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Abstract

There is a need for a visual tool for describing the execution of object oriented
programs in an educational setting. A literature study for existing software
visualizations is carried out to identify requirements to such a system.

A Visual Object and Execution Model based on the Contour Model of Block-
Structured Processes is used to visualize program execution state. Additionally,
rule-based selection methods are used to remove the less important parts of this
visualization from view.

We have implemented our approach in a prototypical tool called CoffeeDregs.
Preliminary experiments with this tool have shown that the tool can be used for
a larger pedagogic experiment on freshmen students following a programming
course.
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Chapter 1

Introduction

Much effort has been put into Software Visualization, the visualization of any-
thing related to computer software. Most research is predominantly aimed at
aiding the professional programmer in his/her workflow, leaving the beginning
programmer in the dark.

The aim of the Master project associated with this thesis is to provide an ed-
ucationally useful software visualization tool to be used during a programming
course on Java.

In this thesis we explore and compare various tools with similar aims, in order
to better understand those aims and to later be able to compare them with our
own tool. We also assess a type of visualization model that uses the scope of
program code for its structure, which results in a new idea for the visualization
of the execution of programs.

To limit the overwhelming amount of objects visualized in larger programs, we
must assess what objects are important to show and what not. We also decide
whether a user should have influence on this process.

The ideas proposed are implemented in a software visualization tool called Cof-
feeDregs and then tested in a preliminary experiment with students.

The result is a new stable student version, ready to be tested in lecture situation.

1.1 Thesis outline

In this thesis we present a model for an educational software visualization. We
first define the terms used in the thesis and propose a didactic vision for the
teaching of Object Oriented Programming (OOP) in Chapter 2. We then discuss
the existing work in the field and set it against our didactic vision in Chapter 3
and come to the conclusion that there is the need for a more specific solution.

A literature study for execution models in Chapter 4 is followed by a discussion
about the specific solution we have in mind. This discussion is divided into
a part about how objects are visualized in Chapter 5 and a part about what

1



1.2 Definition of terms

objects are visualized in Chapter 6.

The software tool “CoffeeDregs” is introduced in Chapter 7. This tool is based
on the observations made during the research phase and fits our didactic vi-
sion. After implementation, an experiment was carried out among students to
identify flaws or weaknesses in CoffeeDregs that could influence the pedagogic
experiments in the future. The purpose of these experiments is to address those
issues before introducing the tool in the educational programme. The report of
these experiments is found in Chapter 8.

Finally, Chapter 9 concludes the thesis with open issues and advice for future
research and development.

1.2 Definition of terms

This section introduces the terminology used in the rest of the thesis.

1.2.1 Software visualization

A software visualization is a system which aims to visualize certain aspects of
another software system. It can be a visualization of any abstraction level of the
software (e.g. from a view of the electrons in a computer to the visualization of
complex high-level datastructures).

This thesis, for example, describes a software visualization at a fairly high ab-
straction level of objects and methods.

1.2.2 Reverse stepping vs. Reverse execution

Reverse stepping and reverse execution enable the user to track back the ex-
ecution by ‘undoing’ steps in the execution. The difference between reverse
stepping and reverse execution is whether the Virtual Machine (VM) actually
inverts the last execution step.

In reverse stepping, the system holds a collection of program states which can
be visualized at any point during the execution. If the user steps along these
program states in reverse order of execution, it appears as if the program itself
is actually running backward. In reverse execution however, each program in-
struction is actually inverted and then executed. The resulting program state
is then the actual state of the running program.

Reverse stepping is usually much easier to implement than reverse execution,
but limits the possibilities of ‘changing history’.

1.2.3 Programmer’s code

With “programmer’s code” we mean the source code that is written by the end
user of the software visualization tool. The programs running in CoffeeDregs

2



1.2 Definition of terms

are usually a combination of programmer’s code and library code.

Similarly, “programmer’s objects” are the objects that come from executing
programmer’s code and the “programmer’s program” is the executable resulting
from compiling the programmer’s code.

3
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Chapter 2

Didactic Vision and
Problem Statement

2.1 A didactic vision for the teaching of object-
oriented programming

This project, which was initiated by Kees Huizing and Ruurd Kuiper, aims
to support the teaching of OOP to first year non-computer-science students of
Eindhoven University of Technology. To be of any help, the proposed educa-
tional tool must fit the didactic vision of the teaching method and the book
material[7].

Students are usually found running into problems when starting with OOP and
programming in general. The problems we identified during the instruction
lectures were of a fundamental programming nature: students sometimes have
an incorrect perception of method scope; local variables and especially method
arguments lead to misunderstandings, return values are not always correctly
understood. Methods are not recognized as extended mathematical functions.

Therefore, although the course is about OOP, the method does not follow an
“objects first” approach. Instead, the student is at first presented with only the
most basic programming concepts that apply to every imperative programming
language, such as boolean and arithmetic expressions, variable assignments,
input and output, conditional execution (if-else) and repeated execution (while-
do). When these concepts are well-understood, the student learns how to use
and create methods. The student starts making a simple application with one
class and a single instance of that class, without knowing it. The next step is
to introduce objects (classes as well as instances) as environments of execution
and to enter the world of OOP.

The teaching method is based on building up knowledge “incrementally, without
branching or making de-tours”[7]. The course follows a “narrow path”[7], lead-
ing to a quick understanding of OOP concepts and Java “for the [conceptually]
inclined traveler”[7]. It also leads to a thorough understanding of the subject

5



2.2 Problem statement

for the not-so-inclined traveler as s/he doesn’t come accross side paths to get
lost in.

The advocated approach is to start programming in a real environment right
away, deferring explanation of the complex structure of Java program code to
a later point. Every concept introduced has a clear and explicit “Aim”, the
“Means” to reach this aim (always with an example) and an “Execution model”
to show visually what is happening inside the computer when it executes the
newly learned means.

Even though this approach leaves the student with unexplained notation and
terminology, we think it is better to only introduce those when the student has
a good understanding of the basic programming concepts that are contained
within them and can appreciate all the details of the new concept.

Summarizing:

• Narrow path approach: right to the point.

• First, give the student a good foundation of programming in general

• Then the main goal is a quick and well-founded understanding of OOP
and Java

• Which can be deepened at the student’s will.

• Every concept introduced serves a directly applicable goal and is intro-
duced along with a model of the execution of programs.

• The approach is bottom-up: In every step making the existing knowledge
part of something bigger.

• The target audience consists of students at a technical university and is
not limited to future computer scientists.

2.2 Problem statement

The main objective of the project associated with this thesis is to create a
software visualization for use in computer science education, particularly for a
course in object-oriented programming with Java, fitting the didactic vision of
the initiators.

The system will visualize the execution model of computer programs written
in Java. Its emphasis lies on the concepts of basic object orientation (i.e. cre-
ating objects, understanding the difference between an object and a class, and
referencing objects). It will not go into detail of expression evaluation as it is
assumed to be understood by prior knowledge of this concept in mathematics.

The visualization must enable the student to reason about his/her program
code. The student must be able to predict the result of each execution step,
using the visualization, his/her own program code and his/her knowledge of the
Java programming language.

6



2.2 Problem statement

As the system visualizes the execution of computer programs, programming
concepts like inheritance, polymorphism, interfaces will not be a prominent
part of the visualization. This might sound strange for a visualization that is
aimed at an object oriented programming language, but we will see that for the
particular application this is a good decision.

7
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Chapter 3

Related Work

This thesis on the interactive visualization of the execution of object-oriented
programs builds upon a number of techniques and ideas. In this chapter, we dis-
cuss other systems in the field which we compare to our didactic vision. We did
not find systems that directly fitted our didactic vision to provide students with
an appropriate execution model, but we discovered that one of these systems
uses an interesting model which will be of use when developing CoffeeDregs, the
tool we present in this thesis. We explore this model and its origins in the next
chapter.

From a multitude of software visualization systems we selected the Jeliot[1],
BlueJ[10] and JIVE[2] systems as reference-examples for three categories of sys-
tems that have aspects that are relevant to our aim. The first system is an
algorithm animation framework, capable of animating the runtime of programs
up until the level of expression evaluation. The second concentrates more on
the educational aspect for the writing of object-oriented programs. The last
system is a visual debugging environment for Eclipse, which can visualize the
execution of programs.

Other software visualization systems include jGRASP1, which gives a source-
level understanding of programming and the discontinued IBM Jinsight. Since
they focus on the development of program code and do not visualize the execu-
tion of programs, they will not be discussed here.

3.1 Comparing program visualization systems

When looking at software visualizations, we can classify them into different types
based on various criteria. Price et al. suggest in [13] a taxonomy based on the
answers to thirty questions about Scope, Content, Form, Method, Interaction
and Effectiveness of the software visualization. The categories are discussed in
detail, after which we will discuss the three selected visualization systems by
using this taxonomy.

1http://www.jgrasp.org/
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3.1 Comparing program visualization systems

Scope

The questions in this category tell us something about the characteristics of
the software visualization. Is the software visualization a system that functions
as an example or can it generate visualizations of arbitrary programs, within a
particular class or any program? How can the program class be described? In
this thesis we are interested in a system that can visualize arbitrary Java pro-
grams. Does the software visualization scale with larger programs, can it even
handle multiple programs simultaneously and how does it support concurrency?
Does the system interrupt the running of the program or does it run alongside
without interruption?

Content

The content category deals with what is visualized. The visualization can be
designed to show something of a general algorithm or a specific program. The
former does not depend on the implementation, while the latter does. This
thesis focuses on program visualization systems.

