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Abstract

Parallel Kinetic Machines show great perspective to improve industrial tasks
and are subject to much research. At the collaborative research center 562 at
the technical university of Braunschweig, a robot control system for these par-
allel kinematic machines has been developed, that provides for hybrid move-
ments and an intuitive programming language. A program in this language is
called a Skill Primitive Net and is built from simple robot commands called
Skill Primitives. In order for the robot control system to be able to execute
such a Skill Primitive Net safely on a Parallel Kinematic Machine, the control
system has hard real-time requirements.

Future extensions of the Skill Primitives and the robot control system
might endanger the hard real-time requirements. Performance Analysis be-
forehand of execution of a Skill Primitive Net provides the user with the
necessary data about the resources that the Skill Primitive Net will use. This
study analyzes four different performance analysis methods with respect to
the robot control system, namely holistic analysis, timed automata, real-time
calculus and hybrid automata. Based upon different Skill Primitives, different
modules are activated within the robot control system. It should be possible
to generate a corresponding model from a Skill Primitive Net. We will show
that, for now, Hybrid Automata provides the most structure to automate
the modeling of this system, but the tooling support for Timed Automata is
much better. We will provide recommendations for further development of
the methods that can improve their usefulness for this system.
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During my study of Computer Science at the Eindhoven University of Tech-
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provided most courses on this subject. These involved Formal Methods, De-
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modeling of the robot. Performance modeling was still a bit unknown for me
since the university does not provide many courses on that subject. Out of
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which finally resulted in this work. The project provided me with great in-
sight in the problems that still exist in modeling distributed systems and I was
surprised to discover that formal methods and tools were still at their early
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First of all I would like to thank Dr. Ir. Pieter Cuijpers for his willingness
to supply me with both an interesting graduation project and advice during
the project.

Secondly, many thanks go out to the Institute For Programming and Re-
active Systems (IPS) at the university of Braunschweig for their corporation
and their insights in this project. In special I would like to thank Prof. Dr.
Ursula Goltz and Dipl.-Inform. Jens Steiner, who made it possible for me to
spend a month at the university for the necessary insight in the robot control
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Chapter 1

Introduction

For many years now, Parallel Kinematic Machines (PKM) have been subject
to research. Parallel Kinematic Machines differ from classical serial robots in
a way that the end effector of the machine is controlled by multiple limbs that
are connected to the base of the machine. The actuators control the limbs at
the base of the machine and through a series of passive joints the end effector
is controlled. This architecture allows for high stiffness and high accuracy.
Machines can reach high speeds and have a fast acceleration. They show great
potential to increase production in factories over serial machines, especially in
areas where high accuracy and speed are required, like pick and place machines
or milling machines. Drawbacks of the Parallel Kinematic machines are a small
workspace, the inability to work around obstacles, mechanical limitations and
the possibility to reach a singular position. Also calculations that need to be
done to perform a desired manipulation are generally harder.

At the collaborative research center 562 at the Technische Universität
Carolo-Wilhelmina Braunschweig, research is being done on Parallel Kine-
matic Machines. A long-term goal of the collaborative research center 562
is to automate assembly planning. One of the products of this research are
Skill Primitives, a programming interface for robots. A robot control system
has been developed that implements this Skill Primitive language and con-
trols a robot. The high velocities and accelerations that can be reached by a
Parallel Kinematic Machine, require short control cycles up to 125 µs. This
induces hard real-time constraints on the software. Because of the nature of
the machine that is being controlled, it is very important that these hard real-
time constraints hold. Failing to do so results in uncontrolled behavior, which
might damage the structure of the Parallel Kinematic Machine.

Until now the control software has always been executed on reasonably
fast machines. Now questions arise about the minimum system requirements
needed to safely control the Parallel Kinematic Machines behavior.

Skill Primitives allow for position controlled, force controlled and veloc-
ity controlled robot movement while future extensions, like vision controlled
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2 CHAPTER 1. INTRODUCTION

movement, are being considered. The algorithmic load and bus load to trans-
fer vision data and evaluate this data require more resources. Questions arise
if the current architecture will handle this extra load.

Previously, the system has been analyzed by the system analysis tool Sym-
TA/S. However this analysis used the assumption that all modules of the con-
troller are active at the same time. Depending on the Skill Primitive that
is active, different modules become active or inactive. In other words, the
SymTA/S analysis of the system did not fit the task description of the Par-
allel Kinematic Machine that is contained within the Skill Primitive Net. It
assumes that every motion module becomes active while during run-time this
might not be the case.

In this Thesis, we will describe ways to generate models based on Skill
Primitives, therefore being more precise. The models should also be easily
adaptable or even generated in case of small changes to the system.

• RQ1: What is the best method for modeling the robot control system?

• RQ2: How can we build a model from a Skill Primitive Net?

• RQ3: Can the model be changed easily if the robot control system
changes?

Studies of comparison of different performance analysis methods are lim-
ited and do not show proper advantages and disadvantages to certain modeling
methods [PWT+07]. The approach taken was to choose a model checker or
toolkit for every performance analysis method we selected. We build a model
of the worst case scenario in every method we selected using the model checker
or toolkit. Based on these models, we analyze strengths and weaknesses of the
methods selected. We discuss ways to automatically generate a model in these
methods and finally see how architectural changes would affect the model.



Chapter 2

Nomenclature

This thesis contains some terms that are frequently used. In order to prevent
confusion, we present our interpretation of these terms.

In this thesis we talk about tasks. A task can be seen as a block of sequen-
tial code that can be executed. These tasks can overlap in time and depending
on the scheduling algorithm a task will either get permission to use the re-
source or not. Tasks will enter different states based upon that. When a task
is not competing for the resource, in other words the task is not active, we
will call the task idle. An internal or external event can activate the task, a
task will compete for the resource to be able to execute, these tasks are called
active tasks. An active task can also be in a different state, when it is waiting
for the resource to be assigned to him, we call the task either ready or waiting.
Once the task gets the resources it is called executing or running. A running
task might get interrupted if a higher priority task becomes active and claims
the resource. In this case the current running task stops running and becomes
a preempted task. Another possible interruption of a current task is when the
task requires a certain resource that is locked by a lower priority task. This
is called priority inversion. In this case the task gets blocked until the shared
resource is free again. This is a blocked task [But04].

We will discuss scheduling methods and algorithms. Many of these are
described in [But04]. Scheduling algorithms are used on systems where two
tasks might become active at overlapping times and the system has to decide
which task gets precedence over the other. The scheduling algorithms are
either preemptive or non-preemptive, meaning they can suspend a currently
running task to allow another to execute or they cannot suspend a task and
have to wait till the current task finishes its execution. The most commonly
used algorithm is Fixed Priority, in which tasks have a fixed priority that places
them in a hierarchy that can decide which task to execute first. This method
is very popular since it is implemented in most operating systems. Other
scheduling algorithms we name are Earliest Deadline First, which means that
the task with the closest deadline will be allowed to run first and First In First

3



4 CHAPTER 2. NOMENCLATURE

Out, were the activation of tasks fall into a large buffer and a task is allowed
to execute based on when it was activated.

Finally, mutual exclusion will be mentioned. In case two tasks share a re-
source, mutual exclusion gives exclusive rights to the resource during a critical
section, the section where the shared resource is in use. When a lower priority
task claims a resource and gets preempted that resource stays locked, when
the higher priority task wants to claim the resource it gets blocked on that
resource by the mutual exclusion algorithm. To prevent that a higher priority
task gets blocked longer because the lower priority task is preempted by a
task that has a priority in between them, two protocols exist. The priority
inheritance protocol and the priority ceiling protocol. Suppose that a higher
priority task is blocked by a lower priority task in its critical section. The
priority inheritance protocol requires that the lower priority task executes its
critical section at the priority of the higher priority task. This prevents task
with a priority in between both to suspend both tasks. The priority ceiling
protocol assigns a ceiling priority to resources. Once a task locks this re-
source it temporarily assumes the ceiling priority as its own until it unlocks
the resource again, preventing other tasks to suspend the task while it is in
its critical section. More information about these protocols can be found in
[But04].



Chapter 3

Robot architecture

In this chapter the general robot architecture and the concept of Skill Prim-
itives will be explained. The architecture consists of three parts that are
interesting for our performance model, the robot actuators and sensors, the
controller and the communication bus, see figure 3.1 [SHM06].

Figure 3.1: Robot control System architecture

We shall also provide the necessary information about Skill Primitive Nets
here.

3.1 Skill Primitive Nets

Skill Primitives are simple robot commands. They hide the specific needs for
a Parallel Kinematic Machine and provides the programmer with an intuitive
programming interface, that is independent of the topology of the Parallel

5



6 CHAPTER 3. ROBOT ARCHITECTURE

Kinematic Machine. The main goals of the Skill Primitive Programming lan-
guage are

• Generality (e.g. an uniform way to program robots with complex sen-
sors)

• Robustness (e.g. able to correct for small uncertainties)

Figure 3.2: Example skill primitive

Tool commands are commands that can be executed by the end effector.
In case we have a gripper as end effector a tool command can either open or
close the gripper.

Definition 1 [TWMH05] A SP := {HM, τ, λ} where

• HM is a Hybrid Move

• τ represents tool commands

• λ is the stop condition that finishes the Hybrid Move when expression
evaluates to true

Skill Primitives currently support 3 types of hybrid movements, these are
either position/orientation based, velocity/angular velocity based or force/-
torque based. New types of movements like relative position based on vision
are currently in research.

A hybrid move contains two parts. A Task Frame (TF) or Reference
Frame from which the hybrid move is executed. All movements are relative
to this position. Examples of this Task Frame are, the Hand Frame (HF)
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which causes the task frame to be placed on the position and orientation of
the end effector. The Base Frame (BF) which places the Task Frame on the
base of the robot, or the world frame (WF) which allows the Task Frame to be
anywhere in the world with any orientation. The Task Frame can be anchored
(ANC) during execution of a Skill Primitive, in that case the Task frame will
follow the position and orientation of the frame during execution and moves
accordingly [FKW05].

The second part is a six degree of freedom system, where the first three
variables represent the position, velocity and force, and the last three variables
represent orientation, angular velocity and torque.

Definition 2 [TWMH05] A Hybrid Move HM := (P,RF,ANC) where

• P ∈ R6

• RF,ANCε(HF,WF,BF )

A Skill Primitive Net (SPN) is a number of Skill Primitives in a graph
like environment. A Skill Primitive Net has an initial and final state and a
number of states in between. Every state contains of one Skill Primitive that
is being executed. When a Skill Primitive reaches its stop condition, it will
jump to the next Skill Primitive. Note that based on which stop condition
becomes active a different Skill Primitive might become active and no two
Skill Primitives can be active at the same time.

