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Abstract

Ultracold plasmas (UCPs) are created by photo-ionization of a cloud of laser-cooled
atoms, and have initial electron temperatures in the range 1-100 K and initial ion tem-
peratures in the range 0.001-1 K. As a consequence UCPs can be in the strongly coupled
regime, where the typical Coulomb interaction between the particles exceeds the ther-
mal energy of the particles; a clear distinction with conventional plasmas. UCPs are
not stable systems and the electron and ion temperature will rise during their evolution.
The introduction of a disturbing rf-field to the UCP is expected to speed up the heating
of the plasma.

In this thesis the intrinsic electron heating mechanisms are studied as well as the heating
mechanisms induced by an external rf field. Numerical simulations were performed with
the General Particle Tracer code and compared to analytical theories. Two intrinsic
heating mechanisms were studied: disorder-induced heating and heating by three-body
recombination (TBR). Disorder-induced heating arises due the random initial positions
of the electrons. An excess of potential energy exists in the electron distribution which
is rapidly converted into thermal energy. The time scale of disorder-induced heating was
found to be on the order of the inverse Mie-frequency, confirming analytical theories.
TBR was identified in the simulations and the TBR heating rate was found to agree well
with analytical models.

Two rf-induced heating mechanisms were studied: collisionless energy absorption
and collisional absorption. Collisionless absorption of the electrons in the plasma was
modeled as an electron cloud oscillating in an electrostatic plasma potential perturbed
by an oscillating rf field. Two proposed plasma potentials were studied, for different rf
field frequencies. First the collisionless absorption was calculated classically as well as
quantum-mechanically in the 1D harmonic potential. The expected irreversible energy
absorption was at the resonance frequency of the potential and reversible energy absorp-
tion for other field frequencies, also confirmed by GPT simulations. For the more realistic
anharmonic 3D error potential a net absorption was found that depended strongly on
the ratio of the oscillation frequency of the electron cloud to the external field frequency.

Collisional absorption was studied in a regime that collisionless absorption is neg-
ligible. Absorption arises because the electrons, which are oscillating at the rf field
frequency, are deflected by the Coulomb fields of the ions. The amount of collisional
absorption was found to depend strongly on the amplitude of the rf field. It was found
that the rf field effectively suppresses the electron-ion collision frequency as a function
of increasing field amplitude, confirming analytical theories. For low to moderate am-
plitudes the amount of energy absorption increases, but less than one might intuitively
expect due to the decrease in collision frequency. For very strong field amplitudes the
energy absorption even decreases as a function of field amplitude.
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Introduction

The plasma state is one of the four fundamental states of matter and the most common
phase of ordinary matter in our universe. A plasma is a substance containing many free
electrons and ionized atoms whose macroscopic behavior is governed by the long-range
Coulomb forces. There are two fundamental parameters describing the macroscopic be-
havior of a plasma: the particle electron and ion densities, ne an ni, and the electron
and temperature ,Te and Ti [1]. An overview showing different types of plasma classified
by electron temperature and electron density is shown in figure 1.1. The diagonal lines
show different values of the Coulomb interaction parameter Γ. This parameter quanti-
fies the ratio of the Coulombic interaction energy with the thermal energy of the particles:

Γ =
e2

4πεa0kbT
(1.1)

where a0 = [3/(4πn)]1/3 is the Wigner-Seitz radius which can be regarded as the ma-
noeuvring room of a particle in the plasma or as half the average inter-particle distance
in the plasma [2].

One distinct group of the plasmas shown in figure 1.1 will be the central subject in
this thesis: the ultracold plasma (UCP). UCPs have electron temperatures smaller than
100 K and ion temperatures smaller than 1 K. The main distinction between UCPs
and other plasmas is in the Coulomb parameter Γ. Ultracold plasmas can be in the
strongly coupled regime, defined by Γ � 1, in which the Coulomb interaction between
the particles exceeds the thermal energy.
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Figure 1.1: Overview of plasmas in the electron density-temperature parameter plane [2].

1.1 Creation and evolution of ultracold plasmas

Ultracold plasmas are not created by ionizing collisions between charged particles, but
by photo-ionization of a cloud of ultracold atoms, which succeeded for the first time in
1999 [3]. First, an atomic gas is trapped and cooled in a magneto-optical trap, which
consists of several laser beams to cool the atoms and a magnetic field to trap the atoms
[4]. In such a configuration a gas with particle density n < 1018 m−3 can be cooled to
temperatures as low as T ≈ 100 µK. The laser-cooled gas has a Gaussian density, with
rms-sizes smaller than 1 mm and a Wigner-Seitz radius a0 ' 1 µm.

Most ultracold plasma experiments are based on a two-photon ionization, where one
photon of the cooling laser excites atoms to the upper level of the cooling transition [2]. A
second pulsed narrow-band dye laser is used to excite the electrons above the ionization
threshold, giving the electrons a kinetic energy approximately equal to the difference
between the photon energy and the required ionization energy. The minimal initial
kinetic energy is determined by the bandwidth of the laser, which can result in initial
electron temperatures as low as Te ≈ 100 mK. The ion temperatures is approximately
equal to the temperature of the atoms before photo-ionization.

The creation of the plasma is illustrated in figure 1.2.
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Creation of an ultracold plasma in a magneto-optical trap

Figure 1.2: Red beams: Three pairs of counterpropagating laser-beams (red beams) in combina-
tion with the magnetic field due to a pair of coils (orange rings) in anti-Helmholtz
configuration cool and trap the atom cloud.
The trapped atom cloud is excited to the upper level of the cooling transition (blue
beam) and ionized by pulsed narrow-band dye laser (green beam).
N.B. : colors are not related to wavelengths. Image from: [5]

The essential dynamics of an ultracold plasma are captured by classical physics,
despite their low particle temperatures. The densities of ultracold plasma are low enough
such that the quantum-mechanical wave functions do not overlap. The importance of
quantum effects can be described by the Brückner parameter rs [6], which is the ratio
between the Wigner-Seiz radius and the Bohr radius aB = 4πε0~2/mee

2. For quantum
effects to be relevant rs < 1, while for UCPs rs values are in the range rs ≈ 105 − 106.

A second parameter used to describe the importance of quantum effects is the thermal
De Broglie wavelength λth = h/

√
2πmekbTe where h is the Planck constant. Quantum-

mechanical many-body phenomena will occur if the thermal wavelength is larger than
the Wigner-Seitz radius a0, or differently expressed as λ3

thne > 1 . For electrons with the
aforementioned lowest experimentally accessible temperature Te = 100 mK, the thermal
wavelength equals λth ≈ 0.2 µm. This is already one order of a magnitude smaller than
the corresponding Wigner-Seitz radius a0 ≈ 1 µm at Te = 100 mK.

The boundary at which quantum-mechanical behavior becomes significant, neλ
3
th =

1, is given by the red line in figure 1.1.
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An ultracold plasma is not a stable system and evolves in three stages after its cre-
ation as shown in figure 1.3. The fastest process is the equilibration of the electrons,
because of their relatively small mass and high kinetic energy. This takes place on a
time scale related to the inverse electron plasma frequency ω−1

p,e ∼
√
me which is typi-

cally in the nanosecond range. The electron temperature quickly increases due to two
heating mechanisms: disorder-induced heating and heating by electron-ion three-body
recombination. The first of these processes arises from an excess of potential energy
in the electron distribution and the second is related to the formation of highly-excited
Rydberg atoms. Both mechanisms will be studied in detail in chapter 3.

The ions equilibrate on the microsecond timescale due to their higher mass, related
to the inverse ion plasma frequency ω−1

p,i ∼
√
mi. In a ultracold rubidium plasma the

ratio between the ionic and electronic time scales equals
ω−1
p,i

ω−1
p,e

=
√

mi
me
≈ 395. The main

heating mechanism in this stage is ionic disorder-induced heating.
In the third stage the plasma expands into the surrounding vacuum, driven by the

thermal pressure of the electrons and ions [2], and falls apart.

time after
photo-ionization0 ∼10 ns ∼1 μs ∼100 μs

electron
equilibration

ion
equilibration

plasma
expansion

Figure 1.3: The three different time scales in the dynamics of an ultracold plasma.

1.2 Significance and applications of ultracold plasmas

The main interest in ultracold plasma is due to the fact that they can provide access
to the strongly coupled regime, defined by Γ � 1. Standard plasma physics concepts
such as Debye screening are all based on the assumption that the thermal energy of
the particles exceeds the average Coulomb potential between the particles. Therefore
it is necessary to develop new analytical theories and numerical tools to describe these
systems.

Strongly coupled conditions can also be found in some high-density plasmas such as
in laser-ionized clusters, inertial confinement fusion and astrophysical plasmas [7]. The
dynamics of these plasmas evolve on the atto- to femtosecond timescales which makes
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it difficult to study them. Ultracold plasmas on the other hand evolve on the timescale
of picoseconds to microseconds, due to their much lower density. On these timescales
it is possible to study an UCP using time-resolved techniques such as charged-particle
detection and absorption imaging [8]. Therefore, UCPs could serve as a toy model to
study experimentally the phenomena occurring in other, less accessible strongly coupled
systems.

The ultracold temperature of UCPs make them interesting for new sources of high-
brightness electron and ion beams, due to their low temperatures. Accelerator structures
are constructed around a UCP set-up to extract an ultracold electron beam as well as
an ultracold ion beam [9].

Theoretical studies by Peter Smorenburg et. al. showed the possibility of another
remarkable application in accelerator physics: to accelerate the neutral UCP as a whole
with ion energies in the range of keV [10]. The principles of this mechanism are in
the radiation effects on the electrons and are illustrated in figure 1.4. An incoming a
electromagnetic wave is imposed on an ultracold plasma of Rb in this case. All the
electrons in the plasma will oscillate coherently if the wavelength of the incoming wave
is larger than the size of the plasma. As a result the oscillating electrons will emit dipole
radiation and the incoming EM wave will lose momentum. The electrons on the other
hand will increase their momentum in order to conserve momentum of the total system
consisting of the incoming wave and the plasma. The electrons will pull the ions with
them leading to a net acceleration of the plasma as a whole. The stability of the plasma
is strongly dependent on the temperature of the plasma. Therefore it is important to
study the initial heating of the plasma during its acceleration. Due to their much lower
mass compared to the ions, this initial heating is governed by the electrons.

Rb
+

e-

Rb
+

e-

Figure 1.4: The three different time scales in the dynamics of an ultracold plasma.
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1.3 This thesis

The goal of this thesis is to study the electron heating mechanisms of ultracold plasmas
by particle tracking simulations. Therefore, the first stage of the plasma evolution, illus-
trated in figure 1.3, will be studied. The General Particle Tracer (GPT) code [11] makes
it possible to simulate the particle paths taking into account all pairwise Coulombic
interactions; a task impossible to succeed analytically. Details of the GPT code will be
explained in chapter 2. In chapter 3 the heating mechanisms will be studied in a plasma
without any external fields. The focus will be on two electron heating mechanisms:
disorder-induced heating and three-body recombination.

In chapter 4 and 5 an external rf field will be introduced and the induced energy
absorption mechanisms will be studied. In chapter 4, an absorption mechanism will be
studied that does not depend on individual electron and ion interaction: collisionless
absorption. Collisionless absorption arises because the rf field disturbs the trajectories
of the electrons in the plasma.

A second rf-induced heating mechanism, that will be studied in chapter 5, depends
solely on the electron-ion interaction: collisional absorption. The nature of this ab-
sorption mechanism is that the electrons oscillating in the rf field are deflected by the
Coulomb fields of the ions.

In chapter 6 general conclusions from the foregoing chapters will be drawn as well as
suggestions for future work.
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Simulation software

The program used for the simulations is General Particle Tracer 3.10 written by S.B.
van der Geer and M.J. de Loos [11]. The GPT-code is a simulation method to track
the 3D positions and velocities of a set of charged particles, taking into account the
inter-particle (Coulombic) forces as well as external fields. It uses an embedded fifth
order Runge-Kutta driver with adaptive stepsize control.

2.1 Coulomb interactions

GPT uses the Coulomb model the calculate the inter-particle forces. Three simplifica-
tions are made in this Coulomb model.

The first approximation is that magnetic fields produced by the moving charges are
ignored. This approximation is appropriate as long as the velocity differences between
the particles in a set are significantly smaller than the speed of light. In an ultracold
plasma the electrons velocities are on the order 103−104 m/s such that the Lorentz force
that an electron i experiences due to the relative velocity of a second electron or ion j,
~vrel = ~vj − ~vi is small compared to the inter-particle Coulomb force: e ~vrel × ~Bj � qj ~Ej .

Secondly, the Coulomb model is based on instantaneous forces. The forces on a
certain test particle depend on the instantaneous positions of the other particles. If
one other electron moves the force at the test particles changes immediately. However,
information can not travel faster than light according to special relativity and retarded
positions of the other particles should be used formally. Again, this assumption is
appropriate as long as the velocity differences between a test-particle and the other
particle are small compared with the speed of light.

The third approximation is that the radiation fields of accelerating charges are ab-
sent. If an external rf field is applied the electrons will start to oscillate and emit
radiation. The significance of these radiation fields in an rf-driven ultracold plasma will
be discussed in section 2.3.

All the particle interactions are calculated in the rest-frame of the particle set, which

is the frame in which the total momentum is zero. It has a velocity ~β0 =
∑

i γimi~vi/c∑
i γimi

with γi the Lorentz factor of the particle i in the rest frame of the particle set. So ~β0

is the velocity weighted with the relativistic mass γimi and it has a Lorentz factor with

respect to the laboratory frame of γ0 = 1/

√
1− (~β0)2.
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The particle coordinates in the rest frame ~ri
′ are calculated in the following way:

~ri
′ = ~ri +

~ri · γ0
~β0

γ0 + 1
γ0
~β0 (2.1)

where ~ri are the coordinates of the particle i in the lab frame. After that the Coulomb

model is used to calculate the electric field ~E
′
i that the particle i experiences in the rest

frame:

~E
′
i =

∑
j 6=i

qj (~ri
′ − ~rj

′)

4πε0

(
|~ri ′ − ~rj ′|2 +R2

)3/2
+ ~Eext + ~vi

′ × ~Bext

 (2.2)

where ~Eext and ~Bext are external fields and R is a Coulomb round-off parameter used
to avoid singularities in the computations. Figure 2.1 shows the effect of the use of the
round-off parameter on the following scaled potential between the particles 1 and 2:

Upot
U0

=
Upot
e2

4πε0a0

= − 1√
|~r ′1−~r ′2|

2

a20
+
(
R
a0

)2
= − 1√

r′2

a20
+ ε2

(2.3)

where a0 is the Wigner-Seitz radius and ε = R
a0

is the round-off parameter scaled with
the Wigner-Seitz radius. The depth of the potential follows immediately by applying
r = 0: Upot/U0 = 1/ε = a0/R.
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Figure 2.1: Electron-ion potential with four different values for the round-off parameter ε.

In the simulations a value of ε = 0.01 will be used, implying that the Coulomb round-
off parameter is equal to R = a0

100 , is considered to be sufficient to capture the essential
dynamics in the plasma.

The calculated electric field ~E
′
i from equation (2.2) is transformed back into the

laboratory frame to obtain the required ~E and ~B fields for tracking:

~Ei = γ0

[
~E
′
i −

γ0

γ0 + 1

(
~β0 · ~E

′
i

)
~β0

]
~Bi =

~β0 × ~E
′
i

c

(2.4)

where the left-hand side of the second equation indicates that a magnetic field can be
present in the laboratory frame, provided the particle set has a significant velocity ~β0.
The magnetic field ~Bi in the laboratory frame is just a relativistic effect and is negligible
if ~β0 � 1.

For an approximately stationary plasma (~β0 � 1) with non-relativistic particles the
expected result ~Ei = ~E

′
i ,
~Bi = 0 is found.
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2.2 The Barnes-Hut algorithm

The program has a number of built-in elements to calculate the Coulomb interactions
in equation (2.2) in an efficient way, each optimized for a different application. In this
report the Spacecharge3Dtree element will be used that uses a Barnes-Hut algorithm
which scales in computing time as N logN , with N the total number of particles in the
simulation [12].

