EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

A proof assistant based on terms with binding structures

Smeijers, F.A.M.

Award date:
2009

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c603b422-1aa1-4c1d-be85-17a5f57e47b6

Eindhoven University of Technology
Department of Mathematics & Computer Science
Software Engineering & Technology

Master’s Thesis

A Proof Assistant Based on
Terms with Binding Structures

F.A.M. Smeijers
August 2009

Supervisors:
dr.ir. C. Hemerik
dr.ir. M.G.J. Franssen

Abstract

A proof assistant is a computer program that is used for proving theorems in an interactive
way. Many proof assistants are based on the theory of pure type systems and the propositions
as types principle. During this master project a proof assistant has been developed that has
such a theoretic foundation, but instead of using the ordinary pure type system framework,
it uses a pure type system framework that is extended with additional type constructors.
Initially, it was supposed to be implemented by using the FoolProof components to test their
usability. One of FoolProof main features is its ability to manipulate terms with binding
structures. When it turned out those components were not available in time, the decision was
made to use the infrastructure of Cocktail instead, which manipulates terms with binding
structures in the same way as FoolProof.

Acknowledgements

I am grateful to my supervisor Kees Hemerik for letting me start immediately on my master
project when I asked him to be my supervisor. It did not take him long to come up with a
research subject that I liked to investigate. When the progress of the project stalled due to
the unavailability of the components that this project depended on, he offered me a solution
and introduced me to Michael Franssen. I would also like to thank Michael for discussing his
proof assistant implementation with me and guiding me through its source code, which takes
a great mind to understand at times. I enjoyed the time working on this project and it was
over before I knew it.

Frenkel Smeijers

Contents

I Introduction and theoretic background

1 Introduction
1.1 Problem description L
1.2 Thesisoutline

2 Proof assistant

2.1 Other proof assistants
211 Coq . oo e
2.1.2 Cocktail

3 Lambda calculi

3.1 Untyped lambda calculus oo
3.2 Puretypesystems
3.3 Additional type constructors
3.3 1 —-types . ..
3.3.2 X-tyPES .. oo
3.3.3 H-types ..o
3.3.4 X-types ..o .. e
4 Propositions as types
4.1 Term finding example Lo
4.2 Type derivation example L

II Abstract code model
5 Terms, items and contexts

6 Type checker

6.1 Altered type derivation rules
6.2 Subroutines for type computing Lo oo

7 Tactics
7.1 Subroutines
7.2 General tactics L Lo
7.2.1 Exact e
7.2.2 Reducegoal

11

13
14
15

17
17
17
18

19
19
19
21
21
22
23
24

25
25
27

31

35

39
39
42

7.2.3 Assumption 47

7.3 TI-types . . . o o e e 48
7.3.1 Il-introduction e 48

7.3.2 Il-eliminationo 48

T4 —-tyDPes . . o e 49
7.4.1 —-introduction 49

7.4.2 —-elimination e 50

T.h X-tyPes 50
7.5.1 x-introduction e 50

7.5.2 x-elimination 51

7.6 H-types 52
7.6.1 +-introduction 52

7.6.2 H-elimination e 53

T.7 2AyPe . o o e 53
7.7.1 X-introduction e 53

7.7.2 Y-elimination 54

IIT Implementation 57
8 System design 61
8.1 Requirements 61
8.2 FoolProof and Cocktail 62
8.3 Main modules of the system oL 63

9 Terms, items and contexts 65
9.1 Term and item representation L. 65
9.2 Creating terms and items L Lo oo 67
9.3 Contexts e e 67
9.4 Annotating nodes L 68
9.5 Calculating with terms 68
9.6 Codeexample L 69
10 Type checker 71
10.1 PTS representation 71
10.2 Type checker classes e 71
10.3 Code example e 72

11 Structure editing and tactics 73
11.1 Structure editor e 73
11.2 Tactics o o e e e 74
11.3 Code example Lo e 74

12 User interface 7
13 Evaluation and future work 79
Bibliography 81

A Original problem description

83

10

Part 1

Introduction and theoretic
background

11

Chapter 1

Introduction

A proof assistant is a computer program that lets the user construct proofs of theorems in
an interactive way. It does not create a proof automatically. The logics we are interested in
are undecidable, hence not all problems expressed in these logics can be solved automatically,
so user interaction is necessary. The user must supply the intelligence to guide the program,
while the proof assistant does the bookkeeping and makes sure that the user does not perform
any invalid actions. This way only proofs that are correct will be constructed.

A proof assistant can be based on the theory of pure type systems (PTSs) [1] and the
propositions as types principle [13]. The PTS framework allows the description of various
typed lambda calculi. By setting a few parameters in the framework in a specific way, one
gets the simply typed lambda calculus [6]. And by using other parameters, one gets more
expressively typed lambda calculi with polymorphic and dependent types.

