symbolic notation, description, sample values, and units of the model
parameters

These parameters define the standard of a correct repetition according to our

model. Note that the data from the sensors was sampled at 50Hz, but in MATLAB,

after importing the sensor data, it was up sampled to 100Hz. By extracting these

same parameters from a different repetition and comparing them to the standard,

an assessment on the quality can be given. Note that the synchronization value is

obtained by subtracting the signals.

5.2 Implementation

A script was developed in MATLAB in order to obtain the precise numerical

values of the model. The input values are a series of correct repetitions and

the number of these repetitions. The corresponding parameter values are then

computed and returned as output.

In order to calculate T and σT, the position of each individual peak is regis-

tered. The distance between neighboring peaks is calculated and averaged, ob-

taining an estimate for the period. The standard deviation is calculated from these

distances as well.

To obtain ε+L , ε+R , ε−L , ε−R , and their corresponding standard deviations, a num-
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ber of peaks and valleys equal to the number of repetitions was found. Since

at the moment raw data is being used, it might be the case that multiple peaks

are found within a single repetition. To have the correct peaks, a minimum dis-

tance parameter can be introduced depending on the speed at which the user is

training.

Once the mean peaks and valleys have been obtained it is possible to deter-

mine αL and αR. These values are selected as the middle point between the mean

peaks and the mean valleys for each hand and are the ones that determine the

start and end of a repetition.

Table 5.1 shows the values obtained from using the series of repetitions on

signal Ey as an input to this script. A new repetition R can then be compared

to the model’s values in order to verify if it is correct or if it is incurring in the

rushing repetitions, over stretching, under stretching, not leveled, or bouncing

mistakes. Table 5.2 defines the criteria that determines the feedback of repetition

R.

Feedback Condition

1 correct

RT > T − x1σT

Rε+L/R
∈ [ε+L/R − x2σε+L/R

, ε+L/R + x3σε+L/R
]

Rε−L/R
∈ [ε−L/R − x4σε−L/R

, ε−L/R + x5σε−L/R
]

R∆ ∈ [∆− x6σ∆, ∆ + x7σ∆]

2 rushing reps. RT < T − x8σT

3 over stretching
Rε+L/R

∈ [ε+L/R + x9σε+L/R
, ε+L/R + x10σε+L/R

]

Rε−L/R
∈ [ε−L/R − x11σε−L/R

, ε−L/R − x12σε−L/R
]

4 under stretching
Rε+L/R

< ε+L/R − x13σε+L/R

Rε−L/R
> ε−L/R + x14σε+L/R

5 not leveled R∆ 6∈ [∆− x15σ∆, ∆ + x16σ∆]

6 bouncing
Rε+L/R

> ε+L/R + x17σε+L/R

Rε−L/R
< ε−L/R − x18σε+L/R

Table 5.2: Feedback criteria

40



The x1 to x18 variables were adjusted empirically to obtain the best results

according to the labeling of the mistakes. They are fixed for every exercise type

and participant independent, but can vary between different signals. Once these

values are determined they are assumed to be fixed.

A series of different experiments were carried out after the model of a correct

repetition was obtained. These experiments are explained next.

5.3 Single signal input using raw data

The first attempt at predicting the quality of a repetition consisted of using only

the raw data of a single signal. The raw data of a series of correct repetitions was

used to build the model and the raw data of different repetitions was then used

as input. The new input signals were segmented into individual repetitions using

αL and αR. After segmentation, the parameters listed in Table 5.1 were extracted

for each repetition and then a quality assessment was given based on these values

and on the relationships listed in Table 5.2. Figure 5-3 shows an overview of the

system. The raw input signal on the left is compared to the model in order to

assess the quality of the repetitions and present it as the output. The output is

an array of binary values where each element indicates whether or not one of the

mistakes was detected. This model was built using raw data.

model output

Figure 5-3: Diagram of the single signal input system using raw data

Tradeoffs are present when it comes to using raw data. On one hand, battery-

consuming and computationally-expensive filtering computations are avoided.