The Barnes-Hut algorithm calculates the force by grouping particles together in a
hierarchical way. The interactions between near neighbors are calculated individually
while distant charges are grouped together in increasingly larger clusters as a function
of distance, thereby speeding up the total computation time.

The principle is shown in figure 2.2. First the algorithm splits the volume around the
particles into successively smaller octants until each octant cell contains 1 or 0 particles.
All the particles are stored in the so-called octree, illustrated in the right of figure 2.2,
where each cell forms an internal node of the tree. Each internal node represents the
group of particles beneath it and stores the center of mass and the total mass of all its
children. For example, the topmost node represents the whole space and its four children
represent the four octants of the whole space.

Not all the interactions of a particle i with the other particles are calculated indi-
vidually; the hierarchical structure of the octree is used to approximate the net force on
the particle i. A dimensionless parameter θ is set to decide whether an internal node of
the tree is far enough away from the particle i to approximate the exerted force. The
parameter is given by θ = ∆x/d where ∆x is the width of the region represented by the
internal node and d is the distance from the particle i to the internal node. The param-
eter θ is calculated for each node in the tree and if the value of θ lies below a certain
threshold value θthr, only the interaction of the particle i with the center of mass of that
specific node is considered. A threshold value of θthr = 0 results in a complete point-
to-point calculation at the expense of a much longer computation time. A threshold
value of θthr = 1 is generally considered to be sufficiently small to capture the essential
dynamics for Coulombic interactions [12].

An example is shown in figure 2.2. The center of mass of the purple dashed cell
is far enough away from particle i, such that only the interaction with the center of
mass of the purple cell is considered. The orange dashed cell on the other hand is close
enough to the particle i, such that the interactions with the particles in the orange cell
are calculated individually.

2.3 Significance of missing radiation effects

If an external field is applied to a plasma the electrons will start to oscillate and as a
consequence will start to emit radiation. As a result the electron will lose energy and
experiences a recoil force: the well-known radiation reaction [13].
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Figure 2.2: Principle of the Barnes-Hut algorithm.

The time-averaged energy of an electron in an oscillating EM field is given by:

Ue = 〈1
2
mev(t)2〉 =

e2E2
0

4meω2
d

≡ Up (2.5)

where Up is the so-called ponderomotive potential.

The amount of lost or radiated energy per unit time Prad can be found from the Lar-
mor formula Prad = (µ0e

2/6πc)a2 with a the acceleration of the electron [14, 13]. In an rf
field E0 cos(ωdt) the acceleration of an electron is given by a = −(eE0/me) cos(ωdt), such
that the time-averaged P becomes 〈P 〉 = µ0e

4E2
0/(12πcm2

e) = (ω2
de

2µ0)/(3πmec)Up.

If the total amount of lost radiation in a time interval is negligible compared to the
typical energy of the electrons, then the effects of the radiation reaction on the motion
of the electrons will be negligible. The simulation time in this thesis is typically about
tsim = 200π/ωd with ωd the frequency of the external rf field and this corresponds to
a total amount of radiated energy Urad = 〈P 〉 · tsim = (200ωde

2µ0)/(3mec)Up. The
significance of the radiated energy is: Urad/Up = (200e2µ0)/(3mec)ωd ≈ 10−20 · ωd.
In this thesis a field frequency in the range ωd ∼ 1010 rad/s will be used resulting in
Urad/Up ∼ 10−10 and therefore the radiative effects on the motion of an electron are
very small.
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However, a few very subtle dielectric properties of the plasma are missing by using
the Coulomb potentials for the interactions instead of the retarded Liénard-Wiechert
potentials, despite the fact that the velocities of the particles are in the non-relativistic
regime. For the case of an rf-driven ultracold plasma ponderomotive forces arise leading
to an acceleration of the plasma as a whole [10]. This acceleration cannot be simulated
with the GPT code, since the acceleration only arises if the retarded interaction poten-
tials are used.

2.4 Limitations of the GPT software

The duration of the simulations in GPT is limited, but not only because of limited
computation speed or time. The GPT code uses a Runge-Kutta solver which is not
symplectic [11], which means that the total energy of the system is not exactly conserved
in the simulations. Fluctuations in the total energy generally increase as a function of
simulation time. The fluctuations can be suppressed in the electron equilibration phase
from figure 1.3, but it is not possible to extend the simulation into the ionic equilibration
phase or plasma expansion phase while conserving total energy. A maximum energy
deviation of 1 % in the simulation was considered to be good enough to capture the
essential dynamics.

In summary, the GPT code is a powerful tool to study the trajectories of the ions
and electrons in the electron equilibration phase. However, it is important to be aware
that for an ultracold plasma, even in the non-relativistic regime, some subtle dielectric
properties are missing.
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Intrinsic heating mechanisms in
ultracold plasmas

In this chapter simulation results will be shown of the heating mechanisms in an ultracold
Rb plasma, without any external fields. The initial electron and Rb+ ion temperatures
are 0 K in all the following simulations. The electrons and Rb+ ions, Ne = Ni = 2000
of each, will be initialized inside a spherical volume with a radius rb = ( 3Ne

4πne
)1/3 with

electron density ne = ni, as shown in figure 3.1. The initial electron and ion densities
are chosen to be uniform but randomly distributed.

- 1 . 0
- 0 . 5

0 . 0
0 . 5

1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

R +
b  i o n s

e l e c t r o n s

z /
 r b

y  /  r bx  /  rb

Figure 3.1: The initial particle distribution which will be simulated.
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Scaled length and time units are used to reduce the number of parameters that define
a simulation. The lengths are scaled by the Wigner-Seitz radius a0 and time is scaled
by the inverse of the plasma frequency ω−1

p . Since the electron velocities ve ∼ 103− 104,
the non-relativistic equation of motion (2.2) can be used:

mi

me

d2 ~xi
dτ2

=
2

3

∑
j 6=i

qiqj (~xi − ~xj )

e2 |~xi − ~xj |3
(3.1)

where ~xi = ~ri /a0 and τ = ωpt. On the right-hand side the substitutions ωp =√
nee2/(meε0) and a0 = (3/(8πne))

1
3 have been used.

Similarly, the inverse coupling Coulomb parameter in equation (1.1) can be written
as:

Γ−1
e =

1

2

〈(
d~xi
dτ

)2
〉

(3.2)

where the assumption of thermodynamic equilibrium 1/2me〈v2〉 = 3/2kbTe has been
used. The applicability of thermodynamic equilibrium will be discussed in section 3.1.2.
Conclusively, the scaled equations of motion as well as the coupling parameter do not
depend on the density.

The focus will be on the heating of the electrons. The typical times that will be used
are 0 < τ < 20 and do not not extend into the regime in which the dynamics of the ions
become relevant. The time scale on which effective ionic heating occurs is τi = ωp,it ≈ 1
[2], which relates to electron time scale as: τi =

√
mi/meτ ≈ 395τ . The energy drift in

the simulation cannot be suppressed on the ionic timescales as mentioned in section 2,
if all the electron interactions are taken into account. Different simplifying simulation
models would be required to proceed into the ionic heating regime such as the use a
Yukawa model where only the ions are traced and the presence of the electrons is taken
into account by a Yukawa potential [15, 16].

In the next sections, two different heating mechanisms will be considered: disorder-
induced heating in section 3.1 and three-body recombination in section 3.2.

3.1 Disorder-induced heating

Ultracold plasmas are created in a state far from equilibrium. Due to the nature of the
photo-ionization process, both the ions and electrons are initially at random positions.
As a result some of the charged particles will be rather close to each other leading to
large interaction energies. An excess of potential energy exists compared to a crystalline
state in which spatial correlations prevent the particles from being close to each other
such as in laser-cooled ionic plasmas inside Penning traps [17].

As a result the particles redistribute themselves in order to diminish their excess of
potential energy. Total energy is conserved in the system and therefore the kinetic energy
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of the particles has to increase. This increase in kinetic energy is called disorder-induced
heating.

The amount of increase in kinetic energy is estimated to be half of the conserved total
energy. If thermal equilibrium is accomplished after the disordered-heating phase, the
average kinetic energy 〈Ukin〉 equals the average potential energy 〈Upot〉 of the electrons
according to the law of equipartition of energy [18]. The Coulomb coupling parameter
from equation (1.1) then approaches:

Γe =
e2

4πε0a0

1

kbTe
≈ 〈Upot〉
〈Ukin〉

= 1 (3.3)

in which the Wigner-Seitz radius is half the typical inter-particle distance defined
by:

a0 =

(
3

4πntot

)1/3

=

(
3

8πne

)1/3

(3.4)

where ne is the electron density and ntot = ne + ni in the plasma. The value of the
coupling parameter Γ as defined in equation (3.3) depends on the existence of a well-
defined electron temperature Te. In situations far off equilibrium the average kinetic
energy is usually taken as a measure for the temperature Te.

3.1.1 Analytical model of disorder-induced heating

A relaxation time trel,e is defined in which the electrons relax towards their equilibrium
position at the end of the disorder-induced phase. This time can be estimated as the
amount of time it takes an accelerated electron to cover a distance half the average
inter-particle distance, which is equal to the Wigner-Seitz radius a0. Such an electron
will experience a typical Coulomb force of magnitude e2

4πε0
1
a20

leading to the equation of

motion:

me
d2r

dt2
=

e2

4πε0

1

a2
0

(3.5)

Assuming an initial speed v(0) = 0 the covered distance ∆r can be written as:

∆r =
1

2

e2

4πε0mea2
0

t2rel = a0 (3.6)

By substitution of a0 from equation (3.4) the time to cover this distance is:

trel,e =
1

ωp/
√

3
=

1

ωm
(3.7)

where ωm = ωp/
√

3 is the so-called Mie frequency. This is the eigenfrequency of the
center-of-mass of the electron cloud in a spherical plasma. In chapter 4 a derivation of
the Mie frequency will be given.

19



In light of the expression for the relaxation time the time τ = ωmt will be used in
the remainder of the chapter, which obviously will not alter the dimensionless form of
the equations of motion as defined in equation (3.1).

The derivations of the disorder-induced heating of the ions follows the same path as
the electrons apart from the time scale. The time scale of the ionic heating will be on
the order of the inverse ionic plasma frequency [19] related to the electron time scale as:
trel,i =

√
3 · ω−1

p,i =
√
mi/metrel,e ≈ 395trel,e.

In this time the ionic Coulomb parameter increases quickly to Γi & 1, but this time
the final value depends on the influence of the screening of the electron background which
passed its disorder-induced phase long time before. The significance of the screening
depends on the temperature of electron background as was shown analytically [20] as
well as numerically and experimentally [15, 21].

3.1.2 Simulation results disorder-induced heating

GPT simulations were performed using a density ne = 1 · 10−14 m−3. The electron tem-
perature in the plasma Te(t) at a certain time t was obtained by making a cumulative
velocity distribution and fitting it with a cumulative Maxwell-Boltzmann (MB) distri-
bution function. An example of such an cumulative distribution, at ωmt = 10, is shown
in figure 3.2. The red bars display the number of particles with a velocity component in
the x−direction smaller than vx/c. The solid black line is the cumulative MB fit function
defined as:

∫ v
′
x

−∞
exp

(
− mev

2
x

2kbTe(t)

)
dvx =

√
πkbTe(t)

2me

[
1 + erf

(√
me

2kbTe(t)
v′x

)]

with the error function defined as:

erf(x) =
2√
π

∫ x

0
exp

(
−t2
)
dt

(3.8)

where the electron temperature Te(t) is used as the fitting parameter. The cumulative
MB fit agrees well with the GPT data and the fitting parameter Te, required to obtain
the black solid line, is Te(10/ωm) = 1.5 K.

In figure 3.3 the increase in the inverse coupling parameter is shown as a function
of time ωmt. The red line is obtained by using the temperature Te(t) from the MB fit.
The black points in figure (3.3) are obtained by using the average kinetic energy as a
measure for the thermal energy 3

2kbTe ≡
1
2me〈v2

e〉. In thermal equilibrium these two
identities should be equal [18]. The two functions agree very well for ωmt > 1 suggesting
that there is indeed a local thermal equilibrium in the electron distribution for ωmt > 1.
For ωmt < 1 there is a significant difference between the red line and the black point,
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suggesting that the electron distribution is not in thermal equilibrium.
The advantage of the MB-fit is the suppression of large fluctuation compared to

the method of the average kinetic energy on the longer time scales ωmt > 1, as can
be seen in figure 3.3. The influence of a few very fast electrons can cause the average
kinetic energy 〈Ukin〉 to obtain a peaked value, while those few outer electrons do not
significantly change the shape of the MB fitting function.
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Figure 3.2: Fit (solid line) with Boltzmann distribution (red bars) for the x-component of the
velocity at ωmt = 10.
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Figure 3.3: Inverse coupling parameter Γ−1
e determined via a Maxwell-Boltzmann fit (red line)

and via the average kinetic energy (black points).
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In the initial time ωmt . 1 a rapid initial heating is clearly visible, corresponding
to the disorder-induced heating phase. The time scale of this phase is approximately
t ≈ ω−1

m , confirming our expectations from equation (3.7). Furthermore, the coupling
parameter rapidly increases to a value approximately equal to the predicted value Γ−1

e =
1. This result is also in correspondence with previous simulations of Kuzmin et al. [22],
although they used a finite simulation box with reflective walls and a lower particle mass
ratio of me : mi = 1 : 100 to speed up the numerical calculations.

0 1 2 3 4 5 6 7 8 9 10

0.02

0.04

0.06

0.08

0.01

0.1

1

10

100

m t

(3
/5

)<
v4
>/
<v

2 >
2

Figure 3.4: Red: relative uncertainty of the temperature, obtained by a Maxwell-Boltzmann
fitting function.
Black: moment ratio of fourth and second moment distribution.

Figure 3.3 seems very convincing, but to check the assumption of thermal equilibrium
more thoroughly two additional quantities are calculated.

The left axis of figure 3.4 shows the relative uncertainty in the electron temperature,
indicating the applicability of the Maxwell-Boltzmann distribution. Apart from the
initial disorder-induced heating phase the uncertainty in the temperature is smaller than
2%, which is considered small enough to assume the electrons have a local Maxwell-
Boltzmann distribution [18].

On the right axis is another measure to determine resemblance of the simulated
electron distribution to the Maxwell-Boltzmann function. Since all the electron velocities
are known, the expression (3/5)

〈
v4
〉
/
〈
v2
〉2

can be calculated for the simulated electrons
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as a function of time. For a Maxwell-Boltzmann function (3/5)
〈
v4
〉
/
〈
v2
〉2

= 1, which is
indeed quickly approached for ωmt & 1. Again it is shown that the electrons approach a
local thermodynamic equilibrium immediately after the disorder-induced phase, despite
the presence of the ions still being in a completely disordered state.

In figure 3.5 the result is shown for five independent simulations, each with a different
initial uniform random distribution. The differences in the microscopic order at ωmt = 0
appear to be irrelevant for the value of the coupling parameter in the disorder-induced
heating phase. In the more slowly heating regime 1 < ωmt < 20 the influence of the
initial microscopic order is clearly visible since the five independent simulations do not
overlap anymore. Some of the electrons in the initial distribution have a somewhat
larger excess of potential energy leading to a higher the amount of unleashed thermal
energy resulting in a higher value of the inverse coupling parameter at the end of the
disorder-induced heating phase. Close inspection of the right image of figure 3.5 also
shows that at the end of the disorder-induced phase, 0.8 < ωmt < 1.2 the coupling
parameter slightly overshoots its ‘equilibrium value’ before settling to it.