If the system does program visualization, does it use the program code for this
purpose? Can it visualize data structures? Does the system work in compile or
run-time? How complete and true are the visualizations to the “reality” of the
workings of the program or algorithm?

Form

The form category classifies the software visualization based on the elements
used in it, like what medium is used (paper, computer screen, . . . ). It has
questions on what graphical elements are used, what color and animation. The
form is also determined by whether it uses other modalities than graphics, for
instance hearing or touch. It also addresses whether there are multiple views or
visualizations on the same program.

Method

How the visualization is specified is described in the method category. In the
case of fully automated visualization, there is no specification, while an example
system will only consist of specification. If the visualization requires a specifi-
cation, does this require changing the program code or is it separate? Does the
specification use the same programming language as the program it visualizes?
Can the visualization be customized interactively?

Interaction

The interaction category describes how the visualization is navigated, whether
there are methods of elision (the hiding of excess information with the purpose
of removing clutter from the display) and how the time component of the subject
is mapped to the visualization.

There are three types of mappings known: “static to static” in which the system
creates a single snapshot of a certain instance of the program execution, “dy-
namic to static” where the system makes a single snapshot out of the complete
execution of the program (e.g. a trace) and “dynamic to dynamic” in which the

10



3.2 Jeliot

Figure 3.1: Screenshot of Jeliot. The main window is divided into four parts.
The left top shows the active methods, the right top is used to show expression
evaluations. The bottom left shows static values, the bottom right shows object
instances.

system creates an animation out of the complete execution of the program. A
fourth mapping, “static to dynamic” is not commonly used and would mean an
animation of a single snapshot of a certain instance of the program execution.

Effectiveness

How effective is the visualization in reaching its goal? Have there been studies
evaluating the system, or has it been in production use for a significant period
of time?

We will now look at each of the three selected systems, put them into context,
apply the taxonomy and come to a conclusion regarding our didactic vision of
Section 2.1.

3.2 Jeliot

Jeliot is an animation system developed at the University of Joensuu, Finland.
It is designed to help students understand the internal working of algorithms.

3.2.1 Taxonomy review

Scope

Jeliot animates single file Java programs. There are some limitations to the
code that are mentioned in the Help function. It cannot run multiple programs
simultaneously. Concurrency was not tested. The animation slows down the
execution for visibility.

11



3.2 Jeliot

Content

The animation visualizes method executions, object instance and expression
evaluations. The current execution point in the code is highlighted and there is
limited syntax highlighting. The visualization is created in run-time and shows
in high completeness and fidelity how expressions are evaluated. Constant values
seem to get pulled out of a bin and output is visualized using a hand that grabs
the value and pulls it down to the output window.

Form

Jeliot works on any computer with the Java SDK installed. The graphical ele-
ments are 2.5D graphic primitives, texts and arrows. Colour is used to distin-
guish scope types (method, instance, class, . . . ). Animation is used to emphasize
the changes in two adjacent states.

Method

The animation is almost fully automatic, except for the input and output of val-
ues. For this the standard System.in/out and Scanner classes could be used, or
the specialized Input and Output classes in the jeliot.io package. The animation
is live and fixed (can not be changed by the user).

Interaction

Navigating through the animation is possible by speeding it up or slowing it
down, pausing and making single steps instead of an automatic run. When the
execution is paused, it can be rewound to start from the beginning. It is not
possible to do reverse stepping or reverse execution.

Effectiveness

Jeliot has been investigated in educational settings. The direct predecessor to
Jeliot 3, Jeliot 2000, was found most effective for the mediocre student. The
strongest and weakest students did not get much out of it[11].

Two hypotheses posed in [12] are that new Jeliot’s animations are comprehended
better by those who have had previous experience with Jeliot and that student’s
expectations should be different when the tool is approached differently (as a
learning aid or as a debugger in the case of the paper).

Students felt a “gap” in the tool, a point where the required knowledge suddenly
makes “a big jump”. The gap “appeared between theory and the application of
that theory” and also “when students were not able to grasp a new concept”.
Other students thought that Jeliot had helped them a great deal, but later tests
revealed they had an incorrect idea of the process of creating objects[12].

3.2.2 Conclusion

Jeliot is useful for explaining very low level programming concepts, such as
expression evaluation and variable assignments. It is probably too low level
for our purposes as we are mainly interested in objects and their relation to
eachother, something Jeliot does not visualize.

12



3.3 BlueJ

Figure 3.2: Screenshot of BlueJ. The main window shows object relations using
UML notation, the bottom window shows two instances of Student and Staff.
Static and instance methods can be called by right clicking the respective object
and choosing from the pop-up menu. If a method requires arguments, a dialog
window is opened to enter the values. The source code can be edited in the
editor, which is opened via the pop-up menu.

3.3 BlueJ

BlueJ is developed at the University of Kent, UK. Its design is specifically aimed
at teaching and learning OOP in Java. It is very different from JIVE and Jeliot
in its workings and visualizations in the sense that it does not visualize program
execution by running a program code and show what happens, yet its use as a
learning-aid makes it interesting to review.

The user can in a graphical interface create classes, then add methods to those
classes and run each of them from the user interface. When an instance of a
class is made, it is placed on a shelve in the bottom of the screen, where it
can be interacted with (methods can be run, values of instance variables can be
changed).

13



3.3 BlueJ

3.3.1 Taxonomy review

Scope

BlueJ is (among other things) a visualization system designed to create simple
Java programs in. The system is scalable enough for the class of programs it is
designed for. It cannot handle multiple programs, nor does it treat concurrent
programs different from non-concurrent programs.

Content

The visualization is of the program code structure. The system has syntax
highlighting. Data structures are not visualized. The visualization shows design
time, but the way the system works this means it works run-time.

The system gives a good insight in the relations between classes; their hierarchy
as well as use-relations. On the object instance relations it falls short; pointers
between objects are not visualized at all.

Form

BlueJ works on any computer with the Java SDK installed. The graphical
elements are 2D graphic primitives and text. Colour is used to distinguish
classes and instances. The system does not use animation and there is only a
single view.

Method

The visualization is not generated from the code, rather the code is generated
by using the visualization. Therefore there is no familiarity with Java needed to
use the visualization, but to create a functional program it of course is necessary.

Interaction

In BlueJ, the user interacts directly with classes by dragging them around to
reposition them, and right-clicking them to access their initializers, the source
code editor and the class methods.

Object instances can be right-clicked to access their instance methods, inspect
their fields.

Effectiveness

BlueJ is developed at the University of Kent, UK and is also used there. On
the website is an list of 881 unconfirmed institutions using it to some extend.

There is a published evaluation[15] of the teaching and learning using BlueJ at
Monash University. They evaluated the framework in a two unit course and
concluded that in the second unit of the course — when the students were not
forced to use BlueJ anymore, but could use any tool they like instead — “the
fact that all of the respondents were using BlueJ indicates that they saw it as
benificial to them”. The fact that no one switched from BlueJ to another tool
might however also be for the same reason that most of the world is still using
Windows.

14



3.4 JIVE

The question whether skills learned in the course are easily transferable to other
environments remains unanswered.

3.3.2 Conclusion

BlueJ is developed with a very specific pedagogy in mind. This approach treats
objects first, giving the student a good understanding of classes and instances.
Only then they introduce programming as an automated way to interact with
objects.

This pedagogy is mirrored in the tool, presenting the user with an extended set
of operations on objects, programming only being one of them. An advantage
of this approach is that the novice programmer does not yet have to know what
‘static void main(String[] args)’ means or that it even exists to be able
to run a method on an object.

The pedagogy is much different from ours, where the emphasis lies on starting
with basic imperative programming.

3.4 JIVE

JIVE is the Java Interactive Visualization Environment, developed at the Uni-
versity at Buffalo, New York, USA. It features interactive visualization, query
based debugging and reverse stepping. It is integrated in the Eclipse2 develop-
ment environment and can not be run separately. Installation and maintenance
of the software is handler by the Eclipse Software Updates feature.

Paul Gestwicki identified seven desiderata in his dissertation[5] which he used
during the the design phase of his JIVE system:

• Depict Objects as Environments

• Provide Multiple Views of Execution State

• Capture History of Execution and Method Interaction

• Support Forward and Backward Execution

• Support Queries on the Runtime State

• Produce Clear and Legible Drawings

• Use Existing Java Technologies.

These desiderata might also prove useful for our own visualization system.

2http://www.eclipse.org/
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3.4 JIVE

Figure 3.3: Screenshot of Eclipse debugging using JIVE. The right top window
shows the object diagrams based on the Contour Model. The right bottom
window show sequence diagrams based on the sequence model. JIVE is used
as a standard debugger, so execution is controlled using breakpoints and step
ins/step overs. After execution is finished, it is possible to revisit all states from
beginning to end.
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3.4 JIVE

3.4.1 Taxonomy review

Scope

JIVE is a visual debugging system, designed to visualize the execution of (un-
altered) Java programs. The system does handle larger software well, but the
visualization is not very scalable. The “query based debugging” is limited, but
useful. The system is not designed for running multiple programs simultane-
ously, but does support concurrency within a single program. The visualization
is disruptive as it is mainly meant to be a debugger.

Content

JIVE visualizes the program execution. At the basis of the visualization lies
the concept of Visual Operational Semantics [5], which builds on the Contour
Model discussed in [9] of 1971 by John B. Johnston. The program execution is
visualized by means of sequence diagrams which display calls from method to
method and using object diagrams which display the “use” relations between
objects and class hierarchy as contours[9]. The code itself is not visualized, and
neither is the data visualized. The visualization uses data gathered at run-time.