This is critical when dealing with resource-constrained systems such as the smart-

phone used. On the other hand, the noise in the data can influence negatively the

output of the system.
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5.4 Single signal input using filtered data

The second attempt consisted again of using only a single signal, but this time

using a moving average filter to smoothen the data. The model was now cre-

ated from the smoothened data of correct repetitions. The same procedure was

followed for the segmentation, parameter computation, and quality assessment

parts. An overview of the system is shown in Figure 5-4. The filtered input

signal on the left is compared to the model in order to assess the quality of the

repetitions and present it as the output. This model was built using filtered data.

model output

Figure 5-4: Diagram of the single signal input system using filtered data

A moving average filter is one of the simplest filters available but it is optimal

when it comes to reducing random noise.

5.5 Multiple voting signals

From the data analysis carried out in Chapter 4 it appears that some signals are

better suited to predict particular errors. For example, acceleration signals appear

to be better at detecting bouncing mistakes, while orientation signals are better

at determining over and under stretching. To obtain the best performance out of

the system, a voting algorithm over the different signals can be used. Figure 5-5

illustrates this concept.

Table 4.1 listed the signals deemed relevant per exercise. Notice that the palms-

in shoulder press and the shoulder press only had one signal. In this case the

outcome will be selected by this single signal. When it comes to the lateral raise

and the biceps curl, the output will be determined differently. The relationship

between the different errors and the signals will be studied in order to determine
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which signal is more accurate at detecting a certain error. The signal with a higher

accuracy will have a higher weight in the outcome. A similar approach was used

for the lying fly, but this time with all three signals. Notice that this approach can

be extended to n voting signals.

model output

Σ outputmodel

model

output

output

Figure 5-5: Diagram of the multiple voting signals system
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Chapter 6

Performance assessment

After obtaining a standard and defining the different testing systems a series

of repetitions were used for evaluation purposes. First the performance metrics

used are explained and then the three different systems are evaluated and the

results are analyzed in-depth. Figure 6-1 shows the section covered in this chapter

relative to the entire scheme.

wearable sensor
selection data acquisition visualization and

analysis
model

construction
performance
assessment

Figure 6-1: Steps covered in Chapter 6

6.1 Performance metrics

Two metrics will be used to measure the performance of the systems: prediction

accuracy and the accuracy in counting the number of repetitions. These metrics

are explained next.

6.1.1 Prediction accuracy

The data set used was recorded in such a way that only one mistake was carried

out at a time. Correctly determining whether this mistake was made or not is one
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of the metrics that will be used to measure performance. It will be measured as

the percentage of correctly detected mistakes out of the total repetitions incurring

on this mistake. Prediction accuracy varies depending on the signals and exercises

carried out, as well as between participants.

In a realistic scenario it would be possible for an instance of a repetition to have

more than one mistake. For example, an individual can incur into over stretching

and under stretching when performing a lateral raise repetition. The individual

can exceed the movement in such a way that the arms, in the upper motion, go

above the horizontal. On the way down, the arms can stop at some intermediate

point. Additionally it is possible that one arm incurs in one mistake and the other

arm incurs in a different one. If indeed more than one mistake is detected, then

further studies need to be carried out to determine how to better inform the users

about these mistakes.

6.1.2 Accuracy in counting repetitions

Due to noise and the movements carried out by the participants it is possible that

the number of repetitions carried out and the number of repetitions detected by

the system are not the same.

If the correct number of repetitions is denoted as rc and the number of repeti-

tions counted by the system as rs, then the system’s error is given by e = rc − rs.

False repetitions occur when the crossover values (αL and αR) are crossed more

than three times in a repetition. False repetitions have an impact on prediction

accuracy. If a false repetition is detected, the system will most likely treat it as a

rushing repetition only, but other errors are also possible.

It is also possible that a repetition or series of repetitions is not detected, lead-

ing to rs < rc. This occurs when the αL and αR values are not crossed due to a

change in the movement or orientation.

Maximizing the accuracy in counting repetitions is therefore necessary not

only to keep correct records but also to provide adequate feedback.
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6.2 Single signal input using raw data

The prediction accuracy results for the first system are shown in Figure 6-2. The

number of graphs per exercise varies depending on the signals selected on Ta-

ble 4.1. The results are shown for each of the ten participants. Mistake 1 in the

mistake axis represents "Rushing Repetitions", 2 represents "Over stretching", 3

represents "Under stretching", 4 represents "Not Level", and 5 stands for "Bounc-

ing".

The first thing that is noticeable is the difference in performance between par-

ticipants. This is because the system’s output is highly dependent on the repeti-

tions that were used to build the model. Some participants had very low quality

data in certain exercises. Figure 6-2c shows an example of this in participant

seven, which had an accuracy of zero for all the mistake categories.