This could be caused by the motion of each electron in its local potential. As an
electron approaches the minimum of the potential, expected at a distance equal to a0 it
will not suddenly stop at the bottom, but it will overshoot and climb up the potential
hill again. Therefore a certain harmonic motion is expected to persist for some time, as
kinetic and potential energy are exchanged. This suggest an kinetic energy oscillation
(∼ Γ−1

e ) at a frequency 2ωm. These oscillations were also experimentally observed for
ionic disorder-induced heating [21], but the fluctuations in figure 3.5 are too noisy to
extract a 2ωm harmonic motion.

In figure 3.6 the average of the five simulations is taken, which reduces the noise of
the aforementioned long-term oscillations. After the fast increase of the inverse coupling
parameter during the disorder-induced phase the coupling parameter, a slower but sig-
nificant heating can be observed. This heating is assumed to be caused by three-body
recombinations, which will be the topic of the next section.
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Figure 3.5: Five different initial distributions.
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Figure 3.6: Average distribution of the shown distribution in figure 3.5.

3.2 Three-body recombination

The second mechanism responsible for the heating of an ultracold plasma is heating by
three-body recombination (TBR), in which one electron recombines with an ion while
a second electron takes up the excess of potential energy. Although this process is
by nature a quantum-mechanical process, a classical treatment agrees well with both
more elaborate theories and experiments [23]. Quantum-mechanically, the electrons
will generally only recombine in highly-bound Rydberg states, which resemble classical
Kepler orbits. Moreover the energy spacing of adjacent Rydberg levels becomes very
narrow for n� 1 since the energy level spacing scales as 1/n3 for an energy level n, such
that the highly-bound states form almost a continuum of possible orbits. Besides, the
GPT software ignores the radiation fields of an electron which would force the electron
to spiral inwards to the ion, making the GPT software able to mimic those highly-bound
Rydberg states.

3.2.1 Classical model for three-body recombination

The original derivation by J.J. Thomson based on classical mechanics will be briefly
discussed below [23]. The goal is to give basic insight into the temperature dependence
and the magnitude of the TBR-rate. The Thomson theory was originally developed for
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ion-ion recombination reactions but also applies for electron-ion recombinations:

e− +R+
b + e− → Rb + e− (3.9)

with two electrons e− and a R+
b ion. If one of the electrons and the R+

b ion approach
each other their relative kinetic energy increases at the expense of potential energy.

The mathematics of this three-body problem is most convenient in the center-of-mass
frame formed by the R+

b ion and one of the electrons. The total relative energy of the
two particles, separated a distance r with relative speed vrel, is:

Urel =
µv2

rel

2
− e2

4πε0r
∼=
mev

2
rel

2
− e2

4πε0r
(3.10)

where µ = memi
me+mi

∼= me is the reduced mass of the the system of ion and electron,
and vrel = |~ve − ~vi| is the relative speed.

In the limit for a free electron (r → ∞) the relative kinetic energy becomes Urel =
1
2mev

2
rel = 3

2kbTe > 0 in which the ion kinetic energy 3
2kbTi is assumed to be negligible.

The total relative energy is conserved with Urel > 0, so recombination cannot occur
without interactions with other particles.

At some finite value r the relative kinetic energy 1
2mev

2
rel will exceed the value 3

2kbTe.
In that case the approaching electron could experience a thermalizing collision with a
second electron, in which the relative kinetic energy reduces on average back to 3

2kbTe.

The new relative energy U
′
rel then becomes:

U
′
rel =

3

2
kbTe −

e2

4πε0r
(3.11)

A bound state will be the result if the new energy U
′
rel < 0. The energy difference

before and after the collision, −∆Urel, is carried away by the second electron and equals
−∆Urel = 3

2kbTe −U
′
rel >

3
2kbTe. This leads to a condition for the separation distance r

between an electron and an ion for which recombination can occur:

r < r0 =
e2/4πε0

3
2kbTe

=
2

3
a0Γe(T ) ∼= 0.26 · diΓe(T ) (3.12)

where r0 is the so-called Thomson radius and a0 is the Wigner-Seitz radius and
di = 2 · 3

√
2a0 is the average distance between two ions, which follows from equation

(3.4). It follows from equation (3.12) that for Γe & 2 the Thomson spheres from neigh-
boring ions overlap (since r0 > di in that case) implying that the total available space for
recombination for the electrons is larger than the total volume of the plasma. For a value
of Γe > 2 the Thomson theory would evidently overestimate the amount of three-body
recombinations.

Next an analytical expression will be derived for the recombination rate of the three-
body collisions the plasma. The first requirement is an expression for the frequency ν̄ei
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at which one electron encounters the R+
b ion within a distance r0:

νei = nionve
(
πr2

0

)
(3.13)

where nion is the ion number density and ve =
√

8kbTe
πme

is the average electron speed

in the plasma.

The electron-ion recombination will lead to a decrease in the number of free electrons
in the plasma. The change in the electron density ne per unit time in the plasma is:

dne
dt

= −neνeis1 = −αeinenion (3.14)

in which s1 is the probability that the incoming electron will make a thermalizing
collision with a second electron and αei is the so-called recombination coefficient which
follows from equation (3.13):

αei = veπr
2
0s1 (3.15)

in which s1 is the probability that the incoming electron will make a thermalizing
collision with a second electron.

The probability s1 that an electron makes an thermalizing collision is proportional to
the probability of finding another electron in the Thomson sphere. The average number
of electrons in the Thomson sphere is approximately equal to to s1 ∼ ne

4
3πr

3
0. So the

recombination coefficient becomes:

αei = veπr
2
0s1 ∼ veπr2

0ne
4

3
πr3

0

∼
√

8kbTe
πme

π2ner
5
0

(3.16)

where the expression for the average thermal velocity was substituted ve =
√

8kbTe
πme

.

Substitution of equation (3.12) for r0 results in:

αei ∼ C
ne

T
9/2
e

(3.17)

where the constant C = 4
3π

2
√

8kb/πme

(
e2

4πε0kb

)5
≈ 1 · 10−19. Not every electron-

electron encounter in the Thomson sphere will cause a three-body recombination to
occur, so the value of the constant C has to be modified. The result from the traditional
Thomson theory αTh is given in appendix A.1 which results in a similar expression to
equation (3.17) but with a pre-factor Cth = 1.09 · 10−20.

Below the derived recombination coefficient of a more rigorous derivation by Hinnov
et al. will be used [24, 25]. The Hinnov derivation also takes into account the occurrence
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of re-ionizations; the collision of an electron with another bound electron-ion pair that
ionizes the bound electron. The recombination coefficient becomes:

αei = 1.09 · 10−20 ne

T
9/2
e

(3.18)

It is important to note that the theory by Hinnov et al. assumes the existence of
a shielding Debye length as well, implying Γ−1

e > 1; a concept for which the validity
is questionable for ultracold plasmas. In section 3.1 it was revealed that after a time
ωmt ∼= 1 the inverse coupling parameter increased to a value Γ−1

e > 1, due to the presence
of disorder-induced heating. This could make the Thomson/Hinnov theory applicable
for ωmt > 1.

Using the coefficient from equation (3.18) and equation (3.14), the total change in
kinetic energy is:

dUkin
dt

=
3

2
kbTe

dne
dt

V = 1.09 · 10−20 nin
2
e

(kbTe)
9/2

Ni

ni

3

2
kbTe (3.19)

where V = Ni/ni is the volume in which the ions reside, which is equal to the initial
volume of the plasma.

This equation can be also be written in a dimensionless form as the evolution of the
inverse coupling parameter Γ−1

e :

dΓ−1
e

dτ
∼= 0.04 · 1(

Γ−1
e (τ)

)7/2 (3.20)

where τ = ωmt.

It is also possible to calculate the amount of recombined electrons from the Thom-
son/Hinnov theory. Equation (3.14) can be written with the aid of equation (3.18)
as:

dNe

dτ
∼= −

0.04(
Γ−1
e (τ)

)9/2Ne (3.21)

where Ne is the number of electrons that have not yet recombined, the so-called free
electrons.

3.2.2 Simulation results three-body recombination

First, it is necessary to ascertain that three-body recombinations actually occur in the
GPT simulations. Therefore the binding energy Ub of electron-ion pairs was calculated.
The binding of a certain electron is defined as the kinetic energy of the electron plus the
potential energy of the electron in the field of the nearest ion:

Ub =
1

2
mev

2
e −

e2

4πε0min (|~ri − ~re|)
(3.22)
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In the simulations the distances between one electron and all the other ions are
calculated after which the minimal distance is selected. In principle, a bound state is
defined as Ub < 0. However, many particles are interacting in the plasma, such that the
binding energy Ub can fluctuate around zero. In practice, an electron is assumed to be
in a bound state if its energy Ub < 0 for some time.
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Figure 3.7: Binding energy of three different electron-ion pairs in the plasma.

In figure 3.7 the binding energy of three different electrons is shown as a function of
time. The plateaus in the figure are the bound states, which arise immediately after a
sudden drop in the binding energy between the electron and its nearest ion corresponding
to the release of energy to a second electron.

The black line shows successive three-body recombinations into deeper bound states.
In principle each electron could successively recombine into the deepest possible bound
state which results from the definition of a Coulomb cut-off parameter ε = 1/100 defined
in chapter 2. This value of ε gives a well deepness of Ub/U0 = −100, which directly
followed from equation (2.3). The most tightly bound electrons in the simulations had
a binding energy of Ub/U0 ≈ −30, so ε was sufficiently small to capture the dynamics of
the most tightly bound electrons in the simulations.

The red line shows that it is also possible that an electron gets re-ionized. The
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probability to re-ionize appeared to be related to deepness of the bound state. Tightly
bound electrons were much less likely to be excited than electrons in higher levels. This
is illustrated in the bar diagram in figure 3.8, which shows the fraction of re-ionized
electrons as a function of binding energy Ub. Each bar contains the electrons with
binding energies in the interval

(
Ub/U0 ± 1

2

)
.

-9 -8 -7 -6 -5 -4 -3 -2 -1 0
0.0

0.2

0.4

0.6

0.8

1.0

N
re

-io
ni

ze
/N

bo
un

d

Ub / U0

Figure 3.8: Fraction of re-ionized electrons as a function of the binding energy.
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Mansbach and Keck defined the existence of a certain kinetic bottleneck level from
results of Monte-Carlo calculations [26]. Electrons with a binding energy more negative
than the kinetic bottleneck would cascade into deeper bound states while electrons oc-
cupying a level above the kinetic bottleneck would re-ionize. From figure 3.8 the kinetic
bottleneck is assumed to be Ub/U0 ≈ −4, since more than half of the electrons occupying
energy levels lower than this bottleneck will not re-ionize. This bottleneck is close to a
previously determined value of the bottleneck of Ub/U0 = −3.8 by molecular dynamics
[27].

The amount of electrons with a binding energy below the kinetic bottleneck should
increase to result in heating. Electrons in a level above the bottleneck will eventually
re-ionize and therefore do not contribute to the heating by TBR on longer time scales.
In figure 3.9 the fraction of electrons with an energy below the bottleneck is shown as a
function of time. The slope in the graph is equal to 3.3 · 10−3 indicating that each time
step ω−1

m the amount of electrons below the bottleneck increases with 0.33 % of the total
number of electrons.

At the end of the simulation about 10 % of the electrons have a binding energy below
the kinetic bottleneck and thus can be considered to be recombined.
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Figure 3.9: Number of electrons Ne with a binding energy below the kinetic bottleneck.
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Figure 3.10: Inverse coupling parameter for the electrons (black) and the analytical result for
heating by three-body recombination (red).

In figure 3.10 the analytically calculated TBR heating is shown as well as the simu-
lated result.

The analytic result follows from equation (3.20). This equation requires one boundary
condition to obtain a solution and this boundary condition is picked from the simulation
results in figure 3.10: Γ−1

e (1) = 1.04. It might seem obvious to chose the boundary value
Γ−1
e (0) = 0, but in the region Γ−1

e < 1 the three-body theory is unreliable and therefore
an initial point is chosen at which Γ−1

e ' 1.

The solution is:

Γ−1
e (τ) ∼= 0.18 · (2218 + 433τ)2/9 (3.23)

with the dimensionless parameter τ = ωmt.

The analytical result clearly overestimates the amount of heating by three-body
recombination. The average slope of the analytical function is (1.90 ± 0.03) · 10−2 and
the average slope of the plot for 1.5 < ωmt < 20 equals (1.20± 0.04) · 10−2.

The fraction of electrons that do not recombine in the interval 1 < ωmt < 20 can
be calculated by substituting the obtained expression for Γ−1

e (τ) in equation (3.23) into
equation (3.20) and integrating over the time 1 < τ < 20:

Ne(τ = 20)

Ne(τ = 1)
= exp

[
−
∫ 20

1

0.04(
Γ−1
e (τ)

)9/2 dτ

]
≈ 0.73 (3.24)

This means that 73 % of the electrons which were not recombined at ωmt = 1 were
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still free electrons at ωmt = 20. Simulations results indicated that just 1.8 % of the
electrons had a binding energy below the kinetic bottleneck at ωmt = 1. Compensating
for this initial point, the analytical theory predicts that 26 % of all the electrons should
be recombined at ωmt = 20, in contrast to the 10 % that was obtained in the simulations.

3.3 Conclusions

In this chapter the heating of the electrons in a plasma without any external fields was
studied. Two different forms of electron heating mechanisms were identified: disorder-
induced heating and three-body recombination.

The first of these mechanisms is directly the result of the uncorrelated way in which
the particles are created by photo-ionization. The excess of potential energy in the
initial disordered state is rapidly converted into thermal energy on a time scale of the
inverse electron plasma frequency ω−1

m , confirming theoretical expectations as well as
earlier computational work [22]. Furthermore the inverse coupling parameter increased
to the value Γ−1

e = 1 at the end of the disorder-induced heating phase and the electron
distribution evolved in a Maxwell-Boltzmann distribution implying local thermodynamic
equilibrium. This might not be evident since the electrons are also interacting with the
ions, which are still in a randomly ordered state.

In the computation model it was assumed that all the electrons and ions were created
simultaneously at t = 0 with a temperature T = 0. In experimental situations the
charged particles are created in a small range of time, which would result in a somewhat
longer timescale for the disorder-induced phase.

However, the most important conclusion is that disorder-induced heating prevents
the development of strong coupling between the electrons in an ultracold plasma con-
trary to earlier speculations [3].

The second and more slowly heating mechanism is three-body recombination, in which
an electron recombines with an ion in the presence of a second electron that takes up
the excess of potential energy. The occurrence of a three-body recombination could be
identified in the GPT simulations by a calculation of the interaction energy of an electron
with its nearest ion. Both successive three-body combination into deeply bound states
and re-ionization processes were observed. The probability of re-ionization depended
strongly on the occupied level of the electron and a certain kinetic bottleneck could be
identified which distinguishes recombined pairs from ‘free’ electrons. The kinetic bottle-
neck was estimated to be Ub/U0 ≈ −4, in correspondence to the value Ub/U0 = −3.8 in
previous work [27].

The amount of heating was calculated using the classical Thomson and Hinnov the-
ories, although these theories are formally derived for plasma’s with Γ−1

e � 1. The
calculated heating rate in the regime for which Γ−1

e & 1 was equal to the simulated
heating rate within just a factor of 1.3.
It has been suggested that the phenomenon of three-body recombination could be used to
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increase the electron coupling strength in the plasma after the disorder-induced phase.
The idea is to deliberately add Rydberg atoms to the ultracold plasma, which could
be re-ionized by the free electrons in the plasma. In the process of re-ionization the
binding energy of the electron-ion pair increases and as a result the energy of the free
electron would decrease. Numerical simulations confirmed the occurrence of a small but
significant cooling of the electron temperature [28].
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Collisionless absorption

In this chapter the influence of an external rf field ~E = E0 cos (ωdt+ φ0)~ex on the elec-
tron heating will be studied. The electron heating mechanisms in the previous chapter
relied completely on the collisions between electrons an ions. In this chapter it will
be shown that electrons can absorb energy from an applied rf field, even without the
presence of individual electron and ion collisions. This heating mechanism is called
collisionless absorption.

