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Abstract

Click prediction has applications in various areas such as advertising, search and online sales.
Usually user-intent information such as query terms and previous click history is used in click
prediction.

However, this information is not always available. For example, there are no queries from
users on the webpages of content publishers, such as personal blogs. The available information
for click prediction in this scenario are implicitly derived from users, such as visiting time and IP
address. Thus, the existing approaches utilizing user-intent information may be inapplicable in this
scenario; and the click prediction problem in this scenario remains unexplored to our knowledge.
In addition, the challenges in handling skewed data streams also exist in prediction, since there is
often a heavy traffic on webpages and few visitors click on them.

In this thesis, we propose to use the pattern-based classification approach to tackle the click
prediction problem. Attributes in webpage visits are combined by a pattern mining algorithm to
enhance their power in prediction. To make the pattern-based classification handle skewed data
streams, we adopt a sliding window to capture recent data, and an undersampling technique to
handle the skewness.

As a side problem raised by the pattern-based approach, mining patterns from large datasets
is addressed by a distributed pattern sampling algorithm proposed by us. This algorithm shows
its scalability in experiments.

We validate our pattern-based approach in click prediction on a real-world dataset from a
Dutch portal website. The experiments show our pattern-based approach can achieve an average
AUC of 0.675 over a period of 36 days with a 5-day sized sliding window, which surpasses the
baseline, a statically trained classification model without patterns by 0.002. Besides, the average
weighted F-measure of our approach is 0.009 higher than the baseline.

Therefore, our proposed approach can slightly improve classification performance; yet whether
this improvement worth deployment in real scenarios remains a question.
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Chapter 1

Introduction

With the proliferation of the Internet, click prediction, i.e., predicting the next click of a user,
has received increasing attention. Prediction of the clicks on search engine result pages can be
the reflection of a user’s judgment of search results; hence results can be ranked descendingly
according to the probabilities of predicted clicks. It also plays a crucial role on sponsored search,
which is a multi-billion dollar business that generates most of the revenue for search engines. In
sponsored search, the prediction is used to influence ranking, filtering, placement, and pricing of
ads [10], by selecting ads with high probabilities of being clicked and placing them in a prominent
position in descending order of these probabilities.

Click prediction has been well studied in search engine result pages and sponsored search. Pre-
vious studies usually take advantage of two major kinds of information for click prediction, i.e.,
a) relevance information representing the similarity between queries and webpages, and b) his-
torical click-through information representing a users’ previous preferences on ads [43]. These
existing works mainly focus on interpreting ad clicks in terms of what users seek (i.e., relevance
information) and how users choose to click (historically clicked-through information).

The information on queries and users has indeed shown its power in click prediction on search
engine result pages and ads [10, 42], however, this information may not always be accessible. For
example, on the webpages of content publishers , there are usually no queries from a user; even
worse, user information such as age and gender is not presented if the user is not registered on
this website. The only available information for click prediction are attributes implicitly derived
from users, such as visiting times, IP addresses, and browser versions. Therefore, click prediction
on such webpages may need additional effort than that on search engine result pages with explicit
user information.

The classification using interrelated attributes may have a better performance than that using
individual attributes, for attributes are often not independent from each other. This motivates
us to group attributes effectively , and then use the discriminative groups to boost classification
performance in click prediction. This idea is essentially behind the pattern-based classification
approach, which utilizes frequent discriminative patterns , where a pattern is a group of attribute
values. The effectiveness of this approach in classification has been exploited by previous studies
in different domains, including associative classification, graph classification, text categorization
and protein classification [11].

In this thesis, we take advantage of patterns to predict user clicks on index pages, by integrat-
ing discriminative patterns mined from historical datasets into classification modeling over big
data streams. The effectiveness of patterns in click prediction will be experimentally justified in
Chapter 5.

Distributed Context Discovering for Predictive Modeling 1



CHAPTER 1. INTRODUCTION

1.1 Problem Setting

The click prediction problem in our setting is to predict whether a user will click on any link,
while the user is visiting the index page of a website.

Click prediction is usually formulated as a supervised learning problem [10], which is the task of
inferring a function, i.e. classification model, from labeled data and then applying this classification
model to predict new data. Historical data, usually pageviews described by attributes such as IP
address and visiting time of user visits, are used to train classification models with a binary
label of two categories: click and non-click ; and then the trained models will classify incoming
pageviews on an index page into these two categories. Usually, the historical data cannot fit into
main memory; and new pageviews are continuously being generated at a high speed. Formally,
assume there is a set of n training instances, D = {xi, ci}ni=1, where xi is an instance and ci is
the corresponding class label (1: click or 0: non-click). Given a new instance x, the problem is
to calculate its corresponding class label c.

The initial challenge of our click prediction problem is that the available attributes used as
features are weak in classification. Moreover, pageviews coming at a high speed lead to the
difficulties existing in handling big data streams. These challenges are described below.

1.1.1 Weak Features

Click prediction in sponsored search and advertisements are studied in [10, 42], with promising
results in their experiments. However, their methods may not be suitable to tackle the problem
in our setting, for the lack of query-related and user-specific features. A feature, in the context
of classificaion, is a measurable representative property of an object. Specifically, query terms
together with intent-related features (e.g. intent type: shopping and recreation) are important
in predicting advertisement clicks [42]; and user-specific click feedback features and demographic
features can significantly improve the classification performance of the click prediction in sponsored
search [10].

Whereas, these features do not exist when an anonymous user directly opens the index page of a
website. Instead, only limited information of the user is available in his/her visit, including his/her
visiting time, IP address, screen resolution, and user agent which comprises the information of
his/her browser and operating system. Unlike query terms, this information is not intentionally
generated by users, thereby neither directly related to users’ intents nor their clicks. Moreover,
this information cannot represent previous behaviors of a user since user identity is not recorded.
Therefore, the available features in our setting tend to be less representative than user-specific
ones and query terms.

In addition to the challenge caused by weak features, other challenges in streaming big data
also apply, as described in the following.

1.1.2 Streaming Big Data

Traditional challenges in mining over big data streams still also in our setting, since the data of
our click prediction problem is a continuous pageview stream at a high speed. For example, the
visit rate on one famous Dutch website is 46 times per second, and 4 million per day on average.

The high velocity of the data stream requires a fast predictive modeling in training, as well as
in predicting coming data. Furthermore, models should be updated since there might be concept
drift in streaming data.

Additionally, the pattern-based classification approach raises a sub-problem, namely discover-
ing useful patterns over big data streams. Discriminative frequent patterns have shown their power
in classification; however, mining them from large datasets remains unaddressed. Traditional pat-
tern mining algorithms assume that datasets fit into main memory, thereby not that useful in our
setting. Hence, new algorithms that can mine discriminative patterns in an out-of-memory fashion
should be developed, and be integrated into our pattern-based approach..

2 Distributed Context Discovering for Predictive Modeling



CHAPTER 1. INTRODUCTION

1.1.3 Skewed Class Distribution

The class distribution of the pageview data stream is highly skewed. In reality, most users only
take a glance at the index page of a website, then leave without any click, leading to this highly
skewed class distribution. For instance, there are only around 4% people who clicked after visiting
the index page of a Dutch portal website. One detriment of this skewed distribution is that a clas-
sification model may only take the majority class into consideration. For example, a classification
model can achieve a nearly 100% accuracy if it classifies all instances as the majority class; but
this model is rarely useful in reality.

There are various methods that successfully address the classification problem over skewed data
streams. We integrate existing methods into our pattern-based classification approach to tackle
the click prediction problem, as described in Chapter 4.

1.2 Approach and Contributions

In this thesis, we study discriminative pattern-based classification in a streaming big data set-
ting. The challenges described above are addressed. In particular, 1) weak features are properly
grouped to increase their discriminative powers by discriminative pattern mining coupled with a
proposed post-processing procedure; 2) discriminative patterns in large datasets can be mined by
our proposed distriubted pattern sampling algorithm in a distributed out-of-memory fashion using
a reservoir sampling technique; 3) pattern mining is integrated into streaming data classification
using the sliding window technique; and 4) problems caused by skewed class distribution are ad-
dressed by an undersampling technique. Finally, these methods are experimentally evaluated in a
case study.

1.2.1 Contributions

The contributions of this thesis are summarized below.

1. We have parallelized a pattern sampling algorithm by utilizing reservoirs with limited mem-
ory, enabling mining discriminative patterns from large datasets.

2. We have leveraged pattern-based classification approach to a skewed streaming data setting,
i.e. click prediction.

1.3 Organization of This Thesis

The remainder of this thesis is organized as follows. Chapter 2 gives the preliminary knowledge of
classification, pattern mining, and pattern-based classification. Chapter 3 presents a solution of
mining discriminative patterns from large datasets. Chapter 4 describes a streaming classification
approach with the help of discriminative patterns. Chapter 5 employs the pattern-based approach
to a real-world setting, and experimentally evaluates this approach. Chapter 6 concludes the
thesis.

Distributed Context Discovering for Predictive Modeling 3





Chapter 2

Click Prediction as a Classification
Task

The pattern-based classification approach defines discriminative patterns as features, which may
boost classification performance and make predictive results more semantically understandable.
This approach usually consists of two steps: pattern mining and model learning, both of which
are important problems and well studied in data mining and machine learning. In this chapter, a
brief review of these two problems is presented in Section 2.1 and 2.2; followed by an introductory
study of the combination of the two problems — the pattern-based classification approach.

2.1 Classification

Classification is the task of assigning objects to one of several predefined categories. The input
data for a classification task is a collection of labeled instances, each of which is characterized by
a tuple (x, c), where x is the attribute vector and c is a special attribute, designated as the class
label (also known as category or target attribute) [40]. x can be an individual instance without
any label. The value types of attributes can be either continuous or discrete, while the class label
must be discrete.

Formally, the classification task can be stated as: given training instances {(x1, c1), . . . , (xn, cn)},
learn a target function h : X → C which maps an instance x ∈ D to the class label c ∈ C. The
target function is also known informally as a classification model. A classification model can serve
as an explanatory tool to distinguish between objects of different classes; and it can also be used
to predict the class label of unknown instances.

A classification technique (or classifier) is a systematic approach to building classification mod-
els from an input data set. Examples include decision tree classifiers [38], rule-based classifiers,
neural networks [26], support vector machines [13], and naive Bayes classifiers. Each technique em-
ploys a learning algorithm to identify a model that best fits the relationship between the attribute
set and class label of the input data. The model generated by a learning algorithm should both
fit the input data well and correctly predict the class labels of instances it has never seen before.
Therefore, a key objective of the learning algorithm is to build models with good generalization
capability; i.e., models that accurately predict the class labels of previously unknown instances.

A general approach for solving classification problems usually starts with building a classifica-
tion model on a training set consisting of instances whose class labels are known. Then this built
model is subsequently applied to the test set, which consists of instances with unknown labels.

2.1.1 Performance Metrics

Evaluation of the performance of a classification model is based on the counts of test instances
correctly and incorrectly predicted by the model. These counts are tabulated in a table known as

Distributed Context Discovering for Predictive Modeling 5



CHAPTER 2. CLICK PREDICTION AS A CLASSIFICATION TASK

a confusion matrix. Table 2.1 depicts the confusion matrix for a binary classification problem, in
which each entry denotes the number of instances from an actual class classified to be a predicted
class. For example, true positive is the number of correct predictions that an instance is positive.
Based on the entries in the confusion matrix, the total number of correct predictions by the model
is (tp+ tn), and the total number of incorrect predictions is (fp+ fn).

Table 2.1: Confusion matrix for a binary classification

Actual
Positive Negative

Predicted
Positive true positive (tp) false positive (fp)
Negative false negative (fn) true negative (tn)

Different metrics of classification performance can be then defined, such as accuracy :

Accuracy =
Number of correct predictions

Total number of predictions
=

tp+ tn

tp+ fp+ fn+ tn

For both the positive class and negative class, precision and recall can be defined. Precision is
the fraction of retrieved instances that are relevant, while recall (also known as sensitivity) is the
fraction of relevant instances that are retrieved. Particularly, for the positive class, the precision
and recall are:

1-Precision =
tp

fp+ tp
, 1-Recall =

tp

tp+ fn

While for the negative class, the corresponding precision and recall are:

0-Precision =
tn

fn+ tn
, 0-Recall =

tn

tn+ fp

A measure that combines precision and recall is the harmonic mean of precision and recall, the
traditional F-measure:

F = 2 · Precision · Recall

Precision + Recall

This is also known as the F1 measure, because recall and precision are evenly weighted. For both
the positive and the negative class, there is an F-measure respectively, denoted as 0-F and 1-F .

The weighted average F-measure then can be defined to indicate the overall performance:

F = 1-F · #positives

Total number of instances
+ 0-F · #negatives

Total number of instances
(2.1)

The performances of classifiers depend greatly on the application constraints, assumptions
about datasets, and characteristics of the data to be classified. There is no single classifier that
works best, if no prior assumptions about the nature of the classification are made.

2.2 Pattern Mining

Pattern mining is a data mining method that involves finding existing patterns in data. A pattern
can be an itemset, a subsequence, or a substructure in datasets. In the context of this thesis, we
refer patterns to itemsets only. Examples of pattern mining include frequent pattern mining which
identifies sets of items that appear together in a transaction dataset with a minimum occurence
threshold. Frequent pattern mining was first proposed by Agrawal et al. [2] to analyze customer
buying habits by finding associations between the different items that customers place in their
shopping baskets. Such information can lead to increased sales by helping retailers do selective
marketing and arrange their shelf space. Another example of pattern mining is emerging pattern
mining [17] which discovers itemsets whose occurrence times increase significantly from one dataset
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to another. Emerging patterns can capture emerging trends in timestamped databases or useful
contrasts between data classes.

