
 Eindhoven University of Technology

MASTER

An automatic recognition method for building floor plans

Jain, P.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/fbe1cddf-f968-4ea7-9007-0fa230880de1

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computer Science

An Automatic Recognition Method
for Building Floor Plans

Poojith Jain
(0666444)

Master Thesis

Supervisors:
dr. M. A. Westenberg

dr. B. Speckmann

Referee :
prof. dr. K. M. van Hee

Eindhoven, The Netherlands
July 2009

Abstract

The cadastral organization in the Netherlands, called the Kadaster, takes responsibility for the registra-
tion of land and property. In the current system used by the Kadaster, a piece of land, called a parcel
is associated with legal information such as ownership right and ownership boundaries. A parcel may
be associated either with a single ownership right or multiple ownership rights. For example, a parcel
having a house owned by a single person indicates single ownership right and a parcel having a building
with several apartments, each owned by a different person indicate multiple ownership rights. On se-
lecting a parcel, its legal information is produced to the user. However in the case of multiple ownership
rights, it is difficult to associate which part of the parcel is owned by which person. To address this issue,
the current system produces a scanned image of the floor plans of the given building. These floor plans
indicate the ownership rights of each floors. But the information from the scanned images of the floor
plans cannot be interpreted by a computer for queries. Hence, there is a need for an alternative method
to deal with parcels having multiple ownership rights.

This thesis describes the recognition method for extraction of relevant information such as ownership
boundary and ownership rights for legal purpose from the scanned building floor plans.

The recognition method consist of two stages, first extracting and representing the information contained
in an image in a graph representation. Then processing this graph representation to extract ownership
boundary, ownership rights and representing them in computer processable format.

The information related queries can be answered as data in the image is represented in computer pro-
cessable format. The extracted information also represented in a suitable format for visualization.

Acknowledgments

I am indebted and grateful to my supervisors Dr. M. A. Westenberg and Dr. B. Speckmann for
their continuous support, stimulating suggestions and encouragement during the course of the
project. I thank them for their suggestions for the improvement of the thesis report, both in terms
of grammar and content. This thesis could not have been completed without their support. I
sincerely thank ir. M. Sterenberg, The Kadaster for providing all the support and necessary in-
formation for the completion of the thesis. I would like to express my gratitude to Capgemini for
giving me the opportunity to do this project. I thank the Kadaster for providing all the necessary
support and data to complete my thesis. I greatly appreciate the suggestions given by my col-
leagues M. G. DSlva and X. L. Ernest Mithun. Finally, I would like to thank all those who directly
or indirectly involved in this project.

Poojith Jain
Eindhoven

July 31, 2009

iii

Contents

Acknowledgements iii

1 Introduction 1
1.1 Aim of the project . 3
1.2 Problem definition . 4
1.3 Kadaster floor plan standards . 4
1.4 Related work . 5
1.5 Results . 5
1.6 Organization of the thesis . 6

2 Basic Concepts 7
2.1 Computer Representation of Raster Images . 7
2.2 Image Processing and Analysis . 8

2.2.1 Neighborhood . 8
2.2.2 Connectivity and Adjacency . 9
2.2.3 Connected Component Labeling . 9
2.2.4 Morphological Operations . 10

2.3 Graphs . 15

3 Building Reconstruction from Floor Plans 17
3.1 Building Floor Plans . 18
3.2 Preprocessing . 19

3.2.1 Thresholding . 19
3.2.2 Noise Removal . 20

3.3 Data Reduction . 20
3.3.1 Label Identification . 20
3.3.2 Removing Labels and Thin lines . 23

3.4 Graph Construction . 24
3.4.1 Skeletonization . 24
3.4.2 Corner Detection . 25
3.4.3 Graph Construction . 28
3.4.4 Graph Optimization . 30

v

4 Graph Processing 33
4.1 Ownership boundary identification . 33
4.2 Associating ownership rights . 36
4.3 Identifying the floor numbers . 36
4.4 Representing data in XML format . 38

5 Results and Discussion 43
5.1 Scenario 1: Four storied building floor plan . 43
5.2 Scenario 2: Numbers overlapping with lines in floor plans 43
5.3 Scenario 3 : Ownership rights represented using text 44
5.4 Scenario 4: Handling curved apartment boundaries 44

6 Summary and Future work 49
6.1 Summary . 49
6.2 Future work . 49

Chapter 1

Introduction

A correct, consistent and complete registration of land and property plays a very important role
for legal purposes. A cadastre is the organization that takes care of the land and property reg-
istration. A cadastre (Stoter 2004) is defined by FIG (International Federation of Surveyors) as
”Cadastre is normally a parcel based, and up-to-date land information system containing a record of in-
terests in land (e.g. rights, restrictions and responsibilities). It usually includes a geometric description of
land parcels linked to other records describing the nature of the interests, the ownership or control of those
interests, and often the value of the parcel and its improvements. It may be established for fiscal purposes
(e.g. valuation and equitable taxation), legal purposes (conveyancing), to assist in the management of land
and land use (e.g. for planning and other administrative purposes), and enables sustainable development
and environmental protection.” In the Netherlands, the Kadaster takes the responsibility of the reg-
istrations of the land and property ownership.

The Kadaster describes information regarding land use in cadastral maps. These maps are
parcel based where a parcel is an individual lot of land with its own legal description. Each parcel
is associated with a unique identifier known as parcel number. A parcel may also be associated
with legal information such as, ownership right, ownership type, address etc. An ownership right
is the real right entitled to a person (or persons) for a parcel. A parcel may have a single owner-
ship right or multiple ownership right. For example, a parcel having a house owned by a single
person indicates single ownership right and a parcel having a building with several apartments,
each owned by a different person indicate multiple ownership rights.

The cadastral map of a city used by the Kadaster comprises all parcels of that city. Generally,
a parcel has a single ownership right associated to it. On selecting one such parcel, information
on legal details about that parcel is provided to the user. Figure 1.1 shows one such example of a
parcel with single ownership right where details about that parcel are provided. In case of a par-
cel with multiple ownership rights, the current system at the Kadaster provides a scanned image
of the floor plans containing the ownership rights of that building. The building having multi-
ple ownership rights may be either apartments of a building or stores of a commercial building,

(a) A parcel. (b) Legal information about the parcel.

Figure 1.1: A parcel with single ownership right.

2 1. Introduction

each with many owners. We generalize both these cases as apartment buildings. The floor plans
associate each apartment of that building with an ownership right. Figure 1.2 shows one such
scanned image of a floor plan. In the figure we observe that there are multiple floors. Each floor
has a floor plan associated to it. The numbers in the floor plans indicate the ownership right.
The thick lines in the image indicate the ownership boundary. The thin lines indicate the interior
partitions of the ownership boundary. The texts in the image give details about the usage type
of the regions. For example, the text ’kamer’ indicates room, ’badkamer’ indicates bath room, etc.

Figure 1.2: Scanned image of a building containing floor plans including ownership rights (shown as large
number) of each floor. The ownership boundaries are indicated with thick lines.

The method used by the current system to deal with parcels having multiple ownership rights
has a limitation. A scanned image of the floor plans is only human readable. Queries such as,
’who owns the 4th floor in a building with parcel number 5940?’, or ’who is the neighbour of Mr.
Simons?’ cannot be answered by a computer, as the system will have to interpret the information
from the scanned floor plans.

A solution to the above problem is by extracting the information from these scanned im-
ages. Information such as ownership boundary, ownership rights, floor number etc. are ex-
tracted. In order to extract the information from the scanned images, an automatic recognition
system should be developed. This method recognizes and then extracts the information from the
scanned images and stores it in a computer processable format. This will enable it to answer all

1.1. Aim of the project 3

the related queries.

Once the information is extracted from the scanned images, it has to be visualized. A possible
solution is to visualize the extracted information in 2D. However, while using 2D, the visual-
ization is cluttered when used for parcels with multiple ownership rights. Therefore, instead of
visualizing in 2D, a 3D visualization could help to avoid the clutter. Figure 1.3 shows the 3D vi-
sualization of the data. Here, the floors are stacked on top of each other and placed on the parcel.
This way, the information of each ownership right is visualized separately.

Figure 1.3: 3D modeled building with distinguishable floors, placed on a parcel.

In order to visualize in 3D, the data must be represented in a suitable format. There are
several formats available that can be used to visualize the extracted information. But most of
the formats define models purely based on the geometric aspects (use of lines and polygons to
represent the shape of a desired part). A format that adds semantic (meaning and relationship
between objects) and topological (spatial properties) aspects into the models, along with geomet-
rical aspects is CityGML. CityGML (G. Gröger 2008) is a common semantic information model
for the representation of 3D urban objects that can be shared over different applications. It is an
XML-based format for the storage and exchange of virtual 3D city models. By representing the
data in CityGML format, a 3D city model is obtained, which can be visualized. CityGML is also
extendable to adapt to the requirements of specific applications. Hence CityGML is a potential
format to represent ownership rights information from the scanned images of floor plans.

1.1 Aim of the project

The aim of the project is to:

• Conduct a feasibility study on CityGML to represent legal information like ownership
rights, ownership boundaries.

• Develop a method to automatically extract the information from building floor plans and
represent it in computer processable format.

Figure 1.4 shows an overview of the project.