Definition 3 [TWMH05] A SPN := {Σ,Π,Ξ,Υ,Ω} where

• Σ is a finite, not empty set of SP

• Π is a finite not empty set of start states

• Ξ is a finite not empty set of stop states

• Υ is a finite set of error states

• Ω is a finite set of guarded directed arcs linking the states together. The
conjunction of all the outgoing arcs defines the stop condition of the
current SP.

3.2 Controller

The most important part of the robot control system is the controller. The
modular design of the robot control system allows for easy replacement of
modules and layers in this controller so other parallel robot topologies, sensors,
actuators and skill primitives can be used without the need to replace the
whole control software.



8 CHAPTER 3. ROBOT ARCHITECTURE

Figure 3.3: Example Skill Primitive Net
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This control unit or controller has several layers in its software. The first
layer is the inner control loop and can be seen in the first row of figure 3.4.
Tasks in this inner control loop have hard deadlines. The inner control loop
directly communicates with the DSPs of the robot and sends the nominal
values to them. This layer is different for every different Parallel Kinematic
Machine, because it contains precise knowledge of the Parallel Kinematic Ma-
chine’s topology, which is needed to write the right values to the actuators.
A cycle of the inner control loop takes 1000µs which is split into two parts.
The first 750µs are reserved for the Industrial Automation Protocol (IAP),
which communicates new values to the DSPs through a Master Data Tele-
gram (MDT). The DSPs respond by changing actuator values were necessary
and calculate new actual values and send those back to the controller through
Device Data Telegrams (DDT).

After the 750µs are completed, the inner control loop needs all Device
Data Telegrams to have been received and starts calculating new values for
the next Master Data Telegram. It starts with the Industrial Automation
Protocol again, which will then activate the HardWare Monitor (HWM). The
HardWare Monitor is, next to monitoring, also responsible for the shutdown
process in case a defect is detected. The HardWare Monitor activates two other
tasks of which one also belongs to the inner control loop, the Drive Controller
(DC). The Drive Controller will calculate new values for the actuators based
on a set of coordinates it gets from the second layer and also activates two
other tasks. The inner control task that is activated is the Smart Materials
Controller that is charged with the job of reducing vibrations due to the high
speeds a Parallel Kinematic Machine can produce. These tasks have to be
finished within 250µs, after which a new cycle will start. The inner control
loop is activated by a Cycle Start Telegram (CST) that is generated by the
communication bus every 125µs. Every first and seventh Cycle Start Telegram
will activate the Industrial Automation Protocol. Remaining CPU time will
be used by the lower layers.

The second layer or outer control loop consists of tasks that will calculate
proper values for the inner control loop to interpret. It will provide a move-
ment value for the end effector of the robot which the inner control loop can
translate into the proper actuator values. The outer control loop is activated
by the Drive Controller every time the inner control loop has been executed for
a fixed number of times. In this thesis the control system activates the outer
loop every two inner control loop cycles. Other Parallel Kinematic Machines
can have lower requirements for the outer control loop. The first task that
gets activated is the Core Controller (CC) and gets activated by every second
execution of the Drive Controller. The Core Controller will make sensory data
available for the motion modules, these motion modules will be activated by
the Core Controller only when needed for the Skill Primitive, that is currently
being executed. Due to the modularity of the architecture it is very well pos-
sible to add new motion modules that can interpret new Skill Primitive types
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without the need to change the complete architecture. The controller soft-
ware studied in this thesis, contains a Position module (POS), Velocity mod-
ule (VEL), Force Module (FOR), Contact Module (CON) and a Force/Torque
controller (CFF). Also a Sensor Module (SEN) and a Singularity Avoidance
module (SAP) are activated by the Core controller. These modules can in-
terpret skill primitive commands based on positions (POS), velocity (VEL)
and Force (FOR, CFF, CON). The Singularity Avoidance Protocol (SAP) is
dependent on the topology of the Parallel Kinematic Machine, since its pri-
mary job is to prevent singular positions, i.e. positions were due to the passive
joints the machine is unable to determine which effect actuators have on the
motion of the machine.

The second layer consists of Soft Real-Time tasks. Here, soft means that
missing a deadline is not a disaster. In case the outer control loop is not able
to finish in time, the inner control loop will enter an error state and tries to
calculate stop values for the actuators. It is however preferred that the second
layer also meets its deadline, since calculating a stop condition is difficult and
should only be done under extreme circumstances. This thesis will therefore
view any deadline misses in the second layer as a failure. The deadline of the
second layer is harder to determine, it should finish before the inner control
loop starts its 250µs tasks again. That would mean that the outer control
loop will have a deadline of 2000− (2×250) = 1500µs. This is however a very
negative view on the deadline since the outer control loop is activated half
way the inner control loop a deadline of 2000− (Worst Case Execution Time
of DC) = 1945µs after activation is more precise, but if the outer control loop
is not finished before the second inner control loop starts which will be around
1800µs it will never reach its deadline.

The third layer consists of tasks with no deadline. First there is the Self
Manager (SM) which is activated by the HardWare Monitor. The Self Manager
tries to improve the execution of the robot control software. The Self Manager
does not have a deadline, but if it wasn’t able to finish its execution before the
HardWare Monitor runs again it will discard his current activation and start
over again. The other task is the Manipulation Primitive Interpreter. This
module will only be activated once the stop condition of a Skill Primitive has
been reached. Once the stop condition has been reached the control system
will message the Manipulation Primitive Interpreter through the CC. It will
then wait for the Manipulation Primitive Interpreter to deliver the new skill
primitive. This module has been omitted from our models, since this job does
not break any deadlines and can potentially take indefinitely long to respond.

During this project we use the following worst case response time values.
These values were calculated by Symta/S during run time [MSA+08]. These
values can change between different Parallel Kinematic architectures and dif-
ferent computing nodes.

The control unit schedules tasks according to a Fixed priority preemptive
schedule. Tasks of the same priority are scheduled as First In, First Out. The
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Task WCRT
IAP D 40
HWM 20
DC 55
SMC 55
IAP M 40
CC 45
POS 45
VEL 20
FOR 70
CON 100
CFF 20
SAP 800
SEN 100
SM 20

Table 3.1: Worst Case Time values of every task in the controller software

tasks within the inner control loop are activated by a token ring. Tasks will
release the token once they finish their task completely and pass it along to the
next task. The priorities of different tasks have been visualized in figure 3.4.
The priority decreases if the task is vertically lower in the overview.

The controller also uses several resources under mutual exclusion. In this
case a task claims exclusive rights on a resource, which is also used by another
task. Most of these are contained within the inner control loop and due to the
token ring used in the inner control loop these will not interfere, since they can
not preempt each other which results in never overlapping critical sections.
Two however can interfere. The Drive Controller and the Core Controller
can both claim exclusive access to the same memory block. Another shared
resource under mutual exclusion exists between the Hardware Monitor and
the Self Manager. They can also claim access to a certain memory block
[MSA+08].

The controller uses priority inheritance to deal with shared resources. Pri-
ority inheritance will raise the priority of the task that has claimed the resource
to the task that is blocked on the resource.

The controller has been developed to work with multiple computing nodes.
The motion modules from the second layer can be assigned to another com-
puting node. Depending on if this computing node is just another core in the
current computer or a new computer within the network additional informa-
tion has to be sent over the communication bus [KKR+04]. We will assume
for now that the controller is executed on one processor.
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3.3 Bus

In order to execute the movements a number of actuators and sensors need
to be controlled. Every actuator and sensor is controlled by a Digital Signal
Processing unit (DSP). These Digital Signal Processors interpret the messages
from the controller and if necessary change the behavior of their corresponding
actuator and calculate values that have to be sent back to the controller to
update the internal status of the controller. These values will be sent to the
controller by small packets called Device Data Telegrams.

The controller is connected to the different robot actuators and sensors by
means of an IEEE1394b (firewire) connection. This bus is often used in audio
and video transfer where drops in the quality of service are accepted. However
the high bandwidth, the fast cycle time and the nearly jitter free Cycle Start
Telegrams are ideal for real-time applications. In order to make use of these
advantages the Industrial Automation Protocol was developed. There is an
interest to use IEEE1394 more in industrial automation.

IEEE1394 has a cycle time of 125 µs. Every cycle starts with a Cycle
Start Telegram (CST) sent by the root node1, to synchronize the clocks of all
devices. The Cycle Start Telegram is also used to start the control cycle of
the robot controller. A control cycle should be started every 8 Cycle Start
Telegrams. Every first and third Telegram (or first and seventh telegram,
depending on which of the two you see as the first) activate a task on the
controller computer.

Firewire has two different modes in which it can run, the asynchronous
transfer mode and the isochronous transfer mode. Isochronous transfer can
be used for transferring data in a real-time environment. The robot control
system is able to operate in both modes however.

Isochronous transfer mode guarantees periodic data transmissions, every
node gets to send its information periodically. During initialization every node
may request a certain amount of bandwidth. A Resource Manager on the root
node allocates bandwidth every cycle for the node to send its data based on
these requests. Whenever a node has sent its data, there is a small gap on the
bus in which no data is being sent. Other Isochronous nodes detect this gap
and can then compete to send their data. This gap is called an isochronous
gap.

Asynchronous transfer mode allows asynchronous messages to be sent after
a subaction gap. A subaction gap is a prolonged isochronous gap, so when all
isochronous nodes have sent their data, the isochronous gap will be prolonged
to a sub action gap. When a node detects a subaction gap, it sends a request
to the root node. The first request to reach the root node is allowed to use the
bus. This is most often the node that is closest to the root node in the tree.

1devices are connected as in a tree in the firewire protocol with the first device as root
node
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Task WCRT
MDT 128
CST 4
DDT 28

Table 3.2: Packet length in bytes

After this the node can send its data and closes with a small gap after which an
acknowledgement packet should be received. This completes the asynchronous
transfer and the nodes can send a request for the bus again after a subaction
gap. A Cycle Start Telegram will be sent at the beginning of the next cycle.
If at that time the bus is still busy sending an asynchronous packet, the Cycle
Start Telegram will wait till the bus is free again. The IEEE 1394 protocol will
make sure however that the next Cycle Start Telegram will be sent exactly
125 µs after this Cycle Start Telegram should have been sent. This delay
is only disallowed for the key cycle start telegrams that also synchronize the
controller. If those are delayed, the robot will get into a state of uncontrolled
behavior.

