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Chapter 1

Introduction

Due to the developments in terrain scanning technology during the last two to three decades,
large volumes of terrain data can be produced at a high rate. Manual intervention in the process
between data acquisition and data application has therefore become a major bottleneck. Especially
light detection and ranging (LIDAR) technology, operating lasers from airplanes, has significantly
increased the size of digital terrain models of land areas. For scanning the seabed, the shift from
single- to multibeam echosounders (MBES) has caused a significant increase in the data collection
rate [Mayer 2006]. Recently, ships have even been equipped with a pair of echosounders to obtain
even higher accuracy.

Apart from the obvious application of digital terrain models to making height maps and nauti-
cal depth charts, these models are also used for terrain analysis. For example water flow analysis
on terrains above sealevel can predict erosion and the effects of a rising sealevel. Seabed scans
on the other hand are used for analysing the seafloor, for example in the search for oil. Once oil
has been found and pipes have been laid for transporting the oil to the shore, it is important to
keep these pipes in good condition. Again, seabed scanning provides the necessary information
for scheduling maintenance, such as the position of the pipe and the geometry of its surroundings.

1.1 The problem

In order to make further processing feasible, raw data from a scanning mission first needs to be
cleaned. This cleaning is necessary because the raw data—supplied as a set of three-dimensional
points —includes a lot of noise. First of all, not only features on the terrain or seabed are reported,
but also (flocks of) birds in the sky and (shoals of) fish in the water. For most applications these
features are unwanted and have to be removed. Spurious measurements form another problem:
for example multiple reflections of laser beams in windows can cause trouble for LIDAR scanners
and multiple reflections, or refraction in for example gas bubbles can lead to noisy sonar results.

Apart from problems with the scanned environment, also miscalibration of measurement de-
vices, including scanners detecting their own presence, can negatively affect scan results. For
sonar systems, local differences in sound speed due to unclear water can also cause imprecise mea-
surements. Finally, inaccuracy of the sensors themselves and the various systems correcting for
external problems (such as movement of the ship or airplane) can add to the amount of error in
the final result.

One needs to remove this noise to obtain more accurate digital terrain models, usable for
further processing and analysis. Currently, terrain data is often cleaned by hand. Where tools
exist, they are either too primitive or too slow to cope with huge amounts of data.



1.1.1 Goals

In this thesis, I am interested in identifying different types of noise in terrain data, in particular
from multibeam sonar scans of the seabed, and on efficient, automated methods to clean terrain
data by removing the noise.

We start by looking at examples of actual noise from real data sets. In two steps, this leads
to concrete definitions suggesting which points in an input data set may be considered as noise.
First, we look at mathematical models of realistic terrains and noise. Second, we investigate how
to define noise in existing frameworks that give some hope for efficient implementations. Although
I do not include full proofs of the correct classification of points from data sets that fit the models
defined earlier, these models do provide a nice framework for discussing the value of the proposed
tools. After giving these definitions, we have a look at algorithms that can efficiently identify
points that are noise according to the definitions. I focus on the efficiency of these methods in
case the data is so large that it does not fit in main memory. Finally, we have a look at the results
of implementations of the proposed algorithms, run on real-world data sets.

The ultimate goal is to get algorithms sophisticated enough to automatically clean up point
sets efficiently, but nowadays such tools are often just used to mark sets of points that are likely
to be noise (possibly with an indication of how sure the algorithm is that points are noise), and
still have a human operator make final decisions.

1.1.2 Assumptions

We assume that the surface we need to reconstruct is a terrain, that is, there are no overhangs or
places where there are two patches of the surface on top of each other. Furthermore, we assume
that all parts of the surface are connected via smooth paths such that we can distinguish real
terrain from noise. We will make these assumptions more formal later (in Section 2.2).

As mentioned, the input data we consider consists of three-dimensional points, but in specific
applications it may contain more information such as the angle of the sonar or laser beam with
which the measurement was made, and the estimated inaccuracy of the measurement as reported
by the sensor hardware. We will not consider this extra information, but adapting the proposed
algorithms to take a measure of accuracy into account should not be hard.

1.1.3 Examples

To get some feeling for the types of noise we would like to remove we will have a look at some
typical examples of noise in MBES data. The images are made by constructing a surface for the
raw point set (how this is done is explained in Section 3.1) and displaying this surface using a
perspective projection with shading.

The first and most typical example of noise is caused by fish. Shoals of fish may swim under
the scanner and reflect some or all of the soundings. As Figure 1.1 shows, fish may reflect so many
pulses from the echosounder that the measured points cluster together around the fish. Some
undershoots, points lying far beneath the surface, are also visible in this picture. Note that they
cause dark spots on the top side of the surface due to the shading used.

Figure 1.2 shows another type of noise: a long, sharp ridge of gross errors is present in the
middle and some smaller clusters of outliers appear on the sides. Although the source of these
particular errors is unknown, a possible explanation is the miscalibration of the scanning device
or a scanner detecting its own presence. Similar noise is shown in Figure 1.3, but here we can
also distinguish a feature that is not supposed to be removed: the pipeline in the middle of both
pictures. A particularly noisy area is viewed from above in Figure 1.4. Even noisier examples
exist, but they do not produce very interesting pictures. Finally, Figure 1.5 shows an example
of noise of a smaller scale. Note the difference between the noise in the fore- and background; it
seems like the area in the foreground has been scanned twice, resulting in slightly offset data.
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Figure 1.1: Noise caused by fish. Black dots represent the input points. The overlays show the
front and back sides of one group of points.
Data from StatoilHydro, patch shown is 12 x 12 meters.

Figure 1.2: Structural and random noise of unknown origin.
Data from StatoilHydro, patch shown is 10 x 10 meters.



Figure 1.3: Two views of the same area. A pipe is present in the middle of both pictures. Again,
the black dots indicate the original data points.
Data from StatoilHydro, patch shown is 3 x 3 meters.

Figure 1.4: Very noisy patch of terrain viewed  Figure 1.5: Small-scale noise.
from above. Data from StatoilHydro, patch  Data from StatoilHydro, patch shown is 4 x 4
shown is 6 x 6 meters. meters.



1.2 Previous work

A large number of tools have been developed to aid the —originally fully manual — cleaning of
terrain data, and more generally the reconstruction of surfaces from (noisy) point sets. There is a
large amount of literature dedicated to heuristic methods, often developed in the remote sensing
community. I will not try to give a complete overview of these methods, but rather discuss in
more detail some algorithms that are widely used in industry for cleaning MBES and LIDAR data
respectively. The methods developed in this thesis should perhaps not only be seen as replacements
of these, but also as possible additional pre- or postprocessing that handles specific types of noise
not handled well by the other algorithms.

On the theoretical side of the spectrum, relevant work has been done in surface reconstruction
algorithms that yield provable relations (topological or by closeness of surface) between the original
object and the reconstructed surface. I am not aware of work that does so even for data with
gross errors.

Before having a look at these automatic tools, we will first shortly review some standard
methods for manual data cleaning.

1.2.1 Manual cleaning

One way of manual cleaning that is employed for MBES data is a procedure based on histograms.
The operator demarcates a polygonal region on an approximate terrain. A histogram plots the
number of points on that patch of the terrain, for different elevations. The operator can then
select an elevation range in which data points should be removed.

This kind of manual cleaning works well for flat areas,
but may lead to “features” being removed only partially
because it has no sense of the topology of the terrain.
Indeed, as shown in Figure 5.6 (page 39), this happens
in practice. In this particular case it seems like the op-
erator has tried to remove the more significant outliers
on the right side by drawing a polygon around them and
happened to select half of the feature on the left, too.
This also exemplifies the arbitrariness and subjectivity
that is inevitably involved in manual cleaning. .

Other types of manual cleaning include angle gates surface . \L’,\a.
and line/swath editing. Both methods work on a single C >
scan line: the intersection of the point set with a vertical .
plane orthogonal to the direction the echosounder moves. measured points
An angle gate is a very rough way of removing outliers
that works by removing all points above a ray starting at
a certain point below the echosounder with an adjustable
angle to the horizon (see Figure 1.6). Line/swath editing is a more refined way to remove points
by mouse interaction, for example by drawing polygons around points to be removed or drawing
an approximation of the actual surface to indicate which points should not be removed.

echosounder g points removed

Figure 1.6: An angle gate of o = 45°.

1.2.2 Algorithms with theoretical guarantees

Recently, two approaches to surface reconstruction [Cheng & Poon 2004, Dey & Goswami 2006]
have been proposed that come with theoretical guarantees on the relation of the reconstructed
surface to the original, even when the sample point set is noisy. Actually, Dey & Goswami go so
far as to require, in a sense, a certain amount of noise to be able to guarantee a locally uniform
sample distribution (which is necessary to disallow adversary bias in the input data). Cheng &
Poon on the other hand propose a set of conditions on their sample sets that they prove (for
certain parameters) to be provided by a uniform sampling of a smooth surface. This sampling can
be perturbed in the direction of the surface normals by independent uniform random offsets. In



both cases however, the amplitude of the noise that is allowed is bounded: input points should be
close to the actual surface.

Both papers prove that the reconstructed surface is homeomorphic to the original surface,
and “close” to it. For Cheng & Poon, close means that the vertices of the constructed polygonal
surface get arbitrarily close to the original surface as the number of points increases, and secondly
the normals get arbitrarily close to the original normals. The reconstruction of Dey & Goswami
attains similar closeness for increasingly dense samplings.

1.2.3 CUBE

One of the most used methods in industry for analysing multibeam echosounder data is the CUBE
(Combined Uncertainty and Bathymetry Estimator) algorithm [Calder & Mayer 2003, Hall 2006].
The main goal of the algorithm is not so much to remove noise from the data as to give depth
estimates at the vertices of a grid laid over the terrain. The vertices of the grid are called estimation
nodes. Each estimation node includes information on the accuracy of the estimate at that point
based on statistical analysis of data points in the neighbourhood of the node. The type of grid
is not essential for the algorithm, but an estimation node needs a certain minimum number of
data points in its vicinity in order to make the estimation robust against outliers. Data points
can however contribute to multiple estimation nodes, so making the grid too fine does not have
to cause problems.

The feature that makes this algorithm interesting from a noise-removal point of view is that it
is able to make multiple “hypotheses” for the depth of the terrain at each estimation node. The
algorithm generates new hypotheses in cases where different measurements that contribute to the
same estimation node disagree significantly in terms of vertical position. Earlier methods estimated
the depth by just taking the shoalest (highest) estimate. From a nautical perspective, such an
estimate is considered safe because it gives vessel operators using maps based on such estimates
a better guarantee of the clearance between the keel and the seabed. For other applications (and
to some extend also for sea navigation) however, it is more useful to have an estimate that is as
close to the true depth as possible.