Pattern mining is formally defined as follows. Let I be a set of items, i.e. a set of binary
elements. Moreover, let D = x1, . . . ,xm be the transaction dataset, i.e. a bag of sets. Each record
in D is a subset of I, i.e. xi ∈ D : xi ⊆ I. (We reuse symbole x since itemsets can technically
be represented as an attribute vector.) Given a dataset D over I, the pattern space L(D) is the
power set P(I) of the items. Intuitively, a pattern space consists of all the combinations of the
items in a given set of items.

An interestingness measure of a pattern space L(·) is a function

q : {(D,α) : D a transaction dataset, α ∈ L(D)} → R+, (2.2)

which quantifies the interestingness of a pattern α against a transaction dataset D.
However, often there is a fixed dataset that is clear from the context. In such cases, we can

simplify the notation of an interestingness measure as q(D, ·) = q(·) by omitting the first argument.
Given an interestingness measure q over a dataset D and a minimum interesting threshold θ,

pattern mining is the task of finding a collection P of interesting patterns:

P = {α ∈ L(D) | q(D,α) ≥ θ}. (2.3)

Following the work of Boley et al. [7], three types of interestingness measures are considered
here: frequency, area and discriminativity.

- Frequency is the most well known and used measure, and is equivalent to the proportion of
the support set of a pattern to the dataset, i.e. the number of records in which a pattern
occurs to the number of all the records in the dataset. More formally, for a pattern α, the
support set of α in D denoted as Dα is defined as the multiset of all records in D in which
all elements of α are contained, i.e. Dα = {x ∈ D : α ⊆ x}. The interestingness measure
support is qsupp(D,α) = |Dα|, and the interestingness measure frequency is qfreq(D,α) = Dα

D .

- Area [23] is another interestingness measure considered here: qarea(D,α) = |α| · |Dα|. In-
tuitively, this measure corresponds to those patterns that optimize for both the length of a
pattern (i.e. contains many items from I) and its support.

- Discriminativity is applicable in a supervised setting: assume that for every record x ∈ D,
a binary class label, either positive or negative, is assigned, then let D+ denote the records
that belong to the positive class and D− the records with a negative class label. The
discriminativity measure favors patterns that have high support in one class and low support
in the other class. This type of patterns is well studied, for example in the setting of
emerging patterns [16] and contrast set mining [4]. The discriminativity for the positive
class is then formally defined as: q+disc(D,α) = |D+

α | · |D− \D−α |; and for the negative class,
it is q−disc(D,α) = |D−α | · |D+ \D+

α |.

Mining interesting patterns from a large dataset is challenging since the search space is expo-
nential to the number of distinct single items. Moreover, determining the interestingness of a
pattern against a dataset needs one complete scan of this dataset, which costs considerable time.
Therefore, exhaustively enumerating all patterns and selecting the ones of the most interest in
a large dataset is unlikely to be acceptable. In fact, existing pattern mining algorithms tend to
search in such a large space in heuristic ways, such as the influential frequent pattern mining
algorithm Apriori proposed by Agrawal et al. [3]. The Apriori algorithms utilizes a downward
closure property to minimize the search space: an itemset is frequent only if all of its sub-itemsets
are frequent. So that it proceeds by identifying the frequent individual items and extending them
to larger and larger itemsets as long as those itemsets appear sufficiently frequent in the dataset.
Han et al. [25] devised an FP-growth method that mines the complete set of frequent itemsets
without candidate generation in a divide-and-conquer way using a special data structure named
frequent-pattern tree (FP-tree), which retains the itemset association information.
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Although there is an abundant literature dedicated to efficient frequent pattern mining algo-
rithms, the key problem is not the efficient mining of the complete set of frequent patterns, which
is usually very huge but not so useful. Instead, the key problem is the effective identification
of a rather small but truly interesting set of frequent patterns, i.e., the interpretable (or com-
prehensible) and applicable (e.g., useful in classification) patterns, and the exploration of their
applications in multiple domains. Furthermore, traditional pattern mining algorithms tend to
exhaustively enumerate item combinations, and assume that datasets and employed data struc-
tures fit into main memory. In Chapter 3, we discuss these issues in more detail, and propose an
algorithm that can mine interesting patterns from large datasets.

2.3 Pattern-based Classification

The application of frequent patterns in classification appeared in sporadic studies and achieved
initial success in the classification of relational data, text documents and graphs. The main
idea of pattern-based classification is that patterns define new features, which can be used in a
classification model.

Figure 2.1 illustrates a simple example of the pattern-based classification. In the left table,
each row represents an instance with binary attributes x and y, plus its class label c. A blue cell
means value 1, otherwise 0. Suppose we have mined one pattern {x = 1, y = 1}. Whether this
pattern is present or not in an instance can be seen as a feature of that instance. Adding this
feature to the original data table, an augmented data table is obtained as shown in the right in
Figure 2.1. Subsequently, the augmented dataset is linearly separable in (x, y, xy) by function
f((x, y, xy)T ) = x+ y − 2xy.

Figure 2.1: Pattern-based classification on transaction data

The pattern-based classification problem is formally defined as follows. Let D be a training
dataset, I = {i1, i2, . . . , im} be the set of distinct items, and C = {c1, c2, . . . , ck} be the set of class
labels. Assume D contains a set of n labeled training instances D = {xi, ci}ni=1, where xi ⊆ I
is a set of items and ci ⊆ C is a class label. Given a set of patterns P mined according to an
interestingness measure q, D is mapped into a new dataset D′ = {x′i, yi}ni=1, where x′i ⊆ I ∪ P .

Pattern-Based Classification is learning a classification model in the feature space of single
features as well as interesting patterns, where interesting patterns are generated w.r.t an interest-
ingness measure q.

The pattern-based classification approach usually includes two steps: 1) pattern mining,
2) model learning. In the pattern mining step, the dataset is partitioned according to the class
label, and patterns are subsequently generated in each partition with regard to an interestingness
measure, such as frequency or discriminativity. The collection of mined patterns P is the feature
candidates. Pattern post-processing(usually denoted as feature selection) often follows after pat-
ter mining. The set of selected features is Ps. With Ps , the dataset D is transformed to D′.
The feature space includes all the individual features as well as the selected patterns. Finally, a
classification model is built on the dataset D′. A general learning algorithm could be used as the
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classification model. Before the classification model is applied to the test instances for prediction,
the test instances will be transformed into the new feature space accordingly.

2.4 Summary

We reviewed two key problems in data mining and machine learning: classification and pattern
mining. In classification, models are trained on labeled instances with known labels, to predict in-
stances with unknown labels. In addition, different evaluation metrics of classification performance
were described. In pattern mining, itemsets are mined according to user-specific interestingness
measures. A combination of these two tasks is pattern-based classification, which defines patterns
that can differentiate between classes as new features for classification.

Distributed Context Discovering for Predictive Modeling 9





Chapter 3

Distributed Pattern Mining

3.1 Introduction

The pattern-based classification approach to click prediction starts with discovering useful patterns
from data. A variety of algorithms have been proposed to address this discovering as described in
Section 2.2 and 3.5; however, one of the traditional assumptions that data fit into main memory no
longer applies in some situations due to the enormous growth of available data size. For example,
web accesses log data for a popular Internet portal in the Netherlands consists of 200GB for only
two months, let alone the multitude of datasets of interest for popular social media services such
as Facebook, Twitter and Youtube. This “big data” setting causes severe problems for traditional
itemset mining algorithms to be applied in this setting. The main reasons for this are:

1. Most frequent itemset mining algorithms assume that the transactional database fits into
main memory, which is obviously invalid in the big data setting.

2. In general, frequent itemset mining algorithms perform an exhaustive search over a huge
pattern space. Although this is in principle possible for big data, it will most likely lead to
severe computational cost. One popular approach to handle the high computational costs is
to use parallelized frequent itemset mining algorithms.

Related to expensive enumeration of all frequent patterns, for most applications only a few
patterns can effectively be utilized. Hence, the computational burden devoted on enumerating
all frequent patterns is wasted on patterns that will be ignored. Moreover, deriving and storing
all frequent patterns from big data may lead to severe problems, because the output size of all
frequent patterns if often multiple times of the size of the input data when given a low minimum
support parameter.

The work by Boley et al. [7] recently proposed a sampling algorithm that directly samples k
desired patterns from the pattern space. The advantage of this approach is that the sampling
algorithms achieve near optimal time complexity per pattern as well as the ability to control
the distribution of the produced patterns. However, most frequent itemset mining algorithms
the direct sampling approach assumes that the input data fit into main memory, which makes it
inapplicable for large datasets.

A popular paradigm to efficiently extract and compute information from large datasets is the
MapReduce framework. Emerged from Google’s needs to efficiently compute over extreme large
sets of raw Internet data, MapReduce is designed to efficiently distribute the task at hand over large
distributed computing facilities. In particular, MapReduce provides the user with an abstraction
layer over the physical cluster and handles inter-machine communication, partitioning the data
and job scheduling [14]. In a typical setting a MapReduce task runs on a cluster of commodity
machines, which can be extended by adding resources on demand.

In this chapter we extend the direct pattern sampling method proposed by Boley et al. [7], such
that it is able to cope with large datasets. Specifically, we transform the method into the Hadoop
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MapReduce framework, resulting in a distributed parallel frequent itemset mining algorithm with
low memory demands. We performed extensive empirical evaluation on real-world and synthetic
datasets to investigate the scalability and speedup of the MapReduce implementation.

In this chapter we will show that:

• The Hadoop MapReduce implementation of the frequency and area-based sampling algo-
rithms obtain a good speedup, which makes these approaches suitable for big data.

• The memory requirements are only dependent on the size of the output data.

The rest of this chapter is organized as follows. In section 3.2 basic concepts and notation are
introduced, and a brief description of the direct sampling algorithm [7] is given. In the following
section we present our adaption of the sequential direct sampling algorithm into the MapReduce
framework and discuss the memory usage of the method. Moreover, we also discuss implementation
details and point out their affection on the performance of the system. Section 3.4 is concerned
with the extensive experimental evaluation of the method. In particular we perform our method
on synthetic and real datasets on a large (up to 500 mappers) Hadoop MapReduce cluster. In the
final section we draw conclusions and give directions for further research.

3.2 Preliminaries

In this section we introduce the concepts and notations used in the rest of this chapter. Moreover,
we will briefly describe the sequential two-step direct sampling method proposed by [7].

In addition to the notations in Section 2.2, let P(X) denote the power set of a finite set X
and let u(X) denote the uniform probability distribution on X. Moreover, for positive weights w :
X → R+ let w(X) denote the distribution on X obtained by normalizing w, i.e., the distribution
described by x 7→ w(x)/

∑
x′∈X w(x)—assuming that there is an x ∈ X with w(x) > 0.

The interestingness measures considered here are frequency, area, and discriminativiy.

3.2.1 Sequential Sampling Algorithms

With the notation and concepts previously introduced, we are now able to describe the sequential
two-step direct sampling method [7]. The general outline of the algorithm is as follows: 1) first
one select a data record (tuple of data records in case of discriminativity) proportional to the
probability distribution of interest, 2) followed by a sampled subset of the previously selected data
record (or tuple of data records) again proportional to the probability distribution of interest.
A important observation of this approach is that one first have to compute the weights of all
records, or tuples in case of discriminativity, and then sample the k records (tuples) from which
the subsamples are reported as patterns of interest. Hence, in case of the interestingness measure
of frequency is used a preprocessing that is linear w.r.t transaction database is needed, while in
case of discriminativity this preprocessing step is quadratic. Obviously, when the data fit into
main memory this preprocessing can be easily solved.
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Algorithm 1 Frequency and Area-based Pattern Sampling

Input: a dataset D over ground set I,
a number of required patterns k,
an interestingness measure q

Output: k random sets of items, with each set R ∼ q(P(I))
1: calculate weights for each record x ∈ D according to q
2: Out ← ∅
3: for i← 1 to k do
4: draw a record x ∼ w(D)
5: draw a subset R ⊆ x according to q
6: Out ← Out ∪ {R}
7: end for
8: return Out

The pseudocode of the direct sampling algorithm for the frequency and area measure is shown
in Algorithm 1. For the frequency measure, the weight of data record x ∈ D is defined as
w(x) = 2|x|, while the subset of the data record is drawn with uniform probability over all the
subset, i.e. R ∼ u(P(x)). In case that the area measure is used, the weights are defined as:
w(x) = |D|2|D|−1, and the subsets from the records are sampled by first determining the size
of the subset with weights 1, . . . , |x| and then sample with uniform probability over all subsets
of the previously determined size. A detailed description of the direct sampling algorithm for
the discriminativity measure is given in Algorithm 2. Lines 1–3 of the algorithm describe the
computation of the weights, while the actual sampling of the patterns is described at lines 5–6.
A more detailed description of the direct sampling method, justification and correctness of the
method is provided in [7].

Algorithm 2 Discriminativity-based Pattern Sampling

Input: datasets D+, D−, number of required patterns k
Output: k random sets of items, with each pattern R ∼ qdiscP(I)

1: for all (x+,x−) ∈ D+ ×D− do

2: w(x+,x−) = (2|x
+\x−| − 1)2|x

+∩x−|

3: end for
4: Out← ∅
5: for i← 1 to k do
6: draw (x+,x−) ∼ w(D+ ×D−)
7: draw F ∼ u(P((x+ \ x−) \ ∅)) and

F ′ ∼ u(P(x+ ∩ x−))
8: R← F ∪ F ′
9: Out ← Out ∪ {R}

10: end for
11: return Out

3.3 Distributed Pattern Sampling Algorithm

In this section we describe the adaptation of sequential sampling algorithms into the MapReduce
framework. First, we discuss a method to efficiently draw k sample in one pass over the data,
then we combine the different algorithms in the MapReduce framework. The major obstruction
for applying Algorithm 1 and 2 to large datasets is the memory requirements of the pre-processing
step, i.e. the computation of the weights for every record in the dataset. In particular, under
the realistic assumption that k � |D| in big data setting, the sampling of subsets from k records
can be easily performed into main memory, independent of the size of the dataset. Moreover, the
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computational complexity of this last step is equivalent to O(k · |I|) [7], and hence can be smoothly
computed in a sequential setting.