Another important point is the low accuracy for the not level category. A first

approach to this mistake was to calculate the standard deviation of the signals for

both arms and, based on this, detect whether or not the arms were leveled. This

approach worked only when the signals were in phase, which is not always the

case. This approach was thus dismissed. The current approach focuses on the

peaks and valleys of the signals. If the signal of one arm is within an acceptable

range while the other is not, then the repetition is categorized as not leveled.

This approach is still not very effective since some peaks and valleys cannot be

detected when the arm is below or above certain thresholds.

The results for the lying fly can be seen in Figure 6-2a through 6-2c. For the

rushing repetitions case, an interesting aspect is why Ex is so much better at de-

tecting rushing repetitions compared to Ez, which is even below Az. As it was

mentioned previously, orientation signals are smoother than acceleration signals.

From these three signals, Ex was the smoothest one, thus giving the best results.

Az was not as smooth as Ez but the hill-climbing algorithm used to detect peaks

performed better with that signal. The reason of this is that Ez presented, on oc-

casions, several peaks and valleys per repetition of similar magnitude, negatively
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affecting the hill-climbing algorithm.

Over stretching is complicated to detect in the lying fly. There is so much

someone can over stretch doing this movements. Under stretching, on the other

hand, is simpler for all the exercises. For this reason, it is the case that under

stretching is detected easier. Since a smaller range has to be covered when un-

der stretching, a smaller acceleration also takes place. For this reason Az also

performs well when recognizing under stretching.

Since the range of motion for bouncing is the same as the range of motion

for correct repetitions, orientation angles should remain constant and therefore

they are not good at detecting bouncing mistakes. Az also performs poorly. The

reason from this can be inferred from the data. Some participants rotated slightly

their wrists when descending, which changed the acceleration readings. Partic-

ipant 1, a fitness instructor, performed the movement adequately and this is in

turn reflected in Figure 6-2a. Even though the exercises were carried out under

supervision, small changes in position while doing a free fall are hard to detect.

Figures 6-2f and 6-2g show that the detection for the lateral raise errors is high

for both signals. The reasons for this is that it is very easy to both over stretch and

under stretch while performing repetitions of this exercise, making the detection

of these mistakes a simple task. Signal Ax is good at detecting rushing repetitions,

under stretching, and bouncing. It performs well for over stretching. Signal Ey,

on the other hand, is good at detecting rushing repetitions, over stretching, and

under stretching. It performs poorly for bouncing, since ideally the rotation for a

correct repetition and bouncing should be the same.

Biceps curl is an interesting exercise in the sense that it is easy to under stretch

but it is hard to over stretch, as is the case for the lying fly. This causes a better

detection of under stretching than for the over stretching case in both the accel-

eration and orientation signatures. Figure 6-2h shows that the acceleration signal

Ax outperforms Ey greatly at detecting the bouncing error type. As mentioned

previously, orientation angles should not change during bouncing. However, due

to inertia during the free fall, it might be the case that there is a slight change.
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(a) Lying fly using Az (b) Lying fly using Ex

(c) Lying fly using Ez (d) Palms-in shoulder press using Ax

(e) Shoulder press using Ax (f) Lateral raise using Ax
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(g) Lateral raise using Ey (h) Biceps curl using Ax

(i) Biceps curl using Ey

Figure 6-2: Prediction accuracy for single signal input model using raw data

Table 6.1 shows the results for the accuracy in counting repetitions for each

participant for selected signals. "Ex1" stands for "Exercise 1", which is the lying

fly. "Ex2" is the palms-in shoulder press, "Ex3" stands for shoulder press, "Ex4"

stands for lying fly, and "Ex5" stands for biceps curl.