To obtain multiple hypotheses, CUBE maintains a current set of models (estimates with cor-
responding variances) at each estimation node, starting with no models and adding new ones as
data points arrive that are not compatible with any of the existing models. Existing models are
updated with new (compatible) points using a Kalman filter. This filter updates the estimate
(minimizing the mean squared error) without requiring access to past data, except for the last
state [Welch & Bishop 2006]. Therefore, CUBE only keeps a constant amount of information per
estimation node while processing the data.

Interestingly, the algorithm does not implicitly solve the problem of determining which hy-
pothesis is best, though the authors do suggest the following heuristic.

1. If there is only one hypothesis, choose it.

2. If there are multiple hypotheses, use a combination of the following measures for the likely-
hood that a hypothesis is correct:

(a) The more data points supporting a certain hypothesis, the more likely it is chosen
(using the logarithm of the number of data points to compare to measure (b)).

(b) Look at a local neighbourhood and find the closest estimation node for which there
is only one hypothesis. The smaller the depth difference between that estimate and
the estimate for the current hypothesis, the more likely the current hypothesis is true.
Actually, the neighbourhood is chosen not to be a disc (vertical cylinder in 3D) but
as an annulus around the estimation node of a certain pre-defined size, because this is
said to give better results for burst noise.

This last remark suggests that there is still room for improvement and indeed Calder & Mayer
put the problem of determining an appropriate neighbourhood as an open problem and remark that



finding the closest point in the local neighbourhood is time consuming. In practice condition 2b
appears not to be used for this reason.

Furthermore, because of condition 1, CUBE always selects “unchallenged” hypotheses, even in
cases where a cluster of noisy points lies relatively far away from the rest of the terrain, without
any other points at the same horizontal position to supply counterevidence.

Another disadvantage of CUBE, especially when trying to make the algorithm run on-line, is
that the models at the estimation nodes need to be “protected” against outliers appearing early in
the data stream by moving them forward. This is implemented as a preprocessing filter, delaying
real-time processing.

1.2.4 LIDAR data point classification

For LIDAR terrain scans, the main obstacle to obtaining smooth terrain data that can be used
for generating for example contour maps, are man-made features and forests. For many purposes
points on buildings and trees are undesirable and only points on the ground are to be considered in
later processing steps. This makes for an interesting opposite working principle for many existing
algorithms for LIDAR data cleaning, as compared to practice in bathymetry: low points are
considered more “important” then high points because they are more likely to represent the bare
earth, where for bathymetry the high points were taken to be “safe” estimates of the terrain.

Assuming that no other “noise” exists, this principle is used in a number of cleaning methods.
For example, terrain models are refined starting with the lowest points of the terrain and iteratively
adding lowest points in subregions. Other algorithms classify points by checking whether there
are any other points inside a cone or funnel placed under a point: if the cone or funnel is empty,
the point is assumed to belong to the bare earth, otherwise it is removed (see Figure 1.7 for an
example). For more information on the different algorithms used in the LIDAR community, see
the experimental survey of Sithole & Vosselman [2004].

[ ] ‘/\
/_‘\ removed
. {\ “bare earth” . LEEEN

7 N

Figure 1.7: Example of a funnel-based classification algorithm.
A different type of cleaning that has been applied to LIDAR data is based on topological

persistence, a technique explained later in Section 3.2. Agarwal et al. [2006] apply this approach
to removing minor depressions that prohibit water flow analysis.

10



Chapter 2

Defining noise

As we have seen in Chapter 1, many current automated approaches to removing noise do not have
a clear a-priori objective of which points they want to remove. Any accurate description of what
they regard as noise will invariably end up specifying the exact implementation of the algorithm
to actually do the removal, yielding a cyclic answer to the question “What does the algorithm
do?”.

In order to develop a verifiable approach to recognizing noise — that is, one for which we can
check if the algorithm does what we promise it to do— we need a precise definition of noise that
we can give without referring to the actual implementation. Then we can prove that a certain
algorithm implements a particular kind of noise recognition. Such exact definitions of what we
want an algorithm to recognize will be given in the next chapter. These definitions however rely
on certain frameworks that were still developed more with implementations in mind than noise
recognition.

To bridge the gap between a definition inside a framework and intuitive ideas about what noise
is, I propose in this chapter a model of real terrains and noise that can be used as a test case
for noise recognition methods. In the next chapter, we can then try to see how far the methods
proposed there achieve the goal of correctly classifying point sets that correspond to the models
in this chapter, as a function of the parameters of these models.

The models are set up in two steps that mimic real-world data acquisition: we first define a
physical model of terrains and noise-inducing features and second define assumptions on sets of
sample points from these physical models. In both cases we assume an “orthogonal” view of the
world: the physical models are assumed to be mathematical terrains (that is, surfaces without
overhangs) and the sample points are assumed to be obtained only by vertical measurements.
Before diving into the models, we first try to see if there are any useful divisions to be made in
the types of noise found in practice.

2.1 Types of noise

As noted in Chapter 1, we are faced with many different types of noise. We may be able to handle
some of those with the same algorithm, but not all. The distinctions made in Chapter 1 were
mostly based on the source of the noise. Now, we want to get a more abstract view of these types
of noise such that we can group (and handle similarly) noise with different sources but with the
same “appearance”. The first rough division in noise types that is necessary is that between clear
outliers (points that lie far out of the way), and points that are approximately right.

The first type of noise is what we will call “big noise” — points that are often caused by
uninteresting physical artefacts such as birds, fish, and air bubbles, or by misconfiguration of the
scanner. Most of the time they are obviously wrong to the human eye and should not be considered
in any further processing of the data.

The second type of noise is what we will call “small noise” — points that are just a little off
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compared to the actual terrain or points in their neighbourhood because of, for example, sensor
inaccuracy. These points may either be kept because they are not required to be removed for a
particular application, or we might want to move them a little up or down so as to “smooth out”
the terrain. This is roughly the type of noise that the algorithms mentioned in Section 1.2.2 can
handle.

In the remainder, we will mainly focus on recognizing big noise, but also mention small noise
here and there. Specifically, the definitions of noise and recognition methods proposed are geared
for big noise and, in contrast to the algorithms with provable guarantees mentioned in the intro-
duction, aim at recognizing noisy points as opposed to reconstructing a surface that is as close as
possible to the original.

A further subdivision of big noise that is made by some tools (see for example the book by Li
et al. [2004]) is that between single outliers and clusters of gross errors. For single points it often
works to look at a local neighbourhood around a point to decide whether it is far off. For larger
clusters of erroneous points one either needs to compute an approximation of the entire terrain to
find outliers or construct “regional” surfaces as neighbourhoods to compare to. The main problem
with these methods is that one has no idea how large such a neighbourhood needs to be to detect
all clusters, while generating an approximating surface for a large enough part of the terrain is
time-consuming (not to mention the problem of the points in error that are also counting towards
the average).

2.2 Noise models

2.2.1 Climbing-free terrains

The first part of the model is concerned with the physical terrain we would like to reconstruct. We
cannot hope to be able to reconstruct arbitrary terrains because they may look exactly like noise
in whatever definition. Therefore, it seems natural to start by bounding the slope of the terrain.

Definition 2.1 A point p on a terrain h : R> — R, p € R? is slope-bounded by o if h is
differentiable at p and the length of the gradient at p, |Vh(p)|, is at most o.

Definition 2.2 A terrain h : R? — R, is slope-bounded by o if and only if all points p € R? on
this terrain are slope-bounded by o.

This gives quite some power to prove things about such
terrains, but excludes very natural features such as cliffs
(see for example Figure 2.1), unless o is taken arbitrarily
high in which case the parameter is pointless. Therefore I
propose a relaxed version of the bounded-slope assumption
that allows cliffs to a limited extend. For this we first need
an auxiliary definition of a “thick” path in the plane (the
path needs to be thick because we need to be sure that it
gets hit by enough sample points, see also Section 2.2.3).

Definition 2.3 A corridor C C R? of width § is a con-
nected region of the plane that is defined by a simple curve
P C R? and consists of all points p € R? for which there
exists a point ¢ € P such that |p — q| < 6.

Figure 2.1: A real terrain with a com-
bination of steep slopes and paths
Definition 2.4 A terrain h : R? — R is climbing free with relatively low slope.

for width § and slope o if and only if for any two points Data from StatoilHydro, patch shown
p,q € R? there exists a corridor C C R? of width 6 such is 1 x 1 kilometer.

that p,q € C and the lifting h(C) (= {(z,y,h((z,y))) |

x,y € C}) of the corridor to the terrain is slope-bounded by o at every point on the corridor.
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Intuitively this implies that for any two points on the terrain, there exists a path that a person
who is § meters wide can take without needing climbing equipment if he can handle slopes up to
o -100% (see also Figure 2.2(a)). Now cliffs are allowed, but it is required that someone standing
on the edge of the cliff can walk down to the ground below without needing climbing equipment.
On the other hand, we do not allow objects to be part of the terrain that are delimited by steep
slopes on all sides, the reason of course being that samplings of such an object look quite like
noise. At the same time, we do allow pipe lines as discussed in the introduction as long as they
are wider than & meters and have at some point along their length a path connecting their top
to the rest of the terrain (this happens very naturally when the pipe is partially buried under a
sandbar).

maximum slope o @ @

width ¢

(1
- e

(b)

Figure 2.2: (a) An example of a climbing-free corridor connecting two points that would otherwise
have a too high height difference. (b) Big noise occurring too close to a cliff may be interpreted
as an extension of that cliff. (c¢) Big noise should be surrounded by a “buffer zone” that is also
separated from the terrain.

2.2.2 Big noise

We define big noise using noise-inducing objects that may prevent scanning beams from hitting
the real surface. They are modelled as a patch of terrain that is everywhere far away from the
original terrain. To avoid confusing noise close to a cliff with an extension of the cliff itself (see
Figure 2.2(b)), we also require points on the terrain that are close to noise (in horizontal position)
to be far away from the patch of noise (Figure 2.2(c)).

Definition 2.5 A patch of terrain b’ : R — R, R C R?, is [3-separated noise for a climbing-free
terrain h and width § if R is a finite connected region, h' is differentiable at every p € R, and for
any p € R and q € R? with |p — q| < 6, it holds that |h(q) — h'(p)| > 3.

