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Carst Tankink
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Summary

This thesis investigates a formalized taxonomy for classifying attacks on security
protocols. We begin by introducing a trace-based model of attacks, in which
traces that are consistent with each other are grouped into runs. These runs
form the main elements of an attack, as they are combined by the attacker, who
is allowed to modify the messages between two runs.

We formulate our taxonomy based on how runs can coexist structurally,
following and extending the taxonomy of Syverson [19]. Next to the structural
taxonomy, we also introduce a taxonomy to better capture the actions taken
by the attacker in modifying the messages. These actions are represented in a
graph-based model, in which messages are connected by edges representing the
attacker’s action.

To show the applicability of our taxonomy, we use it in the analysis of
several attacks against different protocols. To facilitate this analysis, we have
implemented a prototype tool automating the classification of attacks.

We conclude that our model can be a useful asset in attack analysis, but
should mainly be regarded as the foundations for a larger framework for reason-
ing about attacks. Furthermore, the prototype can be extended in several ways,
including adapting it to suit more than one tool.
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Chapter 1

Introduction

The openness of the Internet makes it easy for unauthorized persons
to approach the gates of computers and computer networks and, if
those gates are not properly guarded, to hack through them and
gain entry to those computers. Inside, they can read personal and
business files out of a morbid curiosity, or, if they are more vicious,
to change or even destroy them.

David Kahn, The Codebreakers [11]

The quote above sums up one of the major problems of modern-day commu-
nication. As networks grow and become more open, the data on these networks
get more and more exposed to malicious users. Add to this the fact that the
data users are entrusting to the networks (especially the Internet) are becoming
more private (including health data and financial information), and it becomes
clear that communication between users needs to be secure.

What it means for communication to be secure is open to many interpret-
ations, which translates into security goals. There are several security goals,
and specific techniques for each of them. The best known are the so called
CIA-requirements: Confidentiality, Integrity and Availability.

Confidentiality aims at keeping the exchanged messages secret. This can for
example mean keeping personal health data hidden from anyone except
the patient and her doctor.

Integrity requires that messages cannot be changed by a malicious third party,
or at least that such modifications can be detected. Think, for example, of
a requirement that the amount to be transferred cannot be altered before
the payment message is received by the bank.

Integrity can also mean that the sender and receiver of a message go
unmodified.

Availability means that messages do not get lost in transit, and that a service
is available when it is required.

See Anderson’s Security Engineering [1] for a more complete treatment of se-
curity goals and ways of achieving them.

1



2 CHAPTER 1. INTRODUCTION

In this thesis, we shall focus on a fourth requirement, which is supplemental
to the CIA requirements.

Authenticity is fairly similar to integrity, but also requires that a message
cannot be stored and replayed at a later time.

Following Anderson, authenticity is integrity and freshness, meaning that
a message is neither forged (integrity) nor replayed from an earlier session
(freshness).

To achieve the security goals, a participant can make use of cryptography.
Cryptography alone, however, is no guarantee that any of the goals are actually
met, since cryptography used in a wrong way could still disclose some vital
information. The actual exchange of encrypted messages is called a security
protocol.

This thesis investigates security protocols on a formal level. On this level,
a protocol can be analyzed with the help of tools. This analysis either proves
a protocol correct, or provides an indication of why such a proof is impossible
to give. Many failed analyses give this indication in the form of an attack. An
attack is a sequence of messages and actions that show how a malicious user
(an attacker or intruder) can prevent the protocol from achieving its goal.

The attacks returned by a tool, however, do not always give insight in the
error occurring in the protocol, including the possibility that the attack is not
valid at all. For those attacks that are valid, it is still not always intuitively clear
to a protocol designer how the attack relates to a protocol error. To improve
this intuitive relation, we try to find a method for reducing the attack to the
protocol flaw.

As a step towards this method, we introduce a classification of attacks. Such
a classification can be either intra-protocol, based on attacks on a single pro-
tocol, or inter-protocol, based on attacks that seem similar, but are mounted
against different protocols. We opted for the latter, defining a classification de-
scribing attacks almost independently of the protocol against which they occur.
The protocol does play a small role in modelling the attack, but is not used in
any further analysis of the attack. However, we will also see that the defined
taxonomy can also be used for looking at intra-protocol classification.

To illustrate several aspects of our theory, we shall often refer to one protocol.
This protocol is known as the Needham-Schroeder Public Key (NSPK) protocol
[16]. The protocol uses public key encryption to obtain authentication. We
present the protocol as an informal protocol narration here, and give a more
formal version later on.

1. i→ r : {|i, ni|}pk(r)

2. r → i : {|ni, nr|}pk(i)

3. i→ r : {|nr|}pk(r)

The protocol is a mutual authentication protocol, which is meant to authen-
ticate the responder r to the initiator i and the initiator i to the responder r.
Both the fact that the agents participated, and that this participation is recent
needs to be proved by executing the protocol. Additionally, the nonces ni and
nr are supposed to be kept secret during the protocol execution.

The NSPK protocol is not without flaws, as Gavin Lowe pointed out in 1995
(17 years later!) [12]. He showed that an intruder could attack the protocol by
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manipulating the messages of the protocol. We show a narration of the attack
here.

1. Alice→ Eve : {|Alice,NAlice|}pk(Eve)

1′. (Alice)→ Bob : {|Alice,NAlice|}pk(Bob)

2′. Bob→ (Alice) : {|NAlice, NBob|}pk(Alice)

2. Eve→ Alice : {|NAlice, NBob|}pk(Alice)

3. Alice→ Eve : {|NBob|}pk(Eve)

3′. (Alice)→ Bob : {|NBob|}pk(Bob)

The attack starts when Alice, playing the role of initiator i, tries to start
the protocol with the intruder, Eve. The intruder uses this protocol run to
make responder Bob believe that he is talking to Alice (displayed in the protocol
narration by (Alice)), while the initiator knows nothing about this conversation.
This breaks the authentication from Bob to Alice. Because the intruder places
herself1 between the two honest agents, this attack became known as a man2-
in-the-middle (MITM) attack.

Next to an attack, Lowe also gives a suggestion on how to repair the protocol.
This is done by replacing the second message with {|r, ni, nr|}pk(i). This denies
the attacker the reuse of the message in her execution with the initiator (the
non-primed messages), since it would show that the origin of message 2 is not
Eve, but Bob.

This example shows that from the attack, it is immediately clear how the
protocol can be repaired, or what its actual weakness is, and reinforces our
belief that we need some tool in reducing an attack to the flaw in protocol and
a recommendation for reparation. Furthermore, we would like the taxonomy to
be able to be able to classify an attack into an intuitive class, such as the MITM
attack.

1.1 Assignment

The question which this thesis investigates is: “How can we express the similar-
ities in attacks on different protocols, and how can we find a reparation based
on these similarities?”

Since there are many different types of protocols, all with their own spe-
cific goals, we have decided to narrow the scope of our investigation by only
considering attacks against protocols for authentication.

We divide the main question into the following subproblems:

• What similarities are there between different protocols?

• How can we capture these similarities in a formal model?

• Can we define a reparation to a protocol based on the classification of an
attack against this protocol?

1Traditionally, cryptological research personifies the agent names. This led to the intruder
(or eavesdropper) being named Eve, and we therefore refer to the intruder as a she.

2This already contradicts the fact that the intruder is female, but we shall stick to conven-
tion here.
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1.2 Approach

This thesis is not a chronological report of the research that lies at its basis. We
will present a short chronological report here.

The initial research consisted of a combination of a literature study, bringing
up the article of Syverson [19], and an investigation of the SPORE library [18],
and especially its formalizations in Scyther [5]. Initially, our research focused
on the MITM attack, as this is an intuitively clear attack, and we could find
the essential properties of this attack. Especially, we noticed that each attack
had both structural properties and properties describing the modifications an
attacker made to the messages exchanged between agents. We therefore decided
that our taxonomy should consist of two subtaxonomies: one for structural
classification, and one for classification of modifications.

We started with formalizing the taxonomy found in Syverson’s article, which
described a structural taxonomy of attacks. This taxonomy can be found in
Chapter 3. The main challenge in formalizing this part of the taxonomy was
finding a model for protocols which fitted naturally with the actions of the
attacker and the beliefs of the honest agents. As we shall show in Chapter 2,
this is captured in the notion of protocol runs.

Having formalized the structural classification, we implemented a prototype
tool that could classify the attacks based on this taxonomy. This implementation
showed that it is possible to build a tool automatically classifying attacks. When
run on the SPORE formalizations, it also showed that a lot of attacks were
structurally the same (interleaved attacks), while the modifications in between
were different. This enforced our belief that a taxonomy for modifications was
necessary.

To arrive at the taxonomy of modifications described in Chapter 4, we first
tried to model them as functions. This already proved to work for MITM
attacks, but was flawed for more complex attacks, in which multiple messages
were combined or in which the order of messages was changed. Furthermore,
the taxonomy could not capture the actions of the intruder, but only showed
the results of those actions. We decided to capture these properties by building
graphs, and building a classification for these graphs.

During and after forming the model, we have studied several attacks. We
decided to gather the results of these studies in a single chapter (Chapter 5).
These results range from our initial results on the MITM attack to using the
model to reason about equality of attacks and reducing attacks to other, clearer
attacks. We also use the model to prescribe some generic reparations based on
attack classification.

1.3 Reader’s guide

This thesis starts with introducing a model for protocols and attacks in Chapter
2. As we shall show in that chapter, the taxonomy along which we classify
attacks is composed of two different subtaxonomies, a structural taxonomy and
a taxonomy of modifications. The structural taxonomy is defined in Chapter
3, the modification taxonomy in Chapter 4. To show how the framework of
taxonomies can be used, we apply our theory to some attacks found on protocols
in the Security Protocols Open Repository (SPORE) [18]. This application
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is shown in Chapter 5. The experiments on SPORE were carried out with
a prototype implementation in Python. This implementation is described in
Chapter 6, while the program code can be found in Appendix A.

We draw our conclusions in Chapter 7.





Chapter 2

Protocol and Attack Model

In this chapter, we define a model for security protocols and for attacks on these
protocols.

2.1 Protocols

A security protocol is an exchange of messages between two or more agents.
The messages can be enriched with cryptographic operations, like encryption
and digital signatures.

In this thesis, we focus on the analysis of such protocols on a high and formal
level, studying the exchange of messages between agents, and disregard attacks
exploiting flaws in the cryptographic algorithms or in the implementation. That
is, we assume a black box model of cryptography [8].

2.1.1 Terminology

To have a common base of knowledge, we shall introduce the following terms
informally. Of these, the term protocol is the only one that will be defined more
formally later on.

Agents Agents are the executors of protocols. These agents are actually (pro-
grams running on) computer systems, but we shall “personify” the agents
by giving them the names traditionally used in security literature.

There are two different kinds of agents. The honest agents execute a
protocol as intended, while a dishonest agent is acting on behalf of the
attacker.

Honest agents are named Alice, Bob, Charlie and Dave, while a dis-
honest agent is named Eve. A server used as a trusted third party in
communication goes by the name of Simon.

Role A role is a description of the actions taken by one agent in a protocol.
Several roles make up one protocol description. A role has a name describ-
ing the part of the protocol it plays, for example: Initiator, Responder or
Server. We shall often abbreviate these roles with the letters i, r and s.

7
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Protocols As already mentioned, protocols are exchanges of messages between
agents. In the literature, there are two occurrences of the term “protocol”,
between which we need to distinguish.

The first are protocol descriptions. These descriptions describe how a
protocol should play out, in an ideal setting, where all agents are honest.
This description is constructed from one or more (typically two or three)
roles.

The second are instantiations of protocols. These instantiations represent
possible exchanges of messages for a given protocol description. We shall
call a correct installation of a protocol, in which the messages exchanged
are according to the description, a protocol run.

Multiple runs can be combined to create an attack. An attack is an exe-
cution of a protocol in which, from the viewpoint of the attacked agent,
the goal of the protocol is fulfilled, while this was not actually the case,
due to intermission of the intruder.

We will formally define an attack later in this chapter.

2.1.2 Protocol model

Our analysis is based on a model for protocols which represents protocol exe-
cutions as traces of agent actions. This model, known as the traces model, is
similar to the model used by Cremers [6].

In such a model, analysis is based on exploring the potential instantiations
of protocol traces and attacks are given as traces violating the goals of the
protocol.

We use the following sets of basic primitives:

• Nonces (Nonce) are random values that are generated by an agent. We
assume that the randomness is perfect, implying that it is impossible to
guess the value of a nonce before it is generated, and impossible to get the
same nonce twice.

• Variables (Var) are used in a protocol description to signify values ob-
tained from the network. In particular, the protocol roles are variables,
instantiated with agent names during a run of the protocol. These role
variables comprise their own subset of Var, namely Role

In an actual run, each variable is instantiated to some value. We assume
that a run by an honest agent uses the same instantiation for the variable.
For example, assume two messages m1 = {|ni|}sk(i) and m2 = {|nr|}pk(i)

are part of a protocol description, for variables ni, nr and i. For a honest
agent, if i is instantiated as Alice in m1, it should also be instantiated to
Alice in m2. ni and nr do not have this restriction, as they are different
variables.

• Constants (Const) are global constants. These values include agent names
and keys, and represent everything that is not generated during a protocol
run. A protocol run only contains constants and nonces.

In this thesis, we shall assume that keys are represented by functions,
which can be applied to zero (for sessions keys generated by an agent),
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one (for public and private keys) or two (for shared, symmetric keys) agent
names.

We build our protocol model incrementally with these elements, determining
which requirements should hold for which parts of the protocol.

Definition 2.1 (Term). A term is constructed from basic primitives, by tupling,
encrypting or applying.

This means we have the following construction rules for terms

BasicTerm ::= Nonce | Var | Const

Term ::= BasicTerm | (Term, Term) | {|Term|}Term | Term(Term)

The constructor for encryption, {|m|}k (for some terms m and k), covers
both symmetric and asymmetric encryption. To this end, we require the key
k to have an inverse k−1. For symmetric keys k−1 = k. Since we assume
perfect cryptography, it is only possible to decrypt a term {|m|}k if one is in the
possession of k−1.

We shall adopt the following conventions for encryption and decryption:

• pk(A) is the public key of agent A. This key is known to all agents,
including the intruder.

• sk(A) is the secret key of agent A. This key is only known to A, unless
it leaks during the execution of the protocol. For decryption, we have
pk(A)−1 = sk(A) and sk(A)−1 = pk(A), so terms encrypted under A’s
public key can only be decrypted using the secret key of A, and messages
encrypted with the secret key of A can only be decrypted using the public
key of A.

• k(A,B) is a symmetric key shared between agents A and B. This key
is known only to A and to B, unless leaked. We have that k(A,B)−1 =
k(A,B).

When a protocol is analyzed, the attacker is initially assumed to be in the
possession of a set of knowledge K. This set consists of all data that is public,
such as the agent names and any public keys. Following our convention, this
means that the attacker knows the function pk, and can apply it to any agent
name. Furthermore, the attacker knows the result of the sk function for the
dishonest agent, Eve. In the case of secret key encryption, the intruder knows
any key shared with Eve.