Form

The primary target for the visualization are workstations running Eclipse IDE,
since JIVE is integrated tightly in the Eclipse debugging environment. The
graphical elements used in the visualization are various 2D graphic primitives,
text and icons for the object diagram and labels, fat lines and arrows are used
for the sequence diagrams.

Colour is not used for visualization purposes and there is no animation. There
are multiple views on the software.

Method

JIVE is fully automated, data is gathered at the end of each execution step
and then visualized. For small, terminating programs this usually means that
the user can interact with the visualization only after the program has already
terminated. The user does not need to be familiar with the code to generate a
visualization, nor is it necessary to adapt the code.

Interaction

The visualization can be navigated through time using a set of “tape-deck con-
trols”. The backward execution mentioned in the design desiderata is an im-
plementation of reverse stepping, JIVE does not feature true reverse execution.
Scrollbars are shown if a lot of objects are created. Apart from query based
debugging, there is no method for eliding3 or culling4 information. The visual-
ization is the same without regard of scale. The user can zoom in and out, but

3From Wikipedia: Elision is the omission of one or more sounds (such as a vowel, a
consonant, or a whole syllable) in a word or phrase, producing a result that is easier for the
speaker to pronounce.

4From Wikipedia: Culling is the process of removing animals from a group based on specific
criteria.
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3.5 A taxonomy preview for CoffeeDregs

this also scales the labels, so it might not always be useful.

Effectiveness

The sequence diagram is very easy to read if the program to be visualized is fairly
small. Once created, objects remain visible in the sequence diagram throughout
the lifetime of the program, which can clutter the display considerably (the
horizontal call lines will eventually become very long for calls to objects that
were created very late in the execution). For the object diagram holds the same;
garbage is not collected and all objects hang around for the entire execution,
which also clutters the display.

The developers have no publications on the usability or usage of JIVE.

3.4.2 Conclusion

JIVE is a well-designed system with many features and possibilities, but these
could easily overwhelm beginning programmers, who can not yet appreciate all
the details of the execution of an object oriented software system.

The basis of the Contour Model[9] on which it builds is solid, so with well-
aimed cuts the tool could be made very useful for beginners. We will look
at the concepts behind JIVE that are relevant for our aims in more detail in
Chapter 4.

3.5 A taxonomy preview for CoffeeDregs

To compare the selected systems with our requirements, we translate the aims
and didactic vision to descriptions in terms of the taxonomy. It is the description
of an, in our opinion, ideal software visualization tool aimed at the beginning
programmer.

Scope

CoffeeDregs is a visual programming aid, designed to visualize the execution of
(unaltered) Java programs. The system has a limited scalability, as it is mainly
aimed at beginning programmers. The system is not designed for running mul-
tiple programs simultaneously, but does support concurrency within a single
program. The visualization is disruptive, the user must invoke every execution
step.

Content

CoffeeDregs visualizes the program execution. The program code is used in the
visualization. It is not specifically visualized, but provided in a separate side
window. Complex data structures are shown “as-is”, no specific visualization is
applied to data structures. The visualization uses data gathered at run-time.
The visualization tries to be as “true” as educationally useful, i.e. there are
cases in which the fidelity is purposefully lowered.
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3.6 Summary of the taxonomy review

Form

The primary target for the visualization are workstations running NetBeans,
since CoffeeDregs is integrated in the NetBeans debugging environment. The
graphical elements used in the visualization are various 2D graphic primitives,
text and icons for the object diagram and labels, fat lines and arrows are used
for the sequence diagrams.

Colour is used to support differences between instances, classes and methods.
Animation is only used to smoothly display state transitions. There is a single
view on the programmer’s program.

Method

CoffeeDregs is fully automated, data is gathered at the end of each execution
step and then visualized. The user does not need to be familiar with the code
to generate a visualization, nor is it necessary to adapt the code.

Interaction

The visualization can be navigated forward and backward in time. Navigation
in history is implemented using reverse stepping. Scrollbars are shown if a
lot of objects are created. Objects can be collapsed and expanded at will to
preserve space. The visualization automatically hides objects based on the
collapsed/expanded state of the other objects. The user can zoom in and out,
but this also scales the labels, so it might not always be useful.

Effectiveness

Two experiments with students, described in Chapter 8 proved the tool as is
to be already quite useful. Research whether CoffeeDregs also works in an
educational setting has yet to be started.

3.6 Summary of the taxonomy review

Table 3.1 summarizes the four systems discussed.
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3.6 Summary of the taxonomy review

(a) Scope

A. Scope JIVE Jeliot BlueJ CoffeeDregs

1. System/ Example System System System System
2. Program class Java source code Java source code Java source code Java source code
3. Scalability Good Minimal Minimal Appropriate
4. Multiple Programs No No No No
5. Concurrency Yes No No Yes
6. Benign/Disruptive Benign Benign Benign Benign

(b) Content

B. Content JIVE Jeliot BlueJ CoffeeDregs

7. Program/Algorithm Program Program Program Program
8. Code No Yes No Yes
9. Data No No No Yes
10. Compile-/Run-Time Run-Time Run-Time Run-Time Run-Time
11. Fidelity and Completeness Yes Partial Partial Partial

(c) Form

C. Form JIVE Jeliot BlueJ CoffeeDregs

12. Medium Workstation Workstation Workstation Workstation
13. Graphical Elements 2D graph. primitives 2.5D graph. primitives 2D graph. primitives 2D graph. primitives
14. Colour Yes Yes Yes Yes
15. Animation No Yes No Yes
16. Multiple Views Yes No No Yes
17. Other Modalities No No No No

(d) Method

D. Method JIVE Jeliot BlueJ CoffeeDregs

18. Specification Style Automatic Automatic By construction Automatic
19. Batch/Live Live Live Live Live
20. Fixed/Custom. Fixed Fixed Fixed Fixed
21. Code Familiarity N/A N/A N/A N/A
22. Invasive No Yes (jeliot.io package re-

quired)
Yes (program is con-
structed from within ap-
plication)

No

23. Customization Language None None None None
24. Same Language N/A N/A N/A N/A

(e) Interaction

E. Interaction JIVE Jeliot BlueJ CoffeeDregs

25. Navigation Scrolling None needed None needed Zooming, Scaling,
Abstraction

26. Elision Unknown No No Yes
27. Temporal Control Mapping Dynamic to Static Dynamic to Dynamic Static to Static Dynamic to Dynamic

(f) Effectiveness

F. Effectiveness JIVE Jeliot BlueJ CoffeeDregs

28. Appropriateness and Clarity -
29. Experimental Evaluation [6] [15, 14] -
30. Production Use No record Used in programming

course
Reasonably large user
base (programming
courses)

-

Table 3.1: Answers to taxonomy questions summarized
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Chapter 4

A review of program
execution models

When reviewing the JIVE software visualization system for Chapter 3, we no-
ticed the creators had developed an execution model based on another fairly
old method. This chapter discusses this old method and the extension by the
creators of JIVE.

With the procedural programming languages in the 1960s came the eventual
need for more structured programming and a strict separation of concerns.
Program code was increasingly viewed as a structured combination of build-
ing blocks, and flowcharts were introduced as a way to structurally visualize the
semantics of (parts of) an algorithm.

The mapping from flowchart to program is relatively easy compared to its in-
verse, mapping from program to flowchart. The levels of complexity of a pro-
gram are often only implied in a flowchart and never made explicit. If one is to
create a flowchart of a complete program on the level of execution, it is usually
far too complex to understand it. To overcome this complexity, John B. John-
ston introduced the Contour Model of Block-Structured Processes (CM) in [9],
an “intuitive implementable cell-based model of the semantics of algorithm ex-
ecution”.

4.1 The Contour Model of Block-Structured Pro-
cesses

The Contour Model of Block-Structured Processes (CM)[9] is developed with
ALGOL 60 in mind, but works for any modern block-structured programming
language. It uses and makes explicit the nested structure of algorithms and their
records of execution. In this model a process is a series of snapshots containing
a (time-invariant) algorithm and a (time-varying) record of execution. Each
snapshot is the result of a single step of execution of the algorithm applied
to the preceding snapshot. The CM is “a hypothetical computer designed to
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4.1 The Contour Model of Block-Structured Processes

support direct realization of block structured processes”[9].

Contours in the model are the structural equivalent of blocks in the program
code. If we were to draw contours as rectangles, we would get a structure of
nested contours. A contour holds local variables, execution steps, and zero or
more nested contours. Figure 4.1 shows how contours enclose eachother based
on the block structure of the program code; it is a visualization of the static
structures in a program.
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(a) Block structure
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(b) Static contour structure

Figure 4.1: The nested algorithm structure is reflected in the CM (from [9])

If we now start the program in Figure 4.1(a), we get a record of execution where
each record contour can be linked back to its static counterpart. The first three
snapshots of the program after initialization can be seen in Figure 4.2. We start
with only the instruction pointer (π) which indicates at which line number we
are currently executing (1) (not shown in the figure). If we take one step we
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4.1 The Contour Model of Block-Structured Processes

enter the B1’ contour (based on the B1 contour in the static model), representing
the complete program, the instruction pointer is placed inside the contour, with
an arc pointing at the contour and the line number is updated to reflect the new
position (19). Take another step, then the value 2 is assigned to the variable
N and the line number is increased (20). In the next step a call is made to the
procedure P, a contour P’ is created, links are added and the line number is
now 3. For a thorough description and illustration of the following steps, refer
to Chapter 2 of [9].
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(b) N ← 2
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(c) Call P (Q, 2)

Figure 4.2: First three snapshots of the program in Figure 4.1 (from [9])

The example in Figure 4.1 is specific for ALGOL 60, but the basic notation is
flexible enough to be adapted to other programming languages. Linda Deneen
tried already in 1987 to use the contour model as an instructional tool and
adapted the model to fit the Pascal programming language. She declares that
“the contour model of execution provides beginning programming students with
a useful conceptual tool for understanding programs”[3], she “found a simplified
model to be a valuable tool for teaching the fundamentals of scope rules and
parameter passing.”[3] Let us briefly look at an example of this.