The propositions as types principle, also known as Curry-Howard-De Bruijn isomorphism,
states that theorems can be encoded as types. Then finding a proof of a certain theorem is
the same as creating a term of a certain type. This term is called the proof object. Although
it is usually hard for humans to read and understand a proof object, computers can use it to
reconstruct the whole proof derivation, which is more readable for humans.

During this master project a proof assistant has been developed that is based on the
theory of PT'Ss and the propositions as types principle. The PTS framework is extended with
additional type constructors [16] that have a one-on-one correspondence to the operators in
predicate logic due to the propositions as types principle.

Proof assistants that are based on PTSs and the propositions as types principle basically
perform structure editing of terms with bound variables. It would be nice to have a component
toolkit that could facilitate manipulating terms with binding structures. FoolProof [11] is a
component library created for this purpose. One of the goals of this master project was to
build a proof assistant using the FoolProof components to test their usability.

Unfortunately, the FoolProof components were not available in time. So the choice was
made to use the infrastructure of Cocktail [10] instead. Cocktail is a tool for deriving correct
programs. It includes a proof assistant that is based on a specific instance of the PTS
framework without the additional type constructors. The infrastructure of Cocktail could be
used, because it has facilities for structure editing with bound variables, just like FoolProof.

13

1.1 Problem description

The original problem description of this project can be found in Appendix A and is in Dutch.
Here is a translation in English:

“FoolProof is a component library for the manipulation of formal languages with binding
structures within the Delphi development environment. FoolProof contains (or will contain)
components for lexical scanning, syntax highlighting, parsing, tree building, structure editing,
textual views, structural views and context management. A characteristic difference with other
environments are the facilities for manipulating terms with binding structures, such as copy-
ing, substitution, unification, etc. This makes the FoolProof environment particularly suitable
for formal languages like lambda calculi, logics, programming and specification languages.

This master project concerns the development of a proof assistant that is based on type
theory and the propositions as types principle (like Coq and Cocktail). In essence these types of
proof assistants are based on structure editing of typed lambda terms, although the terms them-
selves are usually not visible. The proof assistant will use the available FoolProof components
where possible. It is also a study on the usefulness of these components for the given task.
It is explicitly not the intention to develop an automatic prover. The proof assistant will be
designed such that it can be incorporated as one or more components in the FoolProof system.”

The first part of this master project consisted of studying the theory of proof assistants,
PTSs and the propositions as types principle. The second part was to develop an abstract
model of a proof assistant system. The basis for the model that is used in this project, came
from an internship report by Marco Brassé [3]. His model needed to be reworked, because it
was not really suited to an interactive implementation. The third part was to implement the
abstract model using the FoolProof components.

Regrettably, halfway through the project it turned out the FoolProof components were
not going to be ready in time. So the subject of this master project was changed such that
instead of using the FoolProof components, the infrastructure of Cocktail was used, because
it allows manipulation of terms with binding structures in the same way as FoolProof.

The requirements of the proof assistant include:

e The tool is interactive. It is based on PTSs with additional type constructors and the
propositions as types principle.

e Given a context, a term and a type, the tool is able to check whether the term has the
given type in the given context.

e Given a context and a term, the tool can compute the type of the term.

e Given a context and a type, the tool is able to assist the user in constructing a term
that has the given type.

e The context can be extended with definitions and declarations, such that its well-
formedness is maintained.

e The available type constructors can be enabled and disabled.

e The parameters of the PTS used by the system can be changed.

14

e These settings can be saved to and loaded from a file.
e Theorems can be saved to and loaded from a file.

e The user can interact with the system through text commands and widgets like buttons
and menus.

e The proof assistant has a hybrid interface: the context, terms and types can be viewed
as unstructured text, structured text and graphically.

1.2 Thesis outline

The way this master project was carried out, dictates the structure of this document:

The first part of this thesis describes the theoretic background. Chapter 2 contains a
description of what a proof assistant is and describes a couple of existing proof assistants.
Chapter 3 is about lambda calculi. This includes untyped lambda calculus, typed lambda
calculi, ordinary PTSs and PTSs with additional type constructors. Chapter 4 describes the
propositions as types principle.

The second part of this thesis contains an abstract model for a proof assistant. Chapter
5 gives a description of how terms can be represented. A type checker to check the type of
a term is described in Chapter 6. Chapter 7 contains tactics to construct a term for a given
type.

The final part of this thesis is about an implementation of the abstract model from the
previous part. Chapter 8 describes the general design of the system. Chapter 9 till 13 describe
the implementation details of the term representation, type checker, tactics, structure editor
and the user interface. Each part of the system has its own chapter. In these chapters it is
described how the abstract model maps to the implementation, what could be taken from
Cocktail without modification, what changes had to be made to the Cocktail source code and
what was created from scratch.