Given the previous observations, the most straightforward approach to adapt the sequential
algorithms would be the following procedure:

1. Divide the records/tuples over the m available nodes on the cluster.

2. For each node compute the weights of the records/tuples assigned to it, and sent over the
partial results (weights + link where the record is stored) to a central node.

3. These results are then combined, followed by sampling k records/tuples from this index file.

4. Finally a sample is taken to obtain the desired patterns from these k records/tuples.

Although this approach is pretty simple, it has some serious drawbacks. First, the size of the index
file, i.e. the resulting weights and the link where the data is stored, is dependent on the input size
of the transaction database. Hence, for large dataset it is unreasonable to assume that it would
fit into main memory. The resulting solution would require additional disk access and involves
multiple communication steps between the nodes. A second disadvantage is that this approach
would require multiple times access to the transaction database.

In this thesis, we resolve these issues by using a techniques developed to derive k weighted
samples from streaming data [18]. In particular, whenever a data element (either a tuple or a
data record) arrives, the A-RES [18] algorithm determines whether this data element is stored in
a reservoir of size k or not. After the scanning of the complete transaction database, the reservoir
holds the k selected data elements. From this point on, the pattern sampling can be further solved
pretty straightforward.

Algorithm 3 A-RES: Reservoir Sampling

Input: A population V = {v1, . . . , vn} with corresponding weights {w1, . . . , wn}
Output: a weighted random sample of V without replacement of size k

1: R← ∅
2: insert the first k items in R and calculate their keys,

i.e., keyi ← r
1/wi
i for i = 1 . . . k where ri is a random number in [0, 1]

3: for i← k + 1, to n do
4: t← the smallest key in R

5: li ← r
1/wi
i , with ri ∼ u(0, 1)

6: if li > t then
7: replace t and its corresponding item in R with respectively li and vi
8: end if
9: end for

10: return the items in R

The A-RES [18] algorithm to sample k weighted items in one pass over the data, is a so called
“reservoir” based approach. The pseudocode is given in Algorithm 3. The first k data elements
and their corresponding keys are inserted into the reservoir. Then for every following data element
its corresponding key is computed (line 4). A data element in the reservoir is replaced with a new
one, whenever its corresponding key is lower then the key of the new data element (line 6–7). As
such, after the first k data elements are processed, the reservoir contains at each moment the k

data elements that have the largest key. Note that, for two keys vi = r
1/wi
i and vj = r

1/wj
j it holds

that: P [vj ≤ vi] = wj/(wi + wj).
In its basic setting the A-RES algorithm requires the generation of n random numbers, were n is

the number of weighted items to sample from. In our case this is equal to number of data elements,
i.e. depending on the interestingness measure either |D| or |D+ × D−|. This can be optimized
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by making use of so called sampling with jumps. The main idea behind sampling with jumps is
that a random variable determines what will be the next data element to enter the reservoir. A
detailed description is provided in Algorithm 4. The crucial step consists of skipping items until
the sum of their weights is larger than the smallest key in the reservoir (line 6 – 12). With this
adjustment, and under the assumption that the weights are independent random variables, the
number of random numbers generated is reduced from n to k · log(n/k) [18].

Algorithm 4 AJ-RES

Input: A population V = {v1, . . . , vn} with corresponding weights {w1, . . . , wn}
Output: a weighted random sample of V without replacement of size k

1: insert the first k items in R and calculate their keys
2: t← the smallest key in R
3: r ← u(0, 1)
4: s← 0
5: for i← k + 1 to n do
6: if s > log r/ log t then
7: ri ← u(twi , 1)

8: li ← r
1/wi
i

9: replace t and its corresponding item in R with respectively li and vi
10: t← the smallest key in R
11: s← 0
12: end if
13: s← s+ wi
14: end for
15: return the items in R

To use Algorithms 3 and 4 in the adjusted direct pattern sampling approach, we need to make
a slight modification to the weighted sampling over a stream methods. That is, in the current
setting, these algorithms sample k items without replacement while the direct sampling requires
sampling with replacement. This obstacle can be trivially overcome by running k instances of
the A-RES/AJ-RES with reservoir size 1. Note that, this adjustment requires that for each data
element a decision has to be made for each of the k reservoirs. As a result, the number of random
numbers to generate in the A-RES/AJ-RES algorithm increases respectively from n to kn, and
from k log(n/k) to k log(n).

3.3.1 MapReduce Implementation

In order to use the MapReduce framework, the algorithm must be decomposed into map and
reduce steps. Map functions are run in parallel on different parts of the input. The output of
these map function consists of key-value pairs and is passed on to one or more reducers. The
reduce step processes unique keys, and applies a user defined function to produce the final output
of the MapReduce algorithm.

For the frequency and area-based sampling algorithm, i.e. the algorithm with linear pre-
processing time (Algorithm 1), the adaptation into the MapReduce framework is given the pre-
cious algorithms now pretty straightforward. The pseudocode of these linear pre-processing time
algorithm is given in Algorithm 5. In particular, each mapper draws according to the interesting-
ness measure k records from its part of the transaction database (line 3), this is done by using
Algorithm 3. Given that there are m mappers, the total number of sampled records equals mk.
The reduce step selects from the overall output, i.e. the k records, with the largest key, this step
is accomplished by one reducer. Finally, the reducer continues with sampling the k patterns from
the selected records, as is done in Algorithm 1 (line 4). Once that the data is divided over the
mappers, the required communication cost are low: only the output of the m mappers must be
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send over the network. This algorithm requires that each mapper and the reducer can store k
data records in main memory. Hence the memory requirements of the frequency and area based
direct sampling algorithm are only dependent on the number of patterns of interest and the size
of the largest transaction number, which is O(k).

Algorithm 5 Distributed Frequency and Area-based Pattern Sampling

Input: a dataset D, a number of required patterns k, an interestingness measure q
Output: k random sets, with each set R ∼ q(P(I))

MapFunction
1: for i← 1 to k do
2: run Algorithm 4, with sample size =1 and weights according to q
3: end for
4: return k (key,record) pairs

ReduceFunction
5: select the k pairs with the largest key
6: for i← 1, to k do
7: Out ← Out ∪{subsample from recordi according to q}
8: end for
9: return Out

Direct pattern sampling with the discriminativity measure of interest is however more problem-
atic to integrate into the MapReduce framework. A major obstacle in this setting is to generate all
tuples of records. That is, for every record from D+ all records of D− must be scanned. Prelimi-
nary experiments indicated that this adaptation was timewisely not doable for moderate datasets
on the cluster we used. However, the amount of tuples to be generated can be drastically reduced.
In particular, for a tuple (x+,x−) ∈ D+ × D− a weight w(x+,x−) = (2|x

+\x−| − 1)2|x
+∩x−| is

computed that determines with which probability that this tuples is sampled. However, a trivial
upper bound of the weight—that is only dependent on x+—is 2|x

+|. Hence, in the reservoir based
approach (Algorithm 3) this upper bound can be used as a priori to determine that the tuple will
not be inserted into the reservoir. And as a result, the algorithm can skip the data record x−. If
however, the upper bound is larger than the minimum key in the reservoir, then the record should
be scanned and the exact key should be determined. However, a downside of this approach is that
the AJ-RES algorithm cannot be used to sample the k records. This is because the algorithm with
jumps requires that every weight is computed. Therefore, the A-RES algorithm (Algorithm 3)
to sample k elements from the input is used. A high level description of the MapReduce direct
pattern sampling approach with discriminativity as interestingness measure is provided in Algo-
rithm 6. Notice that, also in this case the memory requirements are only dependent on the number
of patterns and the maximal transaction length.
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Algorithm 6 Distributed Discriminativity-based Pattern Sampling

Input: datasets D+ and D−, a number of required patterns k
Output: k random sets, with each set R ∼ qdisc(P(I))

MapFunction
1: for i← 1to |D−| do

2: if r1/2
|x+|

> the lowest key in reservoir, with r ← u(0, 1) then
3: x− ← next record from D−

4: run Algorithm 3, sample size =1, weights according to qdisc
5: else
6: skip record in D−

7: end if
8: end for
9: return k (key,record) pairs

ReduceFunction
10: select the k pairs with the largest key
11: for i← 1, to k do
12: Out ← Out ∪{subsample from recordi}
13: end for
14: return Out

A further important (implementation) issue is the data type to use for real numbers. In
particular, the required arithmetic precision is dependent on the number of items in a record.
That is, both Algorithm 5 and Algorithm 6 require the computation of 2|x|. In order to be
applicable to datasets that contain large transactions (e.g. |x| > 64), specialized arbitrary precision
arithmetic libraries are needed. In our implementation we used as default the native Java double
representation.

3.4 Experimental Evaluation

In this section we experimentally evaluate the MapReduce implementations of the direct sampling
approach. In particular, we conduct experiments with Algorithm 5 and the frequency interest-
ingness measures, and with Algorithm 6 to derive discriminating patterns. We did not perform
separated tests for Algorithm 5 with the area measure. This is because there is no fundamental
computational difference between the two flavors of the same algorithm, and hence the computa-
tional results of one variant is also representative for the other variant.

The overall goal of the experimental evaluation is to examine whether the proposed algorithms
are suited to mine large datasets. In particular, the main question to investigate is: given enough
computational resources, are the algorithms able to extract a limited number of patterns on
arbitrary large datasets? Although, it is not feasible to run the algorithm on arbitrary large
datasets, we test the scalability by measuring the speedup. That is, how much faster is the
algorithm when more computing units are added? The underlying idea is, if the speedup is good,
arbitrary large datasets can be processed by adding a sufficient amount of nodes to the cluster.
Another important characteristic of our algorithm to evaluate is its dependency on the input
parameter k, that is the number of patterns to mine. In particular, as stated in section 3.3, the
number of random numbers to generate is linearly dependent on the k parameter, and moreover is
independent of the number of mappers that is being used. Hence, in the worst case the computation
time is negatively affected by a factor k. Finally, we compare our direct sampling implementation
with the popular and publicly available MapReduce implementation of parallel FP-growth [29].
In particular, we will report the run time for different support thresholds and discuss the results.

The experiments were conducted on the SURFSara Hadoop cluster1. The cluster is deployed

1https://www.surfsara.nl/project/hadoop
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Figure 3.1: Speedup for the frequency based sampling for the Weblog dataset (left) and the
synthetic dataset(right). The blue line indicates the ideal speedup, the red line shows the obtained
speedup.

with Hadoop-0.20.2; the block size is 128M; the replication factor is 3; and the speculative task
execution feature is disabled. This cluster consists of 82 nodes2, and in each node there are
respectively 8 slots of mappers and reduces, leading to totally 656 mappers and 656 reducers.
However, since the cluster is shared with many users, and is being heavily used, the execution
time of a job can vary quite a bit. In particular, if different I/O intensive jobs are scheduled in
the same nodes, the different tasks can drastically reduce each other’s performance. In order to
obtain a better estimate on the scalability of the algorithms, we conducted all experiments three
times, and report the average value.

3.4.1 Test Collection

Because of the high computational burden of the discriminativity-based sampling approach and
the limited resources, we used smaller datasets for the discriminativity measure. For the frequency-
based sampling, the following two datasets were used:

• Weblog dataset A web accesses log dataset from a popular Dutch portal website. Each
visit to this website was recorded and enriched with derived features when available. The
logs are taken over a period of two months and consists of more than 461M records (i.e. page
views). The average record length is 22, while the maximum record length equals 30. In
total, there are over 20M distinct items, while the overall size of the dataset is over 200GB

• Synthetic dataset An artificially dataset generated using the generator from the IBM
Almaden Quest research group. This dataset contains 100M records (9.15GB) with an
average length of 20, and a maximum of length of 55. The number of distinct items is equal
to 1000.

For the discriminativity-based sampling two much smaller datasets were used for evaluating
the performance:

• Weblog one day dataset A one day snapshot of the Weblog dataset. It contains 9.5M
records, and its total size is 4.4GB. To split this dataset into two classes for the discriminativity-
based sampling, we assumed that in 1% of the records the user clicked on one of the displayed
links. The goal is to derive patterns that describes the different groups, i.e. users that click
on a link and those that didn’t.

2The cluster size may be increased in the future
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Figure 3.2: Speedup for discriminativity based sampling, the left plot contains the results obtained
on the one day snapshot of the Weblog data, while the right one displays the results obtained on
the census dataset. The blue line indicates the ideal speedup, the red line shows the obtained
speedup.

• Census income [36] It is a dataset storing the income information with census data. We
treat records with a salary larger than 50K as the positive ones, and the remaining as the
negative ones. This leads to 18, 568 records in the positive set, and 280, 717 records in the
negative set. All records are of equal length: 41.

3.4.2 Speedup Evaluation

In order to evaluate the speedup of our distributed sampling algorithms, we fixed the sample size
and varied the number of mappers. Speedup refers to how many times a parallel algorithm is faster
than the corresponding sequential algorithm, hence the optimal speedup that can be obtained is
equivalent to the number of mappers used. In our experiments, however, we did not measure the
running time of our sampling algorithms when using only one mapper due to the large sizes of the
datasets. Instead, we took 10 mappers for the frequency-based sampling and 100 mappers for the
discriminativity-based sampling as the baselines, and computed the speedup with respect to this
baseline. In all experiments we fixed the number of patterns to sample to 100.