From the data it is possible to see that the palms-in shoulder press and the

shoulder press exercises represent a problem. The number of repetitions the sys-

tem counts is more than double the number of repetitions carried out for most of

the participants. The remaining exercises have a much lower error because their

data is smoother, making repetition count simpler.
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Ex1-Ex Ex2-Ax Ex3-Ax Ex4-Ax Ex5-Ey Total

rc rs e rc rs e rc rs e rc rs e rc rs e rc rs e

1 43 40 3 44 100 -56 45 116 -71 43 43 0 48 45 3 223 344 -121

2 46 44 2 45 107 -62 51 106 -55 48 46 2 53 52 1 243 355 -112

3 46 11 35 49 53 -4 45 106 -61 45 47 -2 45 45 0 230 262 -32

4 46 29 17 54 119 -65 51 83 -32 52 48 4 53 49 4 256 328 -72

5 44 25 19 58 134 -76 50 94 -44 49 45 4 48 44 4 249 342 -93

6 49 22 27 50 47 3 51 80 -29 46 44 2 48 37 11 244 230 14

7 44 12 32 49 105 -56 51 94 -43 51 50 1 53 49 4 248 310 -62

8 53 47 6 53 108 -55 56 103 -47 52 52 0 57 54 3 271 364 -93

9 49 44 5 49 99 -51 51 50 1 46 47 -1 46 45 1 241 285 -45

10 46 30 16 43 125 -82 46 64 -18 45 44 1 44 44 0 224 307 -83

Table 6.1: Accuracy in counting repetitions for single input raw data. rc stands
for the correct number of repetitions carried out, rs for the number of repetitions
the system detected, and e for the error.

Figure 6-3 shows the series of correct palms-in shoulder press repetitions for

one participant. It can be seen that there are two peaks per repetition, both of

which have a similar magnitude. Additionally, the crossover value for this signal

is −.92. This value is crossed at least two times per repetition, explaining the

amount of repetitions detected for the palms-in shoulder press and the shoul-

der press, since the system believes there are at least two repetitions for every

repetition.

Since the repetition error is extremely high for the palms-in shoulder press

and the shoulder press, the prediction accuracy results for these exercises are not

reliable. A filtering strategy needs to be used.
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Figure 6-3: Ax signal for palms-in shoulder press correct repetitions
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6.3 Single signal input using filtered data

The prediction accuracy results for the system that uses filtered data are shown

in Figure 6-4. The results are similar, yet the differences are worth discussing.

There is, in most cases, a general increase in accuracy detection for all signals

and all error categories. This is the result of the filtering, which helps the hill-

climbing algorithm detect peaks better. There was also a slight increase in the

bouncing error detection for lying fly and for lateral raise using their respective

acceleration signals.

In general, the moving average smoothing filter improved more the perfor-

mance when an acceleration signal was used. Orientation data, which is smoother

than acceleration data even when raw, was not greatly affected.

The benefits of filtering are better reflected by the results shown in Table 6.2.

There is an improvement for most signals in most exercises, producing a smaller

total error. The results from the palms-in shoulder press and shoulder press are

still very unreliable, so a stronger moving average filter will be used just for study

purposes. There was a trivial improvement for the shoulder press but in general,

due to the characteristics of the data which cannot be smoothed completely using

a simple moving average filter, the accuracy is poor.
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(a) Lying fly using Az (b) Lying fly using Ex

(c) Lying fly using Ez (d) Palms-in shoulder press using Ax

(e) Shoulder press using Ax (f) Lateral raise using Ax
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(g) Lateral raise using Ey (h) Biceps curl using Ax

(i) Biceps curl using Ey

Figure 6-4: Prediction accuracy for single signal input model using filtered data
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Ex1-Ex Ex2-Ax Ex3-Ax Ex4-Ax Ex5-Ey Total

rc rs e rc rs e rc rs e rc rs e rc rs e rc rs e

1 43 42 1 44 104 -60 45 106 -61 43 43 0 48 44 4 223 339 -116

2 46 47 -1 45 97 -52 51 110 -59 48 47 1 53 52 1 243 353 -110

3 46 14 32 49 52 -3 45 67 -22 45 47 -2 45 46 -1 230 226 4

4 46 38 8 54 110 -56 51 67 -16 52 48 4 53 51 2 256 314 -58

5 44 36 8 58 115 -57 50 72 -22 49 45 4 48 46 2 249 314 -65

6 49 32 17 50 44 6 51 71 -20 46 45 1 48 38 10 244 230 14

7 44 10 34 49 99 -50 51 81 -30 51 47 4 53 50 3 248 287 -39

8 53 48 5 53 97 -44 56 105 -49 52 51 1 57 58 -1 271 359 -88

9 49 46 3 49 91 -43 51 52 -1 46 45 1 46 44 2 241 278 -38

10 46 34 11 43 107 -64 46 62 -16 45 44 1 44 44 0 224 291 -68

Table 6.2: Accuracy in counting repetitions for single input filtered data. rc stands
for the correct number of repetitions carried out, rs for the number of repetitions
the system detected, and e for the error.