2.2.3 Samples and small noise

In the above we have defined models of physical terrains and noise-inducing objects, but the data
delivered by scanning equipment consists only of a set of sample points of which we then have
to recognize which parts belonged to the terrain and which to the noise-inducing objects. If we
want to guarantee that a recognition method can distinguish noise from terrain data, we need
such a sample set to be dense enough in the horizontal direction (consider again the situations in
Figure 2.2(b) and (c)).

Definition 2.6 A sample set P C R? is e-dense if and only if for any point p € R? there exists a
point g € P such that |p — q| < .

13



The next step is specifying how the height of a sample point is derived. Here we assume some
randomness. For a given climbing-free terrain h : R? — R and separated noise ' : R — R, we first
define an indicator random variable I that indicates whether a point in R is taken from h (I = 0)
or b (I =1). A given opacity « € [0, 1] of the noise-inducing object is used as the probability that
points are taken from h’, so Pr[I = 1] = . This opacity is introduced to model the differences
in noise we see in practice. Some fish, such as those in Figure 1.1, block almost all soundings,
while other phenomena cause less dense clusters of noise (see for example Figure 1.4). The sample
function s : R? — R is then defined as

[ W) ifpeRandI=1
s(p) '_{ h(p) otherwise

If we also want to model small noise, we may consider adding it via a random variable J.
Because we do not know the real distribution of small noise (that may have many sources), we
cannot use it here. For simplicity, J is taken to be distributed according to a uniform distribution
U(—~,7), for some parameter ~.

'(p) = Wp)+J ifpe Rand I =1
)= h(p) +J otherwise

14



Chapter 3
Recognizing noise

As alluded to in the last chapter, we will now have a look at some frameworks that can be used
to define noise and give definitions of noise inside these frameworks. We will also refer back to
the models in the last chapter to validate the proposed definitions and provide some intuition on
what may be provable.

3.1 Triangulation

Since we assume that the terrain we would like to reconstruct input point triangulated surface
does not have overhangs, it seems natural to use this assump-
tion while recognizing noise. There are two common ways of
representing a terrain as a surface: by fitting the data into a
grid or by triangulating the points to create a TIN, a triangu-
lated irregular network. Grids are easier to compute on but we
would loose accuracy and be unable to handle the differences
in sample rate in different places on the terrain. A triangula-
tion represents the terrain much more accurately because it
keeps the original data points and just interpolates the terrain
between them. Because we would like to stay as close as pos-

projection
to the plane

\
sible to the original point set, a triangulation seems to be the /'\ Y
best choice. More specifically, we project the point set down ~—
to the horizontal plane (ignoring the vertical coordinates of ~ empty circle

the points) and construct a two-dimensional Delaunay trian-
gulation of the projected point set (a triangulation where no
points of the point set lie inside the circumscribed circle of any
triangle [Berg et al. 2008]). We lift this triangulation back to
the original heights at the vertices to obtain a terrain surface
(see Figure 3.1 for an example). This is the surface we then use for further processing.

A triangulation also provides a convenient starting point for recognizing noise because we
can refer to the neighbours of a point (the ones it shares a triangle edge with), and the local
neighbourhood around a point (basically consisting of all triangles it is incident to). In the context
of surface reconstruction of for example 2-manifolds, three-dimensional Delaunay triangulations are
also popular in the literature (they are for example used in both surface reconstruction algorithms
with theoretical guarantees mentioned in the introduction [Cheng & Poon 2004, Dey & Goswami
2006]). We would however like to make processing feasible for large data sets, which is both
theoretically and practically problematic if we would first need to construct a three-dimensional
Delaunay triangulation. While in the plane the complexity of the triangulation is linear, 3D point
sets exist that have a Delaunay triangulation of quadratic complexity. Also, the construction of 3D
Delaunay triangulations has not yet been well-studied for large data sets where algorithms cannot

Figure 3.1: The construction of a
TIN.
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run in main memory (see also Chapter 4), with only heuristic approaches currently available.
Two-dimensional Delaunay triangulations have however been widely studied, and algorithms are
available that are both theoretically and practically efficient, even when the algorithm cannot run
fully in main memory [Agarwal et al. 2005].

3.2 Topological persistence

A framework that has been used earlier for the elimination of local depressions from a terrain (or
peaks when viewing the terrain upside down) is topological persistence. Topological persistence
is a notion introduced by Edelsbrunner et al. [2003] that tries to capture the inherent hierarchical
structure of depressions (pits) in terrains. For example a large valley contains mid-sized depressions
which can themselves contain multiple local minima. This recursive structure of pits within pits
is seen as the terrain’s structure, and Edelsbrunner et al. propose a method to get rid of the most
insignificant pits. The original definition is much broader and can for example also be applied to
general 2-manifolds, but for simplicity we will only look at it from the perspective of triangulated
terrains.

The idea with topological persistence is to “grow” the terrain by sweeping a horizontal plane
through it from bottom to top; the part of the terrain that is already passed by the sweep plane
grows as the plane progresses. Pits are considered to be features that get born at some point in
time and die at some later point. They are born when the sweep plane passes a local minimum of
the terrain (a sink, see for example Figure 3.2(a)), and die when they get assimilated into a more
significant feature. The sink is called the pit’s representative because it is the point that started
the pit. The standard measure of the significance of a pit is its height, that is, the difference in
height between the moment it is born and the moment it dies (other significance measures exist,
but we will have a look at those later). Each time the sweep plane hits a saddle point of the
terrain where two previously unconnected pits merge (such as at point s in Figure 3.2(d)), the
most significant one survives and its representative becomes the representative of the bigger pit.
The least significant pit dies and its representative is said to be paired with the current saddle
point.

We assume that the part of the world outside the given terrain (in our case, outside the
triangulation, that is, outside the two-dimensional convex hull of the input points) is lower than
any other point on the terrain, and we model this as one global sink. Hence, any growing pit will
at some point be assimilated into the pit represented by the global sink.

We have up to now seen two types of vertices of terrains: minima and saddle points. The other
two types one can distinguish are reqular points and mazxima. More formally, assuming no two
neighbouring vertices have the same height, the type of a vertex v is determined by the structure
of its lower link: the neighbours of v in the triangulation that have a lower elevation than v. We
look at the connected components these vertices form within the cycle of vertices neighbouring v.

e If the lower link is empty, v is a local minimum.

e If the lower link consists of one component that spans the whole cycle, v is a local maximum.
e If the lower link consists of one component that does not span the cycle, v is a regular vertex.
e If the lower link consists of multiple components, v is a saddle point.

In case the vertex is a saddle point, we can further distinguish by the multiplicity of the saddle
point. If there are k4 1 components in the lower link, the saddle has multiplicity k£, meaning that
k + 1 different features merge when the sweep plane passes the saddle point. In the following,
we can assume that saddles always have multiplicity one because saddles with multiplicity & > 1
can always be unfolded into two saddles of multiplicity ¢ and j, 1 < 4,5 < k such that i + j =
k [Edelsbrunner et al. 2003].
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Figure 3.2: (a) A triangulated terrain with dots at local minima (with g representing the global
sink), an indication of relative height (1 is lowest), and flow directions. (b)—(f) Rising water level.
(g) Topological merge tree. (h) Compact merge tree.
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3.2.1 Merge trees

After the sweep is completed we end up with a single pit representing the whole terrain. One can
also see this sweep as an imaginary flooding of the terrain by raising the groundwater level. At
some point the water does not stay in the ground any more and starts filling the lowest of the
pits of the terrain: at this moment a new feature is born (Figure 3.2(b)). The water in this pit
continues to rise and in the mean time other pits are starting to fill with water (Figure 3.2(c)).
When two neighbouring pits are filled with so much water that it is about to flow over the edge
dividing the two lakes, the two pits merge into a larger lake (Figure 3.2(d)). The smallest (for
example shallowest) one dies and the largest one survives as its lowest point now becomes the
representative of the whole lake.

Topological merge tree. The information we are interested in when defining noise is the order
in which the different features merge and which of them die. That is, we are interested in the
tree formed by taking all sinks of the terrain as leaves and making internal nodes representing
saddle points, with edges from a child feature to a saddle-node if that feature merged together
with another feature at that saddle point (see Figure 3.2(g)). This structure is similar to what
is known in topology as the contour tree of a terrain, but includes only saddle points and local
minima, but not local maxima. I will refer to this tree as the (height based) topological merge tree
and for convenience assume that every node also stores the height of the corresponding terrain
vertex (saddle or sink), and the persistence of the sink in case of leaf nodes.

Because we assume all saddles to have multiplicity one, this tree is always binary. It also
follows from the definition that the heights of the nodes in the merge tree always decrease on
every root-to-leaf path.

Compact merge tree. We will now review an alternative version of the merge tree that is
slightly more compact, but more importantly makes some definitions later easier to state. The
compact merge tree has only sinks as vertices; saddles are represented as edges that connect the
vertices representing two pits that are merged together at that saddle (see Figure 3.2(h)). This
means we can make such a tree T by transforming a topological merge tree T in the following
way (see Figure 3.3).

Take all leaves of T (the sinks) as nodes of T¢. For each leaf s in T trace back the path
(s,a1,asa,...,a,) in the direction of the root until you hit the saddle point a, where sink s died
(that is, h(s) is higher than the lowest sink in the surviving subtree). Now let ¢;, 1 <1 < n, be
the node in T that corresponds to the sink dying at saddle a; (so h(a;) > h(s)), and let s’ be
the node in T corresponding to leaf s. Add a directed edge (¢;,s") in T¢ for 1 <4 < n. Store
with every edge (t;,s") the height of the corresponding saddle a; and store with every node s’ the
height of corresponding leaf s in 1.

(\
e

Figure 3.3: Correspondence between the topological and compact merge trees.

Tc

Note that, as opposed to Trr, T is not a binary tree. In T though, the root of the tree is the
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global sink while in 77 the root of the tree is the saddle that connected the most significant lake
with the global sink.

Lemma 3.1 The compact merge tree so constructed contains the same information as the original
topological merge tree.

Proof. By construction, the tree does not contain more information, so we only need to proof that
we can construct a topological merge tree T4 from the compact tree T such that Tp = T

Analogous to our earlier construction, we take the nodes of T to be the leaves of T and add
a node to Tt for every edge in Tc. Then, we order the children of every node in T¢ by increasing
height of the saddle point that is represented by the edge to that child. For each non-leaf node s’
in T¢, consider the ordered sequence of edges to children (af,d},...,al,_;), and edge a}, from s
to its parent in T¢. Then, create a path of edges (s,a1), (a1,az2), ..., (an—1,a,) in T}. Copying
the height information from the nodes of T to the corresponding leaves of T7., and from the edges
of T¢ to the corresponding nodes of T then completes the construction of T7.