Frequency based sampling

Figure 3.1 shows the speedup results of the frequency-based sampling on the Weblog dataset (left
plot) and the synthetic datasets (right plot). The speedup for the frequency based sampling on
the Weblog data is close to the optimal speedup when the number of mappers is below 200. After
this point, the overhead of involving more mappers and the limited computation time (489 seconds
with 100 mappers), results in a less optimal speedup. This is also reflected when investigating the
efficiency, defined as the speedup divided by the number of mappers, which drops from 0.97 with
100 mappers to 0.68 with 500 mappers. The overall computation time to sample 100 patterns from
the Weblog datasets varies from 4, 748 seconds when 10 mappers are used till 138 seconds with
500 mappers. The same observations can be made for synthetic dataset, although for this dataset
the ideal number of mappers is around 40. Obviously, this is because the synthetic dataset is
relatively small, and the computation time is low. When more mappers are involved the efficiency
drops from 0.9 with 40 mappers to 0.51 with 100 mappers. The computation time varies between
741 and 121 seconds. The speedup and efficiency obtained indicates that Algorithm 5 scales up
pretty well for large datasets.
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Discriminativity based sampling

Figure 3.2 shows the speedup results of the discriminativity based sampling on the one day snap-
shot of the Weblog dataset (left) and the census dataset (right). The speedup obtained on the
Weblog snapshot is nearly ideal before the number of mappers reaches 300, but diminishes after-
wards. The average running time of the baseline with 100 mappers is 2 hours and 25 minutes and
drops to 46 minutes with 500 mappers. When 300 mappers are used the efficiency is 0.96, while
for 500 mappers the efficiency is merely 0.63. The results are remarkably different for the census
dataset. Although this dataset is considerably smaller, both the speedup and the efficiency are
close to optimal when more mappers are involved. In particular, the running time drops from
77 minutes with 100 mappers to 16 minutes with 500 mappers, at the same time obtaining an
efficiency of 0.93. A plausible explanation for this difference is that the transaction length of the
census data is twice the average transaction length of the Weblog dataset, hence the computation
of the weights requires more execution time in case of the census dataset. Another remarkable
observation is that for the census data with 300 mappers, the so called super linear speedup is
achieved. That is, the computation time with 300 mappers is less than three times the computation
time with 100 mappers. However, this phenomenon is often observed when performing experi-
mental evaluation of parallel algorithms and is likely caused by caching behavior of the nodes.
Although the computation time is large for relatively small samples, the speedup and efficiency
scores acquired suggests that discriminativity based sampling is able to derive interesting patterns
from large datasets when enough computing resources are available. However, the number of
mappers needed for large dataset is huge, and is likely to grow fastas the data size increases.

3.4.3 Scalability in the number of patterns

Since the sampling algorithms need to maintain as many reservoirs as the user defined sample
size, the question that how heavily dependent the computation time is on this user specified
parameterarises. In order to evaluate this, we fixed the number of mappers and varied the sample
size. In particular, for both frequency as well as discriminativity based sampling we set the the
number of mappers to 100, and varied the sample size between 100 and 800. The run time for
the different sample sizes is compared with the time needed to sample 100 patterns, this ratio
was taken and plotted versus the number of samples. Moreover, since the expected run time
should roughly be linear to the size of samples, we drew a line indicating the expected ratio of
the computation time needed. The results are displayed in Figure 3.3, left for the Weblog dataset
with the frequency based sampling algorithm, right for census dataset with the discriminativity
based sampling. The time needed for the frequency based sampling increases along approximately
half as fast as the the sample size, while for the discriminativity based sampling the computation
increases approximately at the same pace as the sample size. Note that for the later case, the
experiments with k = 300 and k = 400 indicate that the computation time increases faster than
the sample size. However, this is most likely caused because of the heavy workload on the cluster,
resulting in a wide variety of time measurements for these experiments. For example, in the run
with 300 samples the maximal difference between two runs was more than three hours on a total
computation time of seven hours on average.

3.4.4 Comparison with parallel FP-growth

A publicly available MapReduce implementation of parallel FP-growth (PFP) [29] is available
in the popular Apache Mahout3 machine learning library. Although the setting in which PFP
operates differs from the direct sampling approach, i.e. given a minimum support threshold PFP
mines all patterns that satisfy this threshold and then reports the k requested patterns, we think
that the comparison is interesting from an end user’s point of view.

We run PFP, with various minimum support thresholds, on the Hadoop cluster with the
number of mappers fixed to 100. The results are summarized in Table 3.1. Besides the run time,

3http://mahout.apache.org/
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Figure 3.3: The ratio of the computation needed for different sample size and the baseline, plotted
in red. Results for the Weblog dataset (left) with frequency based sampling and the census
data with discriminativity based sampling (right). Additionally, the blue line displays the ratio
expected.

Table 3.1: Run time, number of frequent items, and number of frequent itemsets obtained by PFP
for the synthetic and the Weblog datasets. The results are shown for various minimum support
thresholds.

Minsup Time Singletons Patterns

Synthetic
99% 406 0 0
5.6% 1, 518 63 63

Weblog
99% 4, 118 3 3
1% 5, 625 128 4, 543

0.1% 6, 325 304 10, 825

we also show the number of frequent items, that is singleton itemsets, and the number of frequent
patterns. Note that the number of frequent itemsets is limited by the user specified parameter k
(in our case k = 50), that defines the maximum number of frequent itemsets to show per item.

The first noteworthy observation is that PFP needs far more computation time in its pre-
processing step, i.e. counting the single items, than the frequency based sampling approach need
to derive 100 patterns. In particular, 406 versus 144 seconds for the synthetic dataset and 4, 118 vs.
489 for the Weblog dataset. Another issue is that for the synthetic dataset we were not able to mine
100 frequent patterns, we were only able to derive 63 frequent singletons. Lowering the frequency
threshold resulted for this dataset in out of memory errors. For the Weblog dataset, we were able
to obtain the desired number of patterns by lowering the frequency threshold, but the resulting
computation time for PFP is multiple times the time needed for the frequency based sampling
algorithm. Although, the results presented in Table 3.1 suggests that frequency based sampling
approach is superior in terms of run time than PFP, there are many different parameters that
influence the computation time. As we have previously shown, the computation time for frequency
based sampling is both dependent on the number of samples and on the average transaction length.
On the other hand, for PFP the computation time is dependent on the minimum support threshold
and the density of the data. Provided that PFP does not run out of memory, it is likely that it in
some settings PFP outperforms the frequency based sampling when a large number of patterns is
demanded.
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3.5 Related Work

Because the enumeration of all frequent patterns in a database is inherently a computational
exhaustive task, parallelization of frequent itemset mining algorithms has been an active research
topic for a while, see for example [45]. The most effort has been put into the so called shared
memory parallelization, however this type of parallelization is not scalable for huge datasets, due to
the extensive memory requirements. Parallel frequent itemset mining in distributed environments,
has been examined in a few papers, see for example [19], which results in algorithms that are
typically scalable up to a hundred different computers.

Recently, the focus of the research has been shifted towards mining algorithms in the MapRe-
duce framework. The main motivation is to drastically increase the number of resources and to
have fault tolerance mechanisms automatically incorporated into the system. Most related to our
work is the MapReduce implementation of the popular FP-Growth [25] algorithm: parallel FP-
growth (PFP). This algorithm is described in the work by Li et al. [29]. The main idea of PFP
is to first group the transactions, and then build a local FP-Tree for each group. The outcome
of these trees is aggregated, and the k most frequent patterns are reported. The major difference
with our approach is that PFP performs an exhaustive search, although only the top k frequent
items are reported. Another important difference is the amount of communication that is needed
between mappers and reducers. In particular, the pre-processing step of PFP, i.e. the grouping,
requires multiple communication steps. In Section 3.4 we experimentally compare PFP with our
frequency based sampling approach.

3.6 Summary

In this chapter, we successfully casted the recently proposed algorithms of directly sampling lo-
cal patterns [7] into the MapReduce framework. The theoretical analysis show that the memory
requirements of both proposed algorithms are limited to the number of patterns in the output. Ex-
tensive experimental evaluation showed the scalability of the frequency based sampling approach,
and hence its applicability for “big” data. Although, the discriminativity-based sampling scales
reasonably well for small samples, it is doubtful whether this algorithm will scale for large dataset,
mainly because its intensive usage of computational resources. For both approaches we showed
that the computation time is roughly linear dependent on the number of patterns to sample, which
makes the algorithm suitable in most practical settings. Furthermore, we compared the frequency
based sampling with a state-of-the-art MapReduce implementation of parallel FP-growth, and
showed that our approach outperforms PFP in term of computation time. Further research is
involved with speeding up the quadratic pre-processing step needed for discriminativity based
sampling. In particular, a recent follow-up paper by Boley et al. [6], addressed this problem and
used coupling from the past to avoid the computational bottleneck, it is however still open how
to integrate the coupling from the past technique into an MapReduce framework.

The source code is publicly available at: http://www.win.tue.nl/~mpechen/projects/capa/,
and the work in this chapter has been published in BigMine ’13: Proceedings of the 2nd Interna-
tional Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems,
Programming Models and Applications.
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Chapter 4

Classifying Skewed Data Streams
Using Patterns

In our click prediction problem setting, pageviews come as a data stream. Formally, a data stream
DS can be defined as a sequence of transactions, DS = (T0, T1, . . . ), where Ti = {xi, ci, ti} is the i-
th arrived transaction, in which xi is a pageview, or an instance in the context of classification, ci ∈
{0, 1} is the click status label, and ti is the time when the transaction arrives. The pageviews arrive
at high speed, strictly constraining pre-processing algorithms in space and time. To adhere to these
constraints, specific requirements have to be fulfilled by the stream processing algorithms [5]:

1. scan one example at a time, and inspect it at most once;
2. use a limited amount of memory;
3. work in a limited amount of time; and
4. be ready to predict at any time.

Besides these difficulties, the class distribution of the pageview data stream is highly skewed,
since very few visitors click on the index page of a website. Classification models may classify
most instances with a minority label as ones with a majority label.

In this chapter, we will first review the state-of-art techniques to cope with skewed data streams,
then propose our solution to handle the pageview data stream, finally give possible extensions of
the methods in our solution.

4.1 Related Work

Classifying the skewed pageview data streams using patterns involves three main challenges: han-
dling skewness, mining patterns over data streams, and classifying data streams. Difficulties in
each challenge and existing methods to overcome these difficulties are reviewed in this section.

4.1.1 Classification on Skewed Datasets

Skewed class distribution poses great challenges in model learning. In real application data, the
positive instances are much less popular than the negative ones. Misclassifying a positive instance
usually leads to a much higher loss compared to that of misclassifying a negative one. Traditional
inductive learning methods would perform rather poorly on such datasets with skewed distribution,
since the goal of those methods is usually to minimize classification error rate. As a result, the
positive instances tend to be ignored and every instance would be predicted as negative. In such
a case, we could build a model up to 99% accuracy, but of very little use in practice.

The skewed dataset classification problem has been well studied in recent years. A number
of solutions to this problem were previously proposed at both the data and algorithmic level [9].
At the data level, these solutions include different forms of sampling to build a balanced dataset,
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on which classification models will be subsequently trained. Two typical forms of sampling are
random oversampling and random undersampling. In the oversampling approach [31], data from
the minority class are duplicated at random until the imbalance is eliminated. While in the
undersampling approach [28], data from the majority class are randomly eliminated to balance
the classes.

There are several issues that the sampling approach is facing. Firstly, the desired class distri-
bution for a learning algorithm often largely depends on the data. It has been observed that a
naturally occurring distribution is not always the optimal distribution, neither a precisely balanced
distribution [44]. Therefore, the sample size of oversampling or undersampling is usually empiri-
cally detected and set. Moreover, both undersampling and oversampling can lead to overfitting. In
addition, undersampling involves a loss of information by discarding potentially important data.
Finally, oversampling can introduce an additional computational task if the dataset is already
fairly large but imbalanced [37]

At the algorithmic level, solutions include cost-sensitive learning, recognition-based learning
(one-class learning) rather than discrimination-based learning, etc. Cost sensitive learning assigns
different error penalties: an misclassification of an instance belonging to the minority class would
have a larger penalty than one for the majority class. These penalties are represented as cost
matrix, and often assumed known for different types of errors or even instances, which can be
used at classification time [20].

Though it is often reported that cost-sensitive learning practically outperforms random sam-
pling, such as in [9], this learning faces the following issues. Firstly, cost matrices are often
unknown. Secondly, it can be argued that the effect of assessing penalties is equivalent to chang-
ing the relative data distribution in the two classes, or, in other words, to re-balancing the data.
The experiments carried in [33] suggest that sampling, as well as adjusting the cost matrix, have
the same effect as moving the decision threshold. Finally, cost-sensitive learning does not modify
the class distribution of the data the way re-sampling does.

Besides sampling and cost-sensitive learning, another approach is recognition-based learning.
A recognition-based learning approach provides an alternative to discrimination where the model
is created based on the instances of the target class alone. Here, one attempts to measure (ei-
ther implicitly or explicitly) the amount of similarity between an instance and the target class,
where classification is accomplished by imposing a threshold on the similarity value [27]. Mainly,
two classes of learners were previously studied in the context of the recognition-based one-class
approach—SVMs [39, 41] and autoencoders [34, 27] —and were found to be competitive [34].

4.1.2 Classification over Data Streams

The major research challenges in data stream mining are represented in concept drifting, resource
adaptivity, high data rates, and the unbounded memory requirements. There are many well
established approaches to solve issues in streaming data classification. These approaches can
broadly categorized as data-based and task-based [1]. In data-based solutions, the idea is to
examine only a subset of the whole data set or to transform the data vertically or horizontally to
an approximate smaller size data representation. In [1], data-based solutions include the following.

• Sampling: probabilistically choosing a data item to be processed or not. Boundaries of the
error rate of the computation are given as a function of the sampling rate.

• Load shedding: ignoring a chunk of data, or dropping a sequence of data streams.
• Sketching: the process of randomly projecting a subset of the features of the incoming data.
• Aggregation: computing statistical measures such as means as variance that summarize the

incoming stream.

Such an approach allows us to utilize many known data mining techniques to the case of data
streams.