These terms are the principal elements of a protocol, and sending and reading
them are the principal actions of an agent. This is captured in the notion of
events. An event represents a message being sent from a source to a target.

Definition 2.2 (Event). An event is the action of sending or receiving a term.

send(R1 → R2 : T ) Signifies that role R1 should send a term T , intended for
R2.

read(R1 → R2 : T ) Signifies that role R2 receives a term T , apparently from
R1.
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In both cases, the arrow and the colon are syntactic sugar, to suggest the style
of protocol narrations.

Instead of roles, an event can also contain agent names as source and target.

We combine the events into a trace, by imposing an order on the events,
together with a notion of the role executing the trace.

Definition 2.3 (Trace). A trace is a 3-tuple (R, E ,≤), where:

R of type Role is the name of the role executing the trace.

E is set of events, as described in Definition 2.2. These events are the events
executed in the trace

≤ is a partial order on E .

As a trace depicts the “viewpoint” of a role R in the protocol description,
we require that the events of a trace are consistent with the R it is written for.
In other words, we require the following predicate to hold for any trace T :

(∀e ∈ T.E · e ≡ send(R1 → R2 : m)⇒ R1 = T.R

∧ e ≡ read(R1 → R2 : m)⇒ R2 = T.R)

A protocol is defined by combining a set of traces, one for each role intended
to be played in the protocol. The role name of each trace should be unique in
this collection. Furthermore, a relation C between trace events is also given.
This relation (the communication) determines which send event corresponds to
which read event.

Definition 2.4 (Protocol). A protocol is a tuple (Ts,C), with the following
elements:

Ts is a set of traces.

C is a binary, symmetric relation on events occurring in different traces in Ts.

The following constraints should hold for any protocol, assuming we can
obtain the elements of a tuple by their names:

• Each role occurs at most once: (∀t1, t2 ∈ Ts : t1.R = t2.R⇒ t1 = t2).

• The target, source and message of each event matched by C should be
equal:

(∀(e1, e2) ∈ C : e1 ≡ send(R1 → R2 : m)⇒ e2 ≡ read(R1 → R2 : m)∧
e2 ≡ send(R1 → R2 : m)⇒ e1 ≡ read(R1 → R2 : m))

• The links established by C should preserve the relation ≤ of the individual
threads:

(∀T1, T2 ∈ Ts.(∀e1, e′1 ∈ T1, e2, e
′
2 ∈ T2.

(e1, e2) ∈ C ∧ (e′1, e
′
2) ∈ C ⇒ e1 ≤ e′1 ⇔ e2 ≤ e′2))
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Example 2.5 (Needham-Schroeder Public Key protocol). As an example of
the definitions above, we shall formulate the NSPK protocol [16] in the model
defined thus far.

Terms The terms used in NSPK are:

• {|i, ni|}pk(r)

• {|ni, nr|}pk(i)

• {|nr|}pk(r)

Here, i and r are role names, pk is a constant function, and ni and nr are
both nonces and variables, depending on the event in which they occur.

Events The following events use the terms defined above.

• send(i→ r : {|i, ni|}pk(r))

• send(r → i : {|ni, nr|}pk(i))

• send(i→ r : {|nr|}pk(r))

• read(i→ r : {|i, ni|}pk(r))

• read(r → i : {|ni, nr|}pk(i))

• read(i→ r : {|nr|}pk(r))

When ni (or nr) is part of a read event, it is a variable. When it is part
of a send event, it is a nonce.

Traces There are two traces defined for this protocol. One for the initiator
(role i) and one for the responder (role r).

1. R: i
E: {send(i→ r : {|i, ni|}pk(r)),

send(i→ r : {|nr|}pk(r)), read(r → i : {|ni, nr|}pk(i))}
≤: • send(i→ r : {|i, ni|}pk(r)) ≤ read(r → i : {|ni, nr|}pk(i))

• read(r → i : {|ni, nr|}pk(i)) ≤ send(i→ r : {|Nr|}pk(r))

2. R: r
E: {read(i→ r : {|i, ni|}pk(r)),

read(i→ r : {|nr|}pk(r)), send(r → i : {|ni, nr|}pk(i))}
≤: • read(i→ r : {|i, ni|}pk(r)) ≤ send(r → i : {|ni, nr|}pk(i))

• send(r → i : {|ni, nr|}pk(i)) ≤ read(i→ r : {|nr|}pk(r))

Protocol The complete protocol consists of the above two traces, and a relation
C. C pairs the read and send events of equal terms t to each other. We
will not enumerate these pairs.

The protocol is depicted in the message sequence chart (MSC) in Figure 2.1.
In this figure, the send and read events paired by C are depicted as an arrow
from the source to the target.

In the rest of this thesis, we shall not mention the actual protocol definitions,
when this is not necessary. Instead, we shall use the visualization in an MSC.
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Initiator
i

Responder
r

{|i, ni|}pk(r)

{|ni, nr|}pk(i)

{|nr|}pk(r)

msc Needham-Schroeder Public Key protocol

Figure 2.1: The Needham-Schroeder Public Key protocol

2.1.3 Run model

The instantiation of a protocol represents an actual “execution” of that pro-
tocol. In these instantiations, honest agents take up the protocol roles, while
the intruder, possibly using a dishonest agent as a representative, modifies the
messages in transit.

Instantiation of an event occurs by substituting the role names of the event
with an agent name, and instantiating each variable within the message of the
event with a constant or a nonce. We will only define this instantiation as part
of the instantiation of traces in the form of threads.

Definition 2.6 (Thread). A thread is a tuple (T, ν), where:

T is a trace.

ν is a function mapping the term variables to constants: ν : V ar(T )→ Const∪
Nonce. V ar(T ) is a function returning the variables of all events in T .
This includes the role names occurring as the sources and targets of events.

In the same way as traces are combined into protocols, threads are combined
into runs. Actually, a run represents the execution of a protocol that is consist-
ent between the agents executing it, and the attacker is allowed to modify the
events between the elements.

Formally, a run is an instantiation of a protocol, consisting of a single thread
for each trace of the protocol.

Definition 2.7 (Run). A run is a tuple (P, Ths), with:

P is the protocol being run.

Ths is a set of of threads.

The following constraints should hold:
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• Threads are instantiated from traces of the protocol:

(∀th ∈ Ths : (∃t ∈ P.Ts : th.T = t))

• Threads are instantiated at most once from a trace:

(∀th1, th2 ∈ Ths : (∃t ∈ P.Ts : t = th1.T ∧ t = th2.T )⇒ th1 = th2)

• The instantiations of the threads are consistent among each other, so all
variables instantiated are instantiated equally:

(∀th1, th2 ∈ Ths · (∀v ∈ V ar(th1.T ) ∩ V ar(th2.T ) · th1.ν(v) = th2.ν(v)))

For simplicity in the rest of this thesis, we let e ∈ r, for some event e and
run r, denote that event e occurs in the threads of r. For the sake of legibility,
we opted not to define this in a more formal way.

2.2 Verification of protocols

The only way to be sure that a protocol works as intended, is by rigorous
verification. This verification is normally done formally, in a model representing
the effect each message has on the knowledge of the agents.

In the end, the complete exchange of messages should establish the inten-
ded security goal of the protocol, despite the presence of an intruder. In the
verification of a protocol, we intend to prove that this claim holds, for a given
protocol, goal and intruder.

For the analysis, we adopt the idealized model of cryptography based on the
principles set out by Dolev and Yao [8]. This model consists of the following
general assumptions:

• Cryptography is perfect.

• The attacker is the network.

Cryptography is perfect
Perfect cryptography means two things:

• It is impossible to obtain any information about plaintext messages or
keys from the ciphertext message.

• Without the proper key, it is impossible to obtain the plaintext message
from a ciphertext message.

The attacker is the network
We assume that the intruder has full control over the network used, meaning

she can intercept and read each message sent, and deliver any message known
to her to any agent in the network at any moment.

We can translate these assumptions into the following set of rules about
which terms an attacker can read during the execution of a protocol:

• Any message sent by an honest agent is read by the attacker.
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• Any message in the attacker’s initial knowledge can be read by the at-
tacker.

• Any constant term, with the exception of decryption keys of honest agents,
is in the initial knowledge.

• Any decryption key of a dishonest agent is in the initial knowledge.

• Any nonce generated by the attacker is in the initial knowledge.

• Any message read by the attacker can be withheld from the intended
recipient.

• Any message read by the attacker can be forwarded to any recipient.

• Only when the attacker has read an encrypted message {|m|}k and the
corresponding decryption key k−1, she can read the message m.

• Any message read by the attacker can be encrypted with any message read
by the attacker, leading to an encrypted message read by the attacker.

2.2.1 Authentication goals

As already stated, the intruder follows the Dolev-Yao rules and the goal that
we focus on here is authentication.

In fact, there is not one single notion of authentication, but there are several
refinements and corresponding formalizations of the concept. All these notions,
however, involve the belief of one agent about the state of another agent, based
on the messages exchanged thus far. This belief is defined more precisely by
Diffie, Van Oorschot and Wiener [7] in their concept of matching runs. Their
definition includes the agents recording a run, which is similar to our definition
of threads (Definition 2.6).

As the definition of matching threads requires the matching of messages, we
will first describe this notion in our model.

Definition 2.8 (Matching messages). For two threads Th and Th′ of the same
protocol, messages m ∈ Th and m′ ∈ Th′ match if the following conditions
hold:

• If m is sent in Th, then m′ is received in Th′.

• If m′ is sent in Th′, then m is received in Th.

• m and m′ are equal.

Now that we know when two messages match, we can extend this to the
messages exchanged during a protocol run.

Definition 2.9 (Matching threads). Two threads match if:

• The agents executing the respective threads agree on each other’s identity.

• Their messages can be partitioned in sets of matching messages, each set
containing one message from each thread.



2.2. VERIFICATION OF PROTOCOLS 15

• The messages sent by one agent appear in the same order in both threads.

• The messages sent by the other agent appear in the same order in both
threads.

Intuitively, two threads match if the order of the messages has not been
modified in transit. So, if messages m1 and m2 have been sent by one agent in
a particular order, they arrive at the other agent in the same order.

This definition does not require the messages of two agents to be in the
same order with respect to each other, so a thread representing events ordered
send(A1 → A1 : m1) ≤ read(A2 → A1 : m2) matches with a thread representing
the same events, but in the order send(A2 → A1 : m2) ≤ read(A1 → A2 : m1).

In the definition of Diffie, Van Oorschot and Wiener, this definition is split
over two “properties of a successful run”. We merge it here in one definition, to
allow for easier comparison with different authentication properties.

To illustrate the variety of authentication types, we summarize the “Hier-
archy of Authentication Specifications”, described by Lowe [14]:

Aliveness
When an agent, say Alice, accepts that another participant, say Bob, is alive,

she concludes from the messages received and sent thus far, that Bob has once
been participating in the protocol.

We can adapt Definition 2.9 to fit aliveness by dropping the requirement
that the two threads belong to the same run. It is sufficient that there exists a
matching thread by the other agent. Furthermore, it is not necessary that the
messages are delivered in order.

Weak agreement
Weak agreement is achieved when two agents complete a run of the protocol,

and agree on each other’s identity. This does not require the agents to agree on
the roles played. This form of authentication is equivalent to that of Definition
2.9.

Lowe, however, claims that weak agreement is stronger than the notion of
matching threads, arguing that Definition 2.9 does not force the responding
agent to accept the initiating agent’s identity. However, as we already noted,
two threads only match if the two agents executing the threads accept each
other’s identity, a property which was introduced separately in the Diffie, Van
Oorschot and Wiener paper. So the two properties are equally strong.

Non-injective agreement
A protocol guarantees non-injective agreement, if both parties have com-

pleted a run, agree on each other’s identity and on the role they have played in
the protocol. In Lowe’s definition, the parties should also have a matching set
of data. In practise, this would mean that the key(s) accepted by both parties
should be equal.

This is a bit stronger than the definition of matching threads, since it also
requires the roles to match.

(Injective) agreement
Agreement is similar to weak agreement, with the exception that for each

thread by one agent, there should be one thread by the other agent. In our
model, this corresponds to the threads of all agents being in one run. For weak
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agreement, this is not necessary, and there could be more threads than those of
one run.

2.2.2 Verification tools

There are several tools and techniques for verifying a protocol. We shall look
at those that use some form of the model described above, and shortly describe
other techniques used in protocol verification.

Scyther

The Scyther tool [5] has been and continues to be developed by Cremers.
The tool uses the traces model, calculating a so-called “complete charac-

terization” of a security protocol [6], and matching this characterization to a
description of traces violating the property. If there are matching traces in the
characterization, these traces are given as an attack.

Next to storing offending traces as XML files, the tool also allows the al-
gorithmic backend, which is supplied as a precompiled binary, to be called from
any Python script, supplying this script with objects representing the protocol
and the attacks. This allows for easy manipulation of the attack traces. It
is therefore a good candidate for experimentation and as a basis of a larger
framework.

Another pro is the fact that most of the protocols in the SPORE library [18]
are formalized in Scyther’s syntax, giving a large test base.

Scyther cannot currently check for injectivity, which means that replay at-
tacks cannot be analyzed with this tool.

ProVerif

ProVerif [2] is a tool which transforms a protocol description and the property
to be checked into a set of Horn clauses. Using these clauses, the system tries
to prove that an attacker can achieve an unwanted effect, for example, knowing
a term noted as secret. If this is the case, the system can construct a trace
from the branches of the proof tree. Such effects are specified together with the
protocol description.

ProVerif does allow checking for injectivity, and produces replay attacks.
The downside is that the tool only outputs the actions by honest agents, and
does not display intruder actions. Furthermore, it is not as easy to manipulate
the traces as in Scyther: the tool only outputs to standard output. However,
as the tool is open source, it should be possible to adapt or use the code to
facilitate manipulating attack traces.

Athena

The Athena tool [17] is a tool based on the Strand Space theory [21]. This
theory has many similarities to the traces model, but as Athena is not publicly
available, we do not consider it further.
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Other verification methods

It is also possible to verify a protocol without exploring the entire state space,
but by giving a proof that each message of the protocol provides knowledge
to the receiving agent about the state the other agent is in. Such proof-based
approaches were pioneered by Burrows, Abadi and Needham in the “BAN-logic”
named after them. [4].

In their approach, each message is “idealized” into a proposition describing
what knowledge can be obtained from it, according to a set of inference rules.

From the formal definition of the protocol one can then, by hand, derive that
an agent believes a certain fact, such as: “Message m is fresh, and was sent by
agent B”, leading to the conclusion that B was alive.

There are several problems with the BAN-logic, but the problem making it
unfit for our purposes is the fact that when a protocol is not proved correct, then
no attack trace is given. The same issue holds for other proof-based systems.

Another (automated) proof-based approach is adopted by the Cryptyc tool
[10]. By this so-called type-based approach, a protocol designer is forced to
annotate protocol elements with their intended type. Then, protocol is safe, if
it can be proved well-typed.

There are several variants of the type-based protocols, including one es-
pecially meant for authentication designed by Bugliesi, Focardi and Maffei [3].
These techniques do not generate an attack against a protocol, and are therefore
not used to implement our framework. Some of the abstractions these attacks
make, however, can be considered when abstracting from attacks.

