
 Eindhoven University of Technology

MASTER

An experimental study of algorithms and optimisations for parity games, with an application to
Boolean Equation Systems

Keiren, J.J.A.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/679f9665-f590-4672-9af5-692970cf7cea

An experimental study of algorithms

and optimisations for parity games,

with an application to

Boolean Equation Systems

Jeroen Keiren
Eindhoven, 2nd July 2009

Abstract

We present an empirical study comparing algorithms for solving parity games. The problems that
we solve all stem from the problem of model checking modal µ-calculus formulae against realistic
specifications. We investigate the practical use of various optimisation techniques for solving parity
games, showing that decomposition into strongly connected components and applying efficient
algorithms for special cases are highly beneficial. Furthermore, it is shown that the theoretic
dependency on the number of priorities manifests itself in practice.

We compare eleven algorithms for solving parity games on a number of concrete model checking
examples. It is shown that in general the recursive algorithm due to Zielonka and the bigstep
algorithm due to Schewe perform best in practice.

We also relate the problems of finding a winning strategy in parity games with the problem of
solving Boolean Equation Systems (BESs), and a way to employ the parity game solving algorithms
directly to BESs. Here we also introduce new optimisation techniques for BESs, based on the
known theory for parity games. Additionally we demonstrate that there is room for generalisation
of parity game algorithms when applied in the BES framework by generalising the small progress
measures algorithm due to Jurdziński. This can serve as a basis for further investigation of the
generalisation of the efficient bigstep algorithm in the BES framework, as this algorithm uses small
progress measures for solving sub-problems.

Contents

1 Introduction 4

2 Context 6
2.1 Process description . 6
2.2 Modal µ-calculus . 6
2.3 Parameterized Boolean Equation Systems . 7
2.4 Integration . 7

3 Parity games and Boolean Equation Systems 9
3.1 Parity games . 9

3.1.1 Simplifications of parity games . 11
3.2 Boolean Equation Systems . 13
3.3 Relation between BES and games . 16

3.3.1 Equivalence of Boolean Equation Systems and Graph games 16
3.3.2 Equivalence of Boolean Equation Systems and parity games 18
3.3.3 Simplification on Boolean Equation Systems 18
3.3.4 Reducing the sizes of formulae . 18

3.4 Bisimulation reduction . 23
3.5 Summary . 23

4 Overview of parity game algorithms 24
4.1 Fixed point algorithms . 24

4.1.1 Small progress measures algorithm [Jur00] 24
4.1.2 Strategy improvement algorithm [VJ00, SV00] 25
4.1.3 Optimal strategy improvement method [Sch08] 25

4.2 Satisfiability encodings . 25
4.2.1 Small progress measures encoding [Lan05] 25
4.2.2 Strategy improvement encoding [FL09] . 25
4.2.3 Direct reduction [FL09] . 26

4.3 Recursive algorithms . 26
4.3.1 Recursive algorithm [McN93, Zie98] . 26
4.3.2 Recursive preservation algorithm [FL09] . 26
4.3.3 Dominion decomposition algorithm [JPZ06] 26
4.3.4 Big step algorithm . 26

4.4 Local algorithms . 27
4.4.1 Local model checking algorithm [SS98] . 27

4.5 Summary . 27

5 Experimental comparison of parity game algorithms 28
5.1 Practical influence of optimisation techniques . 30

5.1.1 Experiments . 30
5.1.2 Analysis technique . 30

2

CONTENTS

5.1.3 Results . 30
5.2 Influence of priorities on the performance of the algorithms 32

5.2.1 Experiments . 33
5.2.2 Analysis technique . 33
5.2.3 Results . 33

5.3 Comparison of parity game algorithms . 37
5.3.1 Experiments . 37
5.3.2 Analysis techniques . 37
5.3.3 Results . 38

5.4 Conclusions . 40

6 Small progress measures for Boolean Equation Systems 42
6.1 Small progress measures . 42
6.2 Progress measures on Boolean Equation Systems 44

