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Abstract

Radio frequency identification (RFID) is an upcoming technology with a
large potential, but it also introduces a number of threats. Ownership trans-
fer has been introduced to mitigate the risks which are caused by changes in
ownership of RFID tags.

We present formal definitions for ownership and ownership transfer in RFID
systems and their secure variants. These definitions can be used to verify the
correctness of ownership transfer protocols. We apply our definitions to exist-
ing RFID protocols, exhibiting attacks on desynchronisation resistance, secure
ownership, exclusive ownership and secure transfer.

We design an ownership transfer protocol using public-key cryptography
which satisfies all our requirements. We also design a second protocol using
shared-key cryptography which has led to an interesting observation concerning
exclusivity of ownership.
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Chapter 1

Introduction

With the possible exception of the equator, everything begins somewhere.
– C.S. Lewis

Radio frequency identification (RFID) is expected to become a key technol-
ogy in supply chain management, because it has a large potential to save costs.
Two of the cost-saving advantages of this technology are the improved efficiency
of inventory tracking [GJP05] and the reduction of counterfeit products [STF05].
The former is caused by the contactless nature of this technology which requires
no line of sight between the RFID reader and the RFID tag attached to a prod-
uct. The latter is because RFID tags can store and process information as well
as execute simple communication protocols. Because of these advantages and
their small size, RFID tags are expected to replace traditional identification
methods such as bar codes.

This technology is furthermore of interest to retailers since in addition to
tracking and management benefits, the customer’s checkout time can be signif-
icantly reduced. This is possible since multiple RFID tags can be read almost
simultaneously which allows for fast processing of batches, in this case the prod-
ucts in a shopping cart. Another benefit of using RFID tags instead of bar codes
is the possibility to store additional information on a tag. This means that, for
example, the expiration date can be stored such that a smart fridge can keep
track of it [RFI03]. These additional uses, besides identification, make it inter-
esting for consumers to have products tagged.

However, the widespread use of RFID technology also introduces security
and privacy issues, ranging from corporate espionage threats to tracking of
individuals [GJP05]. Simple solutions such as killing a tag are not desired since
they will render the tag useless. Hence we will have to look at other solutions
to solve these problems.

When tagged products change owners the situation becomes even more dif-
ficult. One would like that the ownership of a tag changes along with the
ownership of the product the tag is attached to. This involves, for example,
exchanging the key material, used to achieve authentication or untraceability,
between the previous and the new owner. Ownership transfer for RFID tags
has been introduced by Molnar et al. [MSW05] to securely transfer a tagged
item from one owner to the other.
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1.1 Motivation

The ownership transfer approach has been adopted by Osaka et al. [OTYT06]
who are among the first to propose a two-party ownership transfer protocol, in
contrast to the solution of Molnar et al. which requires a trusted third party.
Lei and Cao [LC07] are the first to report flaws in the protocol by Osaka et al.
In their work they propose a protocol which solves these vulnerabilities. They
do, however, not meet their security requirements as shown in Section 4.3.4 of
this thesis. Other solutions which attempt to repair the flaws in the protocol by
Osaka et al. have been proposed by Jäppinen and Hämäläinen [JH08], and Yoon
and Yoo [YY08]. These solutions are also not secure, as shown in Sections 3.5.3
and 4.3.3 respectively.

Similar to the protocol proposed by Li and Ding [LD07], which has been
reported broken by Van Deursen and Radomirović [DR08b], the proposed solu-
tions in literature do not provide proper proofs of their security requirements.
This is mainly caused by the fact that there is no formal definition of security on
which such proofs can be based. Furthermore, ownership, as well as ownership
transfer, have not yet been formally defined.

1.2 Goal

In order to design a secure ownership transfer protocol we need to determine
what it means for ownership transfer to be secure. This leads to the following
goal for this master project.

Define security for ownership transfer and design and verify a secure
ownership transfer protocol using this definition.

1.3 Contributions

We propose a number of definitions which, together, allow the verification of
security for ownership transfer. First, we provide a definition for ownership.
This definition serves as a basis for secure ownership, exclusive ownership, and
desynchronisation resistance. As well as for all other definitions in this thesis.

Next, we describe the notion of ownership transfer, and its security require-
ments secure and exclusive transfer. Together with the security requirements
for ownership these definitions provide a framework to verify ownership re-
lated properties. This framework, as described in Chapters 3 and 4 is pub-
lished in [DMRV09]. This paper has been written in cooperation with Ton van
Deursen, Sjouke Mauw and Saša Radomirović.

Finally, we design a protocol which achieves secure exclusive ownership trans-
fer. This protocol is refined to use shared-key cryptography instead of public-key
cryptography. This refinement achieves secure ownership transfer, but it does
not satisfy our exclusivity requirements. It has, however, resulted in an inter-
esting observation concerning these requirements.
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Chapter 2

Background

The answers you get from literature depend on the questions you pose.
– M. Atwood

Before defining a verification framework or designing any protocols, we in-
troduce the context of this thesis. First, we discuss a number of scenarios for
ownership transfer. Next, we consider related work which mainly consists of
proposed ownership transfer protocols. Finally, an introduction to the formal
model, used to formulate our definitions, is given.

2.1 Scenarios

The basic scenario for ownership transfer envisioned in literature concerns a
longer lifetime of RFID tags in which ownership of the tags changes. A concrete
ownership transfer scenario, which concerns tagged products in a supply chain,
is given by Li and Ding [LD07]. As products flow through a supply chain,
their ownership is transferred from one partner to the next. This transfer of
ownership can be extended to the RFID tags attached to these products.

Possible threats in this scenario are corporate espionage and disruption of
the production process. To prevent the former only the partner currently owning
the product should be able to read the tag. In some cases even untraceability of
tags [DMR08] is required to provide protection against tracing of the internal
product flow. To prevent against the latter the RFID system should protect
against denial-of-service attacks. Hence it should at least be desynchronisation
resistant (Section 3.6.1).

Once a product has reached the end of a supply chain it will end up at
a retail store. The tags on the products allow easy inventory management
and fast product registration at the checkout, where they are transferred to
the customer. Engberg et al. [EHJ04], Fouladgar and Afifi [FA07], as well as
Dimitriou [Dim08] mention the situation that a tag can also be used at after
sales services to retrieve additional information concerning the product. The
tags might, however, also contain information which can be used by consumers,
such as an expiration date which can be used by smart fridges [RFI03].

This scenario differs from the previous scenario since it now involves con-
sumers as the new owners instead of businesses. Garfinkel et al. [GJP05] describe
a number of privacy threats which arise from the fact that tags can easily be
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associated with a person’s identity. Hence for a consumer it is important that
the tags are untraceable, while they should also be usable.

A related scenario, in which we consider a large supermarket with various
small shops, uses tags to record which products have been paid for, and which
not. When a customer pays for a product, for example in one of the small
shops, ownership will be transferred to the customer. At the final checkout the
ownership of the tags is verified. For those which still belong to the supermarket,
the customer has to pay.

For this scenario it is important that after a transfer the supermarket actu-
ally loses ownership to prevent that a customer has to pay twice. Furthermore,
to prevent stealing, it should not be possible that the supermarket loses owner-
ship while the product has not been paid for.

Finally, another area in which ownership transfer might play a role is parcel
delivery. In this scenario ownership is transferred to the messenger when the
parcel is picked up, and transferred to the recipient when delivered. In com-
bination with non-repudiation this offers the opportunity for the messenger to
prove to the sender that the parcel has actually been delivered at the correct
recipient.

2.2 Related Work

Work on ownership transfer in RFID systems has thus far mostly focused on
designing ownership transfer protocols, but not on their security requirements.
A notable exception is the work by Song [Son08]. This work provides a first
survey of security requirements related to ownership transfer. Besides a list of
basic RFID security requirements, new and old owner privacy as well as autho-
risation recovery are mentioned. Song also proposes a set of protocols for secure
ownership transfer which has been designed to meet the requirements which
came up from the survey. One of these protocols is based on an authentica-
tion protocol by Song and Mitchell [SM08]. This earlier work, however, suffers
from a number of flaws as described in Section 3.6.2 and by Van Deursen and
Radomirović [DR08a]. These flaws are also present in the transfer protocol by
Song [Son08]. In Section B.1 we describe an additional flaw which has been
discovered during our research.

The first treatment of ownership transfer in RFID systems is due to Molnar
et al. [MSW05]. They describe a protocol that relies on a trusted centre. In
their protocol tags respond with a pseudonym instead of their identity. Readers
send these tag pseudonyms to the centre requesting the real identity of a tag.
If the reader is the owner of the tag it receives the identity, otherwise the
request is denied. Owners of tags can request the trusted centre to transfer the
ownership of a tag to a new owner. The trusted centre subsequently refuses
identity requests from the old owner, and accepts them from the new owner.

A trusted party is also used by the protocol proposed by Saito et al. [SIS05].
In this case, the trusted party shares a key with the tag which is used to update
the owner’s key. Hence an ownership transfer consists of a request to the trusted
party to encrypt the new owner’s key for the tag.

Osaka et al. [OTYT06] are among the first to propose a two-party ownership
transfer protocol. Their protocol consists of three phases in which first the tag
is updated with a fresh key. This key is transferred in a secure fashion to the
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new owner who then updates the tag again using its own key. This structure is
used by almost all subsequent solutions.

Lei and Cao [LC07] are the first to report flaws in the protocol by Osaka et
al. In their work they also propose a protocol which solves these vulnerabilities.
They do, however, not meet their security requirements as shown in Section 4.3.4
of this thesis. Other solutions which attempt to repair the flaws in the protocol
by Osaka et al. have been proposed by Jäppinen and Hämäläinen [JH08], and
Yoon and Yoo [YY08]. Again their solutions are also not secure. We discuss
these protocols in detail, including descriptions of attacks, in Sections 3.5.3 and
4.3.3 respectively. Like the protocol proposed by Li and Ding [LD07], which has
been reported broken by Van Deursen and Radomirović [DR08b], they do not
provide proper proofs of their security requirements.

Lim and Kwon [LK06] propose a protocol which, compared to other so-
lutions, uses a more computationally intensive mutual authentication method
based on key chains. Fouladgar and Afifi [FA07] propose an ownership transfer
protocol with two implementations. Their hash-based implementation, which
is flawed, is discussed in Section B.2. The other implementation, in contrast
to the earlier mentioned solutions based on hashing, is based on symmetric en-
cryption. Another solution based on symmetric encryption has been proposed
by Koralalage et al. [KRM+07]. Finally, one of the most recent protocols in this
area is due to Dimitriou [Dim08]. Its distinguishing feature is that it enables
the owner of a tag to revert the tag to its original state. This is useful for
after-sales services, since it makes it possible for the tag’s new owner to let a
retailer recognise a sold tag.

The research concerning ownership transfer has thus far resulted in a lot of
protocols which claim to achieve secure ownership transfer. However, a large
number of these protocols do not match their security claims as shown through-
out this thesis. This can be accounted to the fact that only informal descriptions
of the security requirements are available. There are no formal definitions which
can be used to actually prove the security of these protocols.

2.3 Stateful Security Protocols

In this section we introduce basic notation and definitions concerning security
protocols. Rather than providing a full description of security protocol syntax
and semantics, we only present the essentials needed for defining and analysing
ownership and related notions. A more extensive description can be found in
Appendix A. The model presented, which has been developed by Van Deursen
and included in [DMRV09], is based on the model for stateless protocols by
Cremers and Mauw [CM05]. Their model has been extended by adding support
for stateful protocols. While stateless protocols start in the same state for every
execution, stateful protocols may use information from previous and parallel
protocol executions.

A protocol is defined as a map from an n-tuple of distinct roles to an n-tuple
of role specifications. A role specification defines the behaviour of an honest
agent executing the role. Typical roles in an RFID system are the reader and
tag roles to be executed by actual RFID readers and RFID tags. A particular
execution of a protocol role by an agent is called a run.

The specification consists of a composition of events and the declaration
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of all nonces and variables appearing in the composition. An event is either
the sending or the receiving of a message and both can be accompanied by
assignments to variables. The receiving of messages is referred to as a read
event. Inspired by Ryan et al. [RSG+00], we use signals to indicate that a
certain point in the protocol has been reached.

The exchanged messages between roles consist of terms. These terms are
built from basic terms such as nonces, constants, and agent names. Complex
terms can be constructed using functions such as pairing (denoted by ( , )),
encryption ({ } ), hashing (h( )), and exclusive or ( ⊕ ). When an agent
executes a role, nonces are freshly generated and variables receive their actual
values through read events and assignments. We separate two kinds of variables.
Local variables model the stateless part of protocols. Their values are assigned
through read events and they are reassigned every run. Once assigned, their
value does not change. The stateful part of protocols is modelled by global
variables. They receive their value through explicit assignments and their values
are maintained across different runs.