Firewire also has methods to ensure that fairness is guaranteed in case
of asynchronous transfer and that no node can claim the communication bus
indefinitely. Once a node sends a message the node gets flagged and can not
send anything else before the fairness interval expires. A fairness interval is
recognized by the system due to a arbitration interval gap, which is a prolonged
version of the subaction gap indicating that every node has been marked as
having send their data once, therefore assuring fairness. Since every module in
the robot control system only sends a couple of packets every 1000µs, we can
ignore the fairness principle in our models for now. In that case asynchronous
transfer mode will act like a fixed priority non-preemptive schedule. A proper
modeling of the firewire protocol in the different methods was not possible in
the scope of this project.

In firewire every node can either send asynchronous or isochronous packets.
During the 125 µs cycle, the isochronous packets will have a higher priority
and be sent first. Once the isochronous packets have been sent or 80% of the
bandwidth has been used, the bus will allow asynchronous packets to be sent.
The robot control will either use asynchronous or isochronous transfer mode
[And99] [SHG07] [KVSG04].

In order to calculate worst case response times we need to know the time
it costs in microseconds to sent a packet of information over the bus. The
following values were acquired [MSA+08].

IEEE 1394b has a speed of 800 Mbit/s, which is 100 Mbyte/s, which is
almost 105 bytes/µs. The Cycle Start Telegram and Data Device Telegram
will complete in almost an instant, while the Master Data Telegram takes a bit
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more then 1 µs to complete. The packets listed above take slightly longer to
complete, since an acknowledgement packet and a subaction gap are required
to finish the transaction. The length of such a gap is less then 0,05µs.





Chapter 4

Performance Modeling

Performance modeling is often used in embedded systems engineering. These
systems are generally designed to complete a small amount of tasks that are
known during the design process. In other words the end-user cannot and
should not change the programming of an embedded system. A performance
analysis is able to indicate bottlenecks in the system and can provide minimum
requirements for the hardware to minimize the cost or power consumption of
the system, while correct behavior is still guaranteed. However in hard real-
time systems the designer is generally interested in best case and worst case
execution times, due to hard real-time requirements.

To model the robot control system (chapter 3) our performance analysis
method has certain requirements.

• The method should provide correct results or in other words, there
should not be a case where the system can exceed both upper and lower
bounds of the analysis. In this thesis we are only interested in finding
upper bounds.

• The analysis should provide accurate results. Some methods might pro-
duce approximations of bounds, these should be reasonably close to the
true boundaries of the system.

• The method should provide structure to be able to automate the build-
ing of a model based on the Skill Primitive and the Parallel Kinematic
Machine. Different Skill Primitives activate and deactivate certain tasks
in the controller, it should be easy to not include certain tasks without
changing the model to much. Also new tasks might be added to the
controller or even extra processing units.

There are a number of different methods that can analyze or estimate
the performance of distributed systems. The most popular methods in litera-
ture are simulation, stochastic performance modeling and formal performance
modeling

17
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There are a number of different formal performance analysis methods.
They can either be classified as holistic scheduling, in case a whole system is
analyzed at once, or modular, where the performance is analyzed per module
and results propagate through the system often at the expense of accuracy.

Simulation based approaches, which are popular in industrial environ-
ments, can also be used to perform an analysis. Simulation however has
the disadvantage that corner cases, the worst case and best case scenario that
might happen, are hard to find without trying every possible input combina-
tion. Even if a corner case can be found, there is still the requirement of a
proof that it indeed is a corner case. The possibility that a simulation does not
represent the worst-case situation is a high risk within a safety system. Simu-
lation can still be helpful in combination with a formal performance modeling
method. A simulation that returns a bound that is close to a bound found
by an approximating method can indicate that the method provides very ac-
curate bounds. However no guarantees can be made if those two values are
far apart, since either the approximation is too pessimistic or the simulation
is too optimistic.

Another field of research on performance modeling is stochastic perfor-
mance modeling. Stochastic methods can be used to provide for average val-
ues and analyze a certain quality of service, it does not give hard guarantees
that are needed in safety systems. Therefor those are not considered within
hard real-time analysis [PWT+07].

Up to now scheduling analysis at the collaborative research center 562
has been done in the system analysis tool SymTA/S. SymTA/S uses classical
scheduling techniques to analyze modules within a model and uses the outcome
to propagate through the system. In the beginnings SymTA/S was only used
for verifying the real-time properties within the system. It is now used to
work with the Self Manager to analyze the system at runtime. New analysis
methods were developed for the analysis of firewire in SymTA/S. The model
of the robot control system we use to analyze the system is based on the model
that was generated for SymTA/S [SHG07].

4.1 Holistic performance modeling

Lots of different scheduling methods have been developed over the years, like
Rate Monotonic scheduling, Earliest Deadline First and many others. To-
gether with these scheduling methods came analyses about worst case response
times for these methods.

As distributed systems become more popular, several proposals were made
to extend the classical scheduling methods to distributed systems. The com-
munication bus between different computing nodes becomes a factor of impor-
tance in these systems, since these can cause jitter inside the system. These
proposals to add communication to the classical scheduling have lead to holis-
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tic scheduling.
Holistic scheduling is a group of methods that, rather then considering

individual modules inside the system, consider the system as a whole. There
are many algorithms developed that deal with a certain kind of scheduling.
This specialization allows for a more precise analysis.

A holistic performance modeling algorithm is tailor made for a specific
kind of scheduling, input event model and resource model. If any of these
change, it is likely that the algorithm also has to change. This fact makes it
difficult to use holistic modeling as a tool to try out different architectures.

4.1.1 Modeling and Analysis Suite for real-Time applications

The lack of flexibility when using holistic scheduling is reduced by the in-
troduction of the Modeling and Analysis Suite for real-Time applications
(MAST). MAST combines a couple of holistic algorithms for the most en-
countered scheduling problems together in one toolkit. It allows for quick
switching between different analysis algorithms and therefore overcoming the
initial problems with holistic scheduling. The algorithms are generic algo-
rithms to analyze a certain schedule. Since most models will not precisely
adhere to this, the result of the analysis done by MAST might be pessimistic.
A pessimistic result is over-approximating and therefore not precise.

The toolkit supports fixed priority and earliest deadline first. It also sup-
ports blocking delays due to shared resources, preemptive scheduling as well
as non-preemptive scheduling.

The toolkit can be divided into two parts the design part and the analysis
part. A system can be defined by a powerful text language that is supported
by MAST. The powerful language has as disadvantage that it is also very
complex and not very suited for manual creation. Tasks that we define in
MAST are referred to multiple times in things like shared resources under
mutual exclusion, processor resource, scheduling algorithms, etcetera. The
probability that the user forgets something is very high that way. It makes
automatic creation of a model very plausible though. Every aspect of the
robot control system can be directly translated in this language. For other
projects there is a graphical user interface available to build the model in and
therefor greatly reducing the modeling effort.

The analysis tool is a program that allows you to set some options like the
input file, the output file, the analysis method, slack times, etcetera. After a
successful analysis the program returns a statement if the system is schedu-
lable. The program also shows worst case execution times of every activity
in a transaction. It does however not return information about buffers. In
our case we are not interested in that since our activation buffers only consist
of one space. In case the user is interested in buffers for for example burst
activation patterns then the MAST toolkit in unsuited.

A model of a real time system is represented by a series of one or more
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graphs called transitions in MAST. One of these can be seen in figure 4.1.
Every transition is coupled to a scheduling method to represent the internal
scheduling of the transition and to a resource like a processor. Every graph
consists of a number of activities which represent tasks of the system. Every
transition is triggered by an external event (e1 in figure 4.1 is an external
event). MAST supports periodic, sporadic, singular, bursts and unbounded
aperiodic events. Every activity also generates an event after execution, which
can be used to start other activities. In case such an internal event is orange
(o1 in figure 4.1) it contains a deadline that has to be met. Grey internal
events do not have deadlines. These internal events can be delayed, so that
they activate a next task after an amount of time [MMG+02].

Figure 4.1: Example transaction in MAST

Because MAST uses different algorithms, the input for MAST is a rather
complex textual format. There is a graphical user interface to ease the mod-
eling work, but this interface is rather unstable, causing it to crash and result
in the loss of parts of the model. This leaves the user with considerable mod-
eling effort for larger systems. Although the format is complex it is also very
powerful.

4.1.2 Model

The model made in the MAST Toolkit (figure 4.2) is a direct translation
of the proposed model of the controller computer in section 3.2. A single
processing unit with a fixed priority preemptive scheduler was used to handle
this model. Every task has been translated into an activity with their Worst-
Case Execution Demands and priorities as properties of that activity. Every
activity provides for a single output event, which can be used to activate other
activities. Whenever an event needs to activate more than one other activity,
like it is the case with the Core Controller, a multicast is used to provide for
multiple events.

A rate divisor is used between the Drive Controller and the Core Con-
troller to reduce the number of events sent to the Core Controller by half. A
delay block is used to start the messaging part of the Industrial Automation
Protocol, delays can be set on certain external events. In this case it was
easier to model activation of the Industrial Automation Protocol to be 250µs
after the arrival of the key Cycle Start Telegram, instead of trying to let it
activate on another Cycle Start Telegram that follows exactly 250µs later. It
makes no difference for the model.
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The toolkit allowed to specify two shared resources, which could be locked
for a critical instance by different tasks. As described the tasks Hardware
Manager and the Self Manager can lock a shared resource they use. And
the Core Controller and Drive Controller can lock another shared resource.
For both these resources it can be specified if they use the priority ceiling or
priority inheritance protocol to allow continuation of the high priority tasks.
In case of the Robot Control System the Priority Inheritance Protocol was
chosen. Although this might not be the exact case, we assume for now that
the whole task is a critical section for a shared resource. In reality only a part
of the task will be a critical section though.

4.1.3 Results

Although the toolkit accepts the use of multicast activities, these blocks allow
for activation of multiple tasks by one event, the analysis algorithms are not
yet implemented. Every analysis method available in the toolkit responses to
the model with the statement: Feasible Processing Load not yet implemented
for Multiple-Event systems.

We have tried to find workarounds, but it turned out that the controller
can not be built as a single pipeline of activations. External events also do not
provide for the necessary activation schemes to be able to model the controller
in a different way in MAST. Hence, we were not able to analyze the robot
control system with the current version of MAST. No further attempts were
made to implement the bus and digital signal processors in MAST.

