
 Eindhoven University of Technology

MASTER

Atomic Beam Laser-cooled Ion Source : towards sub-nm ion beam milling

ten Haaf, G.

Award date:
2013

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b215d9e0-1211-450e-8e43-7074d0505eda


Atomic Beam Laser-cooled Ion Source:
towards sub-nm ion beam milling

G. ten Haaf

CQT 2013-10

Supervisors:

dr.ir. E.J.D. Vredenbregt
ir. S.H.W. Wouters

Eindhoven University of Technology
Department of Applied Physics
Coherence and Quantum Technology (CQT)



ii



Abstract

This report discusses the performance of the Atomic Beam Laser-cooled Ion Source (ABLIS)
and the progress in its experimental realization. The ABLIS is a new source for focused ion
beams (FIBs), which are tools that are used on a large scale in the semiconductor industry,
to image and modify structures on the smallest possible length scale. In contrast to other
FIB sources such as the Liquid Metal Ion Source (LMIS), the ABLIS is based on the fact
that the ions are created with a very small spread in velocity instead of a very small spread
in position. The main application of an ABLIS-based FIB will be so-called milling in which
material is physically etched at the nanometer length scale.

In the ABLIS setup, a beam of atomic rubidium is created from a Knudsen cell. This
beam is laser-cooled and -compressed, after which it is photo-ionized by means of two intense
lasers. The ions are accelerated immediately to their required energy (mostly 30 keV) and
finally focused to an as small as possible spot by a set of electrostatic lenses. Since the
ionization will take place over a certain region, the energy spread of the ion beam, and thus
also the amount of chromatic aberration of the lens system, will be proportional to the electric
field.

The bottleneck of the setup is disorder-induced heating; ions, created at random initial
positions, heat up due to relaxation of the potential energy associated with these positions.
Investigations in this report show that this effect can be counteracted by applying a large
electric field to quickly reduce the ion density. A relation was found between the minimum
electric field needed to suppress disorder-induced heating and the beam current. This relation
was used to calculate the amount of chromatic aberration of the lens system as a function of
the current. Using this information, an analytical calculation was performed of the possible
spot size of the ABLIS setup. It included its most important contributions, i.e., the brightness
of the beam and spherical and chromatic aberration of a realistic lens system. The result
showed that a spot size of 0.2 nm is possible at a current of 1 pA, compared to the 10 nm spot
size possible with the LMIS. The calculation was verified with particle tracking simulations,
which were in good agreement.

In order to perform laser cooling and compression, a laser is needed which is stable and
can be precisely detuned from the cooling transition in rubidium. Furthermore a repump
beam is needed which is tuned to a different transition. The laser system which matches
these requirements was finalized in the work discussed here. A double pass acousto-optic
modulator configuration was built to detune the laser frequency. Furthermore, an electro-
optic modulator was added to the setup to create the repump beam.

An experimental setup was built in which the effect of laser cooling on the atomic beam can
be tested with laser induced fluorescence (LIF). Simulations of the laser cooling experiment
were performed, which showed it is possible to obtain a measure of the brightness of the
beam directly from the LIF measurements. Furthermore, a simulation of the atoms in the
collimating tube of the Knudsen cell is set up. Its results are in good agreement with earlier
performed measurements and a theoretical model.
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Chapter 1

Introduction

The semiconductor industry has always been driven by Moore’s law. Moore ascertained in
1965 that the number of components on an integrated circuit (IC) had doubled every two year
over a period of seven years and predicted this trend to maintain for at least ten years [1].
His prediction was right and presently his law is still being followed, moreover it is used to set
goals for the future. As a result of these goals, miniaturization is a leading theme in the semi-
conductor industry. The technology node, being the smallest feature size on IC’s, is planned
to be only 14 nm in the near future [2]. As the geometrical dimensions become smaller and
smaller, physical limits will come in sight. To keep up with Moore’s law at that point, 3D IC
structures will be needed in which transistors are stacked vertically as well. Besides minia-
turization, functional diversification also drives the industry [2]. This term encompasses the
incorporation of additional functionalities such as sensors, micro-electromechanical systems
(MEMS) and lab-on-a-chip. All of the processes above ask for tools that are able to image
and modify the IC’s at the nanometer length scale.

Focused ion beams (FIBs) are very suitable to fulfill these tasks. A FIB is an apparatus
capable of producing very intense ion beams with a small beam waist. This enables them to
image as well as modify structures at nanometer length scales. Figure 1.1 shows the three
main application processes of FIBs. Imaging with a FIB works along the same principles as a
scanning electron microscope (SEM). The ion beam is scanned over the surface and secondary
electrons or ions are detected with a multichannel plate detector (MCP). The advantage of a
FIB over a SEM is the much shorter De Broglie wavelength of ions and therefore in the limit
a higher resolution. Milling is the process of sputtering and redepositing material from a
substrate. Due to the high energy of incoming ions, substrate bonds are broken and material
is removed. An other application is ion beam induced deposition, in which a precursor gas is
brought to the vicinity of a surface which is scanned by an ion beam. Only at the illuminated
part of the surface deposition then takes place.

Focused ion beams are used in the semiconductor industry for a wide range of applica-
tions, including direct patterning, photomask repairing, circuit diagnostics, circuit micro-
surgery and failure analysis [3]. Other applications are found in materials science, such as
transmission electron microscope (TEM) specimen preparation [4]. Since the length scale
in all of these applications becomes smaller there will be a strong demand for FIBs with a
higher resolution in the near future.

1.1 FIB figures of merit

Before different sources for FIB instruments are discussed some figures of merit are intro-
duced. The quality of a charged particle beam is usually expressed in terms of the brightness
B and the longitudinal energy spread ∆U . The brightness is defined as the current density
per unit of solid angle. Since the brightness increases with the beam energy U, a more useful
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Chapter 1 Introduction

(a) Imaging (b) Milling (c) Deposition

Figure 1.1 The three main applications of FIB’s: (a) Imaging, (b) Milling, (c) Deposition. The
figure is taken from [5].

figure of merit is the reduced brightness Br which is the brightness per unit of energy. In
terms of beam parameters the reduced brightness can be written as

Br =
I

4π2εxr ε
y
r
, (1.1)

in which I represents the beam current and εxr and εyr are the reduced emittances in the x-
and y-direction respectively. These reduced emittances are defined by

εir =

√
m

2

(
〈i2〉 〈v2

i 〉 − 〈ivi〉
2
)
, (1.2)

in which m is the mass of the ions and 〈...〉 denotes averaging over all particles. For a thermal
source the brightness can also be written as [6]

Br =
eJ

πkbT
, (1.3)

in which e is the elementary charge, J is the current density, kb is Boltzmann’s constant
and T is the transverse source temperature. This equation reveals that both increasing the
current density and decreasing the source temperature lead to a higher brightness.

According to Liouville’s theorem the emittance, thus also the brightness, of a charged
particle beam is a conserved quantity. If a perfect lens, lacking of any aberrations, would be
used, the value of the brightness would determine the minimum achievable spot size together
with the angular spread of the ions. A larger angular spread will lead to a smaller spot size as
can be shown using equations 1.1 and 1.2 (see chapter 3). However, the lens system focusing
the beam will never be perfect and spherical and chromatic aberration will play a role. Both
of these aberrations are smaller for a smaller transverse beam size at the lens. Since this
beam size also determines the angular spread after the lens, there will be an optimum angular
spread leading to the smallest spot size. At what angle this will be, depends among other
influences on the energy spread of the beam, since it determines the amount of chromatic
aberration of the lens. For a chromatic aberration limited beam, in which spherical aberration
is much smaller than chromatic aberration,

d ∝
(
Iσ2

U

Br

) 1
4

, (1.4)

in which d is the smallest achievable spot size and σU is the RMS energy spread. This
equation shows why the brightness and energy spread are indicators for the quality of a
charged particle beam. For a given current, the smallest spot size is reached with a beam
which has an as large as possible brightness and an as small as possible energy spread.
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1.2 Existing ion sources for FIBs

The source most often used in commercial FIB instruments is the Ga+ Liquid Metal Ion
Source (LMIS) [7]. In this type of source the ions are produced from liquid metal which
is present on the tip of a needle. By applying a large electric field between the needle and
an extraction electrode nearby, the liquid metal is shaped into a cone of which the tip can
become as small as a few nm. Due to the extremely high electric field near the tip, field
evaporation and ionization will take place. The atoms in the tip are ionized after which
they are accelerated towards the extraction electrode. The resulting ion beam can then
enter a FIB lens column containing the optics to focus the beam. Because of the extremely
small tip from which the current is extracted, the source current density of a LMIS is of
the order of 10 Acm−2 [8]. In such high current density beams Coulomb interaction will
play an important role in determining the beams reduced brightness and energy spread.
Illustrative for this Coulomb interaction is the fact that the virtual source size of the LMIS is
an order of magnitude larger than its actual size, due to the trajectory displacement induced
by stochastic Coulomb interaction [9]. The reduced brightness of the Ga+ LMIS can be of
the order of 106 A m−2sr−1eV−1, while the RMS energy spread is at least 2.1 eV [10]. The
latter limits the resolution of a LMIS FIB to ≈10 nm [7]. Another disadvantage of the LMIS
is the lack of good alternatives to gallium, which has the unbeatable combination of a high
surface tension and low vapor pressure.

An alternative to the LMIS is the so called Gas Field Ionization Source (GFIS), which has
made great advances in the recent past. The GFIS is similar to the LMIS in the sense that it
is also based on the presence of a very high electric field near the tip of a metal needle. Near
this tip, gas phase atoms are ionized and accelerated away. The emitting part of the tip only
consists of three atoms which increases the brightness profoundly compared to the LMIS.
Currently the GFIS has been successfully constructed using helium [11] and neon [12]. The
brightness is estimated at 2 · 109 Am−2sr−1eV−1, while the energy spread is less than 1 eV
[11]. This makes the GFIS an excellent choice for ion microscopy. The helium ion microscope
is commercially available with a resolution of 0.5 nm [13]. The major disadvantage of the
GFIS compared to other FIB sources is that currently only operation with light ions (helium
and neon) is possible. Light ions do not only have a low sputter yield (number of atoms
sputtered per incident ion), but also induce subsurface damage due to their large penetration
depth [14]. This makes the GFIS an unattractive candidate for milling purposes.

Next to the commercially available GFIS and LMIS FIBs there are some sources which
are being or have been investigated on a lab scale. Jun et al. are currently investigating the
possibility of using a miniaturized gas chamber in combination with an electron gun to create
an ion beam with an estimated reduced brightness of 107 Am−2sr−1eV−1 [15]. This source,
as well as the sources mentioned in the previous paragraphs, achieves its high brightness due
to the fact that the beam is created from a very small source area. An other point of view
will be to create the ions from cold atoms to reduce the temperature of the created ions.
This principle is the basis of the ultracold ion source (UCIS) which has been investigated at
the Coherence and Quantum Technology group of the Eindhoven University of Technology
[16]. Before this source is explained in more detail, some elementary theory of laser cooling
and trapping is treated since it plays an important role.

1.3 Magneto-optical trapping

Magneto-optical trapping is based on the interaction between light and matter. This in-
teraction can take place when the frequency of the light field is very close to an electronic
transition in the atom. In such a transition an electron is excited from a ground state to
an excited state. The interaction is strongest when the difference in energy between the two
states is equal to the energy of a photon of the light field.

3



Chapter 1 Introduction

Table 1.1 A summary of the quantum numbers and their selection rules. σ+/σ− light denotes
right/left handed circularly polarized light

Symbol Selection rule

Principal quantum number n -
Orbital electronic angular momentum L ∆L = 0,±1
Intrinsic electronic angular momentum (spin) S ∆S = 0
Total electronic angular momentum J ∆J = 0,±1
Intrinsic nuclear angular momentum I ∆I = 0
Total atomic angular momentum F ∆F = 0,±1

Magnetic quantum number MF

linearly polarized light:
∆MF = 0
σ+ light: ∆MF = +1
σ− light: ∆MF = −1

Spectroscopic notation and selection rules

A common way of describing the energy levels in an atom is with the so called Russel
Saunders notation, which is given by n2S+1LJ F . In this notation n is the principal quantum
number, which determines the ’orbit’ of the electron around the nucleus. The total orbital
angular momentum of the electrons in the atom is represented by the quantum number
L and the total intrinsic electronic angular momentum (spin) by the quantum number S.
The two electronic angular momenta can couple with eachother, which leads to the total
electronic angular momentum quantum number J that can have values ranging between
|L− S| and |L+ S|. The degeneration of the total electronic angular momentum into these
2S+ 1 states is known as the fine structure of the atom. Finally, the total electronic angular
momentum can couple with the intrinsic angular momentum I of the nucleus of the atom,
which leads to the total angular momentum of the atom, represented by quantum number
F . Just like for the coupling between L and S, F can have values ranging between |J − I|
and |J + I|, which is called the hyperfine structure. The last quantum number introduced
here is the magnetic quantum number MF which is the projection of F along some specified
quantization axis, often along the direction of an applied magnetic field, hence the name.
Due to the quantum mechanical nature of the interaction between light and atoms, certain
rules apply to transitions from one state to another. These selection rules are shown in table
1.1 together with a summary of the quantum numbers to which they apply.

Magneto-optical forces

The force a radiation field can exert upon an atom originates from the fact that a photon
carries a momentum ~k, in which ~ is the reduced Planck’s constant and k is the (magnitude
of the) wave vector of the light. When an atom absorbs a photon, it experiences a momentum
kick ~k in the direction the photon was traveling. When the atom subsequently falls back to
the ground state it emits a photon. Again, it experiences a momentum kick, but this time
in a random direction. When many of such absorptions and spontaneous emissions happen,
the momentum kick due to the random emissions will average out to zero. The momentum
kicks due to absorption will not however, so the radiation field will exert a net force upon
the atom. For a still standing atom, this force Fscatt, also referred to as the scattering force,
is given by [17]

Fscatt = ~k
γ

2

s0

1 + s0 + (2δ/γ)
2 , (1.5)

in which γ is the natural line width of the transition, δ is the detuning of the laser beam
and s0 is the so-called saturation parameter, which is the ratio between the intensity I of the
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1.3 Magneto-optical trapping

Table 1.2 A summary of the most important parameters for laser cooling rubidium, data is taken
from [18]. *The cooling transitions are the 52S1/2 F = 3 → 52P3/2 F = 4 for 85Rb and 52S1/2

F = 2→ 52P3/2 F
′ = 3 for 87Rb. The difference in frequency between the two transitions is 1204.6

MHz.

Parameters [unit] Symbol 85Rb 87Rb

Mass [amu] m 84.91 86.91
Natural abundance [%] - 72.2 27.8
Cooling transition wavelength* [nm] λ 780.2437 780.2462
Natural linewidth of cooling transition [MHz] γ 5.98 5.98
Saturation intensity [W/m2] I0 16.4 16.4

Figure 1.2 A plot of the scattering force of two counter propagating laser beams with a detuning
of γ/2. The dotted lines represent the forces of the individual laser beams.

radiation field and the saturation intensity I0, which is a materials constant. The detuning
is the difference between the laser frequency and the frequency of the atomic transition. A
summary of the most important parameters for laser cooling rubidium, the atom species used
in this research, is given in table 1.2.

When an atom is moving, equation 1.5 is not valid anymore. Due to the velocity v, with
which the atom is moving in the direction of the light field, it will experience a Doppler
shifted frequency. Therefore the detuning in equation 1.5 must be replaced by the Doppler
shifted detuning δ − k · v, so the scattering force becomes dependent on the velocity. Now
imagine two counter propagating lasers that are red detuned (δ <0), which are applied to a
cloud of atoms. When an atom moves in the opposite direction of one of the laser beams,
the Doppler shifted laser frequency can become resonant with the transition (δ − k · v = 0).
This means a force will be exerted upon the atom which is opposed to the direction in which
it was traveling; the atom is decelerated. Figure 1.2 shows a schematic plot of the scattering
force as a function of the velocity. As can be seen it is linear around v = 0. This means
that slow moving atoms are decelerated and kept at v ≈0 m/s; they are cooled down. They
behave as if they are moving in a very viscous medium. The force has a maximum however,
after which it decreases to zero again. This means that fast moving atoms will experience
a small scattering force and therefore only a small deceleration. Unless they will experience
this force for a very long time (t→∞), they will not be cooled down enough.

By adding a constant magnetic gradient and using circularly polarized light, it is possible
to create a position dependent force F in a similar way, i.e., F ∼ −kx, in which x is one of
the transverse position coordinates constant and k is a spring constant. The atoms will then
be forced towards the position where the magnetic field is zero. When this is done in three
dimensions, the atoms will be cooled down and trapped to a small cloud due to the effects
of the applied laser and magnetic field. Hence the name, magneto-optical trapping.

Laser cooling and trapping 85Rb
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n2S+1LJ

52P3/2

52S1/2
2

3

3
2
1

4

F

121 MHz

3036 MHz

Cooling transition

Repump transition

Figure 1.3 The hyperfine structure of the 52S1/2 and 52P3/2 levels in 85Rb. The cooling transition
is indicated in green and the repump transition in blue. One reason the repump transition is needed,
is because of unwanted transitions such as those indicated in red. The repump beam excites the
atoms in the unwanted ground state back to the F = 3 excited state. From here they can fall back
to the preferred F = 3 ground state.

Laser cooling and trapping would be most efficient if a simple two level atom would exist,
i.e., an atom without any hyperfine splitting of the ground and excited state. In that case,
all electrons will either be in the only ground state or in the only excited state. The source
described in this thesis will however be based on laser cooling and trapping of 85Rb, which
has a more complicated energy level structure. The transition used to laser cool and trap
the atoms is the 52S1/2 F = 3 → 52P3/2 F = 4 transition, with a wavelength λ of 780.2437
nm. However, this is not the only possible transition with λ ≈ 780 nm. Figure 1.3 shows
the complete hyperfine structure of the 52S1/2 and 52P3/2 states. As can be seen there
are actually two possible ground states and four possible excited states. The laser is tuned
exactly to the F = 3 → F = 4 transition, this means that an atom in the F = 3 ground
state has the largest possibility to be excited to the F = 4 excited state. There is however
a small but finite chance the atom is excited to the F = 3 or even F = 2 excited state.
According to the selection rule for F (see table 1.1) it can then also decay to the F = 2
ground state. Furthermore, before the laser cooling and trapping starts, the rubidium will be
evenly distributed among all ground states, i.e., all magnetic sub levels of the two hyperfine
levels. The F = 2 ground states are unwanted however since the laser only has a very small
probability of exciting these atoms and thus also a very small probability of cooling them.
Therefore, there is a need to pump the atoms which are in the unwanted F = 2 ground state
to an excited level from which they can decay back to the preferred ground state. This is
done with an additional laser beam, known as the repump beam, which is tuned exactly to
the F = 2→ F = 3 transition as depicted in figure 1.3.

1.4 Cold ion sources

Now we know the basics of laser cooling and trapping we come back to the earlier mentioned
UCIS, which is based on a three dimensional magneto-optical trap (MOT) of rubidium atoms.
Ions are created by means of photo-ionization of the atoms in the MOT. The MOT was placed
in a large electric field, which accelerates the ions away immediately after creation. The UCIS
was capable of producing ion beams with a reduced brightness of 8 · 104 Am−2sr−1eV−1, an

6



1.4 Cold ion sources

Figure 1.4 A schematic view of the ABLIS setup.

energy spread of 0.9 eV and a maximal (time-averaged) current of 13 pA [19]. The limitations
to the current are mainly caused by the loading rate of the 3D MOT. Since the MOT was
created from rubidium atoms in a vapor cell, the only possibility for atoms to get in the
MOT is by diffusion. This diffusion process limits the maximum current to be extracted.
The magneto-optical trap ion source (MOTIS), a source based on a similar concept but using
lithium instead of rubidium, showed that ion beams originating from a MOT could be used
for microscopy. A spot size of 27 nm was possible at a current of 0.7 pA and a beam energy
of 2 keV [20].