4 1. Introduction

Figure 1.4: Overview of the project, which shows a scanned image of the floor plans as an input to the
system and an extended CityGML model as an output.

This project is divided into two parts. This thesis contains the study on developing a method
to develop a method to automatically extract the information from building floor plans and
represent it in computer processable format. Then representing the extracted information in
CityGML(D’Silva 2009) to visualize is conducted as another part of the project.

1.2 Problem definition

The aim is to develop a method to automatically extract ownership rights, ownership boundary,
floor number from scanned floor plans of apartment buildings. The floor plans also contain
details which are not relevant such as text describing room type and thin lines to indicate the
subdivision of an apartments into rooms. These irrelevant details should be discarded. The
extracted information should be represented in a suitable format that can be easily converted
into CityGML for visualization purposes.

1.3 Kadaster floor plan standards

The Kadaster follows some standards to draw floor plans of the buildings. These standards are
considered as the requirements to be followed in the floor plans. The requirements are:

• Floor plans scanned with high resolution

• The images are either binary or grey scale images

• Thick lines in the image indicate ownership boundary

• The numbers within the ownership boundary indicate the ownership rights

• Only one ownership right associated with an ownership boundary

• Numbers do not overlap with graphics such as lines and symbols.

1.4. Related work 5

1.4 Related work

Some work has been done in the field of extracting information from cadastral maps(den Hartog
et al. 1996, Nakajima 1984, Lawrence et al. 1996, Ogier et al. 1998, Cofer and Tou 1972, Freeman
and Pieroni 1980), but little work has been done in the field of extracting information from build-
ing floor plans. Cadastral maps and floor plans both are line drawings with similar properties
having lines to represent features of the object. The work done on the cadastral maps may be
possibly used in extracting information from the floor plans. One of such works done by Chen
(Chen et al. 1996) gives some insight in to problems involved in automatic information extrac-
tion such as identification of numbers, text in the image and gives a solution for handling, then
the paper describes a map interpretation system for automatic extraction of high level informa-
tion (such as parcels and their attributes) from scanned images of Chinese cadastral maps. The
paper describes three main components needed for automatic information extraction. They are
text/graphics separation, parcel extraction and rotated character recognition. The idea of the text
extraction method can be extended to automatic extraction of information from the floor plans in
our problem.

Musavi et al. (Musavi et al. 1988) present automatic methods for processing digitized images of
cadastral maps. The paper explains a method for scanning, thresholding, salt and pepper noise
filtering, thinning, chain coding and vector reduction methods used to automate the conversion
process. The paper explains algorithms for raster to vector conversion and segmentation. It also
gives efficient ways to remove noise from the image. Boatto et al. (Boatto et al. 1995) describe
the process to be followed to develop an interpretation system for Italian land register maps and
also describes a graph based representation of the extracted information. The paper proposes
an idea of representing corners as nodes and lines linking these corners as edges in the graph
representation. This gives insight to develop a graph based system, as graph processing is much
easier and simpler to do compared to image processing to identify the features of the objects in
an image.

The research identifies that parameters for the automatic extraction of information from cadastral
maps depends on standards adopted by each country. Janssen et al (Janssen et al. 1993) discuss
the simple and basic system for automatic interpretation of Dutch Cadastral maps. The paper
proposes to incorporate knowledge of the rules for drawing these maps in a system to automate
the interpretation of the cadastral maps. This work identifies that rule based processing tech-
niques will have much better accuracy and efficiency compared to other processing techniques
such as identifying the parcel based on region growing segmentation of the objects. The rule
based system can easily identify the relevant and irrelevant information and concentrating pro-
cessing on relevant data results in an efficient system. This work motivates us to develop a rule
based system.

1.5 Results

As a result of our study, we propose an extension to CityGML(D’Silva 2009), developed for cadas-
tral purpose. This extension shows ownership rights and other details associated to each apart-
ment building, which provides a solution for the representation of multiple ownership rights. We
have also developed a method for automatic extraction of information from scanned floor plans
of the building. This method extracts relevant information such as ownership rights, ownership

6 1. Introduction

boundaries, floor numbers from these images. The extracted information from these scanned im-
ages can be represented in the proposed extension to CityGML. However, the method of extract-
ing the information does have some limitations. For example, when the number that represents
ownership rights overlaps with lines that represent ownership boundaries, our method cannot
currently handle this situation. The thesis presents a proof of concept for an image processing
pipeline and way to represent the multiple ownership rights associated with a parcel.

1.6 Organization of the thesis

This thesis focuses on the feasibility study on development of a method to automatically extract
the information from building floor plans and representing the information in computer process-
able format.
The remainder of this thesis is organized as follows. Basic concepts of image processing and
graphs are discussed in Chapter 2. Chapter 3 introduces our image processing approach for fea-
ture extraction from scanned floor plans. The techniques used in our approach include thresh-
olding, morphological operations and corner detection. This chapter also describes the method
to convert the essential part of the floor plan to a graph representation. In Chapter 4, we de-
scribe the various graph processing techniques used to extract the required information such as
ownership rights and its boundary, from the graph. The method to represent this information
in computer processable format is also discussed. The results are given in Chapter 5, where we
show a performance evaluation of our approach on various input floor plans. How our approach
handles exceptions is also discussed. Finally, we draw conclusions in Chapter 6.

Chapter 2

Basic Concepts

The building floor plans are given as scanned images and we need to extract information about
the features of the objects in the image. This can be done using image processing and image
analysis. Once the extraction process is completed, the extracted information is represented in a
format in which it can be easily processed further. One simple and efficient way to do this is to
represent it by a graph. This chapter describes the basic concepts used in this thesis.

2.1 Computer Representation of Raster Images

A raster image is defined as a rectangular array (two-dimensional matrix) of sampled values.
Each element in the array represents the smallest element in the image called pixel.
These pixels are of uniform size and shape. Mostly, they are assumed to be square, do not over-
lap and there are no gaps in between them. The pixels are a digital representation of the portion
of the image they correspond to. The pixels are associated with a number known as pixel value
corresponding to the color and intensity of the element in that position of the image. The higher
the values the brighter the element and the lower the values the darker the picture element.
The number of pixels in the horizontal (width) and vertical directions (height) represents the di-
mensions of the raster image. Each horizontal pixel row in the image is called a scan line. The
quality of a raster image is determined by the total number of pixels called resolution and the
amount of information in each pixel. Fig.2.1 shows the computer representation of a raster image
containing the letter ”a”. The matrix on the right indicates the computer representation of the
image in the left. A black pixel correspond to the value zero, a white pixel to the value one and
shades of grey corresponds to intensities in between zero and one. The dimension of the image
is 12× 14.

(a) Raster image (b) Pixel representation.

Figure 2.1: Representation of raster image.

There are three types of raster images: binary images, grey scale images and color images.
Binary images can have only two colors black and white which represent background and fore-

8 2. Basic Concepts

ground respectively. The advantages of binary images are low storage space, simple and easy
processing. An example of a binary image is shown in Fig.2.2(a).

Grey scale images can have more intensity values usually up to 255 for an 8-bit representation.
In that case, zero usually represents black (weakest) and the maximum value (255 for 8-bits) rep-
resents white (strongest). An example of an 8-bit grey scale image is shown in Fig.2.2(b).

Color images include both color and intensity information for each pixel. Each pixel provides
this information, which will be interpreted in a suitable color space. An example of a color image
is shown in Fig.2.2(c).

(a) Binary image. (b) Grey scale image. (c) Color image

Figure 2.2: Different types of images.

2.2 Image Processing and Analysis

This section explains about some image processing terminology and describes the methods that
are used in this thesis.

2.2.1 Neighborhood

A pixel p with coordinates (x, y) has four horizontal, vertical neighbor pixels and four diagonal
neighbor pixels.
The horizontal (B, C) and vertical (A, D) neighbor pixels are shown in Fig. 2.3(a) and their coor-
dinates are given by:

A=(x, y − 1), B=(x− 1, y), C=(x+ 1, y), D=(x, y + 1) .

The set of these neighbors is denoted by N4(P).
The diagonal pixels of p named E, F, G and H in Fig.2.3(b) have coordinates

E =(x− 1, y − 1), F = (x+ 1, y − 1) , G=(x− 1, y + 1), H=(x+ 1, y + 1) .

The set of these diagonal neighbors is denoted by ND(p).

2.2. Image Processing and Analysis 9

Finally, the combination of sets N4(p) and ND(p) yields the 8-neighbors of p denoted as N8(p),
which is shown in Fig.2.2 (c).

(a) N4(P). (b) ND(P). (c) N8(P).

Figure 2.3: Representation of Raster Image.

2.2.2 Connectivity and Adjacency

Connectivity is the fundamental concept used to identify the borders and regions. We say two
pixels are connected, if one of the pixels belongs to a neighborhood set of the other one.
We use both 4-adjacency and 8-adjacency in the following. They are defined as below.

• 4-adjacency: Two foreground pixels p and q are 4-adjacent if q is in the set N4(p).

• 8-adjacency: Two foreground pixels p and q are 8-adjacent if q is in the set N8(p).