6.3.1 Aggressive filtering

By using a more aggressive filter better results could be obtained. The selected

span of the filter was five samples. Even though improvements were seen for

prediction accuracy, these improvements were not enough to better the accuracy

in counting repetitions for palms-in and shoulder press exercises. For this reason,

a test was carried out with a span of forty samples. A comparison between the

raw data, a five sample filter, and a forty sample filter can be seen in Figure 6-5.

The results shown in Figures 6-4d and 6-4e represent the results after the forty

sample span. Table 6.3 lists the accuracy in counting repetitions. Notice that the

error represents for most cases less than ten percent of the total repetitions.

This test is useful to highlight two things. First, it shows that filtering is not

everything. There can be low performance if the model data is poor. Second

there is a tradeoff between the accuracy in the number of repetitions and the

computational requirements to perform a filter over forty samples. This tradeoff
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(b) Moving average, 5 sample span
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(c) Moving average, 40 sample span

Figure 6-5: Comparison between raw data and different spans for the moving
average filtered data
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is something that should be further analyzed once the application is ported.

Ex2-Ax Ex3-Ax Total

rc rs e rc rs e rc rs e

1 44 43 1 45 41 4 89 84 5

2 45 49 -4 51 56 -5 96 105 -9

3 49 45 4 45 43 2 94 88 6

4 54 36 18 51 56 -5 105 92 13

5 58 67 -9 50 48 2 108 115 -7

6 50 41 9 51 31 20 101 72 29

7 49 43 6 51 50 1 100 93 7

8 53 55 -2 56 60 -4 109 115 -6

9 49 46 2 51 50 1 100 96 3

10 43 40 3 46 52 -6 89 92 -3

Table 6.3: Accuracy in counting repetitions for single input filtered data with 40
sample span. rc stands for the correct number of repetitions carried out, rs for the
number of repetitions the system detected, and e for the error.

6.4 Multiple voting signals

The results for the prediction accuracy for the multiple signal voting system can

be seen in Figure 6-6.

The multiple voting signals scheme provides the highest error detection from

all the systems, since it combines the strengths of the different signals to pro-

vide one output. The disadvantage is that all the different signals need to be

processed. This processing, however, could be parallelized amongst the different

cores available in smartphone processors.

The accuracy in counting repetitions is presented in Table 6.3. Again, it was

based on the signal that performed better, and thus the results are the same as

those for the filtered data. These results are also the ones that had the minimum
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error.

Ex1 Ex2 Ex3 Ex4 Ex5 Total

rc rs e rc rs e rc rs e rc rs e rc rs e rc rs e

1 43 42 1 44 43 1 45 41 4 43 43 0 48 44 4 223 213 10

2 46 47 -1 45 49 -4 51 56 -5 48 47 1 53 52 1 243 251 -8

3 46 14 32 49 45 4 45 43 2 45 47 -2 45 46 -1 230 195 35

4 46 38 8 54 36 18 51 56 -5 52 48 4 53 51 2 256 229 27

5 44 36 8 58 67 -9 50 48 2 49 45 4 48 46 2 249 242 7

6 49 32 17 50 41 9 51 31 20 46 45 1 48 38 10 244 187 57

7 44 10 34 49 43 6 51 50 1 51 47 4 53 50 3 248 200 48

8 53 48 5 53 55 -2 56 60 -4 52 51 1 57 58 -1 271 272 -1

9 49 46 3 49 46 2 51 50 1 46 45 1 46 44 2 241 231 9

10 46 34 11 43 40 3 46 52 -6 45 44 1 44 44 0 224 214 9

Table 6.4: Accuracy in counting repetitions for multiple single input using filtered
data. rc stands for the correct number of repetitions carried out, rs for the number
of repetitions the system detected, and e for the error.
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(a) Lying fly (b) Palms-in shoulder press

(c) Shoulder press (d) Lateral raise

(e) Biceps curl

Figure 6-6: Prediction accuracy for multiple signal model using filtered data
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Chapter 7

Conclusion and future work

This work researched the possible use of a sinusoidal model to assess the quality

of free-weight exercise repetitions. Acceleration and orientation data from volun-

teers were recorded while performing five different exercises. Repetitions were

carried out according to the correct specifications and incurring in five different

common mistakes. Differences could be observed between the graphs of the cor-

rect and incorrect repetitions. These differences were explored further through

a quantitative analysis and exploited in order to assess the quality of individual

repetitions. By building a model of a correct repetition from a particular exer-

cise type it was possible to compare new repetitions to the standard. It was also

observed that not all signals were relevant in order to determine quality. These

signals could then be left out, reducing the system’s complexity. Based on a series

of criteria, the new repetitions are labeled as correct or as incurring on one of the

different error types analyzed.