The last chapter contains an evaluation and presents some ideas for future work.

Finally, the appendix contains the original problem description as it was at the beginning
of this project, written in Dutch.

15

16

Chapter 2

Proof assistant

A proof assistant is a computer program that helps the user create correct proofs of theorems
in an interactive way. The user tells the proof assistant what to do while the proof assistant
makes sure that every step taken is allowed. The program keeps track of what remains to be
done before a proof is finished. This way only correct proofs are constructed.

Proof assistants are also know as interactive theorem provers. The opposite of an inter-
active theorem prover is an automated theorem prover. This kind of computer program tries
to construct a proof of a conjecture that the user has entered automatically without user
involvement. An automated theorem prover is usually based on a first order logic, because
for these logics good automation is possible. For higher order logics this is more difficult.

Typed lambda calculi and the propositions as types principle are the subjects of the next
two chapters. Proof assistants are usually based on these two concepts, because they allow
theorems to be encoded as types and proofs as terms. Unfinished proofs are represented by
terms that contain typed holes. Holes represent parts of the proof that still have to be proved.
We call these holes goals. When all holes have been filled with terms that have the correct
type, a proof is finished. A finished proof is verified by computing the type of the term. When
the type is equivalent to the encoded theorem, the proof is correct. The term that encodes
the proof is called the proof object. When someone wants to validate the result of a proof
assistant or its type checker, the type of the proof object can be computed manually or by
another type checker. Computing the type of a proof object reconstructs the whole proof
derivation and theorem.

2.1 Other proof assistants

During this master project a number of existing proof assistants were studied. In this section
a couple of those tools are described, including their strengths and points for improvement.

2.1.1 Coq

Coq [7] is a proof assistant that is the result of more than twenty years of research. Devel-
opment of the tool started in 1984 by Thierry Coquand and Gérard Huet at INRIA. In the
first few years it was based on the calculus of constructions [9]. Since 1991 the calculus is
extended to the calculus of inductive constructions [8]. Coq allows the user to define functions
and predicates. It comes with libraries for reasoning with, among others, natural numbers,

17

integers, rational numbers, lists and finite sets. Coq is written in the programming language
Objective Caml with a bit of C. Its source code can be downloaded from its website.

User interaction with Coq is text-based, but the proof assistant comes with a graphical
user interface. Third party user interfaces for Coq are available. The graphical user interface
of Coq has a menu in which all commands can be found. It is also possible to click on the
current goal to get a list of often used commands. This list does not depend on the structure
of the term that is clicked on, so it contains commands that cause an error when the user
tries to use it. Another weak point of Coq is that when an unfinished proof contains multiple
holes it seems to be impossible to select another goal than the goal Coq has selected.

2.1.2 Cocktail

Cocktail [10] is a tool for deriving correct programs from their specification through stepwise
refinement. It was developed by Michael Franssen during his PhD research at the Eindhoven
University of Technology in 2000. Cocktail contains an interactive and an automated theorem
prover, but for this master project only the interactive theorem prover is of interest. Cocktail
is based on a typed lambda calculus that models first order logic closely. It is not based on
higher order logics, because they are not needed for Cocktail’s purpose and good automation
for higher order theorems is difficult.

Cocktail is written in Java. It has a graphical user interface that brings the number of
times the user has to enter commands through the keyboard to a minimum. Proof derivations
are graphically represented in the flag notation and are constructed through drag-and-drop
operations and by clicking on buttons and parts of the proof. Cocktail supports both forward
and backward reasoning.

18

Chapter 3

Lambda calculi

Proof assistants can be based on the theory of pure type systems (PTSs) and the propositions
as types principle. In this chapter we describe the notation we use to write down PTSs and
the propositions as types principle is described in the next chapter. For a more in depth
description of PTSs we refer the reader to Barendregt’s document on lambda calculi with
types [1]. The PTS framework is a method to describe a number of typed lambda calculi.
But before we discuss typed lambda calculi, we give a short description of the untyped variant.

3.1 Untyped lambda calculus

The untyped lambda calculus is a formal system designed in the 1930’s by Alonzo Church [4,
5]. He wanted to use it as a foundation for a formal theory of mathematics. The calculus
defines the input-output behavior of functions in the most abstract view. In the untyped
lambda calculus there is a set of variables and the term construction principles abstraction
and application to create lambda terms, and a ‘calculation rule’ called reduction, which uses
the notion of substitution. These concepts are explained in the next section where we extend
the system with types, because the untyped lambda calculus has some drawbacks that can be
resolved by adding types. These drawbacks include counter-intuitive self-applications, terms
without normal forms that represent infinite calculations and fixed points for every term,
which is in contrast to the usual behavior of functions.