The current limitations of the UCIS are due to the loading rate of the 3D MOT. It might
be improved by adding a magneto-optical compressor, which is basically a 2D MOT, to load
the 3D MOT. This increases the loading rate and therefore also the maximal current to be
extracted from the MOT. These measures however increase the complexity of the source
significantly. A simpler configuration was proposed by Mutsaers et al.[21]. By laser cooling
and compressing an atomic beam, created in some other fashion, the limitations caused by
loading of the MOT are eliminated. The idea of this so called Atomic Beam Laser-cooled
Ion Source (ABLIS) is schematically shown in figure 1.4.

An atomic beam is created by using a Knudsen cell which is heated to a certain tem-
perature (typically 100◦C). Due to the low melting point of rubidium a reasonable vapor
pressure is created inside the Knudsen cell, which creates a pressure gradient between the
in- and outside of the cell. This pressure gradient causes the rubidium to effuse into the
vacuum. A tube is connected to the opening of the Knudsen cell, so that off axis atoms are
caught and sent back into the Knudsen cell to a large extent. This is done to increase the
lifetime of the source. The next stage of the setup consists of a magneto-optical compressor,
which is basically a 2D MOT. After this laser cooling and compression stage the brightness
of the atomic beam will be increased significantly. The atoms are then photo-ionized with
a second laser and immediately accelerated in a high electric field. The ions then enter a
post-acceleration stage in which they are further accelerated towards the demanded energy
(often 30 keV). Finally, the ions reach the final element in the beam line, which is the lens
system to focus the ions to an as small as possible spot.

As explained previously the attainable spot size depends on the reduced brightness and
energy spread of the beam. The energy spread of the ABLIS beam will mostly depend on
the RMS width σL of the ionization laser beam and the acceleration field E. A particle that
is created at the front of the ionization region, is created at a larger potential than a particle
that is created at the back of the region, therefore it will attain more energy due to the
acceleration. The energy spread of the ABLIS ion beam can, due to this effect, be written
as

σU = eEσL. (1.6)

Equation 1.6 shows that the energy spread and therefore chromatic aberrations will be smaller
when smaller electric fields are used.
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Chapter 1 Introduction

There is however another process which is influenced by the electric field strength. When
the ions are created from the atomic beam, they are created at random initial positions.
Associated with these random initial positions is a certain amount of potential energy. This
potential energy can be transferred into kinetic energy due to Coulomb interactions, which
leads to higher beam temperatures. When the initial separation between the particles is
larger this process will be less important, since the initial potential energy of the particles
will be lower. Therefore a large electric field will be beneficial to suppress disorder-induced
heating since the ions will be removed from the ionization volume faster. This means there
will be a trade off between chromatic aberration and disorder-induced heating and some
optimum electric field at which the final spot size will be smallest.

Previous work at the CQT group included simulations of the laser cooling and compression
stage and preliminary simulations of the disorder-induced heating showing that a reduced
brightness of 2 · 107 Am−2sr−1eV−1 is possible at currents up till about 20 pA [22]. At
higher currents, disorder-induced heating becomes important, which lowers the brightness.
Concerning the laser system for the laser cooling and compression, a Titanium:Sapphire laser
was proposed, stabilized with so called modulation transfer (MT) spectroscopy. Detuning of
the laser system could be achieved by using two acousto optical modulators (AOMs), but
was not yet realized. Furthermore, a Knudsen cell has been constructed which was capable
of creating a usable flux of 2 · 1010 s−1, which is the flux within the range of velocities that
can be captured with laser cooling and compression[23].

1.5 This thesis

The first part of this thesis is dedicated to further investigations of the performance limits
of the ABLIS setup. First of all disorder-induced heating is investigated in chapter 2. An
analytical model explaining the effects in certain parameter regimes is created and parti-
cle tracking simulations are performed to study the effects in more detail. It will lead to
constraints with regard to the electric field to suppress disorder-induced heating.

Since the effect of the electric field on the disorder-induced heating is then known, we can
combine this knowledge with theory about chromatic aberration to find an optimum electric
field, which eventually leads to the smallest spot size. In order to get a realistic value of this
spot size all contributions to the spot size are taken into account, i.e., the brightness of the
beam and chromatic and spherical aberration of the lens column that will be used in the
future.

The third chapter of this thesis describes experimental work that has been performed to
extend the laser system. A new method is described which can be used to accurately set the
detuning. Furthermore, the repump beam is added to the setup by making use of a so called
electro-optic modulator (EOM). This will finalize the laser system so that laser cooling and
trapping experiments can be performed in the future.

The fourth chapter will describe the experimental setup that has been built in the lab
in order to perform laser cooling experiments. Simulations are performed of the collimating
tube of the Knudsen cell and the laser cooling and compression stage, to test whether the
laser cooling of the beam will be visible with laser induced fluorescence (LIF) measurements.
The simulations of the tube are furthermore used to better understand some measurements
that have been performed in previous work.
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Chapter 2

Statistical Coulomb interaction
in charged particle beams

This chapter deals with statistical Coulomb interactions in the ABLIS setup. These inter-
actions are a fundamental bottleneck which limits the spot size of a focused ion beam. The
chapter is separated in a theoretical part, describing the effects in an analytical manner and
a numerical part in which the results of particle tracing simulations are discussed. These
simulations are performed to check the validity of the analytical theory and to investigate
the effects in regimes for which it is known that the theory is not valid.

2.1 Theory

2.1.1 Introduction

Coulomb forces between the charged particles can be divided in two separate effects: the
space charge effect and statistical effects. Understanding the difference between these two
is key to understanding the problems of Coulomb interactions in a focused ion beam. The
space charge effect takes into account the smoothed out average force of all particles, while
the statistical part takes into account all granularity effects.

The smoothed-out space charge force that an off-axis particle experiences, accelerates
this particle away from the axis. The magnitude of this acceleration is proportional to the
transverse position of the particle. This proportionality creates a correlation between the
transverse velocities and positions. Such a correlation can however be undone with a positive
lens [24], in which the focusing force is also proportional to the transverse position. Therefore
the space charge effect does not change the brightness of the beam. The effect of space charge
acceleration is illustrated in a phase space plot in figure 2.1.

Statistical Coulomb effects can be subdivided in two categories: relaxation of kinetic en-
ergy and relaxation of potential energy. Relaxation of kinetic energy can happen when the
velocity distribution of the beam is anisotropic, i.e., when the temperature in one direction is
different from the temperature in other directions. When this happens the energy present in
the random motion in one direction can be transferred to the other directions due to Coulomb
collisions. An anisotropic velocity distribution can be caused for instance by acceleration of
the particles. As will be explained in section 2.2.3, acceleration decreases the temperature
in the longitudinal direction. Therefore the kinetic energy present in the ‘hotter’ transverse
direction will be transferred to the ‘colder’ longitudinal direction, which increases the longi-
tudinal energy spread. This is known as the Boersch effect [25]. However, in the ABLIS setup
the conditions are different since the ion beam will be created from a laser cooled atom beam
so that the transverse temperature will only be a few hundred µK. The longitudinal energy
spread will be significant however and the finite size of the ionization laser beam will further
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Figure 2.1 Schematic overview of the different processes happening in phase space. Left: the initial
phase space volume of the beam. Middle: the phase space volume after space charge acceleration
(indicated in green) and disorder-induced heating(indicated in red) have taken place, the phase space
volume of the beam has become larger, i.e. the brightness of the beam has decreased. Right: the
phase space volume after expansion of the beam (indicated in green), which cools the beam down
(indicated in blue), while the brightness remains constant.

increase it as was explained with equation 1.6. Therefore the transverse temperature will be
much smaller then the longitudinal temperature and the opposite of the Boersch effect can
occur: a transition of the kinetic energy from the longitudinal to the transverse direction.
Since the acceleration decreases the longitudinal temperature, this effect will however be very
minor as will be shown in section 2.2.4.

The other statistical Coulomb effect is relaxation of potential energy, also known as
disorder-induced heating. In the ABLIS setup, the ions are created by photo-ionization
of an atom beam. Therefore they are created at random initial positions, so the Coulomb
interaction forces associated with these positions will also point in random directions and will
have random magnitudes. In other words, a certain amount of potential energy is created
which will relax into thermal kinetic energy. As shown in figure 2.1, disorder-induced heating
will decrease the phase space density of the beam. The ion density in the ABLIS ion beam
will be very high. Therefore the effect of disorder-induced heating will be severely limiting
the brightness, especially at higher currents [21]. At low currents the beam will be in the so
called pencil beam regime. In this regime the transverse size of the beam is much smaller than
the average longitudinal separation between ions in the beam. Therefore all interaction forces
will more or less be pointing in the longitudinal direction and the transverse temperature of
the beam will be unaffected. The other extreme case is when the beam is in the extended
regime (at high currents) in which the transverse size of the beam is much larger than the
longitudinal separation. The two regimes are discussed more thoroughly in section 2.2.2.

The first two effects shown in figure 2.1 are already mentioned. The third process shown,
is the expansion of the ion beam and the cooling associated with this expansion. The positions
of the particles become correlated to the velocities. Since the spread in positions becomes
larger and the phase space density remains constant according Liouville’s theorem, the local
spread in velocities will become smaller, i.e., the beam cools down. However, the brigtness
of the beam is not affected in this process.

One of the goals of this research is to find a model which describes the statistical Coulomb
effects in the ion beam accurately, especially the dependency of the velocity distribution of the
ions on experimental parameters such as the electric field strength and the current density.
In order to do so, models which have been used in the past for the same purpose, are tested
for their applicability to the ABLIS setup.

Fokker Planck approach

A method which has proven to be successful in describing statistical Coulomb effects in
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2.1 Theory

the past is the so called Fokker Planck approach [26]. The Fokker Planck approach has its
origin in the field of plasma physics and treats the statistical effects as a diffusion process
in velocity space. In general the evolution of the distribution function f(r,v, t) of a particle
beam, which is basically a very specific type of non-neutral plasma, can be described with
the Boltzmann equation [27]

df

dt
=
∂f

∂t
+ v · ∇f + a · ∇vf =

(
δf

δt

)
coll

, (2.1)

in which ∇v is a gradient operator in terms of the velocity components instead of position

components. The collisional term
(
δf
δt

)
coll

takes into account all effects due to collisions

between particles. In the Fokker Planck approach this term is calculated as(
δf

δt

)
coll

= β∇v · vf +D∇2
vf. (2.2)

in which the coefficients β and D are the coefficient of dynamical friction and the diffusion
constant, which can be expressed in terms of macroscopic parameters [28]. This specific
collision term is only valid under a strict assumption. At the moment two ions collide
they experience an intense but short acceleration, in other words they undergo a velocity
jump. Equation 2.2 is only valid provided that these velocity jumps are small compared to
the thermal velocity spread. This condition is met if the so called Coulomb logarithm is
much larger than one [28]. For non-neutralized systems such as an ion beam, the Coulomb
logarithm can be expressed as

ΛC ≈ ln

(
3
2kbT
e2

4πε0
n

1
3

)
, (2.3)

in which 3
2kbT can be recognized as the average random kinetic energy and e2

4πε0
n

1
3 as the av-

erage potential energy. For the Coulomb logarithm to be larger than one, the random kinetic
energy must be much larger than the potential energy. In normal plasmas this condition can
be met easily. In the ABLIS setup however, the ion beam is created from a laser cooled atom
beam, meaning that the temperature is very low and thus the Coulomb logarithm smaller
than one. Therefore the Fokker Planck approach is not suited to describe the statistical
Coulomb effects in the ABLIS setup. One can conclude that the Coulomb collisions in the
ABLIS setup are incomplete and strong, while the Fokker Planck approach is designed to
describe the collisional effects for the case of complete and weak collisions. In other words it
is suited to describe relaxation of kinetic energy, but not to describe relaxation of potential
energy.

Ultracold plasmas

Disorder-induced heating has been investigated a lot in the context of ultracold plasmas
[29]. In such systems thermalisation will lead to kinetic energies kbTi of the order of the
initial potential energy,

kbTi ≈
e2

4πε0a
, (2.4)

in which a represents the Wigner Seitz radius which is given by

a =

(
3

4πn

) 1
3

. (2.5)

The final temperature Ti is reached on a time scale of the order of the inverse plasma frequency
ω−1
p , given by

ω−1
p =

√
mε0
ne2

. (2.6)
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Generally spoken, an ultracold plasma is created in the ABLIS setup. However, the ions
and electrons are accelerated out of the ultracold plasma immediately after creation. This
acceleration lowers the ion density in the beam. The disordered induced heating process is
therefore slowed down and the equilibrium temperature will be lower. The equations above
do not give a good description of this acceleration process, but they can be used to estimate
the temperature to which the plasma would heat up and the time scale at which this would
happen if no acceleration would take place. To calculate these values the initial ion density
in the ABLIS setup is needed which is given by

n =
φ

va
, (2.7)

in which φ represents the flux density reached after the cooling and compression stage and
va is the longitudinal velocity of the atoms. Typical values of these quantities are φ = 5 ·1019

m−2s−1 and va = 314 ms−1, leading to a density of 1.6 · 1017 m−3. Using this value for the
density in equations 2.4-2.6 leads to an equilibrium ion temperature of 15 K, which is reached
in 18 ns, compared to the sub mK temperatures reached after the laser cooling. These values
indicate the necessity of accelerating the ions immediately. Ionizing the atoms outside the
acceleration stage to prevent a large energy spread is not possible since disorder-induced
heating heats up the ion beam too fast.

In the remainder of this theoretical part, an attempt is made to find equations which
analytically describe the disorder-induced heating process. The basis of the solution to this
problem is found in the extended two particle approximation, by Jansen et al. [30], which
is extensively discussed in sections 2.1.2 and 2.1.3. In the following section general aspects
of the so called Holtsmark distribution are described, since it plays an important role in
the theory. In sections 2.1.5 and 2.1.6 the extended two particle model is applied to the
ABLIS setup and equations are found which describe the evolution of the transverse velocity
distribution accurately, but under a few assumptions.

2.1.2 The extended two-particle approximation

Since charged particles interact with each other, their trajectories in six dimensional phase
space will undergo changes in the course of time with respect to their unperturbed trajecto-
ries. The probability that a particle will undergo such a change, referred to as a displacement
from now on, is determined by the so called displacement distribution. This section deals
with the mathematical framework of the calculation of this displacement distribution as was
described by Van Leeuwen and Jansen [30] and more elaborately in Jansen’s PhD-thesis [28].

In general the problem of finding the displacement distribution can be split up in a
dynamical and a statistical part [24]. The dynamical part is to calculate the displacement
∆η induced to the trajectory of a test particle by a certain environment of field particles and
the statistical part is to calculate the probability that such an environment occurs.

The coordinates ξ = (x, y, z, vx, vy, vz) of the field particles are measured with respect to
the coordinates of the test particle. In other words, the coordinate system is traveling along
with the test particle. This means the position of the origin z (t) of this moving coordinate
system is a function of time t given by

z(t) =
eEa
2m

t2 + vat, (2.8)

in which Ea is the electric field strength in the acceleration stage and va is the velocity of
the test particle before entering the acceleration stage. Equation 2.8 can be solved for the
time as a function of the position, leading to

t(z) =
m

eEa

(√
v2
a +

2eEaz

m
− va

)
. (2.9)
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In a beam consisting of N particles the test particle will interact with N -1 field particles.
Therefore the displacement of the test particle is in general a function of all 6(N -1) coordi-
nates ξ1...ξN−1 of the field particles. In general the displacement can be written in terms of
an integral over time. The velocity displacement ∆v can for example be written as

∆v (t) =

∫ t

0

1

m
F
(
ξ1 (t′) ...ξN−1 (t′)

)
dt′, (2.10)

in which F
(
ξ1 (t) ...ξN−1 (t)

)
is the force acting on the particle at time t and m is the

particle’s mass. Solving the dynamical part of the problem is a very complicated task since
the force acting on the particles on a certain time t is determined by the relative coordinates
at that time. However these relative coordinates are influenced by the force acting on the
particles prior to that time t. Due to this coupling of the force and the coordinates, simplifying
approximations have to be made in order to solve the problem. One of these approximations
is the first order perturbation approximation, which is the subject of sections 2.1.5 and 2.1.6.

The other part of the problem is the statistical part of finding the probability P
(
ξ1...ξN−1

)
that the particles are in the configuration ξ1...ξN−1 at t=0. From this probability the dis-
placement distribution ρ (∆η) can be calculated with

ρ (∆η) =

∫
P
(
ξ1...ξN−1

)
δ
(
∆η −∆η

(
ξ1...ξN−1

))
dξ1...dξN−1, (2.11)

in which δ (x) is the n dimensional delta-Dirac function, with n the dimension of ∆η.

In order to find ρ, another simplifying approximation has to be used, namely that the
particles can be treated as independent statistical quantities. The probability P

(
ξ1...ξN−1

)
can then be written as

P
(
ξ1...ξN−1

)
=

N−1∏
i=1

P2 (ξi) , (2.12)

in which P2 (ξi) denotes the probability that the ith field particle has coordinates ξi. This
assumption implies that no correlations exist between the coordinates of different particles,
which is not true in general. Correlations can be divided in correlations caused by the
source and correlations due to screening effects. In the ABLIS setup, ions are produced by
photo-ionization of an atom beam. Since atoms only weakly interact with each other, it is
reasonable to assume that no correlations are present between the coordinates of individual
ions due to the source. Secondly, the goal of this research is to study the heating of the beam
immediately after ionization. Therefore the ions have no time to re-arrange themselves, so
it is a valid assumptions that no correlations exist between the ion positions at all, i.e., also
screening effects do not play a role.

Equation 2.12 gives an expression for the N particle probability in terms of the two
particle probabilities. An expression for the N particle displacement in terms of the two
particle displacements can be found by making use of the fact that the force on the particle
is equal to the sum of the individual forces. Therefore the displacement of the particle can
be written as the sum of the two particle displacements ∆η2,

∆η
(
ξ1...ξN−1

)
=

N−1∑
i=1

∆η2 (ξi) . (2.13)

When equations 2.11-2.13 are now combined, a new expression for the displacement distri-
bution can be found. After a few calculus operations [28], this results in

ρ (∆η) =
1

(2π)
n

∫
eik·∆η−λp(k)dk, (2.14)
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in which λ is the linear particle density and k is an n-dimensional vector which is introduced
due to the fact that the Dirac-delta function in equation 2.11 can be written as

δ (x) =
1

(2π)
n

∫
eik·xdk. (2.15)

The function p (k) in equation 2.14 is given by

p (k) = L

∫
P2 (ξ)

(
1− e−ik·∆η2(ξ)

)
dξ, (2.16)

in which L represents the length of the beam segment under consideration. This L has entered
the analysis on the basis of normalization arguments.

The last step is to introduce the two particle displacement distribution ρ2 (∆η), which
gives the probability that a displacement ∆η is caused when the beam would only contain a
single field particle. The two particle distribution function is given by

ρ2 (∆η) =

∫
P2 (ξ) δ (∆η −∆η2 (ξ)) dξ. (2.17)

Finally, the function p (k) can be written in terms of ρ2 (∆η), by making use of the properties
of the Dirac-delta function, resulting in

p (k) = L

∫
ρ2 (∆η)

(
1− e−ik·∆η

)
d∆η. (2.18)

Equations 2.14, 2.17 and 2.18, derived along the lines of [28], are the main result of
this section. The convenience of these formulas is that simple two particle statistics and
dynamics can be used to find the displacement distribution of the N -particle problem. The
first step is to calculate the two particle displacement distribution with equation 2.17. Next,
the N -particle displacement distribution can be calculated with the aid of equations 2.14 and
2.18.