We study the possible behaviour of a system in which a collection of agents
executes a set of protocols Π through so-called traces, denoted by traces(Π).
Informally, a trace is a list of events occurring in the interleaved execution of
protocol runs. The precise construction of traces is dictated by the semantic
rules of the system (given in Appendix A). Thus, formally, a valid derivation

s0
t0−→ s1

t1−→ . . .
tn−1−−−→ sn of system states s0 . . . sn is provided by the events

t0 . . . tn−1 of a trace t = t0 . . . tn−1. In the following we use Σ(t) to denote the
states s0 . . . sn of this derivation and |t| to denote the length of the trace.

A system state 〈A,G,SB ,RB , I〉 in our model consists of several parts. First
of all, the set A is used to record all active runs. For each run we store an
identifier, the name of the executing agent, the list of events that still have to
be executed in the run, and the local variable assignments. The list of events
can be used to derive the execution state of a run. A run r has been successfully
completed in state s, denoted by success(r, s), if its event list is empty. Otherwise
the run is still active or it has been terminated unsuccessfully.

Second, the global knowledge of the agents G is stored in the system state to
preserve this knowledge across runs. Besides the agent knowledge the knowledge
of the intruder I is part of the state. Finally, we consider communication to
be asynchronous. Messages sent by agents are placed in the send buffer SB .
Similarly, agents read messages from the read buffer RB .

We assume that a standard Dolev-Yao intruder [DY83] controls the network,
in our case the communication buffers. The intruder delivers a sent message by
moving it from the send buffer to the read buffer. He eavesdrops on messages by
adding them to his knowledge. The intruder can construct any message from
his knowledge and place it in the read buffer, thus faking sent messages. If
the intruder does not move a message from SB to RB the message does not
get delivered. This allows the intruder to delay or completely block messages.
Finally, a message can be modified by faking a message and blocking the original
one. As usual in Dolev-Yao intruder models, the intruder is bound by the
assumption of perfect cryptography. This means that he cannot reverse hash
functions and that he is not able to learn the contents of an encrypted term,
unless he knows the decryption key. We assume that there is one agent E which
is under full control of the intruder.

6



2.4 Message Sequence Charts

Message sequence charts [RGG96] are used to provide a graphical representation
of protocol specifications. Every message sequence chart shows the role names,
framed, near the top of the chart. Above a role name, the role’s secret terms
and persistent knowledge are shown. Actions, such as nonce generation, com-
putation, verification of terms, and assignments are shown in boxes. Messages
to be sent and expected to be received are specified above arrows connecting
the roles. It is assumed that an agent continues the execution of its run only
if it receives a message conforming to the specification. Finally, signals emitted
by a role are indicated by a labelled dot.

7
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Chapter 3

Ownership

“It is mine, I tell you. My own. My precious. Yes, my precious.”
– Bilbo Baggins in The Fellowship of the Ring by J.R.R. Tolkien

We consider two views on tag ownership. The first view, which we call the
system view, stems from the ability to perform a given action on the tag in
a predefined manner. Ownership of a tag can, for instance, be defined as an
agent’s ability to inspect the tag’s ID.

The second view is called the agent’s view. In this view we assume that
an agent records, in some local data structure, of which tags he believes to be
the owner. A correspondence relation between these two views can then be
considered as a security requirement.

As an application of these definitions we consider them in the context of
a related security notion called desynchronisation resistance. We will use our
notion of ownership to give a formal definition of desynchronisation resistance.

3.1 Ownership Test Protocol

We define ownership of a tag as the ability to execute a designated protocol
with the tag. This could, for example, be a mutual authentication protocol or
a tag identification protocol. We call this protocol the ownership test protocol,
or just test protocol when it is clear that we are testing for ownership.

This approach has been chosen over a knowledge-based solution, in which
knowledge of a secret on the tag indicates ownership, because it is more general.
It allows, for example, to include trusted or other third parties in the decision
of ownership.

It is not necessarily the case that this test protocol is actually implemented
on the tag. It might be a virtual protocol, merely used to define ownership-
dependent security properties. Consequently, in every system state the owner-
ship relation between tags and agents is precisely defined, while the (hypothet-
ical) executions of the ownership test protocol do not occur in the traces of the
system.

The ability to execute the test protocol proves ownership of a tag. The test
protocol must therefore test whether the reader has all necessary knowledge and
can perform all necessary steps. In some contexts the knowledge of a key may
be the defining notion of ownership, while in others it may be the ability to

9



execute some or all protocols implemented on a tag. In the former setting, a
simple proof-of-knowledge protocol would be a suitable test protocol, while in
the latter setting it would be the collection of protocols implemented on the tag.

A consequence of our approach to define ownership relative to a test protocol
is that all notions based on this definition, such as ownership transfer, are also
relative to the chosen test protocol. The choice of a proper test protocol is
therefore an important step in all verification efforts. Choosing an insufficient
test protocol may lead to ownership-related vulnerabilities being overlooked. A
trivial example is the test protocol that can be successfully executed by any
agent and which thus declares everyone as the owner of a tag. This problem is,
however, mitigated by the fact that an intuitive notion of ownership frequently
coincides with the ability to complete a mutual authentication protocol with a
tag. In these cases, such an authentication protocol can simply be taken as the
test protocol.

3.2 Micro Traces

Testing for ownership of a tag in a certain state s amounts to verifying whether
the test protocol can be successfully executed in a virtual environment whose
initial state is s. This way we can verify whether the system trace can be
extended, in such a way that the test protocol is successfully executed, without
disturbing the system’s traces. In order to model this, we introduce the notion of
micro traces. These can be defined in a similar manner to the traces described
in Section 2.3 by allowing only one run for each of the parties involved and
disallowing intruder activities.

We denote by µtracesP (a1,...,an)(s) the micro traces for protocol P when
executed by agents a1 . . . an, starting from initial state s. For every role, we allow
exactly one run creation. Since we will not verify security claims against micro
traces, no intruder has to be modelled. Therefore all messages sent between
agents will be delivered eventually.

This results in a restriction, compared to the traces given in Section 2.3, on
the semantics as defined in Section A.2. In particular the condition of the create
rule, as given in Section A.2.1, is extended with the following requirements:

n ∈ {a1 . . . an} n 6∈ agents(A)

where we use agents(A) to denote the set of agents in the active runs A. This
restricts the agents to a single run creation. Furthermore, the deliver rule from
Section A.2.3 is required in order to have communication between the agents.
Finally, the eavesdrop, block, and inject rules from Section A.2.3 are not allowed,
such that the intruder is not capable to interfere with the protocol execution.

3.3 System View

Using the micro traces we can give a formal definition for ownership in RFID
systems. We stress that this definition of ownership is not the definition of a se-
curity requirement. Instead it forms the basis to define security requirements, in
particular secure ownership (Section 3.5.1), exclusive ownership (Section 3.5.2),
and secure transfer (Section 4.3.1).
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Definition 3.1 (Tag Owner). Let A be a projection from system states to
active runs. An agent R is owner of tag T with respect to test protocol P in
system state s, denoted by ownsP (R, T, s), if and only if

∃t∈µtracesP (R,T )(s)
∀r∈A(Σ(t)|t|) success(r,Σ(t)|t|).

Informally, an agent R owns a tag T with respect to a test protocol P , if
in absence of all adversarial activity, all participating agents can successfully
terminate their runs. Hence together they can successfully execute the test
protocol P . In this context, R is called the owner of T with respect to P and
T is called R’s property with respect to P .

3.4 Agent View

The definition of tag ownership, as given in the previous section, allows one,
in every state of the system, to verify whether a reader owns a tag. It misses,
however, the owner’s point of view. This view is, for example, important when
discussing the intention of an owner to transfer his ownership, that is, the fact
that the owner engages in an ownership transfer protocol. Merely based on this
definition, it is not possible to define any meaningful security properties. This
is due to the fact that, solely based on the definition of a tag owner, an owner is
not aware of which tags he owns. Thus we introduce the agent’s view regarding
ownership of a tag by defining tag holders.

A tag holder is an agent which, based on its protocol executions and local
data structure, believes it is the owner of a tag. We model whether a reader
holds a tag T with respect to test protocol P by a global variable holds(P, T ).
A mapping G from agents to variable assignments is part of the system state,
as described in Section 2.3. We use σ to denote a variable assignment, which is
a mapping from variable names to their value. This approach allows for a quick
and easy way for an agent to determine ownership.

Definition 3.2 (Tag Holder). Let R be a reader and s be a system state
〈A,G,SB ,RB , I〉 such that G(R) = σ is the global variable assignment for R.
We call R a holder of tag T with respect to test protocol P in system state s,
denoted by holdsP (R, T, s), if and only if

σ(holds(P, T )) = true.

By modelling tag holding explicitly we can let the protocol execution depend
on the value of the holds variable. This allows us, for instance, to specify that
an agent shall not transfer ownership of a tag, unless it actually holds the tag.

3.5 Security Requirements

In an ideal world, the notions of tag owner and tag holder always coincide. It is,
however, immediate that this is impossible to achieve in an asynchronous com-
munication model. Tag ownership changes when a tag updates its knowledge.
Due to asynchronicity, it is in general not possible for an agent to update its
holds variable simultaneously with the ownership change.
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We define two security requirements for ownership. One which maintains
consistency between these two views, and another which disallows multiple own-
ers while an agent is holding a tag.

3.5.1 Secure Ownership

We define secure ownership as a consistency requirement on all states. We say
that a set of protocols provides secure ownership, if, whenever an agent is holder
of a tag, it must also be the owner of that tag. Phrased differently, a tag holder
never loses his ownership unintentionally.

Definition 3.3 (Secure Ownership). A set of protocols Π provides secure own-
ership with respect to test protocol P if in all states holding a tag implies owning
that tag.

∀t∈traces(Π) ∀0≤i≤|t| ∀R,T∈Agent holdsP (R, T,Σ(t)i)⇒ ownsP (R, T,Σ(t)i).

Secure ownership provides a guarantee to the owner that it cannot be “dis-
owned” as long as it holds a tag. However other agents might have simultaneous
ownership of the tag. This is possible with our current definitions since there
might be multiple agents which are able to execute the test protocol success-
fully. Therefore we introduce the notion of exclusive ownership which disallows
simultaneous ownership.

3.5.2 Exclusive Ownership

Exclusive ownership guarantees that the holder of a tag is the sole owner of
the tag. This is important, for instance, when nobody (and in particular no
previous owner) but the holder of a tag is supposed to be able to identify or
trace a tag. We define exclusive ownership as the requirement that if an agent
holds a tag, no other agent is owner of the tag.

Definition 3.4 (Exclusive Ownership). A set of protocols Π provides exclusive
ownership with respect to test protocol P if and only if

∀t∈traces(Π) ∀0≤i≤|t| ∀R,T∈Agent

holdsP (R, T,Σ(t)i)⇒ ¬∃R′∈Agent\{R} ownsP (R′, T,Σ(t)i).

It is clear that when a protocol achieves untraceability, the tag owners are
the only agents which can trace the tags. Exclusive ownership is thus a neces-
sary condition for ownership transfer protocols to satisfy untraceability against
previous and future owners of tags. This requirement is therefore verified when
analysing protocols which are claimed to satisfy untraceability.

3.5.3 The Jäppinen and Hämäläinen Protocol

As an example we will show an attack on secure ownership on an ownership
transfer protocol recently proposed by Jäppinen and Hämäläinen [JH08]. To
the best of our knowledge, this flaw has not been reported before.

This protocol is proposed as an enhanced version of the protocol proposed
by Osaka et al. [OTYT06], which has first been reported broken by Lei and

12



old owner T new owner

First Phase

Secure: ID , k′, {ID}k′

Third Phase

Figure 3.1: Protocol structure of an efficient and secure RFID security method
with ownership transfer [OTYT06]

Cao [LC07]. Like the original protocol it relies on a shared secret p = {ID}k
between owner and tag, called a pseudonym since the real ID is hidden.

The ownership transfer protocol consists of three phases as shown in Fig-
ure 3.1. The first and third phase consist of executions of the protocol depicted
in Figure 3.2. In the first phase, the old owner updates the pseudonym p, using
a fresh key k′. While in the second phase this key, together with the real iden-
tity ID and the pseudonym, is send to the new owner over a secure channel.
Finally, in the third phase, the new owner updates the pseudonym again using
its own fresh key. This structure is common for all protocols based on the work
by Osaka et al. The differences between the various proposals are in the update
protocol.