3.2 Pure type systems

In typed lambda calculus there is the notion of typing judgment, which is formally written as
I'- M :7, where I" is a context and M and 7 are terms. It should be read as: “In a context
I' term M has type 7.” To clarify what this statement means, we define terms and contexts.
We also need a set of type derivation rules to decide whether a typing judgment holds. These
type derivation rules depend on how the PTS framework [1] is instantiated.

The set 7 of pseudo-terms is defined via the following abstract syntax:
T:=S|V|AXV:T.T | 1IV:T.T|TT

S is a set of sorts and V' is a set of variables. AV:7.7 is used for constructing abstractions
over terms. For example, when z is a variable and 7 and M are terms, then the term (Az:7. M)

19

is the abstraction of x over M and 7 is the type of x. (IIV:7.7) is used for constructing
abstractions over types. 7 7 is used for function applications. For example, when f and a
are terms then the term f a is the application of function f on argument a.

Reduction is defined as:
(Az:m. M) N > M|z := NJ.

In words this is: “Applying function (Az:7.M) on argument N reduces to M in which every
occurrence of x is replaced by N.”. M|z := N] is defined as:

x|z := N] N
e =N] = y
(Ay:A.B)[z := N] = (Ay:Alx := N]. Bz := NJ)
(Ily:A.B)[x :== N] = (Ily:A[z := N].B[z := NJ])
(AB)z:=N] = (Alz:=N)) (Blz := N))

We obey Barendregt’s variable convention [1], which has the consequence that the variable y
does not occur in N in (Ay:A.B)[x := N| and (Ily:A. B)[x := N].

A context is a list that has the structure x1: 7,29 :79,..., 2y : Th, Where x; is a variable
and 7; is a term for ¢ = 1,...,n. z;:7; means that x; is of type 7;. The empty context is
written as <>.

A PTS is specified by a triple (S, A, R) where S is again a set of sorts, A C S x S is a
set of axioms and R C & x 8 x S is a set of rules that specify which II-types may be formed.
An axiom has the form (s1:s9) with s1,s92 € S and a rule has the the form (sq, s2,s3) with
$1,89,83 € S.

By instantiating these parameters a specific type system is formed. For example, the
simply typed lambda calculus [6] can be described as a PTS when the parameters are set as
follows: S = {*,0}, A = {(*:0)} and R = {(,*,%)}. And in the same way, the calculus
of constructions [9] can be written as a PTS when the parameters are set as: S = {*,0},
A= {(* : D)} and R = {(*7 *,%), (0, %, %), (*,0,0), (0, 0, D)}

Now that we have terms, contexts and PTS specifications, we give the type derivation
rules that are used to compute the type of a given term:

(axiom) <> F 51189 if (s1:89) € A
I'FA:s .
(start) T oAFz A ife ¢l

I'-B:C T'FA:s
IaxA-B:C

(weaken) ife ¢l

I'tA:s1 T',z:AF B:sy

(M-form) '+ (IIx:A.B) : s3

if (s1,89,53) € R

20

NaxAFb:B TI'F (IIx:A.B):s

(II-intro) I+ (\z:A.b): (Ilz:A. B)
‘ FtF:(Ilz:A.B) Tka:A
(Il-elim) T+ Fa:Blz:=d
'EM:mp T'hmis e~
(conv)

I'EM:m

In these rules s ranges over S, x ¢ I' means that x: 7 does not appear in I" for any 7 and
T1 ~ T means that 7 and m are equal modulo conversion.

3.3 Additional type constructors

So far, the only type constructor we have seen is the Il-type constructor. In this section we
extend the PTS framework with additional type constructors: —, x,+ and ¥ [16]. To accom-
modate the PTS framework for these new type constructors we extend the PTS specification
to a 7-tuple (S, A, RH,R_),RX,R+,RE) where S, A, R are the same as in the ordinary
PTS framework and RH,RX,R"",RE C 8§ x8 xS are sets of rules for specifying which
—, X, + and X-types may be formed. These new types can be encoded using only the II-type
constructor, but this requires higher order logic and we do not want to restrict the user to
use higher order logic.

Each new type constructor has its own subsection in which we extend the abstract syntax
for the set of pseudo-terms and the rules for reduction, substitution and type derivation.

3.3.1 —-types

—-types represent function types. For example, A— B is the set of all functions from A to
B. Usually in PTSs A—B is just an abbreviation for Ilx:A. B where x does not appear in
B. But in the proof assistant that is developed during this master project we distinguish
between these two type constructors, because if we want to disable one type constructor we
do not automatically also want to forbid the use of the other one.