We decided to use the Scyther tool as a basis for our analysis, as it is freely
available, uses the traces model, and can be used in a larger framework. We
have tried to adapt the ProVerif tool to analyze replay attacks, but since this is
a non-trivial task requiring quite some knowledge about the tool’s implement-
ation, we refrained from it, first focusing on implementing the model to work
with Scyther.

2.3 Attacks

When a protocol does not fulfil its goal(s), we can, in the trace-based approach,
construct a counterexample witnessing this. Such a counterexample shows an
actual instantiation of the protocol, in which the attacker takes some steps, and
in which one agent believes the goal is met, while the protocol instantiation
contradicts this.

For example, when a protocol should satisfy aliveness for role I, the agent
playing this role, say Alice, believes that she has talked to another agent, say
Bob. A counter example to this protocol could be an instantiation in which Alice
runs the protocol, believing that Bob was sending the messages she received,
while in fact, the intruder constructed the messages, not involving Bob in the
construction at all. We call these instantiations violating the protocol goals
attacks.

Attacks are always constructed with respect to one agent in a run, and
constructed to break a specific goal. Note that an attack against a weaker
protocol goal, is also sufficient to break a stronger one.
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We are not really interested in the goals themselves, as the attacks are results
of analyzing the protocol goals. We will try to link the attack classification
to specific protocol goals, but the goals themselves will not be part of this
classification.

2.3.1 Attack model

An attack is a combination of runs. Each of these runs is, from the viewpoint
of the agents executing it, a consistent instantiation of the protocol being ex-
ecuted. However, the attacker is allowed to modify messages between runs. This
modification is captured by a set of graphs, which describe how each message
received by an honest agent in a run has been constructed.

Not any combination of runs is an attack, as it is possible for an attack to
act just as a router, forwarding messages without being able to modify them.
Instead, an attack is a combination of runs, one which is the run being attacked.
Based on this run, the (honest) agent executing it can construct a matching
thread with another agent, such that the two threads together follow Definition
2.9. The thread constructed this way, is not actually part of the same run.
Instead, the messages used in construction of the thread were provided by the
attacker, based on some messages occurring in another run.

This construction could have been made by the attacker combining her know-
ledge to obtain a message, or something as simple as forwarding a message.

Definition 2.10 (Attack). An attack is a tuple (Rs,G), where:

Rs The set of runs used for the attack.

G The set of modification graphs used for constructing the messages received
by the agents.

Example 2.11 (Lowe’s attack on NSPK). As an example, consider Lowe’s
attack on NSPK. This attack is depicted in Figure 2.2.

In the attack, we can recognize two runs. Run one is executed by Alice
playing the role of initiator i and Eve playing the role of responder r. The
threads this run are defined by the traces for each role, as found in Example
2.5. The instantiation ν of both threads is:

• ν(i) = Alice

• ν(r) = Eve

• ν(ni) = NAlice

• ν(nr) = NBob

Note that there is no instantiation for pk, as this is a constant of the protocol
Run two consists only of a thread by Bob, which is instantiated from the

responder trace of NSPK. This thread has the following instantiation ν.

• ν(i) = Alice

• ν(r) = Bob
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Initiator
Alice

Intruder
Eve|Alice

Responder
Bob

{|Alice, NAlice|}pk(Eve)

{|Alice, NAlice|}pk(Bob)

{|NAlice, NBob|}pk(Alice)

{|NAlice, NBob|}pk(Alice)

{|NBob||}pk(Eve)

{|NBob|}pk(Bob)

msc Man-in-the-middle attack on NSPK

Figure 2.2: Lowe’s attack on NSPK

• ν(ni) = NAlice

• ν(nr) = NBob

The two instantiations disagree on the instantiation of r. As this is one
of the protocol roles, we know that this is an attack against authentication.
Furthermore, Bob executes the attacked run, since this run does not instantiate
all traces of the protocol.

What is more, we can immediately see that this attack does not break alive-
ness: Bob thinks he executes a run with Alice (shown by ν(i) = Alice), and
Alice actually has a run of the protocol. The next weakest level of authentic-
ation is weak agreement, and it is this property that is broken by the attack:
Alice does not know that Bob participated in the protocol, and can therefore
accept his identity.

2.4 Classifying attacks

We now have the equipment necessary to classify attacks on security protocols,
by building a taxonomy for possible properties of an attack.

We can build a taxonomy for attacks by looking at the two different elements
of the attacks, the runs A.Rs and the modifications A.G.

These elements are independent of each other: one modification g can be
used for different combinations of runs, while a single run combination can have
different modifications between them.

This leads us to believe that if we can construct a taxonomy for the runs and
one for the modifications of an attack, we can use both taxonomies in classifying
attacks.
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We will formulate the two taxonomies in the next two chapters, and use
them for classifying and analyzing some attacks in Chapter 5.



Chapter 3

Structural Classification of
Attacks

This chapter describes a structural taxonomy for classifying attacks. The tax-
onomy describes how the elements of the set Rs of an attack can interact. It does
not describe the possible modifications occurring in the attack (the structure of
the graph G). That will be the subject of the next chapter.

3.1 A structural taxonomy

For our structural taxonomy, we follow “A Taxonomy of Replay Attacks”, by
Syverson [19]. In this paper, Syverson describes how one can categorize attacks
by differentiating on the modification of message source and target. Combining
these two taxonomies, he obtains a final taxonomy.

We make two adaptions to the taxonomy, and formalize it in our model.
Firstly, the original taxonomy refers to replay attacks on the level of sub-

terms. This means that it describes how a part of a message is replayed, to be
received by one of the honest agents. We lift the classes described by Syverson
to the level of runs, describing how the runs of an attack interact. This decision
was made because the main goal of our taxonomy is to classify attacks so that
they can be grasped more intuitively. When one tries to classify the origin of
every term read, clarity might be lost. Even with this generalization, we find
that it is possible to formalize the taxonomy obtained as such in our model.

Secondly, we add a new level of distinction to the taxonomy: a taxonomy
describing the difference between message sender between runs.

We will shortly describe the categories of the complete taxonomy here. For
a more extensive description, as well as some examples, we refer to Syverson
[19].

3.1.1 Taxonomy of origin

The first type of distinction can be made by looking at where the messages of
one run are delivered, with respect to their origin. This part of the taxonomy
is therefore called the taxonomy of origin.

21
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At the highest level of this taxonomy, there is a distinction between internal
and external attacks.

Internal attacks are attacks in which all messages are taken from inside the
current run. This means that the attacker breaks authentication, without
needing an extra run.

Recalling the definition of a run, we see that this requires the participating
agents to agree on the instantiation of messages and roles. This means
that internal attacks are only capable of breaking aliveness, and not one
of the stronger goals.

External attacks on the protocol obtain some of the messages through an-
other run of the protocol. This run can be further subdivided into inter-
leavings and classic replay attacks.

Interleavings require the second (or third, fourth, . . . ) run of the attack
to be executed in parallel with the attacked run. In other words,
some part of the protocol forces the intruder to start a new run with
another agent, to produce an answer for certain queries. Interleaved
attacks are also known as parallel session attacks.

Classic replays do not require the runs of the attack to be executed in
parallel. This allows the messages of the run to be replayed later,
when the honest agent who originally sent the messages is no longer
participating in the attacked run.
This type of attack can break injectivity, as it makes it possible to
reuse the thread executed by an agent in multiple runs, without the
agent executing all of these threads. This means that there is a
difference between the number of runs the attacked agent executes
and the number of runs that are used to construct the messages in
these runs.

3.1.2 Destination taxonomy

Next to the differentiation between internal and external attacks (and the cor-
responding subdivision), there is a differentiation on how the destination of
messages is modified: the destination taxonomy. The two classes in this tax-
onomy are deflection and straight replay attacks.

Straight replay attacks do not modify the intended recipient. He receives the
messages, but either the intruder changes the order of messages, or makes
messages appear to have been sent by an agent different from the original
origin.

For example, in the attack on the Needham-Schroeder protocol found in
Example 2.11, the event send(Alice → Bob : {|NAlice, NBob|}pk(Bob)) is
replayed to the intended recipient, Bob. However, the sender is changed,
and the event occurring in the run by Bob is actually send(Eve → Bob :
{|NAlice, NBob|}pk(Bob)).

Deflection attacks change the intended recipient of a message. The new target
depends on the content of a message.
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Deflection attacks break weak agreement, as the agent whose messages are
reflected expects them to be delivered to an agent who does not actually
receive them. This means that she does not agree on the identity of the
actual recipient.

Reflection is a special case of deflection, in which the message is returned
to the sender. This is the case for attacks misusing symmetric keys
where a message {|m|}k(i,r) can be constructed both by i and by r.

After appending this taxonomy to the taxonomy of origin, Syverson claims
to have obtained a full taxonomy, and finishes. We believe, however, that a
third dimension is necessary: a sender taxonomy.

3.1.3 Sender taxonomy

The taxonomy as described above does not provide a classification of how the
sender of messages is modified. We add this taxonomy as a third dimension to
the structural classification.

Similar to the destination taxonomy, the sender taxonomy differentiates
between whether the sender is modified or not. We call the different classes
straight forward and fake sender attacks.

Straight forward attacks do not modify the sender. This means that either
the attack changes the recipient, or it changes the content of the messages.

Fake sender attacks modify the occurrence of the original sender.

Reflection is again a special case of this modification. In this case, the
original recipient becomes the new sender, and the original sender
becomes the new recipient.

3.2 Formalization of the taxonomy

In this section, we will formalize the taxonomy presented in Section 3.1 as
predicates on attacks. Especially, we will try to formulate the predicates on the
set of runs, Rs alone.

In the rest of this section, A denotes the attack classified.

3.2.1 Taxonomy of origin

Definition 3.1 (Internal vs. external). If an attack is internal, this means that
there is only one run involved in the attack.

internal(A)⇔ |A.Rs| = 1

An external attack is the exact opposite of an internal attack. For complete-
ness, we will expand this definition here:

external(A)⇔ |A.Rs| > 1
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Note that we do not allow attacks without runs. This is correct, as an attack
without any run would not have a honest agent participating, and therefore no
target of the attack.

For external attacks, there are two possibilities. Either the attack interleaves
the runs, or this is not required, implying the attack is a replay attack.

Interleaved runs require an attacker to use the second run to respond to
messages in the first. Structurally, there should be at least one message in
the attacked run partially constructed from a message in another run, and at
least one message in the other run should be constructed from a message in the
attacked run.

To capture that a message of one run occurs in another, we require a defini-
tion of modification. We shall not introduce that definition here, but informally
formulate what it should be able to express here. To this end, we introduce the
following notation, abstracting away from all other properties of the modifica-
tion: e2  e1, for two (instantiated) events e1 and e2. Intuitively, the meaning
of this expression is: e1 is constructed using the message sent in e2. We will
fully define a model of modification capable of expressing the  -relation in the
next chapter.

Definition 3.2 (Interleaved vs. replay).

interleaved(A)⇔ external(A) ∧ (∃ri, rj ∈ A.Rs : ri 6= rj∧
(∃ei ∈ ri, ej ∈ rj : ej  ei) ∧ (∃ej ∈ rj , ei ∈ ri : ei  ej))

If an external attack is not interleaved, we classify it as a replay attack:

replay(A)⇔ external(A) ∧ (∀ri, rj ∈ A.Rs : ri 6= rj ⇒
(∀ei ∈ ri : ¬(∃ej ∈ rj : ej  ei))∨

(∀ej ∈ rj : ¬(∃ei ∈ ri : ei  ej)))

3.2.2 Destination taxonomy

The destination taxonomy is captured by three predicates. These predicates
again use the  -relation.

When the events of a run r2 are replayed in run r1 in a straight replay, the
receiver of the events does not change.

Definition 3.3 (Straight replay).

straight(A, r1, r2)⇔ r1, r2 ∈ A.Rs ∧ (∀e1 ∈ r1, e2 ∈ r2 :
e2  e1 ∧ e1 ≡ read(a1 → a2 : m) ∧ e2 ≡ send(a′1 → a′2 : m′)⇒

a2 = a′2)

When the events of one run are deflected towards another run, the intended
recipient does change.
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Definition 3.4 (Deflection).

deflect(A, r1, r2)⇔ r1, r2 ∈ A.Rs ∧ (∀e1 ∈ r1, e2 ∈ r2 :
e2  e1 ∧ e1 ≡ read(a1 → a2 : m) ∧ e2 ≡ send(a′1 → a′2 : m′)⇒

a2 6= a′2)

Reflection is a special case of deflection.

Definition 3.5 (Reflection).

reflect(A, r1, r2)⇔ r1, r2 ∈ A.Rs ∧ (∀e1 ∈ r1, e2 ∈ r2 :
e2  e1 ∧ e1 ≡ read(a1 → a2 : m) ∧ e2 ≡ send(a′1 → a′2 : m′)⇒

a′2 = a1 ∧ a′1 = a2)

3.2.3 Sender taxonomy

The sender taxonomy follows the same ideas as the destination taxonomy, but
now with the restrictions imposed on the sender of the messages.

Definition 3.6 (Straight forward).

forward(A, r1, r2)⇔ r1, r2 ∈ A.Rs ∧ (∀e1 ∈ r1, e2 ∈ r2 :
e2  e1 ∧ e1 ≡ read(a1 → a2 : m) ∧ e2 ≡ send(a′1 → a′2 : m′)⇒

a1 = a′1)

Definition 3.7 (Fake sender).

fake(A, r1, r2)⇔ r1, r2 ∈ A.Rs ∧ (∀e1 ∈ r1, e2 ∈ r2 :
e2  e1 ∧ e1 ≡ read(a1 → a2 : m) ∧ e2 ≡ send(a′1 → a′2 : m′)⇒

a1 6= a′1)

Definition 3.8 (Reflection).

reflect(A, r1, r2)⇔ r1, r2 ∈ A.Rs ∧ (∀e1 ∈ r1, e2 ∈ r2 :
e2  e1 ∧ e1 ≡ read(a1 → a2 : m) ∧ e2 ≡ send(a′1 → a′2 : m′)⇒

a′2 = a1 ∧ a′1 = a2)

Note that reflection is both part of the sender taxonomy and of the destin-
ation taxonomy.

In this chapter, we have shown and formalized a taxonomy for structurally clas-
sifying attacks. This taxonomy is already capable of distinguishing between in-
ternal attacks (attacks breaking aliveness) and external attacks (attacks needing
multiple runs), as well as describing how the runs of an external attack inter-
relate. Furthermore, the taxonomy describes how the role instantiation of runs
are adapted between sending and reading.

What is missing is a more sophisticated look at how the attacker modifies the
messages between the runs. So, we need to introduce a model for modifications,
and a taxonomy of this model. This model and its taxonomy will be described
in the next chapter.





Chapter 4

Modifications

The structural properties described in the previous chapter can together be
considered as the skeleton of an attack. In particular, that taxonomy describes
different ways an attacker can combine the runs of honest agents to achieve her
goals.

On the other hand, the modifications, described by A.G, can be considered
as the muscles of an attack: they describe how the events of one run contribute
to events in another run. Next to describing the relation between honest events,
the modifications are extended with the actions of the intruder.