Besides the pair-interactions every electrons interacts with the potential of the plasma
as a whole. The reason is that the plasma does not remain electrostatically neutral on
a macroscopic scale, even not on the small timescales that are simulated. Due to their
large kinetic energy and low inertia compared to the ions, electrons will escape from the
plasma leading to positive charge build-up in the plasma. More electrons will continue to
leave the plasma until the strength of the plasma’s field becomes strong enough to bind
the remaining electrons to the plasma. A quasi-equilibrium is formed between trapped
electrons and the so-called self-consistent electrostatic plasma potential.

This is illustrated in figure 4.1, in which a cross section of the plasma potential is
shown at 5 different times. This simulated result was obtained by initializing a uniform
plasma with radius Rb and an initial electron temperature of Te = 70 K and ion tem-
perature Ti = 0 K. At ωmt = 0 the plasma is on average electrically neutral, but in the
initial range 0 < ωmt < 2 a quick charge build-up is visible. In the range 10 < ωmt < 20
the plasma potential evolves very slowly compared to the initial range and the plasma
potential can be considered in quasi-equilibrium.

In the absence of pair-interactions every electron will follow a bounded (if electron
energy Ee < |Upot(r = 0)|) or unbounded trajectory (if Ee > |Upot(r = 0)|) in the poten-
tial well of figure 4.1. The origin of the collisionless absorption is the disturbance of an
oscillating rf field on the ‘plasma trajectory’ of the electrons. The oscillating external rf
field E0 cos (ωdt+ φ0) induces an internal polarization field in the plasma which disturbs
the plasma trajectories.

The effect of collisionless absorption has been measured in experiments and computer
simulations in the context of high-power-laser interaction with atomic an metallic clusters
and many theoretical papers have been written about it [29, 30, 31, 32]. Various effects
have been made responsible for the collisionless heating: ~j×B heating (an overview can
be found in [33]). This lead D. Bauer and P. Mulser to the conclusion that “(Too) many
collisionless absorption mechanisms have been proposed which are not well separated
from each other ”[33] and that “collisionless absorption is well confirmed by experiments
and simulations but not well understood ” [30].

In this chapter collisionless absorption is defined as the absorbed energy due to an
externally applied electric field. This will lead to energy gain or loss of the electrons. The
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Figure 4.1: Cross-section of the plasma potential at 5 different times, in which Rb is the initial
plasma radius.

goal is to elucidate the principles of collisionless absorption, by classical and quantum-
mechanical theory as well as simulations.

In section 4.1 the internal electric field induced by the oscillating rf field will be calcu-
lated; the internal field that is responsible for the disturbance of the plasma trajectories.

As a first step, in section 4.2, the energy absorption of just one electron will be
calculated in the conceptually most simple potential: the one-dimensional harmonic
potential. The harmonic potential has only one resonant frequency and likewise the
’plasma trajectories’. A comparison will be made between a classical and quantum-
mechanical derivation of the energy absorption.

The collisionless energy absorption will be simulated for a more realistic potential in
section 4.3: the three-dimensional error-potential which has the largest resemblance to
the plasma potential in figure 4.1.

4.1 The internal electric field

The first step to calculate the amount of collisionless absorption is to find the electric
field inside the plasma.
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A so-called jellium model will be used which describes the ultracold plasma by two
charged rigid spheres with uniform charge density which interact with each other: a
spherical electron cloud and an ion cloud. Consider a average shift ζ(t) of the electron
cloud in the x-direction: x→ x′ − ζ. If the displacement ζ is on the order of the radius
of the plasma Rb a large part of the electron cloud will be bulging out of the original
plasma sphere and the repulsive electron-electron interactions becomes important. This
would lead to a space-charge explosion of the electron cloud and the assumption of rigid
electron and ion clouds would not be justified anymore. Therefore, the shift ζ considered
is small enough such that the generated electric field will not alter the dynamics of the
much heavier ions (ζ � Rb)

The total potential Vtot can be expressed as the sum of two independent uniformly
charged spheres; an electron sphere and an ion sphere with radius Rb. The potentials
inside the uniformly charged spheres follow from Gauss’s law:

Ve = −nee
6ε0

[3R2
b − ((x− ζ)2 + y2 + z2)] (4.1a)

Vion =
nie

6ε0
[3R2

b − (x2 + y2 + z2)] (4.1b)

The restoring field inside the original plasma becomes:

~E = −∇ (Ve + Vion) = −∇ (ζ[ζ − 2x]) =
nee

3ε0
ζ ~ex (4.2)

where the assumption was made that ne ≈ ni. A simple linear restoring force ~Fe
results from a small deviation of the center of mass of the electron cloud:

~Fe(ζ) = −e
2ne
3ε0

ζ = −meω
2
mζ ~ex

with the definition of the Mie frequency:

ωm ≡
nee

2

3meε0

(4.3)

In more sophisticated models the restoring force becomes non-linear, and can be
written as −meω

2
mG(ζ) with the following expansion for G(ζ) [34]:

G(ζ) = ζ

[
1 +

∞∑
k=1

bk

(
ζ

Rb

)2k
]

(4.4)

where the linear restoring force is regained in the limit for small displacements ζ � Rb.

In general, there will be some damping of the oscillation. This can be due to col-
lisionless absorption, but also through collisions. This damping is interpreted as the
conversion of energy from the motion of the electron cloud as a whole to the thermal
energy of the individual particles in the cloud. Therefore, a general damping rate Γ is
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introduced, just to see the effect on the internal electric field. This damping constant Γ
includes the contribution from all absorption mechanisms.

Using the limit ζ << Rb the kinetics of ζ(t) in an rf field E0 exp [i(ωdt+ φ0)]~ex
follows from Newton’s equations:

d2ζ

dt2
+ 2Γ

dζ

dt
+ ω2

mζ = −eE0

me
cos (ωdt+ φ0) (4.5)

The particular solution of this equation is:

ζ(t) = Re

{
eE0

me

(
ω2
d − ω2

m − 2iΓ
) exp [−i(ωdt+ φ0)]

}
(4.6)

The total electric field in the plasma ~Eint is the sum of the external rf field and the
polarization field caused by the displacement of the electron cloud described in equation
(4.2):

~Eint(t) =
ene
3ε0

ζ(t)~ex + E0 cos (ωdt+ φ0)~ex ≡ Re {E0 exp [−i(ωdt+ φ0)]} ~ex (4.7)

where E0 is the complex Fourier component of the electric field inside the plasma.

The relation between the complex amplitude E0 and the external field amplitude E0

can be found by substitution of ζ from equation (4.6) and the Mie-frequency ωm:

E0 =

(
1 +

ω2
m

ω2 − ω2
m − 2iΓω

)
E0 (4.8)

This equation can be written in terms of the dielectric constant for a spherical di-
electric with an internal field given by [14, 13]:

E0 =
3

2 + ε
E0

with,

ε = ε′ + iε′′

(4.9)

Using equation (4.8) the dielectric constant can be written in terms of the Mie-
frequency and the damping constant Γ:

ε′ = 1− 3ω2
m

ω2
d + 4Γ2

ε′′ =
6Γω2

m

ωd
(
ω2
d + 4Γ2

) (4.10)

Or in terms of the plasma frequency ωp =
√

3ωm:
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ε′ = 1−
ω2
p

ω2
d + 4Γ2

ε′′ =
2Γω2

p

ωd
(
ω2
d + 4Γ2

) (4.11)

In the absence of damping Γ = 0 this equation reduces to the familiar result ε =

1− ω2
p

ω2
d
.

The main result of this section is equation (4.7); the internal field inside the plasma
as a function of applied field frequency. In the next section the motion of an electron in
the electron cloud will be studied.

4.2 Absorption in the harmonic potential

In the introduction it was shown that part of the electrons evaporate off the plasma, re-
sulting in net plasma potential. The electron cloud is assumed to be still homogeneously
charged, but with a density slightly lower than the ion density. As a consequence, the
plasma potential is a simple harmonic potential Uplasma(r) = Uhar(r) = 1

2meω
2
0r

2 with
ω0 the resonance frequency. This electron cloud moves as a whole, but this effect was
already taken into account in the previous section and resulted in a correction on the
applied rf field. It can be expected that this assumed Uplasma will be distorted by the
movement of the electron cloud as whole near the edges of the spherical plasma. There-
fore the assumption of the harmonic potential Uhar(r) is only valid far enough away from
the edges of the plasma.

The assumption made in the previous section, ne ≈ ni, is still valid. The electron
density is only slightly lower. The plasma potential is related to the missing fraction of
the electrons, ∆ne by:

Uplasma(r) =
1

2

e2∆ne
3ε0

r2 =
1

2
meω

2
0r

2 ≡ Uhar(r)

with,

ω2
0 =

e2∆ne
3meε0

=
∆ne
ne

ω2
m

(4.12)

from which it is clear that the resonance frequency ω0 is by definition lower than the
Mie frequency ωm, the resonance frequency of the electron cloud as a whole.

The amount of collisionless absorption can be calculated with classical models [29,
32], but some authors prefer a quantum-mechanical calculation [8, 31, 35] for potentials
that are more complicated than the harmonic oscillator. In the quantum-mechanical
method knowledge of the unperturbed trajectories is sufficient to calculate the absorption.
It is not necessary to know the trajectories in the rf-driven potential in contrast to the
classical calculations.

However, for the harmonic potential solutions can be found from both the classical
method as well as the quantum-mechanical method. Therefore in the following two
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subsections a comparison will be made between the classical derivation and the quantum-
mechanical derivation of energy absorption of one electron.

4.2.1 Classical derivation

Effective absorption in rf-driven plasmas occurs only in the presence of dissipation or at
resonances. Dissipation mechanisms are due to the collisions between the particles and
will be treated in chapter 5. In this section dissipation mechanisms will be neglected. If
the electrons would move freely and not in a certain plasma potential, then energy would
be exchanged reversibly between the electrons and the external rf field. However in the
presence of a plasma potential, that can have multiple resonance frequencies, irreversible
absorption of rf field energy occurs at the resonances of the potential [31, 29, 30].

The harmonic potential has only one resonance frequency ω0 and therefore irre-
versible energy absorption is expected at just one applied rf field frequency: ωd = ω0.

The equation of motion for an electron in the x-direction of the potential is:

d2x(t)

dt2
+ ω2

0x(t) = − e

me
Eint cos (ωdt+ φ0) (4.13)

where Eint is the internal field amplitude from equation (4.8). A damping term ∼ dx
dt

is not included since the focus in this chapter is on resonant absorption and not on
dissipation mechanisms.

The general solution for an electron with initial position x(0) = x0 and dx
dt |t=0 = v0

is:

x(t) =
v0

ω0
sin (ω0t) + x0 cos (ω0t)−

eEint
meω0(ω2

0 − ω2
d)

[
ωd sin (φ0) sin (ω0t)

+ ω0

(
cos (ωdt+ φ0)− cos (φ0) cos (ω0t)

)] (4.14)

where the first two terms correspond to the homogeneous solution of the equation.

The total energy of the electron in the plasma potential at a certain time, U(t), is
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given by:

U(t) = Ukin(t) + Upot(t) =
1

2
me

(
x′(t)

)2
+

1

2
meω

2
0 (x(t))2

=
1

2me

(
ω2 − ω2

0

)
2

((
ω2 − ω2

0

)
me

[
v0 sin (tω0) + x0ω0 cos (tω0)

]
+ eEint

[
ω sin (φ0) sin (tω0) + ω0

(
cos (tω + φ0)− cos (φ0) cos (tω0)

)])2

+

((
ω2
d − ω2

0

)
me (v0 cos (tω0)− x0ω0 sin (tω0)) + eEint

[
− ω sin (tω + φ0)

+ ω sin (φ0) cos (tω0) + ω0 cos (φ0) sin (tω0)
])2

(4.15)

The significance of the initial phase φ0 on the trajectory and the energy will be dis-
cussed later on, in the context of resonant absorption and in comparison with quantum-
mechanical expressions. The phase-averaged energy is given by:

U(t) =
e2E2

int

2me

(
ω2
d − ω2

0

)2 [ω2
d + ω2

0 −
(
ω2
d + ω2

0

)
cos(ωdt) cos (ω0t)− 2ω0ωd sin(ωdt) sin (ω0t)

]
(4.16)

In figure 4.2 the energy U(t) is given as a function of time, scaled with the so-called
ponderomotive energy Up. The definition of Up is:

Up =
e2E2

int

4meω2
d

(4.17)

It is the time-averaged energy of a free electron oscillating in an rf field [36], and will
also be used in chapter 5 as a convenient scaling parameter.

From this figure it becomes apparent that the energy of the rf field and the electron
are exchanged reversibly. The amplitudes of the oscillation grow as ωd approaches the
resonance frequency. However after some time, when |ωd − ω0| is exactly 2π, the gain
goes to zero.

41



0 2 4 6 8 10 12 14 16 18 20
0

4

8

12

16

20

24

28

32

t

d = 1/4

d = 3/4

d = 6/4

d = 7/4

pU
tU )(

Figure 4.2: Energy of the electron as a function of time for differen rf field frequencies ωd.

Only one driving field frequency is expected to lead to an irreversible energy absorp-
tion, that is exactly at the resonance frequency ωd = ω0. Therefore, first the trajectories
exactly at resonance are calculated. The trajectory can be obtained from equation (4.14)
by taking the limit ωd → ω0. For particle with initial position x(0) = 0 this results in:

x(t) =
v0

ω0
sin (ω0t) +

eEint
2meω2

0

[sin (φ0) sin (ω0t)− ω0t sin (ω0t+ φ0)] (4.18)

The trajectories are plotted for a particle with a small perturbing rf field (eEint/(meω
2
d) =

0.1v0/ω0) for the phases φ0 = 0 and φ0 = π in figure 4.3. At resonance the amplitudes
of the trajectory are increasing linearly from the point indicated by the blue arrow. This
starting point for resonant absorption depends on the initial phase of the rf field. For
the phase φ0 = 0 this resonant starts at 50ω0t, while for the phase φ0 = π the resonant
absorption has already begun at t = 0. The starting point would be at the non-physical
negative time −50ω0t.
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Figure 4.3: Left: particle trajectory at resonance for φ0 = 0.
Right: particle trajectory at resonance for φ0 = π.

The influence of the initial phase is also clearly visible in the energy of the particle.
The energy of the particle, as calculated from equation (4.15) by taking the limit ωd →
ω0, is plotted for two different phases at the resonance frequency ωd = ω0 in figure 4.4.
In the right image it is clear that the total energy of the particle decreases first for a
phase φ0 = 0 while it increases immediately for a phase φ0 = π.

The black line corresponds to the energy averaged over all the possible initial phases
φ0. It can be found immediately from equation (4.15), by averaging over the initial
phases and after that taking the limit ωd → ω0. The result is:

U(t) =
e2E2

int

8me

(
t2 +

sin2 (ω0t)

ω2
0

)
+

1

2
mev

2
0 +

1

2
meω

2
0x

2
0

or,

∆U(t) = U − U(0) =
e2E2

int

8me

(
t2 +

sin2 (ω0t)

ω2
0

)
=
e2E2

int

8me

[
1 + sinc2 (ω0t)

]
t2

(4.19)

where it follows from the limit sinc2(x) → 0 for x � 1 that the energy increases
quadratic in time for ω0t � 1. The function sinc2 (ω0t) is an oscillating function and
can be regarded as the coherent part of the energy absorption at resonance, since that
sinc2 function oscillates at a frequency 2ω0 between 0 and an amplitude that decreases
with 1/t2.
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The phase-averaged energy is plotted for different frequencies, including the reso-
nance frequency, in figure 4.5. The dots are the simulations in the GPT software which
are in agreement with the analytical curves. As expected, the GPT software is able to
reproduce the classical physics of the electron in the harmonic potential.

4.2.2 Quantum-mechanical derivation

In this subsection a quantum-mechanical derivation is shown of equation (4.19). The
well-known (first-order) perturbation theory will be used. Quantum mechanics can be
more convenient to calculate the energy absorption in plasma potentials that are more
complex than the harmonic potential.