Listing 4.1: TestFactorial example
1 program Tes tFac to r i a l ( output ) ;

procedure Fac to r i a l (n : integer ) : integer ;
begin

a s s e r t (n >= 0) ;
6 i f n = 0 then

Fac to r i a l := 1 ;
else

Fac to r i a l := n ∗ Fac to r i a l (n − 1 ) ;
end ;

11
begin

writeln ( ’ 3 ! = ’ , Fa c t o r i a l ( 3 ) ) ;
end

In Listing 4.1 is a simple Pascal program, calculating the factorial value of 3. If
we apply the CM to this program, we get the nested structure in Figure 4.3(a).
When we run the program, the snapshot at the instant Factorial(0) is called
looks like Figure 4.3(b).
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4.2 Extending the Contour Model

Note that the dynamic contour structure follows the static nesting structure;
so procedures are only nested in the dynamic model if they are nested in the
static model (and thus in the source code). Recursive procedures are therefore
never nested as they can not be nested inside themselves in the static model.
ALGOL 60 and Pascal both support nested procedures. Java does not, so we
would not see any of these nested procedures when we try to apply the CM to
Java programs.
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(b) Dynamic be-
haviour

Figure 4.3: The CM with method executions (from [3])

4.2 Extending the Contour Model for OOP

Bharat Jayaraman and Charlotte Baltus found that the old CM was almost
ready to account for object oriented and logical languages when they were look-
ing for a good visual tool for describing the execution of programs written in
those languages[8]. They conclude that a real extension of the model framework
is only necessary for semantically visualizing inheritance. They found the CM to
be very appropriate, since “the nesting structure of contours follow the scoping
of environments of programs directly, [...] contours make explicit the important
fact that objects are really environments.” [8]

The actual extension to the model – the Visual Operational Semantics (VOS)
– was developed by Paul Gestwicki, following Jayaraman’s and Baltus’ obser-
vations, with three desired properties in mind [5]. Firstly should it clarify the
method context to emphasize that objects are the environments of execution
in OOP. Secondly, the system must support the Java language to the extent
that it can visualize classes, objects and interfaces, fields, methods and inner
classes, and static variables. It must be able to show access control modi-
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4.3 Conclusion

fiers, generic (template) and enumeration types, plus multiple threads using the
synchronized keywords. Lastly, it should be planar, which specifically results
in a drawing where no two diagrams need to overlap.

Method context

There is a visual difference between contours in the CM and the visual opera-
tional semantics. In the contour model, when execution leaves a contour, the
contour is removed as the scope it represents does no longer exist. In the visual
operational semantics the contours which represent object instances are kept
even when no execution is active inside. This is explained by the fact that a
reference to this scope still exists (i.e. a reference to the instance), so there
is no reason to clean it up. Putting the method contours inside the instance
contours (or class contours in the case of static methods) makes explicit that
“an object is an environment within which method activations take place” [4],
which satisfies the first desired property. Note that no change in the CM is
necessary to accomodate for this!

Java support

Classes, objects, interfaces, fields and methods are trivial to support, they
should each have a unique contour shape to be distinguishable and they should
be properly nested following the source code of the program. Access control
modifiers and other keywords are all part of the contour markup and are easily
added. Part of the second desired property is hereby satisfied.

Inheritance is supported by using the hierarchical structure for the nesting of
object contours. If we have for example an instance of a class A which is a child
of class B, we would draw the instance diagram for A inside one of B, which in
turn would be wrapped in an Object instance contour. This satisfies the rest of
the second desired property.

Planarity

For the semantically correct display of the hierarchy, an instance of a class B
which extends a class A should be drawn as in the top diagram of Figure 4.4,
with static contours around the instances. This can lead to border crossing
conflicts if there is more than one instance of B, as can be seen in the bottom
diagram of Figure 4.4 (note that there is only one contour for each static object
in the entire model!). By separating static space from instance space as shown
in Figure 4.5, the conflict of two instances sharing the same static contour is
resolved and the model is planar again, which satisfies the third desired property.

The model can now give a semantically valid visualization of any object oriented
(Java) program.

4.3 Conclusion

The CM is a very intuitive and readable model for the visualization of an execu-
tion model. It provides separate snapshots for each execution state and brings
the concept of scope very understandably. It is easily adapted to other program-
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4.3 Conclusion

CHAPTER 3. VISUAL OPERATIONAL SEMANTICS FOR JAVA 53

abstract class A {
protected static int x = 10 ;

}
public class B extends A {

protected static int y = 20 ;
}

Listing 3.1: Java program with static members

B instance 1 A instance 1 B instance 2 A instance 2

B static A static

B static

A instance 1

B instance 1 B instance 2

A instance 2

A static

B instance

B static

A instance

A static

A instance

B static A static

B instance

Figure 3.2: Illustrates the impossibility of nesting static contours in the same drawing space as
object contours. The graphs on the left indicate the required nesting of graphical components. In
the top figure, where there is only one instance of B, the nesting is possible, but once more than one
instance is introduced (as in the bottom figure), the nesting cannot be satisfied.

Figure 4.4: Illustration of how drawing static classes and instances objects in
the same space can lead to border crossings and thus to non-planarity (from [5])

CHAPTER 3. VISUAL OPERATIONAL SEMANTICS FOR JAVA 54

A static

B static

A static

B static

A instance

B instance

A instance 1

B instance 1

A instance 2

B instance 2

static space instance space

static space instance space

Figure 3.3: The separation of static and instance space. This figure addresses the impossible nesting
situation presented in Figure 3.2. The dashed arrows represent static links, which connect instances
to their static counterparts; these links are generally not shown in the contour diagram since they
can be inferred from our contour naming scheme.

Our solution to this problem is the separation of instance space (or object space) from static

space [37]. The static contour for a class is introduced in static space, and it contains the static

members of that class. Object contours, representing the instances of classes, are placed in object

space. This concept is illustrated in Figure 3.3, which addresses the same situation depicted in

Figure 3.2. These two spaces are conceptual and part of the contour model, and they are not

necessarily graphically separated in a contour diagram. Static contours, like object contours, are

nested according to their inheritance hierarchy. Given a class C that extends class B, the static

contour C is nested within the static contour B. Using this technique, when a static variable changes

value, it changes in only one place. The primary drawback is that there is a visual separation

between the object and static space. Figure 3.4 is a static contour for the same program considered

in Figure 3.1. There are no members in the superclass contour because Object defines no static

Figure 4.5: A solution to the contour conflict in Figure 4.4. (from [5])
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4.3 Conclusion

ming languages because it uses a quite abstract model. The VOS, the extension
to the CM to support OOP was useful to highlight the issues that play when
integrating modern programming techniques in the older CM.

The CM has been used before in education, but was simplified for that pur-
pose. For our educational aims, we also need a more specific solution, which is
presented in Chapter 5.
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Chapter 5

Visual Object and
Execution Model

In this chapter, we discuss how we use the CM and its extension, the VOS, in an
educational tool like CoffeeDregs. We present a variant on both models, which
we call the Visual Object and Execution Model to emphasize we are interested
mainly in objects and the execution of code in those objects.

While the original complete CM breaks down method (or rather procedure)
execution into smaller bits, we will not go this deep but rather break down the
environment around method execution. We do this because we want to focus
on objects as the environments of execution. In the model we use, method
instances are therefore the innermost contours. Our model could in the future
be extended to also show the internal method scoping, should the need occur.

5.1 Three types of contours

In our Visual Object and Execution Model we distinguish three different types
of contours. Firstly, we define a contour for instances. Any object instance
that is referenced, has one (but it is not necessarily visible, as we see in the
next chapter). Secondly, there is a contour for classes, one for each loaded class
in the program (again, they are not all necessarily visible). Thirdly, class and
instance contours can contain zero or more method contours (which are always
visible if they exist). An example of each of them is in Figure 5.1.

5.1.1 Instance contours

An Instance contour (see Figure 5.1(a)) contains the instance variables defined
by the class (and all of its superclasses) along with their values, and a method
contour for each active method in that instance. If an instance variable contains
a reference to another object, a visual connection is made from the value to the
object it is referring to. The Instance contours carry the class name of the
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5.1 Three types of contours

String plate "Outatime"
Boolean empty true

DeLorean #2

(a) An instance contour

int minWheels 4
int maxWheels 6

Car

(b) A class contour

int n 2

int i 20
int j 2

int i = 20;
while i > n {
  int j = 2;
  while j > n {
    j = j - 1;
  }
  i = i - j;
}
return j;

int method(...)

(c) A method contour

Figure 5.1: Examples of object contours

dynamic type of the instance, so not necessarily the declared type.

The Visual Object and Execution Model is not affected by the planarity conflict
mentioned in Section 4.2, because it does not show the hierarchical structure
of the instances coupled with their static counterparts. It is decided to flatten
the hierarchical nesting of contours, because it makes the visualization easier to
follow. Because we aim to visualize the execution of programs, we only need to
show the dynamic (i.e. runtime) type of all objects and references.

There is a major drawback to flattening the hierarchical structure, namely that
it cannot be said anymore which instance variable stems from which class in the
program code. This is a source for discussion which is continued in Section 5.2.

5.1.2 Class contours

A Class contour (see Figure 5.1(b)) contains the static variables defined in the
class (and all of its superclasses) along with their values, and a method contour
for each active (static) method in that class.