The only way, which makes any sense, to indicate the owner is by means of
the pseudonym. Therefore we use a proof-of-knowledge protocol for p as the
ownership test protocol. This protocol is depicted in Figure 3.3. We can now
analyse the protocol with respect to secure ownership.

ID , k, {ID}k

R

p = {ID}k

T

nonce nr

nr

h(p⊕ nr)

key k′, nonce ns
a := {ID}k ⊕ {ID}k′

b := h({ID}k′ ⊕ ns)

a, b, ns

if b = h(a⊕ p⊕ ns)
then p := p⊕ a

Figure 3.2: Enhanced RFID security method with ownership transfer [JH08]
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ID , k, {ID}k

R

p = {ID}k

T
{ID}k

ok

Figure 3.3: Ownership test protocol for the pseudonym p

An adversary can attack this protocol without the presence of a genuine
reader, as shown in Figure 3.4. The attack is based on updating the pseudonym
using some random value x, which is not known by the owner. The tag verifies
the structure of the message, but this does not provide reader authentication.
Therefore the attacker can easily construct a message a = nr⊕x, b = h(p⊕nr), x
which is accepted by the tag.

After the attack the owner has no knowledge of the new pseudonym {ID}k⊕
nr ⊕ x. Hence the owner will no longer be able to successfully execute the test
protocol. This means that the original owner has lost its ownership of the tag.
Assuming that the original owner was holder of the tag, secure ownership is
violated.

The general idea behind this attack is to desynchronise the tag and reader.
This special class of denial-of-service attacks is known as desynchronisation
attacks. In Section 3.6 we study the relation between ownership, as defined in
Section 3.3, and desynchronisation attacks.

Remark 3.1. For this protocol the intruder has the capability to synchronise
reader and tag again. This can be achieved by performing the attack, as given
in Figure 3.4, again with the same values for nr and x. Because of the algebraic
properties of the ⊕-operator these values will be cancelled and the pseudonym
becomes {ID}k again.

E

p = {ID}k

T

nonce nr

nr

h(p⊕ nr)

random x
a := nr ⊕ x
b := h(p⊕ nr)

a, b, x

if b = h(a⊕ p⊕ x)
then p := p⊕ a

Figure 3.4: Attack on secure ownership
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3.5.4 The Lei and Cao Protocol

In contrast to the previous example Lei and Cao [LC07] improve the protocol
proposed by Osaka et al. [OTYT06] such that it does provide secure ownership.
We discuss their protocol in Section 4.3.4, where we also address other security
requirements besides secure ownership.

3.6 Desynchronisation

As a first application of the ownership definition we study desynchronisation
attacks on stateful protocols. Although it is easy to characterise desynchro-
nisation for some given protocol (by inspection of the values of the involved
variables), it is not straightforward to transform this into a generic definition of
desynchronisation. In this section we will study how the notion of ownership,
as introduced before, can be used to define desynchronisation.

The execution of a stateful RFID protocol frequently ends with both reader
and tag updating the shared identifier or key. It is clear that both reader and
tag need to perform the update in an identical manner.

An incorrect protocol may allow the adversary to disrupt the communication
such that one of the two agents does not carry out its update. Alternatively,
the adversary may be able to force the tag and reader to carry out a different
update, for example as shown in the previous section. A flawed protocol will
not allow the agents to recover from this disruption and the reader and tag will
be in a state of desynchronisation: they will no longer be able to successfully
communicate with each other. We call a protocol that is not vulnerable to this
type of attack desynchronisation resistant.

3.6.1 Desynchronisation Resistance

In general, stateful RFID authentication protocols do not need to verify owner-
ship requirements, since the owner of a tag never changes. We argue, however,
that our notion of ownership is closely related to desynchronisation resistance.
Indeed, a tag that has no owners is desynchronised from all readers. This means
that there does not exist a reader that can successfully communicate with the
tag.

We can now define desynchronisation resistance using our ownership defini-
tion. We say that a protocol P is desynchronisation resistant, if a tag never
loses all its owners with respect to P .

Definition 3.5 (Desynchronisation Resistance). A protocol P ∈ Π is desyn-
chronisation resistant if and only if

∀t∈traces(Π) ∀0≤i<|t| ∀T∈Agent

(∃R∈Agent ownsP (R, T,Σ(t)i))⇒ ∃R′∈Agent ownsP (R′, T,Σ(t)i+1).

It is interesting to note that desynchronisation resistance together with ex-
clusive ownership can imply secure ownership. Therefore in order to prove
secure ownership with respect to a test protocol P it is sufficient, under the
conditions stated in the following theorem, to prove desynchronisation resis-
tance of P and exclusive ownership with respect to P . Note that the second
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condition in the theorem corresponds to putting assignments of true to holds
at a point in which an agent is sure to have become owner of a tag. This is
discussed more extensively in Section 4.2.

Theorem 3.1. Let Π be a set of protocols containing the test protocol P .
Suppose that Π provides exclusive ownership with respect to P and that P is
desynchronisation resistant. Then Π provides secure ownership with respect to
P for every trace which satisfies the following two conditions.

(1) In the initial state every holder of a tag is owner of the tag.

(2) An agent only becomes holder of a tag if it owns the tag.

Proof. Suppose towards a contradiction that there is a trace t ∈ traces(Π) such
that in a state Σ(t)i an agent R holds a tag T , but does not own the tag.
By condition (2) the agent has not become holder of T in state Σ(t)i. Thus
there must be a state Σ(t)j , 1 ≤ j < i, in which the agent became holder of
the tag. By exclusive ownership, no other agent owns the tag in state Σ(t)i.
Desynchronisation resistance implies that if no agent owns T in a state Σ(t)i,
then no agent could have owned T in state Σ(t)i−1. By condition (2) no agent
could have become holder in state Σ(t)i−1. This argument can be repeated to
conclude that no agent could have owned T in the initial state and no agent
could become holder in the states Σ(t)1, . . . , Σ(t)i. Thus R must have been the
holder in the initial state. This contradicts condition (1).

3.6.2 The Song and Mitchell Protocol

Song and Mitchell [SM08] propose a stateful RFID protocol that relies on a
shared secret for authentication. Their protocol achieves identification and au-
thentication of the tag and can therefore be used in scenarios such as supply

k, s, k̄, s̄

R

k

T

nonce nr

nr

nonce nt, a := k ⊕ nt, b := fk(nr ⊕ nt)

a, b

c := s⊕ (nt≫ ℓ/2)
c

k̄, s̄ := k, s
s := (s≪ ℓ/4)⊕ (k ≫ ℓ/4)⊕ nr ⊕ nt
k := h(s)

s := c⊕ (nt≫ ℓ/2)
if h(s) = k
then k := h((s≪ ℓ/4)⊕ (k ≫ ℓ/4)⊕ nr ⊕ nt)

Figure 3.5: RFID authentication protocol for low-cost tags [SM08]
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chain management or access control. They notice that in many proposed proto-
cols tags and readers can be desynchronised by blocking certain messages from
reader to tag. They attempt to prevent desynchronisation attacks by storing
additional information, allowing the reader to re-synchronise with a tag in case
messages are blocked. In this section we show that this mechanism is insufficient
to provide desynchronisation resistance by describing an attack that has previ-
ously gone unnoticed. This is, however, not the first attack on this protocol. Van
Deursen and Radomirović [DR08a] describe an attack on tag authentication.

We demonstrate that by modifying and blocking certain messages an at-
tacker can force a tag and reader to carry out different updates of their shared
secret. As a result, the reader loses ownership of the tag.

The protocol specification is given in Figure 3.5. We use fk( ) to denote a
keyed hash function. A cyclic right (or left) shift of a over b bits, is denoted by
a� b (or a� b). The length of the value to be shifted is denoted by `.

We assume that the attacker does not know the shared secret between the
tag and reader. To attack desynchronisation, the attacker proceeds as follows.

k, s, k̄, s̄

R E

k

T

nonce nr

nr

nr

nonce nt, a := k ⊕ nt, b := fk(nr ⊕ nt)

a, b

a, b

c := s⊕ (nt≫ ℓ/2)
c

nonce ni

ni

nonce nt′, a′ := k ⊕ nt′, b′ := fk(ni⊕ nt′)

a′, b′

c′ := c⊕ ((a⊕ a′)≫ ℓ/2)

c′

k̄, s̄ := k, s
s := (s≪ ℓ/4)⊕ (k ≫ ℓ/4)⊕ nr ⊕ nt
k := h(s)

s := c′ ⊕ (nt′ ≫ ℓ/2)
if h(s) = k
then k := h((s≪ ℓ/4)⊕ (k ≫ ℓ/4)⊕ ni⊕ nt′)

Figure 3.6: Desynchronisation attack
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The attacker first eavesdrops on a genuine protocol execution between a reader
and a tag. He obtains the first two messages (nr and a, b) and then aborts
the protocol by blocking the third message (c). Note that the tag has not
successfully completed its run and therefore does not carry out its update.

As shown in Figure 3.6, the attacker then challenges the same tag with his
own, freshly generated nonce ni. The tag responds with a′, b′, where a′ = k⊕nt′
and b′ = fk(ni ⊕ nt′). Using distributivity of ⊕ over �, the attacker can now
construct a valid reader response c′ = c⊕((a⊕a′)� `/2) = s⊕(nt′ � `/2). The
tag accepts the message and updates its k to h((s� `/4)⊕(k � `/4)⊕ni⊕nt′).

As soon as the tag carries out its update the genuine reader loses its owner-
ship. Indeed, it cannot successfully execute the test protocol anymore, since the
key k of the tag is not known by the reader. Furthermore, since the attacker
never learns the secret k, nobody has ownership over the tag. Thus, the protocol
is not desynchronisation resistant.
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Chapter 4

Ownership Transfer

“I did not ‘get hold of it’, I was given it,” said the wizard.
– Gandalf in The Hobbit by J.R.R. Tolkien

In the previous chapter we have defined ownership and related security re-
quirements. We have also shown an application of this definition. However,
such ownership relations only consider system states. In this chapter we study
the process of ownership transfer. We introduce security requirements for exe-
cutions of ownership transfer protocols.

4.1 Ownership Transfer Protocol

We call a protocol Q an ownership transfer protocol if it satisfies the following
functional requirement. By executing Q an agent can become the owner of a
tag, if it has not been the owner of that tag.

Definition 4.1 (Ownership Transfer Protocol). Let P be an ownership test
protocol. We say that Q ∈ Π is an ownership transfer protocol with respect to
P if and only if

∃t∈traces(Π) ∃0≤i<|t| ∃R,T∈Agent ¬ownsP (R, T,Σ(t)i) ∧ ownsQ·P (R, T,Σ(t)i),

where Q · P is used to denote sequential protocol composition.

Informally, the definition states that Q is an ownership transfer protocol, if
there exists an agent R for whom the following two conditions are met. First, R
is not an owner of T and hence cannot successfully complete the test protocol P
with T . Second, R is able to successfully complete the sequential composition
of Q and P with a tag T . Hence R is an owner of T after executing Q, since he
can successfully complete P .

Remark 4.1. This definition only specifies the provided functionality to the new
owner, that is, the reader R can become owner of the tag T . This is the minimal
functional requirement for an ownership transfer protocol. Other requirements,
which might for example put restrictions on the original owner, can be defined
separately. This “modular” approach allows for flexible usage such that it can
fit various situations.
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4.2 Signals

In order to reason about the agent’s view of ownership in a transfer protocol, we
need to keep track of the events in a trace in which an agent changes the value
of the holds variable. For this purpose we decorate protocols with obtain and
release signals as follows. Events in which true is assigned to the holds variable
will be accompanied by an obtain signal, whereas events with an assignment of
false will be accompanied by a release signal.

Note that a signal is only emitted if value of the holds variable changes.
Therefore no signal will be emitted if true or false is assigned while the holds
variable already has this value. This also implies that only a tag holder can
release a tag.

For a trace t = t0 . . . tn−1, 0 ≤ i < n, we write ti = obtainP (B, T,A) to
denote an event accompanied by an obtain signal. We call such an event ti
an obtain event. We then say that agent B obtained tag T , apparently from
agent A, in state Σ(t)i+1. Similarly, ti = releaseP (A, T,B) denotes an event
accompanied by a release signal in which agent A releases tag T , apparently to
agent B. We call such an event ti a release event.

For secure and exclusive ownership it is important that the release and ob-
tain signals occur in the right places in the protocol execution. Therefore the
assignments to the holds variable should be placed in the correct positions in
the protocol specification. The release signal should occur at a point causally
preceding a tag’s ownership update, typically at the start of the role for the
current owner of the tag. The obtain signal should occur at a point causally
following a tag’s confirmed ownership update, thus typically at the end of the
role for the new owner.

