
 Eindhoven University of Technology

MASTER

Unique sequential decomposition in process algebras with 0 and 1

Senders, B.A.G.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/6f5f1511-600e-4816-b4de-e98626a35a24

Eindhoven University of Technology

Department of Mathematics and Computer Science

Master’s Thesis

Unique Sequential Decomposition

in Process Algebras with 0 and 1

by

B.A.G. Senders

Supervisor: Dr. B. Luttik
Tutor: P.J.A. van Tilburg, MSc

Eindhoven, August 12, 2009

Preface

A little less than a year ago, I started the last batch of courses for my masters
education in Computer Science and Engineering at the Eindhoven University of
Technology. One of these courses was a formal methods seminar, given by the
Formal Methods research group of the University’s Department of Mathematics
and Computer Science. This seminar focused on exploring the gap between
process algebra and automata theory. I always had some inkling of interest
in both subjects, but actual hands-on experience had been limited to small
exercises. The seminar taught me that working on a purely theoretical research
problem – especially with a group of peers – can be a very rewarding and fulfilling
experience, and it motivated me to find a related subject for my master project.

This is why, in January 2009, I decided to continue along this path and perform
my final master project at the Formal Methods group. There were several
research topics available, of which the current one, suggested by Bas Luttik,
piqued my interest the most: it provided the process algebraic setting which
I came to like during the seminar, with a well-defined starting point (namely
sequential decomposition in BPA1) and several options to research after that
(decomposition in BPA0,1 and/or BPP0,1, recursion, generalisation to monoids).
This thesis is the culmination of about half a year’s work of research, proving
and writing on the subject.

I wish to heartily thank my supervisor Bas Luttik and my tutor and friend Paul
van Tilburg for their continuous guidance during the project, helpful nudges in
the right direction, and conversations that gave me motivation and support in
times of doubt and uncertainty. Doubts during my studies were also alleviated
by Pieter Cuijpers (who taught the seminar course and greatly stimulated my
enthusiasm) and Jaap van der Woude, to both of whom I am very grateful as
well.

Many thanks also go to my friends, especially those studying at the university,
for providing a very pleasurable working environment with just the right amount
of distraction to get the job done; and to my parents, sister and grandparents,
for always showing interest and providing encouragement to finish my studies.

Bram Senders

Eindhoven, August 2, 2009

Summary

In this thesis we research the existence of unique sequential decomposition in
process algebras, specifically in algebras containing the empty process 1 and
optionally the deadlock process 0. Having a unique decomposition result for
an algebra facilitates proving properties like decidability of bisimulation and
finite axiomatisation, and in general makes sure each process can be given in
a standard form with known properties. Sequential decompositions are cur-
rently less well researched than parallel decompositions, and not many results
for decomposition of processes including 0 and/or 1 exist.

Therefore we take the relatively simple process algebras BPA1 and BPA0,1 to
investigate whether these algebras have a unique sequential decomposition. We
first prove a cancellation theorem that aids us in proving uniqueness of sequen-
tial decompositions. Then we prove that all processes in BPA1 have a unique
sequential prime decomposition. We briefly show that this does not hold in gen-
eral for processes in BPA0,1, then go on to investigate two alternative notions
of unique decomposition for processes in BPA0,1, both of which are as close
as possible to a prime decomposition. One decomposition concerns processes
which always end in deadlock; the other concerns processes which sometimes
end in deadlock.

Furthermore we generalise the unique sequential decomposition result obtained
for BPA1 to a setting of monoids. We propose a number of properties that
should be satisfied for a monoid to have a unique prime decomposition result,
then prove that every element from a monoid satisfying these properties has
a unique prime decomposition. This generalisation shows that decomposition
does not depend on the exact semantics of the operators present in algebras
like BPA1; in fact, a decomposition can be given for any element in a setting
with a sequential operator that adheres to the proposed properties. We also
prove that cancellation is a necessary property that cannot be derived from the
others. Finally we show that BPA1 is in fact one of the algebras satisfying the
properties.

Contents

1 Introduction 1

2 Syntax, semantics and other preliminaries 5

2.1 Bisimilarity of processes . 7

2.2 Size of processes . 8

3 Cancellation 11

4 Decomposition 15

4.1 Deadlock-free processes . 15

4.2 Always-deadlocking processes . 17

4.3 Sometimes-deadlocking processes 22

4.4 Analysis of decompositions with deadlock 25

5 Generalisation of decomposition to monoids 27

5.1 Unique decomposition monoids 28

5.2 Decomposition proof for monoids 29

5.3 Cancellation for monoids . 31

5.4 BPA1 as unique decomposition monoid 34

6 Conclusion 37

References 39

A Some preliminary results regarding recursion 41

Chapter 1

Introduction

In the field of process algebra, it is often useful to be able to write every process
in some canonical form. A form that is often used for this is the prime decom-
position. The idea of a prime decomposition is derived from the fundamental
theorem of arithmetic as formulated by Euclid. This theorem states that every
positive natural number can be written as a product of prime numbers, and
that there is only one way of doing so for each number, i.e., that this “decom-
position” of a number into a set of prime numbers is unique. For example, the
only way to write the number 294 as a product of primes is as 2 × 3 × 7 × 7
(disregarding the ordering of the primes in the product).

In the same way, it is possible in some process algebras to write every process as
a product of a number of prime processes. In this case, the “product” operator
is usually a composition operator, such as the parallel or sequential operators
present in many process algebras. Primeness then becomes the inability to
further decompose a process by the chosen operator. However, it is not known
for process algebras in general whether a prime decomposition exists, and if it
does, whether this decomposition is necessarily unique.

Milner and Moller were the first to address the question of whether prime de-
composition is unique with regard to parallel processes [18]; they proved that
uniqueness of the decomposition depends on the congruence being used (bisim-
ilarity, failures equivalence, trace equivalence), and on whether or not “infinite
processes” – processes not limited to performing a bounded or finite number
of actions – are allowed. They proved these results twice, first without, then
with the aid of a cancellation lemma. Both results were first noted in Moller’s
PhD thesis [19]. The cancellation lemma was first used by Castellani and Hen-
nessy (as part of a larger simplification lemma) in the context of distributed
bisimulations [10].

Significant work has been performed by Luttik and Van Oostrom in generalising
the notion of unique parallel prime decompositions to a setting of commutative
monoids [17]. In this way, it suffices to provide a reduction of the process algebra
to a commutative monoid for which the required properties hold, instead of
needing to prove a unique decomposition separately for every process algebra.

2 1 Introduction

Use for a unique prime decomposition

Having a unique decomposition result for process algebras is useful in several
ways. In its most general setting, having unique prime decomposition fulfils a
technical requirement for making sure each process can be given in a standard
form with known properties. This standard form then facilitates being able
to prove other properties. For one, it can be used to prove the decidability of
bisimulation for an algebra, as is done for example by Christensen, Hirshfeld and
Moller for BPP [12]. Secondly, unique decomposition can also be used to prove
or disprove the existence of a finite axiomatisation of a process algebra. This
is demonstrated by Moller, who proves the existence of such an axiomatisation
for PA [20], and disproves it for CCS [21].

Further results regarding the use of a decomposition in general, and unique
decomposition in particular, are given in Christensen’s PhD thesis [11, pp. 4–7].

Sequential decomposition with 0 and 1

In this thesis, we research a number of aspects of unique prime decomposition
that have not received as much attention as results obtained in other process
algebras. Specifically we address sequential decomposition, in contrast with the
more often-researched parallel decomposition; and we do so in a setting with the
empty process 1 and optionally a deadlock process 0.

To this end we pick two simple process algebras called BPA1 and BPA0,1, both
derived from BPA, the Basic Process Algebra. BPA was first defined by Bergstra
and Klop [8]. BPA1 adds the empty process 1 to BPA, and BPA0,1 furthermore
adds the deadlock process 0 to BPA1. The empty process was initially intro-
duced (represented by the symbol ε) by Koymans and Vrancken [15], and im-
proved by Vrancken [22]. They defined a different semantics for these processes
than the one we use here; we use Structural Operational Semantics as given for
an algebra containing 0 and 1 by Baeten in e.g. [3]. The deadlock process was
already present (represented by the symbol δ) in [8], but not in combination
with BPA (which is also mentioned in that paper), only in the more general
process theory ACP.

Our aim is now to prove that each process in BPA1 has a unique prime de-
composition with respect to the sequential composition operator. It is already
known that not all processes in BPA0,1 have a prime decomposition, so a unique
prime decomposition result does not exist for BPA0,1. In light of this situation,
we investigate whether an alternative decomposition for processes in BPA0,1 –
one as close as possible to being a prime decomposition – does yield a unique
result. We actually come up with two decomposition results for processes in
BPA0,1 which have deadlock; one for processes which always deadlock and one
for processes which sometimes deadlock. Together with the decomposition re-
sults obtained for BPA1, this provides a unique decomposition for every process
in BPA0,1.

Lastly we generalise this notion of sequential prime decomposition to a monoidic
setting, in a similar way as has been done for decomposition using a commuta-
tive operator (like the parallel composition operator) by Luttik and Van Oost-
rom [17]. This shows that unique prime decomposition does not hold only for
BPA1, but for any algebra (or other structure) satisfying the proposed proper-
ties.

1 Introduction 3

The role of 0 and 1

Both 0 and 1 enhance the expressiveness of a process algebra which includes
them.

The addition of the deadlock process 0 enables processes to enter a state from
which neither performing an action, nor terminating is possible. The occurrence
of deadlock is most often the result of failing to communicate in a process algebra
which includes the concepts of parallelism and communication. Even though
these concepts are not included in the algebras we study here, studying 0 in a
smaller context still enables us to study the effects of deadlock on sequential
decomposition.

The empty process 1 is significant because it allows for impure termination: the
possibility for a process to terminate when there are still actions that can be
performed. To be able to do so is very important when considering the relation
between process algebra and automata theory; two fields which have much in
common, but have historically not been strongly linked. This link is explored
in more detail by Baeten, Cuijpers, Luttik and Van Tilburg [5, 6, 7]. Now, in
an automaton it is possible to designate any subset of states as final states, yet
in both CCS- and ACP-style process algebras (including BPA without 1) it is
only possible to terminate when no actions can be performed anymore. This
incompatibility is alleviated by introducing impure termination. A different case
for inclusion of an explicit empty process in process algebras, for embedding
untimed into timed process algebra, is also argued by Baeten [2].

By proving the existence (or absence) of a unique prime decomposition result in
process algebras that include 0 and/or 1, we hope to facilitate a better under-
standing of the consequences arising from adding these processes to an algebra.
Counterexamples showing where unique decomposition fails are especially useful
in this area.

Methodology

In both BPA1 and BPA0,1 we prove the existence of a unique decomposition
by way of a cancellation lemma; this way of proving decomposition was first
performed by Moller in his PhD thesis [19], and enables a much shorter proof
than is possible without using cancellation. We prove cancellation by showing
that it is a bisimulation relation, as is also done by e.g. Milner and Moller
for parallel processes [18]. However, while the technique is the same, the actual
contents of the proof are quite different, on the one hand because we are proving
a sequential rather than a parallel result, and on the other hand because impure
termination using 1 complicates matters somewhat.

The actual decomposition proofs are performed by induction on the size of a
process term; these are mostly inspired by a very brief proof of decomposition
for BPA by Burkart, Caucal, Moller and Steffen [9]. The proof technique we use
is the same as theirs, however our proof is more detailed, and also somewhat
more complicated, again because of the addition of 1.

Results in proving unique prime decomposition for monoids are based on the
works of Luttik [16], especially as a basis for the properties which are required
to prove decomposition in a monoidic setting, and Luttik and Van Oostrom [17]

4 1 Introduction

for the way of proving that a process algebra divided using bisimulation is a
monoid.

Limitations

The biggest limitation present in the current work is that we only consider finite
processes, i.e., processes for which the specification is finite and non-recursive.
This is because in general unique prime decomposition does not hold for infinite
processes, and investigating alternative notions of decomposition where infinite
processes are possible (analogous to notions of decomposition which allow for
deadlock) was outside of the scope of this thesis. We also only consider closed
terms. A consequence of this is that applications of decomposition like the de-
cidability of bisimulation and finite axiomatisation are not applicable here yet,
since these applications are only useful for algebras that contain infinite pro-
cesses or open terms; in closed non-recursive terms the sequential composition
operator can actually be factored out. Nevertheless, the results obtained here
are a first step towards obtaining sequential decomposition in a broader, more
open setting.

Some very preliminary work has been performed in supporting infinite processes
by allowing recursive specifications; this work is included in the appendix.

Overview

This thesis is structured as follows: in Chapter 2 we introduce the process al-
gebras BPA1 and BPA0,1 and provide their syntax and semantics. Next, in
Chapter 3 we give a cancellation theorem that is used for the unique decom-
position proofs that follow. After that, in Chapter 4 we prove three separate
unique decomposition results: one for processes without deadlock, one for pro-
cesses which always end in deadlock and one for processes which sometimes end
in deadlock. Together, these provide a unique decomposition result for each
process in BPA1 and BPA0,1. In Chapter 5 we generalise the decomposition re-
sult for deadlock-free processes to a monoidic setting, so that unique sequential
decomposition holds for every monoid conforming to a number of properties.
We conclude with Chapter 6, which also lists some future work. Finally, Ap-
pendix A provides some early results obtained in adding recursive specifications
to the algebras, thereby making it possible to specify infinite processes.