4.1.4 Discussion

The fact that the modeling language of MAST is powerful makes it a good
candidate to be a meta language for every performance modeling problem
that needs to be specified. However it becomes also more difficult. The user
interface will alleviate this problem however the current version is far from
stable. During the use it crashed often, resulting in data loss, close to a point
that it was absolutely unusable to work with.

MAST is unable to analyze our model, since there is currently no algorithm
in MAST that is able to work with multiple events. Multiple events are blocks
that either distribute an event to more then one activity or concentrate the
events of multiple activities to one activity.

The fact that MAST is unable to use multiple events does not make the
method flawed or incomplete though. It still might be a good idea to construct
an algorithm, which can be added to MAST also, to calculate the right values.
Holistic analysis methods are still subject to a lot of research, finding the right
algorithm requires a lot of knowledge and time. The risks that an algorithm
becomes unusable after a small change makes the choice between implementing
an algorithm and trying another method not hard.
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4.2 Modular Performance Analysis - Real-Time
Calculus

Real-Time Calculus has its foundations in the network calculus, a theory of de-
terministic queueing systems. Because it is deterministic, the calculus provides
guaranteed upper and lower bounds. These bounds can be overapproximating
though.

Real-Time calculus is a modular performance analysis method. It per-
forms analysis on small parts (modules) of the system. This method allows to
calculate timings of a certain task or module within the system and let these
timings propagate through the systems.

The model is based on a number of processing blocks that have incom-
ing requests and execute those requests based on the available capacity (see
figure 4.3).

The request function R(t) represents the total amount of requests that has
been generated for this process up to time t. The amount of requests handled
is output in R’(t). The Capacity function C(t) represents the total capacity
that is available if the resource generating the capacity is under full load until
time t. The capacity that is left for other processes to use is output in C’(t).
The value K is used to determine how much capacity is needed to process one
request, output can be calculated according to the functions:

R′(t) =min
u≤t (R(u)×K + C(t)− C(u))÷K

C ′(t) =max
u≤t (C(u)− (R(u)×K))

Figure 4.3: A model of a processing component in Real-time Calculus

While the request and capacity functions only describe one possible input
model, we can also calculate upper and lower bounds for a system, the request
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function will show as two arrival curves that determine the upper bound(αu)
and lower bound(αl) of the request arrivals based on the type of event. These
bounds are absolute so there is no request function for that system that is not
contained within these bounds.

αl(t, s) ≤ R[s, t) ≤ αu(t, s), ∀s < t

The same holds for the Capacity function. An upper and lower bound can
be found which we call service curves(βu, βl) representing the upper and lower
bounds of the Capacity of the service available.

βl(t, s) ≤ C[s, t) ≤ βu(t, s), ∀s < t

The upper and lower arrival curves and service curves can then be used
to calculate the output arrival and service curves. The most used component
used in Realtime calculus is a greedy processing component which tries to
process a request as soon as it arrives at the greedy processing component if
there is capacity available. An incoming event stream modeled by the arrival
curves will enter a First In, First Out buffer in front of the component. As
soon as capacity is available represented by the service curves, an event will
be processed. An arrival curve will be output which represents the upper and
lower bound of the processed requests. The capacity that is still available after
processing the events is output as an upper and lower service curve.

The resulting curves that leave the processing component can then be used
to model the data flow in case of the request curves or the unused resources
in case of the resource curves. These can be propagated to other processing
components [TCN00] [WT06] [WTVL06].

4.2.1 Real-Time Calculus Toolbox

The Real-Time Calculus Toolbox is an easy to use framework in which large
systems can be modeled by using small standardized building blocks, that
implement the equations needed to describe the processing of the event and
service streams. The user does not have to know these equations by heart.

The Real-Time Calculus toolbox currently supports Fixed Priority Pre-
emptive scheduling, Rate Monotonic scheduling, General processor sharing,
Time Division Multiple Access, Earliest Deadline First and First In First Out
scheduling. Research is still going on in non-preemptive schedules.

There are also predefined functions in the toolbox to model arrival streams
and service streams. An arrival stream models task activation by providing
a worst case upper bound and a best case lower bound, based on a period,
jitter and an inter-arrival distance. Resources can be modeled in different
ways, but provide for an upper and lower bound based on an amount of
bandwidth. This bandwidth can either be delayed or not. Some scheduling
types can be modeled by modifying the resource stream, for example time
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[oIAPD coIAPD delHWM bufHWM] = rtcgpc(keycst, crc1, wcedIAPD);

[oHWM coHWM delDC bufDC] = rtcgpc(oIAPD, coIAPD, wcedHWM);

[oDC coDC delSMC bufSMC] = rtcgpc(oHWM, coHWM, wcedDC);

[oSMC coSMC delIAPM bufIAPM] = rtcgpc(oDC, coDC, wcedSMC);

Figure 4.4: Modeling of 4 Greedy Processor Components from the robot con-
trol system

division algorithms or periodic servers, by splitting up a resource stream and
divide the resources over two tasks.

In order to use the real-time calculus toolbox, the user has to call the ap-
propriate commands within a MATLAB program. A graphical user interface
is in development for the Real-Time Calculus toolbox to ease the modeling
effort even further, but is not yet available [WT06].

4.2.2 Model

Since the controller considers a fixed priority preemptive schedule, it is perfect
for modeling in real-time calculus. Every task will be modeled as a greedy pro-
cessing component. The processor provides for a constant resource stream for
the highest priority task. Any lower priority task will get whatever resources
are left from the higher priority tasks. The control system has some tasks of
same priority. To simplify the model these tasks have been given a modified
priority based on their activation. If task 1 activates task 2 then task 2 will
get a lower priority than task 1. Tasks that show no such order have been
randomly been given a priority close to their real priority. Since the deadlines
of all the tasks with the same priority either do not interfere or are exactly
the same, this modification does not influence the system results (figure 4.5).

The communication device is not easy to model. Not one of the scheduling
algorithms available in the toolkit provides a close enough algorithm. Based on
the First In First Out module however, we were able to develop an algorithm
that represents behavior of a Fixed Priority Non-preemptive Schedule [HT07]
[CB08], which could be used to represent the communication bus. Based
on the transfer mode of Firewire the bus resource stream is either a steady
continuous stream or a time division stream that provides for 80% of the
125µs cycle to be allocated to the communication tasks. The model will
however lose the knowledge that a Cycle Start Telegram will immediately
follow after the cycle starts again, since there is no way to model correlation
between activation patterns and resource patterns. In our analysis we have
only considered asynchronous transfer mode.
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There is only one external activation stream in the model, which is the
125µs cycle that is generated by the bus. Every one of these events has also
an inter-arrival distance of 125µs. The jitter of this clock generated arrival
event is less then 0.5µs allowing it to be negligible. The arrival stream is
represented in figure 4.6. Note that due to the fact the inter-arrival time of
the stream is as large as the period the upper and lower bound of the stream
are exactly the same.

Figure 4.6: Request stream of the Cycle Start Telegram activation

4.2.3 Results

The Real-time Calculus toolbox has a couple of predefined variables it can
return. Among these are maximum buffer lengths required for storage of
activation requests, end-to-end delays and calculation time of the analysis. It
is also dependent on the resources available if the end-to-end delays are bigger
or smaller.

At first the outer control loop failed to meet its deadline. This was caused
by the pessimistic blocking times we used in the inner controller. The pre-
emption would cause the outer loop to surpass the 1500µs deadline. A slight
relaxations of this deadline as was suggested in chapter 3.2 makes the model
feasible again.

Worst Case Response Times calculated by the toolbox are 235 µs for the
IAP D - HWM - DC - SMC path. The IAP M - MDT - DSP - DDT path
resulted in 656,8 µs. The motion modules have a worst Case Response Time
according to Real-Time Calculus of 1615 µs.
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4.2.4 Discussion

Real-time calculus does not support shared resources and has no way to imple-
ment the priority inheritance protocol. It seems unlikely that shared resources
will be supported in future releases since dynamically diverting a resource
stream is still very hard in Real-Time calculus. Different scheduling algo-
rithms that use dynamic assigned priorities, like Earliest Deadline First, or
are non-preemptive lead to problems within the Real-Time Calculus toolbox.
Considering blocking times leads to an over-approximating schedule, since the
task will not be blocked every cycle of the controller or might never be blocked
due to their activation patterns. Also the activation pattern of the Self Man-
ager that can discard an activation when not enough processor time is available
cannot be modeled. Since the execution time is already contained within the
HardWare Monitor we can leave the Self Manager out of the Realtime Calculus
model.

One of the major problems in this model is the cyclic dependency. A
cyclic dependency happens when two components both generate input and
output for each other. In this particular case the problem exist with the non-
preemptive bus. This part can not be solved by greedy components, but all
the tasks are added together in one non-preemptive module in which case the
output of the Cycle Start Telegram is indirectly an input for the Master Data
Telegram which is also an input for the Device Data Telegrams. This problem
can be solved with fixpoint calculations at the expense of accuracy [JPTY08].
The fixpoint values are then used as an approximation of the input pattern
for the activation stream of the Master Data Telegram. The same holds for
the Device Data Telegram task whose activation is based on the output of the
Master Data Telegram.

It is possible to let MATLAB automatically figure out the fixpoint values.
However since we need at least two of those which influence each other, this
might become a very heavy calculation will the activation pattern is quite
straightforward. The Master Data Telegram will be sent by the Industrial
Automation Protocol. This Task has the highest priority and can not be
blocked by any other task. So the activation pattern of the Master Data
Telegram will be the same as that of the Industrial Automation Protocol plus
the Execution Time of that task.

The second fixpoint we can do on activation of the Digital Signal Processor
or the Device Data Telegram. Either way will suffice, however the Master Data
Telegram has less chance of being interrupted and has also a quite steady
activation pattern. Since this task activates the Digital Signal Processors, we
have chosen this task. Resulting in the fact that the Digital Signal Processors
are activated every (approximate) 2 microsecond after the activation of the
Master Data Telegram task.

Real time calculus uses the horizontal difference between the upper acti-
vation curve and the lower resource curve to determine the maximum delay
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a task may have. If two tasks are activated at the same time but enough
resources were available then both will have no delay which is not really the
case. That makes analysis somewhat harder. We started therefore assumed
that the control loops start immediately. That way the toolbox will at least
take computational time into account and gives us an estimation of the Worst
Case Response Times. For the IAP D-HWM-DC-SMC path, the deadline was
initially surpassed according to the toolbox, however the toolbox took block-
ing times for every task in account of its direct predecessor, this is however
not the case since that predecessor has just been executed and will not execute
a second time directly after that. It is a clear example that you easily lose
activation patterns in real-time calculus due to local analysis and propagation.
Something which can cause unreasonable faults in jitter free systems.