We proof by induction on the height of Tr that T = Toh. As the leaves are copied verbatim
twice, the base case is trivial. Also the internal nodes of T are mapped bijectively onto a set
of edges in T and then back to nodes again in Ty, while keeping the same height information
associated. Hence, we only need to proof that the edges are put back in the right places. For this,
first note that for any edge (a,p(a)) in Tt we have h(p(a)) > h(a). Therefore, as (a, p(a)) is part

of exactly one path (s,a1,as,...,a,p(a),...,a,) from sink s to the saddle a,, where s died, the
edges in T¢ corresponding to a and p(a) will be ordered consecutively below s’. Hence, they will
again show up as child and parent in an edge in T a

3.2.2 Persistence measures

We may look at a pit as the polyhedron formed by the water inside the pit when it is filled up
to the height of its saddle point. Perhaps a bit more formally one might describe this polyhedron
as the volume P(v) for a sink v that touches v and is bounded from below by the terrain and
from above by the horizontal plane ¢(v) at the height of the saddle point of the pit. The standard
measure of the significance of a pit with representative v is then the height of P(v). Now one can
define other measures similarly. In his master thesis, Revsbak [2007] defines a general framework
for computing such measures. In particular, he introduces the following new ones:

e projected area: the area of the part of the surface of P(v) touching ¢(v);
e surface area: the area of the surface of P(v) not touching ¢(v);

e volume: the volume of P(v);

e any combination of the above, for example a tuple of height and volume.

With these measures we can now make different merge trees based on different “survival crite-
ria”. Instead of choosing the pit with the lowest sink to survive we may for example take the one
with the largest volume. This means we do not only change the information, but also the structure
of the compact merge tree. We take a look at a possible application of these extra possibilities in
Section 3.3.2.

3.3 Defining noise using persistence

One of the main practical reasons for the development of the topological persistence framework
was the need to simplify complexes such as triangulations of spatial point sets [Edelsbrunner
et al. 2000]. Later, the approach was also applied to terrains [Edelsbrunner et al. 2003, Agarwal
et al. 2006]. Topological simplification was much needed in this domain because for example
contour maps generated from terrains with many minor, local depressions (small noise) can contain
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superfluous contour lines around these depressions. Also for water flow analysis it is necessary
that the terrain does not contain (many) sinks because these are assumed to evaporate all water
that touches them, disrupting the water flow (as opposed to the flooding model where the water
stays in the sink). In these cases, topological persistence indeed helps to decrease significantly the
problems caused by small noise. We will now first see how topological persistence achieves this
and then see if we can also use it for removing big noise.

3.3.1 Topological persistence for small noise

The simplification procedure described by Edelsbrunner et al. cancels sinks against saddle points,
starting with the feature with the lowest persistence. The procedure carries on iteratively until the
lowest persistence is higher than a given threshold, effectively removing all sinks with a persistence
lower than the threshold. By definition, independent of the significance measure used as survival
criterion, in a compact merge tree for a given sink s, any descendant s’ is less significant than
s. Therefore, if we select all pits with a significance smaller than a certain threshold, we know
that if we select s, we also select s’. This is an important consequence for noise removal based on
persistence because we can eliminate all sinks with a persistence lower than a given threshold by
only pruning subtrees of the compact merge tree. Note that the subtrees of the compact merge
tree correspond exactly to what I have been calling “pits” up to now and that the top #(s) of a
pit is at the height of the saddle point paired with s which is stored with the edge from s to its
parent in the compact merge tree.

Now consider removing a particular subtree. Probably, we do not want to only remove the
sinks and saddle points that appear in the tree; we also want to remove the regular points and
maxima around those points (consider for example a cluster of points like in Figure 1.1, where
only a few of the highest points are sinks when the terrain is turned upside down, while we want
to remove all points from a cluster). This is easy to do in the persistence framework. When
finding the sinks we can also find the points around there that are in the so-called watershed of
that sink. The watershed of a sink v is the set of points on the terrain for which rain that falls on
those points eventually ends up in v, assuming that rain always goes down the edge to the lowest
neighbour vertex (as shown in Figure 3.2(a)). We define the watershed of a pit as the union of
the watersheds of the sinks inside that pit. If we then decide to eliminate a certain pit, we can
also remove points from its watershed. Note that we do not always want to remove all points from
the watershed, because a pit may lie next to a hill such that a lot of points on the hill have their
water flowing to this sink while we do not want to remove the side of the hill when eliminating
the sink next to it. Therefore, the approach Agarwal et al. [2006] take is to determine the height
of the saddle point of the pit p to be removed and then raise all points in the watershed to ¢(p)
unless their elevation is already higher than that of the saddle point.

If we want to remove peaks in the same way, we can simply turn the terrain upside down and
do the exact same thing again.

3.3.2 Topological persistence for big noise

This approach has been shown to work quite well for small noise, so we may consider extending
the approach to make it work for removing big noise, too. We can however not simply eliminate
pits with high height persistence because we would be removing all or a large part of the terrain
(depending on whether we count the pit represented by the global sink). Removing only the sinks
themselves and not the points in their watersheds would not work either. If a chunk of noise
consists of multiple points that fall inside the same pit, we would only remove the most extreme
one (the representative sink) because the others are only points inside the watershed of that one
extreme point.

Apparently, we indeed need to remove points from the watersheds, but we have to be more
careful in choosing which sinks to select. Looking at a typical example of noise such as shown in
Figure 1.2, there is one thing that seems to be true for most of the chunks of noise we see: the
peaks and pits they induce are very skinny. This suggests that we may want to eliminate sinks
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that have small projected area. Fortunately, this can already be done within the extension of the
persistence framework by Revsbaek [2007]: we can use “large projected area” as survival criterion
and simply use the approach outlined above for small noise with projected area instead of height.

A potential problem with doing this is that we are still only removing the single outliers and
not the clusters of errors, because they may make up a large pit with a big projected area (see
also Section 5.2). Single outliers are arguably not the most challenging type of noise to remove.
Secondly, we will also remove some of the lowest points of valleys and tops of hills, even while they
are not noise, just because they have small projected area (see the bottom of pit (b) in Figure 3.4).

3.3.3 Saddle separation

It is clear that we will never be able to solve these problems when sticking to the small projected
area idea—it simply does not always correspond to what we want to remove. Tracking back to
the high height idea then, we will somehow have to limit the amount of terrain removed for high
pits. Considering the climbing-free terrain model from Section 2.2, it might be a good idea to
only remove those parts of pits that are not “nicely” connected to the terrain around the pit,
such as the points in the bottom of pit (a) in Figure 3.4. We unfortunately do not have enough
information to detect the kind of connectivity on the terrain we are looking for because the merge
tree does not contain any information about the triangulation around the sinks and saddle points.
Now we can do two things, either bend the framework enough to somehow be able to get this
information, or loosen the connectivity idea. We will now first go with this second approach and
then later see if we can fix it up.

S big gap )
no big gaps%: L

Small-projected-area
cleaning flattens valleys

d hill tops. ,
e “saddle point” (2D maximum) Aane i Rops /

s sink (local minimum) \(v/

Figure 3.4: Example of saddle separation in 2D, and why cleaning based on small projected area
removes too much.

The information we do have available in the merge tree about a pit is the set of sinks and
saddle points it consists of and their heights. That is, we know which pits merged at which height,
in which order. We can use this information to define, for a given pit, a height under which points
have no climbing-free path to the outside world over sinks and saddles. The idea is to search for a
large gap in the heights between two consecutive saddles or a saddle and a sink in the merge tree.
If such a gap exists, we know there are no sinks or saddles in this height interval in the part of
the pit containing the sink (such as the darker part of pit (a) in Figure 3.4), so we can select all
sinks below this gap to be removed.

Definition 3.2 A sink s in a topological merge tree T is T-saddle-separated if s has an ancestor
a (possibly equal to s itself) with parent p(a) such that h(a) + 7 < h(p(a)). If this is the case,
h(p(a)) is called the raise elevation of s. If there are multiple such ancestors, we choose the one
closest to the root.
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This raise elevation (terminology re-used from the literature on removing small noise by flood-
ing) can then be used to define which of the regular points and maxima have to go.

Definition 3.3 A vertex v of a terrain h is T-saddle-separated if and only if the sink s whose
watershed contains v is T-saddle-separated, and h(v) is less than the raise elevation of s.

Note that when we define noise in this way, perfectly smooth and nice terrains may be consid-
ered to be very noisy: because we only have a few sinks and saddles (the real minima of valleys
and natural saddle points), the height distance between them may well be larger than the given
threshold. If one would for example remove the sink points on the sides of pit (b) in Figure 3.4,
one would be left with a nice, smooth valley with only sink and a big gap between that sink
and the topmost saddle point. Therefore valleys in such terrains are wrongly classified as noise.
In practice however, TINs always contain many local sinks and saddle points everywhere on the
terrain, partially because this is also true in nature, and partially because of small noise, as we
will see in Chapter 5. This implies that if we would want to place an algorithm implementing this
type of big noise removal inside a longer processing chain, we would want to run it before any
algorithm removing small noise, but this seems to be a natural order anyway.

Guarantees. If we want to prove that this definition of noise works well
for climbing-free terrains, we would thus need to assume the existence
of small noise. The small noise model given in Section 2.2.3 should be
suitable for this purpose. The Delaunay triangulation has the property
that for every edge there exists an empty circle through the end points
of the edge [Berg et al. 2008], so all edges in a Delaunay triangulation
of an e-dense sample must be shorter than 2¢ (when projected to the
plane). If there would be an edge e longer than 2¢ as in Figure 3.5, there
should be a point p within € distance of the centre ¢ of the (supposedly
empty) circle through the end points of e, contradicting the empty-circle
property. Hence, we also know that for any edge (p, q) the original height empty circle
difference (before measurement) |h(p) — h(q)| on a terrain h that is slope

bounded by o, is at most 2¢0. By then assuming a minimum noise Figure 3.5: Maximum
amplitude v > €0, we can prove a lower bound Es > 0 on the expected edge length.

number of saddle points per unit of area for a sampling of a patch of

slope-bounded terrain.

Applying this to climbing-free corridors of given width and length, we can calculate the prob-
ability that there exist enough saddle points in a triangulation of a sampling of that corridor,
such that there is at least one every 7 units of height. This should then lead to a result stating
that, for climbing-free terrains with wide-enough climbing-free corridors (relative to their length),
no saddles and sinks of the triangulation are 7-saddle-separated, hence all points are correctly
classified.