The Class contours are usually only visible if a (static) method is executing in
its corresponding class, since every loaded class in the program has one and
there would be too many of them without direct use.

5.1.3 Method contours

A Method contour (see Figure 5.1(c)) contains the method call arguments and
the local variables, along with their values, and the complete program code of
that method. A line is highlighted in the program code indicating the location of
the execution within that method. A different highlight is used for the method
that is on top of the execution stack to distinguish between active and waiting
methods.

Methods are shown as a whole, and no smaller contours can be inside method
contours. This is different from the CM, where every execution scope gets its
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5.2 Hierarchical structure

own contour. We merge the local variables of every scope in the method to a
single list to display them in the method contour. This results in a more stable
visualization, because the size of the contours only changes upon method entry
and exit.

The CM does not put the complete program code in the dynamic model. We
decided to do this, to emphasize even more that objects are the environments of
execution. Also, we do not show a static model where we could put the program
code, so we have to do it here.

In the CM, a special field value rpdl is added to indicate the “return point
and dynamic link” of the method. The result is a pointer from the called
method back to the line location in the calling method. We decided against this
because it suggests that the programmer can choose to dereference this pointer
at any time during execution, while in fact it is not a part of the program code
abstraction level at all. Instead, we decided to turn the pointer around and
draw an edge from the calling method location to the called method to suggest
a directed flow of successive method activations.

5.2 Hierarchical structure

We decided to merge the hierarchical scoping structure of an object instance into
a single contour. With this, we risk to lose some valuable information regarding
reachability of variables and methods.

We identified two specific situations in which this occurs. Firstly, through in-
heritance, an instance variable can get shadowed. A contour of an object of
a shadowing class gets the ‘same’ variable twice, with different values and un-
clear is which comes from which class. This makes it impossible for the user
to predict the next state based on the current state if the execution step uses
one of these variables. It is our opinion however that variable shadowing is
never done intentionally and even avoided if possible. A second situation occurs
when a method is overridden. It can not be told from the method contour from
which class this method is. Especially when the invocation triggers a chain of
overridden methods to be executed, this can lead to confusion.

We suggest a method to be able to show method and variable scopes on demand,
but that does not require scoping contours to be visible at all times. By slightly
rearranging the contour structure as proposed in VOS, we can get a contour
diagram that keeps variables of different hierarchy levels together and methods
in order. In these reordered contour diagrams we can switch on and off the
scoping contours without having to restructure its contents.

In Figure 5.2 we compare the hierarchical object instance structure of an object
C which extends from a class B, which in turn extends from a class A. In VOS,
instance variables and methods of the different hierarchy levels alternate. This
happens because the nesting always takes place at the bottom of the contour. If
we move the nested contour to the middle, in between the variables and methods
of the enclosing contour, we get a contour diagram as in the right figure, where
the instance variables are listed together, grouped by hierarchical class.
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5.2 Hierarchical structure

A

B

C

int x

int y

int z

method r in C

method q in B

method p in A

(a) Contour in VOS

A

B

C

int x

int y

int z

method r in C

method q in B

method p in A

C

(b) Contour in Visual Object and Ex-
ecution Model

Figure 5.2: Comparing contour structure

Since we like to have a stable visualization, i.e. where the contents and size of
contours does not change wildly, we want to avoid that method contours are
added above other existing methods. For instance when a method in class B is
active and another one in class C is executed, it would in theory end up above
the existing method contour.

In practice, this does not occur too often to be an issue. Let us look at this in
more detail.

A

B

C

int x

int y

int z

method p in A

Figure 5.3: Only method p active

Suppose we have a method p in class A, a
method q in class B and a method r in class
C. If we execute method p, a method contour
is added in the bottom of the object contour
and we get a contour like in Figure 5.3. To
get a method contour above the one we just
added, we need to call method r or q, which
would be added in the scoping contour for B
or C respectively.

Since A is a superclass of B and C, methods
in A can not call methods in classes B or C,
except if it downcasts1 itself to one of these

classes. Downcasting has the drawback that it requires extra runtime type
checking and is generally considered bad design if it is really necessary. As we
are developing the model within an educational framework, we avoid these types
of programs. Another way to execute one of the two methods is by running it
from another thread. These two techniques seem to be the only way to get a
method contour above an existing method contour in our scoping contours.

We thus have a method that does not require the scoping contours to be visible
at all times, yet they can be displayed on demand to show how variables are
shadowed and how methods are overriden.

1casting an instance of a class down to one of its derived classes
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5.3 Model comparison

5.3 Model comparison

The models discussed in this thesis, while all visualizing execution of programs
using contours, have different aims and use different means to satisfy those aims.
Now, we compare the models.

5.3.1 Contour Model of Block-Structured Processes

The CM was developed in a time when there was not really a good method for
visualizing software systems. The aim can therefore be called very straightfor-
ward.

Aims: To provide an intuitive, implementable cell-based model of the semantics
of algorithm execution.

Means: The means to do this are nested containers called contours which
are connected by arrows. Contours display variables along with their values.
The contours must be interpreted as variable scopes: A process can access all
variables that are in its own contour or in any of the enclosing contours.

5.3.2 Visual Operational Semantics

The VOS is part of a larger work for the interactive visualization of OOP.

Aims: To visually depict the current execution state, with support “for all
major features” of the Java programming language.

Other parts of the work aim to show the history of the execution.

Means: It uses the same means as the CM, nested contours. Added to the
contours is a separation between static and dynamic space.

5.3.3 Visual Object and Execution Model

Aims: To visually explain behavior as produced by executing code, using a
notion of state. The state should, together with the static code, contain enough
information to understand what the next state will be, using knowledge about
the semantics of the programming language used.

More specifically, the following requirements support the aim:

• Object instances should be visualized as separate entities from the class
they belong to.

• Object reference structures should be visualized.

• Lifetime and scope of data should be visualized (especially the differences
between e.g. instance and local variables).
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5.4 Conclusion

Means: A visualization where the state is depicted as a structure of various
containers of data and where execution is associated with those containers, being
a principal paradigm of OOP: Objects are the scopes of execution.

The requirements are translated into the following specific means:

• Objects are top-level containers. Inside the container the typed instance
variables are represented.

• Methods (i.e., method instances) are depicted as subcontainers of objects.

• All active methods are visible and the call chain is visualized.

• The static part of a class is visualized as a separate class-object (in order
to avoid clutter and data duplication).

5.4 Conclusion

By simplifying the CM and VOS, we get a useful model for beginning program-
mers who generally do not have a coherent model of the programs they create
in their minds, yet.

The deliberate flattening of the hierarchical structure in our opinion makes the
visualization of the model cleaner and more easy to follow. The rearranging of
the instance contours compared to the VOS enables us to show the hierarchy
when needed and hide it when not.
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Chapter 6

Deciding Upon What
Objects to Show

In the previous chapter we discussed how to show objects and methods. When
executing a Java program, many auxiliary objects are created, resulting in a
very large and incomprehensible visualization. In this chapter we will therefore
discuss what objects and methods to show and how to responsibly hide the
others.

6.1 Introduction

When a Java program is started, the virtual machine first creates a large amount
of auxiliary objects to load the main class of the program. Before even the first
line of the programmer’s code is executed, there are many objects in the model,
but that is not all. During program execution, the implementation of library
components can also create many objects. Not all of these are very interesting
for understanding the working of the program, but some might. Therefore we
cannot just hide all of these extra objects and hope the execution state is still
clear.

When objects in the model have no more references to other objects in the
model, they are automatically removed. This leads to a problem with objects
that are referenced by library objects, which are not present in the model. After
all, the objects in the model are only the programmer’s objects and the model
does not contain the library objects.

We present a method to selectively show and hide objects, which both improve
comprehensibility. The method is based on three levels of visibility, described
in Section 6.4. The levels are determined by a number of rules described in
Section 6.3. The rules use a set of dynamic properties of objects, which are
identified in Section 6.2. Because the hiding of objects may lead to orphaned
objects, we need to reconnect them to the object graph, this process is described
in Section 6.5.
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6.2 Dynamic properties of objects

6.2 Dynamic properties of objects

In order to be able to define rules on the ordering of objects, we first need
to identify the properties we want to use in those rules. We can distinguish
between history-independent and history-dependent properties. Both types are
dynamic properties, this means they only have a meaning during the execution
of the program.

The history-independent properties can be checked without looking into the
history of the object; these are properties like “There is a method active in the
object right now” or “The object does not reference other objects”. Below is
a list of more examples. Note that not all of them might make sense or can
even be computed, the list is merely an indication of what could be interesting
properties to check for.

• One or more methods are currently executing in the object

• n methods are active in the object, but not currently executing

• The object is fully initialized (i.e. no init methods are active)

• The object is user-defined (i.e. “I wrote the program source”)

• The object is user-selected (i.e. “I find this interesting”)

• The object is in a specific package (e.g. com.sun.java)

• The object has n outgoing references to other objects (having a certain
property)

• The object is referenced by n other objects (having a certain property)

• The object does not reference any other object

• The length of the longest path from this object back to itself following
object references, without ever taking the same reference twice, is 42 (the
calculation of which is in NP)

The history-dependent properties require some extra bookkeeping, especially
when the system has support for reverse execution/stepping. To determine their
value, we must be able to retrieve information from the past. These properties
are therefore more complex, like “The reference count of the object is increasing”
or “There have been n method activations in the object”.