2.1.3 Force distribution in an infinitely large cloud of charged par-
ticles

The analysis in section 2.1.2 was done in terms of the displacement of the test particle.
However, all the reasoning is also valid for the force F acting on the test particle. Therefore,
by replacing ∆η with F in equations 2.14, 2.17 and 2.18, a scheme is obtained for finding the
force distribution. To make this job a little easier, two more assumptions are made: the beam
is assumed to be uniformly distributed with a density n and the beam diameter is assumed
to be infinitely large and equal to the length L of the beam line, which is thus also assumed
to be infinitely long. With these assumptions the beam can be considered as an infinitely
large spherical cloud of particles. For the calculation in this section again the reasoning of
[28] is used.

The first step in finding the force distribution ρ (F ) is to write equations 2.14, 2.17 and
2.18 in spherical coordinates. Since spherical symmetry is present it is possible to solely
describe the force distribution in terms of the magnitude F . Equation 2.17 now changes to

ρ2 (F ) = 4πF 2ρ2 (F ) =

∫
P2 (ξ) δ (F − F2 (ξ)) dξ, (2.19)

in which ρ2 (F ) dF denotes the probability that a force with a magnitude between F and
F + dF is experienced by the test particle in the case that only a single field particle is
present in the beam and δ (x) is the one dimensional delta function. Making use of the first
equality in equation 2.19, equation 2.18 can be written as

p (k) = L

∫ ∞
0

∫ 2π

0

∫ π

0

ρ2 (F )

4πF 2

(
1− e−ikF cos(φ)

)
sin (φ)F 2dφdθdF. (2.20)
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Solving the angular integrals leads to

p (k) = L

∫ ∞
0

ρ2 (F )

(
1− sin (kF )

kF

)
dF. (2.21)

Finally, equation 2.14 can be transformed to

ρ (F ) = 4πF 2ρ (F )

=
F 2

2π2

∫ ∞
0

∫ 2π

0

∫ π

0

eikF cos(φ)−λp(k)sin (φ) k2dφdθdk

=
2F

π

∫ ∞
0

e−λp(k)sin (kF ) kdk.

(2.22)

The next step is to apply equations 2.19, 2.21 and 2.22 to the uniform cloud of particles.
Since the density in the cloud is uniform, the two particle probability is constant and given
by

P2 (ξ) =
3

4πL3
. (2.23)

The two particle force distribution function is now found by substituting this expression in
equation 2.19, resulting in

ρ2 (F ) =

∫ ∞
0

3

4πL3
δ

(
F − C0

r2

)
4πr2dr, (2.24)

in which C0 = e2

4πε0
, with ε0 the vacuum permittivity. This integral is solved by making the

substitution x = C0

r2 , which leads to

ρ2 (F ) =

∫ ∞
0

3C0

xL3
δ (F − x)

√
C0

4x3
dx

=
3C

3
2
0

2L3F
5
2

.

(2.25)

This two particle force distribution is substituted in equation 2.21. The resulting integral
can be solved with integration by parts, which leads to

λp (k) =
λ
(
8πC3

0

) 1
2 k

3
2

5L2
. (2.26)

The expression in equation 2.26 does not become zero for L → ∞, since λ ∝ L2 for
L→∞. This can be understood by considering the total number of particles N in the beam,
which is for L→∞ equal to

N = λL =
4

3
πL3n, (2.27)

therefore
λ

L2
=

4

3
πn. (2.28)

Combining equations 2.26 and 2.28 leads to

λp (k) = (Fnk)
3
2 , (2.29)

where Fn is the so called normalized field strength which is given by

Fn =

(
4n

15

) 2
3

2πC0. (2.30)

15



Chapter 2 Statistical Coulomb interaction in charged particle beams

Finally, substitution of 2.29 in equation 2.22 leads to the desired force distribution function,
which is given by

ρ (F ) =
2F

π

∫ ∞
0

e−(Fnk)
3
2 sin (kF ) kdk. (2.31)

The distribution of equation 2.31 is a so called Holtsmark distribution, named after the
first person to derive it. Characteristic for the Holtsmark distribution is the 3

2 power depen-
dency. The value of Fn determines the width of the distribution.

2.1.4 General aspects of the Holtsmark distribution

Equation 2.31 shows that the force acting on a particle in an infinitely large cloud of charged
particles is distributed according to a Holtsmark distribution. The Holtsmark distribution is
a specific type of the more general symmetric stable distributions ρ (x) which can be written
as [31]

ρ (x) =
1

2π

∫ ∞
−∞

φ (k) e−ikxdk (2.32)

in which φ (k) is the so called characteristic function, defined as

φ (k) = e
ikµ−

∣∣∣ σ√
2
k
∣∣∣α

(2.33)

with µ the average of the quantity x, σ a parameter related to the width of the distribution
and α a parameter defining the shape of the distribution. Comparison of these equations
with equation 2.31 shows that for the Holtsmark distribution α = 3

2 .
For the Holtsmark distribution, the integral defined by equations 2.32 and 2.33 does not

lead to a simple analytic function. However, for α = 2 the probability distribution can be
written in a very simple form. Since the Fourier transform of a product of two functions
can be written as a convolution of the Fourier transforms of the individual functions [32],
equation 2.32 leads to

ρα=2 (x) =
1

(2π)
2

(∫ ∞
−∞

e−ik(x−µ)dk ∗
∫ ∞
−∞

e−ikx−
σ2k2

2 dk

)
(x)

=
1

(2π)
2

(
2πδ (µ− x) ∗

√
2π

σ2
e−

x2

2σ2

)
(x)

=
1√
2πσ

e−
(x−µ)2

2σ2 ,

(2.34)

in which ∗ denotes a convolution.
The result of equation 2.34 is the well known Gaussian distribution. Figure 2.2 shows

the difference between the Gaussian distribution and the Holtsmark distribution. The most
pronounced difference between the two is the long tail of the Holtsmark distribution compared
to the Gaussian. This tail is also the reason that the variance

〈
x2
〉
− 〈x〉2 of the Holtsmark

distribution does not exist, i.e., the integral
∫∞
−∞ x2ρ (x) dx diverges for α < 2. Therefore

there is no such thing as an RMS width of the Holtsmark distribution and other measures have
to be used to specify its width, for example the parameter σ, the full width at half maximum
(FWHM) or the full width of the 50 percent closest to the center of the distribution (d50).
Another possibility is to define the variance of part of the distribution, for example of a
certain percentage closest to the center of the distribution.

As was shown in the previous sections the force distribution in the extended beam regime
is a Holtsmark distribution. Analytical and numerical calculations of other regimes were
done by Jansen et al. [28], who showed that p (k) can often be approximated by

λp (k) = Akγ , (2.35)

in which A is determined by experimental parameters. For γ = 3
2 this again leads to the

Holtsmark distribution. For other values of γ it leads to other types of stable distributions.
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Figure 2.2 One dimensional Gaussian and Holtsmark distribution with the same scale parameter
σ.

2.1.5 Force evolution upon acceleration

Section 2.1.2 and 2.1.3 described the most important equations of the extended two particle
model. These equations have never been successfully applied to describe the evolution of
the velocity distribution in a charged particle beam which undergoes an acceleration. This
section will describe the steps to go from the force distribution of section 2.1.3 to the time
dependent average transverse force. In order to do so several assumptions have to be made,
which are introduced first.

In section 2.1.3 the distribution of the force acting on one of the particles in a charged
particle beam was derived under the assumption of an infinitely large beam. In reality of
course no such beam exists, but for beams with a large beam radius compared to the inter
particle distance the error made in this approximation becomes very small. Therefore the
force distribution from section 2.1.3 is valid for beams in the extended regime. As will be
shown in section 2.2.2, the beam is in the extended regime for currents &10 nA and larger.
One can say that, for such beams, the statistical part of the problem is solved. The next step
is to solve the dynamical part.

Due to the electric field in the ionization stage the particles are accelerated. This accel-
eration lowers the linear particle density, i.e., the separation between the particles becomes
larger. Therefore the interaction force becomes smaller, but also its direction changes. The
longitudinal separation becomes larger, but the transverse separation stays the same, so the
direction of the interaction force changes towards the longitudinal direction.

The dynamical part of the problem is the calculation of the force evolution under the
influence of acceleration of all individual particles. The way to solve the problem was actually
already layed out by equations 2.14, 2.17 and 2.18. This process starts with calculating the
value of ∆η2(ξ), substituting it in equation 2.17 and solving the resulting integral. It is
however very hard, if not impossible, to solve this integral analytically, let alone solving the
integrals in 2.18 and 2.14. Therefore another method has to be found to solve the problem.
The method described in this section is based on the approximation that the evolution of the
interaction force may be treated as if it was produced by only a single field particle. Strictly
spoken this approach is incorrect, but intuitively one expects that the many particle force
evolution will not be very different from the single particle force evolution. As will be shown
later when comparing the theoretical results with particle tracing simulations, this is indeed
the case.
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In the ABLIS setup, ions are produced by photo-ionization of a laser cooled atom beam.
For the evaluation of the force evolution the assumption is made that the ionization of the
test particle and its surrounding field particles take place simultaneously at time t = 0. Under
this assumption the force exerted on the test particle at t = 0 is distributed according to the
Holtsmark distribution of equation 2.31. From this moment forward the force acting on the
test particle is correlated to the force at t = 0.

As mentioned earlier in section 2.1.2, the problem of finding the evolution of the force
acting on the test particle is very complicated. The force depends on the positions of the
field particles, but these positions depend on the force. When the heating of the particles
however takes place in a very small time span, one may assume the interaction force does
not change the position of the particles. In the ABLIS setup this first order perturbation
model will be valid on approximately the first 1-10 mm of the acceleration. In the rest of this
theoretical part this approximation is used, so the results will only be valid for the first 1-10
mm of the setup. In the simulation section of this chapter it will be investigated whether
disorder-induced heating also plays a role in the remainder of the beam line.

Now that all approximation are laid out, the actual calculation can start. Assume a force
with magnitude F0 is acting on the test particle at t = 0. The virtual field particle from
which this force is originating, lies on a sphere with a radius ρ0 given by

ρ0 =

√
C0

F0
. (2.36)

Now suppose the position vector ρ0 makes an angle θ0 with the z-direction, see figure 2.3.
Then the initial longitudinal coordinate z0, and initial transverse coordinate r0 are given by

r0 = ρ0sinθ0,

z0 = ρ0cosθ0.
(2.37)

When time evolves the transverse coordinate remains constant, but the longitudinal coordi-
nate will grow. Assume for now that the longitudinal coordinate z is given by

z = f(t)z0, (2.38)

in which f(t) is a function of time, which takes into account the acceleration process. The
distance between the field and test particle can now be written as

ρ(t) =

√
(f(t)z0)

2
+ r2

0. (2.39)

Using equations 2.36, 2.37 and 2.39, an equation for the transverse part of the time dependent
interaction force can be derived,

Fr(t) = sinθ(t)
C0

ρ(t)2

=
C0r0

ρ(t)3

=
C0ρ0sinθ0(

f(t)2ρ2
0cos2θ0 + ρ2

0sin2θ0

) 3
2

= F0
sinθ0(

f(t)2cos2θ0 + sin2θ0

) 3
2

.

(2.40)

Equation 2.40 shows the time evolution of the transverse component of the interaction
force. This evolution is different for forces with different initial directions. To relate the

18



2.1 Theory
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Figure 2.3 Illustration of the initial coordinates and the evolution of the coordinates. The radial
part of the position vector stays the same, but by accelerating the particles, the longitudinal part of
the position vector grows, thereby changing the magnitude as well as the direction of the force.

size of the initial force to the average transverse velocity displacement this force causes, one
has to average over all possible initial directions. The average transverse force component is
given by

Fr,avg =
F0

4π
2

∫ 2π

0

∫ π
2

0

sin2θ0(
f(t)2cos2θ0 + sin2θ0

) 3
2

dθ0dφ0. (2.41)

Before the integral in equation 2.41 can be evaluated, the function f(t) has to be found
which specifies the ratio of the distance between the test and field particle at time t and this
distance at t = 0. To find this distance one cannot assume that the test and field particle are
ionized simultaneously since they will then experience exactly the same acceleration and the
distance between the particles will remain the same. Therefore the real ionization process has
to be taken into account, in which one particle is ionized earlier than the other. In contrast
to the preceding calculations, the analysis of f(t) is done in the lab frame instead in the
moving frame. Assume the second particle is ionized as the first particle is at a position z0.
Since the first particle is already accelerated over a distance z0 its velocity v1,0 is

v1,0 =

√
v2
a +

2eEaz0

m
, (2.42)

in which Ea is the accelerator electric field strength and va is the velocity of both particles
before they are ionized. Therefore the positions z1(t) and z2(t) of the two particles are

z1(t) =
eEa
2m

t2 +

√
v2
a +

2eEaz0

m
t+ z0

z2(t) =
eEa
2m

t2 + vat

(2.43)

and the function f(t) can be written as

f(t) =
z1(t)− z2(t)

z0
= 1 +

(√
v2
a + 2eEaz0

m − va
)
t

z0
. (2.44)

As can be seen f(t) is a linear function of time with a slope which is dependent on the initial
separation z0. This dependence is very unpractical for further evaluation of the problem,
since it makes equation 2.41 very difficult to solve. Therefore an approximation for f(t) is
needed which is independent of z0. For very small values of z0, f(t) can be approximated by

f(t) ≡ z(t)

z0
≈ 1 +

eEat

mva
. (2.45)
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Figure 2.4 Plots of f(t) (equation 2.44) for different values of z0 together with a plot of the first
order approximation of f(t) for small z0 (equation 2.44)

Figure 2.4 shows a plot of equation 2.45 together with plots of equation 2.44 for different
values of z0. It can be seen that for z0 < 10−8 m the approximation is good. In the ABLIS
setup z0 will however be of the order of micrometers and a better approximation is given by

f(t) ≈ 1 +
peEat

mva
, (2.46)

in which p is a factor between 0 and 1, which is found by comparison with particle tracing
simulations. As will be shown in the second part of this chapter this approximation leads to
satisfactory results within the investigated range of electric fields and fluxes.

Now that an expression for f(t) is found, the integral of equation 2.41 can be evaluated,
leading to a large and unpleasant expression containing elliptic integrals, which is not shown
here. However, an approximation of this solution is

Fr,avg =
1.15mvaF0

(peEat+ 2mva)
, (2.47)

which is the main result of this section.

To check the validity of equation 2.47, the integral in equation 2.41 is solved numerically
using the unsimplified f(t) from equation 2.44. Figure 2.5 shows a comparison of this numer-
ical solution with the approximation given by equation 2.47. For the numerical solution an
F0 of 1

4πε0a20
is used, in which a0 is the Wigner Seitz radius. It can be concluded that the two

are different, but the difference is small for t < 10−8 s, which is also the regime in which the
first order approximation is valid. In figure 2.5 the value of p in the approximated solution
is the value found by comparison with particle tracking simulations (see section 2.2.3).

2.1.6 Transverse velocity distribution

The transverse velocity distribution can be found by relating the average transverse velocity
vr to the magnitude of the initial force F0. The transverse velocity distribution can then
be found with a coordinate transform of the force distribution given by equation 2.31. The
relation between vr and F0 is found by integrating the transverse acceleration over time,
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Figure 2.5 A plot of the numerical solution of equation 2.41 (solid curve) and an approximation of
this solution (dashed curve), given by equation 2.47.

using equation 2.47,

vr =

∫ t

0

Fr,avg(t
′)

m
dt′

=
1.15vaF0

peEa
ln

(
1 +

peEat

2mva

)
= g(t)F0

(2.48)

Now the relation between vr and F0 is known, the transverse velocity distribution can be
calculated from equation 2.31. This is done by doing the coordinate transform from F0 to vr
as defined by equation 2.48. This transform results in

ρ(vr) =
dF

dvr
ρ(F0(vr))

=
2vr

π (g(t))
2

∫ ∞
0

e−(Fnk)
3
2 sin

(
k
vr
g(t)

)
kdk

. (2.49)

This equation reveals the the transverse velocity distribution, however one more step is needed
to recognize the shape of the distribution. This step is the coordinate transform k = g(t)k′,
which leads to

ρ(vr) =
2vr
π

∫ ∞
0

e−(Fng(t)k′)
3
2

sin (k′vr) k
′dk′. (2.50)

A comparison of this equation with equation 2.32 shows that ρ(vr) is a Holtsmark distribution
with scale parameter σ(t) given by

σ(t) = 1.15

(
2vaφ

2

225

) 1
3 eln

(
1 + peEat

2mva

)
pEaε0

, (2.51)

in which the value of Fn of equation 2.30 is filled in and the initial density of equation 2.7 is
used. This scale parameter can be written in terms of the longitudinal position z instead of
the time with equation 2.9, resulting in

σ(z) =
1.15 · 2 1

3 ev
1
3
a φ

2
3 ln
(

1 + p
2

(√
1 + 2eEaz

v2am
− 1
))

15
2
3 pEaε0

. (2.52)
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Figure 2.6 A plot of equation 2.52 as a function of the initial longitudinal velocity for Ea = 3
MV/m, φ = 5 · 1019 m−2s−1 and z=1 cm.

Equation 2.52 gives a direct relation between the transverse velocity distribution width
(related to the transverse beam temperature) in the acceleration stage and the experimental
parameters for large beam currents, i.e., I &10nA. The dependence on the electric field
strength is clear: a larger electric field causes the transverse interaction forces to decay faster,
which leads to a narrower transverse velocity distribution. The effect of the flux density can
also be understood easily. A larger flux density means that the atoms are closer together at
the moment they are ionized. Therefore the initial interaction forces will be larger, so the
temperature will be larger as well.

The dependence on the initial longitudinal velocity va, which is determined by the tem-
perature of the Knudsen cell and the laser cooling process, is harder to understand. Figure 2.6
shows this dependence for typical values of the other parameters. As can be seen σ is larger
for larger longitudinal velocities. The explanation of this effect is as follows. For a larger
longitudinal velocity, the density of the atom beam is lower at equal flux densities (equation
2.7). Therefore the average longitudinal distance between an atom and its nearest neighbor
will be larger, as it is proportional to n−1/3 = (vaφ )1/3. The average time between ionization
of the two atoms is found by dividing this longitudinal distance by the longitudinal velocity,

leading a time proportional to v
−2/3
a . In other words, a larger longitudinal velocity leads to

a shorter time between subsequent ionizations. Because the acceleration term in equation
2.8 is much larger than the drift term (with Ea of the order 1 MV/m), this means the atom
has traveled less far at the time the next atom is ionized. Therefore there is more heating at
smaller longitudinal velocities. Figure 2.6 however shows that for a realistic average value of
the velocity of 314 m/s (the average velocity at 400 K), the dependence is very minor. Only
at very low velocities of below 100 m/s the dependence becomes significant.

2.2 Simulations

The first part of this chapter was concerned with theoretical models of the Coulomb inter-
action in the ABLIS setup. The second part of the chapter is devoted to particle tracing
simulations using the General Particle Tracing (GPT) software [33].

2.2.1 Simulation setup

In the GPT software the beam is simulated using a certain number of macro particles which
typically represent a large number of individual particles. The dynamics of these particles
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are determined by the electromagnetic fields of the beam line elements as well by the mutual
Coulomb interaction of the particles. The simulations shown in this report are all performed
using the built in spacecharge3Dtree routine. It uses a Barnes-Hut algorithm to compute
the self fields of the particles, in which the interaction between near neighbors is calculated
individually, but distant particles are grouped and treated as if they were a single charge or
other multipole term. The spacecharge3Dtree therefore includes granularity effects, which
is crucial for studying disorder-induced heating.