A path between two pixels p(x, y) and q(s, t) is defined as a sequence of distinct pixels with coor-
dinates

(x0, y0), (x1, y1), (x2, y2), . . . (xi, yi), . . . (xn, yn)

Where (x0, y0) = (x, y), (xn, yn) = (s, t) and pixels (xi, yi) and (xi−1, yi−1) are adjacent for
1 ≤ i ≤ n.

2.2.3 Connected Component Labeling

Let S be an object (component) representing a subset of pixels in an image. Consider any two
pixels in the component S, we say that these pixels are connected in S if there exists a path be-
tween these pixels and all the pixels in this path belong to S. For any pixel p in S, the set of pixels
that are connected to it in S is called a connected component of S. If it has only one connected
component then set S is called a connected set.
The process of identifying the connected component and labeling their pixels with unique num-
ber or color is called connected component labeling. The efficient implementation of the con-
nected component labeling algorithm (Stefano and Bulgarelli 1999) runs in linear time. The result
of connected component labeling is shown in Fig.2.4 where it shows the connected components
identified and assigned a unique value for the pixels in each connected component.

10 2. Basic Concepts

(a) Input Image having four
connected components.

(b) Output: connected com-
ponents are identified and as-
signed a unique value for the
pixels in each connected com-
ponent.

Figure 2.4: Connected component labeling.

2.2.4 Morphological Operations

Morphological operations are used to understand the structure and the form of an image. The
basis for morphological processing originates from set theory. Most of the morphological opera-
tions are based on union, intersection and not operations from set theory which transforms the
images according to rules of it. Morphological operations give solutions for numerous image
processing problems like salt and pepper noise removal, identifying the topology of the object
etc. Topology defines the spatial property of an object.

Structuring Element

The exact effect of any morphological operation on an image is determined by a structuring
element. A structuring element is a rectangular grid of patterns. The structuring element consists
of a pattern specified as the coordinates of a number of discrete points relative to some origin.
The two most common structuring elements (given a Cartesian grid) are the 4-connected and 8-
connected sets, N4 and N8 respectively as shown in Fig.2.5. The structuring element (SE) decides
the neighborhood of each pixel in the image.

(a) N4. (b) N8.

Figure 2.5: Structuring Element.

2.2. Image Processing and Analysis 11

Dilation

The two basic operations in morphology are dilation and erosion. These two operations define
most of the other morphological operations. The basic effect of the dilation operation on a binary
image is to enlarge the boundaries of the foreground region of the image and fill the isolated
background pixels in the foreground region. Thus areas of foreground pixels will grow in size
while the holes within the foreground regions become smaller.
Let A represent the image pixels and B be the structuring element which belongs to the set Z2.
The reflection set of B denoted as B̂ is defined as

B̂={w|w = −b, for b ∈ B}

Then (B̂)z denotes translation of set B by vector z= (z1, z2) defined as

(B̂)z ={c|c = b+ z, for b ∈ B}

The dilation of A by B denoted as A⊕B is defined as

A⊕B = {z|(B̂)z ∩A 6= ∅}

In our case the black pixels represent the foreground and white pixels represent the background
pixels. The exact dilation operation is described as for every foreground pixel, all pixels in the
neighborhood defined by the structuring element are made to foreground pixels.

Erosion

Erosion is another basic morphological operation. The basic effect of erosion on a binary image
is to shrink the boundaries of the foreground region of the image and enlarge the isolated back-
ground pixels in the foreground region. In the erosion operation, all pixels in the foreground
ground region which have background pixels in the neighborhood defined by the structuring
element are made in to background region pixels. This operation can be used to remove isolated
patches of the foreground region pixels.

The erosion of A by B denoted as A	B and is defined as

A	B = {z|(B̂)z ⊆ A}

The exact operation is described as, for each background pixel, all pixels in the neighborhood
defined by the structuring element are made in to background pixels. In the boundaries, if we do
not have neighboring pixels since they go out of the boundary then we consider them as back-
ground pixels.
Dilation and erosion are dual to each other with respect to the set complementation and the re-
flection. That is:

(A	B)c = Ac⊕B̂

Closing

The closing operation is defined as the dilation operation followed by the erosion operation. Let
set A represent the image pixels and set B represent a structuring element then the closing of A

12 2. Basic Concepts

by B denoted as A •B is defined as

A •B = (A⊕B)	B

Closing operation is used to:

• Smooth sections of contours

• Fuse narrow breaks and long thin gulfs

• Eliminate small holes

• Fill gaps in contours

Closing operation removes islands and thin filaments of background pixels. This operation is
useful for handling noisy images where some foreground pixels are made as background pixels,
i.e. missing pixels.

Opening

The opening operation is defined as the erosion operation followed by the dilation operation.
The opening of A by B denoted as A ◦B is defined as:

A ◦B = (A	B)⊕B

Opening operation is used to:

• Smooth sections of contours

• Break narrow bridges

• Eliminate thin protrusions

Opening removes islands and thin filaments of foreground pixels. Opening and closing opera-
tions are duals of each other with respect to set complementation and reflection. That is

(A •B)c = (Ac◦ B̂)

We can visualize the effect of each morphological operation in Fig.2.6.

Skeletonization

Skeletonization is the process of computing skeletons of the objects. The skeletons describe the
geometric shape of an object. They capture the topology and geometry of the shape in a compact
manner. It is possible to reconstruct the original object from its skeleton. The main features of the
skeletons are:

• Thin

• Preserve connectivity

• Preserve topology

2.2. Image Processing and Analysis 13

(a) Input Image: A. (b) Structuring Element: B. (c) Dilation: A⊕B .

(d) Erosion : A	B. (e) Closing : A •B. (f) Opening : A ◦B.

Figure 2.6: Morphological operations.

• Centered within the shape

Thin: The skeleton is a thin representation of the original object. Ideally, the skeleton should be
one pixel wide.

Preserves connectivity: The skeletons should preserve the connectivity as in the original shape
even in the presence of the noise. Our approach uses contour detection to identify the object
boundary, hence it is important to preserve connectivity.

Preserves topology: The skeletons must preserve the topology and geometry of the object. This
is important as in our implementation we are interested in only the topology of an object.

Centered: The skeletons should be somehow centered within the object.

The skeletonization can be done using various methods like thinning, voronoi-diagram based,
distance field etc.(Reiners 2009), but in our implementation we use the thinning operation for the
skeletonization process. Thinning is used to obtain the thin version of the digital objects in the
image while maintaining the topology. Thinning is done by erosions.
The thinning operation on a set A by structuring element B denoted as A⊗B, is defined as

A⊗B =A− (A~B)

Where (A~B) indicates the hit-or-miss transform (Gonzalez and Woods 2001), defined as

(A~B) = (A	X) ∩ [Ac 	 (W −X)].
Where X indicates a shape, W indicates a window which encloses X .

14 2. Basic Concepts

The thinning operation is done by shifting structuring element B to each pixel position in the
image A and in each pixel position we compare B with pixels in image A at that place. If the pix-
els exactly match with the structuring element then pixel at the origin of the structuring element
is set to background pixel, otherwise it is left unchanged. Note that the structuring element must
always have a zero (black) or a blank at its origin if it is to have any effect.

Thinning is done by iteratively removing the simple points from the set of object points. The
simple points are pixels whose removal does not change the topology of the object and will be
always located in the boundary of the object. The removal of the simple points introduces new
simple points. After removing all the simple points the thin version of the object remains and
it is called a skeleton. During the thinning process, we should ensure that center points are not
removed and connectivity is preserved to obtain a centered skeleton. The skeletonization using
thinning is computationally efficient as the thinning process is simple and easy to implement.
The thinning process should be done in parallel with all simple points to ensure the centeredness
of the skeleton.
As the thinning operation can be defined with erosion, we can define the skeletonization process
in terms of erosion and opening operations.
The skeleton of a set A is defined as

S(A) =
⋃

k=0
K
Sk(A)

Where Sk(A) = (A	 kB)− (A	 kB) ◦B

Where B is a structuring element and (A	 kB) indicates k successive erosions of A. That is:

(A	 kB) = (.....((A	B)	B)....)	B

Where K is the last iterative step before A erodes to an empty set. The result of the skeletoniza-
tion process is shown in Fig.2.7 and we can observe that skeletonization works as expected by
preserving the topology and connectivity of the objects in the image.

(a) Input image. (b) Skeleton.

(c) Input image. (d) Skeleton.

Figure 2.7: Skeletonization operation.

2.3. Graphs 15

2.3 Graphs

Graphs are useful to store topological and geometrical information and they are also compu-
tationally efficient to perform most of the operations like identifying cycles, connectivity etc.
Graphs represent connectivity information in a simple and efficient way.
A graph G is defined as an ordered pair of vertices (nodes) and edges (links). Which is repre-
sented as G = (V,E), where V denotes the set of vertices and E denotes set of edges present in
the graph G.
Vertex : Vertex (node) V of a graph is either an end point or intersection point of a graph. The
vertices are usually visually represented by circles.

Edge : Edge shows link between two nodes. A link is the abstraction of the connectivity be-
tween nodes. An edge e is represented as an ordered pair of vertices (i, j) in a directed graph and
an unordered pair of vertices in an undirected graph. In a visualization directed graphs will have
the direction shown by an arrow. The undirected graphs are bi-directional and their edges are
represented by a straight line.

Figure 2.8: Graph.