On the other hand, in task-based solutions, some standard algorithmic modification techniques
can be used to achieve time and space efficient solutions [21]. Task-based techniques are those
methods that modify existing techniques or invent new ones in order to address the computational
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challenges of data stream processing. A typical solution is the sliding window technique, which
detailedly analyzing the most recent data items and summarized versions of the old ones, assuming
that users are more concerned with the analysis of most recent data streams [21].

4.1.3 Pattern Mining over Data Streams

In Chapter 2 we introduced pattern mining (frequent itemset mining), and in Chapter 3 we
described an algorithm that samples patterns of interest from large datasets. However, in the
streaming setting, mining desired patterns from data streams still needs exploration.

Many efficient frequent pattern mining algorithms that have been developed in the last decade
typically require datasets to be stored in persistent storage and involve two or more passes over
the dataset. Recently, there has been much interest in data arriving in the form of continuous and
infinite data streams.

In the recent years, several new mining algorithms have been proposed to find frequent patterns
over data streams. Usually mining frequent patterns from data streams relies on window models,
where a window is a subsequence between i-th and j-th arrived transactions, denoted by W [i, j] =
(ti, ti+1, . . . , tj), i < j. Different types of windows are summarized below.

Landmark window In this model, frequent patterns are mined from a starting time point i to
the current time point t, i.e., over the window W [i, t]. A special case of the landmark window is
when i = 1, in which frequent itemsets are mined over the entire data stream.

Sliding window In many cases, recent data may have a greater importance. This motivates
the focus on the recent frequent patterns in a past window W [t−w+ 1, t] where w is the window
length and t is the current time point. As time changes, the window will keep its size and slide
along with the current time point.

Damped window model This model assigns more weights to the recently arrived transactions.
A simple way to do that is to define a decay rate [8], use this rate to update the previously arrived
transactions (by multiplication) as a new transaction arrives. Correspondingly, the count of an
itemset is also defined based on the weight of each transaction.

4.2 Our Approach

To deal with the pageview data stream, we adopt the sliding window technique. At a time point,
we maintain a window with a fixed size, build pattern-based classification models within this
window, and then apply the built models to the next coming stream. The window slides when
the coming stream fulfills a user-specific size. Formally, at a given time point t, we maintain a
window W [t− w + 1, t] consisting of transactions, where w is a user-specific window size, or time
period. A transaction consists of the time point that this transaction happens, a pageview (or an
instance in the context of classification), and a label if the click status of the pageview is known.

In a window of transactions, we use 1) undersampling to deal with the class distribution
skewness, 2) distributed pattern sampling described in Chapter 3 to mine discriminative patterns,
3) pattern post-processing to select useful patterns for classification, 4) instance encoding to
represent instances, 5) and the encoded instances to build classification models. Then the labels
of the coming data stream can be predicted by the built classification models.

4.2.1 Undersampling

To handle the skewed class distribution of the dataset in a window, we adopt the sampling tech-
nique to draw undersamples of both the positives and the negatives. Cost-sensitive learning is not
applied to our problem since it needs a predefined cost-matrix, which we cannot provide.

Distributed Context Discovering for Predictive Modeling 25



CHAPTER 4. CLASSIFYING SKEWED DATA STREAMS USING PATTERNS

Algorithm 7 shows our straightforward sampling method. For a positive training set D+ and
a negative set D− where | D+ |�| D− |, we draw n instances from the positive set and negative
set respectively, where n is a user-defined parameter that cannot exceed | D+ |. One caveat is
the choice of n: in an ideal case, n should be as large as | D+ |; however, a large n may lead to
additional computational cost for both pattern mining and pattern post-processing. Therefore,
the value of n should be carefully chosen, as a compromise of time cost and effectiveness.

Algorithm 7 Dataset Undersampling

Input: A set of positive training instances D+,
a set of negative training instances D−,
a user-specific number n

Output: An balanced dataset
1: P ′ ←sample n instances from D+

2: N ′ ←sample n instances from D−

3: return P ′ ∪N ′

4.2.2 Pattern Mining

After undersampling from a window, a balanced dataset D is obtained with n positive and negative
instances respectively. Then we mine k discriminative patterns for the positive class from D using
the distributed pattern sampling algorithm. The k mined patterns need to be post-processed
before using them in classification.

Pattern Post-processing

Mined patterns need post-processing because not every one can contribute to the improvement
of classification. Firstly, patterns with low supports can still be sampled due to the essence of
sampling, and these patterns often only cover a very small number of instances. For an extreme
example, suppose a sampled pattern only exists in one instance of class positive, then the only
contribution of this pattern in classification is identifying that positive instance, which is of little
use in practice. Secondly, patterns with high supports but not discriminative can be sampled as
well. A pattern exists almost in all instances may be sampled, yet this pattern is unlikely to be
capable of differentiating between classes, since given an instance represented by this pattern, the
probabilities of being positive and of being negative may be equal. Therefore, not every pattern
is equally useful; and post-processing them is necessary.

Our post-processing of patterns focuses on increasing generalities of patterns, and retaining
non-redundant patterns with high discriminative powers. It consists of two steps: pattern short-
ening and pattern selection, which address these two issues respectively.

Figure 4.1 illustrates the idea of the two-step post-processing procedure. In each subfigure, the
light-blued (upper) part of the rectangle represents the positives in the dataset, and the lower part
represents the negatives in the dataset. Each vertical bar represents a pattern. The support of a
pattern is indicated by the length of the corresponding vertical bar. One can imagine that in a
rectangle, instances are piled vertically, so that a pattern has a larger support if its corresponding
vertical bar covers more in the rectangle. The discriminative power of a pattern can be seen as
the proportion of the positive area to the negative area that the corresponding vertical bar locates
in. Note that one pattern cannot naturally only cover consecutive instances; nevertheless, it is
presented so to exemplify our idea.

The post-processing begins with shortening the mine patterns shown in 4.1(a). We attempt to
increase the support of eah pattern by removing items from it, while retaining its discriminative
power. For a pattern, there must a subset of it which has a maximal support while having at
least the same discriminative power of this pattern. We call such a subset the target of a pattern.
We search for the target of a pattern by random local walks—randomly removing items from the
pattern. Figure 4.1(b) shows the search attempts— vertical bars are trying to become longer ones
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and stay at the same part of the rectangle, as patterns are trying to cover more instances and
retain at least the same discriminative power. The targets of patterns are usually not the same;
and the targets may not be mined by our pattern mining algorithm, which are represented with
dashed lines in 4.1(b). Targets sometimes are not reached, patterns may stay where they are, or
just half-way of the path to their targets. We assume that all patterns can find their targets in
this example. Figure 4.1(c) shows the shortend patterns.

The second step of the post-processing is pattern selection, which selects patterns distant from
each other but have high discriminative powers. It starts with selecting the most discriminative
pattern, as the dashed line labeled 1 in Figure 4.1(d). Then, a distant pattern from the previously
selected one yet with a high discriminative power is selected, as indicated by the dashed line labeled
2. Distance is intuitively measured by the number of instances that a collection of patterns can
cover. For example, if pattern α1 and pattern α2 can cover 10 instances, and pattern α1 and
pattern α3 can cover 4 instances, then we say α2 is more distant from α1 than α3 is. This distance
can be visualized by the length of the bar horizontally projected from patterns. We continue in
this fashion until the whole dataset can be covered by the selected patterns. The finally selected
patterns are the four shown in Figure 4.1(d).
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Figure 4.1: Illustration of post-processing

The formal description of the two-step post-processing procedure is as follows.

Pattern shortening In pattern shortening, patterns are shortened while retaining their discrim-
inative power, thereby implicitly increasing their support and generalization. It is done essentially
by performing a local random search —randomly remove items in a pattern without losing the
discriminative power of this pattern. Algorithm 8 shows this procedure. For each pattern p in a
given pattern collection P , and a given binary labeled dataset D, we firstly calculate its discrim-
inative quality f0 = f(p), where f is a discriminative measure, e.g. information gain. Then we
randomly remove items from p, while f(p) ≥ f0.
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Algorithm 8 Pattern Shortening

Input: a labeled dataset D,
a pattern collection P ,
and a discriminative measure function f

Output: a shortened pattern collection S
1: S ← ∅
2: for each pattern p(i1, i2, . . . ) in P do
3: f0 ← f(p)
4: while f(p) ≥ f0 do
5: p′ ← p
6: remove a random item in p
7: S ← S ∩ {p′}
8: end while
9: end for

10: return S

Pattern selection The purpose of pattern selection is to select a small number of distant pat-
terns yet with high discriminative power, where the distance of two patterns is the cosine distance
of them, as shown in Equation 4.1. Both the pattern sampling and the pattern shortening may
introduce redundant patterns, which differentiate between same subsets of the dataset. Further-
more, it is possible that the result of pattern sampling contains non-discriminative patterns, which
do not help classification but are noisy.

Intuitively, we can rank patterns in the descending order of their discriminative power, and
select those at top. In this way, however, redundancy is not considered. To avoid selecting
redundant patterns, we add the distances between patterns.

Algorithm 9 shows the pattern selection procedure. For a training setD and a pattern collection
P , we iteratively apply pattern selection step. At each step, we consider not only the discriminative
power of a pattern, but also its distance to the selected patterns, because redundant patterns
should not be included in our selection results. After selecting a pattern, all the training instances
containing this pattern are eliminated from D and this pattern is marked as selected. So that in
the next iteration, the same step is applied on a smaller set of training instances. This algorithm
continues in an iterative fashion until either all the training instances are eliminated (or selected
patterns entirely coverD several times) or all the patterns are selected. The discriminative measure
function f can be information gain [38], which measures how well a pattern can separate the
dataset. The redundancy function d is the cosine distance between two patterns. Specifically, for
two patterns α1 and α2, the cosine distance is

d(α1, α2) =
| α1 ∩ α2 |
| α1 | · | α2 |

. (4.1)

The number of selected patterns is determined by a dataset coverage constraint threshold δ, as
in [30]. The coverage threshold δ is set to ensure that each training instance is covered at least
δ times by the selected patterns. In this way, the number of patterns selected is automatically
determined, given a user-specified parameter δ.
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Algorithm 9 Pattern Selection

Input: a labeled dataset D, a pattern collection P ,
a discriminative measure function f ,
a redundancy measure function d,
a dataset coverage threshold δ

Output: a small pattern collection S, with high discriminative power
1: S ← ∅
2: Dswp ← D
3: while D is not empty, or P is not empty do
4: s← arg maxx∈P\S(f(x) ·miny∈S d(x, y)),
5: if s can cover at least one instance in D then
6: S ← S ∪ {s}
7: end if
8: F ← F \ {s}
9: D ← D \Ds

10: if not D and δ > 0 then
11: D ← Dswp

12: δ ← δ − 1
13: end if
14: end while
15: return S

To summarize, our pattern post-processing is: given a pattern collection P and a labeled
dataset D, we shorten each pattern in P by applying Algorithm 8, and then select a subset S of
P by applying Algorithm 9 with a user-specific dataset coverage threshold δ.

4.2.3 Using Patterns in Classification

Instances are encoded with patterns before inputting them into classification models. Each pattern
forms a binary attribute to an instance, with its value equal to 1 if the pattern exists in the
instance, or 0 otherwise. There are two ways of encoding: either only considering the patterns,
or augmenting original attributes are considered. Formally, given a selected pattern collection P
and an instance x = {i1, i2, . . . , im},

• either replace x by binary attributes corresponding to the elements of p1, . . . , pk ∈ P , leading
to a new instance x′ = {i′1, . . . , i′k} with k attributes:

i′j =

{
1, if pj ⊆ x;

0, otherwise

, where j = 1 . . . k.

• or augment x by binary attributes corresponding to the elements of p1, . . . , pk ∈ P , leading
to a new instance x′′ = {i′′1 , . . . , i′′m+k} with m+ k attributes:

i′′j =


ij , if j ≤ m;

1, if j > m and pj−m ⊆ x;

0, otherwise.

where j = 1 . . .m+ k.

For each instance in a window or in the coming data stream, we encode it by one of these two
ways with selected patterns, before building or testing classifiers.
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4.2.4 Classification Models

Encoded instances are essentially vectors again, and various existing classification models can be
trained on these instances. Two typical ones are Naive Bayes and the C4.5 decision tree.

Trained models can be applied to classifying the coming transactions in the data stream.

4.3 Possible Extensions

A framework that utilizes patterns in skewed data stream classification was described in the last
section. This framework employs very basic settings in each step, so that there is still room to
extend this framework. In particular, we can adjust the undersampling strategy, update pat-
terns, integrate pattern mining and post-processing, update classification models and utilize other
classification models than Naive Bayes or decision trees.

4.3.1 Adjustment of Undersampling

In a sliding window, a balanced training dataset is undersampled from the data within this window.
The quantities of the positives and the negatives in this balanced dataset are exactly equal.

However, this exactly balanced distribution of class might not be the optimal for building
classification models [44]. Classification models trained on a slightly imbalanced training set may
have better performances.

We can adapt the balance level of a training set by setting a balance ratio r when undersampling
from negative instances. That is, instead of sampling a same amount of negative instances to
positive ones, we sample np/r negative instances, where np is the number of the positive instances.
r is typically between 0.3 to 0.6 to make the distribution balanced [22].

4.3.2 Pattern Mining

After a training set has been undersampled from the data within a sliding window, we mine patters
of interest from this set and then post-process them.

Patterns will be completely re-mined once the window slides. An alternative strategy may be
updating the mined the patterns after the window has slided. In this way useful patterns in the
past may still have a chance to be retained and contribute to classification.

Another modification in our approach would be the integration of pattern mining and post-
processing. such that the post-processing is parallelized along with pattern mining to benefit from
the distribution.

These two modifications are described in the following.

Pattern Updating

In our approach, we mine discriminative patterns from a undersampled training set from a window
on a data stream. The patterns are totally replaced by lately mined ones when the window
slides. However, some old patterns may still be important in the future; removing them without
any consideration seems careless. One way to take old patterns into account is reducing their
importance rather than simply replacing them.