This chapter will investigate two possible formalisms for modifications. Al-
though we have already hinted that we will choose the graph formalism for the
modification, we will elaborate on this decision here.

4.1 Requirements for modification

Our goal is to describe the actions of the intruder in such a way that we can
group certain combinations of actions into intuitive classes.

We impose some requirements and restrictions on the modification mechan-
ism, namely:

Expressing  The first requirement follows from the previous chapter, where
we needed the relation  to express some structural properties. This
means that the modification mechanism should allow one to express this
relation.

Specifically, the modification should allow the expression of the relation
 ⊆ SendEvent×ReadEvent, where SendEvent = {e : Event|(∃A1, A2 :
Agent,m : Term · e ≡ send(A1 → A2 : m))} and ReadEvent = {e :
Event|(∃A1, A2 : Agent,m : Term · e ≡ read(A1 → A2 : m))}.
This requirement intuitively means that an intruder reads the term in a
send event in some run, and uses it to construct a term occurring in a
read event in some run.

Consistent with Dolev-Yao rules The modification should consist of ac-
tions consistent with the rules outlined in section 2.2.

27
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Describe interaction of runs This requirement is the most difficult to grasp
formally. Intuitively, we would like the modification to describe the way
the messages occurring in the honest runs are related. This should describe
what part each run plays in the entire attack.

4.2 Modifications modelled as functions

As a first attempt, we try to model the modification by using functions mapping
events from one run to the events of another run. We can describe the modifica-
tions by a function fi,j : Eventi → Eventj , where Eventk = {e : Event|(∃th ∈
rk · (∃e1 ∈ th.T · e = th.ν(e1)))}.

There are two possible interpretations for fi,j :

• fi,j takes as an argument a send event from run ri and produces the read
event in run rj that is produced from this message,

• fi,j takes as an argument a read event in run ri and produces the send
event that was used to produce this event.

We shall consider both of these possibilities.

4.2.1 Sent to received

The first possibility describes how each sent message in run ri is used by the
intruder to construct the messages read by the honest agent executing run rj .

The function fi,j can be partial: if a send event is not reused, the function
does not map it to an event in rj .

Example 4.1 (Needham-Schroeder modifications). As an example, consider
the attack on the Needham-Schroeder public key protocol. In this attack, there
are two runs. Run one is carried out by the initiator Alice and the untrusted
agent Eve as responder. The messages from this run are forwarded to run two,
carried out by responder Bob. The attacker’s goal is to make Bob believe he is
talking to Alice.

In run one, the following events are created by Alice:

• send(Alice→ Eve : {|Alice,NAlice|}pk(Eve))

• send(Alice→ Eve : {|NBob|}pk(Eve))

These are modified by f1,2 into the following events received by Bob, re-
spectively:

• read(Alice→ Bob : {|Alice,NAlice|}pk(Bob))

• read(Alice→ Bob : {|NBob|}pk(Bob))

In run one, the following event is created by Bob:

• send(Bob→ Alice : {|NAlice, NBob|}pk(Alice))

Which is modified by f2,1 into the following event received by Alice:

• read(Eve→ Alice : {|NAlice, NBob|}pk(Alice))
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So, only the sender is replaced by Eve.

This version of modification functions has a few difficulties apart from the
general problems of functional modification, which we will describe in Section
4.2.3.

First, if an event from run ri is used multiple times, for example when
a leaked key is used to create multiple encrypted messages, this cannot be
expressed by a purely functional application.

Furthermore, it is possible that a read event in rj was not constructed using
an event from ri. Although this is not a problem in a theoretical sense, it is
desirable to identify messages constructed purely from attacker knowledge, as
these point to messages in the protocol which are unused or under control of
the attacker.

This could be remedied by extending the domain of fi,j with a single event
knowledge, representing the intruder reading initial knowledge. However, this
still suffers from the first problem of using these functions, since the initial
knowledge can be reused multiple times. The initial knowledge gets reused even
more times than individual messages. In Example 4.1 alone, we obtain pk(Bob)
from the initial knowledge multiple times.

4.2.2 Received to sent

The problems mentioned in the previous section could be solved by turning the
function around, defining a function which takes as an argument a read event
in ri, and produces the send event from rj contributing to this event.

This approach does not suffer from the second problem described in the
previous section (read messages constructed entirely from initial knowledge), as
we can use the special element knowledge as a result to show that an event is
not constructed from any event in rj . If there are events in ri for which fi,j

produces knowledge for each run rj of the attack, then these events are made
from the initial attacker knowledge.

However, with the function defined as such, we cannot account for messages
constructed from more than one message.

4.2.3 Final thoughts on modification functions

From the previous two sections, we can conclude that modification cannot be
easily captured by a functional notation: multiple messages can be used to con-
struct one message, and a message can be used multiple times for constructing
other messages.

So, instead of a functional definition, we need to generalize the modification
as a relation between messages.

Having established modifications as a relation, we still cannot classify on the
actions taken by the attacker, as these are not shown by relating two messages.
To show the constructive nature of the attack, we build a graph for these actions.

4.3 Modifications modelled as graphs

We can build a directed, acyclic graph for each read event by an honest agent,
by following the attacker’s actions leading up to this read.
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These actions are represented by a set A consisting of the following actions:

Intercepting a term sent by an honest agent.

Obtaining a term from the initial intruder knowledge.

Encrypting a term with another term. Encryption also includes signing a
message, in a public key infrastructure.

Decrypting a term {|t1|}t2 with term t−1
2 .

Tupling two terms into a new term.

Untupling a tuple term (t1, t2) to obtain either t1 or t2.

Applying a function term to an argument term, to obtain a new term. We
assume that obtaining the argument of a function application f(t) is
only possible by applying the inverse function f−1 to the application,
so f−1(f(t)) = t

In this set, we do not consider the actual sending of the message to the
receiving agent, so there is no transition labelled “send”.

The nodes of the graph represent the subterms in the attacker knowledge,
used in constructing the term read.

4.3.1 Graph construction

We construct a graph for each read event of each honest agent, by placing the
term read in this event in the initial node.

We extend the graph by adding outgoing edges to each node. The edges
point to the subterms used in creating the term, and the edges represent the
action the intruder takes to combine terms. This means that for encryption,
decryption, tupling, and functional application, there are two possible choices
for the attacker actions: either the term was obtained as is, or it was constructed
by the attacker from the subterms.

Based on the possible actions in A and the observation that construction of
a term has two operands, we get the following possible edges:

Intercept The target node is a send by an honest agent, directly forwarded to
the source node.

t1

send(t1)

intercept

Obtain The target node is the node representing the initial knowledge of the
attacker.
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t1

knowledge(t1)

obtain

In the above graph, knowledge(t1) represents the set of initial knowledge
K, such that t1 ∈ K.

Encryption Is a composite operation with two arguments: the plaintext to be
encrypted, and the key with which the encryption is carried out.

Encrypt-plain The target node is the plaintext encrypted within the
source node.

Encrypt-key The target node is a key used for creating the encryption
in the source node.

{|t1|}t2

t1 t2

encrypt-plain encrypt-key

Decryption Is a composite operation with two arguments: the encrypted term
that needs to be decrypted, and the key used in decryption.

Decrypt-cipher The target node is the ciphertext that is decrypted in
order to obtain the source node.

Decrypt-key The target node is the key used to obtain the plaintext in
the source node.

t1

{|t1|}t2 t−1
2

decrypt-cipher decrypt-key

Tuple The target node is one of the operands of the tuple of the source node.

(t1, t2)

t1 t2

tuple tuple

Untuple The target node is a tuple containing the source node

(t1, t2)

t1 t2

untuple untuple
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Function & argument The source node is the result of applying a function.
The function and its argument are in the target nodes.

t1(t2)

t1 t2

function argument

These construction rules seem to accommodate a non-deterministic choice
at certain points, if the attacker has a choice between constructing a composite
term or intercepting this term when it is sent by an honest agent. Because we
are analyzing the attack a posteriori, however, we have assume to be able to
determine how the attacker obtained a result from the attack’s trace.

In Scyther, for example, an attack is given by a number of traces, each
consisting of one or more read events, and one send event. The send event
contains the term constructed by the intruder, using the read events preceding
it. If one of these read events correspond to the send of an honest agent, this
trace corresponds to an intercept, if the read events only correspond to a send
of the intruder, it corresponds to a construction.

So, the trace

read(∗ : pk(Alice)) ≤ read(∗ : m) ≤ send(Eve→ Alice : {|m|}pk(Alice))

represents an encryption by the intruder. In the read events of this trace, the
∗ instead of the source and target represents that we do not care where these
events were obtained. On the other hand, the trace

read(Bob→ Alice : {|m|}pk(Alice)) ≤ send(Eve→ Alice : {|m|}pk(Alice))

represents that an intercept was used to obtain the same term.
In constructing the graph, we observe four distinct kinds of nodes:

• An initial node, containing the term read.

• A final node depicting that an event originates from the initial intruder
knowledge.

• A final node depicting that an event was sent by an honest agent.

• Intermediate nodes depicting the (de)construction of terms.

Of special interest is the fact that there are two kinds of final nodes. One
of these represents that the attacker already knew the terms leading to it, the
other representing the intruder using a message sent in a run in her attack. This
difference indicates that a read term has three different possible origins:

• The term was constructed by using one or more terms send by honest
agents.

• The term was constructed entirely from the attacker’s initial knowledge.

• The term was constructed using a mix of both.
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The graphs constructed by this method represent the way the intruder con-
structed the terms delivered to the honest agent, as well as how the knowledge
obtained by the attacker, either initially or through reading a message, is used.
As such, it depicts the modification relation between the events of the different
runs in the attack.

Together, all graphs for the read events of honest agents in the attack A
form the set A.G.

4.3.2 Expressing  

We can now easily express the  relation, given the set A.G.

Definition 4.2 ( on graphs). Two events e1 and e2 are related by the  -
relation, notation e1  e2, iff:

• e1 ≡ send(A1 → A2 : m), for some agents A1, A2 and message m.

• e2 ≡ read(A′1 → A′2 : m′), for some agents A′1, A
′
2 and message m′.

• There is a g ∈ A.G, such that m′ is the initial node of g, and m is one of
the final nodes of g.

4.4 Equivalence of modifications

When comparing the modifications of two attacks, we are not interested in most
of the subterms, so we disregard the node labels. Instead, we consider the nodes
equivalent if they have the same paths to initial knowledge or honest messages.

Definition 4.3 (Equivalence of term nodes). Two term nodes n1 and n2 are
equivalent, notation n1 ↔ n2 iff:

• n1 and n2 are both final nodes representing the initial attacker knowledge,
or

• n1 and n2 are both final nodes representing a term sent by a honest agent,
or

• for each edge n1
a→ n′1, there is an edge n2

a→ n′2, such that n′1 ↔ n′2, and
for each edge n2

b→ n′2, there is an edge n1
b→ n′1, such that n′2 ↔ n′1.

This relation is similar to the bisimulation relation from process algebra,
with the exception that we have two different “final” nodes here, which also
need to be related.

Similarly to bisimulation, we define the equivalence on the total graphs, by
requiring that their initial nodes are related.

Definition 4.4 (Equivalence of graphs). Two graphs g1 and g2 are equivalent,
if there is an equivalence ↔ such that for the initial nodes i1 of g1 and i2 of g2,
i1 ↔ i2.

We overload the notation ↔ to also apply to the equivalence of graphs.
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4.5 Classifying modifications

In theory, there is an infinite number of possible action combinations taken by
the attacker, as there is no limit on the ways a term can be recombined in tuples,
functional applications and encryptions.

We can reduce the number of combinations by requiring any attack to keep
the path from a term to its smallest subterms as short as possible.

By this we mean that a term is not encrypted and decrypted, or tupled and
untupled infinitely many times. It does not mean that when a path given by the
attack leads to the initial knowledge, while there exists a path with less steps to
a honest send, the second path is preferred in constructing the graph. Instead,
these two paths represent two different modifications.

If an attack graph is not minimal as described above, it can be minimized
by removing redundant edges and nodes. For our classification, we therefore
assume that all attack graphs are minimal.

We shall now describe our taxonomy of modification graphs. A classification of
this taxonomy describes how the initial node of a graph was obtained by the
intruder: either she constructed it from smaller subterms, or it was obtained as
a whole at some point during the protocol run.

In the formal definition of the classes, we assume the following functions on
graphs are available:

init(g) Should return the initial node of a graph g.

final(g) Should return the set of final nodes of a graph g.

nodes(g) Should return all nodes occurring in the graph g.

honest(n) Should be a predicate telling if the node n represents a honest send
event.

4.5.1 Origin of terms

This taxonomy is based on the origin of the term occurring in event e. As we
already noted, there are three possible origins for a term: it can be either fully
intercepted, fully fabricated out of the initial knowledge, or a combination of
the two sources.

Definition 4.5 (Full intercept). A graph g is a full intercept modification for
an event e if it fulfils the predicate full-intercept(e, g):

full-intercept(e, g)⇔
e = init(g) ∧ (∀n ∈ final(g), n′ ∈ nodes(g) · n′ l→ n⇒ l = intercept)

Definition 4.6 (Full fabrication). A graph g is a full fabrication modification
for an event e if it satisfies the predicate full-fabrication, defined by:

full-fabrication(e, g)⇔
e = init(g) ∧ (∀n ∈ final(g, n′ ∈ nodes(g) · n′ l→ n⇒ l = obtain)
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When a modification is neither a full intercept, nor a full fabrication, we call
it a partial intercept (notation: intercept), since we want to focus on how the
messages sent by honest agents are reused.

Definition 4.7 (Intercept). A graph g is an intercept modification for an event
e if it neither satisfies full-intercept, nor full-fabrication:

intercept(e, g)⇔
e = init(g) ∧ ¬(full-intercept(e, g) ∨ full-fabrication(e, g))

An intercept or full intercept modification can be further classified based on
the number of distinct send events used for the modification: either all term are
obtained from one honest send, or several honest sends are used to construct
the terms.

Definition 4.8 (Single point of origin). A graph g has a single point of origin
for event e, if it satisfies:

single-origin(e, g) ⇔ e = init(g) ∧ |{n ∈ final(g)|honest(n)}| = 1

Definition 4.9 (Combining modification). A graph g is a combining modific-
ation for event e, if it satisfies:

combination(e, g) ⇔ e = init(g) ∧ |{n ∈ final(g)|honest(n)}| > 1

For reparation purposes, the modifications that is a full intercept with a
single point of origin is important. We will call this class the class of forwarding
modifications.

Definition 4.10 (Forwarding modification). A graph g is a forwarding modi-
fication for an event e if it satisfies:

mforward(e, g) ⇔ e = init(g) ∧ full-intercept(e, g) ∧ single-origin(e, g)

In this chapter, we have shown a model of message modifications based on
modification graphs. These graphs represent the actions an attacker has taken
before delivering a certain message to an honest agent.

Once we have constructed the modification graphs, we can determine when
two modifications are equivalent, disregarding the actual messages they manip-
ulate. This notion of equivalence is based on the choices made by the attacker,
and is similar to the notion of bisimulation found in process algebra.

We can also classify a graph according to a taxonomy based on its structure.
This classification is especially useful to determine which messages have been
taken from other runs.

