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Abstract

The Gate Array placement and routing System (GAS) developed at the Eindhoven University of
Technology is a CAD Tool for designing integrated circuits based on semi-custom technology. The system
consists of software modules which perform separate steps in the design process. A chip design starts with
a description of the gate array core and the macro library in a Gate Array Description Language (GADL),
for which a new definition is proposed. GADL has facilities for both specifying the gate array image (the
"'nude’ chip area) and the appropriate macros in one grammar. Next, this description must be compiled into
a database, which is done by the imagecompiler described in this report. The database is common to GAS ,
and has a human readable format. The size of the database is dependent on the size of the macro library,
but it is largely independent of the image description.

The following steps in a design process are performed by the placer, global router, local router , and the

mask-generator, respectively.
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1. Introduction

In the most recent decades of the electronics industry, a number of ways to implement designs are
deployed. Basically we distinguish three methods :

» Discrete design
« Semi Custom design

o Full Custom design
The order shown indicates increasing cost, turn around time and density.

Discrete design uses standard off-the-shelf components and these are interconnected externally, for
example on a printed circuit board. This technique has advantages for rapid prototyping, but designs
quickly tend to become bulky and there is little protection against unauthorized copying. Also, reliability of
the realized design is a matter of concern.

At the other end of the scale there is Full Custom design. Its main advantages are a high density, a high
reliability, good protection against piracy. However, these virtues are compromized on by some other facts:
Full Custom is not profitable if not used in high volume applications, and the turn around time is quite long
(months). Furthermore, flaws in the design will carry a huge price tag.

Semi Custom design fills the gap between Discrete and Full Custom Design. The method is based on
standard parts which can be customized within reasonable time (weeks) at a low cost per chip. This makes
the integration of a circuit profitable at much lower volumes than Full Custom design.

1.1 Semi Custom design
There are a number of forms known; the basic three are:

« Field Programmable ICs
o Gate Arrays
» Poly Cell design

The order shown is increasing cost, turn around time and density.

Field programmable ICs are completely finished (from the manufacturer’s point of view) and usually put
into packages. Customization is done by the customer himself ("in the field") and has to be done very
carefully. In general, no repair is possible in case of mistakes. An example of this kind of semi custom
design is PAL (Programmable Array Logic), which can be customized by blowing fusable links.

The second kind of design is quit different : the chips initially are finished up to the metalization phase. To
complete the metalization, the customer has to design the needed masks, which will be applied by the chip
manufacturer. The metalization is considered here as the customization, and this completes the chip. A
large library of often needed cells, called a macro library, is used to speed up the design. These macros can
be seen as metal wire patterns, which, when mapped onto the gate array, perform a specified function. The
performance of these macros is guaranteed by the manufacturer.

The Poly Cell approach needs much more layout design. A large library of standard cells is used to speed



up the design. The cells stored in the library are essentially the same as those for the gate array method;
however, the complete layout is stored instead of just metalization patterns. This enables a higher density to
be achieved, but this method is more time consuming.

1.2 Automation of the gate array design process

Usually, the chip manufacturer provides the software needed to aid the design process. The software is
dedicated to a particular type of gate array, and even the hardware to run the programs might be prescribed.
This creates a monopoly situation for the manufacturer.

To facilitate the development of circuits based on gate arrays in a technology and manufacturer
independent way, a Gate Array placement and routing System (GAS) is developed at the Eindhoven
University of Technology [Jess86]. The system consists of software-modules, each performing a specific
task in the design process, and the modular approach provides for flexibility in two respects: first, when
better algorithms become available a module can be rewritten and the old one exchanged, and secondly the
design system is not limited to a specific technology. Furthermore, the design system has an open
architecture and runs on a variety of hardware platforms.

The entry to the GAS is a chip description written in GADL, the Gate Arry Description Language. GADL
facilitates an easy and hierarchical way of describing gate array features, as well as a concise description of
the set of predefined function blocks called the macros. The description in GADL will be compiled into a
database common to all the GAS modules, and this compilation is done by the GADL compiler. The main
focus of this report is at the definition of GADL and at the development of the GADL compiler.

1.3 Gate Array Features

In order to appreciate the way gate arrays are described in GADL, we first need to look at some basic
features of gate arrays.

Gate arrays can be seen from a very detailed point of view : one can study features of individual
components such as transistors and capacitors. A more hierarchical approach groups together those compo-
nents into basic cells which are the basis for the description in GADL. Common to most gate arrays is a
rectangular layout of basic cells, the cells repeated in rows and columns on the chip area. Often, but not
always (e.g. the Sea Of Gates Concept) the basic cells are separated by routing channels. The area thus
formed is often called the gate array image (or, for short, the image), to which the customization is to be
applied. Surrounding the image are the Input/Output buffers and bonding pads, which usually don’t offer
much space for routing. Figure 1.1 shows some typical examples of gate array layouts.
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Figure 1.1. Examples of gate array layouts

The above mentioned routing channels may consist of various components: they range from a few
orthogonal tracks to constructions with prefabricated underpasses with fixed or programmable contacts to
the metal layers above. The gate array cells are more complex, since they usually contain a number of
active components which enables one to build a set of functions in a particular technology. The basic cells
are referred to in GADL as core cells. Figure 1.2 shows some types of cells. A combination of core cells
and a suitable wiring pattern enables the designer (or the chip manufacturer ) to build logic functions such
as flipflops, nands, and the like. These wiring patterns are referred to in GADL as stamps.
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Figure 1.2. Core cells

Nearly all gate array designs limit the wiring to orthogonal directions, on predefined tracks. Non
orthogonal wires are usually provided by the gate array foundry.

The above mentioned properties lead to the use of an orthogonal three dimensional grid for the modeling
and description of core cells and routing features in GADL.

A description of the core cells and the macro library is insufficient for GAS to complete a design: apart
from all the design info some extra information for the routing phase is needed. To guide the router, costs
and designrules can be described in GADL. Cost statements are used to force certain routing decisions e.g.
make a routing path attractive by specifying lower costs for particular edges. Designrules stem from
physical limitations (technology dependent), and therefore may not be violated. Finally, GADL provides



statements in which distances between gridlines and widths of the various components (wires, vias and
holes) can be expressed. '



2. GAS overview

The layout of the Gate Array design System is given in figure 2.1. At the top level, there are two
descriptions needed to inititate the realization of a design. First, a description concerning the gate array
image and the macro library has to be supplied. This description is written in GADL, and it describes those
parts of the chip substrate that are of importance to the placing and routing phases, and it also describes the
collection of functions available for customizing the image.

Secondly, a description reflecting the design is to be supplied, which can be generated by hand or by a
schematics entry tool, consisting of a net-list, a module-list, and some other information (see also [Huijo0]

and [Sien90}).
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Figure 2.1. GAS framework

The GADL compiler takes the gate array description and compiles it into a library of macros and a core
database, dubbed "Common Database" in figure 2.1. Other entries in this database are made by the design
compiler, which translates the design description into the database format.

The next step in the design process is placement of function blocks. The placement procedure consists of
two phases : global placement and detailed placement. First, the global placement subdivides the image
into cells and attempts to assign a cell-location to each macro, whereas the detailed placer subsequently
tries to find a legal placement and an appropriate stamp for each macro. Currently there are placers based
on three different principles: simulated annealing ( [Jon84] and [Otten84]), eigenvalue decomposition
([Frankle86}), and random placement.