6.2.1 Progress measures on Boolean Equation Systems in SRF 44
6.2.2 Progress measures for Boolean Equation Systems in RF 45

6.3 Summary . 49

7 Conclusions 50

A Experimental results for optimisation techniques 55
A.1 SCC Decomposition . 55

A.1.1 Deadlock freedom . 55
A.1.2 Livelock freedom . 58
A.1.3 Infinitely often receive . 59
A.1.4 Infinitely often enabled, then infinitely often taken 62

A.2 Solving special games . 63
A.2.1 Deadlock freedom . 64
A.2.2 Livelock freedom . 65
A.2.3 Infinitely often receive . 68
A.2.4 Infinitely often enabled, then infinitely often taken 69

B Experimental results for comparison of parity game algorithms 72
B.1 Model checking . 72
B.2 Equivalence checking . 84

C Modal formulae in mCRL2 syntax 87

3

Chapter 1

Introduction

Software and hardware systems are getting more and more complex as the capacity of modern day
computer systems increases. Correctness of this complex software and hardware is not evident,
hence we require techniques for convincing ourselves of this correctness. Simulation and testing are
much used devices for validation of designs of such systems. The problem with these techniques
however, is that the effectiveness drops when the number of bugs present decreases. In fact, the
absence of bugs cannot be shown at all with these approaches.

In order to shown that a system is bug-free, more powerful techniques are needed. This is where
formal verification comes into play. One way of verifying a system is using proof techniques, i.e.
employ mathematical reasoning to verify a system. Usually this is done using theorem provers
such as HOL [GA94], Isabelle [Pau86], PVS [ORS92] and Coq [BC04]. The major drawback of
this approach is that human intellect is required in the verification process and verification is very
time consuming.

Model checking on the other hand performs an exhaustive exploration of the entire state
space of a model of a system in a fully automatic way. This eliminates the requirements of human
intellect in the verification process. On the other hand model checking suffers from the well-known
state explosion problem. When a system consists of a number of parallel operating components
the number of states of the entire system can grow exponentially. The state explosion problem
is combated by the development of symbolic verification techniques, as well as techniques for
reducing the state space prior to performing the actual model checking.

In model checking a desired property is expressed as a logical formula and it is checked whether
a model of the system satisfies this formula. Various logics are used in this area, e.g. CTL [CES86]
and LTL [Pnu77]. In this thesis we are concerned with an extension of the modal µ-calculus due
to Kozen [Koz83], which subsumes many of the other logics.

Generally, model checking procedures for modal µ-calculus can be split into two categories:
local and global procedures. Local procedures are used to show that a certain state in the system
satisfies a requirement, whereas global procedures compute for all states whether they satisfy a
requirement. For both approaches algorithms have been presented in the literature. For the full
fragment of modal µ-calculus efficient algorithms are not known, and the problem is known to be
in NP ∩ co-NP as well as in UP ∩ co-UP . As it is generally believed that NP and co-NP are
unequal (meaning that no problem can be in both NP and co-NP), it is believed that a polynomial
time algorithms can be found, but no such algorithm is known at present. Known methods for
solving the model checking problem for the modal µ-calculus include BDD based methods using
iteration for fixpoint computation [EL86], translation to the problem of finding a winning strategy
in a parity game [Sti95, Sti96], finding a switch setting in switching graphs [GP08], as well as
translating the problem to finding solutions for a Boolean Equation System [Mad97].

Our main interest lies in the symbolic approach to model checking of modal µ-calculus through
Parameterized Boolean Equation Systems (PBESs) [GW05], and the reduction thereof to Boolean
Equation Systems (BESs) as used in e.g. the mCRL2 toolset [GMWU07].

The described theory for BESs and PBESs is still developing quickly. Various algorithms for

4

solving BESs are in the literature, e.g. approximation, tableaux based algorithms and Gauß elim-
ination [Mad97]. All these algorithms are exponential in the size of the BES. For some special
cases more efficient algorithms are known [GK05, Mat03].