What we will show in the next chapter is how we can use our model and
classifications to analyze attacks against a protocol. This analysis is based on
the classification of an attack within the different taxonomies, supplemented by
reasoning on a more abstract level.





Chapter 5

Using Classification in
Attack Analysis

In this chapter, we shall show how the taxonomy described in the previous two
chapters can be used in analyzing attacks.

We will first look at the class of man-in-the-middle attacks against challenge-
response mechanisms, showing how several attacks against different protocols
are actually similar, and how these similarities show in the classification of the
attack.

Next, we shall show how the classification works for analyzing different at-
tacks against a single protocol, illustrated by an example analysis of attacks
against the TMN protocol.

Finally, we shall show how the classification of an attack can be used in
finding a flaw in the protocol, and repairing the protocol based on the attack.
We illustrate this by looking at the Woo and Lam Π protocol.

5.1 Classifying authentication attacks

5.1.1 Man-in-the-middle attacks

A man-in-the-middle (MITM) attack is an attack that breaks a challenge-
response mechanism in an authentication protocol.

This mechanism is a way to prove freshness, which is one of the two elements
of authenticity, as was mentioned in Chapter 1. The basic exchange of challenge
and response is shown in the message sequence chart in Figure 5.1

In this exchange, the challenger c sends out a challenge C. This challenge
contains a nonce, and possibly the identity of either c, r, or both. This identity
does not necessarily have to occur as an atomic notion in the message. Instead,
it can also occur as a part of the key. For example, usage of a long-term,
symmetric key shared between c and r provides the identities of both agents in
one encrypted message {|nc|}k(c,r). From the challenge, the responder r should
extract enough information to prove his identity and being active. Furthermore,
the responder should also be able to derive the identity of the challenger.

The proof of identity can be included in a similar way as in the challenge,
either by using the appropriate keys or by including the name in the message.

37
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1

Challenger
c

Responder
r

C

R

msc Challenge-response

Figure 5.1: Challenge-response message exchange

The freshness is proved by applying one or more operations on the nonce. This
can be decrypting the message containing the nonce and encrypting the nonce
under a different key, or applying a function to the nonce and returning it.

Upon receiving the response R, the challenger checks that it corresponds to
the nonce sent, and that it was constructed by r. If this is the case, c can accept
that r is alive and communicating with her. In other words, c authenticates r.

Instantiations of the challenge-response pattern

The pattern can be instantiated in different ways, depending on what operations
are chosen to construct challenges and responses. Furthermore, an instantiated
pattern can be embedded within a larger protocol, for example to establish
mutual authentication.

We have already seen a challenge-response instantiation in the Needham-
Schroeder protocol of Example 2.5. The message sequence chart of that example
is repeated in Figure 5.2.

This protocol actually uses two challenge-response pairs:

• Challenge C1 = {|i, ni|}pk(r) paired with response R1 = {|ni, nr|}pk(i).

• Challenge C2 = {|ni, nr|}pk(i) paired with response R2 = {|nr|}pk(r).

So, the message {|ni, nr|}pk(r) serves both as the challenge C2 and as the
response R1.

The pair (C1, R1) proves that responder r has received the challenge C1, by
decrypting the message, removing i from it, and appending another nonce nr

to it, before encrypting the new message again. As only r can manipulate a
message like this, and nonce ni is fresh, the pair is enough to prove to initiator
i that r is active and communicating with her.

The second pair intends to prove to r that i is active and communicating
with him. This proof is given by i decrypting the challenge, and stripping ni

from the resulting tuple. Afterwards, she encrypts the nonce nr. Only i can
decrypt the challenge, and the nonce provides the freshness proof.
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Initiator
i

Responder
r

C1 = {|i, ni|}pk(r)

R1 = C2 = {|ni, nr|}pk(i)

R2 = {|nr|}pk(r)

msc Needham-Schroeder Public Key protocol

Figure 5.2: Needham-Schroeder public key protocol MSC

Nevertheless, the protocol is susceptible to an attack, as is shown in Example
2.11. We will analyze this attack in depth later in this chapter.

Another instantiation of the challenge-response pattern can be found in one
of the SPLICE/AS protocols [3], which is shown in the MSC in Figure 5.3.

Initiator
i

Responder
r

C1 = ni

R1 = C2 = {|i, ni, {|nr|}pk(i)|}sk(r)

R2 = {|i, nr|}pk(r)

msc SPLICE/AS protocol

Figure 5.3: The SPLICE/AS protocol

This is again a mutual authentication protocol, using two challenges and two
responses.

The challenge C1 from challenger i to responder r is an unencrypted nonce
ni, used to prove freshness.

The nonce returns to i inside the response R1 = {|i, ni, {|nr|}pk(i)|}sk(r), so it
is signed with the secret key of r. This is an operation only r could have carried
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out, proving that r participated in the current run of the protocol.
The response R1 doubles as challenge C2, containing the element {|nr|}pk(i).

This is a message only the responder i can read, and she responds by returning
R2 = {|i, nr|}pk(r).

This protocol is also vulnerable to an attack.
A third protocol using this pattern is the CCITT X.509 3 messages protocol

[4]. We will not reiterate this protocol here, but it is similar to the NSPK
protocol, with the difference that the challenges and responses are this time
enhanced by digital signatures instead of encryption, and that there is a message
preceding the challenge-response exchange.

Attacks on challenge-response

The best known attack against a challenge-response mechanism is the attack
Lowe mounted against the NSPK protocol. The MSC of this attack is repeated
in Figure 5.4.

Challenger
Alice

Intruder
Eve|Alice

Responder
Bob

C1 = {|Alice, NAlice|}pk(Eve)

C′
1 = {|Alice, NAlice|}pk(Bob)

R1 = C2 = {|NAlice, NBob|}pk(Alice)

R1(= C2)

R2 = {|NBob||}pk(Eve)

R′
2 = {|NBob|}pk(Bob)

msc Man-in-the-middle attack on NSPK

Figure 5.4: Lowe’s man-in-the-middle attack on the NSPK protocol

The attack abuses the fact that C2 does not contain a mention of the original
sender, Bob. This means that the intruder can send it as any other message
C2. In particular, the message is forwarded to Alice, as if it was constructed by
Eve.

Alice replies to C2 with R2, which is encrypted under Eve’s public key.
The intruder then re-encrypts R2, constructing R′2, and sends it to Bob. Upon
receiving R′2, Bob thinks it was constructed by Alice and falsely authenticates
her.

Classifying the attack
The attack of Lowe can be classified in our framework. We will first show

the structural classification, and continue with the modification graphs and the
classification thereof.

As we have already shown in Example 2.11, the attack contains two runs:
run one, between Alice and Eve, in which the messages C1, R1 and R2 are ex-
changed, and run two, between Bob and the intruder, in which the messages C ′1,
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R1 and R′2 are exchanged. So, this attack is an external attack. In particular,
the attack contains both messages in run one that are forwarded to the second
run, namely C1  C ′1 and R2  R′2, and one message that is returned from
the second run to the first run: R1  R1. This implies that the attack is an
interleaved attack with respect to the origin taxonomy.

With respect to the destination taxonomy, the attack is a deflection attack
for run one: all messages of this run are sent to Bob, while they were intended
for Eve. The message from the second run is forwarded in a straight manner:
R2 was intended for Alice and is actually delivered to her.

The sender classification is the inverse of the destination classification: mes-
sages from run one to run two retain their original sender (Alice), while the
message from run two back to run one replace Bob with Eve.

For the modifications, we shall give the graphs for each of the three messages
read by the honest agents.

read(Alice→ Bob : C1) This graph is fairly complex, but entails re-encrypting
C1 under Bob’s public key. The two final states are in bold face for easy
recognizability.

read(Alice→ Bob : {|Alice,NAlice|}pk(Bob)) Alice,NAlice

{|Alice,NAlice|}pk(Eve)

sk(Eve)pk(Bob)

pk

Bob

initial

send(Alice→ Eve : {|Alice,NAlice|}pk(Eve))

encrypt-plain

encrypt-key

function

argument

obtain

obtain

decrypt-cipher

decrypt-key

obtain

intercept

read(Eve→ Alice : R1) This graph displays the intruder forwardingBob’s chal-
lenge to Alice. It is a simple intercept modification, representing a forward
of the message from one run to another.

read(Eve→ Alice : {|NAlice, NBob|}pk(Alice))

send(Bob→ Alice : {|NAlice, NBob|}pk(Alice))

intercept

read(Alice→ Bob : R′2) The modification for this event is structurally equival-
ent to the modification of C1. We will repeat the graph, but now with the
subsets of the modification with R′2.
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read(Alice→ Bob : {|NBob|}pk(Bob)) NBob

{|NBob|}pk(Eve)

sk(Eve)pk(Bob)

pk

Bob

initial

send(Alice→ Eve : {|NBob|}pk(Eve))

encrypt-plain

encrypt-key

function

argument

obtain

obtain

decrypt-cipher

decrypt-key

obtain

intercept

We can now classify the modifications described above.
The first and the last graph are intercept modifications, with a single point

of origin. Because it also contains parts from the initial attacker knowledge, it
is hard to put a more distinct classification on it, although it is interesting to
note that the graphs represent the re-encryption of Alice’s messages.

A more interesting graph is the second graph (representing R1  R1). This
graph is a full-intercept modification, with a single point of origin. It is for this
modification that Lowe’s reparation fixes the protocol: because the message
{|Bob,NAlice, NBob|}pk(Alice) contains a reference to the original sender, and the
intruder cannot modify the message (testified by the full intercept), the sender
cannot be mistaken anymore within run one.

The attack on the SPLICE/AS protocols is shown in Figure 5.5. This attack
is, like Lowe’s attack, an interleaved attack, as there are two messages from the
run between Alice and Eve forwarded to the run between Alice and Bob, and
one message returned from the run between Alice and Bob to the run between
Alice and Eve.

Challenger
Alice

Intruder
Eve|Alice

Responder
Bob

Alice, NAlice

Alice, NEve

{|Alice, NEve, {|NBob|}pk(Alice)|}sk(Bob)

{|Alice, NAlice, {|NBob|}pk(Alice)|}sk(Eve)

{|Alice, NBob|}pk(Eve)

{|Alice, NBob|}pk(Bob)

msc MITM attack on SPLICE/AS

Figure 5.5: Attack on SPLICE/AS

The modifications are classified differently. The first message is constructed
entirely from the attacker’s knowledge. In particular, the nonce NEve accepted
by Bob is under control of the intruder. This is not necessarily a larger problem
than the fact that authentication is broken, unless the nonce is used in a follow
up to the protocol, for example as a random seed in key generation.
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For the modification of the challenge-response pairs, the inner challenge
{|NBob|}pk(Alice) is forwarded directly from the run (Alice,Bob) to the run
(Alice, Eve). We can include the sender’s identity in this message, and ob-
tain a reparation similar to Lowe’s fix for the NSPK protocol.

From these two examples we set the hypothesis that any attack that has two
interleaved runs, and forwards a challenge directly from one run to the other,
while forwarding the response using re-encryption, can be called man-in-the-
middle attack. We have reinforced this hypothesis by running our prototype
against the CCITT X.509 3 messages protocol, obtaining an equal classification
for attacks against that protocol. The reparation can be obtained by adding the
identity of the both sender and responder inside the encryption of the challenge
being forwarded.

5.2 Multiple attacks against a single protocol

We shall show how our framework can be used in analyzing several attacks
against a single protocol, the TMN protocol. The TMN protocol [20] uses a
server to distribute a symmetric key from the initiator to the responder. The
protocol description is given in Figure 5.6.

Challenger
i

Server
s

Responder
r

r, {|ki|}pk(s)

i

i, {|kr|}pk(s)

r, {|kr|}ki

msc TMN protocol

Figure 5.6: TMN protocol

In this protocol, the initiator first sends a session key (ki) to the server,
encrypted with its public key. The server consecutively tells the responder that
the initiator wants to communicate with him. For this communication, the
responder generates a new session key (kr), which he sends to the server, again
under its public key. The server, finally, encrypts the session key with the key
it got from the initiator.

Because the key ki was generated in this run, the initiator knows that the
session was not replayed, and that she can use the key kr for secure communic-
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ation with the responder.
However, the responder can be tricked into believing the initiator wants to

establish a session, which is shown in the internal attack of Figure 5.7. This
attack was found by the Scyther tool.

Intruder
(Simon)

Responder
Bob

Alice

Alice, {|KBob|}pk(Simon)

msc Attack on TMN

Figure 5.7: Attack on TMN found by Scyther

This attack shows that the intruder can trick the responder Bob into be-
lieving Alice wants to start talk to him. However, Alice, nor the server Simon
actually participated in the protocol.

This attack does not seem to cause too much trouble, since the attacker
cannot do anything with the message sent by Bob. There are, however, two
attacks using this particular run. One, reported by Lowe and Roscoe [15],
expands the run with a thread of the server, getting the attack of Figure 5.8.

Intruder
(Alice)

Server
Simon

Responder
Bob

Bob, {|KEve|}pk(Simon)

Alice

Alice, {|KBob|}pk(Simon)

Bob, {|KBob|}KEve

msc Lowe-Roscoe attack on TMN

Figure 5.8: Internal attack on TMN found by Lowe and Roscoe

This attack is again an internal attack. The threads of the server, Simon
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and that of the responder Bob form a single run, of which the only further
communication is with the intruder who inserts and intercepts messages.

This attack is far more destructive than that in Figure 5.7, as the intruder
can read the key KBob, and use it to impersonate Alice in any session in which
this key is used.

It seems impossible to repair this protocol, as there is no way for the server
to tell that the initial message was actually sent by Alice. The only possibility
would be by letting the initiator sign the complete initial message, but this
breaks down the elegance of the protocol only requiring the server to have public
and private keys.

The second attack is found by Scyther, and constructs a run between the server
and an untrusted agent. It is depicted in Figure 5.9

Intruder
(Dave)

Server
Simon

Intruder
Charlie|Simon

Responder
Bob

Charlie, {|KEve|}pk(Simon)

Dave

Alice

Alice, {|KBob|}pk(Simon)

Dave, {|KBob|}pk(Simon)

Charlie, {|KBob|}KEve

msc Interleaved attack on TMN

Figure 5.9: External attack on TMN found by Scyther

This attack uses two runs. Run one is executed by the intruder pretending
to be agent Dave and by the server Simon, while run two is executed by the
responder Bob, who believes to be communicating with Simon, this second run
is exactly the same as the run of Bob in the attack in Figure 5.7. What is
especially interesting in this attack, is that the agent names Dave and Charlie
could be replaced by any value, since neither of their names occurs in the second
run. In particular, if we replace Dave with Alice, and Charlie with Bob, we
get the runs of Figure 5.10.

The only modifications between the two runs in this figure represent the
identity, mapping the message Alice to the message Alice, and the message
(Alice, {|KBob|}pk(Simon)) to the message (Alice, {|KBob|}pk(Simon)). This means
that between run one and run two, the intruder acts as a normal network node,
and we can collapse the attack, obtaining Figure 5.8. This implies that the
internal attack of Figure 5.8 is part of a larger class, defined by that of Figure
5.9. It also implies that the attack in Figure 5.9 cannot be repaired by a simple
modification to one message, since the more specific, internal attack in Figure
5.8 cannot easily be repaired, as we already argued.