• The value of an instance/static variable has changed

• The object has had n method activations in its history

• Reference count of the object is increasing

• Reference count of the object is decreasing
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6.3 Rules for the ordering of objects

methods-active

method-executing

object-referenced-from-above

⊥

⊤

object-often-referenced

user-selected

Figure 6.1: An ordering for objects

6.3 Rules for the ordering of objects

Now that we have identified a number of properties, we can use them to define
rules to determine an order on the objects. The presented order in Figure 6.1
has five levels, but additional levels can be introduced if desired.

We first define a set of first-order rules in terms of dynamic object properties
and previously assigned object order. The rules are applied in order for each
object. The first-matching rule decides the order of the object.

1. A method is currently executing in the object, assign order method-executing

2. A method is active in the object, assign order methods-active

3. The object is user-selected, assign order user-selected

4. The object has no active methods and the object is referenced by at least 1
object of higher order than methods-active, assign order object-referenced-
from-above

5. The object is referenced by x other objects, assign order object-often-
referenced

6. No rule matches, assign order ⊥

The result is that objects with active methods get a high order, while inactive
objects get lower orders. If an inactive object is directly referenced by an active
object or if it is heavily referenced, it gets a slightly higher order. In the next
section we see what this means for the visualization.
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6.4 Visual implications of object order

6.4 Visual implications of object order

Each order has its visual representation. The objects of the highest order are
fully expanded contours as they are discussed in Chapter 5, while the objects
of the lowest order are completely hidden from view.

• Objects of order methods-active and higher are expanded.

• Objects of order between object-often-referenced and object-referenced-
from-above are collapsed.

• Objects of order ⊥ are hidden.

See the horizontal lines in Figure 6.1.

Between Expanded and Collapsed can be many levels of half-expanded and
half-collapsed objects. We will discuss only the three levels here, other levels
are derived from these three.

6.4.1 Expanded objects

A fully expanded contour. If a method is running, the user can opt to keep
the object expanded after the method finished. If there is no method running,
the user can collapse the object. The system can, based on user preference,
decide to keep expanded objects expanded after a method has finished, or to
automatically collapse it if nothing else is keeping it expanded. In Figure 6.2,
the objects A and B are expanded.

6.4.2 Collapsed objects

A small empty box, which can be connected to and from, but which does not
have any textual content. It is the smallest visible representation an object
can have in the visualization. The user can select the object at will to become
expanded (it will thus become of order user-selected). As a result of the rules, a
collapsed object automatically becomes hidden if none of its referencing objects
is expanded (i.e. it will become of order ⊥). An example of a collapsed object
is the object S in Figure 6.2.

6.4.3 Hidden objects

A hidden object which cannot be interacted with. It is used to resolve refer-
ence paths between collapsed and expanded objects. Hidden objects grow to
collapsed objects if at least one of its referencing objects became an expanded
object (object-referenced-from-above). T is a hidden object(s) between S and B
in Figure 6.2.
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6.5 Tying objects back together

6.4.4 Visual representations between Expanded and Col-
lapsed objects

One could think of additional sublevels of expanded objects, in which for in-
stance private variables are hidden if the object inherits from a non user-defined
class. Beware that much of the functionality lies in these private variables and
that, for example, a storage class can not show how the user-defined objects are
stored within it if its private variables are hidden! The hiding of private vari-
ables should therefore probably only occur for “leaves” in the object reference
graph.

Great care is therefore required not to confuse accessibility in OOP with reacha-
bility (and thus visibility) in the model. The aim of the model is to visualize the
state of the program and not to visualize the structures in the program code.
As a result, private variables may be visible, even though they are inaccessible
from the program code. They nevertheless contribute to the execution model
that is visualized and are therefore required to be visible.

If it is really necessary to hide variables, a better way probably is to merge
them into a single ‘super-variable’ private which holds all references and thus
the reference connections in the graph of the object model.

6.5 Tying objects back together

S

S BA T

A B

Figure 6.2: Using transitive links to reconnect expanded and collapsed objects.
The objects in the structure in the top are ordered, which results in the image
in the bottom: S is collapsed and all objects between S and B (only T in this
case) are hidden. Object B is still expanded and to prevent dangling objects,
all paths to B from a collapsed object are reconstructed by drawing transitive
reference connections.
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6.6 Conclusion

All objects have an importance assigned to them and as a result some of them
now have become hidden. Now other higher-importance objects might have be-
come dangling because they were only referenced from currently hidden objects.
We will replace reference connections through objects of lower importance with
“transitive” reference connections. They differ in appearance from the normal
object references.

If there is a reference path from an expanded object A (see Figure 6.2), via one
collapsed object S and then via one or more hidden objects to another expanded
object B, then there a transitive reference from S to B is added. If there is a
direct reference from a collapsed object S to an expanded object B (i.e. there
are zero hidden objects in between them), then there is a normal reference from
S to B.

6.6 Conclusion

The method of object selection through properties and rules enables us to be
flexible in our selection approach. The important objects gain more screen
space, while the display is not cluttered by the less important objects.

The same visualization applies for library code as it does for programmer’s
code. The only difference is that method invocations are not visible as the
source code is not available to draw a method contour. The result is that a lot
can happen in one execution step, but it is something the programmer has to
become accustomed to since s/he will probably use black box library code a lot
in the future. It also teaches about the separation of concerns: “you do not
want nor have to know which storage implementation is used, as long as you
know how you can store and retrieve it”.

We discussed several alternative and chose the described method because it
seems the best for our purpose. Following is a brief discussion of the alternatives.

Initially, the idea was to show only the objects for which we have the source code,
thereby assuming that these are the programmer’s objects. The first object in
the visualization would then be the main class and only the few objects that are
created in the program become visualized. This works fine for smaller projects
that do not use libraries. As soon as we start using library code written by
others, we will be missing part of the functionality of the program. It was
decided that we would also be needing the other objects for which we do not
have the source code.

Because we ran into this problem for the first time when using a list imple-
mentation from the Collections framework, and we would expect this to happen
mainly with these types of objects, we decided it might be a good idea to have a
custom visualization of each collection implementation in the framework. This
however would make the visualization SDK dependent. Because of implemen-
tation differences1 it could mean that our tool would work with Sun Java, but
not with OpenJDK.

1For example, an ArrayList might in OpenJDK not be implemented using a variable called
‘array’ as in Sun JDK, but one called ‘list’. The result is that a custom visualization depending
on these variables would not work anymore.
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6.6 Conclusion

Another way to visualize foreign classes is to use model variables as a way to
abstract from the actual implementation. Model variables are values that can
be stored and retrieved via methods on an implementation, which do not need
to exist in the object, but rather in the model the object represents. To visualize
objects in this way, however, goes against the idea that we want to show what
is actually happening inside the computer.

Therefore, we can only treat library code as we would treat the programmer’s
code, but we still needed a way to keep the data structures comprehensible.
Thus we have come to the approach presented before, automatically detecting
and hiding ‘less important’ parts.
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Chapter 7

CoffeeDregs

In Section 2.1 we proposed a didactic vision for the teaching of OOP to non-
computer-science students. In this chapter we present a software visualization
tool fitting this vision using techniques described in Chapters 5 and 6.

7.1 Introduction

CoffeeDregs is a software visualization tool aimed at helping the beginning pro-
grammer understand OOP. It makes use of the NetBeans Visual Library1 for
graphics and the Java Debug Interface for retrieving information from objects
in the visualized program.

By using the Visual Object and Execution Model, it gives the user a visual
representation of the execution of his/her program. The user can zoom in and
out and rearrange objects to get a good view on the model.

7.2 Techniques

7.2.1 Visual Object and Execution Model

In CoffeeDregs we make use of the Visual Object and Execution Model, a variant
on the CM [9] and VOS [5]. It is described in Chapter 5.

The Visual Object and Execution Model is implemented using the NetBeans
Visual Library. This means that we can use the automatic routing of connection
arrows and the automatic layout of object contours. Mouse navigation and
zooming is included and it is also possible to export images directly from the
visualization, for example for use in assignment reports.

Not every aspect of the Visual Object and Execution Model is implemented in
CoffeeDregs, yet. The hierarchical contours as described in Section 5.2 have yet

1http://graph.netbeans.org/
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to be added.

7.2.2 Deciding Upon What Objects to Show

To prevent overwhelming the user with large amounts of objects, CoffeeDregs
has a method of selective information hiding. Objects are assigned importance
levels and based on these values they are partly or completely hidden. The
method is described in Chapter 6.

The result of applying object selection is seen in Figure 7.2, which shows the
exact same state as Figure 7.3, only with all LinkedList instances and related
classes hidden. We get a comprehensible model of the real object reference
structure. It is immediately clear from the image that the Object instances are
referenced from some object that is referenced by the name ll and type List.
The exact way in which the Objects are stored is abstracted in favor of model
clarity.

7.3 Usage

7.3.1 Installation

CoffeeDregs is available as a NetBeans plugin, which can be installed by adding
the repository2. Any updates are installed and configured automatically through
the NetBeans update facility.

7.3.2 Execution

There are two ways of executing a program with CoffeeDregs, comparable with
the ‘Run File’ and ‘Run Project’ options of NetBeans. The former option runs
the static main method in that class, while the latter runs the static main
method in the main class for the selected main NetBeans project.

In either case, CoffeeDregs opens a tab (see Figure 7.1) with an object view
on the left and the source code on the right. Along the bottom are buttons to
control forward and backward stepping and to control the automatic layout of
the object reference graph.

Objects can be repositioned and collapsed or expanded. The reference connec-
tions and the method execution thread will always follow the objects. They
start from the variable value or source code line, respectively, and end in the
referenced object or method.

If the program requires user input, it can be given via the input box just below
the object window. Any program output is printed just above the input box.