Our experience shows that the generic algorithms for solving BESs are not sufficiently efficient in
practice. In this thesis we investigate other algorithms and techniques that improve the perfor-
mance of solving Boolean Equation Systems.

It is known that BESs and parity games are closely related, see e.g. [Kei06]. In fact parity
games coincide with the subset of BESs in which conjuncts and disjuncts do not occur mixed
in an equation, and the Boolean constants true and false do not occur (Simple Recursive Form).
Because of this, algorithms for solving parity games can be employed to solve this subset of BESs.
Furthermore each BES can be transformed to this subset in linear time, and at the cost of a linear
blow-up in the size of the BES.

Finding efficient algorithms for parity games is a popular field in current research. This is
witnessed by the large number of algorithms [Lan05, FL09, McN93, Zie98, VJ00, SV00, Sch08,
Jur00, JPZ06, SS98, Sch07] of different worst-case running time complexities.

In addition, meta-level simplification techniques have been developed, that can be used to
speed up all of these algorithms, see e.g. [FL09].

We classify these meta-level (simplification) techniques from the parity game framework, and
investigate their BES counterparts, introducing new theory in the BES framework. Separately we
have developed a bisimulation like technique for reducing BESs, which we will introduce briefly
in this thesis, of which the full details with experiments can be found in [KW09]. Furthermore
we investigate how the algorithms for solving parity games perform for realistic model checking
problems. The analysis of over 20,000 runs, worth about 3 months of CPU time, provides us with
insight as to which algorithms and optimisations perform well in practice, and hence should be
considered for translation to the realm of BESs. The expectation is that based on our results one
or two of the best performing algorithms will be implemented in the mCRL2 toolset. Finally we
give a translation from a parity game algorithm to the BES framework as a proof of concept.

Outline The rest of this thesis is structured as follows. Chapter 2 introduces model checking of
modal µ-calculus. In Chapter 3 parity games and BESs are introduced. Chapter 4 introduces the
algorithms for solving parity games that stem from literature. In Chapter 5 these algorithms are
evaluated through extensive experimental comparisons. Chapter 6 shows an example of a parity
game algorithm applied directly to BES in simple recursive form, as well as a generalisation of the
algorithm to BES with arbitrary right hand sides. Finally Chapter 7 summarises the conclusions
that follow from the earlier chapters.

5

Chapter 2

Context

In this chapter we introduce, on an abstract level, the context in which this work is carried out.
The formalisms of LPE, modal µ-calculus and Parameterized Boolean Equation System (PBES)
are briefly introduced. Parity games and Boolean Equation Systems (BESs) will be treated more
in depth in the next chapter.

2.1 Process description

A Labelled Transition System (LTS) is a structure 〈Σ,→〉 where Σ is a set of states, and→⊆ Σ×Σ
is a transition relation. Transitions are labelled with actions. A LTS describes the states that can
be reached in a process, and the transitions that can be made.

In this thesis we consider model checking problems in the symbolic setting of Linear Process
Equations (LPE, a process algebraic, symbolic encoding of a Labelled Transition System). An
LPE basically describes a process using a set of condition, action, effect rules that modify some
global state. For an in-depth treatment of LPEs we refer the reader to e.g. [Use02].

2.2 Modal µ-calculus

The modal µ-calculus is a powerful logic for expressing properties of concurrent systems. The
modal µ-calculus is a modal logic that features extremal fixpoints. It was originally introduced by
Scott and De Bakker1, and introduced in its most used form by Kozen [Koz83]. We consider an
extension of the modal µ-calculus with data variables, quantifiers and parametrisation as described
in the literature, see e.g. [GW05], allowing for the expression of data dependent properties.

As an example of a model checking problem consider a µ-calculus model checking problem,
taken from [RW09], involving an unreliable channel.