First, the essential principles of first-order time-dependent perturbation theory will be
explained briefly, following the treatment in quantum mechanics texts such as Sakurai
and Shankar [37, 38]. The total Hamiltonian operator is H = H0 + H ′(t), where H ′(t)
is a small time-dependent perturbation and H0 is the unperturbed Hamiltonian that
does not explicitly depend on time. For the case of electron in an harmonic potential

perturbed by an rf field, H0 = ~p2

2me
+ 1

2meω
2
0x

2 and H ′(t) = −eEint cos (ωdt+ φ0) ·x; the
perturbation of the rf field.

The first-order perturbation theory used in this section is essentially a semi-classical
theory, since the operator H ′(t) consist of a classical electric field Eint cos (ωdt+ φ0). A
full quantum-mechanical treatment would require a quantized electric field consisting a
discrete particles; photons.

However it appears sufficient to use a classical electric field. The transitions of the
electrons that will be derived in this section occur in discrete steps of ~ωd, precisely the
energy of a photon.

Initially, at t = 0, the electron is in one of the eigenstates |i0〉 of the Hamiltonian
H0. The goal of first-order perturbation theory is to find the probability that at time t
the electron is in (another) eigenstate |k0〉 6= |i0〉.

The eigenkets |n0〉 of the Hamiltonian H0 form a complete basis such that the state
of the system |Ψ(t)〉 can be expanded as:

|Ψ(t)〉 =
∑
n

an(t)|n0〉 (4.20)

The amplitudes an(t) change with time because of H0 and H ′(t). If the perturbation
H ′(t) would be absent the amplitudes would be given by an(t) = an(0) exp

(
−iU0

nt/~
)
,

where U0
n is the energy of the eigenstate n in the unperturbed Hamiltonian H0. Moti-

vated by this result the following ansatz is given for the state |Ψ(t)〉:

|Ψ(t)〉 =
∑
n

bn(t) exp
(
−iU0

nt/~
)
|n0〉 (4.21)

where the time dependence of bn(t) is solely due to the presence of H ′(t) since the
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exponential absorbs any time dependence of the amplitudes due to H0. Using the time-
dependent Schrodinger equation

(
i~ ∂
∂t −

[
H0 +H ′(t)

])
|Ψ(t)〉 = 0:

∑
n

[
i~

dbn
dt
−H ′(t)bn(t)

]
exp

(
−iU0

nt/~
)
|n0〉 = 0 (4.22)

Taking the inner-product with 〈f0| exp
(
−iU0

nt/~
)

and rearranging gives:

dbn(t)

dt
= − i

~
∑
n

〈f0|H ′(t)|n0〉 exp (iωfnt)bn(t) (4.23)

where the frequency ωfn = (U0
f − U0

n)/~.

Consider the case that the system is in a state |i0〉 at t = 0, thus bn(0) = δn,i and
the goal is to find bn(t). In the zeroth order H ′(t) = 0 and the result is dbn

dt = 0:
no transitions occur. In the first-order approximation the zeroth order of bn(t) is used
(bn = δn,i), since the perturbation H ′(t) is itself of first order. This gives the first-order
equation:

dbf (t)

dt
= − i

~
〈f0|H ′(t)|i0〉 exp (iωfit) (4.24)

Higher order perturbations can be found by making use of the Dyson series as ex-
plained in detail by Sakurai [37].

The probability to find the system at the state f at the time t is Pi→f = |bf (t)|2.
Since bf (0) = δi,f = 0 the equation for bf (t) becomes:

bf (t) = − i
~

∫ t

0
〈f0|H ′(t′)|i0〉 exp

(
iωfit

′)dt′ (4.25)

Equation (4.25) will be applied to the rf driven electron in a one-dimensional har-

monic potential. The unperturbed Hamiltonian is H0 = ~p2

2me
+ 1

2meω
2
0x

2 and the pertur-
bation is given by H ′(t) = −eEint cos (ωdt+ φ0) ·x with Eint the internal field amplitude
from equation (4.8). Substitution of H ′(t) results in:

bf (t) =
ieEint

~
〈f0|x|i0〉

∫ t

0
dt′ cos (ωdt+ φ0) exp (iωfit)

=
ieEint〈f0|x|i0〉

2~

∫ t

0

[
exp

(
i[ωfi + ωd]t

′ + iφ0

)
+ exp

(
i[ωfi − ωd]t′ − iφ0

)]
dt′

=
eEint〈f0|x|i0〉

2~

[
exp (iφ0)

{exp (i[ω0 + ωd]t)− 1}
ω0 + ωd

+ exp (−iφ0)
{exp (i[ω0 − ωd]t)− 1}

ω0 − ωd

]
(4.26)

where 〈f0|x|i0〉 is the expectation value of x in the harmonic potential, which is
time-independent.
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The focus will be on transitions close to the resonance frequency, |ω0−ωd| � 1, since
irreversible energy absorption is expected at the resonance frequency ω0. Therefore the
second term in the last equation of (4.26) will dominate. Dropping the first term gives:

bf (t) =
eEint〈f0|x|i0〉

2~

[
exp (i[ω0 − ωd]t)− 1

ω0 − ωd

]
exp (−iφ0)

=
eEint〈f0|x|i0〉

2~
exp (i[ω0 − ωd]t/2)

ω0 − ωd
[exp (i[ω0 − ωd)t/2)− exp (−i[ω0 − ωd]t/2)] exp (−iφ0)

=
eEint〈f0|x|i0〉

~
sin ([ω0 − ωd]t/2)

ω0 − ωd
exp (i[ω0 − ωd]t/2) · exp (−iφ0)

(4.27)

The transition probability Pi→f = |bf (t)|2 then becomes:

Pi→f = |bf (t)|2 =
e2E2

int

~2
|〈f0|x|i0〉|2 sin2 ([ω0 − ωd]t/2)

(ω0 − ωd)2

=
e2E2

int

4~2
|〈f0|x|i0〉|2sinc2([ω0 − ωd]t/2) · t2

(4.28)

The dependence on the initial phase drops out automatically since the exp (−iφ0)
term is multiplied with its conjugate and no averaging procedure is required. This is not
an unexpected result. In a full quantum-mechanical treatment, the rf field is quantized
too consisting of photons. Then the transitions i→ f are interpreted as the absorption or
emission of just one photon by the electron. A photon has no definite phase in quantum
mechanics [39], but is an arbitrary number between 0 and 2π, so the initial phase of the rf
field would be a questionable concept. Apparently, even in the semi-classical derivation
the initial phase-dependence in the transitions disappears, in contrast to the classical
derivation in subsection 4.2.1.

In the limit of resonance, ωd → ω0, the sinc-function approaches sinc(0)→ 1 and the
transition probability becomes:

Pi→f =
e2E2

int|〈f0|x|i0〉|2

4~2
t2 (4.29)

The matrix element |〈f0|x|i0〉|2 can be calculated if the states |i0〉 are known ex-
plicitly. For an electron in an harmonic oscillator the different eigenstates Ψn(x) are
proportional to the Hermite polynomials Hn(ξ) [38]:

Ψn(x) =

(
meω0

π~22n(n!)2

)1/4

exp (−meω0

2~
x2)Hn

[√
meω0

~
x

]
(4.30)

The Hermite polynomials preserve the orthogonality for the different eigenstates of the
harmonic Hamiltonian. The following recursion relations apply to the Hermite polyno-
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mials [38]:

2yHn(y)− 2nHn−1(y) = Hn+1(y)∫ ∞
−∞

Hn(y)H ′n(y) exp (−y2)dy =
√
π2nn!δn,n′

(4.31)

Considering an initial state Ψn(x) ≡ |i0〉 and a final state Ψn′(x) ≡ |f0〉 the matrix
element |〈f0|x|i0〉|2 can be calculated. The details can be found in appendix A.2. The
result is:

〈f0|x|i0〉 =

√
~

2meω0

(√
iδf,i−1 +

√
i+ 1δf,i+1

)
(4.32)

where the i’s on the right-hand side correspond to the eigenvalue of the state |i0〉.
Equation (4.32) indicates that there are only two possible states to which the electron,
initially in |i0〉, can make a transition: the states |i0 +1〉 and |i0−1〉. A transition to the
state |i0 + 1〉 corresponds to the absorption of a photon while the transition to |i0 − 1〉
corresponds to stimulated emission.

Taking into account both the processes of absorption and emission of a photon with
energy ~ωd, the change in energy of an electron is:

∆U(t) = ~ωd [Pi→i+1 − Pi→i−1] = ~ωd
e2E2

int

4~2
t2
(
|〈i0 + 1|x|i0〉|2 − |〈i0 − 1|x|i0〉|2

)
= ~ωd

e2E2
int

4~2
t2
(

~
2meω0

[i+ 1]− ~
2meω0

i

)
=
e2E2

int

8me
t2
ωd
ω0

(4.33)

At resonance, ω0 = ωd, this equation simply becomes:

∆U(t) =
e2E2

int

8me
t2 (4.34)

which corresponds to the classical result in equation (4.19) for ω0t � 1. The only
difference is that the coherent sinc2 term from equation (4.19) is absent in the quantum-
mechanical result.

The resonance results for both the quantum-mechanical equation (4.34) as well as
the classical result from equation (4.19) are plotted in figure 4.6.
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Figure 4.6: Classical and quantum-mechanical result for the energy of an electron in an rf-
driven harmonic potential.

4.3 Collisionless absorption in plasma potential

In section 4.2 the energy absorption was calculated for a single particle in the one-
dimensional harmonic potential, which has only one resonance frequency. Real plasma
potentials on the other hand, will have multiple resonances, in other words can be written
as a Fourier expansion with multiple harmonics with different frequencies. An example
of a realistic plasma potential was shown in the introduction in figure 4.1. In the center
x < Rb the potential more a less resembles a harmonic potential, but in the region
x > 5Rb the potential is clearly anharmonic.

It is generally very difficult to find analytic solutions for the collisionless absorption
in anharmonic potentials. Only a few specific plasma potentials allow exact solution in
quantum-mechanical derivations; the classical derivations are even more complicated.
Solvable potentials include the infinite well in 1D and 3D, the potential of a charged
plane [40] and the 1D Duffing potential [8].

In this section a potential will be used that is often encountered in experimental situa-
tions: the 3-dimensional error potential. Closed analytical expression for the trajectories
are unknown for this potential and therefore we have to rely on the GPT simulations. In
this section first the trajectories of just one particle will be investigated in the 3D error
potential, but after that also the energy increase in the (Maxwell-Boltzmann distributed)
electron cloud as a whole will be studied.

The expression for the 3-dimensional error potential is [2]:

U(r) = Udepth

[
1−
√
πσ

2r
erf
( r
σ

)]
(4.35)

where r is the distance to the center of the plasma, Udepth is the depth of the potential,
σ is the rms-size of the ion cloud in which the electrons move and erf(x) denotes the
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error function given by the equation:

erf(x) ≡ 2√
π

∫ x

0
e−t

2
dt (4.36)

For r/σ � 1 a Taylor expansion can be applied to equation (4.35) that results in:

U(r) =
Udepth
3σ2

r2 +O(r4) ≈
Udepth
3σ2

r2 (4.37)

If r/σ is sufficiently small, the fourth order and higher terms represented by O(r4) in the
expansion can be neglected and a simple harmonic potential is the result with frequency:

ω0 =

√
2Udepth
3meσ2

≈
√

2kbTe
3meσ2

(4.38)

since Udepth is usually approximately equal to the thermal energy of the electrons [2].
Both the error potential (black solid line) and its limit r/σ � 1 (red dashed line) are
illustrated in figure 4.7.

-3 -2 -1 0 1 2 3
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

U
po

t
/U

de
pt

h

x /

Error potential
Harmonic potential

Figure 4.7: Cross-section of the error potential in equation (4.35) and the harmonic potential
of equation (4.38).
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The difference in the dynamics of an electron in the error potential arise due to the
anharmonicity of the potential for r/σ ' 1/2. This is illustrated in figure 4.8, where
the trajectories of three particles with a different initial velocity v0 but the same initial
position x0 = 0 are plotted as a function of time. The corresponding fourier spectra
of the trajectories x(t) can be found in figure 4.9, where the |Yk| is the absolute value
of the Fourier amplitude from the Fourier expansion x(t) =

∑
k Yk exp (iωkt) [41]. The

value of |Yk| on the vertical axis shows the contribution of a certain harmonic oscillation
at frequency ω (scaled with ω0 from equation (4.38)) to the trajectory in figure 4.8.

The trajectory of an electron initially at x(0) = 0 is plotted as a function of time
for different values of the initial velocity v0. For the initial velocity v0 =

√
kbTe/5me

(blue line) the electron starts an oscillation with an amplitude of about x/σ ≈ 0.20, so
the electron is approximately moving in the harmonic region of the potential as can be
checked in figure 4.7. The oscillation frequency Ω of this electron is approximately equal
to the harmonic oscillator frequency of equation (4.38), as can be seen directly from the
Fourier spectrum (blue line) in figure 4.9.

For an initial velocity v0 =
√

9kbTe/me (black line) the particles starts to oscillate
with an amplitude x/σ ≈ 2.3 and enters the anharmonic region of the error potential.
The oscillation clearly differs from the harmonic oscillation of the black line. The shape
of the red curve clearly differs from a simple sine function, especially around the top
where the particle is at its turning point in the error potential. This could be expected,
since the turning points are in the anharmonic region of the error potential (x/σ ≈
2.3). The trajectory can be represented by the sum of different harmonics, since the
Fourier spectrum in figure 4.9 consists of more than one peak. The dominant oscillation
frequency is the first harmonic at ω ≈ 0.4ω0, corresponding with the largest peak in the
spectrum. Other harmonic contribution are at the oscillation frequencies ω ≈ 1.25ω0

and ω ≈ 2.1ω0.
The most important result from figure 4.8 is that the oscillation frequency of the

electron in the error potential Ω(U) strongly depends on the trajectory of the particle
and likewise on the total energy of the particle Ω ≡ Ω(U), in this case U = mev

2
0/2.
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Figure 4.8: Particle trajectory for an electron starting at x(0) = 0 for three different initial
velocities v0.
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Figure 4.9: Fourier spectra of the particle trajectories of figure 4.8.
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The dependence of the oscillation frequency on the energy Ω(U) has two important
consequences, when introducing a disturbing rf field Eint cos (ωdt+ φ0).

In the harmonic potential there is only one resonance frequency and irreversible
energy absorption only occurs if the rf field frequency is exactly equal to the resonance
frequency of the potential (ωd = ω0). If an rf field with frequency ωd = 0.4ω0 would
be applied, then energy would be reversibly exchanged between the external field and
the electrons. However, in an error potential some of the electrons in the electron cloud
are oscillating at another oscillation frequency. A particle with v0 =

√
9kbTe/me for

example is oscillating at a dominat frequency Ω(U) = 0.4ω0, as shown by the black line
in figure 4.8. This particle would be in resonance with an external rf field with frequency
ωd = 0.4ω0.

The electron cloud in the plasma generally has a certain energy distribution, which
could be a Boltzmann energy distribution. Therefore, there is also a distribution of
different oscillation frequencies in the cloud and generally there are always electrons in
the cloud that are resonantly excited by the rf field, even if ωd 6= ω0.

A second consequence of the energy dependence on the oscillation frequencies Ω(U)
is that particles which are initially at resonance are automatically drifted away from res-
onance after a certain time when an external field Eint cos (ωdt+ φ0)~ex is applied. This
principle is shown in figure 4.10. One particle was simulated with an initial velocity of
~v0 =

√
kbTe/5,e ~ex, resulting in an initial trajectory approximately harmonic as indicated

by the blue line in figure 4.8. The rf field frequency was chosen equal to the harmonic
frequency ωd = ω0, such that the electron was initially at resonance and the initial phase
was chosen φ0 = 0.