Three different systems were developed using the models for the correct rep-

etition. The first one used raw data from a single signal to both build the model

and assess new repetitions. The second one used filtered data again from a single

signal. The third model used a voting algorithm from the signals deemed rele-

vant of each exercise in order to produce the output. The different tradeoffs and

performances of the different systems were analyzed.

The study shows that model-based methods using accelerometer and orien-
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tation data can be used to detect certain free weight mistakes. The extent of the

effectiveness depends in general on the movements and rotations required per

exercise, on the participants fitness level, and on the number of signals used as

input to the system. It was discovered that not all signals are necessary to perform

a quality assessment on individual repetitions.

Carrying out the three different system experiments allowed to confirm that

the acceleration signals differ from the orientation signals in the performance they

have at detecting each of the types of mistakes. Acceleration was discovered to be

particularly effective to detect bouncing, while orientation readings are very ef-

fective at detecting over and under stretching. These signals were then combined

in order to leverage their individual performances on a system that outperforms

single-signal systems.

Even though the results were not entirely satisfactory, the study helped in

understanding the limitations of the approach and of the different types of signals

involved. It can be concluded that further research needs to be carried out, but

the results in the exercises that involved rotations are favorable towards the use

of a sinusoidal model to detect mistakes and help prevent injuries.

7.1 Future work

A series of recommendations for future work are offered in order to improve the

system’s performance. Alternative research lines are also presented that derive

from findings discovered during the development of this study.

In order for a fitness assistant such as this one to reach the market and be suc-

cessful, a study on how to better deliver feedback to the user needs to be carried

out. Should feedback be given after each repetition or after a series of repetitions?

How should feedback be given in case multiple mistakes are detected? Different

alternatives such as sound beeps, spoken feedback, and bursts from a vibration

motor exist to notify the user and they should all be considered. The timing of

the feedback with respect to the repetition is something that should also be taken

62



into account.

Alternative methods for accuracy in counting repetitions and prediction ac-

curacy exist. One of these approaches could be the use of a different filtering

algorithm in order to improve data smoothness. Dynamic time warping or a dif-

ferent model construction technique could yield better results. These approaches

will offer different tradeoffs which in turn might be worth studying further.

It was discovered that volunteers that exercised regularly produced smoother

data than volunteers that engaged in little or no physical activity. Their data also

resembled more a perfect sinusoidal, leading to better results for physically active

users since a sinusoidal motion model was used. The differences result from less

trembling caused by muscle tiredness and from a better muscle control in more

physically-fit users. An interesting question that raised from this discovery is

whether or not these differences could be used to estimate users’ fitness levels

and to track their progress.
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Data recording plan
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1 Introduction

On-body motion sensors are becoming more ubiquitous and thus offer an excellent
opportunity to gather measurements by monitoring daily activities without becoming ob-
trusive. Multiple sensors such as accelerometers, gyroscopes, GPS receivers, and micro-
phones placed in different locations are frequently used to ensure proper coverage due to
the diverse range of activities carried out by people throughout the day. A common ar-
chitecture in this type of scenarios is to interconnect the sensors to a central hub for data
collection, usually a smartphone. The reasons for this are the increasing processing power,
the wireless connectivity offered, and the Internet access smartphones provide.

Exercise and fitness related activities will be the main focus of this project, particu-
larly those that involve dumbbells and weights. These exercises, a complement to cardio
activities, pose a danger to users when done incorrectly. A study [2] was carried out on
the epidemiology of weight-training related injures. One of its findings is that sprains,
fractures, dislocations, and strains are amongst the most common injuries. An adequate
technique and professional supervision have been found to be among the most important
strategies in the prevention of injuries [1].

For the development of this project measurements will be carried out using 9-DOF
inertial measurement units (IMUs). Measurements from participants performing a set
of predefined exercises will be obtained and used in developing an understanding of the
differences between correct and incorrect repetitions. The objective is to develop a system
that will help to improve the technique and thus aid in injury prevention.