Chapter 2

Syntax, semantics and
other preliminaries

Before we begin to discuss decomposition, we first formally introduce the process
algebras BPA1 and BPA0,1 and their syntax and semantics. For processes in
these algebras we also define the well-known bisimulation relation, some axioms,
and a measure of the size of a process, which is used extensively in the proofs
in upcoming chapters.

Definition 2.1. The syntax of terms over BPA1 is defined by the following
signature:

1. There is a successful termination process, or empty process 1.

2. For each action a ∈ A, where A is a (finite) action set, there is a unary
action prefix operator a. .

3. There is a binary alternative composition operator + .

4. There is a binary sequential composition operator · .

The syntax of terms over BPA0,1 adds one constant to the above:

5. There is a deadlock process 0.

Note that we do not define recursive specifications for our process algebras, and
we consider only finite-sized, closed terms, as this thesis will mostly concern
finite processes. The signature given above results in the following grammar for
BPA1:

P ::= 1 | a.P | P + P | P · P ,

and for BPA0,1:

P ::= 0 | 1 | a.P | P + P | P · P .

We can now define semantics for the process algebras.

6 2 Syntax, semantics and other preliminaries

Definition 2.2. The operational semantics for BPA1 and BPA0,1 are defined
using Structural Operational Semantics [1] (or SOS for short), as given by the
rules in Table 2.1. Here A is the set of possible actions.

1
1↓ 2

a.p
a−→ p

3
p

a−→ p′

p+ q
a−→ p′

4
q

a−→ q′

p+ q
a−→ q′

5
p↓

p+ q↓ 6
q↓

p+ q↓

7
p

a−→ p′

p · q a−→ p′ · q
8
p↓ q

a−→ q′

p · q a−→ q′
9
p↓ q↓
p · q↓

Table 2.1: SOS rules for BPA1 and BPA0,1 (a ∈ A)

In these SOS rules, we write p a−→ p′ if a process p can perform an a-action and
then continue as process p′. As a shorthand notation, we write p −→ p′ if there
exists an a ∈ A such that p a−→ p′; we write p −→n p′ if there are processes
p0, . . . , pn such that p = p0 −→ p1 −→ . . . −→ pn−1 −→ pn = p′, i.e., process
p can get to process p′ in n steps (where for n = 0, we take p = p′); and we
write p −→∗ p′ if there is an n ≥ 0 such that p −→n p′, i.e., process p can get
to process p′ in some number of steps (which may be zero).

We write p↓ if a process p can terminate. It is allowed for a process to termi-
nate even if it can still perform some action, in contrast with process algebras
where termination is established by an absence of actions left to perform; for
example, the process a.1+1 can either perform an a-action and then terminate,
or terminate immediately. We call this option between choosing to terminate
or performing an action impure termination, and define it as follows.

Definition 2.3. A process p has impure termination if p −→∗ p′ for some
process p′, and we have both p′↓ and p′ −→ p′′ for some process p′′, i.e., if it is
possible from p to reach a state in 0 or more steps where both termination and
performing an action are possible.

Regarding deadlock, since BPA0,1 only extends BPA1 by adding the deadlock
constant 0, and this constant has no semantics for performing an action or
terminating (since it can do neither), the semantics for BPA0,1 are the same as
those for BPA1.

We call a state in which no SOS-rule is applicable, i.e. where it is not possible
to perform an action or to terminate, a deadlock state. Obviously such states
can only exist in BPA0,1, not in BPA1. We say a process has deadlock if it can
reach a deadlock state, and we call it deadlock-free if it cannot. It is easy to see
that for every transition p

a−→ p′, if p is deadlock-free, then p′ is deadlock-free
as well.

Note. In the remainder of this thesis, if we reason about arbitrary processes
without mentioning in which algebra they originate, then we assume these pro-
cesses are taken to be from BPA0,1. Since every process in BPA1 is also a process
in BPA0,1, this means the reasoning is taken to be as general as possible.

2.1 Bisimilarity of processes 7

2.1 Bisimilarity of processes

We use bisimilarity for reasoning about the equality of processes. In the presence
of explicit termination using 1, bisimulation is defined as is done in e.g. [17].
We have slightly adapted this definition to explicitly enumerate the symmetrical
cases.

Definition 2.4. A binary relation R on processes in BPA1 or BPA0,1 is a bisim-
ulation relation iff the following four properties hold, for all pairs of processes
(p, q) ∈ R and for all a ∈ A:

1. If there is a process p′ such that p a−→ p′, then there must be a process q′

such that q a−→ q′ and (p′, q′) ∈ R.

2. If there is a process q′ such that q a−→ q′, then there must be a process p′

such that p a−→ p′ and (p′, q′) ∈ R.

3. If process p can terminate (so p↓), then q must also be able to terminate.

4. If process q can terminate (so q↓), then p must also be able to terminate.

Two arbitrary processes p and q are called bisimilar if there exists a bisimulation
relation R such that (p, q) ∈ R. For this we use the notation p↔ q.

In the sequel we are going to need some axioms regarding the bisimilarity of
processes; these are presented in this section. Note that this is not a complete
axiomatisation of BPA1 or BPA0,1; it just lists the axioms that are actually used
in the remainder of this thesis. For example, we do not use the idempotency
or associativity of the alternative composition operator. These axioms will be
applied throughout, without explicit reference to the lemma.

Lemma 2.5. The following axioms regarding bisimilarity of processes are sound
for arbitrary processes p, q and r:

p+ q ↔ q + p ,

p+ 0 ↔ p ,

p · (q · r) ↔ (p · q) · r ,
p · 1 ↔ p ,

1 · q ↔ q ,

0 · q ↔ 0 ,

(a.p) · q ↔ a.(p · q) ,
(p+ q) · r ↔ (p · r) + (q · r) .

Proof. Both sides of each equivalence are in a relation for which the bisimula-
tion properties from Definition 2.4 hold, as is apparent from the SOS rules in
Table 2.1.

Note. The associativity axiom p · (q · r)↔ (p · q) · r is mostly applied implicitly
in the sequel, so we write e.g. p · q · r instead of either p · (q · r) or (p · q) · r.

For further treatment of these axioms, see Chapter 6, “Sequential processes”,
of the forthcoming book on process algebra by Baeten, Basten and Reniers [4].

8 2.2 Size of processes

2.2 Size of processes

In the remainder of this thesis we will perform some proofs by induction on the
size of a process. Since many variations on size are possible, we give here a
formal definition.

Definition 2.6. We define the size of a process p, written |p|, to be the length
of the longest transition sequence starting at p:

|p| = max{n ∈ N | ∃p′ : p −→n p′} .

When calculating the size of a process, we do not only take into account transi-
tion sequences ending in termination, but also those ending in deadlock, so e.g.
|a.1 + a.a.0| = 2.

Note. This definition does not allow for processes for which |p| = ∞, as we do
not consider terms with infinite size. Also note that the size of any process
is strictly within N; we do not allow for a negative size (since any transition
sequence consists of at least zero transitions).

Now the size of most processes can easily be defined recursively, as per the
following lemma.

Lemma 2.7. For processes p and q and for a ∈ A, the following equalities can
be derived:

|0| = 0 ,
|1| = 0 ,
|a.p| = 1 + |p| ,
|p+ q| = max(|p|, |q|) ,
|p · q| = |p|+ |q| if p is deadlock-free .

Proof. By definition of size (Definition 2.6) and the SOS rules in Table 2.1.

Note that from these equations, the only way for a process p to have |p| = 0 is
if either p↔ 0 or p↔ 1; for BPA1, this means |p| = 0 iff p↔ 1.

Some lemmas regarding the size of processes are going to be useful in the re-
mainder of this thesis; we state and prove them here.

Lemma 2.8. For processes p and q, if p ↔ q, then |p| = |q|.

Proof. We prove the lemma by contradiction. Assume without loss of generality
that (for p↔ q) we have |p| > |q|. Then there is a transition sequence of length
|p| starting at p which is longer than all sequences in q, so q cannot simulate
this sequence. But then p 6↔ q, which is a contradiction. Hence it must be that
|p| = |q|.

Lemma 2.9. If p a−→ p′ for processes p and p′ and some action a ∈ A, then
|p′| < |p|.

2.2 Size of processes 9

Proof. Suppose |p′| = n, so the longest transition sequence starting at p′ takes
n steps. By p

a−→ p′ it is possible to get from p to p′ in one step, so there is
a transition sequence of n + 1 steps starting at p. Thus the longest transition
sequence starting at p must also be at least n + 1 steps long. Hence, |p| ≥
n+ 1 > n = |p′|, so |p′| < |p|.

Chapter 3

Cancellation

Cancellation is a property of processes stating that if two processes with a
common right-hand argument of a sequential composition are bisimilar, then
the two processes with the right-hand argument removed are also bisimilar.
That is, if p · r ↔ q · r holds, then p ↔ q holds as well. More properly this is
called right cancellation, since it removes a component on the right-hand side
of a process (as opposed to removing a component on the left-hand side); yet
we refer to the property simply by “cancellation”, since right cancellation is the
only cancellation we use.

Having cancellation greatly simplifies the proof of unique decomposition. While
there are ways to prove decomposition without using cancellation – only estab-
lishing cancellation as a result of proving decomposition, instead of the other
way around – this results in a longer and more involved proof. Cancellation was
already used for proving unique prime decomposition in the fundamental theo-
rem of arithmetic. Moller was the first one to use cancellation (which he called
simplification) for proving decomposition in a process algebraic context; specif-
ically for decomposition into parallel components [19]. We will use cancellation
to prove decomposition as well.

This property holds for all processes in BPA1, but not, in general, for those in
BPA0,1. First of all, p and q should be deadlock-free: take process r = a.0 + 1;
then it can easily be shown that 1 · r ↔ (a.0 + 1) · r, but obviously 1 6↔ a.0 + 1.
Secondly, it is required that r 6↔ 0: take p = a.1 + 1, q = a.1, and r = 0, then
p · r ↔ q · r, but p 6↔ q. Hence we require that p and q are deadlock-free and
r 6↔ 0.

Now, to prove cancellation we first need an auxiliary lemma.

Lemma 3.1. If r a−→ r′ for processes r and r′ and some action a ∈ A, then
there is no deadlock-free process p such that p · r ↔ r′.

Proof. We prove the lemma by contradiction. Suppose that there is a deadlock-
free process p for which p · r ↔ r′. Then, by Lemma 2.8, |p · r| = |r′|, and
by Lemma 2.7 (since p is deadlock-free), |p · r| = |p| + |r|, so |p| + |r| = |r′|
and |p| = |r′| − |r|. But because we have r a−→ r′, it holds by Lemma 2.9 that

12 3 Cancellation

|r′| < |r|, so |r′| − |r| < 0 and thus |p| < 0. But there cannot exist a process
with a longest transition sequence smaller than zero, so this is a contradiction.
Hence no such p exists.

Note that such a p can exist when it is allowed to have deadlock, e.g. take p = 0
and r = a.0, then r′ = 0, so p · r ↔ r′.

Using the previous lemma we can prove the following cancellation theorem for
processes in BPA1 and BPA0,1.

Theorem 3.2. If for some deadlock-free processes p and q there exists a pro-
cess r (which may have deadlock) with r 6↔ 0, such that p · r ↔ q · r, then
p ↔ q.

Proof. Consider the following relation R:

R = {(p, q) | p, q deadlock-free ∧ ∃r : r 6↔ 0 ∧ p · r ↔ q · r}

Obviously, if R is a bisimulation relation, then the theorem holds. Recall the
definition of a bisimulation (Definition 2.4); we need to prove that each of the
four properties of a bisimulation relation hold for R, to establish that R is a
bisimulation relation. For each property, assume (p, q) ∈ R with p, q deadlock-
free, and take an r such that r 6↔ 0 and p · r ↔ q · r.

1. Suppose p a−→ p′ for some a ∈ A; we need to show that there exists a q′

such that q a−→ q′ and (p′, q′) ∈ R.

By SOS rule 7 (see Table 2.1) on p
a−→ p′ we have p · r a−→ p′ · r, so by

bisimilarity of p · r and q · r there exists an s↔ p′ · r such that q · r a−→ s.
Fix a derivation of q ·r a−→ s; we distinguish cases according to which SOS
rule has been applied last in this derivation. This can either be rule 7 or
rule 8:

(a) By SOS rule 7 there is a q′ such that q a−→ q′; then s = q′ · r, so
p′ · r ↔ q′ · r. By definition of R, since p′ · r ↔ q′ · r, and p′, q′

deadlock-free (since p, q deadlock-free) and r 6↔ 0, this means that
(p′, q′) ∈ R.

(b) By SOS rule 8 it holds that q↓ and there is an r′ such that r a−→ r′;
then s = r′, so p′ · r ↔ r′. But by applying Lemma 3.1 (which is
possible because p is deadlock-free, so p′ is deadlock-free also) this is
a contradiction, so this case cannot occur.