Fig.2.8 shows an example of an undirected graph G (V, E). Where vertices V are {1, 2, 3, 4, 5, 6}
and edges E are {(1, 2), (1, 5), (2, 5), (2, 3), (3, 4), (4, 5), (4, 6)} .

Sub graph : Sub graph is a subset of a graph G(V,E) represented by G‘(V ‘, E‘). Where V ‘ is
a subset of V and E‘ is a subset of E.

Path : Path is a sequence of adjacent edges that are traveled in the same direction. A path ex-
ists between two vertices (A, B) when there is a sequence of uninterrupted edges while traveling
from vertex A to vertex B.

Cycle: A path is called cycle when initial and terminal nodes are the same and there are no
edges that are traveled more than once.

Circuit: A circuit is a cycle where all the edges are traveled in the same direction.

Chapter 3

Building Reconstruction from Floor Plans

The aim is to automatically extract the information such as the ownership rights and their bound-
aries etc. from the scanned building floor plans. Fig.3.1 shows the process pipeline to extract the
information. The automatic recognition system takes the scanned building floor plans as the in-
put. Once we acquire the image, we perform a series of processing on this image, as shown in
the figure, which is later converted into a graph representation. This representation contains all
the necessary information in the original image. The process involved is:

• Step 1: Preprocessing

– preprocessing is done on these images to convert it into binary and to remove the noise
from the image

• Step 2: Data reduction

– Optical character recognition is used to identify the meaning of text and numbers in
the image

– Removal of the unnecessary information present in the image

• Step 3: Graph construction

– Extracting the topology

– Identifying the corners of the object in the image

– Constructing a graph from corner detected object

Figure 3.1: Feature extraction of raster images.

The graph representation will have all the information regarding apartment boundaries, owner-
ship rights and the coordinates of their boundaries. This chapter explains the process pipeline
used for the information extraction.

18 3. Building Reconstruction from Floor Plans

3.1 Building Floor Plans

The scanned images are floor plans of buildings. These images are scanned black and white
line drawings which describe the geometry and topology of the buildings. These drawings
are scanned with high resolution, which results in high quality images. These are stored in
TIFF(Tagged image file format) format to maintain the high quality. In these drawings, the
boundary of each ownership right is represented by a set of polygons. Each such a polygon
represents ownership rights of one legal person and it is identified with a unique number. There
can also be labels (in Dutch) describing usage of the property, e.g. labels such as keukens, kamer,
balkon, etc. The drawings contain continuous thick lines, continuous thin lines, and symbols
(alphanumeric characters and cadastral symbols).

Figure 3.2: Building floor plan: The large numbers indicate ownership rights. The ownership boundaries
are visible as thick lines. The thin lines and text labels provide a subdivision of the property.

One of the building floor plans is shown in Fig 3.2. In this diagram thick lines indicate the
boundary of the ownership. Each of such a region formed by a thick line will always be associated
with a number to indicate the ownership rights. There are no regions enclosed by the thick lines
which will have more than one number associated with them and there will be no region without
such a number. The text associated with this region indicates usage type of that ownership right.
Examples are Kamer indicating it is a room, Keuken indicating kitchen, Hal indicating hall etc. The
numbers indicating the ownership rights are usually in the middle of the polygon representing
the apartment boundary. The numbers usually do not overlap with the lines or symbols. But the
texts describing the usage do overlap with the lines and symbols and that makes it difficult to

3.2. Preprocessing 19

perform character recognition. The Dutch land register authority issues a set of guidelines for
drawing the floor plans such as thick lines for ownership boundary and the numbers in large
font to indicate ownership rights etc. These rules form a graphic language and allow the reader
to understand the drawing. However, it is not possible to rely entirely on these guidelines for the
automatic recognition of floor plans because of the reason that the rules are not always followed
strictly.

3.2 Preprocessing

The scanned building floor plan images are stored in gray scale format and will have some noise
associated to them. The floor plans were originally black and white drawings but as result of
scanning, these drawings will be stored in gray scale format. The gray scale format does not
provide any additional information for our purpose, so the first step is to convert the images into
binary images. The noise in the image affects the extraction of the actual information from the
image. Hence the next step is noise removal. The preprocessing step converts images back into
binary format and performs noise removal. The details of these operations are described in the
following.

(a) Noisy gray scale input im-
age.

(b) Result image after thresh-
olding.

(c) Result image after closing:
gaps are filled.

Figure 3.3: Thresholding and closing operation.

3.2.1 Thresholding

The gray scale images are converted to binary images (i.e. black and white) using a Thresholding
operation. Thresholding classifies each pixel as either belonging to the foreground (black) or the
background (white) according to a condition indicating if the gray level is larger or smaller than
a suitable value. Through the analysis of various input images, we found that the value 128 is
the best suited value to be considered as the threshold, as it emphasizes the noise as minimal as
possible. It is important that the thresholded image reproduces the original image is as accurate
as possible. Otherwise it will affect the graph construction phase, which is discussed later. The
binary images obtained as a result of thresholding will simplify the further processing.

The Fig.3.3(b) shows the result of the thresholding operation and we can observe that the out-
put image is binary. Thresholding may emphasize pre-existing noise. For example, some pixels
belonging to the foreground region may have pixel value less than 128 and will be changed into
a background pixel (missing pixel) as a result of the thresholding operation. As a result some of
the gray pixels of the foreground region in the input image are turned into white pixels. This is

20 3. Building Reconstruction from Floor Plans

shown in Fig.3.3(b). Hence the system needs to have some process which will remove the noise
introduced due to thresholding.

3.2.2 Noise Removal

The scanned floor plans are almost noise free, but there are small irregularities in the image such
as some missing pixels and gaps in the foreground region. The gaps in the image are caused due
to the irregularities while drawing the floor plans. This will be inherited even in the image while
scanning. There will be some missing pixels due to the noise and as a result of the thresholding
operation. Having such irregularities and discontinuities is the main concern for contour detection
which plays a major role in the detection of the object boundary. The contour detection requires
continuity in the object pixels; hence it is very crucial to eliminate the discontinuities such as
missing pixels and gaps.

Noise removal (denoising) is the process of removing unwanted noise from an image. A de-
noised image is an approximation to the underlying true image before it was contaminated. A
good denoising process must simultaneously preserve structure and remove noise. Our approach
considers these missing pixels and gaps as the noise in the image. By denoising, we refer to fill-
ing the missing pixels and gaps. The missing pixels and gaps can be filled using a mathematical
morphological operation called closing, see section 2.2.4.

The result of the closing operation is shown in Fig.3.3(c); where we can observe that the clos-
ing operation filled small holes and gaps in foreground region. The noise in the image is mainly
pepper noise (i.e. missing pixels), which can be effectively removed using closing operation re-
sulting in a smooth continuous image which can be used for further analysis.

3.3 Data Reduction

Once preprocessing is done on an image, the next step is to remove all the irrelevant informa-
tion from the image. Now we need to identify which information is relevant and which is not
relevant. As we are interested only in the ownership rights and its boundaries, we conclude that
the text representing usage type and thin lines indicating interior boundaries of the ownership
rights are the irrelevant information. However, the numbers indicating the ownership rights are
relevant. Hence the first step in data reduction is to identify the numbers and store the number
information. Later we can remove these numbers from the image along with other irrelevant
information. The steps involved in this process are as follows.

3.3.1 Label Identification

Label identification is one of the most important steps in the recognition system for building floor
plans. Without label identification it is impossible to assign semantics to the objects identified in
an image. Hence label identification plays a major role to have a complete and meaningful recog-
nition system. It is also important to have an accurate and efficient label identification as even
a small error in the identification process results in a flaw in the accuracy of the system such as
assigning wrong ownership for an object in an image.

With label identification, we can identify usage type, numbers representing ownership rights
and also detect total number of ownership rights in the floor plan (Apartment). We use the term
apartment to refer a region owned by one legal person in a floor of the building. The labels in the

3.3. Data Reduction 21

image are numbers and text, having different font size. The recognition system concentrates on
reading numbers, as we are only interested in identifying the ownership rights. In the current
implementation label identification is limited to number detection. However, the same approach
can be used for the text identification.

The label identification process involves three steps:

• Identifying the location of the labels within an image

• Extracting these labels from the image

• Recognizing the labels using OCR.

The entire Label identification process is illustrated in Fig.3.4.

(a) Input image which has
numbers to indicate the own-
ership rights.

(b) Extraction and identification: Extract-
ing the region of numbers from the image
to a new image, which are send to opti-
cal character recognition for the identifica-
tion.

Figure 3.4: Label identification process to identify the labels in an image.

There are some assumptions made regarding ownership right representation in the image. They
are as follows

• Numbers do not overlap with any symbols or lines.

• Numbers are not rotated in the image.