In the simulations ions are being created at a certain rate which is set by means of the
beam current. The initial positions of the created particles are determined randomly, but
taking into account a certain initial distribution. In the ABLIS setup ions are created by
photo-ionization. Therefore the longitudinal initial distribution is a Gaussian with a width
that is equal to the width σL of the ionization laser. The transverse initial distribution is
taken uniform, such that the distribution is constant for a radial position r < rA and zero
for r > rA, where rA is the radius of the aperture after the cooling and compression stage.
In the simulations rA is implicitly determined by the flux density φ and the beam current I.
A larger current at a constant flux density, means a larger aperture radius according to

rA =

√
I

πeφ
. (2.53)

Since the atoms are laser cooled in the transverse direction before they are ionized, the
initial transverse velocity distribution will be Gaussian. The width σv⊥ = σvx = σvy of this
distribution is determined by the transverse beam temperature T⊥ after the laser cooling
stage according to

σv⊥ =

√
kbT⊥
m

. (2.54)

It is assumed the longitudinal velocity distribution f(vz) is the same Maxwell-Boltzmann
distribution as was created by the Knudsen cell [22]. In the simulations this distribution is
approximated by a Gaussian centered at the average longitudinal velocity vz,avg given by

vz,avg =

√
8kbToven
πm

, (2.55)

and a RMS-width σvz equal to the RMS-width of the Maxwell-Boltzmann distribution,

σvz =

√
(3− 8

π )kbToven

m
. (2.56)

Strictly spoken the longitudinal velocity distribution will be changed by the laser cooling
and compression stage since particles with a lower velocity have a larger probability of being
compressed towards the center of the beam. Therefore these particles have a larger chance
of being selected by the aperture in front of the acceleration stage. In practice this means
that the longitudinal velocity distribution is still a Maxwell Boltzmann distribution but with
a lower temperature than Toven.

The beam line of the simulations is shown is figure 2.7. The ions are created at z=0 and
the accelerator is simulated by a constant electric field which is pointing in the z-direction
with an electric field strength Ea. The electric field strength jumps from Ea to zero at da.
Unless stated otherwise the values of parameters in the simulation are shown in table 2.1.

2.2.2 Brightness vs. current

Since the beam size in the ionization stage is dependent on the current (see equation 2.53),
the current determines the regime in which the beam is. At very low currents the beam will
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Table 2.1 Simulation parameters.

Parameter name Symbol Value

Oven temperature Toven 400 K
average atom velocity va 315 m/s
Atom mass m 85.47 amu
Laser width σL 1 µm
Length acceleration stage da 1 cm
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Figure 2.7 Schematic overview of the beam line in the simulations. The ions are created at z=0
and accelerated with an electric field Ea up to z = da.

be in the pencil beam regime which is characterized by the fact that the average longitudi-
nal separation is much larger than the beam size. At very large currents it will be in the
extended regime in which the longitudinal separation is much smaller than the beam size.
To characterize this, simulations are performed of the reduced brightness at the end of the
acceleration stage as a function of the current. The results of these simulations are shown in
figure 2.8. In these figures the brightness Br is the reduced brightness of the best 50 percent
of the beam. This 50 percent brightness is calculated with a GPT program which determines
the smallest possible phase space volume that contains 50 percent of the particles. From this
phase space volume a phase space density is calculated which can be linked to the brightness.
In practice this brightness can be realized by placing an aperture in the waist of the beam.
If this aperture only transmits the 50 percent of particles closest to the axis the brightness
of the transmitted beam is the 50 percent brightness.

As can be seen, at very low currents the brightness is independent of the exact value of
the current. This is caused by the fact that at very low currents the ions will be on a line
and all forces will be in the longitudinal direction. No transverse heating will take place
and the brightness will remain at its maximum value, determined by the laser cooling and
compression. When the beam current becomes higher, the beam diameter becomes larger
and ions have a larger probability to be created at the same longitudinal position, in other
words they can become transverse ‘neighbors’. Therefore a larger part of the interaction
force will point in the transverse direction and the brightness will start to decrease. When
the current is raised even more the beam diameter becomes even larger and the brightness
keeps becoming lower; however, the rate at which this happens gets smaller from a certain
current onward. This is caused by the fact that only particles in close vicinity of each other
will interact, i.e., a particle at the border of the beam will exert a much smaller force upon a
particle in the center of the beam than a particle closer to the center of the beam will do. At
large currents, the beam diameter will therefore be so large that an increase of current will
have no significant effect on the brightness of the beam. So the brightness is independent of
the beam current in the extended regime. Although the rate in decrease has become small
at 10 nA, it still decreases so the extended regime is not fully reached at that current.
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Figure 2.8 Simulation results showing the brightness at a longitudinal position of 10 mm, as a
function of current for: (a) a constant flux density of 5 · 1019 m−2s−1 and varying electric field
strengths and (c) a constant electric field of 1 MVm−1 and varying flux densities. In figures b and
d the same simulations are plotted, but for a scaled current, showing the dependence of the current
at which the transverse heating starts to occur on the electric field strength. The solid vertical lines
in figure b and d show the current for which the transverse size of the beam is equal to the average
initial longitudinal separation of the ions in the beam (equation 2.57). The dashed vertical lines
indicate the (somewhat arbitrary) end of the pencil beam regime.
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Figure 2.8a shows that the current at which the brightness drops is larger for higher
electric field strengths. This is caused by the fact that because of a higher electric field
strength the ions are accelerated more. Because of this larger acceleration each ion will be at
a larger longitudinal position at the moment the next ion is created, so they will repel each
other less. The current at which the brightness starts to drop, is hard to quantify. What
can be quantified is the current for which the beam diameter is equal to the average initial
longitudinal separation of the ions. The average time between the ionization of two atoms
is e

I . Therefore the position of the front ion at the moment the next ion is ionized can be
calculated by using this value for the time in equation 2.8. Equating this position to the
beam diameter (using equation 2.53) leads to

I =

(
e3Ea
4m

√
πeφ+ evaI

) 2
5

≈
(
e3Ea
4m

√
πeφ

) 2
5

. (2.57)

This equations reveals the dependence between the current at which the brightness starts to

drop and the electric field and the flux density. It shows that this current scales with E
2
5
a

and φ
1
5 . Figures 2.8b and 2.8d show the same data as figure 2.8a and 2.8c, but now as a

function of a scaled current. It can be seen that the scaling is right. No significant heating
takes place up till approximately a quarter of the value given by equation 2.57.

Figure 2.8c shows that a higher current density leads to higher brightness at low currents.
This is expected according to equation 1.3, which shows the brightness is proportional to
the current density and inversely proportional to the transverse temperature. The transverse
temperature is constant at these low currents, so the brightness is higher for larger flux
densities. At high currents the brightness is nearly the same for all simulated flux densities.
Apparently the increase in temperature (nearly) cancels out the higher brightness because
of the higher flux density. This plot shows that it is beneficial to have an as high as possible
flux density, since it gives a higher brightness at low currents and (nearly) does not affect
the brightness at high currents.

According to equation 2.52 the width of the transverse velocity distribution is proportional
to φ

2
3 . It is hard to connect this width to a temperature; moreover it is not possible to

calculate a temperature at all since the second moment of the Holtsmark distribution does
not exist. Because the Holtsmark distribution is very similar to the Gaussian distribution, a
good approximation however is to take the temperature to be proportional to the square of the
width σ of the distribution. In this approximation the transverse temperature is proportional
to φ

4
3 . Therefore according to equation 1.3 the brightness in the extended regime is expected

to be proportional with φ−
1
3 , so a higher flux density leads to a slightly lower brightness in

the extended regime. This does not entirely agree with the brightnesses at which the different
curves saturate in figure 2.8c. The reason for this disagreement is probably the fact that the
extended regime is not completely reached at 10−8 A, since the brightness still decreases
slightly as a function of the current.

2.2.3 Phase space evolution

In this section the phase space evolution of the beam is investigated at a current of 10−8 A.
As explained previously, at this current the extended regime is not completely reached. The
evolution of the transverse velocity distribution should however still be predictable by the
theory of section 2.1.6 to a reasonable extend since the extended regime is almost reached. A
current of 10−8 A is preferred over higher currents in the simulation, since for higher currents
more particles had to be used, which goes at the cost of a larger computation time. Using
GPT phase space plots and uncorrelated velocity plots of the beam are made at different
positions. Figure 2.9 shows these plots for an electric field of 1 MV ·m−1 and flux density of
5 · 1019 m−2s−1. The positions at which these figures are made are all inside the accelerator
structure. The phase space plots show that a correlation between the velocity and position is
built up. This correlation is caused by two effects: space charge acceleration and expansion.

26



2.2 Simulations

The uncorrelated velocity plots show the distributions of the uncorrelated transverse ve-
locities which are found by subtracting a linear fit from the phase space data. The velocity
distribution at z = 0 is fitted with a Gaussian distribution, since this is the expected distri-
bution after the cooling and compression stage. The distributions at z = 1 mm and z = 1
cm are fitted with a Holtsmark distribution, which is the expected shape of the distribution
after disorder-induced heating has taken place in the extended regime. The distributions
fit the data very well. Therefore, fits like these are used to investigate the evolution of the
distribution width as a function of the longitudinal position.

Figure 2.10 shows plots of the simulated transverse and longitudinal distribution widths
as a function of the longitudinal position for varying electric field strength. These simulations
were performed for a simplified beam in which the width of the ionization laser was set to zero
and no energy spread was present before ionization. This was done to avoid any transverse
heating due to relaxation of kinetic energy. The thick line in figure 2.10 is a plot of equation
2.52 for p = 0.33. This value was found by comparison with the simulation results. Despite
all simplifications that were made in the derivation of equation 2.52 the resemblance between
the transverse simulation data and the theoretical curve is very large. Apparently the value
of p is independent of the electric field in this range of fields.

As expected the distribution width in the longitudinal direction grows faster than the
width in the transverse direction. This is caused by the fact that the interaction force
between the ions is forced towards the longitudinal direction as was explained in section
2.1.5. However this is only the case in the very first part of the acceleration stage. After a few
tenths of mm it smooths out and even starts to decrease a bit. This effect can be attributed
to the fact that acceleration lowers the longitudinal velocity spread while the energy spread is
unaffected. According to [34] the relation between temperature Ti for direction i and average
energy 〈Ei〉 present in direction i is given by

kbTi =
(∆Ei)

2

4 〈Ei〉
, (2.58)

in which ∆Ei represents the spread in the energy present in direction i. It shows that Tz
is inversely proportional to 〈Ez〉 and since acceleration increases 〈Ez〉, it would decrease
the temperature if the energy spread would remain constant. However, the energy spread
increases as a function of position due to disorder-induced heating. In other words, in terms
of the longitudinal temperature the heating and the acceleration are two competing processes,
which lead to the dotted curves shown in figure 2.10.

Figure 2.11 shows the same kind of plots, but for a varying flux density and a constant
electric field strength. It can be seen that the value of p has to be adjusted a little bit
to achieve a full similarity between the theory and simulations. This is caused by the fact
that the flux density determines the average separation between the particles before they
are ionized. Therefore the flux density determines the value of z0 in figure 2.4. A higher
flux density means that the particles are closer together and z0 is smaller. As can be seen
in the same figure this means that the slope of f(t) (equation 2.44) is larger. Therefore the
value of p should also be larger for higher flux densities, as is indeed the case. For a flux
density of 3 · 1020 m−2s−1, no satisfactory result can be achieved for the theoretical curve
by adjusting the value of p. At this high values of the flux densities the shape of the curve
changes, i.e., a stagnation in the growth of σ occurs around 0.3 mm. This is caused by the
fact that the first order approximation is not valid anymore. Due to the higher flux density,
the space charge effect will be larger and the velocities which the particles achieve due to
the space charge acceleration will also be larger. Therefore the expansion cooling, which was
explained in section 2.1.1, starts to occur at smaller longitudinal positions. The stagnation
of the growth of σ around 0.3 mm can be ascribed to this effect.
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Figure 2.10 Plots of the (Holtsmarkian) distribution widths as a function of longitudinal position
for different electric field strengths and a flux density of 5 · 1019 m−2s−1. The two thin solid curves
are the distribution widths of the two transverse directions, the dashed curve is the distribution
width of the longitudinal direction and the thick solid curve is a plot of equation 2.52 for p = 0.33.
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of p, which are indicated in the figures.
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2.2.4 Heating after acceleration stage and effect of energy spread

In the previous sections simulation results were shown of brightness and distribution widths
at 1 mm and 1 cm, which is the position at which the accelerator stage ends. However, it
is not known whether all disorder-induced heating takes place within this first centimeter or
if there is also heating of the ion beam in the rest of the setup. Therefore simulations are
performed of the brightness at larger longitudinal positions. Furthermore, in the simulations
shown in section 2.2.3, the assumption was made of a monochromatic beam and an infinitely
small laser beam width. This was done to be sure that no relaxation of kinetic energy from
the longitudinal direction to the transverse direction could take place, so that only the effects
of disorder-induced heating were taken into account. The simulation in this section are done
to investigate heating after the acceleration stage as well as heating due to relaxation of
kinetic energy.

Figure 2.12 shows simulation results of the velocity distribution widths as a function
of the longitudinal position. In this simulation a realistic accelerator structure is used to
incorporate the exit kick of the accelerator. Because the electric field will switch from Ea
to 0 at the end of the accelerator, the particles will experience an outward force [35], the so
called exit kick. The end of the accelerator (z=1 cm) is clearly visible in the curves. Inside the
accelerator, the longitudinal velocity distribution width decreases according to equation 2.58.
After the first centimeter it doesn’t decrease anymore since the average kinetic energy does
not increase anymore. It even starts to increase which can be attributed to disorder-induced
heating. No trend towards a decline of longitudinal temperature can be seen. Therefore it
can be concluded that relaxation of kinetic energy towards the transverse direction does not
play a role or is at least much smaller than the disorder-induced heating in the longitudinal
direction. The transverse distribution widths start to decrease from the end of the accelerator
onwards. This is caused by expansion cooling as was explained in section 2.1.1. Due to the
space charge acceleration, a correlation between velocity and position is built up inside the
accelerator. This correlation is is strengthened due to the exit kick of the accelerator, after
which the beam starts to expand significantly.

As explained in the previous paragraph the transverse temperature decreases after the
accelerator due to expansion of the beam. Therefore temperature is not a good measure
for beam quality in the rest of the setup. The brightness however is, so to get a conclusive
answer of disorder-induced heating after the acceleration stage, simulations are performed
of the brightness as a function of the beam current at different longitudinal positions. The
results are shown in figure 2.13. From these results it can be concluded that at large currents
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(I >100 pA) the disorder-induced heating is still significant after the accelerator. In the
extended regime the brightness still drops about two orders of magnitude. In the pencil
beam regime however, the brightness is still not affected after 1 m, which is not surprising,
since the ions are on a line, so if there was any heating at all, it was in the longitudinal
direction.

2.3 Conclusion

In this section the most important conclusions on the investigation of disorder-induced heat-
ing in the ABLIS setup are summarized.

• The basis of an analytical solution for the brightness or beam temperature as a function
of experimental parameters was the extended two-particle approximation of Jansen [28].
This model was extended with several assumptions and led to a closed form analytical
solution. This solution for the transverse velocity distribution width of equation 2.52 is,
due to the assumptions, only valid inside the acceleration stage and for large currents.
When these assumptions are fulfilled the solution agrees very well with particle tracing
simulations. It predicts, as expected, a larger beam temperature for smaller electric
fields and larger flux densities. Furthermore the dependence on the initial velocity is
small.

• The disorder-induced heating in the ABLIS setup is investigated numerically using
GPT simulations. A higher electric field extends the pencil beam regime, in which
no transverse disorder-induced heating takes place, towards higher currents. With an
electric field of 5 MV/m the pencil beam regime reaches up till ≈70pA. It was found

that the current at which the pencil beam regime ends scales with E
2
5
a and φ

1
5 .

• In the pencil beam regime, also no disorder-induced heating takes place after the accel-
eration stage. In the extended regime however, heating in the rest of the setup is not
negligible. The brightness drops about two orders of magnitude after one meter drift.
This will limit the use of an ABLIS-based FIB at higher currents (>100pA).

• Purely regarding disorder-induced heating it is beneficial to achieve an as high as possi-
ble flux density. In the pencil beam regime the brightness remains unaffected, therefore
a higher density means a higher brightness. The pencil beam regime is even shifted a
bit towards higher currents for higher densities, since a higher density means a smaller
beam size at equal currents.
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Chapter 3

Probe size contributions

In the previous chapter disorder-induced heating and its relation with experimental parame-
ters was investigated. It was concluded that disorder-induced heating could be suppressed at
low currents (I<100pA) as long as the acceleration electric field is high enough. However, as
explained in the Introduction a higher electric field leads to larger chromatic aberrations of
the lens system. These aberrations will finally lead to a larger spot size. In order to quantify
this effect, all individual contributions to the probe size of a charged particle beam have to
be identified and investigated.

As a starting point of this chapter, the assumption is made that the laser cooling and
compression stage has produced an atomic beam with a current density JS and a transverse
temperature of Tr. The values of these parameters are based on laser cooling and compression
simulations, which are not discussed here. A schematic view of the ion beam line in the ABLIS
setup is shown in figure 3.1. The atomic beam enters the figure from the left and is apertured
when it enters the ionization stage, which has a length da. When it leaves the ionization stage
the ion beam goes from a region with an electric field Ea to a region without any electric
field. A side effect of this structure is that it will act as a negative lens for the ions, with a
focal length fa [35]. The beam will then drift over a distance L towards a lens system with
a focal length f , which is illustrated as a thin lens in figure 3.1. Due to this lens the beam
will be focused to a small spot. A summary of the important parameters in this chapter and
their values is given in table 3.1. Most of the parameters will be further explained in the rest
of the chapter.

The rest of this chapter deals with the analytical treatment of the most important con-
tributions to the ABLIS probe size. Since the current density distribution at the lens is of

fa L

aperture plane lens plane

ra

rL

da

f

Figure 3.1 A schematic overview of the acceleration stage and the drift region towards the lens
plane.
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Table 3.1 A summary of the parameters describing the ion beam line in the ABLIS setup.

Parameter [unit] Symbol Value

Source current density [Am−2] JS 10.91
Transverse temperature [mK] Tr 0.8
Rubidium mass [amu] m 84.91
Accelerator length [cm] da 1
Exit kick focal length [cm] fa -4
Drift length between accelerator and lens system [cm] L 20
Last lens focal length [mm] f 6.5
Mean ion kinetic energy [keV] Um 30

influence on all individual contributions it is discussed in the first section. In the following
three sections the brightness-limited probe size and spherical and chromatic aberration are
discussed. The last sections are dedicated to the problem of how to combine the individual
contributions to one single probe size and a discussion of the expected performance of the
ABLIS setup.

3.1 Current density distribution

In the ABLIS setup atoms are cooled and compressed before they are apertured. If the
radius ra of the aperture is chosen sufficiently small the current density in the aperture will
be constant and given by

J (R′) =
I

πr2
a

= Js (3.1)

where I represents the total current through the aperture and the symbol Js = eφ is intro-
duced for the source current density. After this aperture the atoms will be ionized with a
very intense laser, which will ionize all atoms. The produced ions are immediately acceler-
ated in a homogeneous electric field Ea = V

da
over a distance da, in which the ions achieve a

kinetic energy qV, with q the charge of the ion and V the acceleration potential. Since the
ions will go from a region with an electric field Ea to a region with no electric field after the
ionization stage, the ions will get a momentum kick in the positive radial direction at the
border between these regions. In other words the accelerator works as a negative lens. The
focal length fa of this lens is given by [35]

fa = − 4U0

qEa
= −4qV

q Vda
= −4da, (3.2)

where U0 represents the mean ion kinetic energy, which is assumed to be negligible compared
to qV before the accelerator (U = U0 + qV ≈ qV , in which U0 is the kinetic energy before
the accelerator). The lens action of the exit kick is illustrated in figure 3.1.