It is easy to see that if a release signal appears too late or an obtain signal
appears too early, an agent may be holder of a tag while not owning the tag,
thus violating secure ownership. This holds in a similar fashion for exclusive
ownership.

4.3 Security Requirements

The security requirements for ownership only provide protection as long as there
is a tag holder. To extend this protection during a transfer we introduce a
security requirement for transfers. Furthermore, we discuss exclusivity from a
protocol point of view.

4.3.1 Secure Transfer

We say that a set of protocols provides secure transfer, if, whenever an agent R
becomes owner of a tag, it must be as a result of an execution of an ownership
transfer protocol. That is, the ownership change must be intentional.

To capture an agent’s intention to give up ownership, we require that every
change in ownership, making R owner of T , must be preceded by a release signal.

We restrict the relation between ownership changes and release signals in
two ways. First, the ownership change must be in a one-to-one correspondence
with the release signals. Hence one release signal must not be the source of two
or more ownership changes. An ownership change which is the result of the
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execution of an ownership transfer protocol is the natural one corresponding to
a release signal. Any other changes which might be related to the same signal
do not correspond to the execution of the protocol and are therefore undesired.

Second, no corresponding release and ownership-change events related to T
may interleave other corresponding release and ownership-change events of T .
That is, the one-to-one map must be such that the ownership change for T is
mapped to the latest preceding release signal for T . For changes due to the
execution of an ownership transfer protocol this holds immediately. However,
the release signal of a failed transfer might be abused to validate an unauthorised
change in ownership, which is to be prevented.

For tags owned by the intruder, these requirements cannot be enforced.
Therefore, an agent R can become owner of a tag, either as a consequence of
the tag being intentionally released to R or as a consequence of the tag being
released to the agent E controlled by the intruder. In the latter case the intruder
must have made R the new owner without properly releasing the tag.

Definition 4.2 (Secure Transfer). Let Event denote the set of all possible events
and let E ∈ Agent be the agent controlled by the intruder. A set of protocols Π
provides secure transfer with respect to P if and only if

∀t∈traces(Π) ∃f :Event→Event,injective ∀0≤k<|t| ∀R,T∈Agent

¬ownsP (R, T,Σ(t)k) ∧ ownsP (R, T,Σ(t)k+1)⇒
∃0≤i≤k f(tk) = ti ∧ ¬∃i<j≤k tj = releaseP (∗, T, ∗)∧

(ti = releaseP (∗, T,R) ∨ ti = releaseP (∗, T, E)),

where ∗ is used to represent any agent.

4.3.2 Exclusive Transfer

As already noted in Remark 4.1 the definition of an ownership transfer protocol
only describes the minimal requirement. The result of this definition is that
at least a new owner can be introduced. This can be extended such that the
protocol achieves a strict transfer, that is, the previous owner loses ownership
while transferring to the new owner.

In order to model this we use the information from the obtain signal. We
require that the agent R′ from whom the new owner R obtained the tag no
longer owns the tag when the obtain signal is emitted.

Definition 4.3 (Strict Transfer). Let Q ∈ Π be a protocol, T a tag, and R an
honest reader. We say Q is a strict ownership transfer protocol with respect to
test protocol P , if and only if

∀t∈traces(Π) ∀0≤i<|t| ∀R′∈Agent\{R}
ti = obtainP (R, T,R′)⇒ ¬ownsP (R′, T,Σ(t)i+1).

Secure transfer provides the guarantee to anybody releasing a tag that the
only possible new owner is the intended one. Assuming secure ownership, the
only guarantee provided to the new owner, is that he actually is the owner of
the tag. If we extend this with our definition for strict ownership we introduce
the guarantee that the previous owner loses ownership. This does, however,
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not provide a proper guarantee since it does not exclude others from owning it.
Therefore we introduce the notion of exclusive transfer in analogy to exclusive
ownership.

Definition 4.4 (Exclusive Transfer). Let Q ∈ Π be a protocol, T a tag, and
R an honest reader. We say Q is an exclusive ownership transfer protocol with
respect to test protocol P , if and only if

∀t∈traces(Π) ∀0≤i<|t|
ti = obtainP (R, T, ∗)⇒ ¬∃R′∈Agent\{R} ownsP (R′, T,Σ(t)i+1),

where ∗ is used to represent any agent.

It can easily be seen that exclusive transfer implies strict transfer. Further-
more, exclusive transfer is implied by exclusive ownership. A more interesting
observation is that exclusive transfer together with secure transfer can imply
exclusive ownership. Therefore in order to prove exclusive ownership with re-
spect to a test protocol P it is sufficient, under the conditions stated in the
Theorem 4.3, to prove secure transfer and exclusive transfer with respect to P .

Theorem 4.1. Let Q ∈ Π be an exclusive ownership transfer protocol with
respect to test protocol P . Then Q is also a strict ownership transfer protocol
with respect to P .

Proof. Exclusive transfer states that when the new owner obtains a tag, then
no other agent owns the tag, in particular not the previous owner.

Theorem 4.2. Let Π be a set of protocols providing exclusive ownership with
respect to test protocol P . Then all ownership transfer protocols Q ∈ Π are
exclusive ownership transfer protocols with respect to P .

Proof. For exclusive transfer it is required that there is no other owner in the
state s in which the tag is obtained. This is the first state in which the agent
holds the tag. From exclusive ownership it follows that in every state in which
an agent holds a tag, there is no other owner, in particular not in state s.

Theorem 4.3. Let all ownership transfer protocols Q ∈ Π provide secure and
exclusive transfer with respect to test protocol P . Then Π provides exclusive
ownership with respect to P for every trace in which in the initial state every
holder of a tag is the only owner of the tag.

Proof. Suppose towards a contradiction that there is a trace t ∈ traces(Π) such
that in a state Σ(t)i an agent R holds a tag T , while there is another agent R′

which owns the tag. Thus there must be a state Σ(t)j , 0 ≤ j ≤ i, in which R
became holder of the tag. In case j = 0, by the condition on the initial state,
no other agent owns the tag in state Σ(t)j . Similarly, for j > 0, no other agent
owns the tag in state Σ(t)j by exclusive transfer. Thus R′ must have become
owner of T in state Σ(t)k, j < k ≤ i. Secure transfer implies that if an agent
becomes owner of T in a state Σ(t)k, then there must have been a release in
state Σ(t)l, l < k. This contradicts the assumption that R is holding T in state
Σ(t)i.
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4.3.3 The Yoon and Yoo Protocol

We demonstrate our definitions on the recently published ownership transfer
protocol by Yoon and Yoo [YY08]. As with the Jäppinen and Hämäläinen
protocol (discussed in Section 3.5.3) this is an attempt to improve the protocol
proposed by Osaka et al. [OTYT06]. Therefore it has the same phased structure.
The difference is that the first and third phase now consist of executions of the
protocol depicted in Figure 4.1.

ID , k, {ID}k

R

p = {ID}k

T

nonce nr

nr

h(p⊕ nr)

key k′

a := h({ID}k)⊕ {ID}k′

b := h({ID}k ⊕ {ID}k′)

a, b

if b = h(p⊕ h(p)⊕ a)
then p := h(p)⊕ a

Figure 4.1: Fixed RFID security method with ownership transfer [YY08]

In accordance with Section 4.2, we put the release signal at the start of
the first phase, and the obtain signal at the end of the third phase, as shown in
Figure 4.2. Since the pseudonym p of the tag is all that is used in communication
with the tag, we take as ownership test protocol a proof-of-knowledge protocol
of p (Figure 3.3).

old owner T new owner

release

First Phase

Secure: ID , k′, {ID}k′

Third Phase

obtain

Figure 4.2: Protocol structure including release and obtain signals

23



Secure Transfer

Consider an execution of the protocol by R, T , and R′, where initially R is
the owner of the tag T and intends R′ to become the new owner. We first
show that the protocol does not satisfy secure transfer, because an intruder E
can obtain ownership of the tag without being the intended new owner. To
achieve this, the intruder queries the target tag T with the constant 0 to which
the tag replies with h(p). By eavesdropping on the first phase of the protocol
execution, between the owner R and the target tag T , the intruder obtains
a = h(p) ⊕ {ID}k′ . As soon as the tag updates its pseudonym to {ID}k′ the
intruder becomes owner of the tag. This attack is depicted in Figure 4.3. The
intruder can always become owner of a tag in this way even if the old owner
of the tag does not release it to him. Therefore, the protocol does not satisfy
secure transfer.

ID , k, {ID}k

R E

p = {ID}k

T
0

h(p)

nonce nr

nr

nr

h(p⊕ nr)

h(p⊕ nr)

key k′

a := h({ID}k)⊕ {ID}k′

b := h({ID}k ⊕ {ID}k′)

a, b

a, b

if b = h(p⊕ h(p)⊕ a)
then p := h(p)⊕ a

p := h(p)⊕ a

Figure 4.3: Attack on secure transfer

Exclusive Ownership

Next, we show that exclusive ownership can be violated using knowledge of the
tag’s pseudonym the intruder has gained after the first phase of the protocol
through the previous attack. The intruder eavesdrops on the third phase of the
transfer, carried out by T and R′. The new owner R′ becomes holder of the tag
when the third phase finishes. Using the information learnt during this phase
the intruder can derive the new pseudonym as he did in the previous attack,
hence he remains owner of the tag. This violates exclusive ownership since R′

holds the tag, while the intruder owns the tag.
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Secure Ownership

After R′ has finished the transfer, the intruder executes the pseudonym update
protocol to update the tag’s pseudonym to a pseudonym the new owner R′ does
not know. Therefore R′ loses ownership while still being holder of the tag which
violates secure ownership.

4.3.4 The Lei and Cao Protocol

In this section we demonstrate our definitions on the published ownership trans-
fer protocol by Lei and Cao [LC07]. In contrast to the protocol of the previous
section, this protocol improves the protocol proposed by Osaka et al. [OTYT06]
such that it provides secure ownership and secure transfer, but not exclusive
ownership, although it is claimed to provide untraceability.

This protocol has the same structure as described in Sections 3.5.3 and 4.3.3.
We will therefore use the same signal placement (Figure 4.2) and test protocol
(Figure 3.3) as in the previous analyses. The update protocol for the first and
third phase is given in Figure 4.4.

For secure ownership as well as secure transfer we provide security analyses
to show how the protocol achieves these security requirements. These are not
proofs, but rather proof sketches. Model checking is necessary to provide full
guarantee that this protocol adheres to these requirements. This is part of
future research.

ID, k, {ID}k

R

p = {ID}k

T

nonce nr

nr

nonce nt

nt, h(p⊕ nr, nt)

key k′

a := h({ID}k)⊕ {ID}k′

b := h({ID}k ⊕ nt, a)

a, b

if b = h(p⊕ nt, a)
then p := h(p)⊕ a , c := h(p, a, nt)

c

if c = h({ID}k′, a, nt)
then k := k′

Figure 4.4: RFID protocol enabling ownership transfer to protect against trace-
ability and DoS attacks [LC07]
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Secure Ownership

Lei and Cao as well as Osaka et al. do not consider backward security of their
protocols. Following this approach we assume the previous owners to be honest.

In order to achieve secure ownership we assume that initially all tag holders
are also tag owners. Thus the correspondence relation between holds and owns
holds in the initial state. Furthermore we assume that this is the only ownership
transfer protocol in the set of protocols Π.

Secure ownership can be violated in two ways. Either a holder loses own-
ership, or an agent becomes holder while not owning the tag. This first case
can be caused by executing the ownership transfer protocol or due to an action
of the intruder. When the ownership transfer protocol is executed the tag is
released such that the agent is no longer a holder. While intervention of the
intruder is prevented by authenticating the update message such that only the
owner can send it.

The second case is prevented since the new owner must know the pseudonym
p in order to successfully complete the third phase. When the message c has
arrived the tag has confirmed that the pseudonym has been set on the tag.
Hence, when the tag is obtained the agent is indeed the owner.

Secure Transfer

Secure transfer concerns the situation in which an agent becomes owner. This is
only possible by knowing the pseudonym of the tag. By executing the ownership
transfer protocol the new owner learns the pseudonym due to the communication
with the previous owner in the second phase. In this case the ownership change
has been preceded by a release signal.

An intruder can only learn the pseudonym from the communication between
reader and tag. To achieve this he should either know the hash of the previous
pseudonym, or be able to invert a cryptographic hash function, which we both
assume to be infeasible.

We also need to verify that a release signal cannot be abused. In the current
setting an old release can be used since the pseudonym is not updated before
the new release is signalled. However, if we put the signal just before the second
phase this should be fine, since now the old release has been invalidated due to
the pseudonym update.