Motivated by [8], a decay rate d is applied to reduce the weights of mined patterns for a fixed
decay unit. A decay unit determines the chunk of information to be decayed together; in our
case, this unit is the step size of a sliding window. A decay rate is defined by two parameters: a
decay-base b and a decay-base-life h. A decay-base b determines the amount of weight reduction
per a decay-unit and it is greater than 1. When the weight of the current information is set to 1,
a decay-base-life h is defined by the number of decay-units that makes the current weight be b−1.
Based on these two parameters, a decay rate d is defined as follows:

d = b−1/h (b > 1, h ≥ 1, b−1 ≤ d < 1) (4.2)
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Recall our two-step distributed pattern sampling algorithm, each discriminative pattern is
drawn from two instances x+ and x−. And these two instances are drawn according to the
weight defined by l = r1/w, where r ∈ [0, 1] is a uniform random number and w(x+,x−) =

(2|x
+\x−| − 1)2|x

+∩x−|. We can continue use this weight l as the pattern’s weight.

With a mined pattern collection P , as the sliding window moves, the weight of each pattern is
multiplied by d, i.e. w(pi) = d ·w(pi) for pi ∈ P . Then we mine k new discriminative patterns P ′,
and update our patterns for classification (post-processing) as the patterns with top-k weights in
P ∪ P ′.

Integration of Pattern Mining and Post-processing

For a training set undersampled within a sliding window, pattern mining and pattern post-
processing are two separate steps, i.e. patterns are firstly mined, then post-processed. Our pro-
posed pattern sampling algorithms in Chapter 3 are designed to mine patterns from large datasets
in parallel, and are indeed implemented in a distributed computing programming framework.

Post-processing, on the other hand, is a sequential algorithm, which can run only in a single
machine with limited main memory. Even worse, computing the discriminative measure, e.g.
information gain, of a single pattern needs multiple scan of the dataset. In particular, pattern
shortening needs at least k ·N scans of the dataset and pattern selection needs at least one scan
of the dataset (though the scans in pattern selection can be avoided by caching the measures from
pattern shortening), where k is the number of mined patterns and N is the number of the instances
in the dataset. This is very likely to be a bottleneck of our approach in terms of running time.

It would be very nice that post-processing can be fit into the MapReduce framework in order
to benefit the existing computing resources. A tentative idea is that, pattern shortening can
be straightforwardly parallelized by partitioning the pattern sample and shortening the patterns
in each partition in parallel. The drawback of this way is that, the dataset needs to be copied
into each computing node, since determining the discriminative measures of patterns needs whole
scans of the dataset. Nevertheless, it might still be faster than shortening patterns in a sequential
fashion.

Another better tentative proposal is to post-process patterns while mining them. In the first
step of our distributed pattern sampling algorithm for the discriminativity interestingness measure,
data tuples are drew in each node; it might be possible that post-processing a data tuple immedi-
ately after this data tuple has been drew. However, parallelizing post-processing is beneficial but
still open in this thesis.

4.3.3 Classification Models

In our approach, we rebuild classifiers once the window slides. This is not a truly streaming
fashion. Instead, a better way is to update the classifier once the window slides.

Anohter potential improvement is to use ensemble classifiers to boost classification perfor-
mance.

Classifier Updating

We rebuild classifiers with each slide of the window. In this way valuable prior information
is abandoned. Alternatively, we can keep this information within models by updating them.
Specifically, suppose we have a trained model mt at time point t, then ∆t time unit passes and
the window slides. A new training set D is undersampled, we update the model mt with D, and
this updated model is thus mt′ where t′ = t+ ∆t.

Many classification models are updatable, including Naive Bayes, VFDT [15] and logistic
regression. However, one noteworthy point is the feature space may change due to the update
of patterns. Nevertheless, there are existing works concerned with dynamic feature spaces, such
as [35], which can be integrated into our framework.
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Ensemble Classifiers

Single classifiers e.g. Naive Bayes and decision trees are used in our classification. An alternative
way is to use ensemble classifiers.

The balanced dataset from undersampling can significantly improve the recall of the skewed
positives, however, it also introduces variances to pattern mining and model learning. A classifier
based on a single sample could increase false positive rate although it improves recall on the
positives [11].

To reduce the variance caused by sampling, Cheng [11] proposed an ensemble classification
approach, which generates multiple training sets with repeated samples of the positives and un-
dersamples of the negatives. Multiple classifiers are built based on the different re-balanced sam-
ples and an ensemble is used to combine the output of different classifiers. This method can
significantly reduce the false positive rate while maintaining a high recall rate.

Her method is shown in Algorithm 10. Given a positive set P and a negative set N where
|P | � |N |. A series of undersamples Nii, i = 1, . . . , kd are undersampled from N , and Ni is
comparable to P in size. The actual size of Ni can be decided by a user-specified parameter r,
|Ni| = |P |/r. For each undersample set Ni and the positive set P , we apply pattern mining and
feature selection. A classifier Ci is trained on P ∪ Ni. For testing, decisions from kd classifiers
C1, C2, . . . , Ckd are combined.

Algorithm 10 Balanced Data Ensemble

Input: A set of positive training instances P ,
a set of negative training instances N ,
ensemble number kd , sampling ratio r,
and a test set T

Output: An ensemble for posterior probability estimate
1: Compute the number of negative samples by |P |/r
2: for i← 1 to kd do
3: Draw a sample Ni from N
4: Mine frequent patterns from P and N
5: Train a classifier based on P ∪Ni
6: Estimate posterior probability {fE(x)}x∈T
7: end for
8: Estimate posterior probability {fE(x)}x∈T by combining ensemble outputs.

4.4 Summary

In this chapter, we described the challenges of our click prediction problem, and categorized these
challenges into the skewed class distribution, mining patterns from data streams, and classification
over data streams. State-of-art methods to handle these challenges were also briefly reviewed.

In the particular case of our click prediction problem, we propose to adopt a sliding window
in order to handle the streaming data, undersample negatives to build balanced datasets, encode
instances with post-processed patterns, and train models on the encoded instances in the sliding
window to predict coming pageviews.

Additionally, several improvements of our methods were also proposed, including adjusting
sample sizes of both positives and negatives, updating patterns as the sliding window moves,
parallelizing pattern post-processing, updating classifiers and replace single classifiers by ensemble
ones.

In conclusion, a combination of methods for effectively classifying the pageviews are presented
in this chapter.
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Chapter 5

Case Study: A Dutch Portal
Website

5.1 Introduction

This case study is concerned with a Dutch portal website. This website has a large number of links
divided into sections on its index page. Though for a user, he/she can manually configure which
sections to display, this website intends to automatically and dynamically adjust the placements
of the sections according to the user’s preference. For example, if a user prefers to weather
information, the website can directly display that information in a conspicuous position on its
index page. A very initial step to accomplish this task is to know the user’s preference, or at least,
his/her interests on this website, which is implied by his/her click on a link.

Predicting a user’s click on the index page of this website conforms to our problem setting
proposed in Section 1.1, and the challenges described hold here. In brief, the first difficulty is that
little information of the user can be captured by the website. Unlike click prediction in search
engines, this website is visited mostly directly from its index page, without any redirection from
other sites; thus one kind of useful information, keyword, does not exist. The second difficulty is
that the data comes as a streaming at a high velocity. For a concrete example, there are 46 views
on this website per second.

In this chapter, we employ the methods discussed in previous chapters to explore the potentially
shared patterns, build classifiers with those patterns, and predict whether a user would click on the
index page. Before we describe the application of those methods, one extra step, pre-processing,
is necessary to transform the raw data to classifiable instances. Subsequently, we experimentally
validate our pattern-based classification approach in an offline setting, i.e. on a sample of the
whole dataset. Finally we lift our approach to a simulating online setting and give conclusions.

In experiments, we focus on these issues:

1. In the offline setting, we examine the effects of discriminative patterns on classification
performance.

2. In the offline setting, we explore the effects of different parameters used in our approach
on classification performance; and find a set of parameters that best fit the data sample in
terms of classification performance.

3. In the simulating online setting, we discover the improvement of classification performance
upon classification methods without patterns, and then answer to what extent our approach
is feasible for classifying the pageview stream in this case study.
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5.2 The Raw Dataset

The raw data from that portal website is a dataset of web access logs, in which each record is a
pageview. Each pageview can be viewed as a collection of web objects or resources representing a
specific “user event”, e.g., reading an article, viewing a product page, or adding a product to the
shopping cart. For a concrete example, one pageview from that log dataset is essentially a string,
which is composed of multiple fields such as time, IP address, and visited page.

2012 -10 -31 21:30:43 1.1.1.1 Mozilla /5.0+( compatible ;+MSIE +9.0;+ Windows+NT

+6.1;+ Win 64;+x64;+ Trident /5.0;+ yie9) http ://www.startpagina.nl/ c9c

6484956a93a9e457b3b873637c642 portals_communities ::www_

index www_index_familyshopper_test 1580 1600x

900x24x24 470027 16 {‘‘jv ’’:‘‘1’’,‘‘ul ’’:‘‘nl ’’,‘‘lng ’’:‘‘nl’’,‘‘idp

’’:‘‘2230412637174’’,‘‘re ’’:‘‘1583x708’’,‘‘hl ’’:‘‘22x30x41’’,‘‘hm ’’:‘‘1’’,‘‘

vtag ’’:‘‘41003’’,‘‘s’’:‘‘470027’’,‘‘cn ’’:‘‘lan ’’,‘‘Language ’’:‘‘nl-NL’’,‘‘ati

’’:‘‘PUB -[26305] -0 ’ ’}

To get a flavor of pageviews, we project seven pageviews into five straightforwardly meaningful
fields: time, cookie, IP, page, and user agent, and these projected pageviews are listed in table 5.1,
where each row represents a pageview, and each column represents a field 1. Take the first pageview
in table 5.1 as an example, it shows that a user with ip address 1.1.1.1 clicked page index (the
index page of that website) using browser Internet Explorer version 9.0 on Windows 6.1 at 21:30:43
on 31st October, 2012.

Table 5.1: Example pageviews

p id time cookie ip page user agent

1 2012-10-31 21:30:43 c9c64849 1.1.1.1 index ...MSIE+9.0;+Windows+NT+6.1...

2 2012-10-31 21:31:05 fb46fda3 2.2.2.2 index ...Firefox/16.0;+Windows+NT+5.1...

3 2012-10-31 21:32:43 c9c64849 1.1.1.1 weer ...MSIE+9.0;+Windows+NT+6.1...

4 2012-10-31 21:33:05 fb46fda3 2.2.2.2 weer ...Firefox/16.0;+Windows+NT+5.1...

5 2012-10-31 21:34:20 c9c64849 1.1.1.1 buienradar ...MSIE+9.0;+Windows+NT+6.1...

6 2012-10-31 22:21:20 c9c64849 1.1.1.1 weer ...MSIE+9.0;+Windows+NT+6.1...

7 2012-10-31 22:31:20 c9c64849 1.1.1.1 buienradar ...MSIE+9.0;+Windows+NT+6.1...

The historical raw dataset comprises 37 days of pageviews, from 2012-10-01 to 2012-10-22, and
from 2012-10-31 to 2012-11-14 2. There are totally 178,986,000 (179 million) pageviews, 112.5 GB
in size. Simply training a classifier on this large dataset becomes infeasible, due to the limit of
main memory and the running time of some accurate classifiers. Even worse, this large amount
of pageviews indicates a high velocity streaming. In particular, there are 3,977,467 (4 million)
pageviews per day, and 46 pageviews per second on average.

5.3 Pre-processing

The phrase “garbage in, garbage out” is particularly applicable to data mining and machine
learning projects. The raw dataset cannot directly be used as classifiable data, due to missing
values, invalid values, and the missing of labels. From a pageview in the raw dataset, we cannot
tell the user’s action. To see a user’s click when he was visiting the index page, single pageviews
cannot tell us such information; even though there is a field indicating the user clicked or not, we
still do not know what the previous page.

To recognize a user’s clicks in pageviews, one effective way is to infer from sessions, which
is a sequence of pageviews by a single user during a single visit. Identifying such sequences of
pageviews is called sessionization. In general, sessionization groups the pageviews of a user in a

1The values of these fields are not exactly projected; meaningless characters are eliminated for clarity. And,
column p id is not present in raw data.

2The data of 2012-10-23 to 2012-10-30 is missing.
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Table 5.2: Identified users

user cookie ip user agent p id time page

User 1 c9c64849 1.1.1.1
...MSIE+9.0;

+Windows+NT+6.1...

1 2012-10-31 21:30:43 index

3 2012-10-31 21:32:43 weer

5 2012-10-31 21:34:20 buienradar

6 2012-10-31 22:21:20 weer

7 2012-10-31 22:31:20 buienradar

User 2 fb46fda3 2.2.2.2
...Firefox/16.0;

+Windows+NT+5.1...

2 2012-10-31 21:31:05 index

4 2012-10-31 21:33:05 weer

certain time period. If there is a pageview which is not the index page in a session, we can safely
assert that there is a user click. Knowing clicks in each session, we can label the first pageview in
this session, and build predictive models on these pageviews.

5.3.1 Sessionization

Since a user may visit the website more than once, the server of this website may record multiple
sessions for each user. Therefore, identifying sessions consists of two steps: identifying users, then
identifying the sessions of each user.

User identification In an ideal case, each user is represented by a unique id in pageview logs,
and users can easily be distinguished by their ids. However, in practice, most users are not
registered, therefore there is no such field. In the absence of authentication mechanisms, the most
widespread approach to distinguishing among unique visitors is the use of client-side cookies. But
cookies are not sufficient, since client-side cookies are sometimes disabled by users due to privacy
concerns. Another typical representations of users are IP addresses. However, IP addresses alone
are not generally sufficient for mapping pageview entries onto the set of unique visitors. This is
mainly due to the proliferation of ISP proxy servers which assign rotating IP addresses to clients as
they browse the Web. Therefore, two occurrences of the same IP address (separated by a sufficient
amount of time), in fact, might correspond to two different users [32]. Furthermore, multiple users
may share a same external IP address if they are in a local area network.