The over approximation of the IAP D-HWM-DC-SMC path is caused by
the blocking times that are added due to a missing mechanism to implement
mutual exclusion and priority inheritance. This value propagates through
the whole system and will cause over approximations in other tasks that are
preempted by this path.

Although the timings are correct, the accuracy of this method can become
bad very quickly. Cases can be generated that delays are double of what
they should be. Also the two fixpoint calculation can make code generation
or analysis very difficult. With an analysis time of about 4 seconds it is
definitely one of the quickest. Since this method is more focussed on buffers
and maximum delays, it does not look like the best method for our needs.

4.2.5 Model Manipulations

The modular performance method allows for different quick model manipula-
tions that can be used to model changes in the robot control system architec-
ture. A small difference could be changing the Parallel Kinematic Machine.
Due to the modularity of the software, the only changes from a performance
point of view would be different timings for the tasks in the inner control loop
and a different number of Actuators and Sensors, which results in a different
number of Digital Signal Processors. Since these are activated by the outgo-
ing arrival stream of the Master Data Telegram task and activate the already
available Device Data Telegram, the commands that have been used to model
a certain Digital Signal Processor, can be copied and reused with different
values to represent an additional processor.

The modularity of the software also allows for the addition of new motion
modules. These can be represented by new greedy processing components that
are added to the list of motion modules that are already in the model, it does
not matter at which position they are added, since all motion modules have
the same activation time and deadline they all have to finish at the same time.
It does not matter for the schedule, if they are executed in a different order
the result will stay the same. They will either fail or succeed at executing
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within the deadline.
It is also possible to add computing nodes to the robot control system and

let some second layer tasks be executed on them. This requires however that
new tasks need to be added to the bus which indicate information commu-
nicated over the bus between the master node and the additional computing
node. In order to do this, new fixpoint calculations have to be done to see if
the new packets do not break the old ones. As a result, making this change is
extra hard to be automated.

4.3 Timed Automata

Timed automata are an extension of finite state automata with a finite set of
clocks. Those clocks can be tested for a certain value and can be reset. The
progress of all clocks in the system are the same and the value of the clock
indicates how much time has passed since it was reset. System properties can
be checked using a logic language.

A timed Automaton consists of at least the following elements [BY04]:

• A finite set of locations or nodes.

• One of these locations is the start location.

• A set of edges between locations.

• Locations have invariants, the automaton can only stay in a location
if the invariant holds. These invariants have to be clock related, they
always exist as a clock compared to a natural number.

• The edges can also be conditional depending on a clock variable com-
pared to a natural number. They are also allowed to reset clocks and
have a label that can be used for synchronization with another automa-
ton.

A number of timed automata can be used to model a system.

4.3.1 UPPAAL

UPPAAL has been used as a model checker for the timed automata. UPPAAL
has been developed by UPPsala and AALborg Universities. In UPPAAL a
single component can be modeled by a timed automaton and with the use of
global variables and synchronization labels those automata can interact with
each other. A system can be formed from these timed automata that use
synchronization and global variables to interact with each other.

UPPAAL works with templates, every template represents a certain timed
automaton and can be instantiated multiple times within the process declara-
tion of UPPAAL with certain arguments the user can add. These arguments
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can be used to fill in user defined parameters of the timed automata. Synchro-
nization is normally done binary in UPPAAL. If an edge gets a synchronization
label a? it synchronizes with one other edge in an other automaton with syn-
chronization label a!. There are also broadcast channels in UPPAAL in this
case an emitting channel a! synchronizes with a set of receiving channels a?
that is available at that moment. So if a automaton has an outgoing edge
that also receives on the broadcast channel that is currently being emitted on
and the edge is available (the guard evaluates to true) then the edge has to be
taken. In case the edge is unavailable the emitter is still allowed to broadcast
and synchronize with other automata.

UPPAAL also provides urgency in different settings. Urgent synchroniza-
tion require a transition or edge to fire immediately if it becomes available.
Note that a urgent synchronization cannot have a timing constraint. Urgent
States do not allow time to pass in the state. This is the same as adding
a clock to the state and an invariant that states that that clock can never
become greater than zero. The system will have to perform one or more tran-
sitions before clocks can continue again. Committed states are like urgent
states, however when the model is in a committed state the next transition
should be a transition out of a committed state.

Different expressions can be used in UPPAAL to either define a Guard,
which should evaluate to True before an edge is allowed to fire. Synchroniza-
tion, which uses a label to synchronize the firing of two edges in two automata.
Assignments, to change values of clocks and variables or invariants, based on
clocks and a certain expression to limit the time that can be spent in a certain
state.

UPPAAL provides a graphical user interface in which the user can model
the automata, run simulations and verify properties that are coded in a lan-
guage that shows resemblances with Computational Tree Logic (CTL), that
allow to check states as well as paths in the model. The Computational Tree
Logic possibilities that are available in UPPAAL are:

• A�ψ which checks for a certain ψ in every state.

• E�ψ which checks if a certain ψ holds in every state of one path that
can be taken from the current state.

• A � ψ which checks if a certain ψ is always reachable for every path the
system takes.

• E �ψ which checks if a certain ψ is reachable from our current state ( it
does not necessarily mean that that state is eventually chosen).

• ψ  ϕ which indicates that once a certain ψ is satisfied every possible
future action should return eventually in a state where ϕ is satisfied.

These can be used to check for liveness, safety and reachability properties.
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4.3.2 Model

There exist different approaches to model the robot control system. One way
is to model the tasks and schedulers. The approach used is based on modeling
the resource and environment as was introduced by Hendriks and Verhoef
[HV06]. It states precisely in which state the resource currently resides. This
approach makes modeling by hand harder and error prone, but can still be
automated well due to the approach structure.

Due to the strict periodic nature of the CST activation, it is easy to model
the environment, which is just a loop that activates the CST send task after
every 125 µs. After 125 µs it can not wait in its current state anylonger and
needs to fire an edge, activating the CST task and resetting the clock for the
next loop.

Assuming we have only one computational node, all tasks will be executed
on this node. A resource can either be idle or working on a task. An algorithm
to build a resource timed automata can be to start with an idle state (4.7(a))
and add tasks from the lowest priority to the highest priority.

(a) Idle state (b) Added a Task

(c) Added a second task with a higher priority

Figure 4.7: UPPAAL: building a Fixed Priority Preemptive Schedule
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In figure 4.7(b) a first low priority task is added. As soon as the buffer
for this task contains a value, the task should start. Note that the transition
from idle to task 1 is an urgent transmission, so it is obliged to fire as soon as
the guards are met. A clock will be set to zero and starts counting. As soon
as the clock reaches the Worst Case Execution Demand of the task, it will be
forced to leave its state and jump back to idle, thereby removing one value
from the buffer.

When a second, higher priority task is added, see figure 4.7(c), preemption
can occur. First a second state is added the same way as was done with task 1.
Some additional states need to be added to model preemption. The transition
from the idle state to the task 1 state is changed so it is only allowed to trigger
if the buffer for task 2 is empty. Also a temporal variable for the Worst Case
Execution Demand is created and is set to the Worst Case Execution Demand
of task 1. Once Task 2 becomes active while Task 1 is executing it will be
preempted, hence another urgent transition is used. This preemption can
happen at two occasions, hence the committed state at preemption, either the
task reached his Worst Case Execution Demand, but did not yet leave the
current state. In this case the buffer of task 1 can be reduced and a transition
can be taken to the normal execution of Task 2. The other case is that task 1
is in the middle of his job and gets preempted, in that case it should go to a
state where task 2 executes while task 1 is on hold. A new clock is needed to
monitor progress of the second task, while the temporal variable for the Worst
Case Execution Demand of task 1 is increased with the Worst Case Execution
Demand of task 2. UPPAAL clocks can not be stopped and can therefore not
properly be used as a progress variable for a preemptive schedule. By adding
the Execution Demand of the preempting task you take the preemption into
account for the task so that it can continue after the preempting task has
finished. Every other higher priority task is added in the same way.

The controller software consists of a number of tasks that are of same
priority. These can be added as were they non-preemptive, they can not
preempt each other. If two or more of these tasks are active then UPPAAL
can choose non-deterministically which task will execute first. Hereby we
reduce the depth of preemption for the robot control system. Since all tasks
of same priority also have the same deadline it is not necessary to implement
more difficult schedules.

The communication bus is non-preemptive allowing for a much simpler
model. Every task is directly connected to the idle state. A fixed priority
decides which task should be executed if more than one task is activated.
Once a task starts executing, it cannot be stopped and continues until it
completes the task.

A shared resource can be modeled by two state machines synchronized
with the activation of the tasks that can potentially lock it. If a task wants to
lock the already locked resource the synchronization label is unavailable and
the higher priority task is unable to start. The model will also not be able to
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use the transition that activates the task.
The robot control system however uses priority inheritance to prevent long

blocking times of the higher priority tasks. In case a higher priority task
gets blocked on a locked resource, the lower priority task that locked the
resource should become active. If the higher priority task arrives when the
lower priority task is preempted or executing, there is a transition to a new
state that will continue the execution of the lower priority task, but at the
same priority as the higher priority task.

4.3.3 Results

In order to verify if the system holds to the said deadlines, we have added a
number of additional clocks. These clocks are reset synchronized with the ac-
tivation event of the first tasks within the model. For our 250µs this would be
the IAPD task. For the outer control loop deadline, we used every activation
of the Core Controller. And for the 750µs the IAPM task was used. There
are two ways to check if these deadlines are met by the system using a mod-
elchecker. Either we check for failure or we check for success. So we search if
a task is not finished within its deadline or we try to determine that the task
always finishes within the deadline. The first one is much easier to implement
though. Since our buffers are emptied at the moment a task finishes and not
earlier, we can check if the buffers are not empty when we reach our deadline,
by verifying the CTL formulas:

E� controller.deadlineclock250 > 250 && buf IAP D + buf HWM
+ buf DC + buf SMC > 0
E� controller.deadlineclock750 > 750 && buf MDT + buf DSP +
buf DDT + buf IAP M > 0
E� controller.deadlineclockoc > 1900 && buf FOR + buf VEL
+ buf SAP + buf SEN + buf CON + buf CFF + buf POS +
buf CC> 0

All these formulas evaluated to unsatisfiable indicating that the deadlines
are met. The analysis time is less then a minute on a 2 Ghz dual core machine
and does not use more then 100 Mb of memory.