Exclusive Ownership

Lei and Cao as well as Osaka et al. consider indistinguishability (untraceability)
of their protocols. In contrast to the analysis for secure ownership, we do not
assume the previous owners to be honest. Assuming honesty of the previous
owner does not make any sense, since this requirement provides a guarantee for
the new owner, concerning all other agents.

It can easily be seen that this protocol does not provide exclusive ownership.
By eavesdropping on the communication between the new owner and the tag, the
previous owner obtains the message a, b. From this message the new pseudonym
can be derived a⊕h({ID}k) = {ID}k′ . With this knowledge the previous owner
can successfully complete the test protocol, meaning he is still owner, which
violates exclusive ownership.
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Chapter 5

Design and Analysis

An explanation of cause is not a justification by reason.
– C.S. Lewis

In the previous chapters we have defined a framework for analysing security
aspects of ownership transfer protocols. In this chapter we present two protocols
designed to meet all of the defined security requirements. The first approach uses
asymmetric cryptography and achieves a secure exclusive ownership transfer
protocol which satisfies all requirements.

For the second approach, we use only symmetric cryptography, which de-
creases the computational complexity. The proposed protocol satisfies secure
ownership as well as secure transfer. However, exclusive ownership can only be
proved under an additional assumption.

5.1 Design Strategy

As a general design strategy we will base our protocols on existing authentication
protocols. During the literature study as well as the development of the analysis
framework we noticed that most flaws are caused by flawed authentication.

Based on this observation we studied the relation between authentication
and ownership transfer. The result from this study is that authentication pro-
tocols are ideal building blocks for ownership transfer protocols. The protocols
described below use the structure as given in Figure 5.1. Based on related work
(Section 2.2), similar to Osaka et al. [OTYT06], we identified three phases to
be important for ownership transfer. First, the current owner and the intended
new owner exchange information about the tag to be transferred. Next the
current owner releases the tag such that, finally, the new owner can obtain the
tag in the third phase.

Remark 5.1. Depending on the exact implementation of a protocol the exchange
and release phases might need to be switched or interleaved. This depends on
the information that is required for these phases. For example, the exchange
phase might depend on a fresh key which is generated in the release phase.
Then the release has to precede the exchange. This is the case with the pre-
viously discussed ownership transfer protocols based on the work by Osaka et
al. [OTYT06].

27



A B

Authentication

Exchange

T

Authentication

release Release

Authentication

obtainObtain

Figure 5.1: General design idea for secure ownership transfer protocols

In order to assure security of these phases each of them is combined with
an authentication part. This provides protection against the intruder imperson-
ating one of the agents. It is important to make sure that the authentication
which is established by this part is used properly in the functional part such
that it offers the required protection.

We now have a recipe to design ownership transfer protocols.

5.2 Using Public-key Authentication

The Needham-Schroeder-Lowe public-key authentication protocol [Low96] is
used as the main construction block for our first ownership transfer protocol.
Besides its own secret-key sk(T ), a tag T only stores a single public-key pkO,
which is used to authenticate the owner. Therefore, the agent with knowledge
of the corresponding secret-key is the owner. The test protocol TESTNSL, as
depicted in Figure 5.2, is an instance of the Needham-Schroeder-Lowe protocol
with an additional message as explained in Remark 5.2. This protocol can also
be implemented on the tag for identification and authentication purposes.

Remark 5.2. For the use in an RFID setting the Needham-Schroeder-Lowe pro-
tocol is initiated by the tag. This is preferred since the reader initially does not
know the identity of the tag, hence it is unknown which public key to use for
the tag.

The tag only has a single key to use such that it can simply construct the
first message. Using this message the tag identity can be transferred safely to
the reader, since only the owner of the tag will be able to decrypt the message
using its secret-key.

Furthermore, the authentication protocol is preceded by an additional mes-
sage from the reader to the tag. This message is used to initiate the communica-
tion with the tag, as well as to select the protocol on the tag. This is necessary
since RFID tags are only capable of responding to reader messages.
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sk(R), T, pk(T )
R

sk(T ), pkO = pk(R)
T

test

nonce nt

{T, nt}pkO

nonce nr

{R,nr, nt}pk(T )

{T, nr}pkO

Figure 5.2: TESTNSL: public-key ownership test protocol

5.2.1 Protocol Description

The ownership transfer protocol OTPNSL, as specified by Figure 5.3, is designed
according to the structure depicted in Figure 5.1. The exchange phase consists
of the authentication protocol with two additional terms in the initial message,
the tag’s identity T as well as its public-key pk(T ). With this information the
new owner B will be able to identify and communicate with the tag, although
this is only possible after the tag has been released by the current owner A.

The first part of the release phase consists of the authentication protocol. Af-
ter mutual authentication has been achieved between reader and tag the public-
key stored on the tag can be updated. Furthermore, upon updating the owner
key, the tag sets the inTransfer flag, indicating that the tag is involved in a
transfer. Finally the tag confirms the update. Note that the confirmation mes-
sage m is constructed before the key is updated since after the update the tag
does no longer know the public-key for the original owner.

The release signal will be placed just before sending the update message
to the tag. Until this moment the original owner has not given up ownership,
hence there is no need to release earlier. Furthermore, it is certain that the
agent owns the tag since the ownership test protocol has been executed as part
of the release phase. The release signal cannot be placed any later since the
agent loses ownership when the tag updates.

The obtain phase consists solely of an instance of the test protocol. There
are only some small modifications on the tag’s side. First, when this phase is
initiated by the new owner, the tag verifies whether it is actually engaged in
a transfer. This is required to avoid multiple executions of the obtain phase.
After the new owner has been verified the tag will unset the inTransfer flag.
This is confirmed to the new owner with a final message after which the obtain
signal is emitted.

To avoid possible flaws due to messages being confused, with other messages
within this protocol or with those from other protocols, all messages have been
tagged. That is, the encrypted terms are extended with an additional term
which is unique for each message in the specification. For the exchange phase
we use e1, . . . , e3, u1, . . . , u5 for the update phase, and v1, . . . , v3 for the obtain
phase.
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sk(A), pk(B), T, pk(T )
A

sk(B), pk(A)
B

nonce na

{e1, A, na, T, pk(T )}pk(B)

nonce nb

{e2, B, nb, na}pk(A)

{e3, A, nb}pk(B)

sk(T ), pkO = pk(A), inTransfer
T

update

nonce nt

{u1, T, nt}pkO

nonce na′

{u2, A, na′, nt}pk(T )

{u3, T, na′}pkO

{u4, A, nt, pk(B)}pk(T )
release

m := {u5, T, na′, OK}pkO

inTransfer := true
pkO := pk(B)

m

sk(T ), pkO = pk(B), inTransfer
T

verify

if inTransfer
then nonce nt′

{v1, T, nt′}pkO

nonce nb′

{v2, B, nb′, nt′}pk(T )

inTransfer := false

{v3, T, nb′}pkO
obtain

Figure 5.3: OTPNSL: public-key secure exclusive ownership transfer protocol
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5.2.2 Security Analysis

This section only contains a security analysis, that is, we do not provide formal
proofs. Such proofs can be obtained by using model checking. This is consid-
ered as a part of future research. Note that the properties of the Needham-
Schroeder-Lowe protocol, which we use in our analysis, have been proved by
model checking [Low96].

Secure Ownership

To prevent unintentional loss this protocol has been designed to satisfy secure
ownership. This is achieved by properly authenticating the update message in
the release phase such that only the actual owner can send it. Furthermore,
the obtain phase is designed according to the test protocol in order to prevent
agents setting their holds variable, while they do not own the tag.

Lemma 5.1. Suppose that all decryption keys are only known to their corre-
sponding agents. Then the public-key stored on the tag can only be updated
by the owner executing the release phase of OTPNSL.

Proof. Suppose that an intruder is able to update the key stored on the tag.
Then he must have constructed a message which has been accepted by the
tag. This message is authenticated by means of the Needham-Schroeder-Lowe
protocol. Hence, if the intruder is capable to construct such message, without
knowledge of the decryption key of the owner, then he is also able to break the
Needham-Schroeder-Lowe protocol, which has been proved secure [Low96].

Theorem 5.1. Suppose that the initial state is consistent, that is, all tag hold-
ers own their tags, and that all decryption keys are only known to their cor-
responding agents. Then Π = {TESTNSL,OTPNSL} satisfies secure ownership
with respect to TESTNSL.

Proof (Sketch). Suppose towards a contradiction that secure ownership is vio-
lated at a certain moment. Then there is an agent which holds a tag while not
being the owner. This either means that the holds variable is set while the agent
did not own it or ownership was lost while this variable was still set.

The holds variable is only set at the end of the new owner’s run. The new
owner B has proved knowledge of the decryption key of the public-key stored on
the tag, by successfully executing the Needham-Schroeder-Lowe protocol. Thus
B is the owner of the tag at this point. This situation cannot be violated by
B already transferring the tag again, since only a holder can release the tag.
Furthermore, no other agents can violate this situation since there is only one
key on the tag which denotes the owner, and B is the only agent knowing this
key.

Losing ownership of the tag while holding it can only be caused by updating
the public-key stored on the tag. By Lemma 5.1 only the owner can do this
by executing the release phase. In this phase the tag is released hence secure
ownership is not violated.

Finally, TESTNSL and OTPNSL are independent of each other because of the
message tagging applied to OTPNSL. Thus we can discuss TESTNSL in isolation.
This protocol does not modify the key or the holds variable. Hence there is no
violation possible. Therefore this protocol set satisfies secure ownership.
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Exclusive Ownership

To guarantee that a tag holder is the only owner of that tag, the protocol has
been designed to satisfy exclusive ownership. This is achieved by the use of
a single public-key to denote the owner of the tag in combination with the
assumption that the secret-key is only known to the corresponding agent.

Theorem 5.2. Suppose that the initial state is consistent, that is, all tag
holders are the only owners of their tags. Assume that all decryption keys are
only known to their corresponding agents. Then Π = {TESTNSL,OTPNSL}
satisfies exclusive ownership with respect to TESTNSL.

Proof (Sketch). The tag only stores a single public-key to authenticate the
owner. In order to successfully complete the ownership test protocol an agent
should know the corresponding secret-key. Since each agent has its own key,
and these keys are not shared with other agents there can only be one agent
owning the tag. By secure ownership (Theorem 5.1) we have that the holder of
a tag must be the owner. Hence we have that the holder is the exclusive owner,
since there are no other agents owning the tag.

Secure Transfer

The previous requirements provide security as long as an agent is holder of
a tag. We extend this security further such that also the transfer is protected
against malicious activities. Therefore the protocol satisfies secure transfer such
that the tag ends up with the intended owner. This is achieved by properly
authenticating all phases of the ownership transfer protocol.

Theorem 5.3. Suppose that a release is blocking, that is, an agent does not
continue execution when it cannot release a tag (since it does not hold the tag)
and that the previous owner is honest. Then Π = {TESTNSL,OTPNSL} satisfies
secure transfer with respect to TESTNSL.

Proof (Sketch). Suppose towards a contradiction that an agent achieves to be-
come owner of a tag without the occurrence of a release signal. An agent can
only become owner by knowing the decryption key for the public-key stored on
the tag. This can be achieved by executing the ownership transfer protocol.
The previous owner does not continue if it is not the holder of the tag. Hence if
ownership changes, a release signal will be emitted since the previous owner was
holder of the tag. This contradicts the assumption that there was no release
signal.

The decryption key can also not be derived from the communication since the
Needham-Schroeder-Lowe protocol does not leak any information. Furthermore,
by Lemma 5.1, the key can only be updated by the owner. Thus an intruder
cannot store his own key on the tag.

We also need to verify that a release signal cannot be abused. Injectivity and
recentness of the correspondence between ownership changes and release signals
follow from the injective synchronisation provided by the Needham-Schroeder-
Lowe protocol. Furthermore, a release signal is only emitted if the agent is
holder of the tag, hence another release signal will be preceded by an obtain
signal. Thus corresponding release signals and ownership changes cannot be
interleaved.
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5.2.3 Practical Analysis

The security requirements discussed in the previous section are not the only
requirements for RFID systems. There are also practical requirements such as
scalability and computational complexity. The former is required to be able to
use the system on a large scale, while the latter is required due to the limited
computational capabilities of RFID tags. We will shortly discuss these aspects
of our protocol.

Scalability is achieved by having the tag initiate the Needham-Schroeder-
Lowe protocol, as noted in Remark 5.2. This allows the reader to immediately
identify the tag based on its reply. Therefore the identification time is constant,
that it does not depend on the number of tags in the system. Hence it does not
matter if the reader owns hundreds, thousands or even more tags.

High computational complexity is the main drawback of this protocol. It
requires the tag to be able to perform asymmetric encryption and decryption.
Furthermore, a random number generator is required for the nonce generation.
With the limited computational powers of a tag this is hardly possible. Research
is being done in this area [BGK+07, LSBV08], but tags with these capabilities
are still not available in general. In an attempt to satisfy this last require-
ment another protocol, which does not use asymmetric cryptography, has been
designed.