22 3. Building Reconstruction from Floor Plans

• All the numbers have the same font and size

Considering the first assumption, the segmentation is performed based on the size of the objects
in the image. In our approach we identify the connected components using connected component
labeling and the number of pixels in each component, described as in section 2.2.3. This informa-
tion will be used for the segmentation of the numbers. Once the connected component labeling
process is done, pixels of each connected component will have a unique number. Then we can
find the size of each connected component in terms of number of pixels in each component by
counting the unique labels. The size property of a connected component can be used for segmen-
tation of numbers and text from the image. Since the numbers and the text have different font
size, it is possible to differentiate the numbers and the text. Through the analysis of the various
input data we found that all the numbers which represent ownership rights of the apartment
have size between 2000 and 4000 pixels. We mark all the components satisfying this size criterion
as potential numbers. There may also be other small objects that satisfy this criterion, so not all of
these objects are numbers. This poses no problem, since components that cannot be recognized
as numbers in the following step will be discarded. Once the labels are recognized, the locations
of these labels are identified.

The system needs to extract the labels from the scanned image and copy them to another image.
Once these numbers are extracted and copied to a new image, the system needs to identify these
numbers. The recognition system uses Optical Character Recognition (OCR) techniques to iden-
tify these numbers. OCR is a system that provides a full alphanumeric recognition of printed or
handwritten characters in the images by processing them. The OCR system to recognize these
numbers should be powerful, since it is very important to accurately identify these labels and as-
sign the right meaning to the apartments in the floor plans. The recognition system uses Google’s
Tesseract OCR(Smith 2007) libraries, one of the powerful OCR libraries available as open source
software.

The OCR library takes the image as input and returns all the text in it, but it does not return
their positional information. Due to this limitation, each number in an image needs to be ex-
tracted to a new image one at a time to maintain its positional information. These images are
sent for OCR to identify the numbers. The identified numbers are stored with their positional
information.

Exceptions

Our recognition method is based on the assumption that numbers representing the ownership
rights are always inside the corresponding region. But there are some scenarios which these
numbers are outside the ownership boundary and a line is drawn to indicate the region it belongs
to as shown in Fig.3.5(b). In such scenarios, the system results in a wrong recognition. Our
method also assumes that numbers are not rotated, but Fig.3.5(c) shows a scenario in which
number ”6” is rotated over an angle of 90 degrees. So we would need to rotate the numbers before
sending them to the OCR, but this feature is not implemented as part of the system. Another
assumption is that there should not be any graphics such as lines overlapping with the numbers.
But in Fig.3.5(a) there is a scenario in which number ”2” overlaps with a line. In such scenarios,
our method fails to work as we use size criterion for number identification. When a number
overlaps with the graphics, the size criterion will not hold anymore. So clustering based approach
needs to be used for number identification (Chen et al. 1996). In such scenarios we need to extract
these numbers resulting in gaps in the line, which was overlapping with the number. These gaps
can be filled considering the slopes of the partitioned lines, the width of the gap and the width of

3.3. Data Reduction 23

(a) Number overlapping with
line.

(b) Ownership represented
outside the boundary.

(c) Number rotated.

Figure 3.5: Exceptions in the floor plan drawings, makes difficult for automatic extraction of the informa-
tion.

the number represented in the image. If the slopes of the partitioned lines are the same and the
width matches with the width of the number in the image, then the system can fill these gaps on
the line to make a complete continuous line. This is not yet implemented as part of this system.

3.3.2 Removing Labels and Thin lines

We are only concerned with identification of the ownership rights and its boundaries. All the
information regarding the usage and type of the apartment, represented by the labels such as
BALKON, KAMER are shown in Fig.3.6(a) is irrelevant. Also the interior information of the
apartment represented by the thin lines is not relevant. Therefore we remove the text and thin
lines from the scanned image in this step, so that the image can be used for further processing.
We can also remove small objects such as isolated islands of black patches from the image.

We can remove all the small objects and labels from the image using their size property as we
did as in the label identification step. In the previous step we identified all the connected com-
ponents and their size using connected component labeling. In this step we assume that all the
connected components (objects) with size less than 4000 pixels are either labels or small objects
which have no significant meaning in the floor plans. The systems finds these pixels belonging
to an object satisfying the size criterion and assigns a new pixel value i.e. white (1) which will
make these objects part of the background. This is equivalent to removing objects from the im-
age, which can be observed in Fig.3.6(b).

The next step is to remove thin lines which define the interiors of the apartments. The method
used for this process is the morphological operation called opening, see section 2.2.4. The opening
operation eliminates some of the pixels in the boundaries of the foreground region. The thin lines
are one or two pixels wide and the opening operation completely removes these thin lines, leav-
ing only thick lines in the images. In Fig.3.6(c) we can observe that all the thin lines are removed
from the image, leaving only the thick lines. The opening operation also affects the thick lines
by reducing their thickness. It will also turn some pixels in the foreground region to background
region pixels. A closing operation restores the width of the thick lines and it is an optional oper-
ation based on the resolution of the scanning process. If the image has high resolution, then we
can avoid this closing operation since the effect of opening makes no significant changes to thick

24 3. Building Reconstruction from Floor Plans

(a) Scanned floor plan: Hav-
ing Text and Thin lines.

(b) Labels removed: Remov-
ing irrelevant text from the
image.

(c) Thin lines removed: Re-
moving thin lines in the inte-
rior of the boundary.

Figure 3.6: Label and thin line removal removes all the irrelevant information such as thin lines and text
from the image.

lines.

3.4 Graph Construction

The image is now prepared to extract topology and geometry of objects. The extraction of the
topology and geometry of objects can be done by shifting from the pixel world to some repre-
sentation in which we can store this information in computer processable format. It is important
to do this because to answer questions such as ” Who is the neighbor of Mr. Simon (having
ownership right 3)?”, ”who owns the fourth floor of building A?” is very hard with image data.
One of the suitable formats to represent topology, connectivity and geometry of the information
is a graph representation. The advantage of a graph representation is that it is easy to process the
information stored, computationally efficient and also saves storage space.

As an extension to this thesis, the aim is to represent the information in CityGML format(D’Silva
2009). In CityGML all the objects are represented as polygons and these are specified by the coor-
dinates of their corners. A graph representation will make a conversion to CityGML straightfor-
ward. The following section describes the steps involved in graph construction from the image
data.

3.4.1 Skeletonization

After the data reduction step, the image is left with only thick lines indicating the boundaries of
the apartments. In our approach we are only concerned with geometry and topology of the ob-
ject. The further processing with these thick and high resolution images adds up the complexity
of the system as an operation such as corner detection becomes very difficult and also compu-

3.4. Graph Construction 25

tationally expensive. Fig.3.7(a) shows an image of boundaries of an object in thick lines. These
thick lines do not give any additional useful information. However, all the subsequent opera-
tions needed to extract the information can be efficiently done on one pixel wide objects. So the
objects in an image are converted into an object containing one pixel wide lines while preserving
the features of the topology and the connectivity of the original object to improve the efficiency.
This conversion can be done by the process called skeletonization described in section 2.2.4.

As a result of the skeletonization process we will get a skeleton of the object and this is use-

(a) Input image: Having thick
lines.

(b) Skeleton: One pixel wide
lines preserving geometry,
connectivity and topology.

Figure 3.7: Skeletonization process applied to an image.

ful in providing a simple and compact representation of the object. The skeleton contains all the
important information present in the original image such as topology and geometry which is re-
quired by the recognition system. The result of the skeletonization is shown in Fig.3.7(b) in which
it is clear that this process preserves the topology and connectivity of the objects in the original
image and the lines are just one pixel wide.

3.4.2 Corner Detection

Once the skeleton of the objects in the image is extracted, the next step is to identify the corners
of the objects. A corner is defined as a point at which two or more edges intersect. Corner detec-
tion is the last step before the system converts an image into a graph representation. Each corner
becomes a node in the graph, making it important to find all the corners accurately. Missing to
detect a single corner may result in changing the topology and geometry of the object in the graph
representation. One such scenario is shown in Fig.3.8, where the system misses to identify the
topmost right corner. The resultant graph generated is shown Fig.3.8 (b) and we can observe that
the entire geometry of the object is changed and resulting in a wrong interpretation of boundary
of ownership rights by the system. Hence it is important to have a powerful and accurate corner
detection algorithm which will identify all the corners of the object at any cost of computation.

26 3. Building Reconstruction from Floor Plans

There exist many corner detection algorithms which are either very accurate with high com-

(a) Input image: Error
in corner detection algo-
rithm as top left most
corner not being de-
tected.

(b) Resultant graph:
The geometry of the
object is changed due to
error in corner detection
algorithm.

Figure 3.8: The effect of error in corner detection algorithm resulting change in the geometry of the object.

putational cost or computationally efficient with lower accuracy and there are a few that balance
both the aspects. The computationally efficient algorithms are fast but may miss some corners,
which makes them useless for this application. The algorithms which balance computational cost
and accuracy will have reasonable speed and accuracy. The stringent requirement to identify all
the corners makes these algorithms useless for our approach. In our approach we use the Harris
corner detection algorithm(Harris and Stephens 1988) which is computationally expensive.

We choose Harris corner detection algorithm because of its invariance to:

• rotation

• scaling

• illumination variation

• image noise

The Harris corner detector is based on the local auto-correlation function of a signal, where it
measures the local changes of the signal with patches shifted by a small amount in different di-
rections.
Harris uses corner measures to determine whether a pixel is a corner or not. The corner measure
is given by

C(x, y) = det(M)− k(trace(M))2

det(M) = λ1 ∗ λ2

3.4. Graph Construction 27

trace(M) = λ1 + λ2

where k is a constant whose value is in between 0.04 and 0.06 to balance the contribution of
the trace.