We tried to shutdown different motion modules by setting their Worst Case
Execution Time to 0. It did not affect any of the above formulas. Only when
we increased the time of certain modules like changing the HardWare Monitor
to 105 µs, the first formula became satisfiable indicating that there is a way
to surpass that deadline. The same holds when we increase one of the motion
modules with at least 500 µs.
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4.3.4 Discussion

The environment and resource modeling method can ideally be used in non-
preemptive schedules like First In, First Out. Preemptive schedules expand
exponentially and are hard to make by hand. The main cause for this is the
fact that clocks cannot be paused and are therefore not suitable as progress
variables in preemptive systems. A system with four or more preemption
possibilities gets unreadable. A tool however that generates this model auto-
matically should not have a problem with this. This approach does not use
templates to its advantage either, since resources are not likely to be compa-
rable at all, which increases the modeling effort significantly.

Although the answers in 4.3.3 is satisfying, as in we know that the system
will hold to its realtime requirements, we might need a bit more information
or values that are important for measuring the performance. We can do this
by using a different branch of UPPAAL named UPPAAL CORA where it is
possible to specify cost functions on actions and delays. However during the
project, unaware of UPPAAL CORA, we used CTL formulas and common
sense to determine the worst case response times. When activation patterns
are straight forward, worst vase response times can be calculated manually
and confirmed by using the model checker. When a system contains more
difficult activation patterns due to jitter for example CORA might be a good
idea. Also in case of our project the cost function of CORA might give the
user more insight in what the bottlenecks are of the system.

In order to come up with a good CTL formula we can take the 250 µs
tasks for example. Then 250 µs tasks are of the highest priority, so they will
probably be executed right after each other which makes it plausible that the
tasks will have a Response time of at best 170 µs. Only priority inversion with
the Self Manager or the Core Controller can result in a Worst Case Response
Time of 235 µs.

In order to determine the Worst Case Response Time we can define two
CTL formulas that check for clock values. Of these one should be satisfied
while the other is not. If we can find the values that differ precisely 1 µs, we
have found the worst case response time. So we defined the following CTL
formulas for the 250 µs deadline to determine the Worst Case Response Times.

E� controller.deadlineclock250 > 169 && buf IAP D + buf HWM
+ buf DC + buf SMC > 0
E� controller.deadlineclock250 > 170 && buf IAP D + buf HWM
+ buf DC + buf SMC > 0
E� controller.deadlineclock250 > 190 && buf IAP D + buf HWM
+ buf DC + buf SMC > 0

When we use the values indicated in figure 3.4, the results are that the
first one is satisfiable and the second and third are not, leading to a Worst
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Case Response Time of 170 µs. Interesting to see is that if we should turn of
a number of the motion modules, that the Worst Case Response Time stays
170 µs. The current values for the modules can not cause mutual exclusion.
When we change the value of the Singularity Avoidance Protocol from 800 µs
to 385 µs, we get that the first two CTL formulas are satisfied while the third
is not. In this case priority inheritance will allow the Self Manager, that has
started just before the inner control loop of 250 µs starts again, to finish its
task before the HardWare Monitor may start its execution. This leads to a
higher Worst Case Response Time that can become at most 190 µs.

For the second inner control deadline of 750 µs, it is also relatively easy
to find the Worst Case Response Time. The digital Signal Processors have
dedicated resource so can never be blocked. We assumed that a Digital Signal
Processor will finish within 500 µs. The Industrial Automation Protocol that
sends the messages on the bus is of the highest priority so will also not be
blocked. The bus is of very high speed which can send packets of around
100 bytes every microsecond. The packets we send are very small, the master
data telegram is largest with 128 bytes of information and the Data Device
Telegram sends approximately 28 bytes of data. The cycle start Telegram
sends approximately 4 bytes of data. In order to keep the values readable, we
decided to round the time it would take to send a packet to the next whole
microsecond. This suggests that the Worst Case Response Time is somewhere
in between 540 and 544 µs if only one Digital Signal Processor is used. More
Digital Signal Processors can result in a slightly higher Worst Case Response
Time, although this would require the Digital Signal Processors to finish at
the same time, which seems unlikely. For one Digital Signal Processor the
model confirmed that the Worst Case Response Time is 543 µs.

The outer control loop however becomes preempted a couple of times. At
least ones by the inner control loop and a second time by a couple of tasks that
activate after the Core Controller becomes active. This leads to a Worst Case
Response Time of 1200+170+80+55 = 1505µs. This first guess is confirmed
by UPPAAL where we looked for a path where one of the motion modules
was still busy while the deadline clock surpassed 1505 µs. This returned
unsatisfiable while the CTL formula that asked if a motion module was still
active for 1504 µs is satisfiable. The Worst Case Response Time is 1505 µs.

4.3.5 Model Manipulations

The model allows for changes in the architecture. One of the simplest changes
is adding or removing actuators and sensors to or from the robot. These
are represented by the Digital Signal Processor model template, which is a
one task resource automaton, which can be instantiated for every actuator
and sensor. Again in case of automatically generating a model this is not a
problem. In order to reduce the number of preemptions, tasks with the same
priority can be executed in a non-deterministic order. Since tasks of the same
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priority have the same deadline or do not overlap this method will not violate
the validity of the model. A new global variable should be updated by the
Master Data Telegram though to add a request for this new Digital Signal
Processor

Adding more computing nodes would simplify the current model, since
tasks will be assigned to different computing nodes. Adding a computing
node would mean that a new resource is added, so we have to add a new tem-
plate that represents the node. Tasks have to be assigned to nodes beforehand,
so the total model can be based upon this distribution. Additional computing
nodes can either be an additional CPU in our master control machine or an
additional machine connected to the master machine by the firewire network.
Depending on the nature of the additional computing node new communi-
cation tasks need to be added for the communication bus. Since the master
machine will initiate the contact, these communication task will have the same
priority as the Master Data Telegram in our model.

Adding or removing motion modules is not that hard. Since motion mod-
ules are all of the same priority they do not preempt each other and only
preempt the Self Manager. Adding an extra motion module to the current
model would only need to build an additional tree for this module connected
to the idle state and a preemption tree in the Self Manager state. There is no
need to rebuild the whole model. A tree in this contact is a part of the model
that describes the task and all his preemptions below that.

4.4 Hybrid Automata

The timed automata inspired a different approach. The problem that you
can not stop a clock in UPPAAL in case of preemption, might very well be
solved by using a hybrid automaton instead of a timed automata, since we
can model clocks that can be paused (act like a stopwatch) in certain states.
In this case we model our system not from a resource perspective, but from a
task perspective.

Hybrid models allow for including environment processes in your model.
In general systems that show both discrete as well as continuous behavior can
be modeled. Think of a system that controls the temperature in a room for
example, where the control is discrete in if the heater is on or off and the
temperature is a continuous function depending on the state of the heater.

In hybrid automata there are either continuous changes or discrete changes.
Discrete changes are modeled by transitions, continuous changes happen in
states. In case of multiple hybrid automata, time for continuous changes is
equal over every automaton. So if automaton 1 has been in a state for a
number of cycles after a synchronized transition with an automaton 2, we
know for certain that the same amount of time has passed for automaton 2,
allowing for continuous variables to change for the same amount of cycles.
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A Hybrid automaton consists of at least the following elements [Hen96]:

• A number of variables that are allowed to take any real number.

• A number of locations that represent a certain state of the hybrid au-
tomaton.

• To every location a flow condition should be added. The flow condition
over a variable x, indicated by ẋ represents the change to the variable
over time, while the automaton is in that specific location. ẋ = 1 indi-
cates for example that variable x is increased by one every cycle in that
location.

• Invariants on locations that show in which cases the automaton is al-
lowed to be in a certain location

• A number of initial conditions, comprised of the initial value for variables
and the initial location of the automaton.

• A number of transitions between locations, these are directed arcs be-
tween two locations that allow for changing the automaton state from
one location to another, these transition can be guarded.

• Jump conditions can be specified for these transitions, setting the value
of a variable to a certain constant. The primed version of the variable
x’ indicates the value after the transition and the unprimed variable x
indicates the value before the transition.

• Actions that are assigned to the transitions. These actions can be used
to synchronize transitions over multiple hybrid automata.

To illustrate a hybrid model, a room that is being heated automatically
when the temperature reaches a certain lower bound and stops heating when
an upper bound is reached is modeled as shown in figure 4.9

4.4.1 PHAVer

In order to use compositional modeling, we used the Polyhedral Hybrid Au-
tomaton Verifier (PHAVer) model checker. PHAVer makes use of hybrid In-
put/Output automata, which is a type of hybrid automata.

Definition 4 [Fre05] A hybrid Input/Output-automaton (HIOA)
H = (Loc, V arS , V arI , V arO, Lab,→, Act, Inv, Init) consists of the following:

• A finite set Loc of locations.

• Finite and disjoint sets of state and input variables, V arS and V arI ,
and of output variables V arO ⊆ V arS. Let V ar = V arS

⋃
V arI .
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Figure 4.9: A hybrid model of a the temperature in a room with an automatic
heater

• A finite set Lab of synchronization labels.

• A finite set of discrete transitions→⊆ Loc×Lab×2V (V ar)×V (V ar)×Loc.
A transition (l, a, µ, l′) ∈→ is also written as l−−→a, µH l

′.

• A mapping Act : Loc→ 2act(V ar) to time-invariant sets of activities.

• A mapping Inv : Loc→ 2V (V ar) from locations to sets of valuations.

• Initial states Init ⊆ Loc× V (V ar) s.t. (l, v) ∈ Init⇒ v ∈ Inv(l).

In order to build an automaton in PHAVer one starts with the name of
the automaton, followed by the declaration of state, input and parameter vari-
ables. Next, the synchronization labels used in the automaton are declared,
after which a number of locations of the automaton will be described. Each
location has an identifier and an invariant which must hold for the automata
to be in that location. If the invariant does not hold the system locks. If a
flow condition in a location is about to break the invariant for that location,
the system is only allowed to take a transition until a state is reached in which
flow variables are allowed to change again. A derivative that either describes
linear dynamics, in which case the variable change with a certain value, or
affine dynamics,in which case variables change according to a formula over
the variables, is declared. The location also has a number of guarded out-
going edges specified by which the guard must evaluate to True in order for
the edge to fire, second a synchronization label is put at the edge, it does not
necessarily have a corresponding label in any other automaton though. Also
the edge can have assignments to variables and the edge states to which new
location it should point. At the end of specifying all locations the automaton
requires a initial state.