The second step would be to prove that points belonging to - recognized )

edge e, |e| > 2¢

separated noise will indeed be 7-saddle-separated, while adding this noise as noise
does not change the classification of other points in the terrain. The first
part should be doable for reasonable values of 7 with respect to the other
parameters (v, big noise should be larger than small noise, and therefore
also larger than o), because the terrain around the noisy spot R will
have a significantly different elevation due to the “buffer zone” condition,
with no points at intermediate heights to act as saddle points to prevent
removal. The second part, guaranteeing that points on the original ter-
rain are not influenced by removing big noise, is a bit more problematic.
Because the “raise elevation” is taken to be the height of a saddle point Figure 3.6: Area above
that is close to the terrain, there may be some regular points higher than selected saddle point s
the saddle point that get recognized as noise, even though they are close is shaded.

to the actual terrain (see Figure 3.6).
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This problem exists mainly because we cannot make a good guess for the “correct” raise
elevation when only looking at the points inside merge tree. We will therefore next consider an
approach that completely circumvents the use of the merge trees and the persistence framework
in general, and goes “back to basics”.

Filtration. Before moving on to that topic, a last thing to talk about regarding the theory
around this type of noise cleaning is its behaviour under varying thresholds: we would like the
threshold 7 to act as a paramater in a filtration of the point set. A filtration is a sequence of sets
that is totally ordered by inclusion, where in our case —7 acts as an “index” into this sequence.
This is very desirable in practice: it means that if we decrease 7, we always add more points and
never remove any. Indeed, the set of T-saddle-separated points forms a filtration parametrized by
—7. The raise elevation of any sink only increases when 7 decreases, hence more points will be
7-saddle-separated. Because we choose the ancestor a closest to the root (and hence highest) for
which the height difference with its parent is at least 7, choosing a lower threshold always makes
us pick either a or one of its ancestors. Hence, the raise elevation will be equal or higher.

3.4 Connected component cleaning

After having seen a definition of noise based (only) on topological persistence and its main artefact,
the merge tree, let’s see if we can make a shortcut and work directly on the triangulation to get
a definition of noise that matches better with the climbing-free terrain idea. The idea is that if
we have a cluster of points that we would classify as big noise, it is probably easy to separate
their part of the triangulation from the rest of the triangulation because we know that they lie
relatively far away from the other points, so the edges between these two parts of the triangulation
are relatively long, especially in the vertical direction. The proposed definition of noise based on
this idea is very easy: treat the triangulation of the terrain as a graph and remove all edges (p, q)
from this graph of which |h(p) — h(q)| > 7, for a given threshold 7, to obtain a graph G,. Then,
the points belonging to the largest component (the one with the most points) in G are considered
part of the terrain, and the points in all other connected components are noise.

The idea of taking the largest component is given both by practice and by the definition of
climbing-free terrains. Both suggest that G, will consist of one very large component spanning
almost all points, a number of singleton components for the single outliers, and bigger components
for the larger chunks of dense noise. Although some edges will be cut between points on the top
of a cliff and below it, the climbing-free corridor condition should ensure that we do not consider
points on sane terrains as noise.

To formally complete this definition of noise, we would have to specify which component is
to be kept if there are multiple components with the same number of points. We could make
some arbitrary decision here (for example taking all of them), but this seems unsatisfactory and
really asks why we do not simply introduce an extra parameter specifying the minimum size of
components to be kept. Apart from this introducing a mostly useless extra parameter to the
definition that would need to be fine-tuned, it may also not be an intuitive parameter: it depends
on the sample density and it is not clear why noisy components should always be smaller than non-
noise components if the (“real”) terrain indeed consists of multiple components. Note that taking
component area instead of node number may be a little more intuitive, but is not well-defined on
a “half-triangulated” graph like G'.

Filtration. Still, adding a parameter specifying the maximum component size gives the algo-
rithm the nice property that varying 7 yields a filtration of the point set. This is not the case when
we always take the largest component, as shown in Figure 3.7. If we decrease T gradually from
oo to 0, and remove only components smaller than a given threshold, any particular point p will
be considered as noise after one particular moment 7, and never appear again, because connected
components only get smaller when we decrease 7 as we remove more and more edges. Hence, this
variation of the definition does yield a filtration when decreasing 7. Note that increasing the other
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parameter, the maximum component size, also yields a filtration simply because we exclude more
and more components and hence points from the graph.

Gm Gg G2 Gl

Figure 3.7: Always taking the largest component does not yield a filtration. The numbers on
the edges indicate the difference in height between the endpoints, the bold points are the ones
considered as noise for the given values of 7. Between 7 = 2 and 7 = 1, the three points in the
top left appear again after having been considered as noise before.

Guarantees. As with the previous approach, let’s see how far we can get in proving that this
definition of noise classifies points from climbing-free terrains with separated noise correctly. In
this definition, it is much easier to use the climbing-free corridors: as long as the width ¢ of the
corridor is more than 4e, the Delaunay triangulation always contains a path over the corridor
(with bounded slope), connecting two points that are close to the ends of the corridor. If we
add T-separated noise (again for reasonable values of 7), we will not have the same problems
at the boundary of the noisy spot R, but still have problems with points on the terrain that
are entirely surrounded by outliers. Because all neighbours of such a point p have a significantly
different elevation, all edges to p are removed from G.. Point p gets separated in its own connected
component and thus recognized as noise. This will however only happen (on a large scale) for
noise-inducing objects with a high opacity a, because otherwise there will be a high probability
that a path exists in G, connecting p to the rest of the terrain.

3.5 Hybrids

Inspired by the good perspectives of the previous methods, it might be an interesting idea to
combine them in order to overcome the disadvantages of both. In particular for the last problem
we considered for connected component cleaning, points at terrain height surrounded by noisy
outliers, it might help to have information about the geometry of the “pit” defined by the noisy
points and conversely saddle separation can get help from the connectivity information available
in the connected component cleaning framework.

The idea is to first find relevant pits that are candidate for removal using saddle separation, and
then refine the removal process by looking at the triangulation of the points inside a pit. We could
for example redefine the raise elevation as the height of the highest point that is still connected
via a path of short edges to the terrain outside the pit. Using this different raise elevation, we can
keep Definition 3.3 for selecting points to be removed.

3.6 Properties of CUBE

Finalizing our noise-technical deliberations, we will have a look at how the industry standard
CUBE algorithm we saw in Chapter 1 behaves in the setting we have sketched. Because I did not
have access to an implementation of the algorithm (it is implemented in a number of commercially
available tools), this discussion is based on the description of the algorithm given by Calder &
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Mayer [2003], assuming that the estimation nodes are placed on the vertices of a regular square
grid.

For this discussion we will first have to identify which parameters the algorithm has that can
be tuned by the operator. Apart from some statistical parameters such as the worst amount of
error expected in the input, the following parameters seem to be relevant.

e Resolution of the estimation node grid.

e The maximum distance a measure point can be away from an estimation node for it to
contribute to that node’s estimate. This parameter is calculated per measure point, based
on its error and some global, maximum allowable error. It is however always at least as
large as the spacing between the nodes, so measure points always contribute to at least one
estimation node.

e The length of the filter that delays spurious points in the data stream.

e The minimum distance of a sample’s height to the current estimates at an estimation node
that is required to start a new hypothesis. This parameter seems to be “hard coded” in the
model and depends on the standard deviation of the estimate.

e The choice of hypothesis-selection method in case there are multiple hypotheses. In case of
the use of estimation nodes in the neighbourhood, the size of the annulus needs to be chosen
(Calder & Mayer suggest an inner radius of 5 meter and an outer radius of 10 meter).

Because the output of CUBE is a set of estimates with a surface, turning it into a noise
removal algorithm requires another step, for example removing all points that are far away from
the computed surface. This would involve another parameter specifying what is “far away”. This
also seems to be the parameter that comes closest in meaning to the thresholds in the algorithms
proposed above.

The main problem with the algorithm appears to be condition 1: hypotheses without counter-
evidence are always chosen. This implies that for any large enough noise-inducing object with
high opacity, the estimation nodes placed well inside the region covered by the noise will generate
only one hypothesis (or perhaps two, but the second only supported by so few samples that it will
not be chosen), and hence the reconstructed surface follows the noise instead of the real terrain.

25



Chapter 4

I/0O-efficient algorithms for noise
removal

Now that we have seen a number of possible definitions of noise, we will have a look at some
algorithms that efficiently identify points that are noise according to these definitions.

The classical approach to measuring how “efficient” an algorithm is, is to define the size n
of a problem instance (such as the number of points in a given point set), and then prove an
asymptotic bound on the number of CPU operations that need to be performed when running
the algorithm for an instance of size n, when n goes to infinity. For big data sets however, in
practice the running time of many programs stops adhering to the proved bound at some point
well before the input size reaches infinity. What is happening is that the program is trying to use
so much main memory that the operating system starts swapping out part of it to the hard disk.
The hard disk is a lot slower than the main memory (with typical access times of 10 milliseconds)
and the program is still trying to read and write data to various different places in memory, so the
operating system has to fulfil all the program’s memory-page access requirements, and the hard
disk becomes the main bottleneck.

The underlying problem here is that the algorithm (and its implementation) is usually opti-
mized to work in internal memory where it does not matter much if you read and write data to
“random” places, whereas for a program to work efficiently with data on disk it needs to work as
much as possible with data around the same location around the same time. The reason for this
is that moving the head of the hard disk to a certain random place on disk takes very long, but
when it is finally there reading a large number of consecutive bytes is very fast. There has been a
lot of research on designing algorithms that make use of this fact, and since in the context of this
thesis we deal with very large data sets it is a good idea to do so too.

4.1 1/O-efficient algorithms

In trying to come up with algorithms that use hard disks efficiently, a model has been developed
to assess the efficiency of such algorithms. The model is based on the assumption that for any
particular computer setup a number B can be given that specifies how many consecutive bytes
one can approximately transfer in the time it takes to move the disk head. A chunk of data of this
size is called a block, and B is called the block size or page size. The reason for specifying the block
size in this way is that asymptotically it does not matter any more if multiple blocks are read
consecutively or at random places on disk (the running time can only vary by a small constant
factor). Furthermore, the model has a parameter M that specifies the size of the main memory
in bytes. Algorithms in this model are allowed to make use of these two parameters and optimize
their behaviour based on them, but can only use M bytes of main memory and transfer data to
and from disk in blocks of size at most B. There is no limit on the amount of hard disk space an
algorithm can use. The analysis of an algorithm then proceeds by counting the worst-case number
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of disk accesses it needs to make when the size NV of the input data and the block size B tend to
infinity (for historical reasons N is often written with a capital letter as opposed to the classical
model).