Following the placer comes the routing phase, which is also split in two pieces: a global- and a detailed
routing program. The global router determines the interconnect between the cells mentioned above, while
the detailed router determines the layout of the interconnect inside cells. The principles underlying the
routing phase are detailed in [Lee61],[Nuij85] and [Slen85].

To obtain masks for the concluding customization process, a mask generator (the arrow between "Common
Database" and "ldm" in figure 2.1) takes the information generated by the router and generates the needed
factory-ready information.

The items covered in this report are within the dashed box in figure 2.1.



3. Language definition

Input to the GADL compiler is a description of the image, together with a macro library, technology
information, designrule and cost functions.

As an introduction to the GADL compiler, we will first introduce some basic notions and design
considerations. Next, we will look at the language itself and the facilities it provides for supplying all the
information needed.

3.1 Basic notions

The description of the gate array chip in GADL is hierarchical, and this is based on looking at the chip
from two points of view.

In one view, this is the chip as it is supplied by the foundry, having no customization applied. At the other
side, we look at the applicable customization patterns. Descriptions written in GADL however must be
created bearing in mind that GADL only describes the features of importance to the placement and routing
phases.

In GADL, the description of the "bare" chip is contained in two blocks, a block called MASTER and a
block containing all the CORE_CELLs. The latter block details the basic patterns which are repeated in
rows and columns over the chip area. The description consists of layer properties, wiring patterns,
designrules and cost functions. This block is the lowest level in the hierarchy. The MASTER block deals
with features which apply to the entire chip and therefore cannot (conveniently) be described in the
CORE_CELLs. (Wires "between” core cells are examples of such a feature, and the placement of the core
cells themselves is another example). Added to the MASTER level are statements to describe technology
dependent characteristics, such as distances between gridlines and widths of wires and vias.

The customization patterns are specified in the third block in GADL, the block which contains the
MACROs.

This part has descriptions of the macro library applicable to this particular image. A macro is considered
here as a functional item , e.g. a flipflop or a counter. Depending on the exact position on the chip and the
underlying CORE_CELL(s), such a functional item has a number of physical implementations. To describe
these, each MACRO has one or more STAMPs, each stamp being an implementation and having its own
allowed positions on the chip.

Stamps differ, generally speaking, in geometric shape, area and performance. To facilitate a hierarchical
design, a stamp can be constructed with some basic statements ( wiring, etc.) and calls to other stamps.
This latter feature will cause the called stamps to be "incorporated” in the stamp under construction. Note
that this process is not performed by the compiler. From a physical point of view it should be clear that
recursion is not allowed. In appendix A a syntax diagram of GADL is presented.

3.2 Input file structure.

The GADL input file is logically divided into three parts :

i First, we have a section describing features of the entire gate array image, this section is called
MASTER.

ii.  Following is the CORE_CELL section, which has the description of all the basic cells the
image consists of. Certain defaults can be set for each core cell.

ili.  The last section is the MACRO section, which describes the macro library applicable to this
particular image.



The three parts mentioned above may be preceeded by an optional section containing DEFINEs, in which
integer constants can be given convenient names.

GADL is easily described in SBNF, which will be used here to explicate the various parts of the language.
Appendix C contains a syntax description of SBNF. A complete and valid input description written in
GADL has the following syntax:

<sentence> = [<defines>] <master> <core_cells> <macros>.

Nested C or PASCAL style comments may be used inside a sentence.

Syntax of the optional DEFINE part :

<defines> = { "DEFINE" { <define_name> <integer> }+ }+.

semantics:
DEFINE allows integer values to be associated with identifiers, as to clarify the input description.

examples:
DEFINE vddS5
max 100
DEFINE  drl_offset -2
num_y 1

3.3 Syntax of the MASTER section

The image is described in the master statement,

syntax:

<master> = " MASTER " <master_name> "(" <align> <layers>
[<dimension>] <calls> [<nets>] [<npwirings>]
[<drl>] [<cost>] <distances> <widths> ")" .

<align> u= " ALIGN " <neg_number> <neg_number>.

<layers> := { "LAYER" { <layer_name> ("FIX(ED)?"|
"PROG(RAMMABLE)?") ("FIX(ED)?" |
"PROG(RAMMABLE)?") }+ }+.

<dimension> = " DIM(ENSION)? " <number> <number>.

<number> = <define_name>i<integer>.

Note : w1(w2)? means : wl is shorthand for wlw2, specifying just w1 is sufficient.



semantics:

An ALIGN statement specifies the alignment of the image with respect to the physical chip boundaries.
The given integers will be used in the mask generation process, but are of no relevance to the compilation,
The names of the layers and their default properties are given in a LAYER statement. Layers are taken in
top down order, the first parameter behind the layer_name indicates the routing freedom for wires, the
second indicates the routing freedom for vias. Next, in a DIMENSION statement the size in the x and y
direction might be given. If ommitted, the size of the master will be computed from the sizes of the called
CORE_CELLs.

example:

MASTER MyDesign  (
ALIGN min_x  min_y

LAYER metal3 PROG  PROGRAMMABLE
metal2 PROG FIX

LAYER metall PROG  FIXED

LAYER poly FIXED FIXED

DIM x_size y_size  /* not mandatory here */
)
syntax:
<calls> == { "CALL" { <core_cell_name> [<trans_list>]
<position_list> <copy_list> }+ }+
<trans_list> = {"MX"I"MY"I"RI"I"ROO"I"R2"I"R180"I"R3"I"R270" }+

<position_list> {"(" <number> <number> ")" }+

<copy_list> = ["CX" "(" <delta> <times> ")"] ["CY" "(" <delta> <times> ")"]
<delta> = <number>

<times> =  <number>

semantics:

The CALL statements actually define the floorplan of the image, by specifying the coordinates at which
CORE_CELLSs ( possibly with some geometric transformation) are placed by the manufacturer of the gate
array. For the representation in the database, the optional transformations in <trans_list> are applied to the
called CORE_CELL in the order given. R1 means rotate 90 degrees counterclockwise (can also be
specified as R90), R2 rotates 180 degrees (R180) and R3 rotates 270 degrees (R270). MX mirrors the core
cell in the x-axis, and MY mirrors in the y-axis. The <delta> in a copy statement specifies the x or y
increment for the copy operation, and <times> is the number of repetitions. When both CX and CY are
specified, a "grid” will be created over the ranges in x and y direction, all crosspoints of the "grid" being
addressed.



example:
CALL MyCore MXR1 (00) (010)CX (52)CY (5 1)

will cause the list of core cells to be searched for MyCore, the transformations will be applied to create a
new instance, and this new instance will be placed at positions (5j 5k), j € [0..2], k € [0..3]).

syntax:

<nets> w= { "NET" <net_name> (" POS " <layer_name>
<position> | <net_wirings> ) }+.

{(("WIRE " I"EQ") { <layer_name> <position>
<position_list> <copy_list> }+

1" VIA" ( <layer_name> <position_list>
<copy_list> }+)}+.