When a synchronization label in case of a transition is encountered in
PHAVer, it is required for every automaton in the composition that has that
synchronization label declared to fire at the same time. If one automaton does
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not have an edge with that synchronization label available, the transition is
not allowed.

Clocks or in this case progress variables can be made by using a flow
variable that equals 1 in case the task is running and that is set 0 when a
task is blocked, preempted, idle or waiting. These variables are also called
stopwatch variables, since clocks always run while stopwatches can be paused.

One of the strong points of PHAVer for this particular area is the support
for compositional models [Fre05].

The model checker PHAVer generates the whole state space in order to
detect if forbidden states indicated by the user can be reached. This state
space is generated by a search for symbolic states that can be reached from
the initial state until a fixed point is reached. A symbolic state is a (number
of) location(s) with their corresponding values of the control variables. Note
that the range of these variables can be infinite. It is still possible for hybrid
automata to never reach a fixed point, so the reachability problem here is
undecidable. In case of performance modeling, a model that is undecidable is
either flawed or not schedulable. Setting buffer sizes and let the model enter
a deadlock state when a request causes an out-of-buffer error will provide
additional information about the cause of the problem, since a trace can be
generated for which the model is not schedulable. This should however not be
used lightly, there is no guarantee that a model would never reach a fix point
eventually.

4.4.2 Model

This model approaches the problem from a task perspective. UPPAAL used
a template per resource, the new method will have a template per task. The
PHAVer model consists of three different elements: a hybrid model for every
different task, a timer section that generates starting events for the system
every 125µs and a file that provides commands to build the whole state space
and checks for forbidden states.

A fully preemptive task can exist in four different states. These states
can be formed by two variables. The first variable describes if the task has
been activated(represented vertically in figure 4.10). An activated task is
queued to run at the earliest possible instance, it is not necessarily running
when activated. The second one describes if the task should be waiting for
the resource to become available due to activation of an higher priority task
(represented horizontally in figure 4.10). This leads to the 4 states, activated
and executing, activated and waiting or preempted, idle but a higher priority
task is currently executing, idle and no higher priority task is busy, in this last
state it is possible however that a lower priority task is being executed. It is
still possible for the task to directly start executing and therefor preempt this
task.

The transitions that leads to the waiting or preempted state as well as
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the ones leading to the idle but a higher priority task is executing state are
synchronized with the block transitions of their direct predecessor. In the case
of the highest priority task these states are obsolete, since that one can not
be preempted or waiting, nor can a higher priority task be active. The edges
that are outgoing from these states are synchronized with the idle transition
of the direct predecessor of the task. Allowing only to fire when the direct
predecessor is in its idle location therefore assuring that no higher priority
task is running.

Figure 4.10: A hybrid model of a fully preemptive task

The fifth state that is present is not a required state, but can be used as
a deadlock state when the task gets activated too many times, which would
indicate a buffer overflow. In case of the robot control system this buffer is set
to one place buffers. In the robot control system this state would be reached
if a certain task gets activated at least two times without finishing execution
in between these activations.

A non-preemptive task can also be modeled as a four states hybrid model.
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The model will be similar to the one that is used for preemptive tasks. The
main difference is that tasks block each other according to a round robin
system. So tasks can start executing based on their priority and once execution
starts all other tasks become blocked till the current task is finished. So the
lowest priority task is the predecessor of the highest priority task.

To handle shared resources among two tasks, we can use the pessimistic
method of just adding the worst-case execution demand of the lowest priority
task to the highest priority task. A better approach would be to add this
in the model. The priority inheritance protocol can be implemented with
extending the four state model with two additional states. These states will
be for the lower priority task, one to indicate the executing of the task at
a higher priority and one for preemption by another task of higher priority
(figure 4.11).

Figure 4.11: A hybrid model of a preemptive task with a shared resource
under priority inheritance

The highest priority task in the shared resource model gets a transition to
a new blocked state, where it waits till his new direct predecessor finishes. The
new direct predecessor will be the task that has locked the shared resource.
Instead of calling the idle loop transition for activation, synchronization can
happen on the finishing transition of the task or a new loop transition that
allows the higher priority task to start again needs to be added.

After the tasks have been modeled in the proper way they can be used
to build the composition state space. In order to check if the deadlines are
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not breached, a clock can be built in hybrid automata. A clock is a one state
automaton with a reset transition to itself that sets the variable to zero. Inside
the state the variable is increased by one for every cycle. The reset transition
must be synchronized with the event that starts the first task of a deadline
group, this is exactly the same as with timed automata. In order to check if
deadlines are not met, we can specify forbidden states in PHAVer. A forbidden
state is a collection of locations in which the automata are together with values
or value ranges for variables. An example is a state in which the clock has
surpassed the deadline value and one of the states that should have been idle
before this is still in his running or preempted/waiting state. A reachability
log can also be printed to see if there are states where a deadline was passed
while one of the tasks was not yet finished.

An additional check is to see if any of the deadlock states are ever reached,
which indicates that a task is activated two times while not finishing any
of these two. The deadlines of the robot control system do not allow this
behavior.

4.4.3 Results

Implementation of above mentioned compositional way in PHAVer uncovered
one missing fact. There is no properly working urgent transition system in
PHAVer, which means that although certain transitions are becoming active,
the system might choose not to take that action, while the intention of the
model requires a change. To overcome this problem some greedy behavior
should be encouraged in the preempted/waiting states and the idle but a
higher priority task is running state by summing up all progress variables
from higher priority tasks and see if there is still progress being made (there is
still a task executing) and by adding different synchronized transitions. This
sum should be evaluated only in the preempted/waiting state or the idle but
a higher priority task is running state. If the sum is equal to the progress
variable C then progress is still being made and the model continues in this
state. In case progress in the current state is not possible, either a higher
priority task will start executing or the direct predecessor of task A turns to
the idle state, which enables the loop transition which is synchronized with
the edge that fires to the running resp. idle state of task A (see figure 4.12).

This approach however negates the modularity of the system since every
task will need to have knowledge of all the higher priority tasks instead of his
direct predecessor. Besides that, all lower priority tasks will have an edge from
their idle or running state to the idle but a higher priority task is running or
preempted/waiting state, for every higher priority task, leaving the user with
an additional modeling effort.The edges are synchronized with every transition
to the running location of a higher priority task.

The task perspective approach causes a gigantic state space to be built.
In order to calculate the full state space of the model, it was necessary to
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Figure 4.12: A hybrid model of a fully preemptive task without urgency

develop a 64 bit version of PHAVer. We succeeded in adapting the code to
be able to run on a 64bit linux system. In order to be able to execute this
model a powerful computer and the modified 64 bit version of PHAVer are
needed. Together with the time it takes to build the model and the knowledge
needed to analyze the state space for worst case timings do not make this
method ideal for quick testing of different designs. However tool support for
this method can reduce these needs. Automatical generation of these models
is still possible.

The model takes around 4 hours to generate on a 2Ghz machine and re-
quires at least 50 Gb of memory to store the whole state space. Note that we
did not actively monitor the behavior of the machine so the actual times and
memory usage might differ slightly. Also, we defined 2 independent reach-
ability calculation, since we can independently calculate the state space for
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bad=sys.{
$~HWMdl~$~$~$~$~$~$~$~$~$~$~$~$~$~$~$ & True,
IAP_Ddl~$~$~$~$~$~$~$~$~$~$~$~$~$~$~$~$ & True
}

Figure 4.13: Example forbidden list, states that should not be reachable

bad=sys.{
$~$~$~$~$~$~$~$~$~$~$~$~$~$~$~$~$ & deadline250 > 250,
$~$~$~$~$~$~$~$~$~$~$~$~$~$~$~$~$ & deadline750 > 750
}

Figure 4.14: Example forbidden list 2, variable values that should not be
reachable

the controller and for the communication part. The Motion modules (the
loop CC-SAP-SEN-FOR-CFF-CON-VEL-POS) does not interfere with the
communication (the loop IAP M-MDT-DSP-DDT) and can therefor be cal-
culated independently. Note that if multiple computing nodes are used this
statement does not hold, since additional communication will be required, for
the modules that are run on the additional computing node.

In order to analyze the system forbidden states can be defined. In any case
reaching a deadlock state is undesirable, so for every deadlock state a rule can
be added to the forbidden states list. Generally a rule of this kind looks like
figure 4.13. Every $ indicates a wildcard, meaning that we do not care in
which state that automaton is, every automaton is connected to another via
the ∼ character. After the & limitations for the variables can be given. In
our case there are no limitations so we state True.

Besides the check for deadlocks we can also build three clocks, one for
every deadline in the system. These clocks consist of flow variable that are
either on or off. A clock starts at the same moment as the first task within
a deadlock cycle, by using synchronization labels and stops once the last task
within a deadlock cycle finishes. After that those clocks can be checked if they
ever reach a value higher the the deadline. If such a state can not be found
the system is safe. (see figure 4.14).

The model did not reach any of the forbidden states we defined nor did it
enter a deadlock state, which indicates that the tasks that need to end before
a certain deadline did so. A second step can be to extract worst case response
times. In this case we need to produce a reachability log where we have to
find the highest value for a timer. In our case we found the following timings.

After finishing the IAP D - HWM - DC - SMC tasks at most 170µs has
passed. Note that this is only the case when all tasks execute at worst case
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time and all motion controllers are active. When other timings are taken
into account or when different motion modules become inactive it is very
well possible that priority inversion is encountered at the activation of the
HardWare Monitor. It is very unlikely that the Core Controller will ever
block the Drive Controller however, due to the activation pattern.

The outer control loop has a Worst Case Response Time of 1505µs. The
IAP M - MDT - DSP - DDT tasks have a Worst Case Response Time of 541,6.

In order to test the forbidden states, we tried the same model and changed
the Worst Case Execution Time of the HardWare Manager to 130 µs. PHAVer
responds with the message that the intersection of the forbidden list and the
state space is not empty. This indicates that a state that is in our forbidden
list is reachable. This state can be found by printing this state space in which
we see that the deadline timer for the 250 µs deadline surpasses the deadline.