Since the atoms will have a finite temperature, each point in the aperture will lead to
a two-dimensional Gaussian distribution in the lens plane. Therefore the current through
the infinitesimal ring-shaped surface 2πR′dR′ with radius R’ and width dR’ in the aperture
plane will be imaged as a ring-shaped infinitesimal Gaussian distribution dJ (R) in the lens
plane. This dJ (R) is given by

dJ (R) = dC

(
e
− (R−R′(1−L/fa))2

σ2
R + e

− (R+R′(1−L/fa))2

σ2
R

)
(3.3)

where R represents the radial position in the lens plane, σR is the RMS spread in the radial
position in the lens plane of the ions originating from one point in the aperture plane, dC
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3.2 Brightness limited probe size

is a normalization constant and L is the distance between the ionization stage and the lens.
The RMS spread σR is given by the RMS spread in divergence multiplied by a length factor
determined by the geometry. Assuming the temperature of the ions in the radial direction
is given by Tr, the mass of the ions is m and the kinetic energy of the ions is U0, σR can be
written as

σR =

√
kbTr
2U0

(
L+

L− fa
4

)
(3.4)

where kb is Boltzmann’s constant. Equation 3.4 shows that σR consists of two terms. The
first one is simply the RMS spread in divergence multiplied with the drift length, which would
have been the RMS spread if no exit kick was present after the acceleration. The other term
is the extra contribution due to the exit kick.

To find the value of the normalization constant dC we consider the infinitesimal current
dI flowing through the surface 2πR′dR′. This dI should be equal to the integral of dJ (R)
over the whole lens plane, so

dI = Js2πR
′dR′ =

∞∫
0

2πRdC

(
e
− (R−R′(1−L/fa))2

σ2
R + e

− (R+R′(1−L/fa))2

σ2
R

)
dR. (3.5)

Rewriting this equation and solving the integral leads to

dC =
−faJsR′

−faσ2
Re
− (L−fa)2R′2

f2aσ
2
R +

√
π (L− fa)R′σRerf

(
− (L−fa)R′

faσR

)dR′ = f (R′) dR′. (3.6)

The last step in finding the current density in the lens plane is to add all infinitesimal
contributions, i.e., integrating over all dJ (R). Using equations 3.3 and 3.6 this leads to

J (R) =

ra∫
0

f (R′)

(
e
− (R−R′(1−L/fa))2

σ2
R + e

− (R+R′(1−L/fa))2

σ2
R

)
dR′. (3.7)

Figure 3.2 shows a plot of J (R) for different values of the total current. It can be seen
that for most values of the current J (R) can be approximated by a uniform distribution.
In the center and at the edge the distribution is different from a uniform distribution. The
length scale over which this deformation takes place is σR. Only for small currents (I<1 pA),
when the size of the beam is comparable to σR, the distribution deviates from a uniform one
significantly.

3.2 Brightness limited probe size

As was already hinted in the Introduction the brightness determines together with the angular
spread the achievable spot size if a perfect lens would be used, i.e., a lens lacking of any
aberrations. This is done by using the brightness as given by equation 1.1. In the waist of
a beam the correlation term 〈ivi〉 in this equation becomes zero and the brightness can be
written as

Br =
I

2π2mσxσyσvxσvy
(3.8)

in which σx and σy represent the RMS positions in the waist of the beam and σvx and σvy
are the RMS velocities in the whole beam segment. For an azimuthally symmetric beam
σx = σy = 1√

2
σr and σvx = σvy = 1√

2
σvr with σr the RMS position in the radial direction

in the waist and σvr the RMS velocity in the radial direction. Using these equalities one can
write the reduced brightness of a non-relativistic beam as

Br =
2I

π2mσ2
rσ

2
vr

1
2mv

2
z

U0
=

I

π2U0σ2
rσ

2
r′
, (3.9)
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Figure 3.2 Plot of the current density in the lens plane as a function of the radial position for a
total current of 1 pA, 10 pA and 100 pA.

in which is made use of the fact that the kinetic energy of the beam U0 = 1
2mv

2
z , with vz the

average axial velocity of the ions and with σr′ the RMS divergence. Rewriting this equation
in terms of σr gives an equation for the RMS size of the beam in the waist. As can be seen
this size will be limited by the spread in divergence, which is determined by the spread in
radial position at the lens and therefore by the current density distribution.

As was shown in section 3.1, the current density at the lens can be approximated by a
circular uniform distribution for most values of the current. The radius rL of this distribution
is given by

rL = −L− fa
fa

ra, (3.10)

as can be verified using figure 3.1. Furthermore for a uniform circular distribution the RMS
radial position is the same as d50/2, in which d50 is the diameter of a circle containing 50
percent of the current, therefore

σrL =
d50,L

2
=

1√
2
rL. (3.11)

Under the assumption of a perfect lens, the RMS spread in divergence in the waist σr′f can

be calculated with

σr′f =
σrL
f
. (3.12)

Rewriting equation 3.9 and making use of equation 3.10-3.12 leads to a spot size σrf in the
focal plane of

σrf =
fra
rLvz

√
4Js
πmBr

. (3.13)

This equation shows that σrf is inversely proportional to the brightness of the beam. So the
spot size is limited by the brightness, hence the name ’brightness limited spot size’. Although
Equation 3.13 is a valid equation for σrf , filling in the expression of equation 3.9 makes the
equation much clearer. Doing this and substituting the values of σr and σr′ in the aperture

plane, i.e., σrA = rA√
2

and σr′A = 1
vz

√
kbTr
m , leads to

σrf =
d50,B

2
=

fra
rLvz

√
kbTr
m

, (3.14)
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3.3 Spherical aberration

in which d50,B represents the brightness limited spot size (diameter) containing 50 percent
of the current.

Surprisingly the final brightness-limited spot size is independent of the total current.
When the total current is increased the radius of the aperture after the cooling and compres-
sion stage is also increased, which increases the emittance. However the divergence spread
after the final lens will increase with the same factor since it is proportional to the radius of
the aperture (see equation 3.10). Therefore the final spot size in the Gaussian image plane
will be the same.

In equation 3.14 it looks like the spot size is inversely proportional to the axial velocity vz.
However, the spot size is actually independent of vz since the focal length of the lens is also
proportional to vz. Equation 3.14 does show the dependence on other parameters however. A
larger divergence after the last lens leads to a smaller brightness-limited spot size. Therefore
a larger drift length and a smaller focal length of the exit kick lead to a smaller brightness
limited spot size. Furthermore a lower beam temperature leads to a higher brightness and
therefore a smaller brightness limited spot size. For the values stated in table 3.1, d50,B is
1.6 nm.

3.3 Spherical aberration

The theory of Gaussian imaging makes use of the paraxial approximation which does not take
into account higher order terms in the radial position and radial divergence. Therefore all
particles in a non-divergent beam with transverse temperature equal to zero will in this theory
be focused to a single point, i.e., σrf → 0 for Tr → 0 (see equation 3.13). When higher order
terms are however taken into account, such a beam will not be focused to a single point, but
will have a certain size in the Gaussian image plane. Deviations from the Gaussian theory of
imaging due to these higher order terms are usually referred to as geometrical aberrations. As
explained in most basic optics books (for example [36]) geometrical aberrations can be divided
into different types. From all types of geometrical aberrations, only spherical aberration
usually plays a significant role in the probe size of a focused ion beam.

It can be shown that an ion which has a radial position R in the lens plane will have a

radial position Cs
R3

f3 [37] in the Gaussian image plane, in which Cs is the so-called spherical
aberration constant. Doing basic geometrical calculations, it can then also be shown that
the radial position r in an observation plane positioned a distance ∆z before the Gaussian
image plane is given by

r =

∣∣∣∣∆zf R− CsR
3

f3
+
CsR

3∆z

f4

∣∣∣∣ ≈ ∣∣∣∣∆zf R− CsR
3

f3

∣∣∣∣ , (3.15)

where the assumption is made that CSR
3

f3 � R and ∆z
f � 1.

The approach discussed in [38] is used to calculate the current density and probe size due

to spherical aberration in the observation plane. By making the substitutions x =
√

Cs
∆z

R
f

and y =
√

Cs
∆z3 r, equation 3.15 can be written as

y(x) =
∣∣x− x3

∣∣ . (3.16)

A plot of y(x) is shown in figure 3.3. As can be seen there is not a one to one relationship
between x and y, and therefore neither between R and r.

Figure 3.3 shows that when

y ≤ 2

3
√

3
and

x ≤ 2√
3
,

(3.17)
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Figure 3.3 A plot of equation 3.16.

there are two parts that contribute to the fraction of current β contained within a radius y,
namely the current that falls between 0 and x1 and between x2 and x3 in the lens plane.
Taking this into account the fraction of current can be calculated as

β (y) =

∫
Rrange

2πRdR

πr2
L

=
2

x2
L

 x1∫
0

xdx+

x3∫
x2

xdx

 =
x1(y)2 − x2(y)2 + x3(y)2

x2
L

, (3.18)

in which Rrange is that part of the domain of radial positions at the lens plane which will
lead to a radial position smaller than y in the image plane and x1(y), x2(y) and x3(y) are
the three cubic roots of equation 3.16. When these roots are expressed in terms of y, an
equation is derived for y which can be transformed back to an equation for the radius r(β)
of a circular surface which contains a fraction β of the current,

r (β) =
β

2

√
ζ − β

2
Cs
r3
L

f3
(3.19)

in which the so-called defocus ζ = ∆z

Cs
r2
L
f2

is introduced. Using equation 3.19 and the definition

of the defocus, the constraints in x and y (equation 3.17) lead to constraints in terms of ζ.
Therefore equation 3.19 is only valid for 3β

4 ≤ ζ ≤ 3
4 , so the minimal spherical aberration

limited spot is found at ζ = 3β
4 . Using a value of β = 1

2 the 50 percent fraction of current
diameter d50,S of the spherical aberration probe size can be written as,

d50,S =
1

4
√

2
Cs
r3
L

f3
(3.20)

Realistic values for the spherical aberration and a comparison of spherical aberration with
other contributions are found in section 3.6.

3.4 Chromatic aberration

Chromatic aberration is a term that is used for the phenomenon that ions with a different
axial velocity experience a different focal length when traveling through a lens. To investigate
the effect of chromatic aberration, again the approach of [38] is used. Due to chromatic
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3.4 Chromatic aberration

aberration, an ion with a kinetic energy U that has a radial position R at the lens, has a

radial position r in the Gaussian image plane, that in a first order approximation in
∣∣∣U−U0

U0

∣∣∣
is given by

r =
Cc
f

∣∣∣∣U − U0

U0

∣∣∣∣R (3.21)

with the chromatic aberration coefficient given by Cc and U0 representing the average kinetic
energy of the ions in the beam. Equation 3.21 gives a mapping between the radial positions
in the lens plane and the Gaussian image plane. Making use of this mapping, the current
distribution J (r) in the Gaussian image plane can be derived from the current distribution
J (R) in the lens plane. The infinitesimal current dI flowing through the area 2πRdR is with
the mapping of equation 3.21 also flowing through the area 2πrdr and is given by

dI = 2πRJU (R,U) dRdU (3.22)

in which JU (R,U) represents the current density per unit of energy. Assuming the distri-
bution in U is Gaussian and the distribution in R is uniform, JU (R,U) can be written as

JU (R,U) =

JNe−
(U−U0)2

2σ2
U R ≤ rL

0 R > rL
(3.23)

with σU the RMS spread in energy and JN a normalization constant. This JN can be
calculated by integrating equation 3.23 over all positions and energies and equating the
result to the total current I, so

JN = I

 ∞∫
0

rL∫
0

e
− (U−U0)2

2σ2
U dRdU

−1

=

√
2

π3

I

σUr2
L

(
1 + erf

(
U0√
2σU

)) . (3.24)

When equations 3.21-3.23 are combined and the kinetic energy is written in terms of a
dimensionless energy U ′ = U−U0

U0
, dI can be written as

dI = 2πrJN
f2

C2
c

U0

U ′2
e
−U

2
0U
′2

2σ2
U drdU ′. (3.25)

From this equation JU (r, U ′) can be extracted. To calculate the current density JU (r, U ′) has
to be integrated over all possible U’. This is not simply from minus one to infinity, because
the kinetic energy of the ions that are at a position r in the Gaussian image plane is limited
by the fact that R is limited due to the aperture. Since R ≤ rL,equation 3.21 leads to
|U ′| ≥ fr

CcrL
. Therefore the current density in the Gaussian image plane is given by

J (r) =

− fr
CcAL∫
−1

JU (r, U ′) dU ′ +

∞∫
fr

CcAL

JU (r, U ′) dU ′ (3.26)

with

JU (r, U ′) = JN
f2

C2
c

U0

U ′2
e
−U

2
0U
′2

2σ2
U . (3.27)

The integrals in equation 3.26 can be solved analytically but lead to very large expressions
which are not displayed here. A plot of the current density is shown in figure 3.4a.

Figure 3.4b shows a plot of the fraction of current as a function of the radius. It is very
hard to obtain an analytical equation for the fraction of current. Therefore it is obtained by
numerically integrating the solution of equation 3.26. From plots of the fraction of current it
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Figure 3.4 Plots of (a) the current density and (b) the fraction of current as a function of the radial
position for CC = 20 mm, f = 6.5 mm, U0 = 30 keV, σU = 1 eV, Js = 10.91 A ·m−2, I = 1 nA
L = 10 cm and fA = −2.4 cm.

was however possible to obtain an equation for the diameter d50 which includes 50 percent
of the current:

d50,C = 0.811 · CC
σU
U0

rL
f

(3.28)

This section showed a derivation of the chromatic aberration limited probe size for a
uniform current density at the lens. The derivation for a Gaussian current density can be
done in a similar way, but is not shown in this report since in the ABLIS setup the current
density can be approximated uniform for most values of the current.

3.5 Aberration constants

The previous two sections were devoted to the contributions to the spot size of the spherical
and chromatic aberration. But before we can quantitatively investigate these contributions
and compare them with the brightness limited spot size, the aberration constants CS and CC
have to be known. To find these constants the electric field lens, which will be used in the
ABLIS setup in the future, was implemented in the GPT code. By comparing the RMS spot
sizes that are then obtained in the image plane with their theoretical values, the aberration
constants can be obtained.

The information about the lens was provided by Sander Henstra from FEI Company. The
lens actually consists of two separate structures, the condenser lens and the objective lens.
When entering the lens column the ion beam will be slightly divergent, due to the Coulomb
expansion and the exit kick of the accelerator. The condenser lens aims to collimate this
divergent ion beam after which the objective lens focuses it to a small spot. Therefore most
of the aberrations will be caused by the objective lens, since it does most of the work. The
electric field profiles used in the simulation are an off-axis expansion to the 4th order of a
number of Gaussians fits through the on-axis (x = y = 0) field-profile [39].

In order to find the spherical aberration constant, a beam was simulated with infinite
brightness and no energy spread. To make sure that no stochastic heating effects are playing
a role, a GPT routine was used without inter-particle interactions. In this way the only
contributions to the spot size are geometrical aberrations, from which spherical aberration is
by far the most important one. Theoretically the RMS size of a spherical aberration limited
beam in the waist is given by [38]

rRMS,S =
1

6
CS

r3
L

f3
, (3.29)
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Figure 3.5 A plot of the rms size of a
spherical aberration limited beam. The
slope of this figure is equal to the spheri-
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Figure 3.6 A plot of the rms size of a chromatic
aberration limited beam. The slope of this figure
is equal to the chromatic aberration constant.

which is, apart from a numerical factor, equivalent to equation 3.20. The value of rL was
varied in the range between 5-50 µm, resulting in the plot in figure 3.5. From this plot the
spherical aberration constant was determined to be (136±1) mm.

To find the chromatic aberration constant almost the same simulation was run, but now
with a Gaussian energy distribution with a RMS width σU . However, in GPT a velocity
distribution has to be defined instead of an energy distribution. Therefore the energy distri-
bution is transformed to a velocity distribution:

f (E) dE = exp

(
− (U − U0)

2

σ2
U

)
dE

= mvexp

(
−

1
4

(
v2 − v2

0

)2
2
σ2
U

m2

)
dv

≈ mv0exp

− (v − v0)
2

2
σ2
U

m2v20

 dv.

(3.30)

From the second to the third line, the approximation is made that when |v − v0| � v0,
v2 − v2

0 = (v− v0)(v+ v0) ≈ (v− v0)2v0. By doing this approximation it was possible to use
the built-in GPT Gaussian distribution.

Theoretically the RMS size of a spherical and chromatic aberration limited beam in the
waist is given by [38]

r2
RMS =

1

36
C2
S

r6
L

f6
+

ln2

2
C2
C

σ2
U

U2
0

r2
L

f2
, (3.31)

of which the second part is equivalent to equation 3.28 apart from a numerical factor . To
find the chromatic aberration constant, σU was varied while leaving the other parameters
constant, which resulted in the plot in figure 3.6. The square root of the slope of this plot is
equal to the chromatic aberration constant, which was determined to be (32±1) mm.

3.6 Total probe size

The preceding sections were devoted to the individual contributions to the ion probe: the
brightness limited probe size and the probe sizes due to spherical and chromatic aberration.
Mathematically, the current density in the observation plane is a convolution of the the
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current densities of the individual contributions [38]. However, due to the very extended
equations it is much easier to apply a so called root power sum (RPS) algorithm. Other
research [40] showed that for ion sources with a Gaussian current density, Gaussian energy
distribution and uniform angular distribution the total probe size d50,T can be approximated
by

d50,T ≈
((
d1.3

50,S + d1.3
50,B

) 2
1.3 + d2

50,C

) 1
2

, (3.32)

with d50,T the total probe size (diameter) containing 50 percent of the current. Since the
ABLIS setup has a more or less uniform current density, it is not known whether this equation
is the right RPS algorithm. However, reasonable assumptions can be made for the upper and
lower limit of the total probe size. For the upper limit, simply the sum of the contributions
(RPS with factor 1) can be taken and for the lower limit the largest contribution can be
taken as the total size (RPS with factor ∞).

In designing the ABLIS the total probe size d50,T should be minimized. Very important
in this minimization is the parameter κ = rL

f , commonly known as the numerical aperture.
Equation 3.14 shows that the brightness limited probe size is inversely proportional with this
factor, while equations 3.20 and 3.28 show that the spherical and chromatic aberrations are
proportional with κ. This means there exists an optimum κ that leads to a minimum probe
size.

The brightness limited spot size calculated in section 3.2 is only valid under the assump-
tion of no disorder-induced heating. Therefore it is only possible to calculate probe sizes
for currents in the pencil beam regime. As was explained in section 2.2.2, the current to
which the pencil beam regime reaches is determined by the electric field strength and the
flux density. From equation 2.57 and figure 2.8b the electric field to reasonably suppress
disorder-induced heating at a flux density of 1020 m−2s−1 is determined at

E =

(
αI

2
1
5

) 5
2

, (3.33)

in which α is a constant with a value of 1013 V
2
5 m−

2
5 A−1. The factor in the denominator is

due to the fact that the simulations shown in figure 2.8b are performed for a current density
of 5 ·1019 m−2s−1 instead of 1020 m−2s−1. As explained in the Introduction this electric field
strength determines, together with the size of the ionization laser beam, the energy spread
of the ion beam (see equation 1.6).

Now the electric field strength to suppress disorder-induced heating is known it is possible
to optimize the total spot size in terms of κ. The optimization of equation 3.32 is too
complicated to do analytically. Therefore the spherical and chromatic aberration limited spot
sizes are found separately. This is done by leaving out one of the two contributions (d50,S

or d50,C). Differentiation of the obtained total spot size to κ and equating this derivative
to zero gives the value of κ for which the spot size is minimal. Inserting this value back in
equation 3.32 gives the spherical/chromatic aberration limited spot size. Figure 3.7 shows
a plot of both spot sizes as a function of the current. These two lines give the lower limit
of the spot size, but they are also a good approximation of the actual value. The chromatic
aberration limited spot size is calculated for a RMS laser width σL of 3 µm. Research on a
similar subject showed that practical realization of this laser width is possible [41].