Only the first case can occur, so there is a q′ such that q a−→ q′ with
(p′, q′) ∈ R; this satisfies the bisimulation relation requirement.

2. Suppose q a−→ q′ for some a ∈ A; we need to show that there exists a p′

such that p a−→ p′ and (p′, q′) ∈ R.

This is analogous to the case for p a−→ p′ above.

3. Suppose p↓; we need to show that q↓.
To show this, we apply case distinction on r. Since r 6↔ 0, it is always
possible for r to either perform an action and/or terminate. We distinguish
between these two options:

3 Cancellation 13

(a) Process r can perform an action: r a−→ r′ for some a ∈ A. Then by
SOS rule 8, p · r a−→ r′, and by bisimilarity of p · r and q · r there
exists an s ↔ r′ with q · r a−→ s. Fix a derivation of q · r a−→ s; we
again distinguish cases according to which SOS rule has been applied
last in this derivation, which is either SOS rule 7 or rule 8:

i. By SOS rule 7 there is a q′ such that q a−→ q′; then s = q′ · r, so
r′ ↔ q′ · r. But by Lemma 3.1 (which we can apply, since q is
deadlock-free, so q′ is deadlock-free also) this is a contradiction,
so this case cannot occur.

ii. By SOS rule 8 it holds that q↓ and s = r′; so we have q↓.
Only the second case can occur, and in this case we have q↓.

(b) Process r can terminate: r↓. Since p↓ holds, by SOS rule 9 it holds
that p · r↓, and by bisimilarity of p · r and q · r it also holds that q · r↓.
This can only be satisfied by SOS rule 9, so q↓.

In either of the above cases we have q↓; this satisfies the bisimulation
relation requirement.

4. Suppose q↓; we need to show that p↓.
This is analogous to the case for p↓ above.

Summing up, the four requirements for a bisimulation relation are met, so R is
indeed a bisimulation relation. This concludes our proof of the theorem.

Contrast this result with the cancellation lemma for BPA as defined by Burkart
et al. [9], where the proof proceeds by induction on the norm of the process; this
is possible in that setting because of the assumption that a terminating state
has no outgoing transitions, i.e., that impure termination is not possible. Since
the norm of a process can be finite even when the process itself is infinite, this
also makes it possible to specify some infinite processes.

A form of cancellation where r ↔ 0 – but with other restrictions – is possible;
see Lemma 4.9 in Section 4.2. See also Appendix A for a variant of cancellation
where some form of infinite behaviour is allowed.

Chapter 4

Decomposition

We will now prove a notion of unique sequential decomposition of processes in
three cases. In Section 4.1 we treat the case where no deadlock is involved (i.e.,
in BPA1). The other two cases both concern processes containing deadlock, i.e.
processes in BPA0,1. In Section 4.2 we handle processes for which all transition
sequences end in deadlock, and in Section 4.3 we handle processes for which
only some – but explicitly not all – transition sequences end in deadlock.

Whereas deadlock-free processes can be uniquely decomposed in such a way
that each of the resulting processes in the decomposition is prime, in the other
two cases (of processes containing deadlock) this is not possible, as we shall see
in the following sections. As a result, we propose for such processes a slightly
adapted notion of decomposition such that a unique decomposition once again
becomes possible. We give a short analysis and try to justify the particular form
of decomposition chosen for these processes in Section 4.4.

4.1 Deadlock-free processes

Using the cancellation theorem (Theorem 3.2), we can prove that every process
in BPA1 can be decomposed uniquely into prime processes. We first define these
notions, then we prove that this is the case.

Definition 4.1. A process p is called prime if p 6↔ 1 and for all processes q
and r, we have that p↔ q · r implies either q ↔ 1 or r ↔ 1.

Definition 4.2. A sequential decomposition of a process p is a sequence of
processes 〈p1, p2, . . . , pn〉 such that p ↔ p1 · p2 · . . . · pn; call p1 · p2 · . . . · pn the
process associated with decomposition 〈p1, p2, . . . , pn〉. We define 1 to be the
process associated with the empty sequence 〈〉, because 1 is a unit element for
sequential composition.

Now we can prove the following theorem about unique prime decompositions of
processes in BPA1.

16 4.1 Deadlock-free processes

Theorem 4.3. Every process p in BPA1 has a sequential decomposition into
processes 〈p1, p2, . . . , pn〉 in such a way that every pi is prime, for all 1 ≤ i ≤ n,
and only one such prime decomposition exists modulo bisimulation.

Proof. We prove both existence and uniqueness of a prime decomposition of p
by induction on |p|.

1. If |p| = 0, then p cannot perform an action, so it must terminate (since we
are in a setting without deadlock); thus p↔ 1. Since there does not exist
a prime process or composition of prime processes bisimilar to 1, and since
1 is by Definition 4.2 the sequential composition of no processes, we have
a prime decomposition into the empty sequence 〈〉. This decomposition is
trivially unique modulo bisimulation.

2. Suppose that |p| > 0. By induction we have a unique prime decomposition
for all p′ with |p′| < |p|. Now if p is prime, then clearly we have the
singleton sequence 〈p〉 as decomposition for p. Regarding uniqueness,
since p is prime, every prime decomposition of p is a singleton sequence of
which the only element is bisimilar to p itself. Hence, this decomposition
is unique modulo bisimulation.

We now focus on the case where p is not prime, and prove existence of a
sequential decomposition and uniqueness of that decomposition separately.

If p is not prime, then by the definition of primeness (Definition 4.1), there
exist processes q and r such that p ↔ q · r, and q 6↔ 1 and r 6↔ 1, so
|q| > 0 and |r| > 0. Since |p| = |q|+ |r| (by Lemmas 2.7 and 2.8), we have
|q| < |p| and |r| < |p|, so by induction we have a prime decomposition of
q into 〈q1, q2, . . . , qn〉 and of r into 〈r1, r2, . . . rm〉. Because p ↔ q · r, we
have 〈q1, q2, . . . , qn, r1, r2, . . . , rm〉 as prime decomposition of p.

Now for uniqueness, suppose we have two prime decompositions of p,
namely 〈x1, x2, . . . , xk〉 and 〈y1, y2, . . . , yl〉. We name the processes asso-
ciated with these decompositions as x = x1 ·x2 ·. . .·xk and y = y1 ·y2 ·. . .·yl,
respectively. We need to prove that the two prime decompositions are ac-
tually the same under bisimulation, i.e. that k = l and xi ↔ yi for all
1 ≤ i ≤ k.

To do this, take a longest transition sequence starting at p, i.e. one of
length |p|. Since p ↔ x ↔ y, by Lemmas 2.8 and 2.7 we have |p| = |x| =
|x1|+ |x2|+ . . .+ |xk| = |y| = |y1|+ |y2|+ . . .+ |yl|, so a transition sequence
of length |p| starting at x must start with a transition sequence of length
|x1| starting at x1; and similarly a transition sequence of length |p| starting
at y must start with a transition sequence of length |y1| starting at y1.
Since we have by definition of primeness (Definition 4.1) that |x1| > 0 and
|y1| > 0, this means that such a longest transition sequence starting at x
would necessarily start with a step x

a−→ x′ = x′1 · x2 · . . . · xk, for some
a ∈ A and x1

a−→ x′1; and by bisimilarity also y a−→ y′ = y′1 · y2 · . . . · yl,
for y1

a−→ y′1 with x′ ↔ y′.

Now x′1 and y′1 both have a prime decomposition as well; 〈x′11, x′12, . . . , x′1s〉
and 〈y′11, y′12, . . . , y′1t〉 for x′1 and y′1 respectively (for which it is possi-
ble that s = 0 or t = 0, in which case we have the empty decomposi-
tion 〈〉). This means we get the following prime decomposition for x′:

4.2 Always-deadlocking processes 17

〈x′11, x′12, . . . , x′1s, x2, . . . , xk〉; and for y′: 〈y′11, y′12, . . . , y′1t, y2, . . . , yl〉. We
know by Lemma 2.9 that |x′| < |x| and |y′| < |y|, so by induction the
decompositions of both x′ and y′ are unique. Since x′ ↔ y′, this means
that they are actually equal, so s + (k − 1) = t + (l − 1), and the ith
element of the decomposition of x′ is bisimilar to the ith element of the
decomposition of y′, for all 1 ≤ i ≤ s+ (k − 1). Because x and y are not
prime, we have that k ≥ 2 and l ≥ 2, so xk ↔ yl.

With xk ↔ yl established, we can use the cancellation theorem (Theo-
rem 3.2) on x and y to derive that x1 · x2 · . . . · xk−1 ↔ y1 · y2 · . . . · yl−1.
The size of both of these processes is smaller than |x|, since |xk| > 0 and
|yl| > 0. This means that once again by induction decomposition is unique
for x1 ·x2 · . . . ·xk−1, so we have that k = l and xi ↔ yi for 1 ≤ i < k. We
had already established that xk ↔ yl, so in conclusion, decomposition for
p is also unique if p is not prime.

For both |p| = 0 and |p| > 0 we have found a prime decomposition for p and
established its uniqueness.

4.2 Always-deadlocking processes

We now consider processes which always end in deadlock, and thus can never
terminate successfully. We call these processes always-deadlocking, and define
them formally as follows.

Definition 4.4. A process p is always-deadlocking if there does not exist a
process p′ such that p −→∗ p′ with p′↓.

For these processes we do not have a similar unique prime decomposition result
as for processes without deadlock. This is easy to see: the process 0 can be
decomposed as 〈0〉, 〈0,0〉, 〈0,0,0〉, etcetera, but none of these decompositions
are prime, since they can always be decomposed further. The same actually
holds for all processes that always end in deadlock. Take a process like a.0+b.0;
this can be decomposed as 〈a.1 + b.1,0〉, or as 〈a.1 + b.1,0,0〉, and so on.

Thus processes always ending in deadlock actually do not have a prime decom-
position at all. However, we shall prove that all always-deadlocking processes
have a decomposition in the form 〈p1, p2, . . . , pn,0〉, where pi is deadlock-free
and prime, for all 1 ≤ i ≤ n.

Unfortunately, this kind of decomposition is not always unique, as demonstrated
by the following lemma.

Lemma 4.5. For all processes p, it holds that (p+ 1) · 0 ↔ p · 0.

Proof. By applying the axioms from Lemma 2.5, we calculate for every p that
(p+ 1) · 0↔ (p · 0) + (1 · 0)↔ (p · 0) + 0↔ p · 0.

This means that for deadlock-free processes p where p + 1 6↔ p, the process
p · 0 has at least two distinct decompositions of the form proposed above, so

18 4.2 Always-deadlocking processes

decomposition is not unique. However, we can solve this by requiring that
in the decomposition 〈p1, p2, . . . , pn,0〉, the process pn does not have impure
termination, as stated in Definition 2.3. If this is the case, then decomposition
turns out to be unique, which we shall prove. However, we first need some
auxiliary lemmas.

First of all, we prove that each process can be written without the sequential
composition operator. The process algebra consisting only of the successful
termination and deadlock constants, and the action prefix and alternative com-
position operators, is known as BSP0,1, with BSP standing for Basic Sequential
Processes (perhaps confusingly, since it contains no sequential composition op-
erator). So removing the sequential composition operator from a process yields
a process in BSP0,1.

Lemma 4.6. For every process p in BPA0,1 there is a process q in BSP0,1 such
that p ↔ q.

Proof. We prove the lemma by structural induction on p. We distinguish for p:

1. Suppose p↔ 0. Then p is already in BSP0,1, so take q = p.

2. Suppose p↔ 1. Then p is also already in BSP0,1, so take q = p.

3. Suppose p ↔ a.p′ for some action a ∈ A and some process p′. Then by
induction, there is a q′ ↔ p′ that is in BSP0,1, so then a.q′ ↔ a.p′ and
a.q′ is in BSP0,1, since action prefix is allowed; so we can take q = a.q′.

4. Suppose p ↔ p1 + p2 for some processes p1 and p2. Then by induction,
there are q1 ↔ p1 and q2 ↔ p2 such that q1 and q2 are in BSP0,1. Then
q1 + q2 ↔ p1 + p2, and q1 + q2 is in BSP0,1, since alternative composition
is allowed; so we take q = q1 + q2.

5. Suppose p ↔ p1 · p2 for some processes p1 and p2. Then by induction,
there are q1 ↔ p1 and q2 ↔ p2 such that q1 and q2 are in BSP0,1. Then
q1 ·q2 ↔ p1 ·p2, but q1 ·q2 is not in BSP0,1, so we distinguish further on q1:

(a) Suppose q1 ↔ 0. Then q1 · q2 ↔ 0 · q2 ↔ 0; and 0 is in BSP0,1, so
we take q = 0.

(b) Suppose q1 ↔ 1. Then q1 · q2 ↔ 1 · q2 ↔ q2; and q2 is in BSP0,1, so
we take q = q2.

(c) Suppose q1 ↔ a.q′1 for some action a ∈ A and some process q′1. Then
q1 · q2 ↔ (a.q′1) · q2 ↔ a.(q′1 · q2), and by induction there is a process
r ↔ q′1 · q2, where r is in BSP0,1. Then a.r is in BSP0,1 as well, and
a.r ↔ q1 · q2, so we take q = a.r.