The abstract syntax for the set 7 of pseudo-terms is extended with one production alter-
native:

To=...|T->T
The reduction mechanism is extended with the following rules:

A—B > (Ilz:A.B) withxz ¢ B
(Ilz:A.B) > A—»B ifz ¢ B

Because the abstract syntax is extended with only one production alternative, the substi-
tution rules are also extended with only one rule:

(A—B)[z:= N|] = (Alz:= N])—(B[z:= N])

21

The type derivation rules are extended with:

Ff‘A:Sl Fl_B:SQ . s
(—-form) TFA-B.s, if (s1,s92,83) € R
(—-intro) INax:A+-b:B ' A—B:s
THILro TF (M\aiAb): A>B
(—-clim) I'tF:A—-»B T'tFa:A
T T Fa:B
3.3.2 Xx-types

AxB is the Cartesian product of A and B. The pair of a: A and b: B is denoted by (a,b)
and has type Ax B. Taking the first element of (a,b) is denoted by 71 ({a, b)), which reduces
to a. Taking the second element goes in a similar manner.

The abstract syntax for the set 7 of pseudo-terms is extended in the following way:

T

o I TTY | TXT | mi(T) | ma(T)
The reduction rules are extended with the following rules:

w1 ({a,b)) > a
m2((a,b)) > b

The substitution rules are extended with the following rules:

(AxB)le:=N] = (Al := N))x(Ble := N))
(A,B)[z:=N] = (A[z:= N],Blz = N))
(m(A)z = N] = mi(Ae = N])

(ra(A)fa = N] = ma(Ala := N])

The type derivation rules are extended with the following rules:

I'tA:s1y T'HB:sy . X
(x-form) TF AxB s, if (s1,52,83) € R
(x-intro) I'Fa:A TTHb0:B T'HAXB:s
e 't {a,b): AxB
(x-elim,) I'-M:AxB
i FEm(M):A
(x-elimy) I'-M:AxB
2 T mo(M): B

22

3.3.3 +-types

A+B is the sum of A and B. It is also known as the disjoint union. When A and B are sets,
then A+B is defined as {(1,a)|a € A} U{(2,b)|b € B}. When a has type A and b has type
B, then inj,(A+B,a) and inj,(A+DB,b) are of type A+B. In inj;(A+B,a) the type A+B
must be explicitly stated, because from inj;(a) alone it is impossible to decide whether its
type is A+B or for example A+X. The same holds for inj,(A+B,b). When f; is a function
of type A—C and f> is a function of type B—C, then f1V fs is the function that has type
(A+B)—C. Applying f1V f2 on inj; (A+B, a) reduces to f1 a and applying it on inj,(A+ B, b)
reduces to fo b.

The abstract syntax for the set 7 of pseudo-terms is extended in the following way:
T uo=... |TVvT | T+T | inj;(7,7) | injo(7,7T)
The reduction rules are extended with the following rules:

(f1Vf2) njy (A+B,¢c) > fic
(f1Vf2) njy(A+B,¢c) > fac

The substitution rules are extended with the following rules:

(A+B)[z := N] (Alz := N])+(B[z := NJ)
inj; (4, B)[z := N] = inj;(Alx := N], B[z := NJ)
injy(A, B)[z := N] = injy(Alx := N], B[z := N])

(AVB)z = N] = (Afs = N))v(Blz = N)

The type derivation rules are extended with the following rules:

' A: I'B:

(+-form) T I—SIA—i—B -, %2 if (s1,52,83) € RT
(-4-introy) I'ta:A T'HA+B:s

oL T Finj;(A+B,a): A+B
(+-introy) I'Fb:B T'HA+B:s

HLroz T F inj,(A+B,b): A+B
(+4-elim) 'k f1:A1—C T'F f3:A4—C T'F A1+As—C:s

' fiv/fs: (A1+A2)—>C

(—i——elim’) 'k f1 : A1—>C '+ f2 : A2—>C I'ke: A1+A2

't fivfae:C

23

3.3.4 X-types

Dependent sum types, that have the form (Xx:A.B), can be seen as a generalization of the
sum type. For example, A1+ A, is the same as “3i € {1,2}. A;”. When a has type A and b has
type Bz := al, then inj((Xx:A. B), a,b) has type (Xx:A. B). When F has type (Ilz:A. B—C),
then VF has type (Xz:A. B)—C. Applying VF to inj((X2:A.B),a,b) reduces to F ab.

The abstract syntax for the set 7 of pseudo-terms is extended in the following way:
To=...|VT | EV:T.T | inj(7,7,7)
The reduction rules are extended with the following rule:
VF inj((Xx:A.B),a,b) > Fab

The substitution rules are extended with the following rules:

(Xy:A.B)[x := N] = (Xy:Alz:= N|.Blz := NJ)
inj(A, B,C)[z := N] = inj(A[z := NJ|, B[z := N],C[z := NJ)
(VA)[x:==N] = V(A[z:=N))

Note that we still obey Barendregt’s variable convention, which has the consequence that in
(Xy:A. B)[x := N] the variable y does not occur in N.