4.1.1 Basic results

Because we are counting the number of blocks transferred, and each block contains ©(B) elements,
scanning an input data set of N elements can be done in O(N/B) 1/0s (disk accesses). Sorting a set
of N elements can also be done much faster than the trivial bound you would get from an optimal
internal-memory algorithm that would use O(N log N) I/Os. By using a slightly changed version
of merge sort, we can sort NV elements using O(N/Blog,;, 5 N/B) 1/Os [Aggarwal & Vitter 1988].
The idea here is to use an M /B-way merging routine that keeps the current block from M /B data
streams in internal memory such that the recursion tree gets as shallow as possible. Because this
bound turns up very often in the analysis of I/O-efficient algorithms, it is abbreviated to SORT(IV).
Another important technique used in the design of I/O-efficient algorithms is time-forward
processing [Chiang et al. 1995]. It can be used to move information around in a directed acyclic
graph to evaluate for all nodes some function that only uses information from a node’s predecessors
in the graph. When using an I/O-efficient priority queue, the method works by going through the
graph in topological order (which is assumed to be given) and inserting an element in the priority
queue for every edge, with a priority equal to the topological order number of the target vertex.
When a particular vertex is to be processed, the information for that vertex is found and removed
from the top of the priority queue. Using a priority queue with an amortized I/O complexity of
O(1/Blog,; 5 N/B) per operation, we can processes a graph in O(SORT(N)) 1/Os [Arge 2003].

4.2 1/O-efficient topological persistence

The main problem with implementing persistence I/O-efficiently is finding which saddles merge
which lakes. A natural way of solving this problem is to formulate it as a sequence of UNION
operations and FIND queries on a disjoint-set data structure. In short, the lakes from the flooding
process are represented by the sets and each time a new vertex is processed (in order of increasing
height), a new set is created and merged with any lakes in the vertex’s lower link. By inserting
FIND queries before merging the lakes below a saddle point, we can construct the compact merge
tree T mentioned in Section 3.2.1 as follows. Because for every saddle point we know the answers
to the FIND(u) and FIND(v) queries issued before merging the saddle point with the vertices u
and v in its lower link, we can create an edge (FIND(u), FIND(v)) in T¢ for every saddle.

The problem of I/O-efficiently answering the FIND queries in an a-priori given sequence of
UNION operations and FIND queries has been studied by Agarwal et al. [2006]. They give an
optimal O(SORT(N))-1/0 algorithm for solving this problem on a sequence of N operations!'. The
algorithm is unfortunately too complicated to be practically useful, so Agarwal et al. also give an
alternative, much simpler algorithm to get the same result in O(SORT(NN)log N/M) I/Os.

Revsbaek [2007] describes algorithms solving a more general version of this problem in which
sets have properties associated to them that have to be merged appropriately in every UNION
operation using a given function. The bounds he gets are the same as above. Revsbak also
defines such properties and merge functions corresponding to the projected area, surface area and
volume of lakes.

4.2.1 Partial flooding

After the compact merge tree with associated sink persistence values and saddle heights has been
constructed, we can simulate partial flooding with threshold 7 by finding new heights for all
vertices in the terrain in two steps [Danner 2006, Section 3.3.2].

1In case all UNION operations merge two different sets, which is true in our application.
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The first step is to find the raise elevation for all sinks: for sinks saddle at
with persistence at least 7 this is the height of the sink, and for height h
sinks with persistence lower than 7 this is the height of the saddle Te
point corresponding to the most significant sink in the subtree that
is removed. This means that we need the height of such a saddle
point in all descendant sinks. This information can be sent to the
right locations using time-forward processing: if we direct the edges
of the compact merge tree away from the root we get a directed acyclic
graph in which we want to compute a function (that computes the
raise elevation) for every node that only depends on information from
its predecessors (namely their raise elevation). A topological order sink with low persistence;
for this graph is given by the heights of the saddle points paired with forwards h to its children
the sinks. Because with every edge we store the persistence of the
highest of the two sinks and the height of the saddle point, we can
thus compute the raise elevation for every sink as follows. Set the raise
elevation of the root (the global sink) to —oo, and the raise elevation
of any other sink s equal to that of their parent p(s), except when the
persistence of s is lower than 7 and the raise elevation of p(s) is —oo, in which case we set the
raise elevation of s to the height of the saddle point paired with s (see Figure 4.1).

The second step consists of forwarding the raise elevation of the sinks to the terrain vertices in
their respective watersheds. By adding FIND queries after all UNION operations in the union—find
sequence for regular vertices and maxima, we can find their watersheds by scanning through the
output of the batched union—find algorithm. A simple sorting and scanning step then suffices to
get the raise elevations to the vertices of the terrain. We can now determine locally for each vertex
if it is lower than the raise elevation and has to be (re)moved, or it is at least as high as the raise
elevation and can stay.

S1 S2

Figure 4.1: Time-forward
processing for raise eleva-
tions.

4.3 Saddle separation

We would like to determine for each vertex of the terrain if it is 7-saddle-separated according to
Definition 3.3. If we can first find a raise elevation for all sinks, we can reuse the second step
above and (re)move the vertices in their watersheds that are too low. Finding whether sinks are
T-saddle-separated and then finding the correct raise elevation requires a different approach.

For removing sinks with low persistence, the definition of noise lined up nicely with the com-
pact merge tree constructed from the union—find output: we basically selected subtrees from the
compact merge tree. Saddle separation however we defined by selecting subtrees from the topo-
logical merge tree. In order to use a similar I/O-efficient approach we either have to rewrite the
definition or transform the compact merge tree. We will take the first approach because it turns
out that in this way we can actually keep much of the structure of the solution for low persistence.

Definition 3.2 states that for a sink s to be 7-saddle-separated, there should be an edge on the
path from s to the root for which its two endpoints have height difference at least 7. On this path
we will at some point encounter a saddle point a at which s dies (except when s is the global sink,
in which case a is the root of the tree). If there is such a long edge, we consider two cases: either
the chain is broken between the root and a, or it is broken between a and s (in case it is broken
in both places, we consider the one closest to the root). If it is broken between the root and a,
all sinks in the subtree rooted at a in the compact merge tree have to be selected and the raise
elevation is dictated by a sink higher up in the tree, as was the case for selecting sinks with small
persistence. When the chain is broken at the ith link in the path from s to @ however (counting
the edge to s as i = 0), we want to select s together with all sinks in the subtrees rooted below
the ith link. In the compact merge tree this corresponds to selecting the ¢ child sinks with the
lowest saddle points, and only s itself if i = 0 (see Figure 4.2).

This observation helps us to implement the sink selection step I/O-efficiently: we can again
use time-forward processing over the edges of the compact merge tree, but we now sort the edges
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Figure 4.2: Selection of sinks to remove in the topological and compact merge trees.

lexicographically by increasing height of the source vertex (parent in the tree) and decreasing height
of the saddle represented by the edge. We can then scan over each sink s and find in the priority
queue if any of its ancestors summoned it to be selected and then send this on to its children,
or otherwise run over all its children and see if there is a 7-sized gap between, consecutively, the
height of s’s saddle point, the heights of the saddle points of s’s children and the height of s itself.
If at any point during this scan such a gap is found, any child sinks that are still to be processed
can immediately be summoned to be selected by inserting a corresponding item in the priority
queue. If a gap was found in this way, a itself is selected, otherwise it is not.

In this way we are still only scanning over the edges and pushing an item on the priority exactly
once for each edge, so the algorithm runs in the same number of I/Os, O(SORT(N)) for a terrain
of N vertices.

4.4 Connected component cleaning

The definition of connected component cleaning was pretty simple and describing an implemen-
tation is fortunately equally simple. It consists of the following steps.

1. Extract all edges from the given TIN and write to an output stream only those edges that
span less than 7 in the vertical direction.

2. Label the connected components in the graph represented by this stream.
3. Find the largest component.
4. Write all vertices from the largest component to an output stream.

Instead of taking the largest component, we can of course take all components larger than a given
threshold k. The last two steps should then be replaced by the following steps.

3’. Count the size of all components.

4’. Write all vertices to an output stream that are part of a component with more than %
vertices.

All steps except step 2 can trivially be implemented using a few scan and sort steps. For step 2
we can run an algorithm to find the connected components of a planar graph using O(SORT(N))
I/Os [Chiang et al. 1995].
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4.4.1 Optimizations

Some of these steps can be optimized to run in O(N/B) time, but there are places where it is hard
to get rid of the sorting step. We will now investigate the procedure step-by-step to see what can
be optimized.

In step 1, we need to extract the edges from the TIN. Depending on the representation this
may be done in one scan, but in order to be able to run step 2 in O(N/B) I/Os, we need the
edges to be in a particular order: sorted lexicographically by the horizontal components of the
coordinates of the end points of the edges (first by the z and y coordinate of the lexicographically
smallest end point, and then the z and y coordinates of the other end point). Unless the input is
in this order, we need to sort the edges at this point.

For step 2, there exists an algorithm that runs in O(N/B) time, but apart from the assump-
tion on the order of the edges we also need to assume that the intersections of a horizontal or
vertical sweep line and the (embedded) graph always fit in main memory. An algorithm that
achieves this running time is based on a method to find connected components in flat parts of grid
terrains [Danner 2006, Section 3.4.1] and is not yet published [Arge et al. 2009]. The algorithm
performs two line sweeps over the set of edges and therefore needs the edges to be sorted in the
order the sweep line would visit them. The output of this algorithm is the same set of edges, but
now labelled with a number representing the connected component they are part of.

The next step, number 3, is concerned with finding the largest component, or any component
with more than k vertices. For this, we will first need to extract the unique vertices from the list
of edges. We can do this by writing for each edge both end points to an output stream, sorting
this stream and removing the duplicate vertices.

If we can then have a counter in memory for each connected component, a single scan suffices
for steps 3 and 3’, otherwise we can use an O(SORT(N)) algorithm (for example by sorting the list
of component labels and counting the duplicates).

The final step consists of dropping all vertices that belong to a connected component that is
found to be too small. If we can store an identifier for each large (or small) connected component
in memory, this can again be done by only scanning over the data, otherwise we again need to
resort to sorting.