<net_wirings>

semantics:

NET statements describe (inside the MASTER section) nets which are global to the entire image, and can
be used for example for power and clock lines. The names given to these nets are also global. Nets having
a global name and defined inside a MACRO will be associated with (and are assumed to be connected to)
the corresponding global net. WIREs and EQs always span two or more positions, while wire segments
between adjacent coordinates in the position list must be orthogonal.

syntax:

<npwirings> = {(("PWIRE"|"NWIRE ") { <layer_name>
<position> <position_list> <copy_list> }+
J("PVIA"|"NVIA ") { <layer_name>
<position_list> <copy_list> }+ ) }+.

semantics:

NVIA and NWIRE statements define via and wire blockades. They can be used for layers which are set to
*programmable’ but do have certain fixed regions. At the given positions, the router can not create a via or
a wire. The reverse holds for the PVIA and PWIRE statements: these allow for a programmable region in
an otherwise fixed layer.

examples:

NET vdd POS metal3 (11)
WIRE metal2 (1 1) (10 1) (10 10) CY (10 3)
VIA metal3 (22)
EQ meal3 (11)(22)CX (22)CY (2 num_y)

NWIRE metal3(51)(52)
PVIA metal2 (3 1)
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syntax:
<drl> = {"DRL" {("HOR(IZONTAL)? " " VER(TICAL)? " 1" VIA ")
<layer_name> <position_list>
<copy_list> <shadow_list> }+ }+.
<shadow_list> := "SHADOW"
"(" { ("HOR(IZONTAL)?" | "VER(TICAL)?" | "VIA")
"(" <layer_name> <offset_x> <offset_y>")" }+
ID)I' .
<offset_x> = <neg_number>
<offset_y> = <neg_number>
semantics:

Designrules are divided into two types : numerical and structural designrules. Structural rules tell
something about preferred directions, not recommendable configurations, etc. They can be expressed in the
COST function, and will not be discussed here. In general, numeric designrules take the form of a set of
permissible geometries available to the designer to make devices and interconnections within the
limitations of the process and without violating the physical constraints required for proper operation. Gate
array designrules, in contrast, are quite ‘different from the general designrules because only the
interconnection processing steps have to be carried out. Since the devices are prediffused, the only concern
for gate array designrules is for the minimum separations between interconnect elements (wires and vias).
Two basic designrules are implicit in our way of modeling the image:

— All interconnections must be made on gridlines;
— All vias must be placed on crossing points of gridlines.
Also, since everything is expressed in terms of grid steps, we don’t need to concern about the actual size of

objects. This enables the use of the "shadowing" concept for the modeling of the designrules: each edge in
the grid shadows other edges in its surrounding area. Figure 3.1 explicates this notion.

metal3 O --0~--0 Legend
i Obj « -
metal2 C:D- --O-- -(:)' O : vertex
' Sh 17
metall O- - -O- - -&f Obj : object edge
i Sh o+
poly (’).. --O--- N Sh : shadowed edge

Figure 3.1. Shadowing illustrated with stacked via example

In practice this means that if the router wants 1o extend a path along an edge s, its shadowed edges must not
be occupied. The current implementation in the compiler allows for some nuance in this statement: if an
edge is shadowing multiple edges in one SHADOW clause, the router will be blocked if and only if all
edges in the clause are occupied. On the other hand, when there’s more than one designrule for an edge s,
the router will be blocked as soon as one of the rules will get violated. Of course the reverse holds : when
the router wants to occupy one of the edges in a SHADOW clause, not all the others can be occupied.
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These complementary rules will be generated automatically. The following example will clarify matters
(see also figure 3.1).

example:
DRL VIA mewl3 (11) SHADOW (' /* VIA metal3 = "Obj" in figure 3.1 ¥/
(VIAmetal2 0 0) /*"Sh" %/
(VIA metall 0 0) /*"Sh"*/
)

This example solves the "stacked via" problem : no three vias can be placed above each other, but any
combination of two vias (or one via) is allowed. The following extra complementary rules are generated
internaily.

example:
(cont’d)
DRL VIA mewl2 (11) SHADOW (
( VIA metal3 0 0)
( VIA metall 0 0)
)

DRL VIA mewall (11) SHADOW (
(VIA metal2 0 0)
( VIA metal3 0 0)
)

Something looking similar to the example, but behaving quite different is :

(cont’d)
DRL VIA mewl3 (11) SHADOW ( (VIAmetal2 0 0) )

DRL  VIA mewl3 (11) SHADOW ( (VIAmetall 0 0) )

In this situation, the via in metal3 cannot be made if there’s only one via below it. The complementary
holds for vias in metall and metal2 : neither one can be made if the via in metal3 is present. Practice
indicates that ncarly all of the designrules can be expressed using the shadowing model.

The designrules given in this scction have an ’additive’ nature they will be combined with the ones stated
in the core cells 1o result in more restrictive rules.

It is important to note that default designrules preferably be specified in the core cells, because these cells
are stored according to a grid model and will not take more storage space than without the designrule data.
The other way, specifying default rules at the MASTER level, will yield enormous update-lists since for
cach point in the entire master area an entry will be created.
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syniax:
<cost> = {"COST"

{ (  ("HOR(IZONTAL)?" | "VER(TICAL)?" | " VIA ")
<layer_name> <position_list> <copy_list>
<inf_number>

| "BLOCKED" <layer_name> <position_list>
<copy_list>
)
1+
}+.
<inf_pumber> =  "INF(INITE)?" l<number>.
semantics:

The COST function guides the router by supplying costs for path extensions. The function defines (for each
edge s) a cost F(s) associated with an extension of the path along s. The router tries to find a minimum cost
path, and to be usable by the router function F has to abide to the consistency criterion :

Suppose point A is connected to B through a minimum cost path P, and B is connected to C through a
minimum cost path Q, then if A is connected to C through B and the connecting path PQ has minimum
costs, F is called consistent with respect to P and Q. If F has this property for every choice of A, B, C, P
and Q, then F is called consistent.

For a more rigourous treatment of the consistency property, refer to {[Rubin74] and [Lee61]

The consistency property implies that every path cost function F, where the costs to add an edge to the path
P are independant of the edges P consists of, is consistent.

The cost function could have an arbitrary shape and could be dependent on anything, the task of the router
demands a simple form to keep the computational overhead low. The syntax stated above can be used to
model almost all practical cases, and the overhead for the router is limited to two table lookups, a test and
an addition. This is explained easily: suppose the router has to connect adjacent points P and Q, and that it
already incorporated point P into the path. The router then will take (being at point P) the cost specified at P
in the direction of Q (a table lookup), and compare it to the cost it takes to go from Q to P (doing another
table lookup for the costs specified at Q). The router will take the highest cost value, and adds this to the
total path cost. The costs specified in the statements are related to the outgoing edges at the positions
given; HORIZONTAL is an "east” or "west" edge , VERTICAL is a "north" or "south” edge, and VIA is a
down- or upward edge. The word BLOCKED applies to the vertices at the given positions (not the
outgoing edges), and is used to completely rule out the vertices for routing purposes.

example:
COST BLOCKED (00)CX (110)CY (1 10) /* blocks a 10x10 grid for routing */
COST HOR (00) (0 1) INFINITE  /* vertices still usable */

The costs specified at the MASTER level overrule those given in the core cells; but as in the case of
designrules, it is important (with respect to storage space) to supply the default values in the core cells.
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syniax:
<distances> = { " DIST(ANCE)? "
{ (" HOR(IZONTAL)? " | " VER(TICAL)? ")
( <def_number>
| ( <number> "CP" "(" <number> <number> ")" )
)
<number>
1+
}+.
semantics:

DISTANCE statements specify (of course) the distance between gridlines perpendicular to the direction
given. The distance itself lies in the direction given, and also the optional copy statement (CP or COPY)
copies in that direction. DEFAULT applies to the entire region, a given linenumber sets the distance to this
coordinate and the next one. Distance is independent of layers. The information is compiled into tables
which will be used during mask generation.

examples:

DIST HOR DEFAULT 5 /* all x coordinates are 5 units apart
meaning that adjacent VERTICAL wires
are 5 units apart */

DIST VER 2 CP (52) 3 /*distance between y=2and y=3is 3
units, also for y=7 and y=8, and also
for y=12 and y=13 */

syntax:
<widths> = | "WIDTH"
{ ("WIRE"!"VIA"I"HOLE ")
(" HOR(IZONTAL)? "1 " VER(TICAL)? ")
<layer_name>
( <def_number>
| ( <number> "CP" "(" <number> <number> ")" )
)
<number>
}+
}+.
semantics:

This statement is much the same as a DIST statement, however measures of objects are addressed instead
of distances in between. Also the orientation of WIDTHs given is different.

example :
WIDTH WIRE VER metal3 DEFAULT 2
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sets the width of vertical wires in metal3 to 2 units. But :

WIDTH VIA VER metal3 DEFAULT 3

sets the dimension of the x - axis parallel border of the vias to 3 units. The same holds for holes. Of course,
when in the last part of the example "VER" is exchanged for "HOR", the dimension of the y - axis parellel
border will be addressed.

3.4 Syntax of the CORE_CELL section

In this section we will look at the syntax used to express CORE_CELLs in GADL.

syntax:
<core_cells> = { "CORE_CELL" <core_cell_name>
" [<layers>] <dimension> [<wirings>]
[<drl>] [<cost>]
ll)"
}+.
semantics:

Most of the constituents of a core cell have been mentioned in the previous section, so a few remarks here
will suffice. First of all, the optional layer statements overrule the statements in the MASTER section. This
might seem strange, but since the layer specification in the MASTER section cannot be postion dependent,
it doesn’t require much storage space. To bring in some position dependence the layers can be redefined
inside core cells. Thus, if (in the region of this core cell) metal3 is no longer capable of accepting
programmable vias, a statement might be :

LAYER metal3 PROG FIX

The statement does not always have to be more restrictive; equally well it can relax on some constraints
given earlier. The dimension statement is mandatory at this place, for reasons mentioned in the previous
section. Designrule and cost statements specified in core cells are defaults; they can be updated
respectively overruled by constraints given in the MASTER section.

syntax:
<wirings> = { (« "WIRE"I"EQ"!"PWIRE "|"NWIRE ")
{ <layer_name> <position> <position_list>
<copy_list>
J+

| ("VIA"I"PVIA"I"NVIA")
{ <layer_name> <position_list> <copy_list>
1+
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semantics:
Core cells themselves cannot have NETs because they can be customized by different macro stamps. The
overlaying wirc pattern of a stamp will determine which wire inside a core cell belongs to which net.

3.5 Syntax of the MACRO section

This section details the syntax used to describe the macro library used to customize the image. Macros are
considered being functional building blocks, each macro performs a logical function (e.g. a flipfiop or a
counter). Each stamp of a macro is an implementation (essentially a wire pattern) for the function of that
macro. Stamps can be supplied to realize a function with different types of underlying core cells, or to
pack a function in different geometric shapes.

syntax:

<macros> = { "MACRO" <macro_name> "(" <pins> <stamps> ")" }+.
<pins> = { "PIN" {<pin_name> }+ }+.

semantics:

Specific for a macro and global 1o its stamps are the PIN definitions, which specify connection terminals. A
macro must have at least one pin. For each pin, each stamp must have a net associated with it. Pins are not
allowed to have globally (at the MASTER level) defined names.

syntax:
<stamps> = { "STAMP" <stamp_name> "(" (<stcopy>I<stdesc>) <legals> ")" j+.
<stcopy> u=  ("CP"I"COPY" ) <stamp_name> <trans_list>.
<stdesc> n= [<layers>] <dimension> <nets> {[<npwirings>]
[<mcalls>] [<drl>] [<cost>].
<mcalls> = {"CALL" { <macro_name> <stamp_name>
<position_list> <copy_list> }+ }+.
<legals> = {"LEGAL" <position_list> <copy_list> }+.
semantics:

Stamps come in two flavors, one kind defines a stamp by means of its layers, dimension, nets, etc. (see
<stdesc>), while the other kind (<stcopy>) is used to create transformed instances of other stamps in the
same macro. New is <mcalls> : this construction allows for stamps in other macros to be "called” at the
coordinates given. Calls can be nested o an arbitrary depth (the called stamps calling other stamps). For
each called stamp the compiler must be able to locate it, but the nesting will not get expanded. The main
implication of this will be shown in the next example :
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MACRO  jk_{f
(
PIN j k q qinv
STAMP  narrow_jkff
(
LAYER
DIM litle_width big_heigth
NET J e
NET k..
NET q
NET g_inv
NET clock /* global defined net */
NET vsup /* power supply also global */
CALL nand2 narrow_nand ... /* call a similar shaped nand */
LEGAL (00)CX (20 5) CY (202) /* valid pos. on the chip */
)
STAMP  wide_jkff
(
COPY narrow_jkff R90
LEGAL
)
)
MACRO nand2
( PIN
STAMP  narrow_nand
(
)
STAMP flattened_nand
(
COPY narrow_nand MX MY R270
LEGAL ...
)
)

Now, when the compiler encounters macro jk_ff, it first substitutes every stamp that is constructed of a
COPY statement by its original instance with appropriate transformations applied. All macros are treated
this way, and the CALL statements (including those which are getting copied) are left alone. Next, in the
second pass the compiler tries to resolve the CALL statements. If it doesn’t succeed, the culprit here is that
for stamps which were instantiated during the first pass, the copied calls also need to undergo the particular
transformations. That means : the called macro needs to have a stamp which has undergone the same
transformation. To clarify this, let us trace the compiler going through the example given:

i. Stamp wide_jkff will get the body (everything between () ) of stamp narrow_jkff filled in,
except for the LEGALs. Every component to which this applies will be transformed R90
during this process. The CALL statements are just copied. The same process will happen to
stamp flattened_nand, it will get the body of stamp narrow_nand and the transformations
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sequence reduces to R90.

ii.  Next, the CALLs will be resolved. For stamp narrow_jkff this is straightforward. Stamp
wide_jkff however has a call to macro nand2 stamp narrow_nand, and this call remains to be
transformed. The compiler now will look for an R90 transformed instance of stamp
narrow_nand, and it will find that stamp flaitened_nand can be substituted. Stamp wide_jkff
will now look like :

STAMP  wide_jkff

(
LAYER ..
DIM big_heigth litle_width /* x and y swapped */
NET j ...
NET k ... /* all is transformed R90 */
NET q
NET g_inv
NET clock /* global defined net */
NET vsup /* power supply also global */
CALL nand2 flattened_nand .. /* call the new found nand */
LEGAL .... /* original LEGAL */
)

So, when using CP statements in stamp definitions special attention must be paid to the resulting CALLs. It
is impossible to create a new stamp when a needed instance cannot be found. The positions on the image
where the stamp can be placed (that is, the particular wiring pattern can be used there for customization)
are specified in the <legals> statement. With this statement the links between the wiring patterns and the
underlying core cells are established for the other components of GAS.
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4. Implementation of the compiler.