λ1 and λ2 are eigenvalues.

M is the Harris matrix (or Tensor) which is defined as

M(x, y) = wG(r;σ)
[
Ix

2 IxIy
IxIy Iy

2

]
.

Where Ix, Iy indicate the partial derivatives of the intensity function in the X and Y directions
respectively.

• The derivatives of the intensity function I(x, y) are first calculated in each pixel point

• Then the entries of matrix M (Ix2, Iy
2, IxIy) are obtained

• Finally, the entries are smoothed by a Gaussian filter wG(r;σ) of selected size σ

After smoothing and diagonalizing, the diagonal entries will be the two eigenvalues λ1 and
λ2:

Md =
[
λ1 0
0 λ2

]
.

The eigenvalues define the curvature and based on these values we determine whether the region
is a corner or not:

• If both eigenvalues are small, then the windowed image region is of approximately constant
intensity.

• If one is high and the other is low, then there is an edge.

• If both are high, then there is a corner.

The search for eigenvalues of the matrix is computationally expensive but here we can directly
compute the trace and determinant of M to find the corners. A corner is detected when C(x, y) >
Cthr, where Cthr is the threshold on corner strength and the value of Cthr is decided by the user.
The smaller the threshold value, the larger the number of non corners (false negatives) being de-
tected. The larger the value, the higher the false positives, i.e. corner detector may miss some
real corners. In our application we choose a value between three and eight to identify the cor-
ners. These values are determined after analyzing the various input data and standard values
preferred in (Harris and Stephens 1988).

The output of the Harris corner detection algorithm on an image is shown in Fig.3.9. In this
figure corners are shown in red colored blocks. As we can see, all the corners of the objects in the
image have been identified. We can also notice that there are some extra corners being detected,
which are not really the corners of the objects. We can now either remove these extra corners in

28 3. Building Reconstruction from Floor Plans

(a) Input image : Hav-
ing one pixel wide lines.

(b) Image after corner
detection: All the cor-
ners of the object has
been identified, includ-
ing some extra corners.

Figure 3.9: Harris corner detector applied to an image to identify the corners of the object.

this step itself or it can be done after graph generation from this image. To remove these extra
corners in this step, we consider the neighbor (N8) pixels of the corner. The next step is to check
whether these pixels intersect with the lines forming the corner. If there are only two such pixels
and they are at 180 degrees, then we will remove these extra corners and join the line. In our
approach this is done later as graph processing is easier and computationally efficient compared
to doing in the same step using image processing. Doing this using graph processing helps in
reducing the complexity of the system. Once all these corners of the objects in an image are de-
tected, the graph construction of an image can be started, where each of these corners becomes a
nodes in the graph.

3.4.3 Graph Construction

An essential step in the recognition system is the conversion of scanned floor plans to a graph
representation. Floor plans are nothing but line drawings. In the graph representation the lines
are decomposed into edges and corners which connect two or more lines, into nodes. During graph
construction, the objects in the binary raster image are partitioned into a set of a line segments
and corners, each corresponding to the edges and the nodes respectively. The corners of the
objects in the image are identified in the previous step. As a result, the objects are represented
by set of lines and corners, which can be converted into a suitable graph representation. Each
connected object in the image will form a graph. If there are multiple isolated components then
there will be many isolated graphs, called a forest. All the information required such as node
position, edge length, angle etc. to reconstruct the image from the graph is identified and stored.
As a result, whatever processing needs to be done on the image can be done on the graph and it
results in an efficient system. The steps involved in the graph construction are identification of
the nodes, edges, and also their attributes.

3.4. Graph Construction 29

Node Identification

In node identification, all the identified corners of the objects in the image become the nodes.
Once we identify these nodes, we store their attributes such as node number and their position.
These attributes are nothing but the number and its position in the image. The image after node
identification is shown in Fig.3.10(b), where bubbles show the nodes and Fig.3.10(c) shows the
corresponding information stored.

(a) Input image: All the cor-
ners of the object been identi-
fied.

(b) Node identification: cor-
ners of the object turns in to
nodes the graph.

(c) Node storage: The node
number and position of the
corner in the image is stored
as the node position.

Figure 3.10: Node identification and storage.

Edge Identification

A graph is used to describe the connectivity between the nodes. The connectivity in the graph is
shown in the form of edges. If the nodes are connected by a set of connected pixels in the fore-
ground region, we identify this set of pixels to be an edge. Once we identify the edge, then the
length of the edge is computed by counting the number of pixels between the nodes. The angle
made by these edges is calculated as:

Angle = tan−1(| dy
dx |)

Where dx= (x-coordinate of destination node - x-coordinate of source node), dy= (y-coordinate
of destination node - y-coordinate of source node) and | | represents the absolute value

We find the correct quadrant based on dx and dy and map them to absolute angle. Then we
store source node and destination node, from which we can identify the position of the edge.
Fig.3.11 shows the graph constructed from the image and its corresponding information stored.
Once we construct the graph then it will have all the topological and structural properties needed
for further processing.

30 3. Building Reconstruction from Floor Plans

(a) Corner detected image:
Shows the connectivity be-
tween the corners.

(b) Edge identification:
Connectivity between the
corners are shown as edge
in a graph.

(c) Edge storage: Infor-
mation regarding edge is
stored.

Figure 3.11: Edge identification and storage.

3.4.4 Graph Optimization

As a result of corner detection some non corners (not a real corner) of the objects were detected as
corners. These corners are turned into nodes in the graph representation and they are removed
in this step. The removal process of non corners is as follows:

• Identify all the nodes having only one incoming and outgoing edge

• check whether these edges makes an angle approximately 180 degrees (175 - 185)

Now the obtained nodes are considered as extra nodes and are deleted. Then delete the edges
that connect this node and replace them by a single edge. This step improves the efficiency of the
system. Fig.3.12 shows the effect of optimization and its corresponding result.

The further processing such as identifying boundary of ownership and floor number can be
done using the graph we obtained and it does not involve processing on the image.

3.4. Graph Construction 31

(a) Input graph: Having some
extra non corner nodes in the
graph.

(b) Optimized graph: Extra
non corner nodes are removed
from the input graph.

Figure 3.12: Optimization.

Chapter 4

Graph Processing

An essential step in the automatic recognition system of the floor plans is the conversion from
a raster image to its graph representation as explained in the previous chapter. The subsequent
steps include identification of apartments and associating semantics like ownership rights, floor
numbers etc., to the apartments in the drawing. The graph representation of the drawing is used
for further processing. This chapter explains the process used to identify all the required informa-
tion from the graph, as shown in Fig.4.1. This process takes the graph as the input and returns all
the required information in the graph in an XML file format as the output. The information such
as coordinates of the ownership boundary, the floor number and the ownership rights needs to
be extracted. This process identifies all the required information by processing the input graph.

Figure 4.1: Graph processing.

4.1 Ownership boundary identification

The ownership boundary is the key information to be extracted from the image. This information
is extracted by identifying faces in the graph. The current graph representation does not contain
enough information for boundary identification. So we need to have a suitable representation
for face identification by extracting some additional information from the graph. Hence the ad-
ditional information required should be identified.

To identify this additional information, each edge is decomposed into two half edges, called
twin edges. Since there may be many incoming and outgoing edges for an edge, the next and the
previous edge for each edge needs to be defined to traverse through the graph. Once the next
field denoted as enext, is defined, the graph traversal can be performed. While traversing enext

decides on the next edge to be considered. The apartment boundary is defined by faces in the

34 4. Graph Processing

graph, as shown in Fig.4.2. The enext is defined in such a way that while traversing through the
graph always faces are identified.

To identify enext for each edge, all the outgoing edges of the destination node are found. Then

Figure 4.2: Faces defines ownership boundary.

the differences in the angle between the current edge and the outgoing edges are calculated. Once
these differences are found, the edge having minimum angle difference is considered as the enext

for the current edge.

The calculation of enext plays a very important role in this approach, as it defines the bound-
ary of the ownership rights. To identify enext for each edge the minimum angle difference is
considered to ensure that the smallest possible region (face) is obtained while traversing in clock
wise direction. The face obtained defines the boundary of the apartment. In a similar way previ-
ous field can also be calculated.

Once the identification of the apartment boundaries has been done, the next step is to identify
the apartments connected to each other. This is done by examining all the edges defining the
apartment boundaries and looking for their twin edges. If these twin edges belong to any other
apartment boundary, then these apartments are considered as connected or neighbors. This in-
formation is needed for further processing.

A suitable representation for storing this information is a doubly connected edge list (DCEL)

(a) Node structure.

(b) Edge structure.

(c) Apartment data structure.

Figure 4.3: Doubly connected edge list (DCEL).

(de Berg et al. 2000). DCEL stores the information regarding nodes, edges and faces. The structure

4.1. Ownership boundary identification 35

(a) Input graph. (b) Decomposition of the edges into
half-edges.

(c) Defining next of each edge. (d) Identifying the ownership
boundary.