(d) Suppose q1 ↔ q11+q12 for some processes q11 and q12. Then q1 ·q2 ↔
(q11 + q12) · q2 ↔ (q11 · q2) + (q12 · q2). Now by induction there are
processes r1 ↔ q11 · q2 and r2 ↔ q12 · q2 such that r1 and r2 are in
BSP0,1. Then r1 + r2 is in BSP0,1 as well, and r1 + r2 ↔ q1 · q2, so
we take q = r1 + r2.

In each case there is a q in BSP0,1 such that q ↔ p1 · p2.

4.2 Always-deadlocking processes 19

All cases have been covered, so the lemma holds.

The following auxiliary lemma is used by the two lemmas immediately following
this one.

Lemma 4.7. If p is a process that does not have impure termination, and p↓,
then p ↔ 1.

Proof. Since p↓, p can terminate. Hence, since p does not have impure termi-
nation, p is not allowed to perform an action. The only processes that cannot
perform an action are bisimilar either to 0 or 1; and since 0 cannot terminate,
it must be that p↔ 1.

The next lemma states that it is possible to write every always-deadlocking
process in such a way that the deadlock part is “split off” on the right side, i.e.,
in the form that is required by the decomposition we want to prove.

Lemma 4.8. For every process p in BPA0,1 where all transition sequences start-
ing at p end in deadlock, there exists a deadlock-free process r such that p ↔ r ·0
and r has no impure termination.

Proof. We prove this by structural induction on p. First of all we can assume
(by Lemma 4.6) without loss of generality that p does not contain the sequential
composition operator. Then we distinguish the following cases for p:

1. Suppose p ↔ 0. Then we need an r such that 0 ↔ r · 0, so we can take
r = 1 (which is deadlock-free and has no impure termination).

2. Suppose p↔ 1. This breaks the assumption that all transition sequences
starting at p end in deadlock, so this case does not occur.

3. Suppose p ↔ a.p′ for some action a ∈ A and some process p′, where all
transition sequences starting at a.p′ end in deadlock. Then all transition
sequences starting at p′ end in deadlock as well, so by induction there is a
deadlock-free process r′ without impure termination such that p′ ↔ r′ ·0.
Now a.p′ ↔ a.(r′ · 0) ↔ (a.r′) · 0; and a.r′ is deadlock-free (because r′ is
deadlock-free), and it has no impure termination (since a.r′ cannot termi-
nate, but can only make a step to r′, which has no impure termination),
so we can take r = a.r′.

4. Suppose p ↔ p1 + p2 for some processes p1 and p2, where all transition
sequences starting at p1+p2 end in deadlock. Then all transition sequences
starting at p1 and all transition sequences starting at p2 end in deadlock
as well, so by induction there are deadlock-free processes r1 and r2, both
without impure termination, such that p1 ↔ r1 · 0 and p2 ↔ r2 · 0. Now
p1 +p2 ↔ (r1 ·0)+(r2 ·0)↔ (r1 +r2) ·0; and r1 +r2 is deadlock-free (since
both r1 and r2 are deadlock-free). Since r1 and r2 individually are without
impure termination, the only way for r1 + r2 to have impure termination
is if r1↓ and r2

a−→ r′2 for some a ∈ A, or vice versa.

Now one of the following three cases holds:

20 4.2 Always-deadlocking processes

(a) Suppose that r1↓ and r2
a−→ r′2. Since r1 has no impure termination,

by Lemma 4.7 it can only terminate if r1 ↔ 1. Then we have p ↔
(1 + r2) · 0, and by Lemma 4.5, p ↔ r2 · 0. So we can take r = r2,
which is deadlock-free and without impure termination.

(b) Suppose that r1
a−→ r′1 and r2↓. Then this case is symmetrical to

the one above, so we take r = r1.

(c) Suppose neither r1↓ and r2
a−→ r′2, nor r1

a−→ r′1 and r2↓. Then
r1 + r2 has no impure termination, and since p ↔ (r1 + r2) · 0, we
can take r = r1 + r2.

In all three cases we have a suitable r.

All cases have been covered, so the lemma holds.

The following lemma is a variant of the cancellation theorem (Theorem 3.2),
for the case where r ↔ 0. Since this case does not fall under the assumptions
present in the general cancellation theorem (i.e., that p, q deadlock-free and
r 6↔ 0), it is proved separately here. Note that it is required that both processes
are without impure termination, since otherwise the lemma does not hold: e.g.
(a.1 + 1) · 0↔ a.1 · 0, but clearly a.1 + 1 6↔ a.1 (see also Lemma 4.5). So this
lemma might seem trivial at first, but it is not.

Lemma 4.9. If for some deadlock-free processes p and q, both without impure
termination, it holds that p · 0 ↔ q · 0, then p ↔ q.

Proof. This proof largely follows the structure of the proof of Theorem 3.2.
Consider the following relation R:

R = {(p, q) | p, q deadlock-free, without impure termination ∧ p · 0↔ q · 0} .

If R is a bisimulation relation, then the theorem holds, so we need to prove
that each of the four properties of a bisimulation relation hold for R. For
each property, assume (p, q) ∈ R with p, q deadlock-free and without impure
termination.

1. Suppose p a−→ p′ for some a ∈ A; we need to show that there exists a q′

such that q a−→ q′ and (p′, q′) ∈ R.

By SOS rule 7 (see Table 2.1) on p
a−→ p′ we have p · 0 a−→ p′ · 0, so by

bisimilarity of p ·0 and q ·0 there exists an s↔ p′ ·0 such that q ·0 a−→ s.
Fix a derivation of q · 0 a−→ s; we distinguish cases according to which
SOS rule has been applied last in this derivation. This can either be rule 7
or rule 8:

(a) By SOS rule 7 there is a q′ such that q a−→ q′; then s = q′ · 0, so
p′ · 0 ↔ q′ · 0. By definition of R, since p′ · 0 ↔ q′ · 0, and p′, q′

deadlock-free and without impure termination (since p, q deadlock-
free and without impure termination), this means that (p′, q′) ∈ R.

(b) By SOS rule 8 it holds that q↓ and there is a process r such that
0 a−→ r; but obviously 0 cannot perform an action, so this case
cannot occur.

4.2 Always-deadlocking processes 21

Only the first case can occur, so there is a q′ such that q a−→ q′ with
(p′, q′) ∈ R; this satisfies the bisimulation relation requirement.

2. Suppose q a−→ q′ for some a ∈ A; we need to show that there exists a p′

such that p a−→ p′ and (p′, q′) ∈ R.

This is analogous to the case for p a−→ p′ above.

3. Suppose p↓; we need to show that q↓.
If p↓, then because p has no impure termination, by Lemma 4.7 we have
p ↔ 1, so p · 0 ↔ 0; thus we also have q · 0 ↔ 0. This is only possible
if q cannot perform any action, and since q is deadlock-free, it must be
that q ↔ 1. So we also have q↓; this satisfies the bisimulation relation
requirement.

4. Suppose q↓; we need to show that p↓.
This is analogous to the case for p↓ above.

Summing up, the four requirements for a bisimulation relation are met, so R is
indeed a bisimulation relation. Thus the lemma holds.

Now we can prove the following theorem about unique prime decompositions of
always-deadlocking processes.

Theorem 4.10. Every process p in BPA0,1, where all transition sequences start-
ing at p end in deadlock, has a sequential decomposition 〈p1, p2, . . . , pn,0〉 in
such a way that every pi is deadlock-free and prime, for all 1 ≤ i ≤ n, and
pn does not have impure termination; and only one such decomposition exists
modulo bisimulation.

Proof. The existence of a decomposition in this form is readily established: by
Lemma 4.8 there exists a deadlock-free r without impure termination such that
p ↔ r · 0. Since r is deadlock-free, it can be decomposed by Theorem 4.3
into the unique prime decomposition 〈r1, r2, . . . , rn〉. Now suppose that rn has
impure termination. Since r can reach rn, then r would have impure termination
as well. But r does not have impure termination, so neither does rn.1 Now
〈r1, r2, . . . , rn,0〉 is a decomposition of p satisfying the above requirements.

As for uniqueness, suppose we have two decompositions of p that satisfy the
properties as stated in the Theorem: 〈x1, x2, . . . , xk,0〉 and 〈y1, y2, . . . , yl,0〉.
We name the processes associated with these decompositions, without the dead-
lock part, as x = x1 · x2 · . . . · xk and y = y1 · y2 · . . . · yl, respectively. Since
p ↔ x · 0 ↔ y · 0 and x and y do not have impure termination, we know
by Lemma 4.9 that x ↔ y. Since they are both deadlock-free, we have by
Theorem 4.3 that the prime decompositions of x and y are equal, since prime
decomposition is unique for processes without deadlock; so k = l and xi ↔ yi

for all 1 ≤ i ≤ k. Hence the two decompositions of p are also equal; so the
required decomposition of p is unique.

1Note that r1, . . . , rn−1 can still have impure termination, since that does not result in
impure termination for r.

22 4.3 Sometimes-deadlocking processes

4.3 Sometimes-deadlocking processes

We now turn our attention to processes which have deadlock, but also have
successful termination; i.e. processes which sometimes – but not always – end
in deadlock. We call these processes sometimes-deadlocking, and define them
formally as follows.

Definition 4.11. A process p is sometimes-deadlocking if, for some processes
p′ and p′′, we have p −→∗ p′ with p′↓ and also p −→∗ p′′ with p′′ ↔ 0.

An example of such a process is a.0 + a.1, which either performs an a-action
and then deadlocks, or performs an a-action and then successfully terminates.

When decomposing a sometimes-deadlocking process, at least one of the result-
ing processes will contain deadlock. However, to obtain a unique decomposition
result we will require that the resulting decomposition contains only one dead-
locking process, where this process is the rightmost one in the decomposition.
That is, in order to obtain this decomposition, we take a sometimes-deadlocking
process and repeatedly “split off” a deadlock-free prime process on the left-hand
side, until this is not possible anymore. For an argument as to why we only split
off deadlock-free processes, see Section 4.4.

Similar to the case of always-deadlocking processes, it is not possible to establish
a unique prime decomposition result where all elements of the decomposition
are prime: see e.g. the process a.0+1, which is sometimes-deadlocking (since it
is possible to terminate immediately, or perform an a-action and then deadlock),
but it does not have a prime decomposition, by the following lemma.

Lemma 4.12. The sometimes-deadlocking process a.0+1 does not have a prime
decomposition.

Proof. We prove the lemma by contradiction. Suppose there are processes
p1, p2, . . . , pn such that pi is prime for all 1 ≤ i ≤ n and a.0+1↔ p1 ·p2 · . . . ·pn.
It cannot be the case that n = 0, since that would yield the empty decompo-
sition, which is bisimilar to 1, and clearly not bisimilar to a.0 + 1. So n ≥ 1,
thus at least p1 exists. Now take a process q such that q ↔ p2 · . . . · pn, then
p↔ p1 · q. Note that since a.0 + 1 can terminate, it must be the case that both
p1 and q have a termination option, so p1↓ and q↓ must hold.

Now since p can perform an a-action to 0, p1 · q must also be able to do so. It
cannot be the case that p1 ↔ 0 or p1 ↔ 1, since 0 and 1 are not prime, so it
must be the case that the a-action (which is the only action) comes from p1; so
we have p1

a−→ p′1 for some process p′1.

Then we have p1 · q
a−→ p′1 · q, where p′1 · q should deadlock. This is the case if

none of the SOS rules are applicable on p′1 · q, i.e. when p′1 ↔ 1 and q ↔ 0, or
when p′1 ↔ 0. The first case is not possible, since we should have that q↓, and
0↓ does not hold. This leaves us with the second case, where p′1 ↔ 0.

We now have that p1↓ and p1
a−→ 0; this is the only behaviour that p1 can have,

since any additional behaviour would also be apparent in p. Hence it holds that
p1 ↔ a.0 + 1. However, this process is not prime, since it can easily be shown
that a.0 + 1↔ (a.0 + 1) · (a.0 + 1).

4.3 Sometimes-deadlocking processes 23

There is no way to derive a process p1 · p2 · . . . · pn bisimilar to a.0 + 1 such that
p1 is prime, hence no prime decomposition for a.0 + 1 exists.

Since a.0 + 1 is a sometimes-deadlocking process, we can conclude that not
all sometimes-deadlocking processes have a prime decomposition, just like in
the case of always-deadlocking processes. Hence we propose an alternative de-
composition that does hold for all sometimes-deadlocking processes. Like in the
always-deadlocking case, this decomposition is one where all but the last compo-
nent is prime; in this case, we require that the last component is deadlock-prime.

Definition 4.13. A process p is called deadlock-prime if p 6↔ 1, and whenever
we have that p↔ q · r for some processes q and r, then either q ↔ 1 or r ↔ 1,
or q has deadlock.

With this notion of deadlock-primeness, we shall prove that all sometimes-
deadlocking processes in BPA0,1 can be decomposed as 〈p1, p2, . . . , pn〉, where
pi is deadlock-free and prime, for all 1 ≤ i < n, and pn is deadlock-prime; and
that this decomposition is unique.