4.1 The compilation process.

Before compilation can start, the GADL source file must be parsed and translated into a parse tree. To
accomplish this, the source file is split into tokens by a lexical scanner constructed with the Unix tool Lex,
and a parser built with Yacc uses these tokens to construct a parse tree. Because the previous chapter
outlined the language definition and the parser construction is automated, we won’t go into any detail of the
scanning and parsing processes, but instead our main focus in this chapter is the subsequent compilation
process. Following the parsing phase should come a semantic analyses phase. However, because of the
limited amount of time available, it was felt more important to build a working compiler and add the
semantic analyses afterwards. So, the current compiler has no substantial semantic analyses, and therefore
is not quite responsive to errors.

Next comes the actual compilation process, in which we can distinguish three phases:

o core cell compilation
e macro compilation

o technology compilation
Of course, due to the language definition, these phases will have some routines in common.

The compilation process translates the statements given in GADL into structures and tables in the arget
database. This database is an integral part of the Gate Array placement and rotuing System, and it must be
scen in a broader scope than just a place (o keep data stored. As part of the database must be considered a
comprehensive library of functions and procedures to perform a wide range of tasks with and within the
database. An obvious advantage of this library is the fact that it hides the intemals of the structures in the
database; future (minor) modifications can be carried out in the library routines instead of in every module
in GAS. Furthermore, the presence of such a (tested) library greatly reduced the efforts needed to develop
the GADL compiler.

To avoid long-windedness, we will not discuss the routines to the smallest detail, but instead mention and
discuss the most important subroutines.

To describe the algorithms employed, a meta language presented in appendix B will be used.

4.2 Compilation of Core Cells.

Before the compilation can take place some initializing is done by a routine called install_layers; it puts the
number of layers and their characteristics in the database.

The compilation of core cells starts by calling procedure compile_core_cells().

synopsis :
void compile_core_cells(}

description :
This routine compiles the core cells which are called in the MASTER section. If necessary, new instances

of core cells will be made.
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algorithm:
BEGIN
FOR each call in the MASTER block DO

IF wransforms specified THEN reduce_transforms

FI;

IF a transform left THEN append transform to core_cell name

FI;

IF not compiled already { search based on the adapted core_cell name }

THEN
search for the core cell in parse tree;
expand its image statements; { remove CX ,CY of wiring statements }
IF a transform left THEN copy and transform the core cell;
FI;
compile the core cell;
compile the positions in the call statement;
add the compiled cell and the compiled positions to the target database;
ELSE

locate compiled core cell;
compile the positions in the call statement;
add pointer to compiled cell and the compiled positions to the target database;

F;

ROF;
END;

Only the core cells which are called in the MASTER block are compiled. First, the call is checked for
specified transformations, and if found they will be reduced to a primitive. Next, the character
representation of this primitive (if not the identity transformation) will be concatenated with the original
core cell name. This new name will be searched for in the target database. If not found, this implies that the
needed instance must be created.

The image statements must be expanded because the wire-like objects are stored in the target database as
sequences of coordinates.

subroutines:
void redtfr();
CORE_DESC *transform_core ();
CORE_CELL *compile_core ();

— routine redifr() :
This routine is based on the fact that an orthogonal placed rectangle in 2-space can have eight

orientations, shown in figure 4.1
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L ] _

T(dentity) MX MY R90

‘1 [ \ —
L
R180 R270 MX R0 MY R90

Figure 4.1. Orthogonal orientations of a box in 2-space.

Internally "MX R90" is dubbed "TAU1", and "MY R90" is called "TAU2". Since each basic
transformation supplied in GADL leaves the sides of a rectangle in parallel with the x and y axis,
clearly each arbitrary length sequence of transforms does. Moreover, the result of such sequences
always boils down to one of the configurations shown above. Hence it was decided to implement the
transformation process in two phases. First, the transformations list will be reduced (by routine
redifr()) to one of the transformations shown above using a table lookup. Next, when the
transformation needs to be applied (by other routines), a simple representing transformation matrix will
be used to manipulate objects. The table used in the reduction process is shown in table 4.1.

TABLE 4.1. The transforms reduction table.

T2
T1 MX MY R90 R180 R270 (MXR90) (MY R90)
MX I R180 (MX R90) MY (MY R90) R90 R270
MY R180 1 (MY R90) MX (MX R90) R270 RS0
R90 (MYR90) (MXR90) R180 R270 1 MX MY
R180 MY MX R270 I R%90 (MY R90) MXR90)
R270 (MXR90) (MY R90) I R90 R180 MY MX
(MX R90) R270 R90 MY (MY R90) MX 1 R180
(MY R90) RS0 R270 MX (MX R90) MY R180 I
l T1T2

Since all objects in the GAS arc taken to have their origin (0,0) in the lower left corner, each coordinate
transformation matrix is supplemented by a second one which adds the offsets nceded to put a
transformed object back into the first gquadrant.

routine transform_core():

This routine transforms the body of the core cell according to the transformation resulting from the
reduction. That is, wire-like statements are transformed position by position, designrule- and cost
statements will have their position, copy and offset parts adapted. The routine creates a new instance of
the core cell and returns a pointer (o it.
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— routine compile_core():
At this place, all components of a core cell subsequently will get compiled. To this end, first a grid
structure is allocated and the layer characteristics are set to default or to local updated parameters.
Next, the image statements are translated, followed by the designrule and cost statements.

subroutines:
void compile_core_image();
void compile_core_aux();

— routine compile_core_image:
The compilation here mainly boils down to setting up the right frames for the calls to the library
routines. For wire-like statements the library routine write_edge_status is called to update the grid.
Equivalence statements are translated into an appropriate intermediate format, and are handed to the
library routine compile_core_eq_set, which will check them against the current equivalence table in
the target database, and will add them if necessary.

— routine compile_core_aux():
This rov'ine translates the cost- and the designrule statements. The cost statements are given
position by position to the library routine compile_core_cost_set, which updates the grid of the
current core cell and also updates the cost table in the database.
The designrule statements are given to compile_drl which will later be discussed in greater detail.

4.3 Macro compilation.

The compilation of macros and stamps is somewhat more involved than the compilation of core cells. This
stems from the hierarchy in the language: stamps can be nested to an arbitrary depth. This fact gives
reason for the compilation to be carried out recursively rather than "flat” as is done with the core cells.
Preliminary to the compilation, some parts of the MASTER block are translated into a macro and an
accompanying stamp.

Hereto routine create_master_macro() takes the following actions:

BEGIN
allocate MACRO and STAMP structures; { the MASTER macro and the MASTER stamp }
assign them appropriate names;
insert the structures in the parse tree;
FOR each NET statement in the MASTER block DO
allocate a similar named PIN;
expand the image statements; ( remove CX ,CY }
ROF
expand image statements of NWIRE,PWIRE,NVIA PVIA statements;
IF dimensions not specified in MASTER
THEN compute dimensions from CALL statements;
FI;
make LEGAL position (0,0);
END
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Next, routine compile_macros() separates the compilation of the macros into three parts:
« substitution for stamps being copies of other stamps
« resolution of the call statements used

o translation to the target database and computation of net identifications

In the material following, each of these subjects will be discussed in detail.