When obtaining data for a study, it is of vital importance to detail the procedure
in such a way that measurements can be easily replicated. This document describes how
the recordings of the data-set used took place. The remaining part of this document is
organized as follows: Section 2 presents the details on the IMU used. In Section 3 a
a thorough explanation of the sensor placement, participant information, and activities
carried out is presented. Section 4 shows the precise order in which the script was carried
out and Section 5 summarizes the document and presents some conclusions.

1 Introduction TU Eindhoven 1
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2 Inertial Measurement Unit

The measurements will be obtained by using Invensense’s MotionFit SDK, depicted
in Figure 1. Data from the accelerometers and gyroscopes will be sampled at 50 Hz.
Magnetometer data will not be used. Recordings will be carried out from participants that
will wear two wrist straps, one on each wrist. The wrist straps will house a MotionFit
SDK. The acceleration values obtained consist of the acceleration in each of the axes x, y,
and z. The gyroscopes’ output is given in quaternion representation, consisting of the four
values x, y, z, and w.

The SDK contains an MPU-9150, a 9-axis single-chip tracking device optimized for
wearable sensor applications. The SDK includes a Bluetooth Radio Module for wireless
communication and a rechargeable battery. Data from the SDKs is sent via Bluetooth to
a smartphone.

Figure 1: MotionFit SDK

2 Inertial Measurement Unit TU Eindhoven 2

69



Data Recording Plan November 3, 2013

3 Recording Details

3.1 Sensor Placement

As mentioned before, each participant will be wearing two wrist straps, one on each
wrist. The placement of the sensors affects the values in the recordings. For this set of
recordings, the SDKs were placed within the wrist straps as shown in Figure 2. When
the wrist strap is placed on a flat surface, the circuit board components should be facing
up. The ON/OFF switch should be on the left opening for easy access and the Bluetooth
Radio Module should be in the steel buckle side.

Figure 2: Sensor placement within wrist strap

Once the SDK is properly housed, participants should put the wrist straps on as they
would with a watch. The circuit board should be in the outer part of the wrist. Figure 3
shows a proper placement. The perspective of the image is as seen by the volunteer. The
microUSB connector should be facing the volunteer’s body. The wrist straps should be
comfortable to the user, yet tight in order to prevent displacements.

3.2 Participant selection

Ten participants were chosen for this experiment, with five female and five male
subjects. The mean age is 26.8 years and the corrected sample standard deviation is 2.89
years. Table 1 shows in detail the information for the different subjects recorded.

Sex F F F F F M M M M M
Age 24 24 26 27 33 24 26 26 28 30

Table 1: Gender and age of volunteers

3 Recording Details TU Eindhoven 3
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(a) Left wrist (b) Right wrist

Figure 3: Appropriate placement on wrists

3.3 Activities

This section presents the exercises1 that will be recorded, being carried out by the
volunteers. Note that these exercises require the hands to be synchronized during every
repetition. The reason for this will be explained in the next section.

1. Lying Fly

2. Palms-In Shoulder Press

3. Shoulder Press

4. Lateral Raise

1Images taken from www.dumbbell-exercises.com

3 Recording Details TU Eindhoven 4
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5. Biceps Curl

3.4 Common mistakes

In addition, exercises will also be carried out but this time done incorrectly. In order
to prevent injuries, the weights used will be minimal (1 kilogram) and participants will be
supervised. Warming up is mandatory before carrying out these exercises. The common
exercise mistakes were obtained from [3], [5], and from coaches at the Student Sport Centre
Eindhoven. The common mistakes include:

1. Rushing repetitions: doing weight-lifting repetitions too fast raises your blood pres-
sure and increases the risk for joint injury, while at the same time comprising results

2. Incorrect range of motion due to over stretching/under stretching

3. Not keeping dumbbells leveled

4. Bouncing dumbbells or using gravity to descend instead of the desired smoothly
controlled motion

In the previous section it was mentioned that all the exercises required the hands to
be synchronized during every repetition. This was done on purpose to test for the mistake
of not keeping the dumbbells leveled. Not keeping dumbbells leveled occurs naturally
since one arm is always stronger than the other one, depending on the laterality of each
individual.