5.3 Using Shared-key Authentication

The ISO Symmetric Key Three-Pass Mutual Authentication protocol [ISO08]
serves as the main ingredient in this design. This protocol has been turned into
a test protocol TESTISO , as depicted in Figure 5.4, analogous to the previous
test protocol TESTNSL. The tag stores two symmetric keys. One owner key
kO which is shared by the owner among all its tags, and a tag key kT which
is only shared between the owner and the specific tag. Both keys have to
be known in order to successfully execute the given test protocol. Again this
protocol can, besides testing for ownership, also be used for tag identification
and authentication.

kR, T, kTR

R

kT = kTR
, kO = kR

T
test

nonce nt

{T, nt}kO

nonce nr

{R,nr, nt}kTR

{T, nr}kT

Figure 5.4: TESTISO : shared-key ownership test protocol
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5.3.1 Protocol Description

The ownership transfer protocol OTPISO , as specified by Figure 5.5, is designed
to resemble the previous protocol design (Figure 5.3). The main difference with
the previous protocol is the use of symmetric encryption instead of asymmetric.
For the exchange phase, however, we still use the Needham-Schroeder-Lowe
protocol to avoid sharing keys between all agents. A public-key infrastructure
is a more efficient solution to retrieve the keys of other agents when necessary.
This use of asymmetric cryptography for the exchange phase is not a problem
since readers are capable of performing public-key cryptography.

The tag information exchanged during the exchange phase consists of the
tag identity T and a fresh symmetric key kTAB

. This key will be put on the tag
during the release phase, such that the new owner is able to communicate with
the tag, in a secure fashion, in the obtain phase.

The release phase uses the same messages as the previous protocol. How-
ever, this time symmetric encryption is used. The owner key in the first reply
of the tag is used to achieve tag identification, similar to the previous protocol.
After the tag has been identified the tag key will be used to perform mutual au-
thentication. Finally the tag key is updated with the exchanged new symmetric
key.

In the obtain phase, in contrast to the test protocol and release phase, the
tag’s first reply is encrypted using the tag key. This is necessary to avoid the
exchange of owner keys, by which one agent could identify the other agent’s
tags. After mutual authentication has been established both keys on the tag
will be updated. Now the new owner is able to successfully complete the test
protocol.

To avoid possible flaws due to messages being confused, with other messages
within this protocol or with those from other protocols, all messages have been
tagged. That is, the encrypted terms are extended with an additional term
which is unique for each message in the specification. For the exchange phase
we use e1, . . . , e3, u1, . . . , u5 for the update phase, and v1, . . . , v3 for the obtain
phase.

5.3.2 Security Analysis

This section only contains a security analysis, that is, we do not provide formal
proofs. Such proofs can be obtained by using model checking. This is considered
as a part of future research.

Secure Ownership

Secure ownership is, similar to the previous protocol, achieved by properly au-
thenticating the update message in the release phase such that only the actual
owner can send it. The obtain phase this time slightly differs from the test
protocol. Only the owner key is not used since this key has not been exchanged
and is thus unknown to the intended new owner. Instead we use the tag key
which is known, and can be used by the agent to achieve mutual authentication
with the tag.

Note that in contrast to the previous protocol we now need to assume pre-
vious owners to be honest. Since a malicious previous owner can easily violate
secure ownership.
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sk(A), pk(B), kA, T, kTA

A

sk(B), pk(A), kB

B

nonce na, kTAB

{e1, A, na, T, kTAB
}pk(B)

nonce nb

{e2, B, nb, na}pk(A)

{e3, A, nb}pk(B)

kT = kTA
, kO = kA, inTransfer

T
update

nonce nt

{u1, T, nt}kO

nonce na′

{u2, A, na′, nt}kTA

{u3, T, na′}kT

{u4, A, nt, kTAB
}kTArelease

inTransfer := true
kT := kTAB

{u5, T, na′, OK}kT

kT = kTAB
, kO = kA, inTransfer

T
verify

if inTransfer
then nonce nt′

{v1, T, nt′}kT

nonce nb′, kTB

{v2, B, nb′, nt′, kB, kTB
}kTAB

inTransfer := false
kO := kB

kT := kTB

{v3, T, nb′}kO obtain

Figure 5.5: OTPISO : shared-key secure ownership transfer protocol
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Lemma 5.2. Suppose that all decryption keys are only known to their corre-
sponding agents. Then the tag key stored on the tag can only be updated by
the owner executing the release phase of OTPISO .

Proof. Suppose that an intruder is able to update the key stored on the tag.
Then he must have constructed a message which has been accepted by the tag.
This message is authenticated by means of the ISO Symmetric Key Three-Pass
Mutual Authentication protocol. Hence, if the intruder is capable to construct
such message, without knowledge of the decryption key of the owner, then
he is also able to break the authentication protocol, which has been proved
secure [DNL99].

Lemma 5.3. Suppose that all decryption keys are only known to their corre-
sponding agents and that the previous owner is honest. Then the owner key
stored on the tag can only be updated by the new owner executing the obtain
phase of OTPISO .

Proof. Suppose that an intruder is able to update the key stored on the tag.
Then he must have constructed a message which has been accepted by the tag.
Since the previous owner is considered to be honest, the intruder must be able
to construct this message without knowledge from this agent. The update mes-
sage is authenticated by means of the ISO Symmetric Key Three-Pass Mutual
Authentication protocol. Hence, if the intruder is capable to construct such
message, then he is also able to break the authentication protocol.

Theorem 5.4. Suppose that the initial state is consistent, that is, all tag hold-
ers own their tags, that all decryption keys are only known to their corresponding
owners, and that the previous owner is honest. Then Π = {TESTISO ,OTPISO}
satisfies secure ownership with respect to TESTISO .

Proof (Sketch). Suppose towards a contradiction that secure ownership is vio-
lated at a certain moment. This either means that the holds variable is set while
the agent did not own it. Or ownership was lost while this variable was still set.

The holds variable is only set at the end of the new owner’s run. The new
owner B has proved to known both the tag and owner key stored on the tag,
by successfully executing the ISO Symmetric Key Three-Pass Mutual Authen-
tication protocol. Thus B is the owner of the tag at this point. This situation
cannot be violated by B already transferring the tag again, since only a holder
can release the tag. Furthermore, this situation cannot be violated by any other
agent, since B is the only agent knowing both the tag and owner key, which
are both required to own the tag. The only other agent knowing the tag key is
assumed to be honest, that is, this agent cannot derive the owner key.

Losing ownership of the tag while holding it can only be caused by updating
the keys stored on the tag. By Lemma 5.3 only the new owner can update the
owner key in the obtain phase. This can only be done when the inTransfer flag
is set. This flag is only set after the tag key update. By Lemma 5.2 only the
owner can update the tag key by executing the release phase. In this phase the
tag is released hence secure ownership is not violated.

Finally, TESTISO and OTPISO are independent of each other because of the
message tagging applied to OTPISO . Thus we can discuss TESTISO in isolation.
This protocol does not modify the key or the holds variable. Hence there is no
violation possible. Therefore this protocol set satisfies secure ownership.
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Exclusive Ownership

OTPISO does not satisfy exclusive ownership. The problems with satisfying
exclusivity using symmetric cryptography are explained in Section 5.4.

Since exclusive ownership provides protection, among others, against the
previous owner, it does not make any sense to assume the previous owner to be
honest for this requirement. Thus exclusive ownership is easily violated.

Theorem 5.5. Suppose that the initial state is consistent, that is, all tag
holders are the only owners of their tags. Then Π = {TESTISO ,OTPISO} does
not satisfy exclusive ownership with respect to TESTISO .

Proof. By eavesdropping on the communication between the new owner and the
tag, the previous owner obtains the message {v2, B, nb

′, nt′, kB , kTB
}kTAB

. From
this message the new keys can be derived by decrypting the message using the
tag key kTAB

which was chosen by the previous owner. With this knowledge the
previous owner can successfully execute the test protocol, such that he remains
owner, which violates exclusive ownership.

Secure Transfer

The previous requirements provide security as long as an agent is holder of a tag.
We extend this security further such that also the transfer is protected against
malicious activities. Therefore our protocol satisfies secure transfer such that
the tag ends up with the intended owner.

Theorem 5.6. Suppose that a release is blocking, that is, an agent does not
continue execution when it cannot release a tag (since it does not hold the tag)
and that the previous owner is honest. Then Π = {TESTISO ,OTPISO} satisfies
secure transfer with respect to TESTISO .

Proof (Sketch). Suppose towards a contradiction that an agent achieves to be-
come owner of a tag without the occurrence of a release signal. An agent can
only become owner by knowing the decryption key for the public-key stored on
the tag. This can be achieved by executing the ownership transfer protocol.
The previous owner does not continue if it is not the holder of the tag. Hence if
ownership changes, a release signal will be emitted since the previous owner was
holder of the tag. This contradicts the assumption that there was no release
signal.

The keys can also not be derived from the communication since the ISO
Symmetric Key Three-Pass Mutual Authentication protocol does not leak any
information. Furthermore, by Lemmas 5.2 and 5.3, the keys can only be updated
by the owner and the new owner. Thus an intruder cannot store his own key
on the tag.

We also need to verify that a release signal cannot be abused. Injectivity
and recentness of the correspondence between ownership changes and release
signals follow from the injective synchronisation provided by the ISO Symmetric
Key Three-Pass Mutual Authentication protocol. Furthermore, a release signal
is only emitted if the agent is holder of the tag, hence another release signal
will be preceded by an obtain signal. Thus corresponding release signals and
ownership changes cannot be interleaved.
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5.3.3 Practical Analysis

Similar to the previous design we shortly discuss scalability and computational
complexity. Scalability is achieved by the use of two shared keys. Using the
owner key for the first message allows identification of the tags in constant time.
While the tag key is used to achieve mutual authentication. Compromise of the
owner key, which is more likely since it is used for all tags of an owner, does not
violate any of the ownership related security requirements. It does however allow
an intruder to identify and trace tags, thus violating untraceability requirements.
Not using the owner key in the obtain phase is acceptable. This is possible since
the number of tags involved in a transfer for an owner at the same time will not
be large. Therefore an exhaustive search for the decryption key, by checking all
tag keys of tags which are involved in a transfer, can be done within a reasonable
amount of time.

The computational complexity is less than in our previous design. This
allows our protocol to be implemented on RFID tags which support symmetric
encryption. Such tags exist, but they are still quite expensive. They are too
expensive to be used for supply chain purposes where large numbers of tags are
used. The current generation of tags in use hardly provides any computational
power. Hence another design might be needed to reach this level of complexity.
However the current design already fails to satisfy all ownership related security
requirements.

5.4 Exclusivity Problems

Designing a protocol which satisfies exclusive ownership using only shared keys
is not possible under the given circumstances. Using symmetric keys gives rise
to two scenarios. Either the intended new owner provides the original owner
with a key to put on the tag. This allows the new owner to communicate with
the tag and, for example, update the key. The other option is that the original
owner shares his key with the intended new owner, such that the new owner
can put his own key on the tag. Both cases give rise to violations for exclusive
ownership, since a malicious previous owner will be able to listen in to the
communication between the tag and the new owner.

This problem concerns secure channel establishment, which has been studied
by Maurer and Schmid [MS96]. OTPISO provides an authenticating channel,
but there is no secret shared between the new owner and the tag. According to
Maurer and Schmid public-key cryptography is required in order to construct
a confidential channel from an authenticating channel. This results in the con-
clusion that a certain level of asymmetry is required to satisfy exclusivity.

Conjecture 5.1. In the model as given in Appendix A, without a shared secret
between the new owner and the tag, exclusive transfer cannot be satisfied in a
shared-key only setting (without an asymmetric aspect).

Proof (Sketch). Exclusive transfer concerns the establishment of a shared secret
between the new owner and the tag. Suppose towards a contradiction that the
new owner and tag can establish such secret. Then this secret must be infered
from their knowledge and the communication between them. The intruder,
however, has the same initial knowledge since he possesses the knowledge from
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the malicious previous owner. Furthermore, the network is controlled by the
intruder, such that he observes all interactions between the two agents. There-
fore, the intruder is able to infer any knowledge which the agents might choose
as their secret key. This contradicts the assumption that a shared secret can be
established.

To provide an actual proof this model has to be implemented in a model
checker and the statement has to be verified. Our model, however, models
perfect operations. Therefore this conjecture should also be stated in a com-
putational model, which resembles the real world situations more closely. This
does, however, require clarification concerning channel properties and drawing
the boundary between asymmetric and symmetric cryptography within such a
model.