As a an example of the optimization process, figure 3.8 shows the spot size at a current
of 1 pA as a function of κ. It shows the individual contributions to the ABLIS probe size as
well as an estimation of the total probe size given by equation 3.32. It can be seen that the
optimum of the beam at this current is limited by spherical aberration and the brightness.
A 50 percent spot size of ≈0.2 nm can be achieved with a value of κ of ≈0.0014. To achieve

this value of κ = ra(L+fa)
ffa

the beam either has to have a very large divergence after the

accelerator (fa very small) or the length of the setup must be several meters. This is however
not very suitable for future commercial devices. The length of the total setup should not be
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Figure 3.7 Plot of the spherical and chromatic aberration limited spot sizes as a function of current.
Before the two plots cross each other the spot size of the ABLIS FIB is given by the spherical
aberration limited spot size and after the crossing the chromatic aberration determines the spot size.

longer then ≈ 1m. With this in mind General Particle Tracing simulations of the complete
beam line have been performed at the CQT group with the constraint of a drift length of
maximal 20 cm long [39]. These simulations showed that a spot size of ≈ 1 nm is possible at
1 pA.

3.7 Optimization of the beamline

As was analytically shown in the previous section, it is possible to reach a spot size of only
0.2 nm at a current of 1 pA. With the current design and the design constraints it is however
not possible to do this, since the beam line should then be several meters long. A solution to
this problem can be to add an extra element to the setup. This element should diverge the
beam so that rL can become larger and so can κ. As a proof of concept, a GPT simulation
was performed of the full ion beam line, stretching from the ionization laser to the target. In
this simulation an Einzel lens was placed just after the post acceleration stage. A schematic
view of the simulated beam line is shown in figure 3.9a.

An Einzel lens consists of three plates with a hole in it, placed a certain distance from
each other longitudinally [35]. The middle of these plates is set at a lower voltage than the
other two. In the simulation the outer two plates are set at 30 kV and the middle somewhat
arbitrarily at 1.5 kV. The distance between the plates was 2 cm. These parameters together
with the drift length are chosen such that the size of the beam at the last lens rL is at its
theoretical optimum (this optimum size can be calculated from the value of κ that gives the
minimum in figure 3.8). Figures 3.9b and c show the simulation result. The beam is created
(ionized) at z =-35 cm, from which it is accelerated in an electric field of 50 kV/m towards
z =-34 cm. At that point the beam enters the post accelerator which accelerates the ions to
30 keV and stretches up to z =-24 cm. At this position the first plate of the Einzel lens is
placed. After the Einzel lens the beam drifts to the lens column which starts at z =0 cm.
In this column two lenses are present. The first one is the so called condenser lens which
collimates the beam. After this first lens the beam drifts towards the last lens which focuses
the beam to its final spot size. Figure 3.9c shows the spot size that can be reached, which
is ≈0.2 nm. The result is in good agreement with the analytical estimation shown in figure
3.7.

The fivefold improvement of the spot size shows the necessity of the extra lens. Due to the
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Figure 3.8 A plot of the individual contributions to the probe size and the total probe size using
the RPS algorithm from [40] as well as an upper limit of the probe size as a function of the parameter
κ. For this plot: I = 1 pA, CC = 32 mm and CS = 136 mm.

lens, the spot size can become much smaller while staying within the length requirements of
the setup. However, before we can conclude this spot size is possible with the ABLIS setup,
it needs to be said that it is not known how physically realizable the Einzel lens construction
implemented in the simulation is. The electric fields implemented in the simulation are
created by infinitely thin plates with a perfectly circular hole. Simulations of what the effect
of a real lens will be on the ion beam should be performed in the future. But the expectation
is that aberrations of this lens will not play significant a role in the final probe size, since
it may focus the ions much less extreme then the final lens. Therefore, the most important
conclusion of this chapter is the fact that a spot size of only 0.2 nm is within reach of an
ABLIS-based FIB at 1 pA.
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Figure 3.9 a. Schematic overview of the ion beam line used in the GPT simulation. b. Result
of the GPT simulation of the complete ion beam line, including the added Einzel lens. It shows
the diameter containing 50 percent of the current as a function of the longitudinal position over the
complete longitudinal range. c. Same simulation result as b but zoomed in on the waist of the beam.
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Chapter 4

Laser system

The fact that the ABLIS FIB is created from ultracold atoms distinguishes it from other FIB
sources. Therefore the laser cooling and compression stage is an essential part of the ABLIS
setup. It consists of two main components; the magnetic field gradient and the radiation
field, which are both used to compress the beam to the center of the beam line as explained
in the Introduction. The magnetic gradient will be custom made, but is outside the scope
of this report. We’ll focus on the radiation field which, besides compressing the beam, also
aims to cool the atoms down to less then a milliKelvin.

For the laser cooling and compression to be successful, the laser field has to have a precise
and stable frequency. As explained in the Introduction, a slight deviation from the optimal
detuning can cause a large decrease in brightness. Therefore the laser frequency must be
accurate and stable within ∼ 0.05γ, which is approximately 300 kHz [22]. This means the
average frequency has to be accurate within this range, but the frequency fluctuations have
to be smaller then 300 kHz as well. In previous work [22], a stable laser frequency has already
been realized. The average fluctuations were smaller than 20 kHz with incidental spikes of
∼100 kHz. Besides that, a method based on the Zeeman shift of atoms in a magnetic field
was tested in order to set the detuning. However, this method appeared to be unreliable
and another method incorporating the use of two acousto-optic modulators (AOMs) was
suggested. Section 4.1.3 takes off from here and discusses a method to accurately set the
detuning.

Another essential element of laser cooling and trapping is the repump beam. Recall from
the Introduction that this beam is needed due to the lack of a closed transition in rubidium.
It has to be shifted +2915 MHz from the trapping laser (see figure 1.3). Since the probability
that the atom falls back to the wrong ground state is rather low, the intensity of the repump
beam is allowed be much less than that of the trapping laser (< 10%). Section 4.1.4 discusses
the creation of the repump beam with an electro-optic modulator (EOM).

Besides creating the desired characteristics of the laser such as detuning, stability and the
presence of the repump beam, a side target of the laser setup is to be robust and compact so
that future ABLIS based FIBs can be equipped with a similar system. Where possible, the
number of elements in the setup and their complexity are therefore minimized.

4.1 Laser

4.1.1 Titanium:Sapphire Ring Laser

The laser used to create the light field for the laser cooling and trapping is a Titanium:Sapphire
laser1. The gain medium in this type of lasers is a sapphire crystal doped with titanium. Due
to the broad gain bandwidth it can be tuned over a wide range of wavelengths, for example

1Coherent 899-21 Titanium:Sapphire Ring Laser by Coherent Inc.
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to the 780 nm of the 5S1/2F = 3 → 5P3/2F
′ = 4 transition. The crystal is excited with

a diode-pumped semiconductor laser2. Besides the crystal the laser system contains several
optical components to ensure single-mode emission of light. The Titanium:Sapphire laser
was chosen since it was already present and installed in the lab at the start of the ABLIS
research. Another, more compact, solution would be a diode or a fiber laser.

The longitudinal modes of a laser are determined by the optical path length in its cavity.
To positively interfere with itself, the total phase shift after one pass through the ring cavity
must be a multiple of 2π. This conditions leads to the fact that longitudinal modes only exist
with a frequency ω given by [42]

ω = n
c

Loptical
, (4.1)

in which n is a positive integer number, c is the speed of light and Loptical is the optical path
length in the cavity. Thus by tuning the optical path length of the cavity, the frequency of
the nth mode can be altered. Single-mode lasing can be achieved when only one of the many
longitudinal modes comes above the so called lasing threshold due to the gain of the total
cavity, see figure 4.2.

Figure 4.2 shows the transmission of the different optical components in the Titanium:Sapphire
laser as a function of the frequency. A broad bandwidth filter is already present due to the
gain of the crystal and the reflectance of the mirrors. The birefringent filter is narrower; it
consists of a wavelength dependent birefringent crystal, which changes the polarization as a
function of the wavelength. It can be used to approach the desired frequency, but single-
mode lasing can only be achieved with the addition of two etalons, which are called the ’thick’
and ’thin’ etalon. These names refer to their length, which determines their bandwidth; the
thick etalon having a smaller bandwidth. When the transmission maxima of all components
overlap and in addition this maximum also overlaps approximately with a single longitudinal
mode of the laser, single-mode lasing can be achieved. To prevent standing wave patterns
in the gain medium, which can cause multi-mode lasing, an optical diode is placed, due to
which the light in the ring cavity can only travel in one direction.

The frequency of the laser is tuned by two components [43]. The first one is a ’tweeter’
mirror which accounts for fast cavity length variations. The other one is a rotating Brewster
plate driven by a galvanometer. Together with an internal cavity, these active controls narrow
the bandwidth to 500 kHz. However, to absolutely lock the laser to a certain transition
frequency of rubidium an external spectroscopy setup is needed, which is described in section
4.1.3.

A block scheme of the full laser setup is shown in figure 4.1. Light from the laser is sent to
the spectroscopy setup which creates an error signal. This signal contains information about
the frequency of the laser that can only be obtained with the use of some mixing electronics.
This error signal is supplied to a PID controller which is connected back to the laser.

4.1.2 Modulation techniques

Electro- and acousto-optic modulators play an important role in the laser setup, because
they can adjust the frequency of the light. Two EOMs are used; the first one for the creation
of the repump beam and the second for the generation of sidebands inside the spectroscopy
setup. An AOM is used to set the detuning of the laser, which will be explained in section
4.1.3. So before the setup is explained in more detail, the basics of EOMs and AOMs are
explained.

Electro-optic modulation

An EOM can be used to control the amplitude or phase of a light field [42]. It mainly
consists of an electro-optic material embedded between two electrodes over which a certain

2Verdi V18 by Coherent Inc.
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Laser to experiment

Figure 4.1 A block scheme of the laser setup. Solid arrows represent laser light and dotted arrows
electric connections. Light from the laser is stabilized in a spectroscopy setup by making use of a
rubidium vapor cell. Some mixing electronics are needed to get an error signal from the spectroscopy
setup. This error signal is sent to the PID controller which controls the laser frequency. To set the
detuning of the laser beam, additional elements are placed in the beam line in order to shift the laser
frequency.

Figure 4.2 Left The transmission of all optical components in the laser as a function of the frequency
ν. Right Transmission of the full laser cavity. Only one longitudinal mode will have a large enough
transmission to overcome the lasing threshold and single-mode lasing will be achieved. This figure
has been taken from [44].
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voltage is applied. Due to the electric field between the electrodes the refractive index of the
electro-optic crystal changes. The refractive index can either be linearly dependent on the
electric field, which is called the Pockels effect, or quadratically dependent, which is called
the Kerr effect. Both EOMs in the ABLIS setup are based on the Pockels effect.

When a sinusoidal voltage is applied to the crystal, the refractive index n can be written
as

n (t) = n0 + αVasin (ωFM t) , (4.2)

in which n0 is the refractive index of the crystal without an electric field, α is a material
constant, Va is the amplitude of the applied voltage and ωFM is the frequency of the applied
field. This refractive index determines the phase of the light after passing through the EOM.
After passing through the EOM, the electric field EL of the light can be written as

EL (t) = E0sin (ωt+ βVasin (ωFM t)) , (4.3)

in which E0 is the amplitude of the electric field of the light and β is the so called modulation
depth which is proportional to the before mentioned α. The modulation depth gives the phase
change of the light per volt which is applied over the crystal. An electric field with a harmonic
modulation of the phase can also be written as an infinite series of Bessel functions of the
first kind Ji (βVa) multiplied by each harmonic of the phase modulation [45]

EL (t) = E0J0 (βVa) sin (ωt) +E0

∞∑
n=1

Jn (βVa) [sin (ωt+ nωFM t) + (−1)
n

sin (ωt− nωFM t)] .

(4.4)
This equation shows that by frequency modulating a laser beam with an EOM, sidebands
are created which are shifted by an amount nωFM in the frequency domain, in which n is the
order of the sideband, which can be positive or negative. The intensity of these sidebands
is proportional to the square of the nth order Bessel function of the first kind, with the
modulation depth multiplied with the applied voltage as the argument. When filling in
approximations of the Bessel functions, the relative intensity of the first order sideband with
respect to the zeroth order can be written as

I1
I0
≈

(
βVa

2 −
(βV a)3

16

)2

(
1− (βVa)2

4

)2 . (4.5)

Acousto-optic modulation

In an AOM the light is modulated by making use of an acoustic wave that is sent through
an optical medium [42]. Due to this acoustic wave the spatial distribution in the material,
and therefore also the index of refraction, is altered periodically. This periodic variation will
act as a diffraction grating with a grating distance Λ given by

Λ =
vs
fs
, (4.6)

in which vs is the speed of light in the optical material and fs is the frequency of the acoustic
wave. The angles θ which a diffracted light beam of order n makes with the normal can be
calculated with the so called Bragg condition

sinθ = ±nλ
2Λ

. (4.7)

Since the light is diffracted from a plane that is moving with the speed of sound in the optical
material, the diffracted light will experience a Doppler shift. This Doppler shift causes the
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Figure 4.3 AOM configuration in the Bragg regime in which the incident beam as well as the first
diffracted order make an angle θB with the normal of the AOM. When the (transverse part of the)
incident light beam travels in the same direction as the acoustic wave, most of the light will be in
the minus first order, which is frequency shifted an amount −fs.

frequency in the first order diffracted beam to shift an amount fs. An AOM can thus be
used as a frequency shifter like an EOM, but an AOM also spatially separates the frequency
shifted beams.

AOMs can be separated into two regimes [46]; those for which Q� 1 and those for which
Q� 1, where Q is given by

Q =
2πλLf2

s

nv2
s

, (4.8)

in which λ is the wavelength of the light and L is the length of the crystal. The AOM in
the ABLIS setup is in the so called Bragg regime for which Q � 1. In this regime, a very
large fraction of the light can be transferred to the first order. This happens when both the
incident light beam as well as the first order diffracted beam make an angle θB ≈ λ

2Λ with
the normal, see figure 4.3.

An important feature of an AOM is the fact that the amount of diffracted light is de-
pendent on the acoustic power; a larger acoustic power will lead to more diffracted light.
Therefore an AOM can also be used to actively control the intensity of a laser beam.

4.1.3 Stabilization and Detuning

This section is dedicated to methods to stabilize and detune the laser frequency. In the first
part a brief description is given of the spectroscopy methods used. In the second part a new
method to set the detuning and its setup are proposed. The third part shows the results of
detuning and stability measurements with this new setup.

Spectroscopy methods

In previous research [22] two methods to stabilize the laser frequency were described, one
of which was frequency modulation (FM) spectroscopy and the other modulation transfer
(MT) spectroscopy. Both methods were explained in much detail. Therefore, only the basic
features of FM spectroscopy are repeated here. MT spectroscopy is not treated, since it is
not of large significance for the research described in this report.
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Figure 4.4 Schematic diagram of the spectroscopy setup. Two counter propagating laser beams
travel through a rubidium vapor cell. On of these contains sidebands created with the EOM. The
spectroscopy signal are obtained with the FM and MT photodiode. The intensity photodiode is used
to measure the intensity in the setup. Its signal is used to stabilize this intensity.

The goal of both aforementioned spectroscopy methods is to obtain an error signal as
a function of the laser frequency which can be fed back to the laser to actively control the
frequency. This error signal, also called a dispersion signal, must be linear and antisymmetric
around the desired frequency. It is measured and used as input of a PID controller 3, which
produces a feedback voltage which is fed back to the laser to control its active elements
(tweeter mirror and rotating Brewster plate).

To produce the dispersion signals in both of the spectroscopy methods a so called satu-
rated absorption spectroscopy setup is used in combination with an EOM which is driven at
6.8 MHz. The saturated absorption setup is shown in figure 4.4. In this setup, two counter
propagating laser beams travel through a cell filled with rubidium vapor. One of these beams
has traveled through the EOM before entering the vapor cell. Therefore it contains 6.8 MHz
shifted sidebands. FM spectroscopy is based on the fact that these sidebands have a different
absorption coefficient than the main band, because of their slightly shifted frequency. One
can show that the intensity Iabs absorbed by the vapor cell contains a term proportional
to cos (ωFM t), which has an amplitude that is proportional to the difference between the
absorption of the first order sideband and minus first order sideband [47]. This part of the
intensity constitutes the dispersion signal. It can be measured by measuring the transmitted
light with the FM photodiode, shown in figure 4.4. When this photodiode signal is multiplied
electrically with a harmonic signal with the same frequency ωFM and the same phase, the
required dispersion signal is obtained.

Figure 4.5 shows the dispersion signal as a function of the laser frequency for FM spec-
troscopy as well as for MT spectroscopy. It reveals the reason for the use of the saturated
absorption setup. In normal absorption spectroscopy just a single laser beam is sent through
the vapor cell. Since the atoms in the vapor cell all move with a different velocity, the
absorption signals obtained in this manner are much broader then the natural linewidth of
the transition (≈ 6 MHz for 85Rb F = 3 → F ′ = 4) due to Doppler broadening. This is
overcome with saturated absorption spectroscopy, in which a second beam is sent through
the vapor cell as well. For most atoms this has no effect, since the Doppler shift of both of
the laser beams will be different; an atom with a certain velocity not close to zero cannot
absorb photons from both beams. Only the population of atoms that have a velocity of
nearly zero can be excited by both beams, since they do not suffer from the Doppler effect.
This means that one of the beams saturates the atom population with small velocities for
the other beam. Therefore, signals obtained in a saturated absorption setup contain features
which are not Doppler broadened. For the FM spectrum this means that the widths of the

3Laselock, from Toptica Photonics
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Figure 4.5 Left The normal absorption signal, FM spectroscopy signal and MT spectroscopy signal
as a function of the laser frequency. The absorption signal shows four dips, two different transitions
for each rubidium isotope (mass number 85 and 87). Right The FM and MT spectrum zoomed in
to the region near the 85Rb 5S1/2F = 3→ 5P3/2F

′ = 4 transition (most right). The FM spectrum
shows two other large dispersion signals, which are so called crossover transitions (labeled by the
two hyperfine levels due to which they are caused). Both figures are taken from [22]

dispersion signals are of the order of the linewidth of the transitions, although the spectrum
does suffer from a Doppler broadened background. The reason for this Doppler broadened
background is not known.

A common feature in all forms of saturated absorption spectroscopy is the appearance of
crossover transitions in the measured spectra. These additional dispersion signals appear due
to the fact that an atom with a certain velocity ±v// in the direction of the laser beams can
be at resonance with one transition in one of the laser beams while also being at resonance
with an other transition in the other beam. These crossover transitions are clearly visible in
the spectra shown in figure 4.5, they are indicated with the two hyperfine levels to which the
beams excited the atom. The Doppler shifted frequency ω1 the atom experiences from one
laser beam can be written as

ω1 = ω + v//k, (4.9)

in which k = λ/ (2π) is the wave vector of the laser beam. Simultaneously the Doppler
shifted frequency ω2 the atom experiences from the other laser beam is given by

ω2 = ω − v//k. (4.10)

Solving these two equations for ω leads to

ω = ωco =
ω1 + ω2

2
, (4.11)

in which the symbol ωco is assigned to the frequency of the crossover transition, which is
exactly in the middle between every two transitions in the rubidium spectrum. The frequency
difference between the 52S1/2 F = 3→ 52P3/2 F = 4 transition and 52S1/2 F = 3→ 52P3/2

F = 2 transition is for example 184 MHz [48], which means the F ′ = 2, 4 (in which F’ denotes
the quantum number F of the excited states) crossover transition should be 92 MHz shifted
from the cooling transition.