Example 2.2.1. The channel can read messages from the environment, and send or lose these
next. In case the message is lost, subsequent attempts are made to send the message until this
finally succeeds. The labelled transition system, modelling this system is given below.

s0start s1 s2

r

s

τ

l

We use the formula that expresses for which states it holds whether along all paths consisting
of reading and sending actions, it is infinitely often possible to potentially never perform a send
action. The problem is formalised as follows:

φ ≡ νX.µY.(([r]X ∧ [s]X ∧ (νZ.〈s〉Z)) ∨ ([r]Y ∧ [s]Y))
1According to [Koz83, page 333]

6

2.3. Parameterized Boolean Equation Systems

Using the translation of Mader [Mad97], the BES given below is obtained. The solution to Xsi

answers whether si satisfies formula φ.

(νXs0 = Ys0) (νXs1 = Ys1) (νXs2 = Ys2)
(µYs0 = (Xs1 ∧ Zs0) ∨ Ys1) (µYs1 = (Xs0 ∧ Zs1) ∨ Ys0) (µYs2 = true)
(νZs0 = Zs1) (νZs1 = Zs2) (νZs2 = Zs1)

Note that the solution to all propositional variables occurring in the BES is true, hence the property
holds in all states.

In addition to the syntax from our example, the µ-calculus that we use allows for the expression
of universal and existential quantifications over data.

2.3 Parameterized Boolean Equation Systems

Parameterized Boolean Equation Systems (PBESs) are generalisations of Boolean Equation Sys-
tems. A PBES is a sequence of equations of the form σX(d1:D1, . . . , dn:Dn) = φ, where σ ∈ {µ, ν}
is a fixpoint symbol, di is a data variable of sort Di and φ is a predicate formula. PBESs were
introduced by Groote and Mateescu [Mat97, GM99] as an intermediate formalism for model check-
ing process with arbitrary data, also allowing for the encoding the verification problem for systems
with infinite state spaces.

2.4 Integration

In Figure 2.1 we show an overview of the methodology we use. A PBES is obtained either
by combining a modal µ-calculus formula and an LPE using the translation in [GM99], or by
combining two LPEs into an PBES encoding a process equivalence using [CPPW07]. The PBES
is of the form discussed in the previous section.

A PBES can be transformed into a Boolean Equation System using the methods described
in [vDPW]. BESs and parity games are equivalent, as we will show in Section 3.3. This is also
shown in the figure by a conversion between the two. Because of the equivalence of BES and
parity games the same methods can be applied to obtain a parity game from a PBES. The BES
and parity games can consequently be solved.

At a number of levels intermediate transformations can be applied to simplify the given struc-
ture, these are denoted with self-loops at the LPE, PBES, parity game and BES levels.

Figure 2.1: Overview of our methodology

µ-calculus formula LPE

PBES

Parity game BESSolve

7

Chapter 2. Context

In this thesis we concentrate on transformations on parity games and BESs, the equivalence
between both frameworks, and algorithms for solving parity games and BESs. These parts are
highlighted in Figure 2.1. BESs and parity games will be treated in-depth in the next chapter.

8

Chapter 3

Parity games and Boolean
Equation Systems

This chapter introduces parity games and Boolean Equation Systems in detail. A thorough un-
derstanding is developed with respect to the commonalities between both frameworks. This gives
rise to new insights, especially in the BES framework.

3.1 Parity games

A parity game is a graph game played by two players, Even and Odd on a game graph in which
each vertex is assigned an integer priority. An infinite play is an infinite path in the graph in which
a player does a step if a token is on a vertex for that player. Player Even wins an infinite play if
the lowest priority that occurs infinitely often in that play is even, otherwise player Odd wins the
play. We use the generic Player to denote either Even or Odd in case definitions are analogous
for both players. We use the convention that Even equals Odd and Odd equals Even and Player
is used in the same way.