The previous statement concerns exclusive transfer, however, based on The-
orem 4.2 we can also conclude that exclusive ownership is also not possible to
satisfy under these conditions. This problem can be solved by altering the situa-
tion. We discuss to possible solutions for this problem: weakening the definition
or adding an assumption.

Weakening the definition to an honest previous owner solves the problem
for the strict transfer definition. The previous owner loses ownership, since an
honest agent does not eavesdrop on the communication between the tag and the
new owner. For exclusive transfer this does not hold since the intruder might
be an owner of the tag, and remain owner of the tag, violating this requirement.
All previous owners have to be assumed honest, that is the intruder has never
owned the tag, in order to satisfy exclusive transfer.

Another approach is to assume that at least one message can be delivered
in a secure fashion, for example by transferring this message within a Faraday
cage. This is sufficient since it prevents the described attacks which are based
on eavesdropping on the update message. Due to this shielded transfer the tag
and new owner can establish a shared secret which can be used to achieve con-
fidentiality. In order to prove protocols, using such assumption, secure channels
should be added to the formal model. This is considered as a part of future
research.
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Chapter 6

Conclusion

“I have quite finished, Sam,” said Frodo. “The last pages are for you.”
– Frodo Baggins in The Return of the King by J.R.R. Tolkien

The research for this thesis has been done in two major directions. First, the
development of a verification framework for ownership and ownership transfer
related requirements. Next, the design of two protocols which achieve secure
ownership transfer. In this chapter we discuss our contributions to this area
and provide an overview of future research.

6.1 Verification Framework

We have presented formal definitions of ownership and ownership transfer, as
well as their secure variants. Together, these definitions, which have been pub-
lished in [DMRV09], allow us to verify the security of ownership transfer proto-
cols. We have demonstrated the applicability of these definitions by exhibiting
attacks on secure ownership, exclusive ownership, and secure ownership trans-
fer on a number of proposed ownership transfer protocols [FA07, JH08, Son08,
YY08]. Furthermore, we sketched how correctness of the protocol proposed by
Lei and Cao [LC07] can be proved.

As an application of our definitions we have formalised desynchronization
resistance. We have used this formalisation to uncover a flaw in a stateful
RFID authentication protocol by Song and Mitchell [SM08].

6.2 Protocol Design

We have designed two protocols using existing authentication protocols as main
ingredients. The first protocol, based on the Needham-Shroeder-Lowe proto-
col [Low96], satisfies all of the security requirements, at the cost of a high
computational complexity.

The second protocol, based on the ISO Symmetric Key Three-Pass Mutual
Authentication protocol [ISO08], reduces the computational complexity, but
fails to satisfy exclusive ownership. This requirement can only be achieved
using public-key cryptography or by assuming that one message can be delivered
without being eavesdropped on.
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6.3 Future Research

Combinations While we consider a formal definition of ownership to be of
independent interest, it will clearly become much more valuable when combined
with existing security and privacy requirements. For instance, in a parcel de-
livery system, where RFID tags are attached to parcels, non-repudiation for
obtaining ownership of RFID tags and untraceability of these tags by unautho-
rised entities become important.

Model Checking The model used in this work has been designed in such a
way that the verification of our security requirements should be possible with a
model checking tool. As already stated in this thesis, model checking is required
in order to prove the correctness of the discussed protocols.

Protocol Design Finally, the work started in Chapter 5 can be continued to
decrease the computational complexity, while trying to satisfy as many security
requirements as possible. Furthermore, the research towards combinations with
other requirements might lead to new challenges in protocol design.
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Appendix A

Stateful Security Protocols

We give a description of security protocol syntax and semantics. The model
presented has been developed by Van Deursen and included in [DMRV09]. It
is based on the model for stateless protocols by Cremers and Mauw [CM05].
Their model has been extended by adding support for stateful protocols. While
stateless protocols start in the same state for every execution, stateful proto-
cols may use information from previous and parallel protocol executions. Van
Deursen’s description of his model has only been slightly modified to better suit
this thesis.

A.1 Protocol specification

We describe a specification language for security protocols. This language is
generated by the context-free grammar in Figure A.1. In this section we discuss
the elements from this language.

We specify a protocol as a map from an n-tuple of distinct roles to an n-tuple
of role specifications. A role specification consists of a declaration of the nonces
and variables (defined below) used by that role and the events defining the
messages that an honest agent sends and expects to read, when executing the
role. Events can be composed in several ways. Sequential composition, denoted
by ( · ), specifies consecutive execution of events while alternative composition,
denoted by ( + ), models the branching structure that security protocols may
have. Finally conditional branching, denoted by ( / . ), choses the left branch
if the guard evaluates to true, otherwise it executes the right branch.

In order to simplify role specifications, we assume that sequential composi-
tion ( · ) binds stronger than alternative composition ( + ) and alternative
composition binds stronger than conditional branching ( / . ). To improve
readability of specifications we leave out superfluous parentheses whenever no
confusion can arise.

Messages that are sent over the network are constructed by a term algebra.
We define Agent to be the set of agent names of the agents that are allowed
to execute protocols. The set of constants, Const, contains constants that are
globally known, such as the natural numbers. The set Nonce contains nonces,
that is, values that are freshly generated for every protocol execution. Functions
that can be applied to terms are contained in the set F .
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ProtSpec → ProtName(RoleName) = RoleSpec |
ProtSpec, ProtSpec

RoleSpec → (P(Nonce); P(V arL); P(V arG); P(G); Event)

Event → (Event · Event) |
(Event + Event) |
(Event / Term = Term . Event) |
send(Term)[Assignment] |
read(Term)[Assignment]

Assignment → V arG := Term |
G(RoleName) := Term |
Assignment, Assignment

Term → Agent |
Const |
Nonce(θ) |
RoleName |
V arL |
V arG |
G(RoleName) |
F(Term) |
(Term,Term) |
{Term}Term

Figure A.1: Grammar for protocol specifications

We consider four sets of variables that are pairwise disjoint. The set Role-
Name contains the role names of the roles in the protocol. During protocol
execution, role names are instantiated by the names of the agents executing the
protocol. Local variables are variables that are instantiated during an execution
of a run, but lose their value after the run finishes. They are contained in VarL.
The set VarG contains global variables which represent the persistent knowl-
edge of an agent. Their values are maintained across protocol runs. Global
variable arrays, contained in G, are a generalization of global variables. They
group global variables in order to simplify role specifications. Encryption keys
for communication with other agents can for instance be grouped in a global
variable array. We use a special variable θ to denote the identifier of a run.
This variable is used to disambiguate nonces of different runs. A fresh value is
assigned to θ when a role is instantiated. Note that θ must not occur in any of
the variable sets.

Complex terms can be constructed by pairing terms, denoted by ( , ), en-
crypting a term by another term, denoted by { } , or applying a function f ∈ F
to a term, denoted by f( ).

Send and read events can be accompanied by a list of variable assignments.
Assignments can be done to both global variables and global variable arrays.
Execution of a send or read event accompanied by an assignment of variables is
considered as an atomic step.
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Finally a specification might contain signals, similar to Ryan et al. [RSG+00].
These signals are used to identify points in a protocol run which are of special
interest when specifying properties. They are only used for specification and
verification purposes, hence they do not appear in actual executions of a proto-
col.

ID
R

ID
T

nonce nr
nr

h(nr, ID)

ID := h(ID , nr) ID := h(ID , nr)

Figure A.2: Example protocol

Example A.1. Consider the tag authentication protocol in Figure A.2. The
reader role R has a global variable array ID which contains an identifier ID
for every tag T . The role starts by generating a nonce nr and sending it to T .
Since nr is a nonce, it is indexed by the special variable θ which is instantiated
immediately when the run starts. Note that at the time of sending, R does not
know to whom it is sending the nonce. It then waits for a response h(nr, ID)
from any tag T . Upon receipt of a valid response, it updates the ID for the
responding tag. The reader role specification is as follows:

example(R) = (
{nr}; ∅; ∅; {ID};
send(nr(θ)) ·
read(h(nr(θ), ID(T )))[ID(T ) := h(ID(T ), nr(θ))]

)

The tag role T has its identity ID as persistent knowledge. It starts its run
by reading a reader challenge nr from the network. Since the reader challenge
is different every run, nr is a local variable. After reading the challenge nr,
it constructs a response by pairing nr and ID and applying the function h to
this pair. This value h(ID , nr) is sent to R as well as assigned to the global
variable ID , thus performing the same update as R. The tag role specification
is as follows:

example(T ) = (
∅; {nr}; {ID}; ∅;
read(nr) ·
send(h(nr, ID))[ID := h(ID , nr)]

)
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A.2 Protocol execution

In this section we describe how, through instantiation of variables, an abstract
role specification can be transformed into an execution by an agent. A particular
execution of a protocol role by an agent is called a run. Furthermore, we define
how the interleaved execution of a collection of runs defines the behavior of a
system.

A system state 〈A,G,SB ,RB , I〉 is determined by the active runs A, the
global knowledge of the agents G, the send buffer SB , the read buffer RB ,
and the intruder’s knowledge I. An active run contains a run identifier, the
name of the agent executing the run, a list of remaining events, as well as
the local variable assignment for that run. The global knowledge contains the
global variable assignment for every agent. Since we assume communication
between agents to be asynchronous, agents write messages to a send buffer and
read messages from a read buffer. The intruder knowledge contains the set
of terms that the adversary initially knows, extended with the terms learned
during protocol executions.

The behavior of the system is defined as a transition relation between system
states. The derivation rules, depicted in Figures A.3, A.4, and A.5, are of the
form

C

S
l−→ S′

,

expressing that a system in state S can do a transition to state S′ with label l
if condition C is satisfied. A state transition is the conclusion of applying one
of these rules. In this way, starting from an initial state 〈∅, ∅, ∅, ∅, I0〉, where I0
denotes the initial intruder knowledge, we can derive all possible behavior of a
system executing a set of protocols.

We separate the derivation rules into three categories. The agent rules, given
in Section A.2.1, express under which conditions an agent may execute one of its
protocol steps. Agent rules can be composed in several ways to model possible
protocol flow, expressed by the composition rules given in Section A.2.2. Finally,
the intruder rules, which can be found in Section A.2.3, model the capabilities
of the intruder.

A.2.1 Agent rules

The rules in Figure A.3 describe the actions which an agent can perform. The
create rule creates a run with a fresh run identifier f and adds it to the set of
active runs. We use runids(A) to denote the set of run identifiers in A. We
capture the set of agents that is allowed to execute role R by agentsof (R). This
is to optimize the verification of protocols in which agents only implement a
subset of the protocol roles. The type of an agent refers to the possibility of the
agent to be active in at most one run (type = 1) or more than one run at a time
(type = ∗). We denote the set of agents that currently have an unfinished run
by unfinished(A). The new active run is a tuple containing the run identifier
f , the agent name n, the events of the role (denoted by eventsof (R)) and the
initial local variable assignment. The variable assignment maps the role name
to the agent name (R 7→ n) and the run identifier variable to its fresh value
(θ 7→ f).
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[create]

n ∈ agentsof(R) f 6∈ runids(A)
type(n) = ∗ ∨ (type(n) = 1 ∧ n 6∈ unfinished(A))

a = (f, n, eventsof(R), {R 7→ n, θ 7→ f})
〈A,G,SB ,RB , I〉 create(f,R,n)−−−−−−−−→ 〈A ∪ {a}, G,SB ,RB , I〉

[end]
a = (f, n, x, ρ) x 6= ε a′ = (f, n,⊥ · x, ρ)

〈A ∪ {a}, G,SB ,RB , I〉 end(f)−−−−→ 〈A ∪ {a′}, G,SB ,RB , I〉

[send]

x
send(m)[−→x :=−→c ]/T/F/−−−−−−−−−−−−−−−→ x′ a = (f, n, x, ρ) a′ = (f, n, x′, ρ)
G(n) = σ σ′ = σ[−→c /−→x ] SB ′ = SB ∪ {σρ(m)}
∀(v,w)∈T σρ(v) = σρ(w) ∀(v,w)∈F σρ(v) 6= σρ(w)

〈A ∪ {a}, G,SB ,RB , I〉 send(f,σρ(m))−−−−−−−−−→ 〈A ∪ {a′}, G[σ′/n],SB ′,RB , I〉

[read]

x
read(m)[−→x :=−→c ]/T/F/−−−−−−−−−−−−−−−→ x′ a = (f, n, x, ρ) a′ = (f, n, x′, ρ)

G(n) = σ σ′ = σ[−→c /−→x ] Matchρ,σ(m,m′, ρ′)
∀(v,w)∈T σρ(v) = σρ(w) ∀(v,w)∈F σρ(v) 6= σρ(w)

〈A ∪ {a}, G,SB ,RB ∪ {m′}, I〉 read(f,m′)−−−−−−−→ 〈A ∪ {a′}, G[σ′/n],SB ,RB , I〉

Figure A.3: Agent rules

The execution state of a run can be determined by inspecting its list of
events. An agent has successfully completed a run when this list is empty
(denoted by ε). An event list which has been marked (with ⊥), by means of the
end rule, indicates that the run has been terminated before it was able to finish
successfully. Otherwise the run is currently unfinished.