Without user authentication or client-side cookies, it is still possible to accurately identify
unique users through a combination of IP addresses and other information such as user agents
and referrers [12]. In practice, we combine cookie, IP, and hence user agent to represent a user.
Applying this strategy to identify users from the pageviews in Tab 5.1, there are two users: one
from 1.1.1.1 having a cookie of c9c64849 and using Internet Explorer 9.0 on Windows 6.1, and
the other from 2.2.2.2 having a cookie of fb46fda3 and using Firefox 16.0 on windows 5.1, as
shown in Table 5.2.

Sessionization After identifying users with a combination of cookie, IP, and user agent fields,
we are able to sessionize pageviews. Sessionization is the process of segmenting the pageviews of
each user into sessions, each representing a single visit to the website. One simple but effective
method for sessionization is a time-oriented heuristics. This heuristics assumes the time spent on a
single page must not exceed a threshold δ, and separates sessions with this threshold as a time gap.
The procedure of sessionization is described as follows. For a ordered sequence of pageviews by
timestamp from an individual user, firstly assign the first pageview to a new constructed session.
Then let t′ be the timestamp of the pageview most recently assigned to a constructed session, the
next pageview belongs to the same session if and only if its timestamp t′′ holds that t′′ − t′ ≤ δ.
Otherwise, this pageview becomes the first of the next constructed session.

In our sessionization, the threshold δ was set to 30 minutes. Applying this setting to sessionize
the pageviews in Table 5.1 after user identification, the resulting sessions are shown in Table 5.3.
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Table 5.3: Identified sessions

session user p id dttm page

Session 1 User 1
1 2012-10-31 21:30:43 index

3 2012-10-31 21:32:43 weer

5 2012-10-31 21:34:20 buienradar

Session 2 User 2
2 2012-10-31 21:31:05 index

4 2012-10-31 21:33:05 weer

Session 3 User 1
6 2012-10-31 22:21:20 weer

7 2012-10-31 22:31:20 buienradar

We can clearly see there are three sessions, and two of them are belonging to User 1. Applying
sessionization to the raw dataset, we obtain 75,663,545 sessions.

5.3.2 Labeling

Intuitively, user clicks can easily be detected in sessions —if the length of a session is more than
1, then there must be clicks. However, not all clicked pages are interesting, especially the page
asking cookie acceptance. Therefore, we can safely judge there is at least one click unrelated to
cookie in a session if the length of this session is larger than 1 and there is at least one page which
is neither the index page nor related to cookie. Formally, for a session S,

∃p ∈ S : p /∈ {index, cookiepage} ⇒ click

. That is, in session S, if there is at least one page which is not the index page and is not related
to cookie, then S is labeled as click, otherwise non-click.

In predictive modeling, however, the labeled sessions are still not appropriate to be directly
input into building classifiers. Because when a user visits the index page, we do not have sessions
but only one pageview, though this pageview of the index page may lead to following pageviews.
Therefore, utilizing the information in a session but not in the first pageview of this session is
useless. Consequently, for each session, we only retain the first pageview, namely origin, to build
our classification models.

Sometimes an origin is not on the index page of that website. As shown in Table 5.4 which
represents sessions in Table 5.3 as paths, Session 3 starts from page weer, rather than index.
Those sessions starting from pages other than index are removed during our pre-processing, since
we only care about users visiting the index page. Fortunately, 64,555,924 (85.32%) sessions start
from the index page.

There are 3,345,275 origins that led to clicks, and 61,210,649 led to non-clicks.

Table 5.4: Pageviews in a session as paths

session pageviews (path)

Session 1 index→weer→buienradar

session 2 index→weer

session 3 weer→buienradar

5.3.3 Transformation

Raw fields in pageviews are likely to be not that suitable for pattern mining and classification.
Meaningful information can be derived from raw fields. For instance, the number of pixels of a
screen can be derived from a screen resolution in the representation of “1600×900”. Furthermore,
values of some fields may be aggregated by exisiting knowledge. For example, IP addresses can be
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translated into cities, and time can be translated into different phases in a day such as morning
and afternoon. Lastly, data granularities which are too fine would lead to overfitting.

Therefore, it is necessary to transform each raw field in pageviews into a more meaningful rep-
resentation. Each raw field is transformed to one or more attributes which are of type string. And
we use attribute-value pairs to represent the dataset as a binary one. The detailed explanations
of fields and transformations are given in Appendix A. And a brief summary of raw fields and the
numbers of the attributes transformed from them are shown in Table 5.5.

In summary, there are 19 raw fields in each pageviews, and then they are transformed into 25
attributes in total.

Table 5.5: Transformation of raw fields

Field Description #attributes

dttm date and time 2
ip IP address 1
referer referer 1
screen screen resolution 2
site section section of the page 1
user agent user agent 4
vtag tracker’s version 1
jv java vm 1
re browser’s resolution 2
lng browser language 1
ati unknown 1
hm if set homepage 1
cn connection type 1
anc unknown 1
anct unknown 1
vrn new visitor 1
roinbh Amount of time that

has gone by since
purchase was made

1

UA PROF mobiles UA profile 1
ref referer 1

5.4 The Offline Setting

Before applying our pattern-based classification approach to a real streaming environment, we
validate this approach in an offline setting to discover a parameter setting of our approach that
may best fit the data of this study case. In addition, we experimentally explore the effect of
patterns in classification: to what extent patterns can help classification performance.

Our approach is involved in undersampling, sampling a given number of discriminative pat-
terns, post-processing sampled patterns with a given dataset coverage threshold, and building
classification models. Different parameters are involved in this approach. Specifically in this
offline setting, we discover the size of the training set, the dataset coverage threshold in post-
processing, and the size of sampled discriminative patterns. Besides, encoding instances with or
without original attributes are considered as well. Additionally, we compare the classification
performances of two typical classifiers: naive Bayes and decision trees (C4.5[38]) 3.

5.4.1 The Balanced Training Set

The dataset of this offline setting comprises the pre-processed data of two consecutive days, in
which we build classification models over the first day, and validate the models on the second day.
The pre-processed data of two consecutive days, 2012-10-01 and 2012-10-02, are original pageviews

3The implementations in Weka [24] with default parameters were used in our experiments.
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of sessions. Less than 5% of these pageviews led to clicks, as shown in Table 5.6, which reports
the class distribution of these pageviews.

Table 5.6: Class distribution of origins

Dataset Positive Negative Total

2012-10-01 89061(4.32%) 1972913(95.68%) 2061974(100%)
2012-10-02 92273(4.66%) 1886456(95.34%) 1978729(100%)

To build a balanced training set from the data of 2012-10-01, we undersampled from both
the positives and the negatives. The undersample size was empirically set to 60000, i.e. in the
undersampled balanced training set, there were 30000 positives and 30000 negatives respectively.

To assess the performance of a classifier on skewed datasets, accuracy is no longer a good
overall measure since the majority class dominates the result. We introduce the area under ROC
curve (AUC) as the evaluation metric. The ROC curve shows the trade-off between true positive
rate and false positive rate for a given classifier. A good classifier would produce a ROC curve as
close to the left-top corner as possible. The area under the ROC curve (AUC) is a measure of the
model accuracy, in the range of [0, 1]. A perfect model will have an area of 1.

Table 5.7 shows our undersampling technique can significantly improve the recall of the pos-
itives in the test set. Two kinds of classifiers, naive Bayes and decision trees, trained with or
without undersampling from the data of 2012-10-01 were tested on the data of 2012-10-02. AUC,
precision and recall of each class are reported. With the naive Bayes classifier trained on the un-
dersampled balanced training set (denoted as “nb-undersample”), the recall of the positive class
drastically increases from 0.030 to 0.637 comparing with another naive Bayes classifier trained
on the whole data of 2012-10-01. However, the overall measure, AUC, slightly drops with the
undersample; nevertheless, significantly improving the recall of the positives is worth sacrificing a
minor AUC. For the decision trees, the recall of the positive class are improved from 0.000 to 0.748
with undersampling. Both the precision and the recall of the positives equal to 0 indicates that
the decision tree without undersampling classified all instances as negative. In this case, decision
trees seem useless without undersampling.

Table 5.7: Classification performance with undersampling

Classifier AUC 0-precision 0-recall 1-precision 1-recall

nb-undersample 0.696 0.974 0.656 0.083 0.637
nb-no-undersample 0.700 0.954 0.990 0.129 0.030

tree-undersample 0.680 0.978 0.556 0.076 0.748
tree-no-undersample 0.500 0.953 1.000 0.000 0.000

In brief, the original training set used in our offline experiments is a random undersample
consisting of 30000 positives and 30000 negatives from the pageviews of 2012-10-01; the test set
is all the pageviews of 2012-10-02.

The baseline model used in later offline experiments is a naive Bayes classifier trained on this
original training set, with a 0.696 AUC as its classification performance.

5.4.2 Pattern-based Classification

In our pattern-based classification approach, we mine positive-discriminative patterns from the
balanced training set, then post-process them before encoding instances. The size of a post-
processed pattern collection depends on the dataset threshold δ. Intuitively, larger δ would lead to
more patterns, while smaller δ would lead to less. The number of patterns that used in classification
may affect the classification performance of different encoding strategies.

Apart from the dataset coverage threshold, another variable is the size of patterns that should
be sampled. Due to the sampling essence, increasing the size of a pattern sample may have a
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better chance to obtain more patterns with higher discriminativities; however, larger sample sizes
need more computing resources.

In the following, the influences of the dataset coverage threshold and the pattern sample size
are experimentally explored.

Dataset Coverage Threshold

To explore the influence of the dataset coverage threshold on patterns, we mined a fixed number
of patterns, i.e. 1000, from the balanced training set, then post-processed them with dataset
coverage thresholds varying from 1 to 4, leading to 4 collections of patterns.

In Table 5.8, statistics of the post-processed pattern collections are reported. The dataset
coverage threshold, or just coverage in short, means the times that the selected patterns can cover
the dataset. Information gain (IG) is the discriminative measure. A larger information gain of a
pattern indicates the dataset is more separable by that pattern. As can be seen, more coverages
indeed lead to more selected patterns, as well as longer pattern lengths. On the other hand, average
frequency and information gain drop with increasing coverage, since latter selected patterns would
have less discriminative power due to the limited number of instances they fit.

Table 5.8: Statistics of post-processed patterns

Coverage Number Median length Median frequency Median IG

1 6 2 0.54 0.0562
2 17 3 0.45 0.0536
3 28 3 0.45 0.0448
4 70 5 0.17 0.0055

The usefulness of these 4 collections of post-processed patterns are explored by integrating them
into classification modeling. In particular, for each pattern collection, we encoded all instances
1) only with the patterns in the collection, and 2) with with the patterns in the collection and
original attributes of instances.

For both strategies, we trained a naive Bayes classifier and a decision tree classifier, leading to
four classification methods, 1) nb-pattern-only : a naive Bayes classifier trained on the training set
only with patterns as features; 2) nb-augmented : a naive Bayes classifier trained on the training
set with both original attributes and patterns as features; 3) tree-pattern-only : a decision tree
classifier trained on the training set only with patterns as features; and 4) tree-augmented : a
decision tree classifier trained on the training set with both original attributes and patterns as
features. Then each classification model was tested on a correspondingly encoded test set, which
is based on the whole data of 2012-10-02.

Figure 5.1 shows the AUCs of different classification methods with coverages ranging from 1 to
4. We can see that nb-augmented consistently performs the best in terms of AUC, with all values
of coverage; though it slightly drops as coverage increases. Both classifiers on augmented training
sets perform better with a smaller coverage; and perform worse using the pattern-only encoding
strategy with larger coverages. This may be because the patterns selected with δ = 4 are still
too general in both the positives and negatives. One may notice that only nb-augmented with
δ = 1 outperforms the baseline—the naive Bayes classifier built with original attributes of the
balanced training set. So in the sense of AUC, only the naive Bayes classifier helps classification
performance.

In brief, the “pattern-only” encoding strategy performs better with δ = 4; and the “augmented”
strategy performs better with δ = 1.

Pattern Sample Size

Another factor that may impact on the usefulness of selected patterns is the sample size of discrim-
inative patterns. More sampled patterns contribute to higher possibilities to include discriminative
patterns, but require more computational cost.
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Figure 5.1: AUC with different dataset thresholds

To explore the influence of the size of pattern samples, we mined different numbers of discrim-
inative patterns from the balanced training set. The range of numbers was empirically set from
1000 to 10000, with an interval of 1000. According to the experiments on varying the dataset
coverage threshold, we post-processed each mined pattern collection with coverage δ equal to 1
and 4, facilitating the “augmented” and “pattern-only” encoding strategies respectively.

The statistics of the post-processed patterns are reported in Table 5.9. As can be seen, the
qualities of the patterns with both coverages do not vary with the size of mined pattern samples,
since the median frequencies and median information gains do not vary much. Though the numbers
of the post-processed patterns with both coverages change with the sample size, this change hardly
reflects any obvious relationship between them. Therefore, post-processed patterns from a 1000
sized sample may have the same quality as those from samples of other sizes.