The trajectory of the electron is shown in the right image of figure 4.10. It has only
an x-component since the initial velocity of the electron was chosen in the polarization
direction of the rf field. The red dashed line corresponds with the trajectory of an electron
in an resonantly driven harmonic potential, previously illustrated in figure 4.3. Initially,
the trajectories in the harmonic potential and the error potential are approximately the
same, until the oscillation amplitude exceeds the value x/σ ≈ 0.4 which is accomplished
at ω0t ≈ 36. For ω0t > 36 a phase difference develops indicating that the electron in
the error potential is oscillating at a frequency slightly different from ω0. The electron
is not in resonance anymore and as a consequence the amplitude of the oscillation will
start to decrease back to zero in the range 50 < ω0t < 90.

The drift out of resonance can also be seen in the right image of figure 4.10, where
the energy of the electron is plotted as a function of time. During the time ω0t / 36 the
energy increases quadratic in time as shown in the right image of figure 4.10, just as a
particle in the harmonic potential shown by the red-dashed line. However for ω0t > 36
the electron enters the non-harmonic parts of the error potential. As a consequence the
particle is not on resonance anymore and the energy of the electron start to deviate
from the energy in the harmonic potential. The electron is not in resonance anymore
and therefore the energy will be exchanged reversible between and the particle and the
field.

53



In figure 4.11 the trajectory and energy of an electron with initial velocity ~v0 =
√
kbTe/me ~ex

are shown. The electron has a larger initial energy and therefore the electron moves into
the anharmonic region x/σ ≈ 0.4 of the potential during its first oscillation. A significant
difference between the harmonic potential and error potential develops almost from the
start of the oscillation.

Another difference with figure 4.10 is in the phase of the energy oscillations, despite
the fact that the initial rf field phases are both zero.
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Figure 4.10: Left: Trajectory in the x-direction, |x(t)|/σ, in two different potentials.
Right: Energy gain, ∆U , of resonantly driven electron in two different potentials.
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Figure 4.11: Left: Trajectory in the x-direction, |x(t)|/σ, in two different potentials.
Right: Energy gain ,∆U of resonantly driven electron in two different potentials.

The previous results of the energy absorption and trajectories were all just of an
electron moving in a 3D error potential. Furthermore, the initial velocity was chosen in
the polarization direction of the rf field resulting in an essentially 1D motion.

Now the energy absorption will be simulated for an electron cloud with Boltzmann
energy distribution. All the particles are initialized at ~r = 0 and a Maxwell-Boltzmann
velocity distribution in all three directions is used, the space-charge forces between the
electrons were turned-off since the focus is still on collisionless absorption. GPT is a
classical simulation tool so simulations were performed for different initial rf field phases
φ0 as a way to average over the initial phase. The total energy of all the electrons in the
plasma was calculated for different driving field frequencies.

A few results are shown in figure 4.12 where the total energy of the electron distri-
bution is plotted as a function of time. Three different driving field frequencies were
chosen, which are all close to the harmonic resonant frequency ω0.

The largest amount of energy absorption could still be expected at the harmonic res-
onant frequency, because in the MB-function 68% of the electrons have a velocity smaller
than the rms-size

√
kbTe/me. An initial velocity of v0 <

√
kbTe/me results in trajec-

tories in the x-direction that initially almost harmonic motion as was shown in figure 4.8.

The dominant absorption at ωd ≈ ω0 is confirmed by the simulations and shown in
figure 4.12. Initially the energy of the red line increases until a time ω0t ≈ 50. At
that time the oscillation amplitude of the center-of-mass of the electron cloud is about
xcm(t)/σ ≈ 0.5. In the right image of figure 4.10 it was clear that for one electron an
amplitude of x(t)/σ ≈ 0.4 was already large enough to drive the particle out of reso-
nance. Analogously, the majority of the particles in the electron cloud is expected to
be driven out of resonance. This behavior is also found for ω0t > 50 in figure 4.12,
but this time the energy does not decrease back to zero, as was found for one electron
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in figure 4.10. Every electron in the Boltzmann distributed cloud exchanges its energy
reversibly with the external field, but the time at which all the energy gain is zero again
strongly depends on the initial velocity of the electron. The individual electron energy
oscillations are at slightly different phases and the average result is a net absorption.

A second important result from figure 4.12 is that there is also a significant net energy
absorption for driving frequencies that differ significantly from the harmonic frequency
ω0. This is also due to the presence of a Boltzmann energy distribution, such that
different electrons can have a different oscillation frequency Ω(U).
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Figure 4.12: Energy of the electron cloud with a MB-distribution for three different driving
frequencies.

For driving frequencies far from ω0 the energy absorption is negligible. To illustrate
this the final energy gain ∆Utot,f of the electron cloud (the energy gain at the end of the
simulation) was compared for different driving field frequencies. The result is shown in
figure 4.13.

Figure 4.13 shows that net energy absorption is most significant for a Boltzmann-
distributed electron cloud driven at the harmonic frequency ω0. In the region 1.0 <
ω0/ω0 < 1.5 there is still a significant amount of absorption, but for ω0/ωd < 1 the
amount of absorbed energy falls off dramatically as a function of increasing field fre-
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quency. This behavior was also found for the infinite well potential [35, 40] as well as
the 1D Duffing potential [8].

If one wants to prevent collisionless absorption it is therefore best to use a field
frequency ωd significantly larger than the harmonic frequency ω0.
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Figure 4.13: Final Energy increase ∆Utot,f for different rf field frequencies ωd.

4.4 Conclusions

In this chapter an external field E0 cos (ωdt+ φ0) was introduced to study the accompa-
nying collisionless absorption. Ultracold plasma do not remain neutral and as a result
every electron interacts not only pair-wise with the other particles, but also with the
so-called self-consistent electrostatic plasma potential. The origin of the collisionless
absorption is the disturbance by the external rf field on the trajectories of the electrons
inside the plasma potential. The external rf field induces a polarization field inside the
plasma that oscillates at the same frequency, but has a different amplitude Eint. This
internal rf field exerts work per unit time on the electrons in the plasma, which is the
rate of collisionless absorption.

The harmonic 1D potential was chosen as a model potential, because it is possible
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to find exact solutions for the amount of energy absorption with quantum mechanics as
well as classical mechanics. It was found that irreversible energy absorption occurs only
if the driving field frequency is exactly equal to the harmonic potential frequency, as
confirmed by classical and quantum-mechanical calculations and by GPT simulations.

The collisionless absorption rate was also calculated in a more realistic three-dimensional
plasma potential: the error potential. The error potential resembles a harmonic potential
near its center, but has clear anharmonicity when moving away from the center of the
potential. As a consequence the oscillation frequency depends on the energy of the elec-
tron since the energy determines how far the electron moves into the anharmonic region
of the potential. Closed analytical expression for the trajectories in the error potential
are unknown and the absorbed energy could only be obtained by the numerical GPT
simulations. A electron cloud was simulated with a Maxwell-Boltzmann distribution,
such that the electrons had different oscillation frequencies Ω(U) already at the start
of the simulation. The dominant absorption was found at the harmonic resonanance
frequency, this was expected since a large amount of the electrons in the cloud is oscil-
lating with a small amplitude around the center of the the cloud. A significant amount
of irreversible energy absorption was found for driving frequencies different from the
harmonic frequency ω0, caused by the anharmonicity of the error potential

In ultracold plasmas it is often desired to suppress the amount of rf energy absorption
and therefore it would be necessary to choose a driving field frequency significantly far
away from the harmonic resonance frequency. Figure 4.13 showed that a field frequency
of about ωd > 2ω0 already leads to strong suppression of collisionless energy absorption.
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Collisional absorption

In the previous chapter it was found that the amount of energy absorption from an rf
field strongly depended on the ratio of the applied frequency and the natural frequency
of the plasma potential. The studied collisionless absorption was independent of the
individual pair-particle interactions.

In this chapter an absorption mechanism will be studied which completely relies
on the individual electron-ion collisions: collisional absorption, sometimes called inverse
bremstrahlung. The physical principle of the mechanism is that the oscillating motion of
the electrons in the internal rf field Eint cos (ωdt) is scrambled due to the Coulomb field
of the randomly distributed ions. As a result, energy of the driving rf field is converted
into random thermal motion of the electrons.

In section 5.1 the underlying physical principles of collisional absorption will be illus-
trated. In the subsequent section 5.2 it will be explained how the electron-ion collision
frequency changes due to the presence of the rf field. The different physical principles
as well as analytical formulas of the first two sections will be tested with simulations in
section 5.3.

5.1 Mulser-Bauer theory

A hard-sphere model is considered in figure 5.1, where an electron with relative velocity
~v0 and incident angle θi collides with an atom or ion at time t0. After the collision, the
velocity equals ~v

′
0 with reflecting angle θf . Without the rf field ~E

′
cos (ωdt), the problem

reduces to the well-known elastic hard-sphere scattering of an electron with an atom or

ion such that |~v0| =
∣∣∣~v′0∣∣∣ and θi = θf [42].

In the presence of an rf field the velocity of the incoming electron becomes, if all
other forces on the electron are neglected:

~v(t) = ~v0 −
eEint
meωd

sin (ωdt)~ex = v0~ei − sin (ωdt)~vosc

with,

~vosc =
eEint
meωd

~ex ≡ vosc ~ex

(5.1)

where ~ei is unit vector pointing in the initial direction of the electron and vosc is the
so-called quiver velocity.
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Figure 5.1: Collision of an electron with an ion while experiencing an external rf field.

At t = t0 the electron experiences a collision with the ion and is re-directed in the
direction ~ef . The velocity at t = t0 becomes ~v(t0) = |v0~ei − sin (ωdt0)~vosc| ~ef as follows
from equation (5.1).

For times t′ > t0 the velocity can be written as:

~v
(
t′
)

= ~v(t0)− ~ex
eEint
me

∫ t′

t0

cos (ωdt)dt = ~v(t0)− ~vosc
[
sin (ωdt

′)− sin (ωt0)
]

= |v0~ei − sin (ωdt0)~vosc| ~ef − ~vosc
[
sin (ωdt

′)− sin (ωdt0)
] (5.2)

where the expression for ~v(t0) was substituted in the second line.
The change in kinetic energy induced by the collision 1

2me(v
2(t′)−v2(t) is calculated

under two assumptions. The first assumption is that the time of the collision t0 can be
chosen arbitrarily and as a result the direction after the collision ~v(t0) ∼ sin(ωdt) is also
arbitrary. Furthermore, in the hard-sphere model the electrons do not feel any potential
force from the ion or atom before or after the collision. As a consequence the time t
before the collision can be arbitrarily close to t0.

Therefore the limit t→ t0 is used and the change in kinetic energy is averaged over
one rf cycle 2π/ω. The details of the derivation can be found in appendix A.3.

The gain in kinetic energy becomes:

1

2
me∆~v2 =

1

2
me~v

2
osc =

(eEint)
2

2meω2
d

= 2Up (5.3)

where Up = (eE0)2/(4meω
2
d) is the ponderomotive potential that was briefly men-

tioned in section 4.2.
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The average energy gain per unit time, per electron, can be estimated as:

d〈U〉
dt

= 2νeiUp (5.4)

where νei is the average number of electron-ion collisions per second. The derivation
of νei will be the topic of the next section.

The collisional absorption causes the total energy Utot of the ultracold plasma to
increase, which simply follows from equation (5.4): dUtot

dt = Ne · d〈U〉
dt , with Ne the

number of electrons in the plasma.

5.2 Collision frequency in rf driven plasma

At first instance one might use the well-known Spitzer frequency νs, derived for the rate
of electron-ion collisions in conventional plasmas without rf field [1, 43]:

νs =

√
2

3π
ωpΓ

3/2
e ln (Λe) (5.5)

where Γe is the coupling parameter from equation (1.1) and ln (Λe) = ln
(

Γ
2/3
e

)
is

the Coulomb logarithm. In the derivation of νs it is assumed that an electron approaches
an ion with a thermal velocity vth =

√
kbTe/me, but in an rf field there is also a quiver

velocity vosc present.
The Coulomb logarithm needs to modified and an additional pre-factor is required

in equation (5.5) to obtain the collision frequency in the presence of an rf field.
A model which takes into account both the thermal velocity and the quiver velocity,

results in the following pre-factor for the effective collision frequency [8, 44]:

νei = 2F2

(
3

2
,
3

2
; 2,

5

2
;− v

2
osc

2v2
th

)
· νs (5.6)

where 2F2 is the hypergeometric function of second order which has the following
limiting forms:

2F2(...) ≈ 1 if vosc � vth

2F2(...) ≈ 6

√
2

π

(
vth
vosc

)3 [
ln

(
vosc
vth

)
+ 1

]
if vosc � vth

(5.7)

and it follows that in the weak-field limit vosc � vth the Spitzer frequency is recovered
in equation (5.6).

In the limit for very strong fields on the other hand, vosc � vth, 2F2(...) ∼ (vth/vosc)
3 ln (vosc/2vth)

while the Spitzer frequency from equation (5.5) is proportional to Γ
3
2
e ∼ v−3

th .
In that case the collisional absorption per unit time from equation (5.4) becomes

proportional to:

d〈Utot〉
dt

= 2νeiUp ∼
1

v3
osc

ln

(
vosc
2vth

)
· v2
osc ∼

ln (voscvth
)

vosc
(5.8)
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It follows that the collisional absorption rate decreases for increasing vosc in the limit
vosc � vth.

Note that it is not necessary to use a very strong external rf field amplitude to go
into the range vosc � vth. In section 4.1 it was derived that the rf field amplitude in the
plasma was given by Eint = E0/(1− ω2

m/omega
2
d), so an alternative way to go into the

strong-field limit is to use a field frequency ωd close to the resonant Mie-frequency.

In figure 5.2 the scaled collision frequency νei/νs is plotted against the ratio vosc/vth.
The black line is the hypergeometric function, the red dashed line is the strong-field
limit vosc � vth and the dash-dotted blue line gives the weak field limit. In UCPs, the
ratio of vosc/vth can be in the strong-field limit due to the low electron temperatures.

The effective collision frequency is clearly suppressed for vosc/vth > 1 and the appli-
cation Spitzer frequency would lead to an overestimation of the absorbed energy.
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Figure 5.2: Electron-ion collision frequency νei/νs as a function of the ratio of quiver and
thermal velocity

The decrease in the collision frequency can be understood from the Rutherford
scattering cross section σR which depends on the relative velocity vrel of the electron:
σR ∼ 1

v4rel
. The average value of v4

rel increases due to the presence of the quiver velocity.

A larger field amplitude Eint leads to a larger quiver velocity and therefore the collision
cross section σR decreases as a function of vosc and with that the collision frequency
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(since ν ∼ σ [1]).

The second modification to the collsion frequency of equation (5.5) concerns the Coulomb

logarithm ln (Λe) = ln
(
bmax
bmin

)
, where bmin and bmax are the two cut-offs of the well-known

Coulomb collision integral [42]:

νs =

√
2

3π
ωpΓ

3/2

∫ bmax

bmin

db

b
(5.9)

where b is the impact parameter, also illustrated in figure A.1 in section 3.2. The
two cut-offs are required since the integral diverges both in b→ 0 and b→∞.

In standard plasma physics textbooks it is assumed that an electron approaching
an ion with an impact parameter larger than the Debye length does not interact with
the ion, since the electron-ion interaction is (Debye-)shielded by other electrons in the
plasma [1, 42]. Therefore the upper limit is chosen equal to the Debye length: bmax =
λD = vth/ωp with ωp the plasma frequency.

The minimal impact parameter bmin is defined as the impact parameter which leads
to a 90 ◦ collision. At a distance r = bmin, the potential energy is twice the relative
kinetic energy between the ion and electron at r →∞ [42]. These type of collisions are

very rare in a conventional plasma since the coupling parameter Γe =
〈Upot〉
〈Ukin〉 � 1. The

expression for the minimal impact parameter becomes bmin = e2

4πε0mev2th
[42].

The influence of the rf field is implemented in the collision theory by defining a new

effective velocity: veff =
√
v2
th + v2

osc [45]. Under that the assumption the cut-off pa-

rameters become:

bmax =
veff

max(ωd, ωp)

bmin =
e2

4πε0mev2
eff

(5.10)

where max(ωd, ωp) = ω if ωd > ωp and vice versa.