2At the moment of writing, CoffeeDregs does not have a dedicated plugin repository, yet
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7.3 Usage

Figure 7.1: NetBeans running a program in CoffeeDregs

Figure 7.2: Lists example with object selection applied. The class ObjectLists
has an active method main with one argument args. In the body of the method,
three local variables ll, i and li are declared. Execution is currently on line 11
(for the fourth time, see the value of i) and the List ll contains four instances of
Object. The instance of List is collapsed, so only a small square box is visible,
with transitive reference connections to the objects in the list.
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Figure 7.3: Lists example without object selection applied. The state is the
same as in Figure 7.2, but the complete implementation of the List is visible,
including its auxiliary objects.
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7.4 Software architecture

This section is mainly aimed at the developer wanting to further extend and
improve CoffeeDregs. We lightly explore the software architecture. Those inter-
ested in a more detailed discussion are encouraged to read the Developer Notes
by Vincent Vandalon with contributions of the author of this thesis.

CoffeeDregs is made up of two main components thereby partly following the
Model-View-Controller pattern: debugmodel and debugview. The debugmodel
handles the communication with the Java debugger and keeps a consistent state
model. The debugview makes a drawing of the state model and acts as a
controller to debugmodel.

CoffeeDregs

debugview

debugmodelJava Debug Interface

NetBeans Visual API

Java Swing

Figure 7.4: High level architecture diagram

When a programmer’s program is loaded into CoffeeDregs, a VM is started for
the program. CoffeeDregs then connects to the VM to subscribe to method
entry and exit events and to execution step events. These events are reused as
events within CoffeeDregs to notify the visualization of updates in the state.

When the visualization receives a notification, it updates its set of visualized
objects. New objects in the programmer’s program are added to the visualiza-
tion. Old objects that do not exist anymore in the programmer’s program are
also removed from the visualization.

After the set of visualized objects has been updated, the objects in the set are
updated to reflect changed values. If a method is active in an object, it is also
added or its state is updated.

Following the update of the state is a reevaluation of the object’s properties and
applying the rules as described in Chapter 6, and then drawing the objects as
described in Chapter 5.

The work on CoffeeDregs for this project is limited to the debugview com-
ponent. Vincent Vandalon worked on the debugmodel component, improving
the communication with the Java Debugger Interface and implementing reverse
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stepping.
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Chapter 8

User Experiments

We want to test whether CoffeeDregs is ready for prime-time. We do not intend
to prove that CoffeeDregs is didactically valid right now, more research has to
be done for that.

A group of students do a series of assignments using CoffeeDregs, both analysing
as reproducing. The students have some experience with Java, having finished
a programming course during fifteen weeks of four hours each.

In Appendix A is the form handed out to the subjects (in Dutch).

8.1 The setup

The installed plugin is a build of SVN revision 199 of the visualization branch.
Secondary objects and transitive edges are not used, long lists of variables are
not folded.

The computer runs Debian GNU/Linux ‘lenny’ with NetBeans 6.5 and all up-
dates installed.

8.2 The assignments

The subject is first introduced with CoffeeDregs, how to launch it and how to
use it. For this, the Arrays and Recursions projects are used. The experimenter
first shows the subject around, then lets him/her play for him/herself.

Meanwhile, some introductory questions are asked to get an idea of the pro-
gramming background of the subject.
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8.2 The assignments

Listing 8.1: ReverseTwice
3 public c lass ReverseTwice {

void swapFirst (Obj x , Obj y ) {
Obj h ;
System . out . p r i n t l n ( ”x = ” + x . name + ” , y = ” + y . name ) ;

8 h = x ;
x = y ;
y = h ;
System . out . p r i n t l n ( ”x = ” + x . name + ” , y = ” + y . name ) ;

}
13

void swapSecond (Obj [ ] arr , int i , int j ) {
Obj h ;
System . out . p r i n t l n ( ” ar r [ i ] = ” + arr [ i ] . name + ” , ar r [ j ] = ” + arr [ j ] . name ) ;
h = arr [ i ] ;

18 ar r [ i ] = arr [ j ] ;
a r r [ j ] = h ;
System . out . p r i n t l n ( ” ar r [ i ] = ” + arr [ i ] . name + ” , ar r [ j ] = ” + arr [ j ] . name ) ;

}

23 void r e v e r s eF i r s t (Obj [ ] a r r ) {
for ( int i = 0 ; i < arr . l ength / 2 ; i++) {

swapFirst ( ar r [ i ] , a r r [ a r r . l ength − i − 1 ] ) ;
}

}
28

void reverseSecond (Obj [ ] a r r ) {
for ( int i = 0 ; i < arr . l ength / 2 ; i++) {

swapSecond ( arr , i , a r r . l ength − 1 − i ) ;
}

33 }

public stat ic void main ( St r ing [ ] args ) {
ReverseTwice r = new ReverseTwice ( ) ;
Obj [ ] a r r = new Obj [ 6 ] ;

38 ar r [ 0 ] = new Obj ( ”Obj−0” ) ;
a r r [ 1 ] = new Obj ( ”Obj−1” ) ;
a r r [ 2 ] = new Obj ( ”Obj−2” ) ;
a r r [ 3 ] = new Obj ( ”Obj−3” ) ;
a r r [ 4 ] = new Obj ( ”Obj−4” ) ;

43 arr [ 5 ] = new Obj ( ”Obj−5” ) ;
pr intArray ( ar r ) ;
r . r e v e r s eF i r s t ( ar r ) ;
pr intArray ( ar r ) ;
r . reverseSecond ( arr ) ;

48 pr intArray ( ar r ) ;
}

stat ic void printArray (Obj [ ] ar ) {
for ( int i = 0 ; i < ar . l ength ; i++)

53 System . out . p r in t ( ar [ i ] . name + ” ” ) ;
System . out . p r i n t l n ( ) ;

}
}

58 c lass Obj {
Str ing name ;
public Obj ( St r ing n) {

name = n ;
}

63 }

8.2.1 ReverseTwice

In the ReverseTwice assignment, the subject must read and understand the
code, predict the behaviour and then check using CoffeeDregs whether the actual
behaviour matches with the prediction. The source code is listed in Listing 8.1.

The user should detect that the first swap function does only exchange references
in local variables and not the actual references in the array.

8.2.2 GiveAndTake

GiveAndTake is an abstract variant of the often used Farmer example (there
is a Farm with Animals, which can eat out of a shared Trough which can be
empty and filled). The main instance GiveAndTake (Listing 8.2) creates two
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8.2 The assignments

Listing 8.2: GiveAndTake
public c lass GiveAndTake {

8 Taker a1 , a2 ;
Giver b ;

public void go ( ) {
a1 = new Taker ( ) ;

13 a2 = new Taker ( ) ;
b = new Giver ( ) ;

a1 . parent = b ;
a2 . parent = b ;

18
a1 . take ( ) ;

b . f i l l ( 3 ) ;

23 a2 . take ( ) ;
a1 . take ( ) ;
a2 . take ( ) ;
a1 . take ( ) ;

28 b . f i l l ( 3 ) ;

a2 . take ( ) ;
}

33 public stat ic void main ( St r ing [ ] args ) {
GiveAndTake g = new GiveAndTake ( ) ;
g . go ( ) ;

}
}

Listing 8.3: Giver
c lass Giver {

int value ;
9

public void f i l l ( int v) {
value = v ;

}

14 public boolean g ive ( ) {
i f ( value > 0) {

value−−;
return true ;

}
19 return fa l se ;

}
}

Takers and a Giver, lets a Taker (Listing 8.4) try to take something from the
Giver (Listing 8.3) in which it fails. Then gives the Giver some resource and
lets the Takers try again.

The idea is that the user understands better that the two Takers get from the
same Giver.

8.2.3 Company

In the Company (Listing 8.5) assignment, two Employees (Listing 8.6) must be
assigned to two Jobs (Listing 8.7). If all goes well, the employees do their job
and after a few ‘hours’ they are done. The program however is flawed and no
matter how much the employees work, there is no progress. The cause is that
neither the job nor the employee have any reference to each other. The user
should be able to diagnose and fix this problem by running it in CoffeeDregs.
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8.2 The assignments

Listing 8.4: Taker
c lass Taker {

Giver parent ;

10 public void take ( ) {
i f ( parent . g ive ( ) ) {

System . out . p r i n t l n ( ”Got an item ! ” ) ;
} else {

System . out . p r i n t l n ( ”Did not get an item ! ” ) ;
15 }

}
}

Listing 8.5: Company
public c lass Company {

9 Employee employee1 , employee2 ;
Job job1 , job2 ;

public void i n i t ( ) {
employee1 = new Employee ( ”Employee−1” ) ;

14 employee2 = new Employee ( ”Employee−2” ) ;
job1 = new Job ( ”Job−1” , 5 ) ;
job2 = new Job ( ”Job−2” , 10 ) ;

}

19 public void execute ( ) {
while ( job1 . work + job2 . work > 0) {

employee1 . workOnJob ( ) ;
employee2 . workOnJob ( ) ;
job1 . printWorkLeft ( ) ;

24 job2 . printWorkLeft ( ) ;
}
System . out . p r i n t l n ( ”Al l work done , i t ’ s weekend ! ” ) ;

}

29 public stat ic void main ( St r ing [ ] args ) {
Company c = new Company ( ) ;
c . i n i t ( ) ;
c . execute ( ) ;

}
34 }

Listing 8.6: Employee
7 public c lass Employee {

Job job ;
St r ing name ;

12 public Employee ( St r ing n) {
name = n ;

}

public void workOnJob ( ) {
17 i f ( job != null ) {

System . out . p r i n t l n ( this + ” i s working f o r an hour on ” + job ) ;
i f ( job . work ( ) ) {

System . out . p r i n t l n ( this + ” ’ s work on ” + job + ” i s done ! ” ) ;
job = null ;

22 }
}

}
}
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8.3 Experiment reports

Listing 8.7: Job
public c lass Job {

Employee employee ;
St r ing name ;

11 int work ;

public Job ( St r ing n , int w) {
name = n ;
work = w;

16 }

public void printWorkLeft ( ) {
System . out . p r i n t l n ( this + ” has ” + work + ” hours o f work l e f t by ” + employee + ” . ” ) ;

}
21

public boolean work ( ) {
i f (work <= 0) {

return fa l se ;
}

26 work−−;
return (work <= 0) ;

}
}

8.3 Experiment reports

8.3.1 Experiment #1

Study: Innovation Sciences. Followed Programming 1 (2Z820) in 2007, currently
doing Programming 2 (2Z830). In his opinion “an average student, which misses
a bit of the routine others might have”.