Table 5.9: Statistics for the post-processed patterns

Coverage 1 Coverage 4

Size No. Median len. Median freq. Median IG No. Median len. Median freq. Median IG

1000 6 2 0.54 0.0562 70 5 0.17 0.0055
2000 8 3 0.53 0.0562 49 4 0.43 0.0488
3000 4 3 0.49 0.0562 24 3 0.53 0.0557
4000 4 2 0.48 0.0562 24 3 0.51 0.0562
5000 5 3 0.51 0.0562 31 3 0.50 0.0556
6000 4 1.5 0.48 0.0562 28 3 0.53 0.0562
7000 7 3 0.52 0.0562 42 3.5 0.52 0.0547
8000 5 3 0.52 0.0562 41 3 0.45 0.0545
9000 6 2 0.53 0.0562 27 2 0.45 0.0557
10000 8 2.5 0.53 0.0562 32 3 0.52 0.0559

stdev 1.57 0.58 0.02 0.0000 14.35 0.79 0.11 0.0157

To further explore the pattern qualities in classification, we encoded instances using the
“pattern-only” strategy with the patterns post-processed with coverage equal to 4, and encoded
instances using the “augmented” strategy with the patterns post-processed with coverage equal
to 1. Both the naive Bayes classifier and decision tree classifier are used with these two encod-
ing strategies, leading to four classification methods: 1) nb-pattern-only : a naive Bayes classifier
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trained on the training set only with patterns as features, where the patterns are post-processed
with δ = 4; 2) nb-augmented : a naive Bayes classifier trained on the training set with both original
attributes and patterns as features, where the patterns are post-processed with δ = 1; 3) tree-
pattern-only : a decision tree classifier trained on the training set only with patterns as features,
where the patterns are post-processed with δ = 4; and 4) tree-augmented : a decision tree classi-
fier trained on the training set with both original attributes and patterns as features, where the
patterns are post-processed with δ = 4.

Figure 5.2 shows the AUCs of these classification methods varying the number of sampled
patterns. As can be seen, the size of pattern samples has little influence on the AUCs of the
classifiers with the “augmented” encoding strategy. Whereas, this size flunctuates the AUCs
of the classifiers with the “pattern-only” encoding strategy. Besides, nb-augmented consistently
outperforms the others, and it is the only one that has a better performance than the baseline,
which is a naive Bayes classifier trained on the original training set.

Therefore, the size of a pattern sample is unlikely to affect the classification performance of the
corresponding post-processed patterns. 1000 is a emperically satisfactory size of pattern samples
in our case.
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Figure 5.2: AUC with different sample sizes of patterns

Detailed Influence of Patterns on Classification

We then investigate the detailed performances of classification methods described above with the
best setting. That is, the number of sampled patterns is 1000; the “pattern-only” strategy is
used with δ = 4; the “augmented” strategy is used with δ = 1. We trained 1) a naive Bayes
classifier “nb-pattern-only” with the “pattern-only” encoding strategy; 2) a naive Bayes classifier
“nb-augmented” with the “augmented” encoding strategy; 3) a decision classifier “tree-pattern-
only” with the “pattern-only” encoding strategy; 4) a decision classifier “tree-augmented” with
the “augmented” encoding strategy. Notice that these four classification models are identical to
the four in the last experiment with the sample size equal to 1000.

Table 5.10 shows the detailed classification performance of the classifiers described above plus
two baselines: a naive Bayes classifier and a decision tree classifier trained without patterns,
called “nb-original” and “tree-original” respectively. As can be seen, nb-augmented achieves the
overall performance in terms of AUC, which surpasses all the decision trees, but is merely slightly
better than “nb-original”. Comparing with “nb-original”, “nb-augmented” trades the recall of the
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positives for the precision of the positives. In terms of the recall of the positives, the decision trees
have better performance than the naive Bayes classifiers, possibly due to the rule-based property of
decision trees. Augmenting instances with patterns can slightly improve the recall of the positives
for both the naive Bayes classifiers and decision tree classifiers.

Table 5.10: Detailed metrics of different classifiers

Classifier AUC 0-precision 0-recall 1-precision 1-recall

nb-original 0.696 0.974 0.655 0.083 0.638
nb-pattern-only 0.679 0.972 0.684 0.085 0.602
nb-augmented 0.698 0.972 0.681 0.085 0.606
tree-original 0.680 0.978 0.556 0.076 0.748

tree-pattern-only 0.681 0.978 0.571 0.077 0.723
tree-augmented 0.680 0.979 0.548 0.076 0.756

Figure 5.3a plots the ROC curve of the naive Bayes classification models. The curves of nb-
original and nb-augmented are nearly overlapped, indicating that the classification performance
cannot be much improved by patterns. It conforms to the results in Table 5.10: nb-augmented
improves AUC by 0.002 comparing with nb-original.

We further show the precision-recall curve of the naive Bayes classifiers in Figure 5.3b. When
the recall is less than 0.6, the model trained on the augmented training set performs better than
the models trained on only patterns or original attributes. While, when the recall is greater than
0.6, the difference of classification performance is not obvious.

5.4.3 Conclusion

To summarize, we can answer the effects of patterns on classification, 1) patterns can increase
the recall of the negatives but decrease the recall of the positives for naive Bayes classifiers; 2) a
slightly better AUC can be achieved by using patterns in naive Bayes classifiers.

The coverage threshold and the size of a pattern sample do not affect the classification per-
formance of naive Bayes classifiers and decision tree classifiers with the “augmented” encoding
strategy, but affect that with the “pattern-only” strategy. The “pattern-only” encoding strategy
can hardly outperform the “augmented” one.

Finally, the empirical parameters that we have found are:

1. the undersample size is set to 60000, with 30000 positives and 30000 negatives respectively;
2. the sample size is set to 1000, followed by a post-processing with the dataset coverage

threshold equal to 1;
3. a naive Bayes classifier with the “augmented” encoding strategy is favored.
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Figure 5.3: Classification performance with patterns

5.5 The Simulating Online Setting

To see whether our patterns-based classification approach is applicable to the click prediction
problem, ideally we should deploy it into a real streaming environment. However, since the real-
world data we have is stored in a static dataset instead of being generated as a data stream, we
cannot really apply our approach to a real streaming setting. Nevertheless, we can simulate a data
stream from the static dataset.

In this section, we will describe the application of the approach described in Chapter 4, and
compare different classification performances of different sizes of windows. Then we will answer
whether our approach is applicable for the click prediction of this specific study case.
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5.5.1 Setup

The Dataset

The simulating data stream comes from the pre-processed pageviews of 37 days, from 2012-10-01
to 2012-11-14 with 8 days missing. The numbers of the original pageviews, or origins, in each day
and the click rates are shown in Figure 5.4. The bars represent the numbers of original pageviews,
with 2012-10-23 to 2012-10-30 missing. The polygonal curve represents the click rates.

Figure 5.4: Dataset statistics
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Sliding Window

As described in Chapter 4, we adopt a sliding window to handle the data stream. The variables
in the sliding window consists of the window size w days, and the window step d days. In our
experiments, we fix the window step to 1 day. That is, the window slides when after one day from
the time point it lastly slides. We will test the classification performances with different window
size w.

After the window slides, we apply our pattern-based approach within this window to construct
classification models for predicting incoming pageviews. The setting follows the result of the offline
experiments described in last section. Specifically, we undersampled a balanced training set from
the pageviews within this window, then employed the pattern mining, post-processing and model
building as described in Section 5.4. The undersampled balanced training set consisted of 30000
positives and 30000 negatives respectively; the size of pattern samples was set to 1000; and the
dataset coverage threshold in post-processing was set to 1 and 4 (for different encoding strategies
respectively). Since the classification performance of decision trees hardly exceeded that of naive
Bayes classifiers in the offline experiments, decision trees were not considered in the simulating
streaming experiments.

Therefore there are two strategies to be tested: 2) wd-original, naive Bayes classifiers that
trained within a sliding window with original attributes; 3) wd-augmented, naive Bayes classifiers
that trained within a sliding window with original attributes and patterns post-processed with
cover 1.

The window size w in our experiments is set to 1 and 5. When we use a 1-day sized window, it
is essentially batched processing: train a model from the data in a day, then apply this model to
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the next day. For the 5-day sized window, when the number of days are not sufficient to form the
5-day sized window, all the days are included in this window. For example, when a 5-day sized
window just starts, it includes the day 2012-10-01 only. Furthermore, the sliding window slides
over the missing days, As a result, the sliding window slided 36 times, and 36 days, 2012-10-02 to
2012-10-22 and 2012-10-31 to 2012-11-14, were tested on.

The Baseline

We also employed a naive Bayes classifier trained on an undersample of the first day without
any pattern to predict the days from 2012-10-02 to 2012-11-14 as a baseline: nw-original, a naive
Bayes classifier trained on an undersample of the first day with original attributes without a sliding
window.

The weighted F-measure described in Chapter 2 is used as the evaluation metric.

5.5.2 Results

We first report the classification performance of our pattern-based approach comparing with the
baseline, then report the comparison of 1-day sized window and 5-day sized window in terms of
classification performance.

Comparisons with The Baseline

Figure 5.5 shows the classification performance results of three classification methods in a 1-day
sized sliding window on these 36 days. As can be seen, 1d-augmented consistently performs better
than the baseline and 1d-original, except at the end of the time period, in which 1d-original
shows a better performance. It is somewhat surprising that 1d-original is not obviously better
than the baseline; or even worse, it is often surpassed by the baseline. Thus, 1d-augmented is
likely to slightly improve the classification performance upon the baseline in terms of the weighted
F-measure, but 1d-original not.
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Figure 5.5: Weighted F-measure of the 1-day sized sliding window

Figure 5.6 shows the weighted F-measures of the 5-day sized sliding window. The same trend
as Figure 5.5 can be observed. The 5-day sized window with patterns outperform the baseline and
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5d-original. Again surprisingly, the baseline sometimes performs better than 5d-original.
In brief, both 1-day and 5-day sized windows can achieve better performances than the baseline.

In addition, there is unlikely to be concept drift in our data, as there is no strong evidence that
the classification performance with a sliding window is consistently better than that without a
sliding window.
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Figure 5.6: F-measure of the 5-day sized sliding window

Comparison of Windows

Figure 5.7 shows the comparison of the 1-day and 5-day sized windows. Similarly to the results
we have shown, they both have a better performance than the baseline. However, the difference
between these two windows is very subtle. One may notice that at the tail, 5d-augmented still
has a stable performance, but 1-day does not. This may be because some patterns are captured
by 1d-augmented, but those patterns are only existing in a very short period, namely, one day.
Therefore, these patterns cannot generalize in the next day, and utilizing them in classification
tends to be unhelpful, or even worse.

Overall Comparison

We report the AUCs and the weighted F-measures on average of each method to give an overall
comparison. As can be seen, the AUCs of all the methods are nearly the same. The classification
performances are only distinguished by F-measure. Specifically, 5d-augmented achieves the best
performance, and surpasses the baseline by 0.009 on average.

Table 5.11: Average AUC and weighted F-measure

Method AUC F-measure

baseline 0.673 ± 0.020 0.752 ± 0.008
1d-original 0.674 ± 0.022 0.748 ± 0.016

1d-augmented 0.675 ± 0.022 0.757 ± 0.013
5d-original 0.675 ± 0.021 0.748 ± 0.010

5d-augmented 0.675 ± 0.022 0.761± 0.008
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Figure 5.7: F-measure the sliding windows

5.5.3 Conclusion

The experiments show that our pattern-based classification approach can slightly improve the
classification performance upon the baseline by 0.009 in terms of the average weihghted F-measure.
and by 0.002 in terms of the average AUC. Due to the indication from the offline experiments,
the contributions to the improvement of the average weighted F-measure may be that, at a same
recall of the positives, pattern-based classification can achieve a higher precision.

Additionally, since the baseline performs almost the same as a classifier trained on original
attributes within a sliding window, it might be not necessary to introduce sophisticated methods
to handle concept drift.

5.6 Summary

To explore the usefulness of our pattern-based approach in a real-world environment, we conducted
experiments with a case study. The raw data of this case study are pageviews, and were pre-
processed to be classifiable instances.

We experimentally selected parameters for our approach with experiments on a small propor-
tion of the whole dataset, then applied our approach with the selected parameters using a sliding
window to handle a simulating data stream. In experiments, our approach slightly surpasses a
classifier statically trained on the initial day with original attributes.
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Chapter 6

Conclusions

In this thesis, we have tackled the click prediction problem by the pattern-based classification
approach. The critical problems in click prediction are weak features, skewed class distribution
and streaming data, which are addressed by grouping individual features, random undersampling,
and a sliding window technique respectively.

For a side problem raised by the pattern-based classification approach, mining patterns from
large datasets has been addressed by a distributed pattern sampling algorithm proposed by us.
The theoretical analysis show that the memory requirements of the proposed algorithm only
dependent on the number of desired patterns. The experimental evaluation shows the scalability
of the algorithm, that is, the computation time is roughly linear dependent on the number of
patterns to sample, which makes the algorithm suitable in most practical settings.

To handle the skewed data stream with the pattern-based classification approach, we adopt a
sliding window to capture the high-velocity stream, and undersample a balanced dataset as the
training set within a window for both pattern mining and model learning.

We have validate our pattern-based approach with a case study concerned with a Dutch por-
tal website, whose purpose is to predict user clicks on their index webpages. The experiments
conducted in an offline setting show our pattern-based classification performs slightly better than
classification only with original features in terms of AUC.

In a simulating online setting, the experiments show our pattern-based approach can achieve
an average AUC of 0.675 over a period of 36 days, and surpass the classification model without
pattern by 0.002. Besides, the average weighted F-measure of our approach is 0.009 higher than the
baseline. These results justify that our approach can indeed improve classification performance.

Finally, from the industrial view, the question that whether our approach should be deployed
in a real streaming setting leaves to the end user: is a 0.002 improvement in AUC and a 0.009
improvement in weighted F-measure worth deployment?
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Appendix A

Transformation of raw fields

Here is described the transformation the raw fields in original pageviews of sessions to classifiable
attributes. Each pageview was generated from an Internet tracker, as called Tracker here. Thus,
the fields in each pageview can be divided into two parts: the fields appended by Tracker, and the
fields (parameters) from the raw query string. There are 19 raw fields in each pageview, and we
transform them into 25 attributes, which are all of type categorized.

Table A.1 gives the information about the transformation from fields to attributes. The name,
the description and an example value of a field are given in each row, plus the attributes after
transformation and the method of the transformation.
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APPENDIX A. TRANSFORMATION OF RAW FIELDS
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