For strongly coupled plasmas these two cut-offs are not justified anymore, because
Γe > 1. Ultracold plasmas with initial temperature Te(0) = 0 are heated quickly to the
value Γe = 1 due to disorder-induced heating as shown in chapter 3, which means that
these ultracold plasmas are close to the region where this theory is not applicable any-
more. Therefore, weakly-coupled ultracold plasmas were simulated with Γe(t = 0) < 0.2,
as will be shown in the next section.
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5.3 Numerical simulations of collisional absorption

5.3.1 Simulation conditions

Numerical simulations were performed to test the derived expressions and principles in
the previous sections. Since the theory for the collision frequency only applies to weakly
coupled plasmas, an initial electron temperature of Te(0) = 70 K was chosen which leads
to an initial coupling parameter of Γe(0) ≈ 0.2.

The rf field frequency ωd should be chosen significantly far away from the Mie-frequency,
because at the the Mie-frequency the internal field amplitude Eint = E0/(1−ω2

m/ω
2
d) di-

verges. An additional prerequisite is that the frequency ωd should not be chosen smaller
than ωm, because this would lead to a ‘stripping’ of the boundary of the plasma. The
underlying mechanism behind this effect is the dependence of the Mie-frequency on po-
sition in a non-uniform particle distribution. The electron density ne of the plasma is
generally not a uniform function and evolves in time. Initially, the electron cloud ex-
pands due to its temperature resulting in a net plasma potential, as was shown in the
introduction in chapther 4. As a result the Mie frequency ωm =

√
(ne(r)e2)/(3meε0)

becomes also dependent on the position in the plasma.
This is illustrated in figure 5.3, where the ion and electron density are shown as a

function of the radius of the plasma at the end of a simulation at ωmt = 20. Both the
ion and electron density were uniform at ωmt = 0, the initial ion temperature was Ti = 0
K and the initial electron temperature was Te = 70 K.

The ion density is still approximately uniform in the original plasma sphere of radius
Rb, but the electron density has evolved into a monotonously decreasing function of
radial position. This means that the Mie-frequency ωm ∼

√
ne(r) is also monotonously

decreasing. The value of the Mie-frequency, scaled with the initial Mie-frequency ωm,0,
is shown on the right axis of figure 5.3. If for example an rf field is applied with a
frequency ω ≈ ωm,0/2 the electrons at r = Rb from figure 5.3 will be in resonance and
they will be driven out of the plasma.
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Figure 5.3: Left axis: Electron (red) and ion density (black) scaled with the initial density at
ωmt = 0 as a function of the distance to the center of the plasma.
Right axis: Mie-frequency ωm(r) (dotted olive) scaled with the uniform Mie-
frequency at ωmt = 0

5.3.2 Influence of collisionless absorption

The goal is to study collisional absorption as independently as possible from other ab-
sorption mechanisms. This means that the applied field frequency ωd should be far away
from the dominant resonance ω0 of the plasma potential, as was in figure 4.13 in chapter
4. Therefore, an estimation is made of the resonance frequency of the plasma potential
by simulating the ultracold plasma with Coulombic particle-interactions, but without
an rf field.

The used parameters in the simulation were an electron temperature of Te(0) = 70
K, an ion temperature of Ti(0) = 0 K, Ne = Ni = 4000 electrons and ions initialized in
a sphere with an initially uniform densities of ne,0 = ni,0 = 10−16 m−3.

As a result of the escape of the thermal electrons a plasma potential is quickly built
up, usually in a time scale ωmt < 2 and gradually evolves or deepens in the remaining
simulation time 2 < ωmt < 20. The development of the potential was also explained in
the introduction of chapter 4 and can be reviewed in figure 4.1. Conclusively, the plasma
potential is not static and it can be assumed that the rate of collisionless absorption is
the largest at the end of the interval, ωmt = 20, since the plasma potential is at its
steepest at the end of the simulation.
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The average plasma potential at the end of the simulation ωmt = 20 is plotted as a
function of the distance to the center of the plasma r in figure 5.4 . The red line is the
average radial force an electron experiences as a function of the distance to the center of
the plasma. In the center of the plasma r < (3/4)Rb the influence of the plasma potential
of the electrons is negligible, but in the region (3/4)Rb < Rb the electron experiences an
approximately linear restoring force. In the region r > Rb the restoring force becomes
non-linear with respect to x and decrease to zero.
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Figure 5.4: Left(black): Average potential energy as a function of the radius.
Right(red): Average radial force on a electron scaled with the typical Coulomb force
Fr/F0.

Suppose the plasma potential is not gradually evolving and deepening for 0 < ωmt <
20 but static during the simulation and moreover equal to the potential at ωmt = 20
from figure 5.4. The amount of collisionless absorption in that static potential could be
regarded as a limit, or worst-case scenario, for the amount of collisionless absorption in
the evolving potential.

It can be assumed that the dominant frequency of a typical plasma potential is
on the order of the oscillation frequency of the electrons in the plasma potential [8].
The majority of the electrons (about 80-90 %) will reside in the region r < Rb during
the simulation. An approximation of a cross-section of the plasma potential, in the
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Figure 5.5: Approximation of the cross-section of the potential between x = −Rb and x = Rb.

range −Rb < x < Rb, is shown in figure 5.5. The potential can be regarded as a
harmonic potential with a connecting flat potential placed in the middle of the harmonic
potential. The total period of the electrons T with a bounded motion in −Rb < x < Rb
is given by T = THO + TSQ, where THO = 2π/ωHO is the harmonic oscillator period
and TSQ = 3Rb/vth is the time it takes an electron with thermal velocity vth to traverse
through the flat potential region, which can be regarded as a square well period.

A linear fit is applied to the force in the region (3/4)Rb < r < Rb to estimate the
harmonic frequency, as shown in figure 5.4 by the red dashed line. The slope of the fit α

can be related to harmonic frequency; ωHO =
√

αF0
meRb

= (3.5± 0.1) · 109 rad/s and from

that THO = (1.79 ± 0.05) ns. The thermal velocity is vth =
√
kbTe/me with Te = 70 K

and the original plasma radius is given by Rb = (3Ne/4πne)
1/3 with Ne the number of

electrons. This leads to a square well period of TSQ ≈ 4.2 ns. From this it follows that
the total oscillation frequency of the electrons in the potential is ω0 = 2π/T ≈ 1.05 · 109

rad/s.

As previously mentioned the plasma potential is only gradually evolving into the
potential of figure 5.4, and therefore the value of ω0 is a certain worst-case scenario for
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the amount of collisionless absorption. It can be concluded that at any time before the
end of the simulation ω0 < 1.05 · 109 rad/s.

As explained in the introduction the second prerequisite is to choose the field fre-
quency larger than the Mie-frequency ωm.

Therefore, a field frequency ωd = 1.41·1010rad/s ≈ 14ω0 ≈ 4ωm was chosen, expected
to result in a negligible amount of collisionless absorption from previous results in chapter
4. Furthermore this frequency only leads to small amplification of the field amplitude
inside the plasma since Eint = E0/(1− ω2

m/ω
2
d) ≈ 1.06E0.

The change of the total energy is fully taken up by the electrons. Therefore the
mean energy gain of the electrons is simply the total energy of the plasma divided by
the number of electrons present in the plasma.

An alternative point of view is that the amount of energy absorption is equal to the
work that is performed by the induced electric field in the plasma. From the work-energy
theorem of classical mechanics [46], it follows that the amount of work performed by an
induced field on an ion is equal to the change in the energy of the ion: dU

dt = e ~E′ ·~vi(t) ≈ 0
since the ions are nearly stationary in the time scales of the simulations, so only the
electrons contribute to the change of the total energy of the system.

The total energy gain was expressed in terms of NeU0, where Ne is the number
of electrons in the plasma and U0 = e2/(4πε0a0) is the typical Coulombic interaction
energy with Wigner-Seitz radius a0.

5.3.3 Results

In figure 5.6 the energy gain, expressed in terms of NeU0, is plotted as a function of time
for two different field amplitudes. The total energy at t = 0 is given by Utot(0), Ne is
the number of electrons in the plasma and U0 = e2/(4πε0a0) is the typical Coulombic
interaction energy with Wigner-Seitz radius a0.

The cycle-averaged energy is gradually increasing and the fast oscillations ∼ ωd are
due to the presence of the rf field. The amplitudes of the oscillations are not constant
indicating the presence of other oscillations, besides the rf field oscillation at frequency
ωd. Those other oscillations are probably related to the Mie-frequency or the resonance
frequency of the plasma potential.

It would be convenient to distil the slowly increasing part from the rapidly oscillat-
ing part. Especially at larger field strengths the amplitudes of these oscillations become
very large. The first suggestion might be to average the energy over the period of the
oscillation in figure 5.6. The problem is that the oscillation frequency of the oscillations
in figure 5.6 is not a priori known. A simple 1D jellium model as in section 4.1, which
assumes a fluid description, could be used to estimate the oscillating frequency. How-
ever, an averaging procedure over the interval t ∈ [0, Tosc], with Tosc the period of the
oscillation is quite sensitive for a small mismatch of the factor ω0, which would lead to
the addition of other harmonics to the current oscillations.

An alternative could be to subtract the energy of an electron oscillating in an rf
field, since the collisional absorption is assumed to be due to the deflection of an rf field
oscillation of the electron by the stationary ions. The energy of an electron in an rf field,
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Figure 5.6: Energy gain as a function of time for two different quiver velocities vosc.

which is called the quiver energy, equals Uquiver = 2Up sin2(ωt); a factor that oscillates
in time but does not contribute to an average increase of the energy.

The result of this subtraction is shown in figure 5.7. The black line shows the scaled
energy increase for vosc/vth ≈ 1.66 and in the blue dashed line the quiver energy is
subtracted from ε̄. Remaining oscillations are still present, but with a smaller amplitude
and therefore it would be easier to estimate the energy gain by linear fit of the blue
dashed line.

However, a more practical way to distil the linear energy increase is by spectral
filtering of the Fourier spectrum. The energy gain plotted in figure 5.7 is just a discrete
set of ND=2000 data points and thus could be expanded by using the discrete fourier

transform in the series
∑ND−1

k=0 Y (k) exp
(

2πi knND

)
, for n = 0, 1, 2, ...., ND − 1 [41]. The

discrete variable n refers to a specific data point in the set which corresponds to a certain
time in our case. The expansion parameter k is limited by the number of data points and
Y (k) is the amplitude of the corresponding exponential. The values of Y (k) determine

the contribution of a certain harmonic oscillation exp
(

2πik n
ND

)
= exp

(
2πik t

tf

)
=

exp (iωt · k) in the analyzed data set. The discrete variable n corresponds to a time
in the time simulation and ND corresponds to the total simulation time tf = 20ωm.
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Figure 5.7: Energy gain as a function of time (black). The blue dashed line results from the
subtraction of the quiver energy from the energy gain.

Therefore, the Fourier series can be written in terms of the exponentials exp
(

2πik n
ND

)
=

exp
(

2πik t
tf

)
= exp

(
it π10ωmk

)
= exp (iωkt), with ωk = k · π10ωm.

From this it follows that the slowest possible oscillation in figure 5.7 that can be
described by the Fourier series (k = 1) has a frequency ω = π

10ωm. The total simulation
time tf should be increased if it is desired to describe slower oscillations with Fourier
series.

The fastest possible oscillation in the expansion on the other hand equals ωND−1 =
199.9πωm since the amount of data points in the simulation equalled ND = 2000. This
time the spacing between the successive data points in a set should be increased to de-
scribe faster oscillations.

The Fourier spectrum of the original energy oscillations Utot(t)−Utot(0)
NeU0

of figure 5.7 is
shown in figure 5.8. The y-axis gives the absolute value of the complex Fourier am-
plitude |Yk|, which indicates the contribution of a certain harmonic oscillation at the

frequency ω on the x-axis to the original function Utot(t)−Utot(0)
NeU0

.

The largest peak in the spectrum at ω/ωd = 2 corresponds to the quiver energy since
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2Up sin2 (ωdt) = Up[1 − cos (2ωdt)]. Apart from this oscillations there a few small peak
visible in the region 0.5 < ω/ωd < 1.5, probably related to the Mie-frequency and the
natural plasma frequency ω0.

First the largest peak between the red dashed lines, corresponding the quiver energy,
is removed from the spectrum. An inverse Fourier transform is applied to the new
spectrum, which results in the red dashed line; the black line corresponds to the original
energy function Utot(t)−Utot(0)

NeU0
. The result is already an improvement compared to the

method of simply subtracting the quiver energy in figure 5.7, although there is still a
significant oscillation left.

A further improvement is obtained if the small peaks in the region 0.5 < ω/ωd < 1.5
are removed too. Therefore, all the peaks in the region between the straight blue lines
are removed. The inverse Fourier transformation is applied to the new spectrum. The
result is the blue straight line in figure 5.9.

The effective electron-ion collision frequency νei is easily found by a linear fit of the
blue curve. This yields a value β for the slope defined as:

β =
d

dωmt

(
Utot(t)− Utot(0)

NeU0

)
=

1

ωmt

d〈U〉
dt

(5.11)

which can be used to calculate νei = U0ωmβ
Up

; see equation (5.4).
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Figure 5.8: Fourier spectrum of the energy gain from figure 5.7.
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Figure 5.9: Energy gain as a function of time (black). The red dashed line results after spectral
filtering of the largest peak in the spectrum. The blue solid line results after spectral
filtering, including the smaller peaks, from the spectrum.

The average energy increase has been calculated for different field amplitudes or
quiver velocities vosc. The results are shown in figure 5.10 The left axis and the black
points show the obtained slope β which is plotted as a function of the quiver velocity
vosc in units of vth,0, the thermal velocity at t = 0. The right axis displays the collision
frequency νei in units of the Spitzer frequency of equation (5.5).

In the region 0.02 < vosc/vth < 2 the effective energy absorption increases, but for
vosc/vth,0 > 2 the external field is so strong that the amount of collisional absorption
decreases as a function of the applied field strength. This confirms the expectation
that for strong rf fields the quiver velocity effectively takes over the role of the thermal
velocity, as explained in section 5.2.

The blue triangles, on the right axis, display the effective collision frequency, scaled
with the Spitzer frequency at t = 0. The collision frequency effectively vanishes for very
high quiver velocities. In this region the effective electron velocity in the plasma is very
close to the quiver velocity and increasing the effective velocity could be interpreted as
decreasing the electron-ion (Rutherford) cross-section.

The blue triangles do not agree with the theoretical curve from figure 5.2. The first
reason is that neither the thermal velocity nor the Spitzer frequency νs is a constant,
but increases during the simulation due to the collisional absorption itself. The amount
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of increase of the temperature depends strongly on the strength of the applied field, if
vosc > vth,0 this increase in temperature becomes relevant. For example, the average
electron temperature at vosc/vth,0 ≈ 4 was 〈Te〉 ≈ 260 K; considerably larger than the
initial temperature Te = 70 K. For vosc/vth,0 < 0.5, the increase in temperature is
insignificant.

The second reason is that the number of electrons which experience electron-ion
collisions is not equal to the total amount of simulated electrons. The faster electrons
escape from the plasma early on and therefore do not contribute to absorption anymore.
The amount of electrons inside the original plasma sphere, where all the ions are residing,
varied between 70-100% depending on the strength of the field.

The third reason of the mismatch is that the electron density in the plasma does not
remain uniform during the simulation, as was shown in the introduction of this chapter.
Therefore the Mie-frequency and likewise the plasma frequency occurring in equation
(5.5) for the Spitzer frequency, are not constants but decrease as a function of time.
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Figure 5.10: Left(red): Energy absorption 〈U〉/U0 per unit ωmt as a function of quiver velocity.
Right (blue): Electron-ion frequency as a function of quiver velocity.