Figure 4.4: Recognition process of ownership boundary in the graph representation.

of the node data representation is shown in Fig.4.3(a) which shows the information regarding a
node. This information includes node number (a unique number to identify the node), the co-
ordinates of the positions of a node and also all the incoming edges and outgoing edges of that
node. The information regarding edges is also stored, which includes edge number (a unique
number to identify the edge), a pointer to the source node of the edge, a pointer to its twin edge,
a face to which it belongs to, a pointer to the previous edge and a pointer to the next edge. The
structure of an edge is shown in Fig.4.3(b). Fig. 5.3(c) shows information stored regarding the
apartment boundary or the face. This information includes a face number which is used to iden-
tify the boundary, a pointer to the list of edges which forms the boundary and pointer to the list
faces which are connected to this face.

Fig.4.4(a) shows a simple scenario which illustrates the identification of the ownership bound-
aries. Fig.4.4 shows the stages that the input graph undergoes in the identification process. The
input graph has two faces. The twin edges are shown in Fig.4.4(b). After the decomposition of
each edge, the enext for each edge is defined. This is shown in Fig.4.4(c). The arrow shows the
next edge, which is obtained by taking the minimum angle between the edges. The successor of
e21 in the figure can either be e31, or e51. In order to find a smallest possible region, e31 has to be

36 4. Graph Processing

picked. After defining enext for each edge, the faces are identified. This is shown in Fig.4.3(d).
On traversing in the clockwise direction, two faces F1 and F2 are found. This face information is
updated in the edge representation.

The apartments neighbor or the connected faces are identified next. In Fig.4.4(d) the face F1 is
defined by the edges {e11, e21, e31, e41}. Similarly the face F2 is defined by the edges {e32, e52, e62}.
Now we can observe in the figure that the edge e31 belongs to F1 and its twin edge e32 belongs
to F2. So we can say that F1 and F2 are neighbors (connected). This information is updated in
the apartment data representation. In a similar manner we do the operations on the floor plan
graphs. The input graph of the floor plan and the ownership boundaries identified are shown in
Fig.4.5.

(a) Input graph. (b) Boundaries identified.

Figure 4.5: Ownership boundary identification.

4.2 Associating ownership rights

After, the apartments’ boundaries are identified, the next step is to assign the ownership rights
to their apartments. The ownership boundaries are represented as polygons. To associate the
extracted ownership rights to their respective ownership boundary, a point in polygon test is used
. Based on this test, appropriate rights are associated to each ownership boundary (apartment)
as shown in Fig.4.6.

4.3 Identifying the floor numbers

So far we have discussed the method for extracting information from a single floor plan. How-
ever, buildings may have multiple floors. Hence there will be floor plans for each floor. These

4.3. Identifying the floor numbers 37

Figure 4.6: Associating ownership rights

floor plans are stored in single scanned image as shown in Fig.4.7. The figure shows a building
which has four floors and the corresponding floor plans are shown from left to right.

The processing is done on each floor plan is as discussed before, resulting in a group of iso-

Figure 4.7: Floor plans of a building : Having four floors.

lated graphs as shown in Fig.4.8. The figure shows the four isolated graphs that represent each
floor, each having all the necessary information associated with them. But the information re-
garding the floor numbers is not yet recognized. This is needed to stack the floors on top of each
other. Hence in this step the floor numbers of the ownership boundaries are identified and asso-
ciated to the apartments.

The information regarding the faces that are connected to each other is already identified. Us-
ing this information all the ownership boundaries belonging to the same floor are identified and
grouped together.

38 4. Graph Processing

Figure 4.8: Graph representation: Each isolated graph represents a floor.

The floor plans of all floors are drawn from left to right which means the left most floor plan
represents the lower most floor and the rightmost floor plan represents the top most floor as
shown in Fig.4.7. This property is used to identify the floor numbers, as x-coordinates of the first
floor will be smaller than those of the second floor and so on. Hence the smallest x-coordinates
in the groups are identified and sorted in ascending order to find the floor numbers. The order
in the sorted list represents corresponding floor numbers and these floor numbers are assigned
to each group and then to each apartment. This information is updated in the apartment data
structure. Thus all the semantics such as ownership rights, floor number, and coordinates of
the boundary are assigned to the apartments. The floor number of each ownership boundary is
shown in the Fig.4.9.

This method works fine only if each floor is drawn from left to right in the scanned floor plan
to indicate ground, first floor and so on. In other cases our method fails to provide correct floor
numbers. One possible solution to solve this is to use OCR on the text labels describing the floors
for identifying the floor numbers.

4.4 Representing data in XML format

After applying all the image processing techniques, optical character recognition and processing
the graph representation of the objects in the image, all the relevant information in the image,
like apartment boundaries, ownership rights, the floor number etc are extracted. A suitable for-
mat to store this information needs to be identified so that the computer can process the rele-
vant information. The final goal is to represent the extracted data in extended CityGML format
(D’Silva 2009). Hence a format from which it could be easy to convert into CityGML format is
considered. CityGML is an application domain extension (ADE) of the XML data model, specif-
ically designed for city models. This motivates to represent the data in XML format. As XML is
the open data model, which allows the user to define own tags and XML is very flexible, so it
may be used for writing any data and exchanging information. The XML schema used for our
application is shown in Fig.4.10.

4.4. Representing data in XML format 39

Figure 4.9: Floor identification: Floor number associated with each ownership right.

Our requirement is to group the information regarding buildings, this can be done using XML
as it supports nesting of tags. The root tag of our schema is <KadasterOwnership>, just to
give insight about the information in the document. All the information regarding apartment
and apartment rights will be enclosed with in this tag. We have many buildings, hence we use
<Building> and </Building> tag to indicate information regarding each building. In the figure
we have multiple <Building> tags nested inside the root tag to indicate multiple buildings.

Each building will have many apartments, each apartment information is enclosed between
<Apartment> and </Apartment> tags. There are multiple <Apartment> tags nested inside
<Building> to store information regarding multiple apartments in a building, as shown in the
figure.

Each apartment has many properties like floor number, ownership rights, boundary etc, enclosed
between<Apartment> tags . Extracted apartment rights are specified between<ApartmentRight>
and </ApartmentRight> tags. Similarly the floor number of the apartment is stored between
<FloorNumber> and </FloorNumber> tags. The apartment rights and floor number are in-
dicated by numbers as in the figure. The boundary of the apartment is specified between the
tags <ApartmentBoundary> and </ApartmentBoundary>. The boundaries are represented as
polygon, hence <Polygon> and </Polygon> tags are used to represent it. The polygons are
specified by their corners, hence all the corner coordinates are enclosed inside<CornerList> and
</CornerList> tags. The x, y, z coordinates of each corner is specified as shown in the figure.
This XML format can be easily mapped into CityGML format. A visualization of the CityGML
representation of the extracted data is shown in Fig.4.11.

40 4. Graph Processing

(a) XML schema used to represent the information extracted from the building floor
plans.

Figure 4.10: Output data representation.

4.4. Representing data in XML format 41

(a) CityGML representation of extracted data from the image.

Figure 4.11: CityGML data representation.

Chapter 5

Results and Discussion

This chapter discusses some of the input files used to evaluate the performance of our approach.
The input files are floor plans of apartment buildings, provided by the Kadaster. We use LandX-
plorer, a CityGML viewer to display the output files. Each scenario shows how our approach
handles the various input files.

5.1 Scenario 1: Four storied building floor plan

The input file is shown in Fig.5.1(a) and concerns a building in Amsterdam. The image dimen-
sions are 5488 × 2366 pixels. The building has four floors and its floor plans are shown in the
figure. From left to right, these are ground floor, first floor and so on. There are no exceptions
as described in section 3.3.1 in these floor plans. There is only some text overlapping with the
thin lines. However, both text and thin lines are irrelevant for our application and do not impose
any problems in our approach. The output file generated is shown in Fig.5.1(b) which shows
the extracted apartment boundary of the input file in CityGML. The ground floor has only single
ownership right i.e. ”2”. It has rights for the entire ground floor except for the common area. In
the output file, it is clearly visible that except the common area the whole floor is owned by ”2”.
The first floor has two ownership right ”3” and ”4”. Their boundaries are extracted and shown
in the output file where we can see one large division owned by ”3” and a small region owned by
”4”. The second and the third floor have only a single ownership right each, which can be seen in
the output file. The entire extraction process and representation in CityGML takes approximately
two minutes.

5.2 Scenario 2: Numbers overlapping with lines in floor plans

The input file is shown in Fig.5.2(a) and concerns a building in Eindhoven. The image dimen-
sions are 3228 × 1639 pixels. The input file contains a multi storied floor plan. The floor plans of
three floors are shown in the input file. In the input file, we can observe the numbers represent-
ing the ownership rights overlapping with the thin lines. This scenario shows how our approach
handles the numbers overlapping with the thin lines. These thin lines will be removed by the
opening operation in our application, since they are not relevant. This results in the numbers
being isolated. These numbers are sent for OCR to identify them. Fig.5.2(b) shows the informa-
tion extracted from the input file and displayed in CityGML format. The entire process takes
approximately 1 minute and 30 seconds. The numbers overlapping with thin lines is a rare sce-
nario, but this scenario can be handled using our approach. Our approach fails if the numbers
are overlapping with thick lines and the solution for this is described in section 3.3.1.

44 5. Results and Discussion

(a) The image showing floor plans of four floors in a building.

(b) The image shows the extracted information represented in CityGML:
Here floors are not stacked on top of the other and just shows the geom-
etry of the apartments.