The reasoning above is an indication of how we can use our existing frame-
work in reducing attacks, obtaining a simpler attack for which we can ascertain
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Figure 5.10: External attack on TMN after substitution

the feasibility of attack, or generalize one attack to another, in order to obtain
a reparation that works for both.

To automate this line of reasoning, we would need a more semantical clas-
sification of the modification, so that it would be capable of identifying which
modifications are the identity. Also, the framework should capable of identify-
ing those elements of runs that are not fixed to one agent name. Due to the
time limitations of the master’s project, we could not extend our framework to
support these notions, but it would be an interesting avenue for further research.

5.3 Repairing protocols

When we have found the attacks against a protocol, we can use the classification
of each attack to help determine what is wrong with the protocol, and how to
repair the identified flaws.

The main reason of a protocol failure is hinted at by the structural classific-
ation of its attacks, especially their classification in the origin taxonomy:

Internal attacks imply that messages sent can be reused for multiple pur-
poses. Such attacks can be repaired by introducing some manner of asym-
metry in the protocol.

External attacks point at different problems, depending on their further clas-
sification.

Replay attacks indicate that no freshness proof is included in the pro-
tocol. Such a freshness proof can for example be provided by the
challenge-response pattern described before.

Interleaved attacks when the challenge-response pattern is not instan-
tiated correctly, it might allow an intruder to start up an interleaved
attack. In such an attack, there is either confusion about the sender
of a message, or about its receiver.
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Figure 5.11: First simplification of the Woo and Lam Π protocol

The sender and destination taxonomies give hints about what information
is missing in a protocol, and is mainly useful for interleaved attacks.

If such an attack is also classified as a deflection attack, it means there is
confusion about the receiver of a message, or that the intruder uses her dishonest
agent, Eve to receive a message which is re-encrypted.

A fake sender-attack shows that the sender of a message is not fortified by
the message itself, and that it can be reused in different runs.

A special class in the sender-destination taxonomy is the class of reflection
attacks. These attacks show that it is clear who are the sender and receiver of
the message, but that the roles of sender and receiver can be interchanged for
the reflected message. We shall show this reflection attack in the example at
the end this section.

Finally, the modification taxonomy shows where to repair a protocol. Those
graphs which are classified as full-intercept have not been modified by the at-
tacker in any substantial way. Especially for encrypted terms that are forwarded
directly to the honest agents, a protocol can be mended by adding the sender
or receiver identity. The missing identity follows from the classification in the
sender and destination taxonomies, but can also be found by inspecting if an
identity is already part of the message to be modified.

Woo and Lam Π
The Woo and Lam Π protocol [22] is simplified three times by its authors,

and each of the three simplifications share an equivalent attack. We will focus
on the first simplification of the protocol here, but mention the modifications
that are introduced in the second and third simplification.

The first simplification of the protocol is given in Figure 5.11.
In the protocol, the initiator i authenticates herself to the responder r. To

this end, a server is used that shares a key both with i and one with r. After i
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Figure 5.12: Attack on the first simplification of the Woo and Lam Π protocol

starts the protocol by sending her name, the responder requests her to encrypt
the newly generated nonce nr. The initiator does this, generating a message
that only the server s can decrypt. The message is subsequently encrypted by
r, and sent on to the server. The server decrypts the messages, and re-encrypts
the message generated by i. This translation is returned, and the responder
decides that i was participating in the protocol.

Further simplifications of the protocol are based on the observation that the
identity of r is not necessary in the messages. The only reason to include this
would be for the benefit of the server, who already knows to be talking to r.
Furthermore, the third message of the protocol ({|i, ni|}k(i,r)) does not need the
identity of i, since r already knows he is communicating with i, and the server
cannot derive it from the encrypted message.

All these versions of the protocol share the attack depicted in Figure 5.12.
This attack is an internal attack, as there is only one run (that of Bob),

and it is also a reflection attack. All messages sent by Bob are reflected back
to him, causing him to believe he communicated both with Alice and with
Simon. The attack works because of two reasons. The first reason is that Bob
cannot distinguish a message encrypted under a key not in his possession from
any other random data. Since a nonce is also random data, he can accept his
nonce NBob as the ticket from Alice. The second reason is that the message
{|Alice,Bob,NBob|}k(Bob,Simon) that Bob subsequently sends to the server is
exactly the message he expects back.

Based on the observation that the attack is a reflection attack, and that both
the message NBob and the message {|Alice,Bob,NBob|}k(Bob,Simon) are reflected,
we decide that we need some asymmetry in one or both of these messages. Since
the first reflection is based on the fact that Bob sends random data and receives
random data, we cannot really find a reparation in this message: to prevent
the intruder modifying this at will, this would require some encryption by the
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Figure 5.13: The Woo and Lam Π protocol, repaired

responder, but this would then require more communication with the server.
The second message is a more likely candidate for reparation, because there
already is an encrypted message going back and forth.

By adding, for example, the responder’s nonce NR to the message, we would
get the protocol in Figure 5.13. In this protocol, the message sent by R to S
is no longer symmetrical to the message received by R from S. This frustrates
the possibility of the intruder to reflect the message, and repairs the protocol.
In fact, this protocol is the original Woo and Lam Π protocol, and was proved
correct [22].





Chapter 6

Implementation

We have implemented the framework described in the previous chapters in the
Python programming language [9]. The source code of this implementation
can be found in Appendix A. We will give an overview of the program in this
chapter.

6.1 Finding attacks: verifying protocols

The program first uses the Scyther backend to find as much attacks as possible.
This is done by verifying the authentication goals of the protocols.

The program takes a directory filled with protocol descriptions in Scyther’s
security protocol description language (spdl files). If Scyther finds attacks
against the protocol, these are returned as threads violating the property.

Scyther does not have a separate definition for an instantiated trace, using
the normal trace for threads as well. Nonetheless, we refer to these instantiated
objects as threads throughout this chapter.

The threads are grouped into runs, which are then analyzed further. Runs
are created by checking for each thread if it matches the threads of any run
already created. This matching means that the roles are played by the same
agents, from the thread’s point of view (so the role instantiation matches), and
that for each message sent in one thread, and received in another thread, the
instantiation is equal.

If the threads mismatch at any point, the evaluated thread is used to create
a new run.

Scyther also represents the attacker’s actions between runs as threads. We
disregard these actions in the creation of runs, only allowing honest threads to
constitute a run.

After runs have been created, they are analyzed structurally.

6.2 Analyzing attacks: structural

Classifying an attack according to the structural taxonomy is fairly straight-
forward. The difficult part in this is determining the interleaving of messages.
This is done by first establishing the modifications.
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The number of runs can easily be determined, since the runs are handed
over to the analysis. This means that checking if an attack is an internal, is as
easy as determining if the created set of runs is of size one.

If the attack is an external attack, the easiest way to check the interaction of
the runs is by checking whether the runs are interleaved. If they are, the attack
is an interleaved attack, while if they are not, the attack is a replay attack.

However, determining the interleaving of runs requires the modification to be
established first. After these graphs have been completed, the program checks
the interleaving by computing  . This is done by checking for each graph G
starting in an honest read of run r1, if its final state is an honest send in run
r2. This connection is also checked for the sends of run r2 and the reads in run
r1. If this checks out for one send in r1 and one send in r2, then the runs are
interleaved.

When constructing the runs, the program records the instantiation of roles
inside it. This allows it to show the difference in instantiations between runs.
The actual interpretation of the differences is left to the user, but could be
further automated by grouping the send events and corresponding read events
based on the (in)equality of sender and receiver.

For example, the NSPK protocol has two roles, i and r. Lowe’s attack has
two runs. The first run instantiates i to Alice and r to Eve, and the second
run instantiates i to Alice and r to Bob. This means that any sends by Alice
are deflected from Eve to Bob, while any sends from Bob in the second run are
replayed straightly to Alice. This means that we can group the sends of Alice
into the class of deflection attacks with respect to the destination taxonomy, and
into the class of straight forward attacks with respect to the sender taxonomy.
On the other hand, the send by Bob is grouped in the straight replay and fake
sender classes.

6.2.1 Analyzing attacks: modifications

Constructing the modification graph is made easy because Scyther represents
the actions of the intruder as short threads of one or more read events leading
up to one send event.

This means that to create the graph, we need to connect each read event with
a send event matching its message, and labelling the connection. If the send
event was part of a dishonest thread, we need to match up the read(s) preceding
this sent to the sends of either another dishonest thread, or in an honest thread.
If a honest read can be matched to multiple sends, we give preference to a send
of the intruder, as this could indicate the intruder forwarding some message.

Finally, the graph is completed once all its branches either hit an honest
send or the intruder knowledge, which get translated to the final nodes of the
graph.

The implementation of modified messages is a direct translation of the defin-
itions of Chapter 4, without any difficult changes for the sake of implementation.

6.3 Results of implementation

The Scyther tool is distributed together with a formalization of almost all of
the protocols found in SPORE. A few protocols are not formalized, because
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they use features not modelled in Scyther, such as the algebraic properties of
exponentiation used in the Diffie-Helman protocol.

All other protocols of SPORE are formalized in Scyther’s language, and
we have tested our implementation against these protocols. This showed that
most attacks on the protocols are external, interleaved attacks. Some attacks,
however, were classified as internal attacks. Several of these attacks can be
discarded as not being a very strong attack, but a result from Scyther’s analysis
method. Only the two attacks described in Chapter 5, the attacks on the TMN
protocol and the Woo and Lam Π protocol, are interesting internal attacks.

Several of the disregarded internal attacks reported by Scyther are against
an authentication property called synchronization, which we did not consider in
our theory. This very strong property requires that all messages of a protocol
are exchanged in lockstep, so that when a message is received by an agent at
one moment, it has been sent strictly before this moment. Since our theory does
not enforce this global order, the messages are grouped into one run.

For example, Lowe’s modification of Denning and Sacco’s shared key protocol
[13], depicted in Figure 6.1, is vulnerable to an attack on synchronization. This
attack abuses the fact that the first message of the protocol, the request from the
initiator to the server, does not contain any timing information. This message
could therefore be sent to the server long before the initiator starts the protocol.
Due to the keys involved in the rest of the protocol, the intruder cannot break
anything else.
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Responder
r

i, r

{|r, ki,r, t, {|ki,r, i, t|}ki,r |}ki,s

{|ki,r, i, t|}kr,s
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msc Denning-Sacco-Lowe protocol

Figure 6.1: Lowe’s modification of Denning and Sacco’s shared key protocol

Since the threads of server and initiator match after the protocol is com-
pleted, our program groups these threads into one run.

While it could be possible that an attack against synchronization is actually
dangerous, the grouping into a single run which is a complete instantiation of
the protocol, possibly missing the final read, seems to indicate that the intruder
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cannot do much harm. If she could do something, it would show as a difference
in instantiation of one or more variables, or in the fact that more runs are
necessary. The difference in instantiation, however, would already indicate an
attack against agreement, instead of only synchronization.

In this chapter, we have shown our decisions in implementing a prototype tool
based on our framework. We have used this tool to analyze attacks on the
protocols in the SPORE library, obtaining the data necessary for Chapter 5.
Next to this, we have shown that some internal attacks against synchronization
might be disregarded safely.



Chapter 7

Conclusions

We have constructed a formal model for classifying attacks on security proto-
cols. This taxonomy captures both the structural and modificational aspects of
attacks. Using the model, it is possible to find similarities between attacks on
different protocols. and in several cases recommend a protocol reparation based
on the attack’s class.

The research into this model can be divided into three aspects. The first is
the development of the formal model itself, the second is the implementation of
the model’s framework in the Python programming language, and the third is
the application of the model in reasoning about protocols and attacks.

7.1 Formal model

The formal model for attack classification is based on the concept of protocol
runs. Each run is a consistent instantiation of a protocol, in which one or more
honest agents participate. This implies that the honest agents participating in
a run are actually communicating with each other, without interference of the
intruder.

In our model, an attack is a combination of runs, between which a connection
is made by the intruder. This connection consists of messages received in one
run, which were not sent by an honest agent, but were constructed, or modified
from messages sent in other runs. The classification of attacks then consists
of determining how the runs are composed structurally, as well as determining
what actions the intruder takes to modify messages sent.

For a structural classification, we have formalized the taxonomy formulated
by Syverson [19], which is separated in an origin taxonomy and a destination
taxonomy. The formalization mainly consisted of finding the notion of runs,
which we formulated in such a way that we can define a set of predicates which
determine where in the two taxonomies a given attack can be placed.

In giving this formalization, we noticed that the origination taxonomy did
not describe how the sender of a message can be modified, but rather in what
run a message was obtained (in the attacked run, in a parallel run or in a
previous run). Therefore, we added a third dimension to the taxonomies, the
sender taxonomy.

The structural taxonomy does not capture the actions of the attacker to
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modify messages, and especially what messages contribute in what way to the
attack. To capture this, we introduce the notion of modification graphs, which
builds, given an attack and a message, the way this message was constructed.
Such a graph has two types of end nodes: one represents the initial attacker
knowledge, the other type represents messages sent by honest agents.

A modification graph can then be classified according to a number of prop-
erties. A first method is determining if the modification graph for one message
is bisimilar to the graph of another, either within the same attack, or for an-
other attack. This could lead to a reduction in the number of modifications
to analyze. A second classification of a graph tries to classify how messages
from each run contribute to the construction of the message received. A class
of modifications that is especially interesting, is the forwarding of a message
directly into the receiving run. This can represent that the intruder could not
construct the forwarded message, and had to extract it from another run. It is
within this message that a protocol repair can be placed.

7.2 Implementation & application of model

To test and extend our framework, we implemented a prototype in Python. The
experiments carried out with this implementation showed how the framework
can be used in analyzing protocol flaws, based on the attacks on it, while the
program itself shows that the framework lends itself well for implementation
within a more sophisticated tool.

7.3 Open issues and future work

Even though we have shown that our framework is useful as is, there is still
room for improvement. Specifically, the framework presented in this thesis can
be seen as a foundation for a more sophisticated model for attack classification
and analysis of this classification. To develop such a model, we suggest the
following extensions, in order of importance:

1. Our framework can be used for generalizing attacks and finding a greatest
common attack against a certain protocol goal. We have shown an ex-
ample of such reasoning in the analysis of the TMN protocol in Section
6.3. However, we have not formalized the notions underlying this ana-
lysis. Towards this analysis, more research into equivalence of runs from
different attacks is necessary, as well as analysis of semantical properties
of modifications.

2. Currently, the experiment data is not post-processed, requiring a signific-
ant amount of manual analysis of the protocols. This seems a good first
step for future research, since we believe that a fully automatic analysis of
experiment data, including a grouping of attacks according to the classi-
fication, allows one to see (intuitive) equivalences between protocols more
clearly. This post-processing should also give a more structured output.

3. As we already mentioned, we did not implement our model in the ProVerif
tool, as this required a better knowledge of the inner working of the tool.
This especially means we could not verify the usefulness of our model
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for classifying replay attacks. To apply the theory to ProVerif, it is first
necessary to explicitly extract the threads by honest agents, as well as the
attacker actions from the attacks given by ProVerif. These threads can be
subsequently grouped into runs, as we did in Scyther, for further analysis.