A game graph is a directed graph G = (V,E, p), in which V is a set of vertices, E ⊆ V × V is
a total edge relation, i.e. for each v ∈ V there is a w ∈ V such that (v, w) ∈ E, and p:V → N is
a priority function, assigning a non-negative integer priority to each vertex. We restrict ourselves
to games on finite graphs.

Definition 3.1.1. Given game graph G = (V,E, p), and partition (VEven , VOdd) of V , Γ =
(V,E, p, (VEven , VOdd)) is a parity game.

Instead of (v, w) ∈ E we also write infix notation vEw. Furthermore we write the set of
successors of v as vE ∆= {w | vEw}, and the set of predecessors of w as Ew ∆= {v | vEw}.

A parity game is played by the two players by placing a token on an initial vertex—this vertex
may be chosen arbitrarily, but in practice the choice corresponds to the model checking problem
that we are trying to solve, i.e. depending on the state in the model for which we want to know
the answer to the model checking problem a choice is made for an initial vertex. Moves are taken
indefinitely according to the following simple rule: if the token is on a vertex v ∈ VPlayer then
Player moves the token along an outgoing edge of v. The result is an infinite path (also referred
to as a play) π = 〈v1, v2, v3, . . . 〉 in the game graph.

Let Inf (π) denote the set of priorities occurring infinitely often in play π. Play π is winning
for player Even if and only if min(Inf (π)) is even, π is winning for player Odd otherwise.1

A strategy for Player is a partial function ψPlayer :V ∗VPlayer → V that decides the vertex the
token is played to based on the history of vertices that has been visited (V ∗ are the vertices in the
history, VPlayer represents the current vertex).

1Note that this is the typical definition for min-parity games, for the notion of max-parity games, replace
min(Inf (π)) with max(Inf (π)).

9

Chapter 3. Parity games and Boolean Equation Systems

A play π = 〈v1, v2, v3, . . . 〉 is consistent with a strategy ψPlayer for Player if and only if every
vertex vi ∈ π is such that vi ∈ VPlayer is immediately followed by vi+1 = ψPlayer (〈v1, . . . , vi〉)

Definition 3.1.2. Strategy ψPlayer is a winning strategy for Player from set W ⊆ V if every play
starting from a vertex in W , consistent with ψPlayer is winning for Player .

It is known that a player has a winning strategy for a game if and only if the opponent does
not. This property is referred to as determinacy.

Theorem 3.1.3. [Mar75, GH82, EJ91, McN93] For every parity game, there is a unique partition
(WEven ,WOdd) of V such that there is a winning strategy ψEven for player Even from his winning
set WEven and a winning strategy ψOdd for player Odd from her winning set WOdd .

We refer to finding the partition (WEven ,WOdd) as solving the parity game.
For finding winning strategies, and hence the division in WEven and WOdd , it suffices to look

at history free strategies [EJ91, McN93, Zie98] (also referred to as positional or memory-less
strategies). In a history free strategy a given vertex vi always gets the same successor vi+1,
regardless of the path by which vi is reached. We define such a strategy for a player, fixing an
outgoing edge for each vertex in the set corresponding to that player.

Definition 3.1.4. [EJ91, McN93, Zie98] A function ψPlayer :VPlayer → V is a history-free strategy
for player Player iff (v, ψ(v)) ∈ E for all v ∈ VPlayer .

Consistency with a history-free strategy is defined similarly to consistency for arbitrary strate-
gies. In the sequel we restrict ourselves to such history free strategies.

Now that we have established a basic understanding of parity games we introduce some derived
notions that are used in the algorithms that we investigate.

A set U ⊆ V is Player -closed [FL09] if and only if Player can force the game to stay within U
from any vertex v ∈ U . That is, ∀v ∈ (U ∩VPlayer) : vE ⊆ U and ∀v ∈ (U ∩VPlayer) : vE ∩U 6= ∅.
So Player must not be able to leave U , whereas Player must have the possibility to stay within
U .