3.5 Ground truth determination

The exercises will be executed under the supervision of a researcher who will perform
labeling tasks for each activity on the recording script (see Section 4). Each label consists
of two pieces of information:

1. Time stamp

2. Exercise description

The ACTLog tool [4] will be used in this process.

3 Recording Details TU Eindhoven 5
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4 Recording script

The complete script is as shown:

1. Lying Fly

1.1. 10x correct

1.2. 10x rushing repetitions

1.3. 10x over stretching

1.4. 10x under stretching

1.5. 10x not leveled

1.6. 10x bouncing

2. Palms-In Shoulder Press

2.1. 10x correct

2.2. 10x rushing repetitions

2.3. 10x over stretching

2.4. 10x under stretching

2.5. 10x not leveled

2.6. 10x bouncing

3. Shoulder Press

3.1. 10x correct

3.2. 10x rushing repetitions

3.3. 10x over stretching

3.4. 10x under stretching

3.5. 10x not leveled

3.6. 10x bouncing

4. Lateral Raise

4.1. 10x correct

4.2. 10x rushing repetitions

4.3. 10x over stretching

4.4. 10x under stretching

4 Recording script TU Eindhoven 6
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4.5. 10x not leveled

4.6. 10x bouncing

5. Biceps Curl

5.1. 10x correct

5.2. 10x rushing repetitions

5.3. 10x over stretching

5.4. 10x under stretching

5.5. 10x not leveled

5.6. 10x bouncing

It is estimated that the participant will take one hour to perform the script, including
a brief informative introductory talk, warm up, and short resting breaks. The battery
lifetime has been verified for both the MPU-9150 (slightly above 2 hours) and for the HTC
One X smartphone that will be used for the recordings.

4 Recording script TU Eindhoven 7
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5 Concluding remarks

The analysis behind the data recording procedure and other related aspects has been
illustrated. The methodology followed has been broken down and a list of activities to be
measured has been presented. The hardware used in obtaining these measurements was
detailed. The script followed has also been included to act as a guide for future reference. In
essence, the document contains the information necessary to replicate the measurements.

From the gathered data, analyses will be carried out in order to:

1. Visualize the acceleration and orientation characteristics of each exercise in order to
develop an understanding of correct and incorrect exercises.

2. Develop a model to distinguish between correct and incorrect repetitions.

With this elements it will be possible to start the construction of a wearable system
that will aid in improving the free-weight exercise technique of individuals in order to
prevent injuries.

5 Concluding remarks TU Eindhoven 8
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Appendix B

Acceleration and orientation graphs

for correct exercises
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(a) Acceleration for lying fly (b) Euler angles for lying fly

(c) Acceleration for palms-in shoulder press (d) Euler angles for palms-in shoulder press

(e) Acceleration for shoulder press (f) Euler angles for shoulder press
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(g) Acceleration for lateral raise (h) Euler angles for lateral raise

(i) Acceleration for biceps curl (j) Euler angles for biceps curl

Figure B-1: Acceleration and orientation graphs for the correct exercises, left hand
only. The x axis is shown in blue, y in green, and z in red.
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Appendix C

Acceleration and orientation graphs

for correct and incorrect lying fly
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(a) Acceleration for correct lying fly (b) Euler angles for correct lying fly

(c) Acceleration for rushing lying fly (d) Euler angles for rushing lying fly

(e) Acceleration for over stretching lying fly (f) Euler angles for over stretching lying fly
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(g) Acceleration for under stretching lying fly (h) Euler angles for under stretching lying fly

(i) Acceleration for bouncing lying fly (j) Euler angles for bouncing lying fly

Figure C-1: Acceleration and orientation graphs for the correct and incorrect ver-
sions of lying fly, left hand only. The x axis is shown in blue, y in green, and z in
red.
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Appendix D

Acceleration and orientation graphs

for not-leveled lying fly
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(a) Acceleration for correct lying fly, left hand (b) Acceleration for not-leveled lying fly, left hand

(c) Acceleration for correct lying fly, right hand (d) Acceleration for not-leveled lying fly, right
hand
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(e) Euler angles for correct lying fly, left hand (f) Euler angles for not-leveled lying fly, left hand

(g) Euler angles for correct lying fly, right hand (h) Euler angles for not-leveled lying fly, right
hand

Figure D-1: Acceleration and orientation graphs for the correct and not-leveled
versions of lying fly for both hands. Note that the y-axis scale might be different
for each picture. The x axis is shown in blue, y in green, and z in red.
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