4.3.1 Substitutions for stamps consisting of a copy statement

Routine compile_macros() immediately after entry calls a subroutine to do the substitutions.

Synopsis:
void reduce_stamp_calls();

description:

As already stipulated in the previous chapter, the stamps which are constructed with a CP or a COPY
statement will have the indicated stamp copied. If the indicated stamp itself is also constructed with a copy
statement, the search will continue until a stamp is found which is defined using the <stdesc> construction

in GADL,
algorithm:

BEGIN
FOR the 2nd macro in the list to the last one DO
{ the first is the macro created from the MASTER )
FOR each stamp in the current macro DO
IF the current stamp is constructed with a copy statement
THEN

make search_stamp equal to the current stamp;
WHILE search_stamp is constructed with a copy statement DO

make search_stamp equal to the stamp to be copied;

accumulate and reduce transformations;
ELIHW;

expand the copylists in the search_stamp; { expands CX,CY in wire-like

statements }

copy the body of search_stamp to the current stamp while applying the

resultant transformation;
register that the current stamp is a copy; { CP is removed }

( subsequent searches for other stamps then will continue to the source of

the current stamp }
ELSE

expand the copylists in the search_stamp; ( expands CX,CY in wire-like

statements }

ROF;
ROF;
END
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subroutines :

STAMP_DESC *find_stamp();
int int_redtfrQ;

— routine find_stamp() :
This routine locates a stamp in the current macro, it searches by name.

— routine int_redifr() :
same as redifr(), but returns a constant representing the resultant transformation.

4.3.2 Resolution of the call statements in stamp definitions.

When the compiler reaches this point, all stamps in the parse tree are defined according to the <stdesc> rule
of GADL. In the previous chapter it was briefly indicated how the compiler solves the calls to other
stamps. Routine trace_stamp_calls() is called by compile_macros() to perform the resolution of calls.

synopsis:
void trace_stamp_callsQ);

description: The routine checks every stamp in every macro for the presence of one or more calls. If found
then the called stamp will be searched for in the parse tree. The dimensions of the stamp found are used to
create correction offsets for the position list in the call statement currently being resolved. To see why this
is needed, consider a small example:

Legend:
r A
rogT ES’E - B and S are stamps
B o---- P o’ - B’ and S’ are stamps transformed R90
- O and o are origins of B and S to GAS
B’ - O’ and o’ are origins of B’ and §’ to GAS

-Pand O’ : see text

O' 2y

— First, consider S being defined as a part of B (that is, S being not explicitly called as a stamp). Then O
is the origin of B, and o is not explicitly known. When B is transformed R90, internally the point o
shifts to o’. Since § is an integral part of B, and thus S’ is an integral part of B’, there is no problem. O
is transformed (to O’') but corrected to become the new origin O’.

— Now consider the other case, one of the statements defining B is a call to S at point 0. This point thus is
known explicit, and when R90 is applied to B like before it will become o’. The same transform applied
to S will yield S’ having P as its origin (it is corrected). Since the positions listed in a call statement are
to be the anchor points of the origins of the called stamps, o’ is wrong and it should be P. The
additional correction to shift o’ to P is the correction mentioned above.

If the called stamp turns out to be a copy of another stamp, the search continues to locate the "source”
stamp. This is done based on the registration made in the substitution process. When the right stamp is
found, the call is modified by subroutine transform_stamp_call().
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subroutines:

void transform_stamp_call();
STAMP_DESC *find_src_stamp();
MACRO_DESC *find_macro();

-— routine transform_stamp_call():
The routine simply sets the macroname and stampname fields of the call to the macro and stamp just
found; furthermore it adjusts the positions in the position list with the correction offsets mentioned
earlier, and it expands the copy list if it is specified with the call.

— routine find_src_stamp():
This routine locates a stamp by a name and a transform given. The routine returns a pointer to the
stamp which is equivalent to the stamp of the name given transformed by the transform given.

— routine find_macro():
Locates a macro (by its name) in the parse tree.

4.3.3 Translation to the target database and computation of net ic .ntifications.
The last phase in the macro compilation process is performed by routine translate_macros().
Synopsis.
void translate_macros();
Due to the size of this part of the compiler, let us first consider the algorithm for the translation.

algorithm:

BEGIN
make a list of connection pins global to the gate array; { pins of the MASTER - macro }
allocate space for the MASTER macro;
compile the MASTER stamp;
FOR every macro DO compile that macro;
ROF;
END

description:
The MASTER macro is compiled separately because the presence of a list with global pins is assumed for
the compilation of the remaining macros. The body of the routine is a FOR loop; this may seem a

contradiction with earlicr announced recursive principle. In the next subsection, this structure will be dealt
with in more detail.

subroutines:

MACRO *compile_mac();
void compile_stamp();
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— routine compile_mac():

This routine dclivers a completely compiled macro. Its internals are detailed in the following
algorithmic description.

algorithm:

BEGIN
IF the given macro is not in the target database THEN allocate and name it;
FI
FOR every stamp in the given macro DO
IF current stamp not in target database THEN compile the current stamp,
FI;
ROF;
END

explication:

The most important detail of this routine is the fact that in case it cannot find the macro in the target
database, it immediately allocates a new macro without filling in the stamps, instead of first compiling
all stamps and then allocating space for the macro (afterall, the macro structure is litle more than a
kind of header to the list of stamps). This approach is chosen as to mark the macros in the target
database as "processed”, so the recursion (in the next routine) will not again try to compile it.

subroutine:.

void compile_stamp();

— routine compile_stamp():
Will deliver a completely compiled stamp.
algorithm:

BEGIN
collect all NWIRE NVIA PWIRE and NWIRE statements and
translate them to the target format;
allocate space for the target stamp;
convert the NETSs to the target format;

fill the updates for layers, the legals and
the transformed nets in the target stamp;

FOR every call in the current stamp DO
search called macro in target database;
IF not found THEN compile the requested macro;,
FI;
{ at this point the requested macro and stamp must be compiled }
locate the requested stamp in the target database;
FOR all positions in this call DO
add the call at the current position to the target stamp;
ROF;
ROF;
make equivalence updates;
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make cost- and designrule updates;
IF the current stamp has calls THEN compute net identifications;
FI;

END

explication:

The compilation the stamp has two parts : the first part can be done independent of the calls, and the
remaining things have to be done after the calls are completed. The first part is quite simple, we
translate all wire-like statements to the target format (exept for the EQ statements), ordering the NETs
as they occur in the list of pins. Also, the legal statements will be translated.

Next, the calls (if present) are processed. In this processing, the recursion can occur : when a call to a
not yet compiled macro is found, the routine compile_mac() is called to compile it. On return, the
macro is compiled in its entirety, and the requested stamp can be located. Of course this only holds for
a macro which is not the current macro, since calls to stamps inside the current macro are understood to
be self-loops, which are not allowed. The calls are completed by linking them into the target stamp.
When this point is reached, the equivalence-, cost- and designrule statements can be dealt with, because
the library routines which update the respective fields in the stamp will consult the just completed calls
10 other stamps. To complete the compilation of a stamp, the net identifications must be computed if
there are calls in the current stamp.

subroutines:
void get_npwires();
LAYER_UPDATE *make_layer_update();
LEGAL *make_legals();
NET *make_nets();
MACRO *compile_mac();
void make_eq_update();
void make_aux_update();
void make_netids();

routine make_eq_update():

Translates the positions of the equivalent statements from each net in the stamp to an intermediate
format, then hands them to library routine compile_stamp_eq_set(). This latter routine will fill in the
update-field of the stamp.

routine get_npwires():

Translates the NWIREs,NVIAs,PWIREs an PVIAs into the target format.

routine make_layer_update():

For each layer a target structure is allocated, layer characteristics are filled in according tc definitions in
the target database.

routine make_legals():

For each position in the position list of a LEGAL statement, a structure in the target format is allocated,
and the copy statement (if present) is converted to a range and filled in. This is repeated for each legal
statcment.
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— routinc make_nets().