Given a history-free strategy ψPlayer and a parity game Γ = (V,E, p:V → N, (VEven , VOdd)),
the subgame Γ |ψ is defined as (V,E |ψ, p, (VEven , VOdd)), where

E |ψ
∆= E \ {(u, v) ∈ E | u ∈ VPlayer ∧ v 6= ψPlayer (u)}

In other words, Γ |ψ is the same game as Γ, except that from the vertices of Player the choice is
dictated by the strategy for Player .

Similarly we define the subgame Γ |U which is induced by set U ⊆ V as

Γ |U
∆= (U,E ∩ U2, p |U , (VEven ∩ U, VOdd ∩ U))

where p |U (v) = p(v) if v ∈ U , and is undefined otherwise. Note that a subgame is only induced
if edge relation E ∩ U2 remains total. Each Player -closed set U induces a subgame [FL09].

Definition 3.1.5. We call a path π = 〈v1, . . . , vn〉ω in a parity game an i-cycle if and only if the
lowest priority occurring the path is i, i.e. i = min({p(vj) | 1 6 j 6 n}).

We refer to an i-cycle with even i as an even cycle, similarly an i-cycle with odd i is referred to
as an odd cycle.

A subgame Γ |U that is won by Player by forcing player Player to stay in U , using a winning
strategy on U is called a Player -dominion [FL09] (also referred to as Player -trap [Zie98]). We
define a Player -dominion formally as follows:

Definition 3.1.6. [Zie98, FL09] Let Γ = (V,E, p, (VEven , VOdd)) be a parity game. Set U ⊆ V is
a Player -dominion if and only if U is Player -closed and the subgame Γ |U is won by player Player .

10

3.1. Parity games

We also define the attractor set for Player for a set U ⊆ V . This is the set of vertices such
that Player can force any play to reach U .

Definition 3.1.7. [McN93, Zie98, FL09] Let U ⊆ V . We define the attractor sets inductively as
follows:

Attractor0
Player (U) = U

Attractork+1
Player (U) = AttractorkPlayer (U)

∪ (VPlayer ∩ {v | vE ∩AttractorkPlayer (U) 6= ∅})
∪ (VPlayer ∩ {v | vE ⊆ AttractorkPlayer (U)})

AttractorPlayer (U) =
⋃
k∈N

AttractorkPlayer (U)

Decomposition of the game according to the dominions of the players can be used to speed up
computation of the solution of the entire game.

Lemma 3.1.8. [McN93, Sti95, Zie98] Let Γ = (V,E, p:V → N, (VEven , VOdd)) be a parity game,
and U ⊆ V . The edge relation E ∩ V 2 in the game Γ |U is total.

Note that V \ AttractorPlayer (U) is Player -closed [Zie98], i.e. Player can force the game to
stay in V \ AttractorPlayer (U). If this were not the case, then there would be a vertex v ∈
VPlayer , from which a node in AttractorPlayer (U) can be reached, but then it would be part
of AttractorPlayer (U) according to the definition of Attractor . Furthermore, if U is a Player -
dominion, then AttractorPlayer (U) is also a Player -dominion.

In the literature several algorithms for solving parity games have been proposed, all of which
are worst-case exponential. We will discuss these algorithms in more detail in Chapter 4.

3.1.1 Simplifications of parity games

In the literature some simplifications of parity games are used that work independently of the
algorithm that is used for solving a parity game. They are also implemented in actual tools, e.g.
the PGSolver toolset [FL09]. We give brief descriptions of these optimisations here. Correctness
arguments can be found in [FL09]. Throughout this section, assume a given, arbitrary parity game
Γ = (V,E, p, (VEven , VOdd)).

Edge reducing optimisations

All optimisations in this section reduce the number of edges in the parity game, hence it speeds
up computation by algorithms that depend on the number of edges.