Theorem 4.14. Every sometimes-deadlocking process p in BPA0,1 has a se-
quential decomposition into processes 〈p1, p2, . . . , pn〉 in such a way that every
pi is deadlock-free and prime, for all 1 ≤ i < n, and pn is deadlock-prime; and
only one such decomposition exists modulo bisimulation.

Proof. We prove by induction on |p| that if p is sometimes-deadlocking, then
the decomposition exists and it is unique. The proof structure largely follows
that of the proof of Theorem 4.3.

1. If |p| = 0, then either p ↔ 0 or p ↔ 1, both of which are not sometimes-
deadlocking, so we do not need to prove that a decomposition exists.

2. Suppose |p| > 0. Then we know by induction for all p′ with |p′| < |p|, that
if p′ is sometimes-deadlocking, then it has a unique decomposition in the
required format. Suppose that p is sometimes-deadlocking, then we need
to prove that such a decomposition for p exists, and that it is unique. We
now distinguish on p.

(a) If there are no processes q and r with q 6↔ 1 and r 6↔ 1 such that p↔
q·r and q is deadlock-free, then p is deadlock-prime by Definition 4.13,
and thus 〈p〉 is a decomposition of p in the required format. Since
there is only one such decomposition, it is unique.

(b) If there are processes q and r with q 6↔ 1 and r 6↔ 1, such that
p↔ q · r and q is deadlock-free, then q can be decomposed by Theo-
rem 4.3 into 〈q1, q2, . . . , qn〉, where qi is deadlock-free and prime for
all 1 ≤ i ≤ n. Because q is deadlock-free, we have by Lemmas 2.8
and 2.7 that |p| = |q ·r| = |q|+|r|. We know that q 6↔ 1 and, since q is
deadlock-free, also q 6↔ 0, so it must be the case that q can perform an
action; hence |q| > 0 and thus |r| < |p|. This means we can apply the
induction hypothesis on r. Since p is sometimes-deadlocking and q is
deadlock-free, it must be the case that r is sometimes-deadlocking,

24 4.3 Sometimes-deadlocking processes

otherwise q · r would not be sometimes-deadlocking. Thus r has a
unique decomposition into 〈r1, r2, . . . , rm〉, where ri is deadlock-free
and prime for all 1 ≤ i < m, and rm is deadlock-prime. Combining
these results, we have 〈q1, q2, . . . , qn, r1, r2, . . . , rm〉 as a decomposi-
tion for p in the required format.
Now for uniqueness, suppose we have two decompositions of p, namely
〈x1, x2, . . . , xk〉 and 〈y1, y2, . . . , yl〉, with xi prime for all 1 ≤ i < k
and yi prime for all 1 ≤ i < l, and xk and yl deadlock-prime. We
name the processes associated with these decompositions as x =
x1 · x2 · . . . · xk and y = y1 · y2 · . . . · yl, respectively. We need to
prove that the two prime decompositions are actually the same un-
der bisimulation, i.e. that k = l and xi ↔ yi for all 1 ≤ i ≤ k.
To do this, take the longest transition sequence starting at p, i.e. one
of length |p|. Since p ↔ x ↔ y, by Lemmas 2.8 and 2.7 (which are
applicable here, since only the rightmost component of the decompo-
sition contains deadlock) we have |p| = |x| = |x1|+ |x2|+ . . .+ |xk| =
|y| = |y1| + |y2| + . . . + |yl|, so a transition sequence of length |p|
starting at x must start with a transition sequence of length |x1|
starting at x1; and similarly a transition sequence of length |p| start-
ing at y must start with a transition sequence of length |y1| start-
ing at y1. Since we have by definition of primeness (Definition 4.1)
that |x1| > 0 and |y1| > 0, this means that such a longest tran-
sition sequence starting at x would necessarily start with a step
x

a−→ x′ = x′1 · x2 · . . . · xk, for some a ∈ A and x1
a−→ x′1; and

by bisimilarity also y
a−→ y′ = y′1 · y2 · . . . · yl, for y1

a−→ y′1 with
x′ ↔ y′.
Since we are in the case where p ↔ q · r, every decomposition must
have at least two components, thus k ≥ 2 and l ≥ 2; so we know by
definition of the decomposition that x1 and y1 are deadlock-free and
prime. Because x1 and y1 do not contain deadlock, neither do x′1
and y′1; hence x′1 has a prime decomposition into 〈x′11, x′12, . . . , x′1s〉
and y′1 into 〈y′11, y′12, . . . , y′1t〉 (for which it is possible that s = 0 or
t = 0, in which case we have the empty decomposition 〈〉). This
means we get as decomposition for x′: 〈x′11, x′12, . . . , x′1s, x2, . . . , xk〉,
and as decomposition for y′: 〈y′11, y′12, . . . , y′1t, y2, . . . , yl〉. We know
by Lemma 2.9 that |x′| < |x| and |y′| < |y|, so by induction the
decompositions of both x′ and y′ are unique. Since x′ ↔ y′, this
means that they are actually equal, so s + (k − 1) = t + (l − 1),
and the ith element of the decomposition of x′ is bisimilar to the ith
element of the decomposition of y′, for all 1 ≤ i ≤ s+ (k− 1), and in
particular also xk ↔ yl.
With xk ↔ yl established, we can use the cancellation theorem (The-
orem 3.2) on x and y to derive that x1 ·x2 ·. . .·xk−1 ↔ y1 ·y2 ·. . .·yl−1.
The size of both of these processes is smaller than |x|, since |xk| > 0
and |yl| > 0. This means that once again by induction the required
decomposition of x1 · x2 · . . . · xk−1 is unique, so we have that k = l
and xi ↔ yi for 1 ≤ i < k. We had already established that xk ↔ yl,
so in conclusion, the decomposition of p into the format required by
the theorem is unique.

4.4 Analysis of decompositions with deadlock 25

In both cases we have established that if p is sometimes-deadlocking, then
it has a unique decomposition following the definition in the theorem.

Both cases |p| = 0 and |p| > 0 have been covered, so the theorem holds.

While some processes (such as a.0+1) can be infinitely decomposed into copies
of themselves, this is not the case for all sometimes-deadlocking processes: there
exist processes which are prime (so cannot be further decomposed) and yet have
deadlock as well. We show this by giving an example of such a process.

Lemma 4.15. The process p = a.(b.0 + 1) + c.1 has deadlock and is prime.

Proof. Obviously this process has deadlock; we prove by contradiction that it is
prime. Suppose that p is not prime, then we have p ↔ q · r for some processes
q and r, with q 6↔ 1 and r 6↔ 1. We also have q 6↔ 0 and r 6↔ 0, since then all
transition sequences starting at p would end in deadlock, which is not the case.
So both q and r should be able to perform at least one action. In p the actions
that can be taken are a and c, so q should be able to perform at least one of
those actions. We now distinguish on the actions that q can perform.

1. Suppose q can perform both actions a and c. Since p can terminate both
after a and c, q must provide a termination option after both a and c.
Now r must be able to perform b, since r must be able to perform at least
one action; but by the termination in q, this b will be reachable both after
a and after c, which is not the case in p.

2. Suppose q can perform action a, but not c. Then c must be performed
by r. Since p must be able to terminate after a, q must also be able to
terminate after a; so it is possible to take action a from q and then action
c from r. But this is not possible in p.

3. Suppose q can perform action c, but not a. Then a must be performed
by r. By the same reasoning as above, it is possible to perform action c
from q and then action a from r, but this is not possible in p.

Neither of the cases is possible, so no such q exists. Hence it must be the case
that p is prime.

The existence of processes which have deadlock and are prime is important,
because it shows us that it might be possible to establish a decomposition for
sometimes-deadlocking processes where deadlock is allowed to occur in compo-
nents other than the last one. However, for now we leave the decompositions as
is, and give some motivation why we do so in the next section.

4.4 Analysis of decompositions with deadlock

While the decompositions of always- and sometimes-deadlocking processes are
certainly useful due to their uniqueness property, we might question whether

26 4.4 Analysis of decompositions with deadlock

only allowing deadlock in the last component of the decomposition is not too
strict.

For example, the process a.0+a.(b.1+c.1) has – according to the decomposition
definition for sometimes-deadlocking processes – a decomposition into just the
single component 〈a.0+a.(b.1+c.1)〉, but one could argue that a decomposition
into multiple components, like 〈a.0 + 1, a.1, b.1 + c.1〉, would be more natural.
Even though this might be the case, there are several arguments against allowing
deadlock in more than just the last component, because they all result in several
decompositions, which invalidates the uniqueness property. The following cases
illustrate this:

1. Every component consisting of deadlock can be infinitely decomposed:
0 can be decomposed into 〈0〉, 〈0,0〉, 〈0,0,0〉, . . .

2. Some processes can be infinitely decomposed into copies of themselves:
a.0 + 1 can be decomposed into 〈a.0 + 1〉, 〈a.0 + 1, a.0 + 1〉, . . .

3. A transition sequence ending in deadlock in an earlier component can
often be repeated in the next component: a.0 + b.c.1 can be decomposed
into 〈a.0 + 1, b.1, c.1〉 but also into 〈a.0 + 1, a.0 + b.1, c.1〉.

4. A transition sequence ending in deadlock in a later component can some-
times also be repeated in an earlier component: a.0+a.1+a.(a.0+a.1) can
be decomposed into 〈a.1+1, a.0+a.1〉, but also into 〈a.0+a.1+1, a.0+a.1〉
(or into 〈a.1 + 1, a.0 + 1, a.1〉).

5. Some processes can even be decomposed in commutative ways: the process
a.0 + b.0 + 1 can be decomposed into 〈a.0 + 1, b.0 + 1〉, but also into
〈b.0 + 1, a.0 + 1〉.

All these cases are barred by only allowing deadlock to appear in the last com-
ponent, hence we have chosen for decompositions following this rule. However,
this is not an exhaustive proof that there might not be some way to unique
decomposition with deadlock also occurring in other components.

Chapter 5

Generalisation of
decomposition to monoids

We can generalise our unique prime decomposition result for processes in BPA1

to monoids: abstract sets which have a distinguished identity element and an
associative binary operator. We do this by giving a number of properties that
should hold for a monoid, in order for each of its elements to have a unique
prime decomposition.

Providing such a generalisation to monoids is useful in several ways. For one,
by finding a minimal set of properties for which unique prime decomposition
holds, we can clearly see which properties of BPA1 are actually required for the
decomposition result, and which are not. This shows us, for example, that in
BPA1 only the sequential composition operator itself is needed for decomposi-
tion, and none of the other operators play a role (as long as their semantics do
not interfere with the required properties). This brings us to the next advan-
tage, namely that we can now change the algebra in any way which preserves
the properties, and also retain the decomposition result. Hence, we could add
or remove operators from the algebra, change the information present in the
transition steps, or even come up with some structure that is not a process
algebra at all; as long as the properties given here are satisfied, unique prime
decomposition is automatically proven.

The results in this chapter are inspired by Luttik and Van Oostrom’s paper on
Decomposition Orders [17], which gives a decomposition result for commutative
monoids. Our work here differs in that we focus on monoids which are non-
commutative (or do not have to be commutative) instead.

A monoid can formally be defined as follows [14]:

Definition 5.1. Consider a set M with a distinguished element e ∈ M and
a total binary operator · : M ×M → M such that for all p, q, r ∈ M the
following properties hold:

1. p ·(q · r) = (p · q) · r (associativity) ,

2. p · e = e · p = p (identity) .

28 5.1 Unique decomposition monoids

Then (M, ·, e) is a monoid.

Note. We normally apply associativity implicitly, so we write e.g. p · q · r instead
of either p ·(q · r) or (p · q) · r.

In Section 5.1 we formulate a number of properties sufficient to make a unique
decomposition monoid ; a monoid for which a unique prime decomposition prop-
erty is provable. We then prove that this is the case in Section 5.2. In Sec-
tion 5.3 we provide an argument for why cancellation has to be stated as one of
the unique decomposition monoid properties, and cannot be derived from the
other properties, thereby proving that such a property is necessary. Finally,
in Section 5.4 we prove that BPA1 processes modulo bisimilarity constitute a
unique decomposition monoid.

5.1 Unique decomposition monoids

We are now going to constrain the definition of a general monoid M as defined
above in such a way that we get a unique decomposition monoid, for which it
is possible to define a notion of unique prime decomposition in a similar way
as it has been defined for processes in BPA1 in Theorem 4.3; i.e., that each
of the elements of the monoid has a unique prime decomposition. We shall
then proceed to prove that the set of all processes in BPA1 form a unique
decomposition monoid, thereby proving once more the existence of a unique
prime decomposition for processes in BPA1. However, the result obtained here
is stronger, as any other system satisfying the criteria for a unique decomposition
monoid automatically gets a unique prime decomposition result as well.

To be able to define unique prime decomposition on monoids, we also need a
size function | | : M → N, which gives each element a natural size, and a binary
relation → ⊆ M ×M which relates each element except for e to one or more
strictly smaller elements. For example, one might take the natural numbers
with addition and 0 as identity element, the element itself as its size, and with
each element except for 0 relating to the one-smaller element; or take a set of
strings with the empty string as identity element, the length of a string as its
size, and with each non-empty string relating to a string which is equal except
with its first element removed.

The properties required for a monoid to have a unique prime decomposition are
then as follows.