Finally to test priority inheritance we tried to change the Worst Case
Execution Time of the Singularity Avoidance Protocol to 385 µs, the same
value we used in UPPAAL. It resulted indeed in a slightly higher response
time for the inner control loop. This resulted in 185 µs Worst Case Response
time. The outer control loop worst case response time is 880 µs

4.4.4 Discussion

Although it is the most versatile method, hybrid automata have the disad-
vantage of a large modeling and analysis effort. The reachability log that can
be generated is useful to gain information about buffers and response times,
however it will take the user considerable time to extract this information
depending on how large the state space will get. Besides that, there is no
proper simulation method in PHAVer, which makes it hard to see if the model
is correct and the model will never reach a deadlock. Deadlocks easily happen
when a lot of automata make use of the same synchronization variable for
example. Especially large systems with lots of different automata, which is
the case in the robot control system due to urgency, are susceptible for small
faults which are not recognized by the model checker and are hard to find for
the user. Urgency would make a parameterized version of the model possible
which would greatly improve the readability of the model, although the output
will still be hard to interpret.

Also the model checker is still at its early stages. Errors like jumping to
a non existent location are possible and might be overseen by the user, when
analyzing the reachability file. Also discovery of syntax errors at runtime can
be frustrating, when your model building time takes a few hours to complete.

The hybrid model returns as expected the same results as the timed model.
Due to the large analysis effort we did not try many different parameters. How-
ever the system responds correct in any of them as are shown in chapter ??.

As is shown in chapter ?? the values produced are precise. So the accuracy
of this method is very good. However people should be careful with best and
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worst case execution times for different tasks. Different values can result in
different worst case response times. A better timing for one task might result
in worse timings for other tasks.

4.4.5 Model Manipulations

The compositional nature of the hybrid model allows for some easy changes
to it. Digital Signal Processors can simply be instantiated as can be done
by the timed automata. If urgency was available in PHAVer, then adding or
removing motion modules from the controller would also mean instantiating
a new preemptive module into the whole model. The absence of this feature
means that adding a new module or removing one propagates through a large
part of the model, since progress variables are used in every lower priority task
to check if there is still progress to be made. Adding an additional computing
node also means that a large part of the modules need to be changed, since
modules assigned to the new computing node would not be taken into account
for the progress of the first computing node.



Chapter 5

Conclusion

The methods described are ideal for beforehand analysis of a design, without
knowledge about what kind of system we are going to use or the implemen-
tation method. For mono-processing systems a lot of analysis methods have
been developed, but support for distributed systems is still at an early phase.
Available methods we used showed that the tools still need much work in or-
der to be usable in design environments. Every method performs very well
under certain circumstances while in other cases it falters. To summarize,
MAST is unable to analyze systems that use multiple events, while this can
be common behavior among many systems. Real-time calculus performs very
well for Fixed Priority Preemptive Scheduling problems, which is used in most
systems nowadays. The absence of support for mutual exclusion algorithms
like Priority Inheritance or Priority Ceiling can be overcome by taking block-
ing times into account, this is a very pessimistic approach though. However
when Non-preemptive schedules are considered or schedules that use dynamic
priorities, modeling the system is Real-Time calculus becomes very hard, and
in case of cyclic dependencies the user has to do simulations in order to pro-
vide good starting points for fixpoint calculations necessary to overcome the
cyclic dependencies. The activation patterns for the current tasks are easy
to simulate, but can become much harder in case of different architectures.
Timed Automata are, contrary to Real-Time calculus, quite able to model
non-preemptive systems, while preemptive systems take a considerable mod-
eling effort, due to the fact that clocks can not be used properly as progress
variables in this case due to the inability to pause them. Hybrid automata
seem to be able to counteract this problem by introducing a stopwatch vari-
able that can be paused when preemption is in effect. However the absence
of a proper urgency principle in PHAVer increases modeling effort. Also anal-
ysis effort for the task oriented modeling should for larger systems not be
underestimated.

49
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5.1 RQ1: What is the best method to analyze
real-time requirements of the Robot Control
System

In order to judge the different methods we have named a few characteristics
that we will look for. Although other characteristics might also be interesting
for performance modeling, our focus is mainly on the following characteristics.

Correctness, all discussed methods except for the MAST method showed
correct results, since we used only formal method this is no surprise.

Accurate results, the methods that used model checkers have shown the
most accurate results. Since they check the state space of the model the results
are precise. The price to pay is modeling effort and analysis effort. Since we
discussed however that the model would need to be automatically generated,
the modeling effort is not a problem that weighs heavy in our conclusion. The
analysis effort is not a first priority for this system and may take as long as
necessary. Real-Time Calculus is less accurate due to the fact that some input
patterns are not entirely recognized, cyclic dependencies and the absence of
support for mutual exclusion.

When we look at automatic model generation, again the model checkers
win. The fixpoint calculation that is needed to solve the real-time calculus
model is hard to come by and can become harder by adding or removing a
number of digital signal processors. Also in case of multiple computing nodes
over different machines, problems arise when new data needs to be sent over
the communication bus, that must be taken into account into these fixpoint
calculations. Both modeling approaches show enough structure to be able to
automatically build a model out of a system description. Also the two different
ways of modeling, task oriented versus resource oriented, that were used could
easily be implemented in either hybrid or timed automata.

What remains is the determination which of the two characteristics is
more important, urgency or stopwatches. They both cause an equal amount
of damage to the modularity of the models. The PHAVer model checker used
is still at an early development process and will eventually contain methods to
implement urgency allowing it to surpass the possibilities of timed automata.
On the other hand Timed Automata are based on clocks, it does not seem
likely that stopwatches will ever be implemented. The possibilities of Timed
Automata are contained within Hybrid Automata. The algorithms used to
calculate the state space of Timed automata are optimized for use with clocks
and can produce results more quickly.

Although the tool support of UPPAAL makes it the best tool available,
hybrid models show most perspective for the future as a method. Other hybrid
model checkers might already support urgent transitions, those model checkers
still have to support at least Linear Hybrid Automata. Since we are searching
for a best method and not a best tool, we advise to pursue Hybrid Automata
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for now, but encourage research in the area of StopWatch Automata, which we
will define as Timed Automata in which a clock can be stopped by the user.
The main question in this topic would be if analysis of StopWatch Automata
can outperform analysis of hybrid automata on memory usage or speed.

5.2 RQ2: How can we build a model from a Skill
Primitive Net?

As shown in the introduction the motion modules are the main interpreters of
the skill primitive. Based on these skill primitives, the user can enable modules
that are required for a certain skill primitive and disable modules that are not
in use. This would result in a model being generated for every skill primitive
within the Net, or the model could stay the same and the activation of the
motion modules should be mapped to the skill primitives. The latter is due
to the nature of the robot control system where deadlines do not surpass their
periods. The first one is the easiest to implement though.

5.3 RQ3: Can the model be changed easily if the
robot control system changes?

For every method except for the MAST method adaptations of the model to
change three of the most likely adaptations of the robot control system have
been summarized. These are changes to the amount of digital signal proces-
sors used, most likely when another parallel kinematic machine is used. This
will also mean that the inner control program will be replaced, however the
inner control systems appear to be of equal structure with different calculation
times for the tasks. Adding new types of skill primitives will need new mo-
tion module. Adding additional computing nodes to distribute the controller
over the different nodes. This however increases traffic on the communication
bus. Digital Signal Processors are independent computational nodes with an
independent program that is activated by a broadcast of a Master Data Tele-
gram on the bus. In the hybrid and timed modeling language a template of
one digital signal processor can be instantiated multiple times. The return
communication along the bus is just an additional activation of the Data De-
vice Telegram task. The same holds for Real-Time Calculus although there is
currently no option to instantiate a part of the model in there, only a couple
of independent commands need to be copied to provide for another resource
curve and a greedy processing block that represents the additional Digital
Signal Processor.

Adding new skill types of skill primitives is most likely to need new motion
modules, which can be added to the second layer. The real time calculus
method would only require an additional greedy processing component to be



52 CHAPTER 5. CONCLUSION

added in at the motion modules. Although Real-Time Calculus requires a
strict priority policy, every task has a different priority, it does not matter in
between which two of the motion modules the new module is inserted since
the deadlines for all these modules is the same, they all have to finish their
tasks before that and if one fails, all fail.

The last probable change to the robot control system is the addition of
multiple computing nodes for the control system. This would require new
tasks to be defined for the Bus. It is by far the hardest part to automatically
generate. Still, if a proper topology of communication needs for the different
modules is defined, generation of these new tasks is not that hard. The Real-
time calculus might have most difficulty with new tasks on the communication
bus. This is only caused due to the inability of Realtime calculus to model a
non-preemptive scheduler in a modular way. For the model checker approaches
these methods are much more likely to succeed.

5.4 Future Work

We see needs and opportunities for additional research on the following points.

• What is needed for Fixed Priority Preempted Scheduling lays in between
of Timed Automata and Hybrid Automata. A new subset of Hybrid
Automata can be defined which we call Stopwatch Automata. Automata
that have the same abilities as Timed Automata, but can also stop
clocks. Analysis methods can be derived that still might profit from these
stopwatches and are therefor faster then Hybrid Automata. Currently,
work is being done to implement stopwatches in UPPAAL. The task
based hybrid model can be implemented in stopwatch UPPAAL once
they finish this work.

• Although we used the assumption that firewire can be modeled by using
Fixed Priority Non-Preemptive Scheduling, better methods are required
to model this bus type. The modeling of communication busses in all
methods is at its early stages and not many bus types are supported
yet. Additional research could be done for multiple bus types and their
performance analysis.

• Although Real-time Calculus does support other schedules besides Fixed
Priority Preemptive, these methods are far from modular, but need any
task in this schedule to be available beforehand. Any activation pattern
where a task in such a schedule would activate another task in the same
model would cause an algebraic loop that needs to be solved. This
requires additional input and knowledge from the designer that they
may not have. Alternatives that are modular need to be researched.
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• Tools for modeling scheduling problems in timed automata have been
made in the form of the TIMES tool, which would reduce the large
modeling effort. The TIMES tool does not support distributed systems
and is still very limited. A tool that can solve schedulability problems
based on the task approach suggested in the hybrid model could easily
be generated for any system.

• Our PHAVer model can be improved if urgent transitions would exist
in this model checker. Research is already in progress for this, but not
finished. Once finished or if another hybrid model checker supports
urgency, the PHAVer case study should be reviewed again to confirm
our initial thoughts.

• The PHAVer method shows great potential to be able to model a large
number of different scheduling algorithms. This thesis does not cover
any other schedules besides the Fixed Priority Preemptive and the Fixed
Priority Non Preemptive schedule. It is currently unknown if schedules
like the Earliest Deadline First or First In, First Out could be modeled
in a compositional task oriented way. Additional research could result
in compositional models for new schedules.

• Due to the different strengths and weaknesses the different methods
show, the question arises if a suitable way of combining different methods
would be applicable.

• Realtime Calculus allows for different schedules to be run within one re-
source, questions arise if the other methods can also provide this feature.
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