Any agent executing a send event, thereby changing from state x to x′ (for
x and x′ lists of events), changes the overall system state. The sent message
(obtained by applying the local variable assignment ρ and global variable as-
signment σ to the message) is added to the send buffer.

A send event can be accompanied by a list of global variable assignments of
the form x := c. We denote by −→x := −→c the simultaneous assignment of a list of
variables x to a list of values c of the same length. The rule changes the current
global variable assignment σ to σ[−→c /−→x ], where σ[c/x] denotes the substitution
σ altered such that x 7→ c. When the execution of the send event is part of a
(nested) conditional branching statement, a (number of) equalities (T ) and/or
inequalities (F ) have to be fulfilled. Each of these (in)equalities must hold after
substituting the local and global variables with their respective values.

An agent executing a read event changes the system state similar to a send
event. It takes a message m′ from the read buffer and matches it against the
message that an agent expects to receive. It furthermore extends the local
variable assignment ρ to ρ′ such that any free variables in the expected message
are assigned a value making σ(m) and m′ equivalent. Finally, the message m′

is removed from the read buffer.
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The purpose of the match predicate, used in the read rule, is to fix a minimal
substitution ρ′ that maps every variable in m to a ground term, such that
σρ(m) = m′. Furthermore, the term m′ is required to be readable. Formally,

Matchρ,σ(m,m′, ρ′) ≡
m′ = σρ(m) ∧ dom(ρ) = vars(m) ∧Rd(rng(ρ) ∪ rng(σ), ρ′, σ(m),m′)

The readability predicate Rd decides whether a given term is readable. A
received term m′ is readable with respect to an expected term m if there is
a substitution ρ that makes them syntactically equivalent. Furthermore, every
subterm required to read the term must be inferable from the agent’s knowledge
extended with the received message. More formally, let m, p ∈ Term, K ∈
P(Term), and ρ(m) = m′, then

Rd(K, ρ′,m,m′) ≡ ∀avm K ∪ {m′} ` ρ(a) ∨K ∪ {m′} ` ρ(a)−1.

The subterm operator, denoted by v, is used to decompose a term into the
terms from which it was constructed. Let t, t1, t2 ∈ Term, then:

t v t t1 v (t1, t2) t2 v (t1, t2)
t1 v {t1}t2 t2 v {t1}t2 t v h(t)

The knowledge inference operator, denoted by `, is used to indicate which
terms can be derived from a set of knowledge M . Let t, t1, t2, k ∈ Term and
f ∈ F , then:

t ∈M ⇒ M ` t M ` t1 ∧M ` t2 ⇒ M ` (t1, t2)
M ` t⇒ M ` f(t) M ` t ∧M ` k ⇒ M ` {t}k

M ` (t1, t2)⇒ M ` t1 ∧M ` t2 M ` {t}k ∧M ` k−1 ⇒ M ` t

A.2.2 Composition rules

The rules in Figure A.4 describe the semantics for composition of events. They
are very similar to the transition rules for Basic Process Algebra [Fok00]. The
main difference is the treatment of the conditional branching statement x / v =
w . y. Instead of requiring v = w (or v 6= w) as a premise we add it as a proof
obligation. We therefore have rules of the form

A

x
a/T/F−−−−→ x′

,

stating that an agent in state x can execute a and transition to x′, if the premise
A is satisfied. The execution of a additionally introduces the proof obligations
in T (equalities) and F (inequalities).

In the following, let a be a read, send, or claim event and x and y be
variables ranging over lists of events. The exec rule states that an event a can be
successfully executed introducing no proof obligations. The choice rules express
that in an alternative composition either of the branches can be executed. The
sequential composition states that when executing x · y, first x is executed and
then y. The conditional branching statement x / v = w . y expresses that the
left branch can be executed, introducing a proof obligation v = w, or the right
branch can be executed, introducing a proof obligation v 6= w.
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[exec]
a
a/∅/∅−−−−→ X

[choice1]
x

a/T/F−−−−→ x′

x+ y
a/T/F−−−−→ x′

[choice2]
y
a/T/F−−−−→ y′

x+ y
a/T/F−−−−→ y′

[seq1]
x

a/T/F−−−−→ x′

x · y a/T/F−−−−→ x′ · y
[seq2]

x −→ X y
a/T/F−−−−→ y′

x · y a/T/F−−−−→ y′

[cond1]
x

a/T/F−−−−→ x′

x / v = w . y
a/T∪(v,w)/F−−−−−−−−−→ x′

[cond2]
y
a/T/F−−−−→ y′

x / v = w . y
a/T/F∪(v,w)−−−−−−−−−→ y′

Figure A.4: Composition rules

A.2.3 Intruder rules

The rules in Figure A.5 describe the capabilities of the intruder. The intruder
operates on the send and read buffer (SB and RB). The deliver rule transfers
a message from the send buffer to the read buffer. If the intruder has eaves-
dropping capabilities he may additionally add that message to his knowledge,
as stated by the eavesdrop rule. The block rule expresses that any message in
the send buffer may be removed by the intruder, but the intruder still learns
the message. The intruder may also be able to inject messages, that is, add
messages he can infer from his knowledge to the read buffer.

Different adversaries can be modeled by selecting a subset of the rules in
Figure A.5. An adversary with no powers is modeled by having only the deliver
rule. A passive adversary can be modeled by additionally having the eavesdrop
rule. The Dolev-Yao intruder [DY83], which is an adversary that essentially
controls the network, is modeled by the union of the four rules.

[deliver]
〈A,G,SB ∪ {m},RB , I〉 deliver−−−−→ 〈A,G,SB ,RB ∪ {m}, I〉

[eavesdrop]
〈A,G,SB ∪ {m},RB , I〉 eavesdrop−−−−−−→ 〈A,G,SB ,RB ∪ {m}, I ∪ {m}〉

[block]
〈A,G,SB ∪ {m},RB , I〉 block−−−→ 〈A,G,SB ,RB , I ∪ {m}〉

[inject]
I ` m

〈A,G,SB ,RB , I〉 inject−−−−→ 〈A,G,SB ,RB ∪ {m}, I〉

Figure A.5: Intruder rules
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Appendix B

Additional Attacks

We discuss additional attacks on ownership transfer protocols which were found
during our research. First we have a look at the ownership transfer protocol
proposed by Song [Son08] and demonstrate a desynchronisation attack which
has not been mentioned before. Finally we describe another attack on the
ownership transfer protocol proposed by Fouladgar and Afifi [FA07].

B.1 The Song Protocol

Song [Son08] proposes an ownership transfer protocol which consists of three
protocols: a transfer protocol, an update protocol and a recovery protocol.

k, s

R R′
k

T

nonce nr
nr

nonce nt

nt⊕ k, fk(nr ⊕ nt)

nr, nt⊕ k, fk(nr ⊕ nt)

c := s⊕ (nt≫ l/2)
x := (s≪ l/4)⊕ (k ≫ l/4)
s′ := x⊕ nr ⊕ nt
k′ := h(s′)

c, k′, s′

c

s := c⊕ (nt≫ l/2)
if k = h(s)
then x := (s≪ l/4)⊕ (k ≫ l/4)
k := h(x⊕ nr ⊕ nt)

Figure B.1: Transfer protocol of RFID tag ownership transfer [Son08]
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The transfer protocol, depicted in Figure B.1, is used by the new owner to
authenticate the tag and retrieve the information from the previous owner. This
information consists of a secret s and a key k, which is the hashed secret. The
protocol is based on the authentication protocol by Song and Mitchell [SM08].
As already mentioned in Section 3.6.2, this protocol is vulnerable to tag au-
thentication and desynchronisation attacks. These vulnerabilities have not been
resolved and can thus still be exploited.

k, s

R

k

T

nonce nr, s′

k′ := h(s′)
a := fk(nr)⊕ k′

b := s⊕ (k′ ≫ l/2)
nr, a, b

k′ := a⊕ fk(nr)
if k = h(b⊕ (k′ ≫ l/2))
then k := k′

nonce nt
c := fk(nr ⊕ nt)

nt, c

if c = fk′(nr ⊕ nt)
then k, s := k′, s′

Figure B.2: Update protocol of RFID tag ownership transfer [Son08]

The update protocol, depicted in Figure B.2, is used to update the key
stored on the tag to achieve exclusive ownership. First of all exclusive ownership
cannot be achieved in this manner since the previous owner can listen in on the
communication and derive the new keys from the exchanged messages using his
knowledge of the old keys.

Furthermore, this protocol is vulnerable to a desynchronisation attack, as
depicted in Figure B.3, which violates secure ownership. To achieve this the
intruder intercepts the message nr, a, b sent by the reader R. This message is
disturbed by adding the random value x to a. In order to get the message
accepted by the tag this value, but then shifted x � l/2, also has to be added
to b using exclusive-or. This message is send to the tag. After verifying the
structure the tag will update its key k to k′ ⊕ x whereas the reader expects
the key to be either k, in case the update failed, or k′, in case the update
succeeded. Both cases do not match the actual value thus the reader has lost
ownership. Furthermore, the intruder has not learned the value k′, hence he
does also not know the tag’s key. Therefore, the tag has lost all owners and is
thus desynchronised.

Finally, the recovery protocol is used to restore ownership for a previous
owner. It uses the update protocol to restore an old key on the tag. Hence it
suffers from the same flaws as discussed before.
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k, s

R E

k

T

nonce nr, s′

k′ := h(s′)
a := fk(nr)⊕ k′

b := s⊕ (k′ ≫ l/2)

nr, a, b

nonce x
a′ := a⊕ x
b′ := b⊕ (x≫ l/2)

nr, a′, b′

k′ := a′ ⊕ fk(nr)
if k = h(b′ ⊕ (k′ ≫ l/2))
then k := k′

Figure B.3: Desynchronisation attack

B.2 The Fouladgar and Afifi Protocol

Fouladgar and Afifi [FA07] have proposed an ownership transfer protocol with
two implementations. One based on symmetric encryption, the other one based
on a cryptographic hash function. We discuss this second implementation and
point out a flaw.

The protocol is based on two keys kp and ku. The former is used for
pseudonymous identification of the tag whereas the latter is used to authen-

ku, kp

R

ku, kp

T

nonce nr

nr

nonce nt

nt, nr, h(ku)⊕ nt

key k′

h(k′), k′ ⊕ h(ku)

kp := h(kp ⊕ k′)
ku := h(ku ⊕ k′)

Figure B.4: Hash based implementation of A simple privacy protecting scheme
enabling delegation and ownership transfer for RFID tags [FA07]
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ticate the update messages. In order to transfer ownership the tag is forced into
key update mode by adding an ownership transfer flag to the authentication
protocol. Next the protocol from Figure B.4 is used to update the keys on the
tag.

ku, kp

R E

ku, kp

T

nonce nr

nr

nr

nonce nt

nt, nr, h(ku ⊕ nt)

nt, nr, h(ku ⊕ nt)

key k′

h(k′), k′ ⊕ h(ku)

nonce nr′

nr′

nr′

nonce nt′

nt′, nr′, h(ku ⊕ nt′)

nt′, nr′, h(ku ⊕ nt′)

key k′′

h(k′′), k′′ ⊕ h(ku)

h(k′), k′ ⊕ h(ku)

kp := h(kp ⊕ k′)
ku := h(ku ⊕ k′)

Figure B.5: Desynchronisation attack

This protocol is vulnerable to a desynchronisation attack, as depicted in
Figure B.5, which violates secure ownership. To achieve this desynchronisation
the intruder intercepts the final message h(k′), k′ ⊕ h(ku). When the reader
restarts the update protocol with the tag the intruder blocks the final message
and replaces it with the previously intercepted one. The tag accepts this message
and updates its keys to k′p = h(kp⊕k′) and k′u = h(ku⊕k′). The reader, however,
expects the tag to be updated using the values from the last session, hence
k′p = h(kp ⊕ k′′) and k′u = h(ku ⊕ k′′), or that the tag still has not updated its
keys. Both scenarios do not match the tag’s state, such that ownership was lost.
Furthermore, the intruder has not gained ownership, since he does not know the
original values for kp and ku. Therefore, the tag has been desynchronised.
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