Detuning method and setup

To test the methods to stabilize and detune the laser, a frequency metrology setup is
used to accurately measure the laser frequency. In this setup a second laser is used which
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Figure 4.6 Example of a beat note spectrum measured with the spectrum analyzer, the data was
fit with a Lorentzian function.

was already present in the lab. This laser is locked to the 85Rb F = 3 → F ′ = 4 transition
by MT spectroscopy, but is shifted -160 MHz by using an AOM. A beat note is created of
the two lasers by spatially overlapping them on a photo detector. The result of this action
is that the photo detector signal will measure a constant background with harmonic signals
on top of it. These harmonic signals oscillate with the sum and difference of the frequencies
of the two lasers, a phenomenon also known as heterodyning. This photo detector signal is
connected to a spectrum analyzer4 which measures the power of each frequency component
in the signal. The result is a spectrum which shows a peak at the frequency difference of
the two lasers, from which the frequency of one of the lasers can be determined absolutely
when the frequency of the other is known. This is done by performing a least square fit of
the spectrum with a Lorentzian distribution in Matlab. An example of a beat note spectrum
including a Lorentzian fit is shown in figure 4.6.

Previous work [22] concluded that detuning the laser frequency by exploiting the Zeeman
shift was unreliable. In this method a Zeeman shift was induced in the atoms by applying a
magnetic field, which was created with a coil around the vapor cell, through which a variable
current was sent. Another method to detune the frequency was proposed, which incorporates
the use of two AOMs. As explained in section 4.1.2 an AOM can be used to shift the frequency
of a laser beam so it can also be used to detune the laser. It is however not possible to do
this by locking the laser at the exact transition frequency and shifting it with a single AOM,
since efficient AOMs are not available at frequencies of ≈1 MHz. The proposed solution in
previous work was to use two AOMs, one to shift the frequency up and one to shift it down
again, but to a slightly different frequency. In this way also small detunings are possible. A
downside is that the system becomes more difficult to align with the addition of two AOMs.

There is another possibility to set and stabilize the frequency around the 85RbF = 3 →
F ′ = 4 transition. This method uses of the crossover transitions in the saturated absorption
spectra. Before the laser enters the spectroscopy setup it is sent through an AOM twice,
which shifts the frequency with an amount 2ωAOM . Then the frequency-shifted laser is
locked at one of the crossover transitions which is shifted an amount ωco from the 85Rb
F = 3→ F ′ = 4 transition. In this way the detuning δ of the laser is given by

δ = ωco + 2ωAOM . (4.12)

This equation shows that with this method the detuning can be set by the frequency of the

4Rigol DSA 815) (1.5 GHz)
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Figure 4.7 The double pass AOM configuration that is used in the laser setup.

AOM, with the additional advantage that only one AOM is needed. This makes the system
easier to align and makes it more compact.

A downside of using an AOM to shift the frequency is the fact that the angle under which
the first order beam is diffracted, is dependent on the frequency at which the AOM is driven.
This makes a single pass AOM configuration very impractical due to alignment issues. A
common method to avoid this problem is to use a double pass AOM configuration which is
shown in figure 4.7. In this configuration the laser goes through the AOM twice. Before the
beam reaches the AOM, a combination of a λ/2 plate and a polarizing beam splitter is used
to sent a certain fraction of the light to the frequency metrology setup. The other part of
the light is sent to the AOM. After the AOM, a lens is placed at exactly one focal length
f . The effect of this lens is that all orders are parallel to eachother afterwards. The beams
then pass through a λ/4 plate whose function is explained later. Finally a pinhole blocks the
zeroth order and transmits the (minus) first order, which is reflected back to the AOM and
diffracted once more. Since the incoming as well as the (minus) first order refracted beam
both make an angle θB with the normal of the AOM in the Bragg configuration, the direction
of the outgoing beam is independent of the frequency at which the AOM is driven. Finally,
the outgoing beam is separated from the incoming beam by the same polarizing beam splitter
as before. Since the λ/4 plate is passed twice the polarization of the outgoing beam is rotated
90◦ with respect to the incoming beam. This causes all of the outgoing beam intensity to
travel towards the spectroscopy setup. Of course, the effect of the double pass configuration
is also that the frequency of the outgoing beam has shifted 2ωAOM from the frequency of the
incoming beam.

To make the laser as stable as possible, the peak to peak amplitude of the dispersion
signal has to be as large as possible. Therefore, FM spectroscopy is chosen, since it produces
the largest crossover signals near the 85RbF = 3→ F ′ = 4 transition. The largest of these is
the F ′ = 2, 4 crossover transition, which is shifted by 92 MHz. In order to reach a detuning
between 0 and 2γ, the frequency of the AOM must be between 40 MHz and 46 MHz. These
frequencies lie within the range of frequencies for which the AOM in the laser setup5 is
suitable.

The downside of using the FM spectrum is the Doppler broadened background. Due to
this background the dispersion signal has a certain offset, which is dependent on the laser
intensity. This means that if the laser intensity decreases over time (which can happen
because of temperature changes for example) the offset of the dispersion signal drops as well.
The PID controller will then adjust the frequency such that the original value is reached
again. In other words, the frequency will slightly drift away from the set value.

The disadvantage described above can be circumvented by using the fact that the intensity
in the first order beam produced by the AOM is proportional to the AOM input power.
Therefore it is possible to control the intensity of the beam that enters the spectroscopy

5IntraAction AOM-40N
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Figure 4.8 Schematic view of the Spectroscopy intensity control loop. The first order diffracted
beam from the double pass AOM setup is sent to the spectroscopy setup, in which its intensity
is measured with the intensity photodiode (see figure 4.4). The photodiode signal is sent to a PI
controller that controls the power with which the AOM driver drives the AOM.

setup. In order to do so (a fraction of) this intensity is measured with an extra photodiode
in the spectroscopy setup (see figure 4.4). The signal of this photodiode is connected to a
home-built PI controller. This controller compares the signal with a set reference value and
produces an output signal which is connected to the AOM controller6 in order to regulate
the photodiode signal to the set value. The whole process is schematically shown in figure
4.8.

Detuning and stability measurements

A calibration of the detuning as a function of the AOM frequency, which is done by using
the frequency metrology setup, is shown in figure 4.9. The measurement is performed 4
times. In each of these measurements the intensity in the spectroscopy setup was deliberately
changed, so that the spectroscopy signal was slightly different. The set point of the PID
controller that controls the laser frequency was set to the middle of the dispersion signal
manually in each measurement. This was done in order to estimate the error in this process.

It can be seen that the detuning is a linear function of the AOM frequency of which the
slope is equal for all measurements. The range over which the frequency can be tuned is
good enough for laser cooling experiments. The offset of the different measurements is not
the same however. The reason for this variable offset is probably that the set point of one
of the lasers was slightly different each time. To overcome this problem, it would be better
to leave the set point of the PID controller at the same value all the time. This will only
be possible in case the alignment of the spectroscopy setup is exactly the same every time
since a slight change in overlap of the two laser beams in the vapor cell will already change
the spectroscopy signal. A stable alignment can be achieved by using an optical fiber to
transport the laser to the spectroscopy setup. In this way, re-alignment of the optics before
the spectroscopy setup (and double pass AOM) will cause less light to be coupled into the
fiber, but no deflection of the beam in the spectroscopy setup.

Since new elements (repump EOM and double pass AOM configuration) are added to the
spectroscopy setup, a new measurement is performed of the stability of the laser frequency.
Figure 4.10 shows the result of this measurement. It shows that over a period of two hours the
average frequency of the laser drifts slightly, but well within the performance requirements
of 300 kHz. Also the frequency variations are well within the requirements. However, they
seem to be larger than before [22]. This comparison is not completely fair however, since a
different spectrum analyzer is used to measure the stability.

6IntraAction deflector driver
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Figure 4.9 A measurement of the detuning as a function of the AOM frequency.
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Figure 4.10 A measurement of the stability of the laser frequency.
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It can be concluded that the method, in which a double-pass AOM is used and the laser
is locked at a crossover transition, works well. The laser can be detuned over the desired
range of frequencies and is stable enough to perform laser cooling and trapping experiments.

4.1.4 Repump beam

Now that the laser is stable and can be detuned, the last effort that needs to be done before
laser cooling and trapping experiments can be performed is to create the repump beam. The
amount of light needed in this repump beam to sufficiently suppress populating the unwanted
ground state is not known exactly. The repump beam is needed to depopulate the F = 2
ground state, since at the moment the beam enters the laser cooling and compression stage
a certain fraction of the population will be in this unwanted ground state. Furthermore, the
trapping laser can accidentally excite the atoms to the F ′ = 3 state instead of the F ′ = 4
state (see figure 1.3). However, this will be a very slow process since the energy difference
between the two levels is very large compared to the natural linewidth of the transitions. The
probability that an atom gets excited to the F = 3 excited state is roughly a hundred times
as small as that it gets excited to F = 4 excited state. Currently, simulations of the laser
cooling and compression are being performed at the CQT group, which incorporate the effects
of unwanted transitions and the repump beam. The goal of the experiment described here
was to create a repump beam with an intensity of at least 10% of the trapping laser, which
is expected to be more than enough for the laser cooling and compression to be successful.

An elegant way to create the repump beam is by using an EOM driven at 2915 MHz.
In this way sidebands are created which are always exactly at 2915 MHz from the trapping
laser. The major advantage of this method is that no extra laser and spectroscopy setup are
needed to create this laser beam at its desired frequency. Furthermore the repump beam is
automatically overlapping with the trapping beam.

The EOM7 used, is specifically designed for the purpose of repumping 85Rb. It can
be tuned exactly to 2915 MHz in order to minimize the reflected electrical power. A RF
function generator was used to create a harmonic signal which was connected to a high
power amplifier8. To measure the sideband intensity, again a beat note is created of the
Ti:Sapph laser and the other laser in the lab. This time the two lasers are inserted in a fiber
which is connected to a high speed fiber photodiode9, capable of measuring high frequency (3
GHz) signals. The photodiode signal is amplified and connected to a high frequency spectrum
analyzer10, which visualizes the sidebands.

Figure 4.11b shows a typical example of a measurement of the sidebands with the spec-
trum analyzer. For this measurement the Ti:Sapph laser was locked at the 85Rb F = 3 →
F ′ = 4 transition. The largest peak can be seen at ≈ 160 MHz, which is the beat note
frequency of the zeroth order beam of the EOM and the other laser. The other two indicated
peaks, at f ≈ |160− 2915| = 2755 MHz and f ≈ |160 + 2915| = 3075 MHz account for
the the beat note frequencies of the first and minus first order of the EOM with the other
laser. The other peaks in the spectrum are due to background noise as shown in Figure
4.11c. Figure 4.11c shows the same spectrum, but now with the laser shifted manually (so
not locked) ≈2915 MHz. This was done to test whether the bandwidth of the photodiode
and amplifier was sufficiently broad so that the zeroth and first order beat note frequencies
experienced an equal gain. As can be seen this was clearly not the case since the zeroth
order beat note gave a much lower signal when it was shifted. In order to get an accurate
measurement of the relative first order sideband intensity as a function of the EOM power,
spectra were measured at each power with both, the laser locked at the desired transition
and the laser shifted ≈2915 MHz. In this way a conversion factor is found between the 160

7Qubig EO-Rb85-3K
8Minicircuits ZHL-16W-43+
9Thorlabs FDS02

10Rohde&Schwarz ZVH8 Cable and Antenna Analyzer
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Figure 4.11 Typical examples of spectrum analyzer measurements of: (a) the background spectrum,
(b) the spectrum with the laser locked at the 85Rb F = 3→ F ′ = 4 transitions and (c) the spectrum
with the laser shifted ≈ 2915 MHz (manually). The plots show the power in the amplified photodiode
signal as a function of the frequency.

Figure 4.12 Measurement of the relative first order sideband intensity as a function of the EOM
voltage. The red line is a fit of the data with equation 4.5, which resulted in a modulation depth of
(23± 2) mrad/Vpp.

MHz and 2915 MHz signals. The value of this conversion factor was ≈150, but appeared
to be slightly larger for smaller input power, therefore it was determined separately for each
measurement.

The result of the measurement of the relative sideband intensity I1/I0 of the first order
sideband with respect to the zeroth order intensity is given in figure 4.12. The error bars
shown are the standard deviations of the mean of five measurements. The measurement
is fitted with equation 4.5, which leads to a modulation depth β of (23± 2) mrad/Vpp.
According to the data sheet of the EOM this modulation depth should be ∼ 15 mrad/Vpp.
The fit does not agree very well with the data, although the general trend of the fit is in
agreement with the data points. In order to do a more accurate measurement of the sideband
intensity an other photodiode should be used with a flat gain over at least 3 GHz. The goal
of this experiment was however to achieve first order sidebands with enough power (∼ 10%)
to be used as the repumper and not to fully understand the behavior of the EOM. So the
conclusion of the experiment is that satisfactory sidebands of 10% are achieved at an applied
voltage of ≈ 13V, which is reached at an RF input power of 3.5W.

This chapter gave a description of the laser system of the ABLIS setup. A double pass
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AOM configuration was added to the setup in order to set the detuning of the laser. Utilizing
this AOM the detuning can be scanned from -2γ to 0. Furthermore an EOM is used to
create the repump beam. The intensity in this repump beam can be as high as 30 percent
of the cooling beam. Therefore the laser system is now ready for laser cooling and trapping
experiments.
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Laser cooling setup

Since the laser system is completed at this point, it is possible to perform laser cooling
experiments. The experiment described in this section aims to measure the effect of laser
cooling with laser-induced fluorescence (LIF), in which the atomic beam is probed with an
additional laser beam. This laser beam induces fluorescence which can be detected with a
CCD camera. Previous work [23] showed that the atomic beam effusing from the Knudsen
cell was visible with LIF. The Knudsen cell will now be mounted onto a larger vacuum vessel
in which the atomic beam will be laser cooled in two dimensions. The efficiency of this laser
cooling can be tested with LIF. The goal of this experiment is to test the dependence of the
laser cooling on experimental parameters such as the detuning and saturation parameter.

The first section is dedicated to the experimental setup which was built in order to perform
laser cooling and compression experiments. The last section shows the results of simulations
of the experiment. These simulations are performed in order to get an idea of what the
fluorescence measurements will look like. In order to make these simulations realistic, the
exact position and velocity distributions are needed of particles leaving the tube connected
to the Knudsen cell (see figure 1.4). A Monte Carlo simulation was set up to find these
distributions. The result of this simulation is compared with measurements of the transverse
velocity distribution leaving the Knudsen cell, which were performed in previous work [23].

5.1 Experimental setup

As explained in the Introduction the atomic beam will be created from a Knudsen cell. The
atoms will effuse into the vacuum through a collimating tube. In the experiment described
here it will then be laser cooled in one dimension. The beam will then drift towards the end
of the vessel, where it is probed with a laser beam to induce LIF. The effect of laser cooling
the beam is a strong decrease of its divergence. This will be visible as a change in the size
and density of the beam in the last vessel .

A schematic view of the beam line is shown in figure 5.1. The whole setup shown is
placed on an optical table with dimensions of 2m×1m. The vacuum vessel is fabricated out
of three 100CF 6-way crosses mounted to eachother. A turbo-molecular pump is connected
to the center vessel which can bring the pressure down to ∼ 10−7 mbar. The atomic beam
is created by the Knudsen cell, which is made from a 16CF cross piece. A schematic view
of the Knudsen cell is shown in figure 5.2. The lower part of the Knudsen cell is a flexible
bellows piece, in which the rubidium is contained. To load the Knudsen cell, the cross piece
is opened and a glass ampule containing rubidium is placed in the bellows. After closing up,
the bellows can be bent in order to break the ampule and release the rubidium. By heating
the Knudsen cell, the rubidium melts and creates a vapor pressure due to which atoms will
leave the cross piece through a tube with a length of 105 mm and an inner radius of 1 mm.

The Knudsen cell is heated with four heaters connected to each flange of the cross peace
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Figure 5.1 Schematic view from the top of the experiment. The laser beams are indicated in red
and are dotted to indicate where they are under the vacuum vessel. The small chamber on the left
is the Knudsen cell, which is connected to three larger vacuum vessels. The beam enters the table
from a fiber coupler, after which it is expanded by two lenses with focal lengths f1 = 25mm and
f4 = 150mm. Part of the laser beam is split off to form the LIF beam. The remainder is split into two
parts, which form the laser cooling beams. These are expanded in two directions by the cylindrical
lenses, with a focal length f3 = −50mm and f4 = 250mm. Three periscopic mirror configurations
transport the laser beams from the table level to the middle of the vessel. The atomic beam effusing
from the Knudsen cell is cooled in the first vessel and probed with a laser beam in the last vessel.
The figure is not drawn to scale.
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105 mm

Bellow with 
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Figure 5.2 Schematic view of the Knudsen cell, which is fabricated from a 16CF cross piece. A
bellows is attached to the bottom with which a glass ampule of rubidium in the inside of it can be
broken. The rubidium can escape from the tube with a length of 105 mm and an inner radius of 1
mm.

and one heater to the bottom of the bellows. Thermocouples are connected to the center of
the cross piece as well as the bottom of the bellows. They are read out by two temperature
controllers1 which independently control the power of the heaters connected to the bellows
and the cross piece, so that a constant temperature distribution can be reached in the Knud-
sen cell. Furthermore, a heating wire is wrapped around the exit tube in order to prevent the
rubidium from clogging it. The temperature of the cross piece and the tube are controlled
independently from the bellows, so that they can be kept at a higher temperature. The idea
of this measure is that most of the rubidium will stay in the bellows instead of precipitating
on the walls of the cross piece and the tube.

The light of the laser system, described in chapter 4, is transported to the experiment
with an optical fiber. As a free space beam, it is first magnified by two lenses (f1=25 mm and
f2=150 mm, see figure 5.1), after which its transverse size2 is 3 mm. A combination of a λ/2
plate and a polarizing beam splitter splits off a fraction of the beam, which is used as the LIF
probe beam. The rest of the beam is split into two beams of equal fractions with a λ/2 plates
and a polarizing beam splitter to create the two cooling laser beams. These are expanded in
the z-direction by two pairs of cylindrical lenses (with focal lengths f3=-50 mm and f4=400
mm, see figure 5.1). After this expansion the aspect ratio of the beam is 8, meaning that
the size in the z-direction is 24 mm. Part of the expansion happens in the vertical direction,
since the beam is transported from the table level to the middle of the vacuum vessel by
means of a periscopic configuration in between the two cylindrical lenses. The fluorescence
light in the last vessel is imaged on a CCD detector3 through the top viewport of the last
vessel (the imaging optics and detector are not indicated in figure 5.1).

The downside of the laser configuration in the experiment is the fact that the frequency
of the LIF beam cannot be tuned separately from the frequency of the trapping laser. This
will be no problem for a proof of concept measurement to show that laser cooling of the
rubidium beam works. However, it can become a problem for measurements of the effect of
the detuning on the efficiency of the laser cooling, because changing the detuning will also
change the fluorescence signal. Simulations have to be performed to test the severeness of

1OMROM E5CN-H
2The radius at which its intensity has dropped a factor e−

1
2

3Apogee Alta U47+ camera with a e2v CCD47-10 CCD sensor
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this problem. A possible solution could be to add two double-pass AOMs to the setup to
change the frequency of the LIF beam or to use a second laser.

5.2 Tube simulations

As explained in the beginning of this chapter, simulations are performed of the laser cooling
experiment to test what results we can expect from LIF measurements. To make these sim-
ulations as realistic as possible we need to know what the probability distribution functions
of the position and velocity of the particles will be when they leave the collimating tube of
the Knudsen cell. In previous work measurements were performed of the transverse velocity
distributions (an example is given in figure 5.5), by scanning the detuning of the LIF beam.
Furthermore, a theoretical mode is known of such a collimating tube, which was made by
Olander et al. [49]. The theoretical model however predicts the probability distribution
function of the angle with which the particles leave the tube instead of the transverse ve-
locity. These two are hard to connect since the temperature of the tube is different from
the temperature of the Knudsen cell. Particles that collide with the tube will most likely
thermalize with this other temperature. This process makes a calculation of the transverse
velocity distribution difficult. So to connect the measurements to the theoretical model, a
Monte Carlo simulation is done, whose results can be compared with both.