Definition 5.2. Consider a monoid (M, ·, e), with an additional size function
| | : M → N, and a binary relation → ⊆ M × M , for which the following
properties hold, in addition to the two monoid properties stated in Definition 5.1,
for all p, q, r ∈M :

3. |p| = 0 iff p = e ,

4. |p · q| = |p|+ |q| ,

5. if p 6= e, then there is a p′ ∈M such that p→ p′ with |p′| = |p| − 1 ,

5.2 Decomposition proof for monoids 29

6. if p→ q, then |q| < |p| ,

7. if p · q → r, then either q → r,
or there is a p′ ∈M such that p→ p′ and r = p′ · q ,

8. if p · r = q · r, then p = q (cancellation) .

Then (M, ·, | |,→, e) is a unique decomposition monoid.

The following observations can be made about these properties. First of all,
note that by Properties 3 and 6 there can never exist a q ∈M for which e→ q,
since that would make the size of q be smaller than zero. Also note that it is
possible by Property 6 for an element p ∈ M to have a transition p → p′ (for
some p′ ∈M) such that |p| − |p′| > 1, i.e., that the size of an element decreases
by more than one – as long as there is (by Property 5) at least one transition
which decreases the size of p by exactly one. This is used to make possible
impure termination in BPA1, as we shall see in Section 5.4.

5.2 Decomposition proof for monoids

We can now prove that a unique prime decomposition exists for each element of a
unique decomposition monoid; but first we define primeness and decomposition
on elements of a monoid by analogy of primeness and sequential decompositions
of processes (Definitions 4.1 and 4.2 respectively).

Definition 5.3. An element p ∈M of a monoid (M, ·, e), with p 6= e, is called
prime if, for all elements q, r ∈ M , we have that p = q · r implies either q = e
or r = e.

Definition 5.4. A decomposition of an element p ∈ M of a monoid (M, ·, e)
consists of a sequence of elements 〈p1, p2, . . . , pn〉 such that p = p1 · p2 · . . . · pn;
call p1 · p2 · . . . · pn the element associated with decomposition 〈p1, p2, . . . , pn〉.
We define e to be the element associated with the empty sequence 〈〉, because
e is a unit element under composition (by Property 2).

In order to prove that a unique prime decomposition exists, we first need one
additional lemma.

Lemma 5.5. Consider a unique decomposition monoid (M, ·, | |,→, e), and el-
ements p, q, r ∈ M ; and suppose p · q → r with |r| = |p · q| − 1, and p 6= e and
q 6= e. Then there exists an element p′ ∈M such that p→ p′ with r = p′ · q.

Proof. Since p · q → r, we have by Property 7 that either q → r or there is a
p′ ∈M such that p→ p′ and r = p′ · q.

Now suppose q → r; then by Property 6 we have |r| < |q|. Now we have
|r| = |p · q| − 1 = |p|+ |q| − 1 by Property 4, so |p|+ |q| − 1 < |q|, so |p| − 1 < 0,
hence |p| < 1, i.e., |p| = 0. But since p 6= e, by Property 3 we have |p| 6= 0. This
is a contradiction, so we do not have q → r. Hence, by Property 7 it must be
that there is a p′ ∈M such that p→ p′ with r = p′ · q.

30 5.2 Decomposition proof for monoids

We now prove that every unique decomposition monoid has a unique prime
decomposition result. This proof follows roughly the same structure as that of
Theorem 4.3, the unique prime decomposition theorem for deadlock-free pro-
cesses.

Theorem 5.6. Consider a unique decomposition monoid (M, ·, | |,→, e). Every
element p ∈M has a decomposition into a sequence of elements 〈p1, p2, . . . , pn〉,
with n ∈ N and pi ∈ M for all 1 ≤ i ≤ n, such that each pi is prime, and
p = p1 · p2 · . . . · pn. For every p, only one such prime decomposition exists.

Proof. We prove both existence and uniqueness of a prime decomposition of p
by induction on |p|.

1. If |p| = 0, then by Property 3 we have p = e, so we have 〈〉 as the
(empty) prime decomposition of p by Definition 5.4. As for uniqueness,
suppose we have another decomposition of p into 〈p1, p2, . . . , pn〉, with
pi prime for all 1 ≤ i ≤ n. Since |p| = 0 we have by substitution that
|p1 · p2 · . . . · pn| = 0 as well, so by Property 4 we have |p1|+|p2|+. . .+|pn| =
0; then it must be that |pi| = 0 for all 1 ≤ i ≤ n. This means that
again by Property 3 we have pi = e for all 1 ≤ i ≤ n, and e is not
prime by Definition 5.3, so this would mean that this decomposition is
not prime. Hence, no decomposition other than the empty one exists, i.e.,
that decomposition is unique.

2. Suppose that |p| > 0. By induction we have a unique prime decomposition
for all p′ with |p′| < |p|.
If p is prime, then by Definition 5.4 we have 〈p〉 as prime decomposition
of p. As for uniqueness, suppose we have another decomposition of p into
〈p1, p2, . . . , pn〉, with pi prime for all 1 ≤ i ≤ n. We now perform case
distinction on n.

(a) If n = 0 then we have the empty decomposition 〈〉, which would
mean by Property 3 that p = e. But p is prime and e is not prime
by Definition 5.3, so this cannot be the case.

(b) If n = 1 then we have 〈p1〉 as prime decomposition with p1 = p; this
decomposition of p into 〈p〉 was already established above.

(c) If n > 1 then there exist q, r ∈M such that p = q · r, e.g. take q = p1

and r = p2 · . . . · pn, so then p would not be prime, so this cannot be
the case.

Hence, the only decomposition of p is 〈p〉 itself, so that decomposition is
unique.

If p is not prime, then by definition of primeness (Definition 5.3) there exist
q, r ∈M such that p = q · r, with q 6= e and r 6= e, so by Property 3 we have
|q| > 0 and |r| > 0. Since |p| = |q · r| = |q|+|r| by Property 4, we have |q| <
|p| and |r| < |p|, so by induction we have a prime decomposition of q into
〈q1, q2, . . . , qn〉, with qi prime for all 1 ≤ i ≤ n, and a prime decomposition
of r into 〈r1, r2, . . . , rm〉, with ri prime for all 1 ≤ i ≤ m. Because p =
q · r we have by substitution that 〈q1, q2, . . . , qn, r1, r2, . . . , rm〉 is a prime
decomposition of p.

5.3 Cancellation for monoids 31

Now for uniqueness, suppose we have two prime decompositions of p,
namely 〈x1, x2, . . . , xk〉 and 〈y1, y2, . . . , yl〉, with xi prime for all 1 ≤ i ≤ k
and yi prime for all 1 ≤ i ≤ l; so p = x1 ·x2 · . . . ·xk = y1 · y2 · . . . · yl by
Definition 5.4. We need to prove that these two decompositions are the
same, i.e. that k = l and xi = yi for all 1 ≤ i ≤ k. Since |p| > 0 we
have by Property 3 that p 6= e, and thus by Property 5 that there exists
a p′ ∈M such that p→ p′ with |p′| = |p| − 1.

Now we know that p = x1 ·x2 · . . . ·xk → p′, and x1 6= e (because x1 is
prime) and x2 · . . . ·xk 6= e (because first of all k > 1, since k = 0 would
yield an empty decomposition and k = 1 would mean that p is prime, both
of which are not the case; and all of x2, . . . , xk are prime and thus not equal
to e, so by repeated application of Property 4 and by Property 3 we have
x2 · . . . ·xk 6= e), hence we can apply Lemma 5.5 on x1 and x2 · . . . ·xk to
get that p′ = x′1 ·x2 · . . . ·xk, with x1 → x′1 for some x′1 ∈M . Now x′1 does
not have to be prime, so we can decompose it into 〈x′11, x′12, . . . , x′1s〉, with
x1i prime for all 1 ≤ i ≤ s; then we have 〈x′11, x′12, . . . , x′1s, x2, . . . , xk〉 as
decomposition of p′, and since |p′| < |p| by Property 6, this decomposition
is unique by induction.

Now we also have that p = y1 · y2 · . . . · yl → p′, so by the same reasoning
as applied above, we also have p′ = y′1 · y2 · . . . · yl, with y1 → y′1 for some
y′1 ∈M , and we have 〈y′11, y′12, . . . , y′1t, y2, . . . , yl〉 as decomposition for p′,
with y1i prime for all 1 ≤ i ≤ t, which is once again unique by induction.

We now have two decompositions of p′, but since decomposition for p′ is
unique, it must be that s + k = t + l, and that the ith element of the
decomposition of x′ is equal to the ith element of the decomposition of
y′, for 1 ≤ i ≤ s + k; so in particular we have that xk = yl. With this
fact established, we can use Property 8 to derive that x1 ·x2 · . . . ·xk−1 =
y1 · y2 · . . . · yl−1. The size of both of these elements is smaller than |p|,
since |xk| > 0 and |yl| > 0 (because both are prime). This means that
once again by induction, decomposition is unique for x1 ·x2 · . . . ·xk−1, so
we have that k = l and xi = yi for 1 ≤ i < k. We had already established
that xk = yl, so in conclusion, decomposition for p is also unique if p is
not prime.

For both |p| = 0 and |p| > 0 we have found a prime decomposition for p and
established its uniqueness.

Note that to merely prove that a prime decomposition exists, instead of also
proving its uniqueness, we only need the monoid properties of associativity and
identity (Properties 1 and 2) from Definition 5.1, and Properties 3 and 4 from
Definition 5.2.

5.3 Cancellation for monoids

We have now proved that a monoid has a unique prime decomposition result
if a number of properties hold for that monoid. However, we have not proved
that all these properties are actually necessary to have.

32 5.3 Cancellation for monoids

In the BPA1/BPA0,1 case, it was possible to prove cancellation directly from
the SOS rules and bisimulation relation imposed on the algebra. We would
have liked to do the same in the case of monoids, i.e. to derive Property 8 in
Definition 5.2 from Properties 1–7 in Definitions 5.1 and 5.2. However, it is not
possible to do so, since cancellation is not guaranteed to hold using only these
properties. We prove this by providing an example for which every property
except for cancellation holds.

Theorem 5.7. Property 8 is not derivable from Properties 1–7, i.e. there exist
monoids for which Properties 1–7 hold, but Property 8 does not hold.

Proof. Consider a monoid (M, ·, ε) which is defined as follows:

• The set M consists of strings of arbitrary finite length from the alphabet
{a, b}; we can recursively define M using the grammar S ::= a | b | SS.
We denote the empty string with the symbol ε, and take this element as
the unit element. Furthermore, we use the notation pn, with p ∈ M and
n ∈ N, for the string p concatenated n times; so p0 = ε, and pn+1 = ppn.

• Take a size function | | : M → N such that for all p ∈M , |p| is the length
of the string p; so |ε| = 0, and |cp| = 1 + |p| for c ∈ {a, b}.

• We define the composition function · : M ×M → M as follows, for all
p, q ∈M :

p · q =

p if q = ε

pq if q = aq′ for some q′ ∈M
bnq if q = bq′ for some q′ ∈M , and |p| = n .

Hence, the character b at the beginning of the right-hand string causes all
characters in the left-hand string to be replaced by the character b.

• Finally a transition relation→ ⊆M×M is defined as the smallest set such
that p→ p′ if p = cp′, with c ∈ {a, b} and p′ ∈ M ; i.e. each step removes
one character from the left-hand side of the string, until the empty string
is reached.

We now prove for (M, ·, ε) that Properties 1 and 2 hold (thereby proving that
it is a monoid) and Properties 3–7 hold, but Property 8 does not hold, so it is
a unique decomposition monoid except for cancellation.

First of all, it is easy to see that cancellation does not hold: we have both
a · b = bb and b · b = bb, so a · b = b · b, but not a = b, since a and b are distinct
elements. We now prove that all the other properties do hold, for all p, q, r ∈M .

1. We prove by case distinction that p ·(q · r) = (p · q) · r.

(a) Suppose r = ε. Then p ·(q · r) = p · q = (p · q) · r, twice by definition
of · .

(b) Suppose r = br′ for some r′ ∈M . Then p ·(q · r) = p · bmr = bn+mr,
twice by definition of · , for |p| = n and |q| = m; and (p · q) · r = bkr
by definition of · , for |p · q| = k, and by Property 4 (which we prove
below) k = |p|+ |q| = n+m, so also (p · q) · r = bn+mr.

5.3 Cancellation for monoids 33

(c) Suppose r = ar′ for some r′ ∈M , then we distinguish on q:

i. Suppose q = ε. Then p ·(q · r) = p · r = (p · q) · r, twice by defini-
tion of · .

ii. Suppose q = bq′ for some q′ ∈M . Then p ·(q · r) = p · qr = bnqr,
twice by definition of · , for |p| = n; and (p · q) · r = bnq · r =
bnqr, also twice by definition of · .

iii. Suppose q = aq′ for some q′ ∈M . Then p ·(q · r) = p · qr = pqr =
p · qr = p ·(q · r), four times by definition of · .

All cases have been covered, so associativity holds.

2. By definition of · we have p · ε = p; it also follows from the definition
that ε · q = q for all three cases of q in the definition.