Preprocessing. The only unavoidable sorting step left is the one to make the set of vertices
unique. In case we want to run a number of connected component cleanings with different values
for 7 and/or k, we can choose to do some preprocessing taking O(SORT(N)) I/Os such that
the remainder of the algorithm runs in O(N/B) time. This preprocessing consists of finding for
every vertex v the incident edge es(v) that is shortest in height (with minimum height difference
between the end points, and some tie-breaking rule), and marking for every edge e = (u, v) whether
es(u) = e and/or e5(v) = e. We then order the edges including these two extra bits of information
in the order necessary for the connect component labelling algorithm. This preprocessing can
clearly be done in a few sort and scan steps and allows for quick cleaning with specific thresholds
as follows.

Because the edges are already in the correct order, we only have to drop the ones that are too
high and run the connect component labelling algorithm. We then output for each edge e = (u,v)
end point u if and only if es(u) = e (which is stored locally with the edge), and end point v if and
only if es(v) = e. This guarantees that for every non-singleton component all vertices are output
once, so we do not need to remove duplicate vertices.

4.5 Hybrids

The hybrid approach may be implemented 1/O-efficiently using a combination of the tools de-
scribed above. We follow the saddle separation approach up to finding the raise elevations. Instead
of forwarding the elevation, we only flag the pits(’ representatives) as candidates for consideration
and write them to a separate stream. Then, we aggregate the vertices of the terrain according to
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the flagged pit they belong to, and ignore (thus keep) them if they do not belong to any such pit.
This can be implemented using a few sort and scan steps because we know which points belong
to which watershed. The next step is to run the connected component labelling algorithm on the
subtriangulations corresponding to each pit’s vertices, with extra edges marking the border of the
pit that is connected to the rest of the terrain. This results in a labelling where we know the
identity of the border component. Taking the maximum height of any vertex in this component
yields the new raise elevation and can be applied to all vertices in the pit.
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Chapter 5

Results

In this chapter, I will first shortly discuss an implementation of the algorithms described in the
last chapter and a tool to visualize the results, and then give examples of typical results of the
algorithms applied to a number of real world data sets (mostly from multibeam echosounders,
but also from LIDAR scans). We have a look at the differences between the various automatic
cleaning methods and the manually cleaned data sets. I conclude with a discussion of running
times in practice.

5.1 Implementation

The algorithms were implemented within the TerraSSTREAM framework [Danner et al. 2007], based
on the TPIE (Templated Portable I/O Environment) library [Arge et al. 2002] for implementing
I/O-efficient algorithms. TPIE provides the low-level primitives for handling disk blocks and
streams, as well as some basic data structures such as a priority queue. TerraSTREAM includes
functionality to handle terrain data such as readers and writers for point data and I/O-efficient
two-dimensional Delaunay triangulation, as well as libraries and front-ends to for example generate
contour maps and do flood and water flow simulations. The contour map generation code includes
an implementation of the connected component labelling algorithm mentioned in Section 4.4.
TerraSTREAM also includes code to compute the topological persistence (in any of the height,
projected area, surface area or volume measures) of all sinks of a terrain, construct a corresponding
compact merge tree, and subsequently eliminate sinks with small persistence by partial flooding
as described in Section 4.2.1. The saddle separation method was implemented as a step in this
process, replacing the partial flooding step.

The implementation of the connected component cleaning algorithm implements the “non-
primed” version of the algorithm from Section 4.4 using the connected component labelling al-
gorithm already present in TerraSTREAM. Because the input data is given as two files, one
containing all vertices with their coordinates and another containing all triangles with the identi-
fiers of their vertices in the first file, we first need to write out edges containing only the identifiers
of their end points and then sort this stream twice to store the coordinates with the edges, and
then sort them again for the connected component labelling algorithm.

The hybrid approach put forward in Section 3.5 and 4.5 has not yet been implemented, but it
seems interesting enough to be worth trying in the future, also considering the results shown later
in this chapter of the other two algorithms.

5.1.1 Visualization

There are many software tools available to visualize point sets or terrain meshes, but I am not
aware of any that are both capable of visualizing very large data sets, and give an exact rendering
of a terrain as given by a Delaunay triangulation.
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More specifically, one visualization tool we used is called NaviModel from Eiva which is de-
veloped to visualize large point sets as terrains quickly. It does a good job at that, but perhaps
a bit too good in the sense that it only shows an approximation of the terrain most of the time,
while viewing the raw data—from which we want to identify the noisy points—is hard. The
approximated terrain is drawn using a triangulation that does not correspond to the triangulation
used in our noise removal software. This makes it hard to see which points we want to remove
and on which grounds we would want to do that.

Other tools are mostly geared towards viewing smaller data sets that fit in main memory and
allow drawing arbitrary shapes (including the triangles from a given triangulation). Although
we are not looking for a tool to do the currently infeasible thing of showing all triangles of the
Delaunay triangulation of a large terrain, we would still like to be able to view parts of it and also
see the difference between the raw input data, manually cleaned data and algorithmically cleaned
data so as to judge the classificational power of the proposed algorithms.

Second, we would like to be able visualize the terrain as seen from the persistence framework:
where are the sinks and how are they organized within the (compact) merge tree?

My visualization tool solves both problems by first presenting the user with an overview of the
terrain by plotting the sinks of the terrain in 2D in any of a number of different user-selectable
ways, and then allows the user to get an interactive 3D visualization of a part of the terrain that
is small enough for the video card of the computer to render.

Overview plot. The 2D overview plot shows all sink points from a compact merge tree as
produced by software earlier in the pipeline. The data includes both the horizontal and vertical
position of the sink points (z, y and z coordinates), and their persistence according to one or more
measures. The user can choose which of these values should be positioned on the x and y axes
of the plot and whether they should be plotted using a logarithmic scale. Zooming functions are
available to get more detail in a selected area. Example plots are shown in Figure 5.1 and 5.2.

The overview plot can also be used to display all information available for a specific sink, and
draw the subtree of the compact merge tree that is rooted at that sink. In combination with the
detailed terrain view described next, this provides valuable information for determining how good
the merge tree is at describing the intricacies of a particular terrain.

Figure 5.1: Typical view of sinks by = and y coordinates: they appear everywhere on the terrain
with a density depending on the actual data point density. The larger white spots are indeed empty
regions in the input data. The overlay shows a subtree of the compact merge tree; the purple line
connects the selected sink to its parent, and the green to blue lines connect the selected sink
recursively to its descendants. Data from StatoilHydro, patch shown is 38 x 11 meter.

Detailed terrain view. The detailed terrain view gives in an interactive visualization of a
data set by drawing a small sphere for every input point, a triangle for every triangle of a given
triangulation, and a line for each edge of this triangulation (although any of these can be disabled
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Figure 5.2: Sinks by height (on the z-axis from 0 to 6.8 meter) and projected area (on the y-axis
in logarithmic scale from 0 to 146 square meter). Most sinks appear in the bottom-left corner of
the graph with height less than 0.5 meter and projected area less than 0.1 meter. Other sinks
(especially those with high height) are often located at the top of a noise cluster.

Data from StatoilHydro, same data set as used for Figure 5.1.

to get a less cluttered view), in scaled world coordinates. The subtree of the compact merge tree
rooted at a sink point can also be visualized in this view using lines between sinks to represent
the edges of the tree, but this turned out not to be much more useful than getting the same
information in the overview plot. In order to get reasonable response times for opening this view
on the input data within a given horizontal window (all data points and triangles for which their
projection on the 2D plane falls completely within a given rectangle), we use a two-dimensional
Hilbert R-tree [Kamel & Faloutsos 1993] constructed over the set of points and triangles (with a
triangle being represented by a point in its interior, because we are only interested in triangles
that are contained in the query window). The R-tree allows us to answer this query efficiently
without loading the full input data set into memory.

The most important extra feature of this view is the ability to colour points according to their
occurrence in different data sets. The user can provide the tool with up to three data sets: the
raw input data including all points, a subset of these points that are noise according to a manual
cleaning, and an algorithmically cleaned version of the terrain. The tool then draws the points of
the original data set in four different colours (see the figures on pages 39 and 40).

e Green points are classified as noise by both the manual and the automatic noise removal
processes.

Intuition: Equal classification; green is a general colour for good things.

e Blue points are considered part of the terrain by both processes.

Intuition: Equal classification; blue is also the colour of the background triangulation, so
“Don’t worry”.

e Red points are removed by the algorithmic cleaning method, but not in the manual cleaning.
Intuition: Different classification; red colour warns about trouble.

e Orange points are removed by the manual cleaning, but not in the algorithmic cleaning.
Intuition: Different classification; nearly as troublesome as red, but perhaps less problematic.

Furthermore, the user can switch between the triangulations of the input data set and the algo-
rithmically cleaned one. This view makes it instantly clear how well a particular noise removal
algorithm is doing, and was helpful both in identifying problems with the implementation as well
as the underlying theory and ideas.

All pictures of real terrains in this thesis were generated using this tool.
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5.2 Cleaning with small projected area persistence

The algorithm described in Section 3.3.2 moves points inside pits with a low projected area up
(or down, when looking at the other side of the terrain) to the height of the saddle point that is
paired with the sink representing that pit. The algorithm gives quite nice results on first sight for
data sets with small groups of outliers. Figure 5.3 presents a data set that is cleaned in this way
and shows all relevant properties of this type of cleaning in practice. For example, spikes with one
or two data points are cleaned well (compare the right-most part of (a) and (b)).

Still, there appears to be quite some noise left in Figure 5.3(b). For the most part, this is due
to the flooding; all points in a pit are moved to the same height such that long, narrow pits are
only cut short but not completely removed. In order to get a better comparison with the other
algorithms, Figure 5.3(c) shows the results of the same algorithm, but now removing points inside
selected pits instead of moving them. The result is much better, but there is still some noise
left that apparently has a too high projected area. Increasing the threshold is however not an
option, as it already becomes clear that tops of hills (even the very low one in the picture) get
cut off. When increasing the threshold, this effect will get worse and worse, making the result
unacceptable. For comparison, the result of cleaning this data set with the connected component
cleaning algorithm is shown in Figure 5.3(d).

5.3 Saddle separation

Figure 5.4 shows a patch of terrain like those in Figure 1.1 and 1.2. The saddle-separation algorithm
works well for these types of noise and the original terrain is clearly left intact.

A more intricate example is shown in Figures 5.8 and 5.9. These pictures display the same data
set, including a pipeline, from different angles. The colouring of the data points is as explained in
Section 5.1.1, and the surface in Figure 5.8 is drawn only through the points that are kept by the
saddle separation algorithm.