5.2.1 Simulation setup

The following conditions are used to set up the simulation:

• The particles do not interact, i.e., the only way their trajectory is changed, is by
collisions with the wall. This is the so called transparent regime in which the mean
free path of the particles is much larger then the length of the tube. For a tube with a
radius of 1 mm and a length of 105 mm, this holds for temperatures T < 100◦C [23]

• The particles that enter the tube are distributed according to a Maxwell Boltzmann
distribution f (vi) with the temperature Tknudsen of the Knudsen cell, i.e.,

f (vi) =

√
m

2πkbTknudsen
e
− mv2i

2kbTknudsen , (5.1)

in which vi is the velocity in direction i. For the x- and y-direction the velocities are
chosen from the interval −∞ < vi <∞ and for the z-direction from the interval vz > 0.

• The transverse position distribution of where the particles enter the tube is uniform
and uncorrelated with the initial velocity distribution.

• Particles that collide with the tube wall, will be diffusely reflected, i.e., the probability
dS that a particle leaves the tube wall in the infinitesimal solid angle element dΩ is
given by [50]

dS =
cosθ

π
dΩ, (5.2)

in which θ is the angle with the normal of the tube. The infinitesimal solid angle
element can be written as

dΩ = sinθdφdθ. (5.3)

Therefore the probability distribution function f (θ) for the angle θ is given by

f (θ) = 2cosθsinθ, (5.4)

in which the factor 2 appears due to normalization of the distribution.
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• The particles that have collided with the tube are fully thermalized with the temper-
ature of the tube Ttube, i.e., the probability distribution f (v) of the magnitude of the
velocity v is given by a Maxwell Boltzmann distribution with temperature Ttube,

f (v) =

(
m

2πkbTtube

) 3
2

4πv2e
− mv2

2kbTtube . (5.5)

In the simulation a particle starts at the beginning of the tube, i.e., z = 0. The transverse
initial positions x0 and y0 are chosen randomly out of a uniform distribution, but in such
a way that

√
x2

0 + y2
0 < rt, in which rt is the radius of the tube. The velocities are chosen

randomly out of the distributions given in equation 5.1. With the initial positions and
velocities, the position at which the atom hits the tube for the first time is calculated. This
is done by equating the time dependent radial position to the radius of the tube√

(x0 + vx,0t)
2

+ (y0 + vy,0t)
2

= rt. (5.6)

This equation is solved for the time, leading to

t =
−vx,0x0 − vy,0y0 +

√
r2
(
v2
x,0 + v2

y,0

)
− (vy,0x0 − vx,0y0)

2

v2
x,0 + v2

y,0

. (5.7)

The coordinates x, y and z at which the atom hits the tube wall for the first time are
calculated with,

x = x0 + vx,0t,

y = y0 + vy,0t and

z = z0 + vz,0t.

(5.8)

The next step is to randomly pick an angle with which the atom leaves the tube according
the distribution function given in equation 5.4. This is the angle the new trajectory of the
atom makes with the normal of the tube. Furthermore a polar angle φ is picked randomly
from a uniform distribution between 0 and 2π and a velocity v is picked randomly from
the distribution given in equation 5.5. From these three variables the three new velocity
components vx, vy and vz can be calculated. This is done by first calculating the velocity v⊥
perpendicular to the surface, the velocity vz in the z-direction and the other velocity in the
plane tangent to the surface of the tube v//. From figure 5.3 these velocities are determined
to be

vz = vsinθsinφ,

v// = vsinθcosφ and

v⊥ = vcosθ.

(5.9)

The relation between v⊥ and v// on the one hand and vx and vy on the other hand is
dependent on the angle α, which is defined in figure 5.4 and equal to

α = arctan
y

x
. (5.10)

Using this value of α, vx and vy can be written as

vx = vx,2 − vx,1 = v//cosα− v⊥sinα

vy = −vy,2 − vy,1 = −v//sinα− v⊥cosα
. (5.11)
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Figure 5.3 A schematic view of the three velocities v⊥ perpendicular to the surface, vz in the
direction of the tube and v// in the plane of of the tube and perpendicular to vz.
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Figure 5.4 A schematic view of the the relation between v// and v⊥ on the one hand and vx and
vy on the other hand.
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5.2 Tube simulations

Now the new position, velocity and direction of the particle are known the next position
where the particle hits the tube is calculated. First, the time which is needed to reach the
wall of the tube again, is calculated. Since the particle is at the tube wall now x2 + y2 = r2

t .
With this constraint, solving equation 5.6 leads to

t = −2 (xvx + yvy)

v2
x + v2

y

. (5.12)

This time is substituted in equation 5.8 together with the old positions x,y and z (filled in as
x0,y0 and z0), to find the new positions again. This procedure is repeated until the particle
leaves the tube, which happens when either z < 0 or z > L, in which L is the length of the
tube. When z > L the transverse positions xend and yend where the particle leaves the tube
are calculated. The time needed to reach the end of the tube from the last position at the
wall is given by t = L−z

vz
. Therefore xend and yend are given by

xend = x+ vx
L− z
vz

yend = y + vy
L− z
vz

.

(5.13)

To make the statistical error in the obtained distributions as small as possible, the whole
procedure is repeated a certain number of times such that the number of particles which
reaches z > L is ten million.

5.2.2 Simulation results

A plot of the angular distribution obtained with the simulation is shown in figure 5.6, which
also shows a theoretical angular distribution. Both were obtained for a tube with a radius of
rt=1 mm and a length of L=105 mm. The angular distribution gives the probability that a
particle leaves the tube under an angle θ with the normal of the tube exit. The theoretical
distribution f(θ) was derived by Olander et al. [49]. With this distribution the probability
dP that a particle leaves the tube through the solid angle element dΩ = sin θdφdθ can be
written as dP=f(θ)sin θdφdθ. Therefore the distribution plotted in figure 5.6 is sin θf(θ). As
can be seen, the simulated distribution is exactly the same as the theoretical one.

The most important information obtained from the simulation is the transverse velocity
distribution. Figure 5.5 shows the simulation result for the transverse velocity distribution
together with a measurement performed in previous work [23]. The simulation was performed
for equal temperature of the Knudsen cell as in the experiment, i.e., Tknudsen= 80◦C. The
temperature of the tube was taken at 100◦C, although it is not sure this was also the case in
the experiment.

In general, the two are very much alike, the widths of the distributions are of the same
order. However, the measurement seems to be broader in the center and has a less extended
’tail’. The reason for this difference can be caused by several experimental issues. First of
all the measurement was performed with two laser beams in the vessel, instead of only the
LIF beam. They were spatially separated from each other, but it is not certain the second
beam or a reflection of it did not interact with the atoms in the imaged part of the vessel.
Also, after taking apart the setup, the tube of the Knudsen cell was found to be bent a little
bit, which also may have disturbed the measured velocity distribution. It can however be
concluded that the analytical model describes the velocity distribution function well, since
the simulation results are in general in agreement with the measurements as well as with the
model.

An interesting feature of the simulations is the fact that it can test whether there is a
correlation between the radial position r at which a particle leaves the tube and the angle
θ under which it does it. If this is not the case, simulations of the tube are not necessary
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Figure 5.5 A plot of the transverse veloc-
ity distribution obtained from the simulation
(blue histogram) and from the measurement
(red line). The data of the measurement was
taken from [23].
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Figure 5.6 A plot of the theoretical angular
distribution (red line), and the angular dis-
tribution obtained with the simulations (blue
line).

anymore in the future, since all information about the distributions is known. The probability
distribution f(r, θ) at the exit of the tube can then be written as f(r)f(θ). These analytical
distributions could then serve as the starting point of any laser cooling simulations.

In order to test the existence of correlations between r and θ, it is assumed that the
position distribution is uniform, i.e., f(r) ∝ r. If the position and angular distribution
would be uncorrelated the combined probability distribution would be equal to the product
of the individual distributions, i.e., f(r, θ) ∝ rf(θ). Figure 5.7 shows a density plot of this
distribution as well as one of the simulated distribution. Overall, the two are very similar,
but there is a subtle difference. The simulated distribution seems to be rotated a little bit,
which indicates a small correlation. The explanation of this effect is as follows. Assume a
particle leaves the tube under a certain angle θ at a radial position r. Then the last position
at the wall of the tube zlast is given by

zlast = L− rt + r

tanθ
. (5.14)

Furthermore, a particle has a larger probability of originating from a smaller zlast, since
a particle simply has a larger transmission probability for smaller longitudinal positions.
Therefore a particle has a larger probability of leaving the tube at larger radial positions, but
how much larger is dependent on the angle with which it leaves the tube, due to the 1/tanθ
term in equation 5.14. In principle it should be possible to calculate the θ dependent radial
position distribution, which takes into account the correlation, but it is outside the scope
of this thesis. To make the simulation in section 5.3 as realistic as possible and take the
correlation between r and θ into account, the positions and velocities of simulated particles
in this section are used as the starting positions and velocities in the laser cooling simulations
in the next section.

5.3 Laser cooling simulations

Now that we know the velocity and position distribution of particles leaving the collimating
tube of the Knudsen cell, it is possible to perform simulations of the laser cooling experiment.
In order to do so a software called COOL is used [51]. As input for this software the
simulation results of the previous section are used, i.e., the end positions and end velocities
of the simulated particles. The COOL software propagates the particles through the laser
cooling stage and determines the probability that a particle absorbs a photon during each of
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Figure 5.7 Left: Theoretical probability distribution f (r, θ) under the assumption of a uniform
position distribution and no correlations between θ and r. Right: Simulated probability density
distribution.

the time steps. Whether the particle actually absorbs a photon is based on a Monte Carlo
algorithm. When this happens the atom experiences the recoil momentum kicks as discussed
in section 1.3.

The configuration used in the simulations is based on the experimental setup discussed
in section 5.1. Two uniform, counter-propagating radiation fields are applied to the atomic
beam which extend over 5 cm in the longitudinal direction and are cut off at 2.5 mm in the
transverse direction. The atoms then propagate 60 cm in the z-direction to a second laser
beam whose rms transverse size is 3 mm. A shutter time of the CCD camera was assumed
of 1 s. Which part of the fluorescent light is captured in the image of the CCD-camera
within this shutter time was determined in previous work [23]. This was implemented in the
simulation such that realistic pixel counts are obtained. The simulations were performed for
different detunings δ and saturation parameters s of the laser cooling field. The power in
the LIF beam is always kept at 1 mW, which matches a saturation parameter of sLIF ≈ 1.
Unless stated otherwise, the detuning δLIF of the LIF beam is kept at the same value as δ.

Figure 5.8a shows an example of what the CCD image will look like. This simulation was
performed for δ = −γ2 and s = 1. The average number of counts per pixel in the illuminated
part of the image is well above the noise level of the camera, so it can be concluded that
the effect of laser cooling should be experimentally realizable. Simulations like this one are
performed for different detunings and saturation parameters.

To quantify the effect of changing the laser cooling parameters, for each simulation the
number of counts in the center ten percent of pixels of the center column (indicated by the
red box in figure 5.8) is calculated. Figure 5.9 shows the result of this number of counts
as a function of the saturation parameter. By taking this number of counts, we only look
at a certain fraction of the total phase space volume and all counts in that fraction are
summed. A certain phase space volume is selected since we only look at the center part of
the beam, i.e., we only look at particles for which |x| < 0.1lCCD, in which lCCD is the size
of the CCD detector. Furthermore we only look at particles for which the Doppler shift is
smaller than the linewidth of the transition, which means we already select atoms based on
their x-velocity. Therefore the number of counts in that volume should be proportional to
the phase space density, i.e., the reduced brightness, of the beam. To see if this is indeed
true, the reduced brightness is also plotted in figure 5.9. This brightness is calculated by
determining the radius of a circular area that includes 1 nA of current. From all particles
within this radius the brightness is calculated according to equation 1.1. As can be seen the
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Figure 5.8 a. A plot of a simulated CCD image for δ = − γ
2

and s=1. The z position is measured
from the end of the tube. The red box indicates the pixels that are integrated in order to quantify
the laser cooling. b. Plot of the center row of pixels against the detuning (s=1).

number of counts in the earlier mentioned region is indeed a good measure for the brightness.

To see the effect of changing the detuning, figure 5.8b shows a plot of the center column
of pixels (at the highest intensity of the LIF beam) as a function of the detuning. As can be
seen, the fluorescence profile is broader when the detuning is larger (more negative). This is
due to the fact that laser cooling is less effective for larger detunings. For larger detunings
the fluorescent profile also slightly shifts away from the center of the beam line, as is most
clearly visible at δ = −2γ in figure 5.8b. This is caused by the fact that the detuning of
the LIF beam is equal to the detuning of the laser cooling beam. When the LIF detuning is
larger, the population of atoms that will absorb photons is shifted to higher velocities, since
these atoms will be resonant with the laser beam due to the Doppler shift. Due to the drift
of the atoms this population is however also displaced from the center of the beam.

In order to better quantify the detuning data, again the number of counts in the center
ten percent of pixels of the center column is calculated. Figure 5.10 shows a plot of this
number against the detuning. To check whether it is a problem that the detuning of the LIF
beam cannot be set separately from the detuning of the cooling beam, figure 5.10 also shows
the same results but for δLIF = 0. As can be seen it gives a bit higher number of counts
at larger detunings. This is caused by the fact that it always excites the atom population
with a velocity around 0 m/s, which is also the population in the center of the beam, due to
the drift of the atoms. The difference between the two is not very large however, so it can
be concluded that it is no problem that the detuning of the LIF beam cannot be detuned
separately from the cooling beam.
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Chapter 6

Conclusion

The Atomic Beam Laser-cooled Ion Source (ABLIS) is a new source for focused ion beams
(FIBs), which are popular tools to measure and modify structures at the nanometer length
scale in the semiconductor industry. In the ABLIS an atomic beam is made with a Knudsen
cell filled with rubidium vapor. The rubidium leaving the Knudsen cell forms an atomic
beam which is laser-cooled and -compressed in two dimensions. When leaving the Knudsen
cell the atoms go through a collimating tube, which aims to let through the atoms that can
be cooled and compressed but sent back the atoms that can not. In this way the lifetime of
the system will be increased, since the rubidium in the Knudsen cell is depleted on a slower
pace. After the laser cooling and compression stage the beam is photo-ionized by means
of two very intense lasers and the ions are immediately accelerated to their required energy
(mostly 30 keV). Finally it is focused to an as small as possible spot with an electrostatic
lens configuration.

The first two chapters of this report were dedicated to investigations of the performance
limits of an ABLIS-based FIB. The last two chapters described the progress made in its
experimental realization.

In chapter 2 the effect of disorder-induced heating on the ion beam quality was investi-
gated. Previous work [22] included predictions that the brightness of the atomic beam after
the laser cooling and compression stage can be as high as 2 · 107 Am−2sr−1eV−1. However,
particle tracking simulations showed that when this beam is ionized, a lot of this brightness
is lost due to disorder-induced heating at current above ≈20 pA. More investigations were
needed to better understand the phenomenon, especially its dependence on experimental pa-
rameters such as the acceleration field strength Ea, the flux density φ and the beam current
I. In this report an analytical model was set up to describe the evolution of the velocity
distribution in the extended regime and inside the acceleration stage. Furthermore, particle
tracking simulations were performed to investigate the effects in other regimes, such as the
pencil beam regime, and in the whole setup.

The analytical model was based on the extended two particle model by Jansen et al. [28].
A first order perturbation approximation and the assumption of an extended beam had to
be made to find an analytical solution to the problem. Therefore the result, an equation for
the width of the velocity distribution as a function of experimental parameters, is only valid
while the beam is inside the acceleration stage and for large currents (I &10 nA). When
these constraints are fulfilled the evolution of the velocity distribution is described very well,
as was verified with particle tracking simulations. As expected it predicted a larger beam
temperature for smaller acceleration fields Ea and larger flux densities φ.

Particle tracking simulations showed that the pencil beam regime, in which no transverse
heating of the beam takes place, could be extended by applying a larger acceleration field.

It was found that the current at which the pencil beam regime ends, scales with E
2
5
a and φ

1
5 .

With practically realizable acceleration fields (≈5 MV/m) it is possible to extend the pencil
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beam regime to ≈70 pA. The acceleration field may be as small as 50 kV/m to sufficiently
suppress disorder-induced heating at a current of 1 pA.

In the third chapter, the knowledge about disorder-induced heating acquired in chapter
2 is used to analytically predict the minimum spot size that can be reached with the ABLIS
focused ion beam. The electric field needed to suppress disorder-induced heating is used to
calculate the energy spread, and thus the chromatic aberration of the lens system, associated
with it. The effects of the brightness and chromatic and spherical aberration of a realistic
lens system are combined into a single spot size. This analysis revealed that a spot size of
0.2 nm can be reached at a current of 1 pA. At this current the spot size will be limited by
spherical aberration and the brightness of the beam. However, in order to reach this small
spot size, the size of the ion beam has to be large (≈10 µm) at the objective lens. This can
only be reached with either an ion beam line of at least ≈2.5 m or an extra lens. A particle
tracking simulation was performed of the complete ion beam line, including an additional
Einzel lens to create the large beam size at the objective lens. The simulation confirmed the
analytical result that a spot size of 0.2 nm can be reached. The ion beam length to reach
this spot size was only 68 cm due to the added Einzel lens.

The fourth chapter dealt with experimental work in which the laser setup was extended
and prepared for laser cooling and trapping experiments. A method is implemented to detune
the laser frequency in which is made use of a double pass AOM configuration. By conveniently
locking the laser to the F ′ = 2, 4 crossover transition, only one AOM is needed. This AOM is
passed twice so that no laser beam deflection occurs after passing through the configuration.
By changing the frequency of the AOM, the detuning of the laser frequency from the 85Rb
laser cooling transition can now be set from -2γ to 0. Furthermore, a repump beam is created
by using an EOM. By driving the EOM with an RF frequency equal to the difference between
the cooling transition and the repump transition, the first order sideband of the EOM can
be used as the repump beam. At an RF input power of ≈3.5 W the intensity of this first
order sideband was ten percent of the intensity of the zeroth order. This should be more
than enough to perform laser cooling and trapping experiments.

In the last chapter, an experimental setup to perform laser cooling experiments is de-
scribed. This setup was built in the lab and aims to measure the effect of the detuning δ and
the saturation parameter s on the laser cooling. The earlier constructed Knudsen cell [23] is
mounted on a larger vacuum system which is placed on an optical table at which the optics
for the laser cooling experiment are mounted. Directly after leaving the collimating tube of
the Knudsen cell, the atomic beam will be laser-cooled in one direction. The beam will then
drift to the end of the vacuum system where it will be probed by another laser beam. This
beam will induce fluorescence which is measured with a CCD-detector.

To test the performance of the setup, simulations were performed of the laser cooling and
laser induced fluorescence. As input for these simulations a position and velocity distribution
of particles leaving the collimating tube is needed. Measurements of the transverse velocity
distribution of particles leaving the tube were performed in previous work, but were not
fully understood yet. Therefore, a Monte Carlo simulation was set up of the particles in
the collimating tube, in order to find the desired distributions. The result of this simulation
is in good agreement with the earlier performed measurements of the transverse velocity
distribution as well as with an analytical model of the angular distribution, by Olander et
al. [49].

The output of the tube simulation, i.e., the position and velocity distribution of particles
leaving the tube, was used as the input of laser cooling simulations. These simulations are
performed with COOL [51], a code that is also based on a Monte Carlo algorithm. It tracks
the positions and velocities of a certain number of particles through a region with laser
radiation. With the results of this simulation the positions and velocities of the particles are
calculated at the position of the LIF beam. The results show that it is possible to measure
the effect of δ and s on the laser cooling with laser-induced fluorescence; it is possible to
extract a measure for the brightness of the laser-cooled beam from the LIF data.
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