This routine orders the nets according to the following list:
« first, all nets corresponding to pins of the current macro, in that order,
« next, all nets having global defined names, in the order of the pins of the MASTER macro,

« the remaining nets.
Then it will translate them into the target format.

algorithm:

BEGIN
FOR each pin in the pinlist of the current macro DO
locate its matching net, and mark it;
translate and add the net to the list in the target format;
ROF;
IF the current stamp is not the MASTER stamp THEN
FOR each pin in the global pinlist { pins of the MASTER MACRO } DO
locate its matching net {in the current stamp}, and mark it; translate and add the
net to the list in the target format;
ROF;
FOR all remaining unmarked nets DO
translate and add the net to the list in the target format;
ROF;
FL;
| END

explication: :
The nets are ordered according to the pinlists; this order must be enforced to facilitate the computation
of net identifications.

— routine make_eq_update():

Translates the positions of the equivalent statements from each net in the stamp to an intermediate
format, then hands them to library routine compile_stamp_eq_set(). This latter routine will fill in the
update-field of the stamp.

— routine make_aux_update(}:

The cost and designrule updates are made by this routine.
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algorithm:

BEGIN
FOR every aux { cost or drl } statement DO
IF the current statement is a COST statement
THEN
get the appropriate layer;
determine orientation;
FOR all positions in the positions list DO
compile_stamp_eq_set(); { a library routine }
ROF;
ELSE
compile_drl();
FI;
ROF;
END

subroutines:
void compile_stamp_eq_set();
void compile_drl();

— routine compile_stamp_eq_sel():

This library routine computes the updates for the stamp. It does so by scanning the cost table for the
update to be made. If found, the updates will get the corresponding index, otherwise a new entry is
made and assigned to the new updates.

— routine compile_drl():

As mentioned in the previous chapter, for the compilation of designrules the complementary rules have
to be calculated. This routine does so, and translates the rules into the target format. This routine is
called by make_aux_update() (compilation of stamps) as well as compile_core_aux().

algorithm:
BEGIN
get layerindex;
make edge set of all SHADOW clauses and sort it;
IF compilation of a stamp
THEN
FOR all positions DO
compile_stamp_dr_set(); { library routine }
ROF
ELSE
FOR alf positions DO
compite_core_dr_set(); { library routine }
ROF
FI.

make layerindexes in the edge set absolute; { x and y are already absolute to (0,0) }
FOR each edge in the edge set DO
current_pos = current edge;
current edge = (0,0,layerindex);
FOR each edge in the set DO
make the current edge relative to current_pos;
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{ "current edge" in this inner loop }
ROF;
copy the edge set, and sort the copy;
FOR each edge in the set DO
make it absolute again { for subsequent iterations }
ROF;
IF stamp compilation
THEN
FOR each position in the poslist DO
compile_stamp_dr_set() with respect to current_pos,
using the copied edge set;
ROF;
ELSE
FOR each position in the poslist DO
compile_core_dr_set() with respect to current_pos, using the copied
edge set;
ROF;
FI;
restore the contents of current edge from current_pos;
ROF;
END

explication:

The complementary rules are computed with respect to a current position. Initially, the current position
is taken from the positionslist, and the SHADOW clauses have coordinates relative to it. To compute
the complementary designrules, the shadow edges are cyclically taken to be the current position, and
substituted for that particular edge is the origin (0,0,layerindex). Next, all the edges are made relative to
the current position, that is, the current position is subtracted from each. Then a library routine is
called, and the positions it is given are taken from the positionslist, adjusted for the fact that now they
have shifted by the offsets given in the current position (at a shadow edge). This process is repeated for
each shadow edge.

subroutine:
DR_EDGE *sort_edges();

Sorts and copies the list of edges given into a new list; returns a pointer to the new list.

routine make_netids():

This routine computes the net identifications. These are numbers which identify nets of the current
stamp with pins of the called modules

algorithm:
BEGIN

FOR each pin of the current stamp DO
expand the pin’s net;

ROF

FOR each called stamp DO
FOR each pin of the current called stamp DO

expand the pin’s net;

ROF;
allocate a list for the net_ids of the called stamp to be stored;
set all net_ids in the list to BLOCKED_VERTEX; { not connected yet }
called_net=0;
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FOR each expanded net of the called stamp DO
current_nct=0;
FOR each expanded net of the current stamp DO
IF a connection between the nets
THEN net_id[called_net]=FIRST_NETID+current_net;

FI;
increment current_net;

ROF;

increment called_net;

ROF;
ROF;
END
explication:

The routine starts with expanding each net in the current stamp which belongs to a pin of the macro.
The expansion is discussed later in more detail, but for now it suffices to say that each and every
position a net occupies (including the positions generated by equivalences) is put into a list, and this list
is sorted. Next, each call is processed subsequently. For each stamp called the net expansion
procedure is applied to its nets. Having the lists of nets prepared, we can check connectivity by
¢ ~mparing pairs of positionlists, and this is done in the two innermost FOR loops. The comparison is
quite simple: since each list of positions is sorted, it comes down to a comparison per component, and if
not equal advancing the list having the smallest position. When a connection is found, the list of net_ids
belonging to this call is updated.

subroutines:
int connected();
WIRE *expand_net();

— routine connected():

As indicated previously, this routine walks along the two positionlists it is given, and it returns a 1 if
a common position is found, and O in the other case. To compare positions the routine calls a
subroutine position_cmp(}.

— toutine expand_nel():

Each net is represented by a list of WIREs. Now, each wire is expanded into a list which contains
literally every position it occupics on the gate array. A list having all the positions of a net resuls.

algorithm:
BEGIN
FOR each WIRE in the net DO
IF the current wire has only one position
THEN .
allocate that position in the list;
get all the equivalent positions for the current position,
and add them to the list;
ELSE
FOR each position in the wire, exept for the last position DO
put the current and the next position in the list, and also put in their
equivalent positions;
IF the wire segment between the current and the next position is
orthogonal
THEN
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FOR each position between the current and next position
DO
put the intermediate position and its equivalent
positions in the list;
ROF;
FI;
ROF;
FI
ROF;
sort the created list;
remove multiple equal positions from the list;
END

subroutines:
POSITION *get_eqpos();

POSITION *sort_position_list();
POSITION *reduce_position_list();

— routine get_eqpos():

In this routine, a library routine stamp_scan_set() is called to collect the equivalent positions for a
given position. Next, the collected positions are inserted into the list given.

— routine sort_position_list():

Sorts a list of positions using the heapsort method.

— routine reduce_position_list():
Removes multiple equal positions from a given list of positions.

This concludes the compilation of stamps.