The type derivation rules are extended with the following rules:

I'FA:s; Tax:AF B:sg

: %
(2-form) T (50AB) 55 if (s1,s92,83) € R
(S-intro) 'Fa:A TFHb:Blz:=a] ' (Z2:A.B):s
THILro T F inj(Sz:A.B),a,b) : (S2:A.B)
. 't F:(Ilz:A.B—C) TI'F (¥2:A.B)—C':s
(-elim) TFVE:(Sa:A B)—C
(S-elim’) 'tM:(¥2:A.B) Tk F:(Illz:A.B—=C) T'HC:s

'EVEM:C

24

Chapter 4

Propositions as types

Proof assistants can be based on the theory of pure type systems and the propositions as types
principle [13]. In the previous chapter we described the PTS framework, here we describe the
propositions as types principle.

The introduction and elimination rules of the type derivation rules, which were introduced
in the previous chapter, look similar to the derivation rules in predicate logic. In Table 4.1 the
introduction and elimination rules of implications in logic and arrow types in typed lambda
calculi are shown. When in the —-rules the terms, the :-symbols and the premise containing
an s are removed, and the —-symbol is replaced by a =-symbol, then the rules are identical.
There is a similar correspondence between the x, 4+, II, 3-type constructors and the A, V,V, 3-
connectives. This correspondence between logic and typed lambda calculus is known as the
propositions as types principle.

= —
Htro I''AFB I'e:A+-b:B T'HA—B:s
e TFA=B TF (\:A.b): A-B
i TFA=B TFA THFF:A-B TFa:A
et TFB TFFa: B

Table 4.1: Introduction and elimination rules

In the previous chapter the judgment I' = M :7 had the interpretation: “In context I,
term M has type 7”. In this chapter it has another interpretation: “In context I', term M
encodes the proof of proposition 7.

4.1 Term finding example

Suppose we want to find a term that has type P—(Q—P) in the simply typed lambda
calculus [6]. We can find such a term by applying the type derivation rules backwards.
P—(Q—P) has the form A— B, so we use the rule —-intro. According to the rule we need
to extend the context with a variable that has type P and then we need to find a term that
has type Q—P:

25

m 7:Q—P

n 7:P—(Q—P) —-intro on (1) and (m)

Again, the type of the term that we want to find is of the form A—B. So we take a similar
step:

1 z:P

2 y:Q

l 7P
m 7Q—P —-intro on (2) and (1)

n 7:P—(Q—P) —-intro on (1) and (m)

Now we need to find a term that has type P. Fortunately, we have such a term in the
context:

1 x:P

2 y:Q

3 x:P Start on (1)

4 7Q—P —-intro on (2) and (3)
5 7.P—(Q—P) —-introon (1) and (4)

The rest of this example follows from the rule —-intro, twice:

1 x:P

2 y:Q

3 x:P Start on (1)

4 (A\y:Q.z):Q—P —-intro on (2) and (3)
5 (Az:P.(\y:Q.x)):P—(Q—P) —-intro on (1) and (4)

When in this last figure we remove the terms and the :-symbol, we change every —-symbol
to a =-symbol and we change the commentary accordingly, we get:

26

1 P

2 Q

3 P assumption on (1)

4 Q=P =-intro on (2) and (3)
5 P=(Q=P) =-introon (1) and (4)

This derivation is a proof of P=(Q=-P) being a tautology. What we basically did is, we
encoded the proposition P=-(Q=-P) as the type P—(Q—P) and we tried to find a term that
has this type. Hence the name propositions as types.

4.2 Type derivation example

Suppose we want to derive the type of the term (Azx:P.(Af:(P—@Q). f z)) in the simply typed
lambda calculus. The term is a A-term, so we use the rule —-intro. According to the rule,
we need to extend the context with a variable z of type P and derive the type of the body of
the A-term:

m Af:(P—Q).f x):?
n (A:P.(\f:(P—Q).fz)):? —-introon (1) and (m)

Now we have again a A-term, so we repeat the procedure:

1 x:P

2 f:P—Q

l fa?
m (Af:(P—=Q).fx):? —-intro on (2) and (1)

n (A:P.(\f:(P—Q).fz)):? —-introon (1) and (m)

f x is an application, so we use the —-elim rule, which means that we need to find the
type of f and of x:

27

1 x:P

2 f:P—Q

i 7

k x:?

l fa? —-elim on (j) and (k)
m (Af:(P—Q).fx):? —-intro on (2) and (1)

(
n (Az:P.(\f:(P—Q).fz)):? —-intro on (1) and (m)

f and x are both in the context, so we know their types:

1 [aP

2 FiP—Q

3 F:P—Q Start on (2)

4 x:P Start on (1)

5 fa:? —-elim on (3) and (4)
6 (Af:(P—Q). f x):? —-intro on (2) and (5)
7 (AmP.(\f:(P—Q).fx)):? —-intro on (1) and (6)

f has type P—(Q and x has type P. The type of x matches with the left hand side of the
type of f, so f x has type Q:

1 [zP

2 F:P—Q

3 f:P—Q Start on (2)

4 2P Start on (1)

5 fa:Q —-elim on (3) and (4)
6 Af:(P—Q). f 2):? —-intro on (2) and (5)
7T (\:P.(Af:(P—Q).fx)):? —-intro on (1) and (6)

The rest of this example follows from the —-intro, twice:

28

1 [ap
2 FP—Q

3 F:P—Q Start on (2)

4 2P Start on (1)

5 Fa:Q —-clim on (3) and (4)
6 | (M:(P—Q).fz):(P—Q)—Q —-intro on (2) and (5)
T Oa:P.(\f:(P—Q). f2)):P—((P—Q)—Q) —-intro on (1) and (6)

We have derived that the type of the term (Az:P.(Af:(P—Q).f x)) is P—((P—Q)—Q).
The term determines the whole structure of this type derivation. Due to the propositions as
types principle we have now reconstructed a proof for the tautology P=((P=Q)=-@). This
is more clear when all terms and :-symbols are removed and all —-symbols are replaced by
=-symbols. The term is an encoding of the proof. This is known as proofs as terms.

29

30

Part 11

Abstract code model

31

Part II contains the abstract code of a proof assistant. Chapter 5 describes how we
represent terms. A type checker to compute and check the type of a term is given in Chapter
6. Chapter 7 contains tactics to construct a term, given a type. In Part III an implementation
of this abstract code model is described.

33

34

Chapter 5

Terms, items and contexts

To support convenient manipulation of terms, they are represented as trees, where every node
in the tree is annotated with the type of the subterm that the node represents. Incomplete
proofs have holes, so we allow that terms have holes too, each annotated with its desired
type. An item is the defining occurrence of a variable name and its type. A context is a list
of items. Every node n in the tree has a local context, which corresponds to the list of items
that is gathered while walking the shortest path that starts in the root node and ends in node
n. The global context is just a list of items, separate from the tree.

For example, in Figure 5.1 the tree that represents the term (Az:P.(Ay:Q.z)) is shown.
The global context consists of the list P:x, Q:x. Every occurrence of P and () in the figure
refers to the global context, but to keep the figure legible the global context and the bindings
to the global variables are not shown. The root node is a A-node and the local context in this
node is empty. The local context of the other A-node consists only of the item z:P. The local
context of the node that is shown as an x without a box around it, is the list z: P, y:Q). This
means that the variable z is in scope and the binding is shown as an arrow pointing to the
defining occurrence of the variable.

Figure 5.1: Tree representation of (A\z:P.(A\y:Q.x))

35

To create such trees we need a set of sorts and a set of variable names, which we will call
respectively Sort and Name. We will also need some subroutines:

A function that creates an item is needed.

createltem(AName : Name, AType : Node) : Node

For every kind of term that is introduced in Chapter 3 we need a function that cre-
ates the corresponding node. To represent holes in proofs, we need a function for creat-
ing hole-nodes. For every argument in the following functions, we assume there is a selec-
tion operator to retrieve its value. For example, when a pair-node has been created with
pair := createPair(A, B), the values A and B are retrieved by pair.FLeft and pair.FRight.
This also holds for items.

createSort(ASortName : Sort) : Node

create Variable(Altem : Node) : Node

createLambda(Altem : Node, ABody : Node) : Node
create Arrow (A Premise : Node, AConclusion : Node) : Node
createPi(Altem : Node, ABody : Node) : Node

create Application (A Function : Node, AArgument : Node) : Node
createPair(ALeft : Node, ARight : Node) : Node
createProduct(ALeft : Node, ARight : Node) : Node
createProjectionLeft (A Pair : Node) : Node
createProjectionRight (APair : Node) : Node

createSplit(ALeft : Node, ARight : Node) : Node
createSum(ALeft : Node, ARight : Node) : Node
createlnjectionLeft(AType : Node, ATerm : Node) : Node
createlnjectionRight(AType : Node, ATerm : Node) : Node
createSplitGeneralization (AFunction : Node) : Node
createSigma(Altem : Node, ABody : Node) : Node
createlnjectionGeneralization(AType : Node, ATerml1 : Node, ATerm?2 : Node) : Node

createHole() : Node

We also need a procedure that annotates a node with a type and a function to return the
type of a term.