The fact ProVerif uses a process-algebraic representation of both honest
and dishonest agents could be exploited to implement, and possibly further
refine, our model and taxonomy of modifications.

4. Our implementation is not the most efficient. This efficiency is not a very
large bottleneck, as analysis of the entire SPORE library, including the
finding of attacks takes about one minute, and a full analysis of a single
protocols, including finding the attacks, takes less than a second. However,
if the model is implemented in a larger tool, it might become necessary to
improve the efficiency

7.4 Reflection

Our approach of forming a model based on results from the SPORE library
proved to be a useful one, especially for finding and formalizing a structural
classification of the attacks. This also showed that the taxonomy of Syverson is
a good one for determining the protocol flaws, despite missing one dimension.
The formalization of this taxonomy did require finding a good notion of what a
run is, something that was glossed over in the informal taxonomy.

Finding a suitable model for modifications was a more difficult task, however,
as these modifications could fall into a wider range. Nonetheless, the graph
approach looks promising in finding a reparation for a protocol, as it shows
what messages were not modified by the attacker. This could give an indication
of where a reparation would be most effective.

On a more global level, we might have obtained better results by doing
analyses similar to those of Chapter 5 sooner and to more attacks, and extend
our model and program to support these analyses.

Instead, we opted to first try and capture the intuition behind modification,
and this left us with less time to analyze a larger set of attacks.

Furthermore, the output could have been better structured, as this would
support a more rigorous analysis of the attacks. A structured output, however,
would also require a more structured way of reading it, which could lead to
another program for interpreting the output. As the tool’s output was changing
during the development, and we focused on validating the model first, we decided
not to fix the output format yet.





Appendix A

Implementation source code

#! / u s r / b i n / p y t h o n

”””
E x p e r im e n t p r o g r am t o t e s t s t r u c t u r a l / m o d i f i c a t i o n t h e o r y .
Au t h o r : C a r s t Tan k i n k

”””

from Scyther import Scyther
from Scyther import Trace
from Scyther import Term
import sys
import os
import copy

# C l a s s D e f i n i t i o n s

c lass Trans i t i on ( ob j e c t ) :
”””
A l a b e l e d t r a n s i t i o n b e t w e e n two s t a t e s
I n ou r mode l , t h i s r e p r e s e n t s t h e a c t i o n t a k e n by t h e i n t r u d e r t o o b t a i n
f r o m S t a t e b y u s i n g t o S t a t e
”””
def i n i t ( s e l f ) :

s e l f . f romState = None
s e l f . toState = None
s e l f . l a b e l = ””

c lass State ( ob j e c t ) :
”””
A s t a t e r e p r e s e n t s an e v e n t i n t h e c o n s t r u c t i o n o f h o n e s t r e a d s . We do n o t
r e a l l y c a r e a b o u t w h e t h e r i t i s a r e a d o r a s end , w i t h t h e e x c e p t i o n o f
t h e i n i t i a l s t a t e a l w a y s b e i n g a h o n e s t r e ad , b u t more a b o u t t h e t e rm
i n s i d e t h e e v e n t .
”””
def i n i t ( s e l f ) :

s e l f . event = None
s e l f . i n i t i a l = False
s e l f . knowledge = False
s e l f . honest = False
s e l f . t r a n s i t i o n s = [ ]
s e l f . id = 0

def addTransit ion ( s e l f , t rans ) :
”””
Add t h e g i v e n o u t g o i n g t r a s i t i o n t o t h e s t a t e
”””

s e l f . t r a n s i t i o n s . append ( t rans )

c lass Run( ob j e c t ) :
”””
R e p r e s e n t s an h o n e s t , c o n s i s t e n t run o f t h e p r o t o c o l
”””

def i n i t ( s e l f ) :
s e l f . r o l e I n s t = {} # Ro l e i n s t a n t i a t i o n , r o l e I n s t : R o l e −> Agen t
s e l f . events = {} # Mes s a g e i n s t a n t i a t i o n , e v e n t s : N ˜> Ev en t

def i sCon s i s t en t ( s e l f , thread ) :
”””
T e s t i f t h e g i v e n t h r e a d i s c o n s i s t e n t w i t h t h i s run
”””

r e s u l t = True

# F i r s t t e s t i f r o l e i n s t a n t i a t i o n i s c o n s i s t e n t
for key in s e l f . r o l e I n s t . keys ( ) :

59
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i f key in thread . ro leAgents . keys ( ) :
i f s e l f . r o l e I n s t [ key ] != thread . ro leAgents [ key ] :

r e s u l t = False

# Te s t
for event in thread :

s t rLabe l = s t r ( event . l a b e l )
i f s t rLabe l in s e l f . events . keys ( ) :

i f event . message != s e l f . events [ s t rLabe l ] . message :
r e s u l t = False

return r e s u l t

def addThread ( s e l f , thread ) :
”””
Add t h e g i v e n t h r e a d t o t h e run .
”””
# p r e : s e l f . i s C o n s i s t e n t ( t h r e a d )
# As t h e t h r e a d i s c o n s i s t e n t , we can j u s t add t h e key−v a l u e p a i r s
# o f t h r e a d . r o l e A g e n t s
for key in thread . ro leAgents . keys ( ) :

s e l f . r o l e I n s t [ key ] = thread . ro leAgents [ key ]

for event in thread :
i f i s i n s t a n c e ( event , Trace . EventSend ) or\

i s i n s t a n c e ( event , Trace . EventRead ) :
s e l f . events [ s t r ( event . l a b e l ) ] = event

# =============== end o f c l a s s ===============

def paths ( s t a t e ) :
”””
F ind a l l p a t h s s t a r t i n g i n s t a t e , and r e t u r n them a s a l i s t o f l i s t s
”””

i f l en ( s t a t e . t r a n s i t i o n s ) == 0 :
# The o n l y p a t h o f a f i n a l s t a t e i s t h e s t a t e i t s e l f
return [ [ s t a t e ] ]

else :
r e s u l t = [ ]
for t r in s t a t e . t r a n s i t i o n s :

toPaths = paths ( t r . toState )

for p in toPaths :
r e s u l t . append ( [ s t a t e ] + p)

return r e s u l t

def c l a s s i f y ( mod i f i ca t i on ) :
”””
C l a s s i f y t h e g r a p h s t a r t i n g i n s t a t e a c c o r d i n g t o ou r t a x onomy
”””

# We ne e d t h e p a t h s i n t h e g r a p h f o r f u r t h e r a n a l y s i s .
p = paths ( mod i f i ca t i on )

# Find a l l f i n a l s t a t e s o f t h e g r a p h . Th e s e f i n a l s t a t e s a r e t h e l a s t
# s t a t e s i n a l l p a t h s .
# A l s o e x t r a c t a l l s t a t e s o f t h e g r a ph , a g a i n f r om t h e p a t h s .
f i n a l S t a t e s =[ ]
for path in p :

f i n a l = path [ l en ( path ) − 1 ]

i f not f i n a l in f i n a l S t a t e s :
f i n a l S t a t e s . append ( f i n a l )

# Te s t f o r c o n s t r u c t i v e m o d i f i c a t i o n : d e t e r m i n e i f t h e ( c ompo s e d ) m e s s a g e
# was c o n s t r u c t e d , o r f o r w a r d e d d i r e c t l y .

mforward = True
# A m o d i f i c a t i o n i s a f o r w a r d i n g m o d i f i c a t i o n i f a l l p a t h s t o h o n e s t
# s t a t e s o n l y b r a n c h u s i n g t u p l i n g .
for path in p :

i f path [ l en ( path ) − 1 ] . honest :
for s t a t e in path :

i f l en ( s t a t e . t r a n s i t i o n s ) > 1 :
for t r in s t a t e . t r a n s i t i o n s :

i f t r . l a b e l != ”Tuple” and t r . l a b e l != ”Untuple” :
mforward = False

i f mforward :
print ”The mod i f i ca t i on f o r %s” \

” i s a forwarding mod i f i ca t i on ”%mod i f i ca t i on . event

else :
print ”The mod i f i ca t i on f o r %s”\

” i s a con s t ru c t i v e mod i f i ca t i on ”%mod i f i ca t i on . event

i n t e r c ep t = True
f a b r i c a t i o n = True
# Te s t f o r f u l l i n t e r c e p t : i f t h e s t a t e l e a d s o n l y t o h o n e s t s e n d s
for s t a t e in f i n a l S t a t e s :

i n t e r c ep t &= s ta t e . honest
f a b r i c a t i o n &= s ta t e . knowledge
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i f i n t e r c ep t :
print ” Ful l i n t e r c ep t ”

e l i f f a b r i c a t i o n :
print ” Ful l f a b r i c a t i o n ”

else :
print ” Pa r t i a l i n t e r c ep t ”

# De t e rm i n e i f t h e m o d i f i c a t i o n h a s a s i n g l e p o i n t o f o r i g i n
i f not f a b r i c a t i o n :

hones tF ina l s = [ s for s in f i n a l S t a t e s i f s . honest ]
i f l en ( hones tF ina l s ) == 1 :

print ” S ing l e point o f o r i g i n ”
else :

print ”Mult ip le po int s o f o r i g i n ”

# ( i f i t i s an i n t e r c e p t ) , o r i f i t i s a c o m b i n a t i o n a t t a c k

def connected ( run1 , run2 , graphs ) :
”””
D e t e rm i n e i f an e v e n t i n r un2 i s t h e f i n a l s t a t e o f a g r a p h s t a r t i n g i n an
e v e n t o f r un1
”””

connected = False

for ( index , event1 ) in run1 . events . items ( ) :
i f i s i n s t a n c e ( event1 , Trace . EventRead ) :

graph1 = None

# Find t h e g r a p h s t a r t i n g i n t h i s e v e n t
for graph in graphs :

i f graph . event == event1 :
graph1 = graph

i f not graph1 :
# S h o u l d n o t o c c u r
print ”No matching mod i f i ca t i on found . ”
connected = False

else :
# Find a l l f i n a l e v e n t s o f g r a p h 1 , t h r o u g h a DFS
s tack = [ graph1 ]
f i na lMes sage s = [ ]

while l en ( stack ) > 0 :
toProcess = stack . pop ( )

i f not ( toProcess . honest or toProcess . knowledge ) :
s tack += [ t r a n s i t i o n . toState for\

t r a n s i t i o n in toProcess . t r a n s i t i o n s ]
e l i f toProcess . honest :

f i na lMes sage s . append ( toProcess . event . message )

# See i f any e v e n t i n r un2 i s i n f i n a l E v e n t s
for ( index , event2 ) in run2 . events . items ( ) :

i f event2 . message in f i na lMes sage s :
connected = True

return connected

def i n t e r l e av ed ( runs , d i shonest , f i lename , mod i f i c a t i on s ) :
”””
D e t e rm i n e s i f ( any ) o f t h e r u n s a r e i n t e r l e a v e d , p o s s i b l y u s i n g
t h e d i s h o n e s t a c t i o n s
”””

i n t e r l e av ed = False
for r1 in runs :

for r2 in runs :
i f r1 != r2 :

r1Tor2 = connected ( r1 , r2 , mod i f i c a t i on s )
r2Tor1 = connected ( r2 , r1 , mod i f i c a t i on s )
i f r1Tor2 and r2Tor1 :

i n t e r l e av ed = True
return i n t e r l e av ed

def extendedSend ( readState , honestRuns , dishonestRuns ) :
”””
S u b p r o c e d u r e o f d e t e r m i n e M o d i f i c a t i o n , a t t e m p t s t o f i n d a s e n d E v e n t i n
e i t h e r h o n e s t R u n s o r d i s h o n e s t R u n s s . t . r e a d S t a t e . m e s s a g e i s a p a r t o f t h e
f o u n d e v e n t ’ s m e s s a g e . R e t u r n t h i s e v e n t a s a S t a t e
”””

foundEvent = None
honest = False

for run in honestRuns :
for ( index , event ) in run . events . items ( ) :

i f i s i n s t a n c e ( event , Trace . EventSend ) :
runTerms = [ ]
s tack = [ event . message ]

while l en ( stack ) > 0 :
toProcess = stack . pop ( )

i f i s i n s t a n c e ( toProcess , Term . TermTuple ) :
s tack . append ( toProcess . op1 )

stack . append ( toProcess . op2 )
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e l i f toProcess == readState . event . message :
foundEvent = event
honest = True

for run in dishonestRuns :
for event in run :

i f i s i n s t a n c e ( event , Trace . EventSend ) :

runTerms = [ ]
s tack = [ event . message ]

while l en ( stack ) > 0 :
toProcess = stack . pop ( )

i f i s i n s t a n c e ( toProcess , Term . TermTuple ) :
op1 = toProcess . op1
op2 = toProcess . op2
stack . extend ( [ op1 , op2 ] )

e l i f toProcess == readState . event . message :
foundEvent = event

s t a t e = None
i f foundEvent :

# C r e a t e a s t a t e o u t o f t h e f o u n d e v e n t
s t a t e = State ( )
s t a t e . event = foundEvent
s t a t e . honest = honest

return s t a t e

def determineModi f i cat ion ( runs , d i shonest , f i l ename ) :
”””
B u i l d s a m o d i f i c a t i o n g r a p h f o r a l l r e a d t e rm s .
”””

# A t t emp t t o b u i l d a ” k n o w l e d g e g r a p h ” ( t r a n s i t i o n s y s t em ) f o r e a c h
# e v e n t i n t h e h o n e s t t h r e a d s
graphs = [ ]
r i d = 1

for run in runs :
for ( key , read ) in run . events . items ( ) :

# B u i l d a m o d i f i c a t i o n g r a p h f o r e a c h h o n e s t r e a d
i f i s i n s t a n c e ( read , Trace . EventRead ) :

s i = 1 # S t a t e i n d e x

# The name o f t h e g r a p h f i l e i s t h e c l a i m i d e n t i f i e r p l u s t h e e v e n t
# i n d e x .
gn = f i l ename + s t r ( r i d ) + ” . ” + s t r ( read . index )
r i d += 1

i n i t i a l S t a t e = State ( )
i n i t i a l S t a t e . event = read
i n i t i a l S t a t e . i n i t i a l = True
i n i t i a l S t a t e . id = 0

# Commence a DFS t o f i n d e v e n t s l e a d i n g up t o t h i s e v e n t .
toProcess = [ i n i t i a l S t a t e ]

# Keep a s e c o n d r e c o r d o f a l l s t a t e s d i s c o v e r d , t o make c o n n e c t i o n s
s t a t e s = [ i n i t i a l S t a t e ]

while l en ( toProcess ) > 0 :

readState = toProcess . pop ( )

sendState = None
read = readState . event

dishonestThread = None
honestRun = None
sendEvent = None

# F i r s t , s e a r c h f o r c o r r e s p o n d i n g s e n d i n d i s h o n e s t t h r e a d
for thread in d i shones t :

for event in thread :
i f i s i n s t a n c e ( event , Trace . EventSend ) and\

event . message == read . message :
dishonestThread = thread

sendEvent = event

# Check i f t h e m a t c h i n g s t a t e i s a l r e a d y p a r t o f t h e g r a p h
for s t a t e in s t a t e s :

i f sendEvent == s ta t e . event :
sendState = s ta t e

# I f no t , c o n s t r u c t a new s t a t e .
i f not sendState :

sendState = State ( )
sendState . event = sendEvent
sendState . id = s i
s i += 1
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s t a t e s . append ( sendState )