In figure 5.11 the effective frequency is scaled with the average Spitzer ν̄s frequency of
the plasma, which requires the three aforementioned parameters that were averaged over
the simulation interval: the electron temperature, the number of electrons in the plasma
and the electron density. With the averaged electron temperature and the averaged
plasma frequency the Spitzer frequency could be calculated for every point with equation
(5.5). The resulting calculated energy gain was multiplied with the fraction

Ne,p

Ne
, where
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Ne,p is the number of electrons in the plasma, to correct for the fact that the number of
colliding electrons is not equal to the total number of electrons.

The result is shown in figure 5.11, which shows a good agreement between simulations
and analytical theory. The wide green error bars indicate the uncertainties in νei/νs
(vertical) and in vosc/vth (horizontal). The uncertainty in the vosc is especially large for
large velocities, due to the increase of the electron temperature during the simulation.
Despite the crude averaging procedures the main characteristics of the theoretical curve
are confirmed by the simulation. The collision frequency is clearly suppressed for strong
applied rf fields, making the standard Spitzer frequency inapplicable to apply for strongly
rf-driven plasmas. The Spitzer frequency would lead to an significant overestimation of
the amount of collisional absorption, although it has been used in the context of rf
absorption by UCPs.
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Figure 5.11: The electron-ion collision frequency, simulation and analytical result, plotted as a
function of the scaled velocities.

5.4 Conclusions

In this chapter heating by collisional absorption was simulated and compared to the
available analytical theories. This phenomena arises from the deflection of rf oscillating
electrons in the Coulomb fields of the ions. The collisional absorption was studied under
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the condition that the amount of collisionless absorption is negligible. The prerequisite
on the applied rf field frequency was that it is far away from the resonance frequency
ω0 of the plasma potential. The plasma potential was calculated by simulating a set
of electrons and ions with initial temperatures of Te(0) = 70 K and Ti(0) = 0 K and
without an external rf field. The resonance frequency ω0 was estimated and appeared
to be close to the value of the Mie-frequency ωm.

The second requirement was that the field frequency ωd > ωm, to make sure that no
part of the plasma was at a Mie-resonance with the applied field.

The total energy change of the plasma was studied for different field amplitudes, which
implies different quiver velocities vosc. The energy gain was found to be rapidly oscillat-
ing on top of a gradual increase. This gradual increase could be filtered out by analyzing
and removing parts of the Fourier spectrum of the energy gain, resulting in an almost
linear increase of the energy.

The collision frequency significantly decreases as function of applied rf field ampli-
tude. An explanation is that the Rutherford cross section for electron-ion collisions
(σR ∼ 1/v4

rel) decreases due to the addition of an (increasing) quiver velocity and in
consequence the electron-ion frequency decreases too. The total energy gain increased
as a function of vosc for small fields, or values of vosc, but started to decrease as a function
vosc for very strong fields thereby confirming the predictions from the recent analytical
theories of collisional absorption in UCPs [8].

A direct comparison of the simulations was made with the analytical theory. The
general behavior of the simulation in figure 5.11 in the decrease of the effective collision
frequency is obtained, but there is a large uncertainty in the simulation data. One of the
problems is that the analytical theory assumes a certain constant electron temperature
during the process of collisional absorption, but as a matter fact this electron temperature
increases too as a result of the absorption. Especially for larger fields this effect becomes
significant.

The second problem is that the amount of electrons inside the plasma is not con-
stant, since a significant part of the electrons escape from the plasma due to their initial
temperature. As a result, the density becomes non-uniform as well as the Mie-frequency
and both values need to be averaged over the simulation time.

These effects arise in principle from the existence of the boundary of the plasma in
our simulation. The analytical theories are all derived from the assumption of an in-
finitely extended plasma. The infinite plasma could be mimicked by making use of
periodic boundaries. The implementation of periodic boundaries is straightforward for
molecular dynamics of particles interacting with short-range (e.g. Lennard-Jones or
VanderWaals) potentials, but unfortunately it is far from trivial for particles interacting
with longe-range potentials such as the Coulombic potentials [47].
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Conclusions and
Recommendations

Numerical simulations were performed to investigate the different heating mechanism of
the electrons occurring in rf-driven ultracold plasmas.

Before the introduction of an external rf-field, the intrinsic heating mechanisms of the nu-
merical plasma were studied. Two heating mechanisms were observed: disorder-induced
heating and three-body recombination. Disorder-induced heating is related to the un-
correlated state in which the plasma is created by photo-ionization. Due to the random
initial positions of the electrons, an excess of potential energy exists in the plasma which
is rapidly converted into thermal energy until the total energy in the plasma is equally re-
distributed between thermal and potential energy. The consequence of disorder-induced
heating is that strong coupling between the electrons in the plasma does not develop
in ultracold plasmas. The time scale of the disorder-induced heating was found to be
on the order of the inverse Mie-frequency, confirming theoretical expectations as well as
earlier numerical work [22].

The heating by three-body recombination was studied at times immediately after
the disorder-induced heating phase and compared to analytical theories. The binding
energy of the electrons was calculated and a kinetic bottleneck could be identified close to
analytical predicted value [27], which distinguishes the free electrons from the electrons
which are bound to an electron.

Possibilities to prevent or counteract these electron heating mechanisms are far from
trivial in contrast to several suggestions made to prevent ionic disorder-induced heating
[2, 48]. The disorder-induced heating phase cannot be prevented due to the nature of
the photo-ionization process. The only suggestion so far to reduce the electron heating
is based on the occurrence of the three-body recombination [28]. The idea is to deliber-
ately add highly-bound Rydberg atoms to the plasma. These atoms will be ionized due
to the collisions with free electrons in the plasma and those electrons will loose energy
in this collision.

In the next two chapters an external rf field was introduced to study two different
absorption mechanisms: collisionless absorption an collisional absorption.

The first of these processes can be interpreted as energy absorption due to the colli-
sion of an electron with the boundary of the plasma. Ultracold plasmas do not remain
neutral and develop a certain positive plasma potential that keeps the lighter electrons
trapped in the plasma. As a result the electron start to oscillate in this potential, the
energy absorption arises due to the disturbance by the rf field on this electron oscilla-
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tion. The amount of energy absorption depends strongly on the ratio of the harmonic
resonance frequency of the plasma potential with the rf field frequency. In a harmonic
plasma potential there is only net absorption exactly at the resonance frequency, but for
the more realistic error potential a significant net absorption was also found for rf field
frequencies close to the harmonic resonance frequency.

Therefore a rf field frequency was chosen significantly larger than the natural fre-
quency of the plasma, to study the process of collisional absorption for different rf field
amplitudes. It was found that the electron-ion collision frequency is suppressed by the
application of an rf field due to a decreasing Rutherford cross-section for electron-ion
collisions. Therefore, the amount of energy absorption was less than might intuitively be
expected and for very strong rf fields the amount of collisional absorption even decreased
as a function of field amplitude. Predictions from analytical theories could be confirmed,
although the relative uncertainty for a direct verification of the analytical expression for
the collision frequency.

The solution might be to use periodic boundary condition, although the implementa-
tion of periodic boundary conditions is problematic for particles exerting Coulomb forces
[47].

Eventually, the goal is to study the radiative acceleration of an ultracold plasma.
Therefore it is necessary to develop a particle tracer method that takes into account
the retardation effects, that is by using the Liénard-Wiechert potentials to calculate the
inter-particle forces instead of Coulomb potentials.
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Appendix

A.1 Thomson derivation of the probability s1 of a thermal-
izing collision

electron

Rb+ ion

b r0

d

Figure A.1: Probability of a thermalizing collision.

The probability s1 can be calculated with the aid of figure (A.1). A incoming electron
having an impact parameter b approaches the R+

b ion and travels through the ‘Thomson
sphere’ with radius r0 (> b). Under the assumption of negligible deflection, the electron
covers distance a d = 2

√
r2

0 − b2 through the sphere in which a thermalization can occur.

A mean free path l is defined, which is the distance over which the amount of non-
thermalized electrons in the Thomson sphere decreases to 1/e part of the electrons that
entered the sphere. In consequence the probability equals e−d/l that an electron with a
specific impact parameter b does not experience a thermalization during its way through
the sphere.

The probability of having a impact parameter between b and b+db is 2πbdb/πr2
0 and
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as result s1 becomes:

s1 = 1− 2

r2
0

∫ r0

0
be−2
√
r20−b2/ldb = 1 + 2

(
e−β

β2
+
e−β

β
− 1

β2

)
(A.1)

in which β = 2r0/l. This parameter is very small for plasmas at low densities and
by applying β � 1 equation (A.1) becomes:

s1
∼=

4r0

3l
(A.2)

From equations (3.15) and (A.2) the Thomson result is found:

αei = ve
4πr3

0

3l
(A.3)

The mean free path for electron-electron momentum transfer can be written as [23]:

l ∼=
1

neQee
(A.4)

in which Qee is the energy-averaged electron-electron momentum transfer cross sec-
tion. It is the cross-section in which a incident electron loses momentum in the incident
propagation direction. The value of Qee for a collision with a screened Coulomb potential
can be found in standard plasma physics textbooks [42]:

Qee
∼= 6πb

2
0 ln (Λ) =

3π

2
r2

0 ln (Λe) (A.5)

It must be noted that those derivations are based on the assumption of the existence of
a screened electron potential with a Debye length λD. The existence of this screening
effect follows from the assumption that thermal energy kbTe is larger than the typical
potential energy; that is for Γ−1

e > 1.
Finally, substitution of equations (3.12), (A.2), (A.5) into equation (A.3) and nu-

merical evaluation of the physical constants gives the Thomson result:

αTh = 2.1 · 10−20 ne

T
9/2
e

ln (Λe) (A.6)

It is important to note that the Thomson derivation does not take into account the
re-ionizations of electrons with a an energy above the kinetic bottleneck as shown in
figure 3.7 and an overestimation of the electron-ion recombination coefficient could be
expected.

A.2 Electron transitions in the perturbed harmonic poten-
tial

The matrix element |〈f0|x|i0〉|2 can be calculated if the states |i0〉 are known explicitly.
For an electron in an harmonic oscillator the different eigenstates Ψn(x) are proportional
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to the Hermite polynomials Hn(ξ) [38]:

Ψn(x) =

(
meω0

π~22n(n!)2

)1/4

exp (−meω0

2~
x2)Hn

[√
meω0

~
x

]
(A.7)

The Hermite polynomials preserve the orthogonality for the different eigenstates. The
following recursion relations apply to the Hermite polynomials [38]:

2yHn(y)− 2nHn−1(y) = Hn+1(y)∫ ∞
−∞

Hn(y)H ′n(y) exp (−y2)dy =
√
π2nn!δn,n′

(A.8)

〈k|x|n〉 =

∫ ∞
−∞

Hk

(√
meω0

~
x

)
Hn

(√
meω0

~
x

) √meω0
~ x exp

(
−meω0

~ x2
)

√
π2n+kn!k!

dx (A.9)

Using the substitution ∆ =
√

~
meω0

and immediately after that a second substitution

y = x
∆ :

〈k|x|n〉 =

∫ ∞
−∞

Hk

( x
∆

)
Hn

( x
∆

) x exp
(
− x2

∆2

)
√
π∆2n+kn!k!

dx

=
∆√

2n+kπn!k!

∫ ∞
−∞

Hk (y)Hn (y) y exp
(
−y2

)
dy

(A.10)

Using the first relation from equation (A.8), which can also be written as yHn(y) =
1
2 (Hn+1(y) + 2nHn−1(y)):

〈k|x|n〉 =
∆√

2n+kπn!k!

∫ ∞
−∞

Hk (y)
1

2
[Hn+1(y) + 2nHn−1(y)] exp

(
−y2

)
dy (A.11)

From performing the integral with the second (normalization) condition of equation
(A.8):

〈k|x|n〉 =
∆√

2n+kπn!k!

[
1

2

√
π2kk!δk,n+1 + n

√
π2kk!δk,n−1

]
=

∆

2

[√
2(n+ 1)δk,n+1 +

2n√
2n
δk,n−1

]
=

√
~

2meω0

[
δk,n+1

√
n+ 1 + δk,n−1

√
n
]

(A.12)

A.3 Mulser-Bauer theory

The change in kinetic energy is given by
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1
2me

(
~v2(t′)− ~v2(t)

)
= 1

2me∆~v
2 and ∆~v2 becomes:

∆~v2 =2~v2
osc sin2 (ωdt0)− 2~ei · ~voscv0 [sin (ωdt0)− sin (ωdt)]

− 2 ~ef · ~vosc |v0~ei − sin (ωdt0)~vosc|
[
sin (ωdt

′)− sin (ωdt0)
]

+ ~v2
osc

[
sin2 (ωdt

′)− sin2 (ωdt)
]
− 2~v2

osc sin (ωdt
′) sin (ωdt0)

(A.13)

where t is a certain time before the collision at time t0 and t′ is a certain time after
the collision. In the hard-sphere model the electron does not feel any potential force
from the ion before the collision at t0, so the time t < t0 before the collision can be any
time arbitrarily close to t0. By taking the limit t→ t0, equation (A.13) simplifies to:

∆~v2 =2~v2
osc sin2 (ωdt0)− 2 ~ef · ~vosc |v0~ei − sin (ωdt0)~vosc|

[
sin (ωdt

′)− sin (ωdt0)
]

+ ~v2
osc

[
sin2 (ωdt

′)− sin2 (ωdt0)
]
− 2~v2

osc sin (ωdt
′) sin (ωdt0)

(A.14)

The direction of reflection ~ef is in an arbitrary direction due to the sin (ωdt0) term in
equation (5.2): t0 can be chosen arbitrarily. Therefore, ∆~v2 needs to be averaged over
one oscillation period of the rf field 2π/ωd:

ω

2π

∫ t0+2π/ω

t0

∆~v2dt0 =~v2
osc − 2 ~ef · ~vosc|v0~ei − sin (ωdt0)~vosc| sin (ωdt

′) + ~v2
osc sin2 (ωdt

′)

+ 2 ~ef · ~vosc|v0~ei − sin (ωdt0)~vosc| sin (ωdt0)− 1

2
~v2
osc = ∆~v2(t′)

(A.15)

where the long bar above the second and fourth term indicates that the time t0 in
these expressions needs to be averaged over one rf cycle.

The time after the collision can be any value t′ > t0, so t′ has to be averaged over
one rf cycle too:

∆~v2(t′) =
ω

2π

∫ t′+2π/ω

t′
∆~v2(t′)dt′ = ~v2

osc + 2 ~ef · ~vosc|v0~ei − sin (ωdt0)~vosc| sin (ωdt0)

(A.16)

For a weak electric field |~vosc| � |~v0| the last term in equation (A.16) can be approx-
imation by a Taylor expansion:

|v0~ei − ~vosc sin (ωdt0)| = v0

{
1− 2

|~vosc|
v0

cos (~ei, ~vosc) sin (ωdt0)

} 1
2

= v0 − |~vosc| cos (~ei, ~vosc) sin (ωdt0)

(A.17)
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where (~ei, ~vosc) is the angle between the incoming electron and the polarization of
the electric field. The substitution of this expression into equation (A.16) results in:

∆~v2 = ~v2
osc + 2 ~ef · ~vosc[v0 − |~vosc| cos (~ei, ~vosc) sin (ωt0)] sin (ωdt0)

= ~v2
osc + 2 ~ef · ~vosc

[
v0 sin (ωdt0)− |~vosc| cos (~ei, ~vosc) sin2 (ωdt0)

]
= ~v2

osc + ~ef · ~vosc |~vosc| cos (~ei, ~vosc)

= ~v2
osc

(A.18)

since the average angle between the electric field and the incoming angle cos (~ei, ~vosc) = 0.
The net energy gain of the electron after the collision equals 1

2me∆~v2 and can be written
as:

1

2
me∆~v2 =

1

2
me~v

2
osc =

(
eE
′
)2

2meω2
d

= 2Up (A.19)

where Up = (eE0)2/(4meω
2
d) is the ponderomotive potential that was briefly men-

tioned in section 4.2.
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