The subject is presented with the Arrays example project. He gets instructions
on how to start a program in CoffeeDregs from within NetBeans. Then he starts
playing around on his own to get a feeling for the tool.

ReverseTwice

Reads the program code thoroughly. Explains step by step what he thinks the
program does, namely reversing the array of objects twice so that in the end it
comes back to its original order.

Runs the program in CoffeeDregs and is very focused on the source code in
the right pane. Thereby he misses that the first swap function does not work
and that the order of the objects is unchanged after the first reverse function.
When pointed at this (“did you notice something strange in the order of the
printout?”), runs the program again and then sees what happens in the left
pane and explains the error the program made.

GiveAndTake

Reads the program code thoroughly. Correctly predicts the outcome of the
program, runs it in CoffeeDregs and explains the state in each step and predicts
the next step.

Company

The subject first reads the code thorougly and notices that indeed the program
should not work as it was meant because job and employee are not assigned to
eachother. An execution using CoffeeDregs confirms this.
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8.3 Experiment reports

The subject finds it very convenient to see the instances next to eachother to
compare their instance variables and to see that indeed the jobs and employees
have no reference to eachother.

It is not directly recognized that CoffeeDregs can also be used to trace reach-
ability of variables when fixing the problem. The result is trying to set the
instance variables in a place where the jobs or employees are not reachable.

Conclusion for experiment #1

The level of the assignments was up to par with the subject. The subtle bug in
the ReverseTwice was noted at the intended moment (be it with a little help).
The whole experiment can therefore be seen as representative for the situation
of a lecture setting.

8.3.2 Experiment #2

Study: Innovation Sciences. Followed Programming 1 (2Z820) in 2008, currently
doing Programming 2 (2Z830). In his opinion “an average student”.

ReverseTwice

Reads the program code thoroughly. Discovers that swapFirst does not actually
change the array. This is confirmed when he runs the program in CoffeeDregs,
references in the array are untouched, the subject mentions that he sees that
swapFirst does not even hold a reference to the array.

GiveAndTake

Reads the program code thoroughly. Correctly predicts the outcome of the
program, runs it in CoffeeDregs and explains the state in each step and predicts
the next step.

Note: Both subjects recognized this as an abstract Farm program, which they
had seen in the programming course.

Company

The subject reads the code thoroughly and quickly finds out that there are
references missing, without having used CoffeeDregs. He fixes the problem and
runs it in CoffeeDregs to confirm that is has been fixed.

Conclusion for experiment #2

The subject detected the flaws and subtleties of the assignments early, before
having used CoffeeDregs. The assignments probably were too easy for the sub-
ject. The subject however did use CoffeeDregs to check its mental model with
the actual model to make sure it was equal. The experiment can therefore be
seen as representative for someone who understands OOP, but who wants to be
sure of him/herself.
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8.4 Results

8.4 Results

The link between program code and visualization is not always recognized. Es-
pecially instance variables and method arguments pose a problem. It is expected
however, that if the students are presented with the tool during the first few
classes, those problems will not appear as they have no prior knowledge on the
subject, and must be taught everything from the ground up, anyway.

The controls are clear. The functionality to drag objects to make a diagram
more readable was not used as the examples were not that complicated. The
subjects had little trouble to complete their tasks.

A stronger coupling with the NetBeans debugger might be desirable to be re-
lieved of the need of having the program code along with the visualization (a
better integration would make it possible to follow the debugging process in the
source editor).
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Chapter 9

Conclusions

In this thesis we have proposed (a model for) a tool for supporting the teaching
of object oriented programming.

We have compared various tools with similar aims, to better understand our
own and to identify the requirements for an educational software visualization
system.

We discovered that the JIVE system comes close to our aims and uses a model
we could adapt to our needs. We explored the model and identified the required
changes needed for a more pedagogic approach.

We have created a variant on the model behind JIVE and added a method of
information elision and culling to prevent overwhelming the beginning program-
mer with too many objects.

We have implemented a major part of the new model and the first experiments
are promising that the system is ready to be used in the upcoming course.

9.1 Concluding Remarks and Future Work

CoffeeDregs can be further extended with a fundamental model for inner classes
and to implement the idea discussed in Section 5.2 to better show the object
hierarchies. More research has to be done to better specify what objects are
interesting to the programmer and whether the interest changes over time as
the programmer gets more experienced.

Code for stepping back in the history of the execution is already written by
Vincent Vandalon, but still needs some work. The integration in the tool is a
goal for the next months before introduction in the educational programme.

For intermediate programmers, the lack of a “run faster” option is a deal breaker.
In a future version, there should be support for breakpoints and a fast forward
mode in which the program runs until it ends or encounters a breakpoint.

Overall, the user interface can be improved to better match the look and feel of
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9.1 Concluding Remarks and Future Work

NetBeans. A better integration with the NetBeans debugging system, probably
much in the way JIVE is integrated in Eclipse’s, would help in improving the
user interaction.

Of course, the biggest issue still open is whether CoffeeDregs works in an ed-
ucational environment. We hope the pedagogic research can start in the fall
semester of 2009.
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Appendix A

Form handed out during
experiment (in dutch)

Kennismaking

Welke studierichting volg je?

Hoe schat je je eigen programmeervaardigheden in vergelijking met medestu-
denten in? (bovengemiddeld / gemiddeld / ondergemiddeld)

Kennismaking met CoffeeDregs

Je gaat nu met behulp van CoffeeDregs een programma starten en de uitvoering
ervan bekijken. Probeer hardop te denken en vraag het als er iets niet duidelijk
is. Denk eraan dat het doel van de experimenten niet is om te testen of jij het
begrijpt, maar of CoffeeDregs het duidelijk laat zien!

Er is een aantal voorbeelden beschikbaar die verschillende facetten van Coffee-
Dregs demonstreren. Open deze, klik wat rond en kijk wat er gebeurt. Speel
met de layout van de objecten op het scherm en kijk welk effect de verschillende
knoppen hebben. Geef hardop commentaar terwijl je bezig bent.

ReverseTwice

Open het project ReverseTwice in NetBeans. Lees de code door en probeer te
begrijpen wat deze doet. Voorspel – zonder het programma te starten – wat de
uitvoer van het programma zal zijn.

Start nu het programma in CoffeeDregs en pas gaandeweg je voorspelling zonodig
aan. Blijf hardop commentaar geven en stel vragen als iets je niet duidelijk is.
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A Form handed out during experiment (in dutch)

GiveAndTake

Open het project GiveAndTake in NetBeans. Lees de code door en probeer te
begrijpen wat deze doet. Voorspel – zonder het programma te starten – wat de
uitvoer van het programma zal zijn.

Start nu het programma in CoffeeDregs en pas gaandeweg je voorspelling zonodig
aan. Blijf hardop commentaar geven en stel vragen als iets je niet duidelijk is.

Zelf aan de slag

Je gaat nu een aanpassing maken aan een bestaand programma, zodat het doet
wat je wil.

Het gaat om een zeer vereenvoudigde weergave van een bedrijf (Company) met
twee werknemers (Employee) en twee taken (Job). Voor beide taken staat een
bepaald aantal uren werk en de werknemers moeten taken krijgen toegewezen.

Company heeft twee methodes, init() en execute(). init() maakt de twee
Employee objecten en de twee Job objecten. execute() zet de objecten aan
het werk zolang er werk te doen is. Zodra al het werk klaar is (job1.work +
job2.work <= 0), stopt de while-lus in execute() en mogen de werknemers
weekend vieren.

De Employee heeft een methode workOnJob() wat de werknemer een uur lang
aan zijn toegewezen taak doet werken. De Job heeft een methode work() die
wordt aangeroepen vanuit workOnJob() om te zorgen dat de hoeveelheid overge-
bleven werk afneemt. Job heeft ook nog een methode printWorkLeft() om af
te drukken hoeveel werk er nog gedaan moet worden.

Start het programma. Je zult zien dat het werk niet minder wordt. Jouw taak
is het om te achterhalen wat het probleem is en te zorgen dat het werk gedaan
wordt en de twee werknemers kunnen genieten van hun weekend.

Bestudeer de code, probeer te begrijpen wat elke methode doet of zou moeten
doen. Start de code in CoffeeDregs en kijk wat er gebeurt. Pas vervolgens de
code aan en probeer het effect van je wijziging te begrijpen.

Nabespreking

Vond je de opdrachten makkelijk of moeilijk?

Voldeed het experiment aan je verwachtingen?

Denk je dat CoffeeDregs nuttig zou zijn geweest als je het tijdens je cursus
programmeren had gehad?

Vind je CoffeeDregs fijn in gebruik? Waarom wel/niet? Mis je functionaliteit?

Heb je verder nog opmerkingen?
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