3. By definition of | | we have |ε| = 0, and the only string of length 0 is the
empty string.

4. By definition of · we have for all three cases of p · q that the resulting
string has the same length as that of p and q combined. Since |p| is defined
as the length of p for all p, we have that |p · q| = |p|+ |q|.

5. If p 6= ε, then by Property 3 we have |p| > 0, so by definition of | | we
have that p is a string of at least length one, so p = cp′ for some c ∈ {a, b}
and p′ ∈ M , so by definition of → we have p → p′, and by definition of
| |, |p′| = |p| − 1.

6. By definition of → and | |, every step p → p′ for some p′ ∈ M has |p′| =
|p| − 1, so |p′| < |p|.

7. Suppose that p · q → r. We now prove by case distinction on p.

(a) Suppose p = ε. Then by Property 2, p · q = q, so q → r.

(b) Suppose p 6= ε, then we distinguish on q.

i. Suppose q = ε. Then p · q = p by definition of · , so p → r,
and because q = ε, also r = r · q; then we can take p′ = r for
r = p′ · q.

ii. Suppose q = bq′ for some q′ ∈M . Then p · q = bnq by definition
of · , for |p| = n; and since p 6= ε, by Property 3 we have |p| > 0,
so n > 0. Hence by definition of → we have bnq → bn−1q, so
r = bn−1q.
Also since n > 0 we have p = cp′ for some c ∈ {a, b} and p′ ∈M ,
hence by definition of → we have p → p′ with |p′| = n − 1 by
definition of | |. Then p′ · q = bn−1q by definition of · , so
p′ · q = r.

iii. Suppose q = aq′ for some q′ ∈ M . Then p · q = pq by definition
of · ; and since p 6= ε, by Property 3 we have |p| > 0, so p = cp′

for some c ∈ {a, b} and p′ ∈ M . Hence by definition of → we
have pq → p′q, so r = p′q.
Also by definition of → we have p → p′; then p′ · q = p′q by
definition of · , so p′ · q = r.

34 5.4 BPA1 as unique decomposition monoid

In each case we have either q → r or there is a p′ ∈ M such that p → p′

and r = p′ · q, so the property holds.

All properties except for cancellation hold, so the given monoid M is a unique
decomposition monoid except for cancellation.

Now that we have shown that cancellation is not derivable from the other prop-
erties in a general setting, the only question remaining is whether cancellation
is actually required in order to prove unique decomposition. We can easily show
that this is the case: if we have unique decomposition without cancellation, then
there exist elements p, q, r ∈ M such that p · r = q · r, but p 6= q. Suppose the
decompositions of p, q and r are

〈p1, p2, . . . , pn〉 with pi ∈M for 1 ≤ i ≤ n
〈q1, q2, . . . , qm〉 with qi ∈M for 1 ≤ i ≤ m
〈r1, r2, . . . , rk〉 with ri ∈M for 1 ≤ i ≤ k

respectively. Then we have as the unique decomposition of p · r = q · r that
〈p1, p2, . . . , pn, r1, r2, . . . , rk〉 = 〈q1, q2, . . . , qm, r1, r2, . . . , rk〉, but this would im-
ply that the decompositions of p and q are the same, which in turn would imply
that p = q; and we assumed that this is not the case.

5.4 BPA1 as unique decomposition monoid

Now that we have established that unique decomposition monoids are actually
uniquely decomposable, we can apply this result to processes in BPA1 by showing
that BPA1 is in fact a unique decomposition monoid; we do this by proving that
Properties 1 and 2 from Definition 5.1 and Properties 3–8 from Definition 5.2
hold for BPA1.

For reasoning about equality on processes we use the bisimulation semantics as
established before, so we divide BPA1 into equivalence classes modulo bisimu-
lation. We use the notation P to indicate the set of processes in BPA1 divided
using bisimulation; for every process p from BPA1 we write [p] ∈ P for the
equivalence class containing the process p. This is allowed because bisimulation
is a congruence relation on closed terms with respect to each of the operators
in BPA1. This fact follows from the shape of the SOS rules, which adheres to
the tyft/tyxt format as presented by Groote and Vaandrager [13]; for rules in
this format, the bisimulation relation is automatically a congruence.

This results in the following definition.

Definition 5.8. We define a monoid (P, ·, [1]) with the following properties:

• The set P consists of the equivalence classes of processes in BPA1, with
[1] as unit element.

• For the composition function · : P × P → P we use the sequential
composition function defined in BPA1, so for all processes p and q we have
[p] · [q] = [p · q].

5.4 BPA1 as unique decomposition monoid 35

• We define a transition relation → ⊆ P × P such that for all processes p
and p′ we have [p] → [p′] iff there exist processes q and q′ and an a ∈ A
such that p↔ q, p′ ↔ q′ and q

a−→ q′.

• Finally, take a size function | | : P → N such that for every process p we
have |[p]| = |p|.

We now prove that this definition actually results in a unique decomposition
monoid.

Theorem 5.9. Take the monoid (P, ·, [1]) with properties as defined in Defini-
tion 5.8 above. Then (P, ·, | |,→, [1]) is a unique decomposition monoid.

Proof. We need to prove that Properties 1 and 2 from Definition 5.1 and Prop-
erties 3–8 from Definition 5.2 hold for all P,Q,R ∈ P. Since for all P ∈ P and
all p ∈ P we have [p] = P , we take processes p, q, r and prove the properties for
all [p], [q] and [r].

1. By Lemma 2.5 it holds that p ·(q ·r)↔ (p ·q) ·r; hence they are in the same
equivalence class, so [p · (q · r)] = [(p · q) · r]; then by repeated application
of the definition of · we have [p] · ([q] · [r]) = ([p] · [q]) · [r].

2. By Lemma 2.5 it holds that p · 1 ↔ p and 1 · p ↔ p; hence p · 1, p and
1 · p are all in the same equivalence class, so [p · 1] = [p] = [1 · p], so by
definition of · we have [p] · [1] = [1] · [p] = [p].

3. By definition of | | we have |[p]| = 0 iff |p| = 0, which is the case if
max{n ∈ N | ∃p′ : p −→n p′} = 0, i.e. if there is no process p′ and action
a ∈ A such that p a−→ p′, if p cannot perform an action. According to the
SOS rules (Table 2.1) this is the case iff p ↔ 1, hence p and 1 are in the
same equivalence class, so [p] = [1].

4. We have |[p] · [q]| = |[p · q]| = |p · q| = |p|+ |q| = |[p]|+ |[q]| by congruence,
definition of | |, Lemma 2.7 and again definition of | |, respectively.

5. Suppose [p] 6= [1]. Then by Property 3 we have |[p]| 6= 0, hence |p| 6= 0, so
by definition of size for BPA1 – since the size is defined as the maximum
number of actions that can be performed – it must be the case that there
is an action a ∈ A and process p′ for which p

a−→ p′, with the number
of actions that can be performed in p′ is one less than that of p. Hence
p

a−→ p′ with |p′| = |p| − 1; thus by definition of | | also |[p′]| = |[p]| − 1.

6. If [p] → [q], then by definition of → there is an a ∈ A such that p a−→ q.
Now by Lemma 2.9 we have |q| < |p|, so also |[q]| < |[p]|.

7. Suppose [p] · [q]→ [r], then by definition of→ and because [p] · [q] = [p · q],
there is an a ∈ A such that p · q a−→ r. By the SOS rules in Table 2.1 this
is possible either by Rule 7 or Rule 8, so we distinguish on those.

(a) By Rule 7 we have that p · q a−→ r if p a−→ p′; then r ↔ p′ · q, so by
congruence [r] = [p′] · [q].

36 5.4 BPA1 as unique decomposition monoid

(b) By Rule 8 we have that p · q a−→ r if p↓ and q
a−→ q′; then r ↔ q′.

This means that [q] → [q′] by definition of →, and since r ↔ q′ we
have also that [r] = [q′], hence [q]→ [r].

In both cases we have either [q]→ [r] or there is a [p′] such that [p]→ [p′]
and [r] = [p′] · [q].

8. Suppose [p] · [r] = [q] · [r]. Then by congruence we have [p · r] = [q · r], so
p · r ↔ q · r. Then by the BPA1 cancellation theorem (Theorem 3.2) we
have p↔ q, so [p] = [q].

All required properties hold, so (P, ·, | |,→, [1]) is a unique decomposition monoid.

Note that Property 3 would not hold in case we added deadlock, since |0| = 0
as well; hence this definition only works for BPA1 and not for BPA0,1. However,
it might also be possible to establish another definition of unique decomposition
monoids in which BPA0,1 can be defined as well.

Chapter 6

Conclusion

In this thesis, we have established a number of results. We have proven that
all processes in BPA1 have a unique sequential prime decomposition, and we
have shown that such a decomposition does not exist in general for BPA0,1.
To alleviate this, we have established two decomposition results for processes
containing deadlock, both as close as possible to a prime decomposition. Taken
together, these three forms of decomposition provide a unique decomposition
for all processes in BPA0,1 as well.

Aside from establishing a unique decomposition for processes in BPA1/BPA0,1,
we have also established a sufficient criterion to be able to provide a unique
prime decomposition result for monoids, and have proven that a reduction of
BPA1 to monoids satisfies this criterion. Furthermore we have shown that a
cancellation property is necessary to be able to define unique decomposition on
monoids in this fashion.

There is a lot of future work that could still be done in this area, mostly in terms
of trying to obtain a unique decomposition result for different process algebras.
Mostly lacking right now is an attempt at decomposition for BPA1/BPA0,1 where
infinite processes are allowed. A possible starting point for this is given in the
Appendix. Another possibility would be to first add the Kleene star operator
to the algebra, which provides a limited form of infinity which might be easier
to handle.

Another candidate for decomposition would be BPP0,1, the Basic Parallel Pro-
cesses with deadlock and (impure) termination – which could derive its result
from the unique decomposition of BPP1, which was proven by Luttik and Van
Oostrom [17].

Furthermore, we could try to refine the decomposition result for BPA0,1 in such
a way that it becomes possible – under some circumstances – to also allow
deadlock in other components than the last one. This should be possible in
theory, since there are processes containing deadlock which are prime, and thus
do not give rise to infinite decomposition, as shown by Lemma 4.15.

As already stated in Section 5.4, we conjecture that it is also possible to define
a monoid in such a way that it captures the essence of all decompositions of
BPA0,1. Hence, constructing such a monoid would also belong to future work.

38 6 Conclusion

Finally, we have shown that the properties for a unique decomposition monoid
are sufficient for proving unique prime decomposition, but have not proven that
they are all necessary, except for cancellation. Proving the necessity of the other
properties would show that the collection of properties as a whole is minimal.

References

[1] L. Aceto, W.J. Fokkink, and C. Verhoef. Structural operational semantics.
In J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process
Algebra, chapter 3, pages 197–292. Elsevier, 2001.

[2] J.C.M. Baeten. Embedding untimed into timed process algebra: the case
for explicit termination. Mathematical Structures in Computer Science,
13(04):589–618, 2003.

[3] J.C.M. Baeten. Calculating with Automata. In P. Degano, R. De Nicola,
and J. Meseguer, editors, Concurrency, Graphs and Models, number 5065
in LNCS, pages 747–756. Springer-Verlag, 2008.

[4] J.C.M. Baeten, T. Basten, and M.A. Reniers. Process Algebra: Equational
Theories of Communicating Processes. Number 50 in Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2009. To
appear.

[5] J.C.M Baeten, P.J.L Cuijpers, B. Luttik, and P.J.A. van Tilburg. Models
of computation: automata and processes. In Proceedings of FSEN 2009,
LNCS. Springer-Verlag, 2009. To appear.

[6] J.C.M. Baeten, P.J.L. Cuijpers, and P.J.A. van Tilburg. A Context-Free
Process as a Pushdown Automaton. In F. van Breugel and M. Chechik,
editors, Proceedings of CONCUR 2008, number 5201 in LNCS, pages 98–
113. Springer-Verlag, 2008.

[7] J.C.M. Baeten, P.J.L. Cuijpers, and P.J.A. van Tilburg. A Basic Paral-
lel Process as a Parallel Pushdown Automaton. In T. Hildebrandt and
D. Gorla, editors, Proceedings of EXPRESS 2008, number 242 in ENTCS,
pages 35–48. Elsevier, 2009.

[8] J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Communi-
cation. Information and Control, 1/3(60):109–137, 1984.

[9] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on Infinite
Structures. In J. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook
of Process Algebra, pages 545–623. Elsevier, 2001.

[10] I. Castellani and M. Hennessy. Distributed Bisimulations. Journal of the
ACM, 36(4):887–911, 1989.

40 REFERENCES

[11] S. Christensen. Decidability and Decomposition in Process Algebras. PhD
thesis, University of Edinburgh, 1993. ECS-LFCS-93-278.

[12] S. Christensen, Y. Hirshfeld, and F. Moller. Decomposability, Decidabil-
ity and Axiomatisability for Bisimulation equivalence on basic parallel pro-
cesses. In Proceedings of LICS ’93, pages 386–396. IEEE Computer Society
Press, 1993.

[13] J.F. Groote and F. Vaandrager. Structured Operational Semantics and
Bisimulation as a Congruence. In G. Ausiello, M. Dezani-Ciancaglini, and
S. Ronchi Della Rocca, editors, Proceedings of ICALP ’89, number 372 in
LNCS, pages 423–438. Springer-Verlag, 1989.