Figure 5.1: Scenario 1: Our method works exactly as expected

5.3 Scenario 3 : Ownership rights represented using text

Fig.5.3(a) shows the floor plan of the ground floor of a building. The image dimensions are
2832×3992 pixels. This scenario contradicts one of our assumptions which states that each owner-
ship boundary must have a number that indicates ownership rights associated to it. In Fig.5.3(a),
we can observe an area without any ownership right and is shown in grey color. Instead, the
usage type of the region is given on that area which says ”gemeenschappelijke gang” to indicate
it to be a common area. Our method will extract only the ownership boundary but will not be
able to associate the ownership rights. The output file generated for this scenario is shown in
Fig.5.3(b). The approximate time it takes to process this image is one minute.

5.4 Scenario 4: Handling curved apartment boundaries

Fig.5.4(a) shows the floor plan of the ground floor of a building. The image dimensions are 3048×
4616 pixels. This scenario shows how curved lines in the floor plans are handled. The grey col-
ored region has a curved line to indicate its boundary but these curved lines will be represented
by a series of straight lines in our approach. This results in an approximate representation of
the curved lines. The output file is shown in Fig.5.4(b) where the grey boundary shows how the
curved lines are extracted and represented in CityGML. The approximate time it takes to process
this image is one minute 30 seconds.

5.4. Scenario 4: Handling curved apartment boundaries 45

(a) The input file showing floor plans of three storied building.

(b) Handling ownership rights overlapping with thin lines.

Figure 5.2: Scenario 2: Our method handles some of the exception.

These scenarios show our approach works fine with all the input files having no exceptions.
It also handles some of the exceptions such as in scenario 2, 3 and 4. The errors occur only
regarding ownership rights. The errors such as not finding the ownership rights are caused only
when the numbers overlap with the apartment boundary they belong to. The method for finding
ownership rights presumes them being isolated and inside the apartment boundary. It will fail
to find them if they are not. The solution for this is described in section 3.3.1, however not yet
implemented.

46 5. Results and Discussion

(a) The ground floor plan of a building having no ownership
rights associated with an apartment, shown in grey color.

(b) CityGML representation of the floor plan, the ownership
rights are not associated with the region corresponding to
grey color in the input image.

Figure 5.3: Scenario 3: How our method handles the exception of having multiple ownership rights inside
an apartment.

5.4. Scenario 4: Handling curved apartment boundaries 47

(a) The ground floor plan of a building
having curved apartment boundaries.

(b) CityGML representation of the floor plan,
handling curved apartment boundaries.

Figure 5.4: Scenario 4: Handling curved apartment boundaries.

Chapter 6

Summary and Future work

6.1 Summary

A method for automatically extracting the relevant information from scanned building floor
plans has been presented by proposing a process pipeline. This process pipeline takes scanned
floor plans of an apartment building as an input and outputs the data extracted in XML format.
Each image is initially preprocessed to convert the image into a binary image and to remove the
noise in the image. The resulting image is sent for a data reduction stage. In this stage, our
method extracts numbers representing ownership rights and removes the irrelevant information
from the image, such as thin lines and texts. Later the image is sent to a graph construction phase,
where we extract the skeleton of the objects in the image and convert it into a graph. This is done
by detecting the corners in the skeleton and using them as nodes. The edges of the graph are
formed from the lines connecting the corners. The graphs obtained from the previous stage are
processed to identify the ownership boundaries, to associate the ownership rights and the floor
number. The extracted information is represented in XML format, which can in turn be converted
into CityGML format.
The method as described is an inexpensive and computationally efficient method that can be em-
ployed to automatic recognition of building floor plans and to store it in a computer processable
format.

6.2 Future work

In our approach we assume that the numbers representing ownership rights do not overlap with
the boundary lines. But in rare cases, numbers do overlap with the lines. This is yet to be handled.

We assume that the floor plans are drawn from left to right, with the left most floor being the
ground floor, and so on. Based on this assumption we find the floor numbers. But this may not
be true in all the cases. Hence we need to have a completely new approach to handle this prob-
lem. One of the solutions could be to use the labels that describe the floor numbers

We do not extract information on the height of the floor. Instead, we assume a standard height for
each floor. We stack the floors one top of each other without considering the actual geometry of
the building, but we need to consider the geometry to have areal representation of the building.
All these aspects need to be considered and solved in future work.

Bibliography

Boatto, L., Consorti, V., Del Buono, M., Di Zenzo, S., Eramo, V., Esposito, A., Melcarne, F., Meucci, M.,
Morelli, A., Mosciatti, M., Scarci, S. and Tucci, M.: 1995, An interpretation system for land register
maps, Document image analysis, IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 474–482.

Chen, L.-H., Liao, H.-Y., Wang, J.-Y., Fan, K.-C., Hsieh and C-C.: 1996, An interpretation system for cadastral
maps, ICPR ’96: Proceedings of the International Conference on Pattern Recognition (ICPR ’96) Volume III-
Volume 7276, IEEE Computer Society, Washington, DC, USA, p. 711.

Cofer, R. and Tou, J.: 1972, Automated map reading and analysis by computers, FJCC ’72: Fall Joint Computer
Conference, Vol. 41, pp. 135–145.

de Berg, M., Cheong, O., van Kreveld, M. and Overmars, M.: 2000, Computational Geometry: Algorithms and
Applications, second edn, Springer, Berlin.

den Hartog, J., ten Kate, T. and Gerbrands, J.: 1996, Knowledge-based interpretation of utility maps, CVIU
’96 :Computer Vision and Image Understanding, Vol. 63, pp. 105–117.

D’Silva, M. G.: 2009, A feasibility study on CityGML for cadastral purposes, Master’s thesis, Technische Univer-
siteit Eindhoven, Eindhoven, The Netherlands.

Freeman, H. and Pieroni, G.: 1980, Map Data Processing, Academic Press.

G. Gröger, T. H. Kolbe, A. C. C. N.: 2008, OpenGIS City Geography Markup Language (CityGML) Encoding
Standard, Open Geospatial Consortium Inc.

Gonzalez, R. C. and Woods, R. E.: 2001, Digital Image Processing, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Harris, C. and Stephens, M.: 1988, A combined corner and edge detector, Proc. Fourth Alvey Vision Conference,
pp. 147–151.

Janssen, R., Duin, R. and Vossepoel, A.: 1993, Evaluation method for an automatic map interpretation sys-
tem for cadastral maps, Document Analysis and Recognition, 1993., Proceedings of the Second International
Conference on, pp. 125–128.

Lawrence, R., Means, J. and Ripple, W.: 1996, An automated-method for digitizing color thematic maps,
PhEngRS ’96: Photogrammetric Engineering and Remote Sensing, Vol. 62, pp. 1245–1248.

Musavi, M. T., Shirvaiker, M. V., Ramanathan, E. and Nekovei, A. R.: 1988, A vision based method to
automate map processing, Pattern Recogn., Vol. 21, Elsevier Science Inc., New York, NY, USA, pp. 319–
326.

Nakajima, M.: 1984, A graphical structure extracting method from an urban map using parallel vector
tracers, IECE, Vol. J67-D, pp. 1419–1426.

Ogier, J., Mullot, R., Labiche, J. and Lecourtier, Y.: 1998, Multilevel approach and distributed consistency for
technical map interpretation: Application to cadastral maps, CVIU :Computer Vision and Image Under-
standing, Vol. 70, pp. 438–451.

Reiners, D., T. A.: 2009, Skeleton-based Hierarchical Shape Segmentation, Eindhoven, The Netherlands.

52 BIBLIOGRAPHY

Smith, R.: 2007, An Overview of the Tesseract OCR Engine, ICDAR ’07: Proceedings of the Ninth Interna-
tional Conference on Document Analysis and Recognition, IEEE Computer Society, Washington, DC, USA,
pp. 629–633.

Stefano, L. and Bulgarelli, A.: 1999, A simple and efficient connected components labeling algorithm, 10th
International Conference on Image Analysis and Processing (ICIAP’99), Vol. 41, p. 322.

Stoter, J. E.: 2004, 3D Cadastre, PhD thesis, TU Delft, Delft, The Netherlands.

	Acknowledgements
	Introduction
	Aim of the project
	Problem definition
	Kadaster floor plan standards
	Related work
	Results
	Organization of the thesis

	Basic Concepts
	Computer Representation of Raster Images
	Image Processing and Analysis
	Neighborhood
	Connectivity and Adjacency
	Connected Component Labeling
	Morphological Operations

	Graphs

	Building Reconstruction from Floor Plans
	Building Floor Plans
	Preprocessing
	Thresholding
	Noise Removal

	Data Reduction
	Label Identification
	Removing Labels and Thin lines

	Graph Construction
	Skeletonization
	Corner Detection
	Graph Construction
	Graph Optimization

	Graph Processing
	Ownership boundary identification
	Associating ownership rights
	Identifying the floor numbers
	Representing data in XML format

	Results and Discussion
	Scenario 1: Four storied building floor plan
	Scenario 2: Numbers overlapping with lines in floor plans
	Scenario 3 : Ownership rights represented using text
	Scenario 4: Handling curved apartment boundaries

	Summary and Future work
	Summary
	Future work