36

o setType(ATerm : Node, AType : Node)
o getType(ATerm : Node) : Node

For the global context, we need a function that creates an empty context and a procedure
to extend a context with an item. To maintain the well-formedness of the context, an item
should only be added to the context when its type is typable in the current global context.

o createEmptyContext() : Context
o cxtendContext(AContext : Context, Altem : Node)

To calculate with terms, subroutines for copying, substitution, reduction to normal form,
testing for equality modulo conversion and unification are needed. We require that reducing
to normal form is possible in all PTSs that are used in the proof assistant.

o copy(ATerm : Node) : Node

o substitute(ATerml1 : Node, AVariableName : Name, ATerm2 : Node) : Node
e reduce(ATerm : Node) : Node

e isConvertible(ATerml1 : Node, ATerm?2 : Node) : Boolean

o unify(ATerml! : Node, ATerm2 : Node) : SubstitutionSet

With these subroutines the tree in Figure 5.1 can be created in the following way (rootNode
represents the root of the tree):

P := createltem(” P”, createSort(”*"));
Q := createltem (" Q" createSort(”x”));
globalContext := createEmptyContext();
extendContext(globalContext, P);
extendContext(globalContext, Q);

x := createltem("x”, createVariable(P));

y := createltem("y”, createVariable(Q));

zNode = createVariable(x);
setType(xzNode, create Variable(P));

lyNode := createLambda(y, xNode);
setType(lyNode, createArrow(create Variable(Q), copy(getType(zNode))));

rootNode = createLambda(x, lyNode);

root Type := create Arrow(create Variable(P), copy(getType(lyNode)));
set Type(rootNode, rootType);

37

38

Chapter 6

Type checker

Now that we have a way to represent terms, items and contexts, we want to compute the type
of a specific term in a specific context. Or when a term is annotated with a type, we want
to check whether this annotation is correct. For this we use the type derivation rules of the
PTS framework. These rules depend on the values of S, A, RH,R_),RX,R+ and R that
specify a PTS with additional type constructors. We assume we have representations of these
sets and we can apply the usual set operations on them, like checking whether an object is
an element of a set.

We want an efficient implementation of a type checker and this can be done by using a
syntax directed subroutine. Unfortunately, the type derivation rules in Section 3.3 are not
syntax directed. This problem is caused by the conversion rule: By looking at the structure
of a specific term it cannot be decided when to apply this rule. A solution is to distribute
the conversion rule over the other rules. This makes a separate conversion rule obsolete and
thus it can be removed. This is done in the following altered type derivation rules.

6.1 Altered type derivation rules

Some of the altered type derivation rules have a side condition that states that a context should
be valid. Checking whether a context is valid can be done with the following derivation rules.
I' - ok means that context I' is valid.

(ok-axiom) <> F ok

I'Fok THA:s
T, x:AF ok

(ok-ext)

With the new axiom-rule, sorts can be typed in every valid context. The start-rule and
the weaken-rule have been combined into one rule.

(axiom) 'k s1:89 if (s1:52) € A and I is a valid context

T'FA:s

(start&weaken) T A ALz A

if I x:A, A is a valid context

39

The Il-form-rule and the Il-elim-rule have been altered, while the Il-intro-rule is left
unchanged.

I'tA:01 o1 ~s1
(H—form) F,:L‘:Af‘B:Jg 09 >~ S9 if (81,82,83) ERH
I'F (IIz:A.B) : s3

MzAFb:B T'F (IIx:A.B):s

(II-intro) ' (Az:A.b): (IIx:A. B)

'tF:7 7~ (llz:A.B)
(IT-elim) 'a:A TF{Ix:A.B):s
'+ Fa:Blz:=d]

The —-form-rule and the —-elim-rule have been altered, while the —-intro-rule is left
unchanged.

I'tA:01 o01~s

(—-form) I'FB:oy o098y if (s1,s92,83) € R
TFA-B: 3
. INx:A+-b:B I'F A—B:s
(—-intro)

' (Az:A.b): A—B

'-F:7 1~A—B
(—-elim) I'a:A I'FA—DB:s
I'-Fa:B

The rules x-form, x-elim; and x-elims have been altered, while the x-intro-rule is left
unchanged.

Fl‘A:Ul o1 = 81

(x-form) F'FB:oy o09~s9 if (s1,89,583) € R™
TF AxB:s;
(x-intro) I'Fa:A THbL:B T'F AxB:s
THEe TF (a,b): AxB
(x-elimy) 'FM:7 1T~AxB TI' AxB:s
“eh TF (M)A
. 'FM:7 1T~AxB TI' AxB:s
(x-elimy)

I'Fmy(M):B

40

All +-rules are changed. The +-elim’-rule is even removed. It was used for computing
the type of terms that ha