[14] J.M. Howie. Fundamentals of Semigroup Theory. Number 12 in London
Mathematical Society Monographs New Series. Oxford University Press,
1995.

[15] C.P.J. Koymans and J.L.M Vrancken. Extending process algebra with
the empty process ε. Logic Group Preprint Series 1, Utrecht University,
Department of Philosophy, 1985.

[16] B. Luttik. What is algebraic in process theory? Bulletin of the EATCS,
88:65–83, 2006.

[17] B. Luttik and V. van Oostrom. Decomposition Orders – another general-
isation of the fundamental theorem of arithmetic. Theoretical Computer
Science, 335(2-3):147–186, 2005.

[18] R. Milner and F. Moller. Unique Decomposition of Processes. Theoretical
Computer Science, 107(2):357–363, 1993.

[19] F. Moller. Axioms for Concurrency. PhD thesis, University of Edinburgh,
1989. ECS-LFCS-89-84.

[20] F. Moller. The Importance of the Left Merge Operator in Process Algebras.
In M.S. Paterson, editor, Proceedings of ICALP ’90, number 443 in LNCS,
pages 752–764. Springer-Verlag, 1990.

[21] F. Moller. The Nonexistence of Finite Axiomatisations for CCS Congru-
ences. In Proceedings of LICS ’90, pages 142–153. IEEE Computer Society
Press, 1990.

[22] J.L.M. Vrancken. The algebra of communicating processes with empty
process. Theoretical Computer Science, 177:287–328, 1997.

Appendix A

Some preliminary results
regarding recursion

Originally it was our aim for this thesis to include the notion of infinite pro-
cesses in BPA1 and BPA0,1 by allowing recursive specifications to be defined.
However, infinite processes prove to be a problem with regard to unique prime
decomposition. To show this, we first modify the basic syntax of processes to
allow for recursive specifications.

Definition A.1. A recursive specification over V, where V is a (finite) set of
variables, is defined as a set of equations of the form X = tX , one for each
variable X ∈ V. Here tX is a term over the signature of BPA1 or BPA0,1, which
may contain elements of V.

If we now allow these recursive specification variables to occur in the syntax of
our algebras, we get the following modified grammar for BPA1:

P ::= 1 | a.P | X | P + P | P · P ,

and for BPA0,1:

P ::= 0 | 1 | a.P | X | P + P | P · P .

This addition also slightly changes the semantics for BPA1 and BPA0,1.

Definition A.2. The operational semantics for BPA1 and BPA0,1 are given by
the SOS rules in Table 2.1 with the addition of the two rules for recursion given
in Table A.1. Here A is the set of possible actions, and V is the set of recursive
specification variables.

It is now possible to specify a plethora of processes which were previously inex-
pressible. Examples are X = a.X, a process which can only perform an infinite
number of a-actions and never terminate, or X = (a.X · b.1) + 1, a process
which can perform an unbounded number of a-actions, then the same number
of b-actions, and then terminate.

42 A Some preliminary results regarding recursion

10
tX

a−→ x X = tX

X
a−→ x

11
tX↓ X = tX

X↓

Table A.1: Additional SOS rules for recursion (a ∈ A, X ∈ V)

Now a number of these processes do not have a unique prime decomposition.
An example of this is the process X = a.X, which can be decomposed into
〈X〉, 〈X,X〉, 〈X,X,X〉, etcetera, but none of these decompositions are prime,
since X can always be decomposed further.

At the time we did not see a way of keeping recursive specifications in the
theory without significantly hampering the overall progress of the project, so
we decided not to include recursive specifications in our main results. However,
at this moment we already had proof that cancellation does hold for infinite
processes, as long as the component to be split off is finite. Since this result
might aid a future endeavour into decomposition of infinite processes (or more
generally, processes with recursion), we present it here. The cancellation proof
itself is mostly the same as the one present in Theorem 3.2; most differences
arise in the definitions and lemmas on which the theorem is based.

First of all we make a significant change to the definition of the size of a process,
and redefine it from Definition 2.6 to the following.

Definition A.3. We define the size of a process p, written |p|, to be the length of
the longest transition sequence (t.s.) starting at p that ends with a termination,
unless there are transition sequences starting at p that do not end in termination,
in which case |p| is defined to be ∞:

|p| =
{

sup{n ∈ N | p −→n p′ ∧ p′↓} if all t.s. starting at p end in termination
∞ otherwise .

We say a process p is finite-sized, or write the predicate finite-sized(p), if |p| = n
for some n ∈ N, i.e., it has a finite size, and we say it is infinite-sized otherwise.

Now there are three distinct ways in which a process can be infinite-sized:

1. If a process in BPA0,1 has deadlock then there is a non-terminating tran-
sition sequence, so the process is infinite-sized by definition. Note that
this differs greatly from the original definition of size as per Definition 2.6,
where deadlock was treated the same as successful termination.

2. If a process contains a transition sequence of infinite length, as is the
case in e.g. the process equation X = a.X, then this results in a non-
terminating transition sequence, so it is also infinite-sized by definition.

3. If a process contains only terminating transition sequences with a finite
length, and if that process has the characteristic that given a transition
sequence with a fixed length (say n) it is always possible to find a transition
sequence with a length greater than n, then sup{n ∈ N | p −→n p′∧p↓} =
∞, so a process of such a kind is infinite-sized as well.

A Some preliminary results regarding recursion 43

Now the size of finite-sized processes can easily be calculated, as per the follow-
ing lemma (contrast this with Lemma 2.7).

Lemma A.4. For finite-sized processes p and q and for a ∈ A, the following
equalities can be derived:

|0| =∞
|1| = 0 ,
|a.p| = 1 + |p| ,
|p+ q| = max(|p|, |q|) ,
|p · q| = |p|+ |q| .

Proof. By definition of size (Definition A.3) and the SOS rules in Table 2.1.

We now state some auxiliary lemmas on arbitrary processes in BPA1 or BPA0,1,
which are needed to prove cancellation. These lemmas correspond to Lem-
mas 2.8, 2.9 and 3.1 respectively.

Lemma A.5. For processes p and q, if p ↔ q, then |p| = |q|.

Proof. First of all we prove that if p↔ q then either both p and q are finite-sized
or both are infinite-sized. To this end, suppose without loss of generality that
p is infinite-sized and q is finite-sized, with |q| = n. Then by definition of size
(Definition A.3) there either is a non-terminating transition sequence starting
at p (which cannot be simulated by q), or there are transition sequences of
unbounded length starting at p; in which case there is also a transition sequence
of length m, with m > n, from p, which cannot be simulated in q. This is a
contradiction of p↔ q.

So either of the two following cases holds:

1. Processes p and q are both finite-sized. Assume without loss of generality
that (for p ↔ q) we have |p| > |q|. Then there is a transition sequence of
length |p| starting at p which is longer than any sequence in q, so q cannot
simulate this sequence. But then p 6↔ q, which is a contradiction. Hence
it must be that |p| = |q|.

2. Processes p and q are both infinite-sized. Then by definition |p| = |q| =∞.

In either case we have |p| = |q|.

Lemma A.6. If for some finite-sized process p we have p
a−→ p′ for some

process p′ and a ∈ A, then |p′| < |p|.

Proof. Suppose |p′| = n, so the longest transition sequence starting at p′ takes
n steps. By p

a−→ p′ it is possible to get from p to p′ in one step, so there is
a transition sequence of n + 1 steps starting at p. Thus the longest transition
sequence starting at p must also be at least n + 1 steps long. Hence, |p| ≥
n+ 1 > n = |p′|, so |p′| < |p|.

44 A Some preliminary results regarding recursion

Lemma A.7. If we have a finite-sized process r for which r
a−→ r′ for some

a ∈ A and process r′, then there is no process p, finite-sized or infinite-sized,
such that p · r ↔ r′.

Proof. We prove the lemma by contradiction. Suppose that there is a process
p for which p · r ↔ r′. We distinguish two cases:

1. Process p is finite-sized. Then by Lemma A.5, |p · r| = |r′| and by
Lemma A.4, |p · r| = |p| + |r|, so |p| + |r| = |r′| and |p| = |r′| − |r|.
But by Lemma A.6, |r′| < |r|, so |r′| − |r| < 0 and thus |p| < 0. But
there cannot exist a process with a longest transition sequence smaller
than zero, so this is a contradiction.

2. Process p is infinite-sized. Then |p| = ∞, so |p · r| = ∞ as well. Since
p · r ↔ r′, then by Lemma A.5 we have |r′| = ∞ too. But since r was
supposed to be finite-sized, by Lemma A.6 it holds that r′ is finite-sized
as well, so this is a contradiction.

In both cases we have a contradiction, so no such p exists.

Note that if r is infinite-sized then such a p can exist, e.g. take r = a.r+ 1 and
p = a.1 + 1, then r

a−→ r and p · r ↔ r.

Using these lemmas, we can prove the following cancellation theorem for pro-
cesses in BPA1 or BPA0,1, as opposed to the one in Theorem 3.2.

Theorem A.8. If for some (possibly infinite-sized) processes p and q there
exists a finite-sized process r such that p · r ↔ q · r, then p ↔ q.

Proof. Consider the following relation R:

R = {(p, q) | (∃r : finite-sized(r) ∧ p · r ↔ q · r)} .

Obviously, if R is a bisimulation relation, then the theorem holds. Recall the
definition of a bisimulation (Definition 2.4); we need to prove that each of the
four properties of a bisimulation relation hold for R, to establish that R is a
bisimulation relation. For each property, assume (p, q) ∈ R, so take a finite-sized
r such that p · r ↔ q · r.

1. Suppose p a−→ p′ for some a ∈ A; we need to show that there exists a q′

such that q a−→ q′ and (p′, q′) ∈ R.

By SOS rule 7 (see Table 2.1) on p
a−→ p′ we have p · r a−→ p′ · r, so by

bisimilarity of p · r and q · r there exists an s↔ p′ · r such that q · r a−→ s.
Fix a derivation of q ·r a−→ s; we distinguish cases according to which SOS
rule has been applied last in this derivation. This can either be rule 7 or
rule 8:

(a) By SOS rule 7 there is a q′ such that q a−→ q′; then s = q′ · r, so
p′ · r ↔ q′ · r. By definition of R, since finite-sized(r)∧ p′ · r ↔ q′ · r,
this means that (p′, q′) ∈ R.

A Some preliminary results regarding recursion 45

(b) By SOS rule 8 it holds that q↓ and there is an r′ such that r a−→ r′;
then s = r′, so p′ · r ↔ r′. But by Lemma A.7 this is a contradiction,
so this case cannot occur.

Only the first case can occur, so there is a q′ such that q a−→ q′ with
(p′, q′) ∈ R; this satisfies the bisimulation relation requirement.

2. Suppose q a−→ q′ for some a ∈ A; we need to show that there exists a p′

such that p a−→ p′ and (p′, q′) ∈ R.

This is analogous to the case for p a−→ p′ above.

3. Suppose p↓; we need to show that q↓.
To show this, we apply case distinction on r. Since r is finite-sized, it
is deadlock-free, so r must be able to either perform an action and/or
terminate. We distinguish between these two options:

(a) Process r can perform an action: r a−→ r′ for some a ∈ A. Then by
SOS rule 8, p · r a−→ r′, and by bisimilarity of p · r and q · r there
exists an s ↔ r′ with q · r a−→ s. Fix a derivation of s · r a−→ s; we
again distinguish cases according to which SOS rule has been applied
last in this derivation, which is either SOS rule 7 or rule 8:

i. By SOS rule 7 there is a q′ such that q a−→ q′; then s = q′ · r,
so r′ ↔ q′ · r. But by Lemma A.7 this is a contradiction, so this
case cannot occur.

ii. By SOS rule 8 it holds that q↓ and s = r′; so we have q↓.
Only the second case can occur, and in this case we have q↓.

(b) Process r can terminate: r↓. Since p↓ holds, by SOS rule 9 it holds
that p · r↓, and by bisimilarity of p · r and q · r it also holds that q · r↓.
This can only be satisfied by SOS rule 9, so q↓.

In either of the above cases we have q↓; this satisfies the bisimulation
relation requirement.

4. Suppose q↓; we need to show that p↓.
This is analogous to the case for p↓ above.

Summing up, the four requirements for a bisimulation relation are met, so R is
indeed a bisimulation relation. This concludes our proof of the theorem.

Note that it is required that r is deadlock-free when p and q are allowed to
contain deadlock: take process r = a.0 + 1, then it can easily be shown that
1 · r ↔ (a.0 + 1) · r, but obviously 1 6↔ a.0 + 1. A counterexample without
1 is also possible: a.0 · a.0 ↔ a.0 · 0, but a.0 6↔ 0. Or take a counterexample
without actions: 1 · 0↔ 0 · 0, but 1 6↔ 0.

This cancellation theorem concludes our preliminary results regarding recursion.

	Preface
	Summary
	Contents
	1. Introduction
	2. Syntax, semantics and other preliminaries
	3. Cancellation
	4. Decomposition
	5. Generalisation of decomposition to monoids
	6. Conclusion
	References
	Appendix A