These figures show a few interesting patterns. A lot of noise appears not only above and around
the pipe, but also underneath it. The algorithm classifies most of these points correctly as long as
they are relatively far away from the other points. At various places we can however also spot red
points indicating that the algorithm removed points that should probably have been kept. This
happens especially at two places.

First, there are red points that appear to be part of the pipe (see the overlay in Figure 5.8).
These are removed because they are surrounded (in the 2D triangulation) by other points that are
on the ground. Most likely, neither of these points are in gross error, but the effect is caused by
the fact that the pipe is round and some soundings hit the ground under the pipe. The algorithm
then removes the seeming outliers because they form a high peak of their own.

Second, there are scattered red points on the flat surface around the pipe that are caused by
the existence of outliers close to them in horizontal position. The artefact noted in Figure 3.6
appears to show up in practice.

5.4 Connected component cleaning

Figure 5.5 shows the results of two runs of the connected component cleaning algorithm on a
LIDAR data set from an urban area. The data was already mostly cleaned and the only points
left are the ones that are classified as points on the bare earth by another algorithm. Because
LIDAR cleaning algorithms assume that the lowest points in an area are the true ground, pits
found at for example construction sites are kept. Here, our algorithms can help to remove also
those last remaining features, as long as they are “well separated” from the terrain. This is not
the case for ramps, where you might recognize some climbing-free corridors in the example data.
Anyway, it is not clear whether consumers of terrains are interested in such features or not.

Sometimes smaller components in a pruned triangulation exist that should not be removed.
An example of such a situation can be seen in the centre of Figure 5.7.
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Figure 5.3: Results of cleaning sinks with small projected area persistence.

(a) Input data. (b) Flooding sinks with projected area smaller than 10 m?. (c) Same as (b), but
removing points instead of flooding. (d) Connected component cleaning with 7 = 10 cm.

Data from StatoilHydro.
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Figure 5.4: (a) Uncleaned data. (b) Data cleaned with the connected component cleaning algo-
rithm with a threshold 7 = 20 cm.
Data from StatoilHydro, patch shown is 14 x 14 meter.
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Figure 5.5: Some pits in the ground are not removed by LIDAR point cleaning. Connected
component cleaning can remove them. Shown is the original data (a), and cleaned versions for
thresholds 7 =3 m (b) and 7 = 2 m (c). Data from COWI, patch shown is 500 x 500 meter.
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Figure 5.6: The red points on the left were (likely) misclassified during manual cleaning. Note
that the green points in the centre seem to be part of the same feature but are classified correctly.
Data from Eiva, patch of 5 x 5 meter.

Figure 5.7: The red points in the centre are misclassified by the connected component cleaning
algorithm because they form a connected component that is separated from the rest of the terrain.
Data from Eiva, patch of 4 x 4 meter, 7 = 10 cm.
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Figure 5.8: Example of point classification around a 90 cm pipe using saddle separation cleaning.
Surface shown is a retriangulation of the cleaned point set. Overlay shows a close-up of the
triangulation of the original point set.

Data from Eiva, patch of 5 x 5 meter, 7 = 30 cm.

Figure 5.9: Same as Figure 5.8, but only showing the points, looking in the direction of the length
of the pipe.
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5.5 Performance

Although the implementations are not much optimized for performance (in particular connected
component cleaning), Table 5.1 lists running times of (parts of) the algorithms named above for
a typical data set of about 4.7 million points (and about 9.4 million triangles in the generated
triangulation). The programs ran on a 1.7 GHz Pentium M with 700 megabyte of main memory
available for the application, using a 7200-rpm hard disk.

Step Time
Triangulation 2 min.
Merge tree generation 35 min.
Cleaning: small projected area 2 min.
Cleaning: saddle separation 2 min.
Cleaning: connected components 42 min.
Total (from point set to cleaned point set) Time
Small projected area / Saddle separation; with point removal 78 min.
Small projected area / Saddle separation; with flooding 76 min.
Connected component cleaning 44 min.

Table 5.1: Running times for cleaning steps, rounded to nearest integer minutes.

Because all algorithms need a triangulation to work with, this step is listed separately and only
added to the totals in the bottom part of the table. This step is optimized well, and a significant
part of the time is spent on reading and writing the input and output, which is stored in an
inefficient human-readable format.

Both the cleaning algorithm based on small projected area and saddle separation cleaning
make use of the compact merge tree of the terrain (the required attributes are different, but their
calculation does not contribute much to the overall running time). Therefore, the merge tree
generation step is also listed separately. The two cleaning steps corresponding to those algorithms
do most of their processing on the merge tree which is much smaller than the full data set (less
than half a million sinks in this data set), so the total time spent is again largely dependent on
the time for reading and writing the input and output files.

For connected component cleaning, a large amount of time is spent on bringing the data in a
suitable format: the first 15 minutes are used to extract 28 million edges from the triangulation
(which is given as a list of triangles with indexes to the points that are stored in a second file), to
sort those edges and add the coordinates of the first end points, and sort the edges again to add
the coordinates of the second end points.

The total running times are based on cleaning both sides of the terrain, and are composed as
follows. For small projected area and saddle separation we first need to triangulate the given point
set, generate the merge tree for the pits of the terrain, and clean the pits. Then, for the second
run we can choose to either remove the selected vertices, or use the “partial flooding” approach
in which we only move the vertices of the pit (we did not consider this for saddle separation
but is perfectly possible). In the first case we need to retriangulate the point set because the
earlier triangulation is invalidated by the removal of points. After this, we can again generate a
merge tree — for the peaks of the terrain this time—and do another cleaning step. For connected
component cleaning, we only need to add the triangulation time because the method automatically
cleans noise on both sides of the terrain.

Although these experiments already tested the I/O-efficiency of the algorithms, it would be
good to know if the implementations also scale to much larger data sets. For connected component
cleaning such a test was done: a data set consisting of 200 million points (with a triangulation of
about 25 gigabyte in the inefficient format mentioned before) was cleaned in less than 18 hours (the
exact timing is unknown, though the machine was faster than the one used for the experiments
above).
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Chapter 6

Conclusion

We have seen that noise in terrain data can have many different causes and appearances — small
noise from sensor inaccuracy, big noise both from birds and fish, and from gross mismeasurements.
Previous work has either focused only on small noise, or made an attempt at removing big noise
too, but fails for large enough clusters of outliers. Furthermore, little work has been done in this
area on methods that also work efficiently when the data sets are too large to be worked on in
main memory, again only small noise has been considered.

The reason that big noise has not had much interest from the theoretical side is not difficult to
guess —if we are analysing worst-case scenarios, how can we give any guarantees on good surface
approximations? From the more pragmatic side of the spectrum, assumptions (implicit or explicit)
are made about the maximum size of the region affected by the noise.

This thesis presents a first model to capture the essence of big noise mathematically, and
thereby poses the question in how far algorithms can be made to recognize such noise. Because
we do not expect algorithms to do the impossible—such as reconstructing an unknown surface
—there is some hope for the existence of such algorithms. The model may still be a rough first
attempt, but it is already very helpful in assessing the qualities of new algorithms and leads the
way for theoretical approaches to the problem.

I also proposed and implemented two new algorithms to recognize and remove big noise. On
the theoretical side, they are shown to come some way in recognizing noise according to the
given models, and proved to be efficient in the external-memory model (that is, run in the same
asymptotic time bound as sorting). On the practical side, the algorithms have shown to be
able to recognize much of the noise found in real-world data sets from MBES scanners, and
also help cleaning features from LIDAR data that are left behind by other cleaning algorithms.
The implementations of these algorithms are based mostly on known methods from the I/0O-
efficient algorithms literature and are therefore expected to scale well. The implementation was
not optimized for performance, but has already shown to be able to work its way through data
sets much larger than the available main memory.

6.1 Future work

For the MBES and LIDAR data sets considered in this thesis, the proposed algorithms appear
to do a good job at removing gross errors, both when present as single outliers and occurring in
larger clusters. Also noise removal around pipelines lying on the seafloor works reasonably well
(the algorithms do not seem to make many more mistakes for gross outliers than manual cleaning).
The most important feature of the MBES data sets that has not received much attention in this
thesis is pipelines with free spans. Parts of a pipeline buried under piles of sand are uninfluenced
by water streams and not likely to move much, so they will stay in good condition. On the
other hand, parts of a pipeline that lie freely on a ramp or span a valley are much more likely
to bend and leak due to the additional strain. Therefore it is very important that such parts of
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pipelines are not recognized as noise during data cleaning. At the same time, the terrain below
such free spans should not be removed either. This presents a problem in the current model, as
we assume that the original surface does not have overhangs (or free-floating objects). Turning
to a full three-dimensional model (with “terrains” as 2-manifolds) seems overkill compared to the
small discrepancy between the model and the real world. It would therefore be interesting to
see if the current model can be adapted to support free spans without going all the way to a
three-dimensional model. Similarly, the algorithms may support free spans and similar structures
without fundamental changes. For example, the connected component cleaning algorithm may be
changed to use a more densely connected graph than the Delaunay triangulation such that there
is a larger chance that points on a free span or on the terrain below it are connected to the rest
of the terrain, and hence not removed.

As already hinted upon in the sections on “hybrids”, the algorithms proposed in this thesis can
be extended to provide better classification of point sets that correspond to the given model. At
the same time, the model may also need to be refined, to on the one hand be as broad as possible to
cover real world data sets, and on the other hand be useful for supporting algorithmic guarantees.
Although a hybrid solution — using both a merge tree and connected component computations —
seems to be an interesting direction of research, it may also be a good idea to see if we can get the
same power —a global “context” of pits within pits — without going through the time-consuming
merge tree generation process.

In Section 3.4, we considered what guarantees could be given for the connected component
cleaning algorithm. A problem there turned out to be that noise-inducing objects with a high
opacity (a) may cause the few points that are actually sampled on the terrain to also be considered
as noise because they do not have any other points on the terrain as neighbours in the Delaunay
triangulation. Therefore, it is interesting how high this opacity needs to be exactly before such
an event is likely to happen, and if we can come up with other graphs for which the opacity can
be higher before this happens. Note the correspondence of this question rising from theory to the
very practical problem of supporting free spans.

As noted in the introduction, it may be interesting to use the proposed algorithms in combi-
nation with other methods for data cleaning, because different methods have different strengths
and weaknesses. We already saw some interesting results for LIDAR data in Figure 5.5, where
connected component cleaning is used on data that was already cleaned by another tool. Investi-
gating combinations with other algorithms, and perhaps even integration, may yield similar useful
results.
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