# Add t h e e v e n t s o f t h e d i s h o n e s t t h r e a d t o t h e g r a p h .
i f dishonestThread and sendEvent :

for event in dishonestThread :
i f event . index < sendEvent . index :

i f i s i n s t a n c e ( event , Trace . EventRead ) :
t r a n s i t i o n = Trans i t i on ( )

readState1 = None
for s t a t e in s t a t e s :

i f s t a t e . event == event :
readState1 = s ta t e

i f not readState1 :
readState1 = State ( )
readState1 . event = event
readState1 . id = s i
s i += 1

toProcess . append ( readState1 )
s t a t e s . append ( readState1 )

# A t t a c h s t a t e s t o g r a p h
t r a n s i t i o n . fromState = sendState
t r a n s i t i o n . toState = readState1

# De t e rm i n e l a b e l f o r t h e t r a n s i t i o n s
i f i s i n s t a n c e ( sendEvent . message , Term . TermEncrypt ) :

i f sendEvent . message . value == event . message :
t r a n s i t i o n . l a b e l = ” p la in ”

e l i f sendEvent . message . key == event . message :
t r a n s i t i o n . l a b e l = ”key”

else :
t r a n s i t i o n . l a b e l = ”?”

e l i f i s i n s t a n c e ( sendEvent . message , Term . TermApply ) :
i f sendEvent . message . func t i on == event . message :

t r a n s i t i o n . l a b e l = ” funct i on ”
e l i f sendEvent . message . argument == event . message :

t r a n s i t i o n . l a b e l = ”argument”
else :

# Th i s c a s e s h o u l d n o t o c c u r
t r a n s i t i o n . l a b e l = ”?”

else :
# In t h i s c a s e ,
t r a n s i t i o n . l a b e l = ”??”

sendState . addTrans it ion ( t r a n s i t i o n )

for t r in sendState . t r a n s i t i o n s :
i f t r . l a b e l == ”??” :

i f i s i n s t a n c e ( t r . toState . event . message , Term . TermEncrypt ) :
t r . l a b e l = ”Decrypt−Term”

else :
t r . l a b e l = ”Decrypt−Key”

else :
# No ma t c h i n g d i s h o n e s a c t i o n s we r e f ound , s o t r y t o f i n d a
# ma t c h i n g s e n d i n t h e h o n e s t t h r e a d s .
for run1 in runs :

for ( key , send ) in run1 . events . items ( ) :
i f i s i n s t a n c e ( send , Trace . EventSend ) :

i f send . message == read . message :
sendEvent = send
honestRun = run1

for s t a t e in s t a t e s :
i f s t a t e . event == sendEvent :

sendState = s ta t e

i f not sendState :
sendState = State ( )
sendState . event = sendEvent
sendState . honest = True
sendState . id = s i
s i += 1
s t a t e s . append ( sendState )

i f not sendEvent :
# S t i l l no m a t c h i n g e v e n t f o und , s o s c a n t h e i n i t i a l k n o w l e d g e
# f o r o c c u r e n c e o f t h e t e rm .

# The i n i t i a l k n o w l e d g e i s s e n t a s a s i n g l e t u p l e . B r e a k i t down
# i n t o i n d i v i d u a l t e rm s .
i n i t i a l S e nd = di shones t [ 0 ] . eventL i s t [ 0 ]
sendTerms = [ ]
unprocessed = [ i n i t i a l S e nd . message ]

while l en ( unprocessed ) > 0 :
msg = unprocessed . pop ( )
i f i s i n s t a n c e (msg , Term . TermTuple ) :

unprocessed . extend ( [ msg . op1 , msg . op2 ] )
else :

sendTerms . append (msg)

# Check i f t h e m e s s a g e i s f u l l y p a r t o f t h e i n i t i a l k n o w l e d g e
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i f read . message in sendTerms :
sendEvent = i n i t i a l S e nd

for s t a t e in s t a t e s :
i f s t a t e . event == sendEvent :

sendState = s ta t e

i f not sendState :
sendState = State ( )
sendState . event = sendEvent
sendState . knowledge = True
sendState . id = s i
s i += 1

s t a t e s . append ( sendState )

# I f a l l e l s e f a i l s , b r e a k down h o n e s t t u p l e s i n t o i t s
# c o n s t r u c t o r s .
i f not sendEvent and i s i n s t a n c e ( read . message , Term . TermTuple ) :

# C r e a t e e v e n t f o r op1 and op2 , p r o c e s s

read1 = copy . copy ( read )
read2 = copy . copy ( read )
read1 . message = read . message . op1
read2 . message = read . message . op2

readState1 = None
readState2 = None
for s t a t e in s t a t e s :

i f s t a t e . event == read1 :
readState1 = s ta t e

i f s t a t e . event == read2 :
readState2 = s ta t e

i f not readState1 :
readState1 = State ( )
readState1 . event = read1
readState1 . id = s i
s i += 1
s t a t e s . append ( readState1 )

t r a n s i t i o n 1 = Trans i t i on ( )
t r a n s i t i o n 1 . fromState = readState
t r a n s i t i o n 1 . toState = readState1

t r an s i t i o n 1 . l a b e l = ”Tuple”
readState . addTransit ion ( t r an s i t i o n 1 )

i f not readState2 :
readState2 = State ( )
readState2 . event = read2
readState2 . id = s i
s i += 1
s t a t e s . append ( readState2 )

t r a n s i t i o n 2 = Trans i t i on ( )
t r a n s i t i o n 2 . fromState = readState
t r a n s i t i o n 2 . toState = readState2
t r an s i t i o n 2 . l a b e l = ”Tuple”
readState . addTransit ion ( t r an s i t i o n 2 )

toProcess . extend ( [ readState1 , readState2 ] )

# I f t h e r e a d t e rm comes f r om an h o n e s t s end , we h a v e an i n t e r c e p t
# t r a n s i t i o n .
i f readState and sendState :

t r a n s i t i o n = Trans i t i on ( )
t r a n s i t i o n . fromState = readState
t r a n s i t i o n . toState = sendState

i f sendState . honest :
t r a n s i t i o n . l a b e l = ” In t e r c ep t ”

e l i f sendState . knowledge :
t r a n s i t i o n . l a b e l = ”Obtain”

else :
t r a n s i t i o n . l a b e l = ”A”

i f readState . id != sendState . id :
# Somehow , a s e l f l o o p i s i n t r o d u c e d s omewhe r e . We don ’ t wan t t h a t .
readState . addTransit ion ( t r a n s i t i o n )

i f readState and l en ( readState . t r a n s i t i o n s ) == 0 :
# I f t h e r e a r e no t r a n s i t i o n s f o und , t h e r e a d e v e n t was p a r t o f
# a l a r g e r t u p l e .
sendState = extendedSend ( readState , runs , d i shones t )

i f sendState :
foundState = False

for s t a t e in s t a t e s :
i f s t a t e . event == sendState . event :

foundState = True

i f not foundState :
sendState . id = s i
s i += 1
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s t a t e s . append ( sendState )

i f not sendState . honest :
toProcess . append ( sendState )

# B u i l d a u n t u p l e t r a n s i t i o n f r om r e a d S t a t e t o s e n d S t a t e
t r a n s i t i o n = Trans i t i on ( )

t r a n s i t i o n . fromState = readState
t r a n s i t i o n . toState = sendState

t r a n s i t i o n . l a b e l = ”Untuple”

readState . addTransit ion ( t r a n s i t i o n )

graphs . append ( i n i t i a l S t a t e )

exportGraph ( s ta te s , gn )

return graphs

def exportGraph ( s ta te s , gn ) :
”””
E x p o r t t h e g r a p h o f s t a t e s t o an XML gn . xm l f i l e r e a d a b l e b y LTSgraph
”””

x = −1000
y = −1000

# Wr i t e g r a p h t o an LTSgraph xml f i l e
gn += ” . xml”
graphFi le = open (gn , ’w ’ )

graphFi le . wr i te ( ’<?xml ve r s i on =\”1.0\” ?>\n ’ )
graphFi le . wr i te ( ’<Graph>\n ’ )

s t a t eS t r i n g = ”<State value=\”%d\” i s I n i t i a l=\”%s\” x=\”%d\” y=\”%d\””\
” red=\”255\” green=\”255\” blue=\”255\”>\n”
”<Parameter name=\”event\”>%s</Parameter>\n</State >\n”

t r a n s i t i o nS t r i n g = ”<Trans i t i on from=\”%d\” to=\”%d\””\
” l a b e l=\”%s\” x = %d y = %d/>\n”

while l en ( s t a t e s ) > 0 :
x += 150
while x > 1000:

x −= 1000
y += 150

while y > 1000:
y −= 1000

s t a t e = s t a t e s . pop (0)

i f s t a t e . i n i t i a l :
i n i t i a l = ”1”

else :
i n i t i a l = ”0”

graphFi le . wr i te ( s t a t eS t r i n g%( s t a t e . id , i n i t i a l , x , y , s t a t e . event ) )
for t r a n s i t i o n in s t a t e . t r a n s i t i o n s :

graphFi le . wr i te ( t r a n s i t i o nS t r i n g%( s t a t e . id ,\
t r a n s i t i o n . toState . id , t r a n s i t i o n . l abe l , x + 75 , y + 75))

graphFi le . wr i te ( ”</Graph>\n” )

def groupThreads ( threads ) :
”””
Group t h r e a d s i n t o r u n s .
”””

r e s u l t = [ ] # L i s t o f t h e r u n s c r e a t e d b y g r o u p i n g

for thr in threads :
createNewRun = True

# Run i d e n t i f i e r
i = 0
for run in r e s u l t :

i f run . i sCon s i s t en t ( thr ) :
createNewRun = False
run . addThread ( thr )

i += 1

# The e x am i n e d t h r e a d was n o t c o n s i s t e n t w i t h any run y e t , s o i t i s t h e
# b a s i s f o r a new run .
i f createNewRun :

newrun = Run( )
newrun . addThread ( thr )
r e s u l t . append ( newrun )

return r e s u l t

def analyze ( attack ) :
”””
An a l y z e s t r u c t u r e o f a t t a c k .
”””
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# F i r s t , f i n d a l l t h r e a d s o f t h e a t t a c k .
# Th r e a d s a r e c a l l e d r u n s i n S c y t h e r , and r e t u r n e d a s a p a r t o f t h e a t t a c k
# t h i s i s j u s t a r e n am i n g
threads = attack . semiTrace . runs

# P r i n t p r e l i m i n a r y i n f o r m a t i o n a b o u t t h e a t t a c k t o s t d o u t
print ”− Attack ” + s t r ( attack . id ) + ” has ” + s t r ( l en ( threads ) ) + ” threads . ”

# S p l i t t h r e a d s i n t o h o n e s t and d i s h o n e s t t h r e a d s
honestThreads = [ ]
d ishonestThreads = [ ]

for thr in threads :
i f not thr . i n t rude r :

honestThreads . append ( thr )
else :

d ishonestThreads . append ( thr )

print ” . . . o f these , ” + s t r ( l en ( honestThreads ) ) + ” are honest . ”

protDescr = attack . p ro t o co ld e s c r

# Group h o n e s t t h r e a d s i n t o r u n s
runs = groupThreads ( honestThreads )

# De t e rm i n e m o d i f i c a t i o n s o f t h e a t t a c k
modGraphs = determineModi f i cat ion ( runs , dishonestThreads ,\

s t r ( attack . c laim ) + s t r ( attack . id )+ ” . ” )

i f l en ( runs ) == 1 :
print ” ∗ I n t e rna l attack ”

else :
print ” ∗ External attack (%d runs ) ” % len ( runs )
i f i n t e r l e av ed ( runs , dishonestThreads , s t r ( attack . c laim ) , modGraphs ) :

print ” ∗ I n t e r l e aved attack ”
else :

print ” ∗ Replay attack ”

t e s t ed = {}

for run in runs :
t e s t ed [ run ] = False

for run1 in runs :
t e s t ed [ run1 ] = True
for run2 in runs :

i f not t e s t ed [ run2 ] :
for ( ro l e , agent ) in run1 . r o l e I n s t . items ( ) :

i f r o l e in run2 . r o l e I n s t . keys ( ) :
print ”Role : %s i s i n s t an t i a t ed in run 1 as %s , ”\

” and as %s in run 2”%(ro l e , run1 . r o l e I n s t [ r o l e ] , run2 . r o l e I n s t [ r o l e ] )
else :

print ”Role %s i s not i n s t an t i a t ed in run 2”%ro l e
i f l en ( runs ) == 1 :

for ( ro l e , agent ) in run1 . r o l e I n s t . items ( ) :
print ”Role %s i s i n s t an t i a t ed as %s”%(ro le , agent )

# Re p o r t on m o d i f i c a t i o n c l a s s i f i c a t i o n s
for s t a t e in modGraphs :

#p r i n t ” M o d i f i c a t i o n f o r : %s ”% s t a t e . e v e n t
c l a s s i f y ( s t a t e )

return modGraphs

def f indAttacks ( s , p ro toco l ) :
”””
G i v en a p r o t o c o l f i l e , f i n d a l l a t t a c k s on i t .
”””
print ”Looking f o r at tacks on ” + pro toco l

s . s e t F i l e ( p ro toco l )
s . ver i fyOne ( )

graphs = [ ]
for claim in s . c la ims :

# i f c l a i m . c l a i m t y p e != ” S e c r e t ” and n o t c l a i m . o k a y :
i f not claim . okay :

#p r i n t ” Bro k en c l a i m : ”+ s t r ( c l a i m )

for attack in claim . at tacks :
# An a l y z e t h e a t t a c k i n a n o t h e r f u n c t i o n , a s i t i s q u i t e i n v o l v e d .
graphs += analyze ( attack )

print ”=========================================================================”

return graphs

def main ( pars ) :
”””
Run S c y t h e r a n a l y s i s on t h e p r o t o c o l s i n t h e g i v e n d i r e c t o r y ( p a r s [ 1 ] ) and
a n a l y z e t h e r e s u l t b a s e d on t h e p r e d i c a t e g i v e n i n p a r s [ 0 ] .
”””

d i r e c t o r y = pars [ 0 ]
a t tacks = [ ]
s = Scyther . Scyther ( )
# For now , do t y p e d m a t c h i n g
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s . opt ions = ”−−match=0 −A −−max−at tacks=10 −−max−runs=5”
f i l e l i s t = os . l i s t d i r ( d i r e c t o r y )

for fname in f i l e l i s t :
i f fname . f i nd ( ” . spdl ” ) >= 0:

protoco lAttacks = f indAttacks ( s , d i r e c t o r y + fname )
i f l en ( protoco lAttacks ) > 0 :

a t tacks += protoco lAttacks

i f name == ’ ma in ’ :
pars = sys . argv [ 1 : ]
main ( pars )

# vim : s e t t s =2 sw=2 e t l i s t l c s = t a b \:>−:
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