4.4 Technology compilation.

This part of the compiler translates DISTANCE and WIDTH statements of the MASTER block into the
format of the target database. Due to the presence of library routines this is not at all difficult; a short

discussion will suffice.
To compile the technology statements, the main program calls the routine compile_technology().

synopsis.
void compile_technology();

description:
Will translate all the technology information te the target database.



-32.

algorithm:

BEGIN
allocate space for the technology information;
FOR each technology statement in the MASTER block DO
get the technology object;
IF the current statement is a DEFAULT statement
THEN
IF it is a DISTANCE statement
THEN store_default_distance()
ELSE store_default_width(
FIL;
ELSE
IF it is a DISTANCE statement
THEN
FOR each line specified DO store_distance()
ROF;
ELSE
FOR each line specified DO store_width()
ROF;
FI; ROF;
FIL;
ROF; compute_distances();
END

explication:

First, the routine makes space available for the storage of technology data by calling the library routine
store_tech_data().

Next, for each statement encountered the appropriate action is taken, which is clearly stated in the
algorithmic description. The routine concludes by calling the library procedure compute_distances(). This
lauter procedure makes up the format of the target table to the requirements to the other GAS components.

subroutines:
void store_tech_data();
void store_default_distance();
void store_default_width();
void store_distance();
void store_width();
void compute_distances();

— routine store_tech_data():

Allocates space in the target database for the technology data to be stored.

— routine store_default_distance{):

Does as its name says, stores default distances in the table.

— routine store_default_width():

Same as above, for widths.
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— rouline store_distance().

Assigns a distance to specified gridlines.

— routine store_width():

Same as above, for width.

— routine compute_distances():

Formats the distances table in the target database to the requirements of the other GAS components.
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5. Conclusions

« The new definition of the GADL facilitates an easy and concise way to describe the features of gate
arrays. The constucts provided for the specification of designrules and costs are quite simple, but
powerful enough to model most constraints. Furthermore, the hierarchy in the language enables the user
to describe a big gate array core and its accompanying macro library in a few pages of text.

« The storage of coordinates and a compact representation of tables instead of a storage of the full grid
expansion greatly reduces the size of the GAS database.

o The new compiler will generate most of the data required by the other modules in the GAS. However, a
great amount of consciousness regarding the syntax and semantics of the GADL inputfile is required
from the user; the compiler has very limited capabilities for catching errors.

Even a full featured compiler has limits in this respect; for example it has no way to determine if a
given stamp does fit onto the underlying area of the image.

« Although the compiler is perhaps the fewest used tool in the GAS, further development regarding error
detection and recovery is recommended; special attention should be paid to the handling of syntax
errors by the parser, see for example [Schrein85].
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defines

master }-) core_cells

macros

defines:

—[-{ DEFINE}—(-) define_name

integer j—r

master:

—(MASTER)—-I master_name

align

layers

dimension

calls

npwirings drl cost distances (¥ widths —u@
core_cells:

CORE_CELL core_cell_name ( layers dimension ]

wirings drl cost )
macros:
T.,(MACRO)—: macro_name /—)@1 pins stamps ,-@j——»

pins:

PIN pin_name |
stamps:

STAMP}—J stamp_name ( stcopy legals )

stdesc
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stdesc:
layers dimension nets npwirings mcalls ]\ drl j\ cost 7—)
stcopy: dimension:
COPY stamp_name |4 trans_list |— —(DIM(ENSION)?)—; number || number
align:
—)(ALIGN )—1 neg_number | neg number —>
mecalls:
‘(Q:A—IE_T macro_name stamp_name position_list copy_list j)—-‘
calls
CALL core_cell_name trans_list position_list copy_list
trans _list: nets:
— . "
NED——: net_name POS )—-x layer_name {4 position
MY L———-i net_wirings |

1

2

R180

R270

FITIT
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net_wirings:
WIRE layer_name position |- position_list copy_list
EQ
VIA)T layer_name [— position_list - copy_list
wirings:
layer_name |- position |- position_list copy_list |
layer_name [— position_list copy_list |

< J/
layer_name position position_list |- copy_list |
layer_name | position_list | copy_list |
\ . J
drl:
DRL HOR(IZONTAL)? layer_name position_list | copy_list shadow_list |

VER(TICAL)?

VIA
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shadow _list:

layer_name

-

neg_number

neg_number

HOR(IZONTAL)?
. VER(TICAL)? ‘

cost:

HOR(IZONTAL)? layer_name

r—-)

position_list

=

copy_list

inf_number

VER(TICAL)?
v

layer_name

BLOCK@_.

position_list

-

copy_list

N

A

legals:

—C(LEG@—,

position_list

Copy__llst j N

<€

layers:
LAYER layer_name FIX(ED)? FIX(ED)?
PROG(RAMMABLE)? PROG(RAMMABLE)?
distances:
DIST(ANCE)? HOR(IZONTAL)? def_number number
VER(TICAL)? line_spec
layer_name def_number number

line_spec
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line_spec: position_list:
, —)| number Ccp o number > number —-)@—*—) T@—-) number number
COPY
copy_list:
cX ( delta times ) CcY delta - times )
inf_number: def number: neg_number: number:
INF(INITE)? DEFAULT neg_integer T
number number number
master_name. core_cell_name: macro_name: stamp_name:
— identifier -3 identifier identifier |— identifier }——»
pin_name: define_name: net_name: layer_name:
, — identifier |— — identifier }— — identifier —i identifier —

integer:

@y e

identifier:

neg_integer:

deﬁne_namT
integer
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Appendix B: algorithm description meta language.

The language is a ’high level’ meta language, it has only six statement kinds:
Action specifier:
< lext >;

<text> specifies the action to be taken; it is expressed in natural language.

IF statement:

IF <test> THEN <statement(s)>
FI,

<test> and <statement(s)> are both formulated in a natural language. If the test is obeyed, the action(s)
defined by <statement(s)> will be executed.
IF - ELSE statement:
IF <test> THEN <stat1>
ELSE <stat2>
FL,

If <test> is obeyed, <statl> will be executed, else <stat2> will be executed.

FOR statement:

FOR «<set_description> DO <stats>
ROF;

<set_description> specifies a set of elements (could be anything). <stats> will be executed for every
element in the set.

CASE statement:

CASE <var> OF
val_1: <stats_1>
val_2 : <stats_2>

val_n : <stats_n>
ESAC;

<var> is an enumerated type of variable. If var has value <val_i>, the statements <stat_1>..<stat_i> will be
executed.
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WHILE statement:

WHILE <test> DO <stats>
ELIHW;

<stats> will be executed as long as the <test> is obeyed.

Comment is enclosed in braces, and is not part of the algorithm. A description of an algorithm is a list of
action specifiers enclosed in BEGIN and END.
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Appendix C : Description of SBNF

SBNF as used in this report has the following rules:

{T}* indicates repetition of T, zero or more times;
{T)+ indicates repetition of T, one or more times;
{T}? or [T] indicate that T is optional;

<T> makes T a non-terminal symbol;

{S/T} is equivalent to: S{TS};



	Voorblad

	Abstract 
	Contents

	List of figures

	List of tables

	1. Introduction

	2. Gas overview

	3. Language definition

	4. Implementation of the compiler

	5. Conclusions

	Literature

	Appendices

	Appendix A:
Syntax diagram of GADL 
	Appendix B: Algorithm description meta language

	Appendix C: Description of SBNF