Self-cycle parity games Consider a vertex v in Γ, such that vEv, i.e. v has a self-loop. If
p(v) is even, and v ∈ VEven , or p(v) is odd and v ∈ VOdd then {v} is a Player -dominion, hence its
attractor can be removed (see SCC decomposition). If p(v) is odd and v ∈ VEven , or p(v) is even
and v ∈ VOdd then taking the self-loop is always bad for Player , hence it can be removed from the
game, as long as totality is preserved. Evidently this optimisation reduces the number of edges in
the game, and hence may speed up computation of the solution.

Priority reducing optimisations

The optimisations in this section reduce the number of priorities in the parity game. As most
algorithms depend exponentially on the number of priorities, this might greatly affect the time
required for computing the solution to a parity game.

11

Chapter 3. Parity games and Boolean Equation Systems

Priority compaction Observe that for computing winning sets and strategies the actual pri-
orities are not relevant. Instead only their ordering and parity is of importance. Using this
observation we can use the following reduction. Let ≡2 denote equivalence modulo 2. Consider
two priorities p1 < p2 in a game, and p1 ≡2 p2, but there is no p′ such that p1 < p′ < p2 and
p′ 6≡2 p1, then each priority p2 can be replaced by p1, preserving the winning sets and strategies
of the original game. If it is assumed that there always is some vertex with priority 0, priority
compaction results in a game in which the least priority is either 0 or 1 (1 if the lowest priority in
the original game was odd, 0 otherwise). This optimisation reduces the number of priorities that
occurs in the parity game.

Priority propagation Another optimisation that reduces the number of priorities in the game
is priority propagation. Note that this does in general not preserve the parities of nodes, i.e.
a node with even priority may change into a node with odd priority and the other way round.
Observe that any play that visits some vertex v infinitely often must also visit one of v’s successors
infinitely often. If the priorities p(u) of all successors u of v are less than the priority p(v) of v,
then we can replace p(v) with p(u) as p(v) is certainly not the smallest priority on the play.2

The same holds for the predecessors of v. Like priority compaction, this optimisation reduces the
number of priorities that occurs in the parity game.

Algorithms for special cases

The algorithms presented in this section solve special cases of parity games, where the game either
involves a single player or a single parity. These algorithms are more efficient than the more
generic algorithms.

Single parity parity games If all nodes v in a strongly connected component have the same
priority p(v), then the whole game in the SCC is won by player Even if p(v) is even, Odd if p(v)
is odd. A winning strategy can be computed by random choice. This optimisation is beneficial as
it computes a solution for a parity game in time linear in the number of edges.

Single player parity games Γ is a single-player parity game for Player if and only if all
v ∈ VPlayer have exactly one outgoing edge (i.e. | vE |= 1). Fixed-point iteration can be used to
solve a one-player game that is a single SCC. Player wins the game if there is a node u of which the
priority p(u) corresponds with the player owning u, and u is reachable from itself on a path that
does not contain vertices w with p(w) < p(u).3 If there is such a cycle then the rest of the SCC
lies in the attractor of the cycle, hence Player wins the subgame in the SCC. If there is no such
cycle, then the whole subgame in the SCC is won by Player . The advantage of this optimisation is
that a solution can be computed independent of the number of priorities that occur in the parity
game, hence abstracting from that aspect of the running times of the algorithms.

SCC decomposition

On a more general level, decomposition into strongly connected components can be used to speed
up computation of the solution for a parity game. Generic parity game algorithms, combined with
the aforementioned optimisation techniques, can be applied per strongly connected component as
follows.

A strongly connected component (SCC) is a maximal non-empty subset S ⊆ V such that each
vertex in S can reach each other vertex in S. Given that the game graph underlying the parity
game is a directed graph, the graph obtained by contracting each SCC into a single vertex (the
graph of strongly connected components) is a directed acyclic graph (DAG).

2For max-parity games, the priorities of all successors u of v need to be greater than the priority of v, and we
take the greatest of these priorities

3p(w) > p(u) in case of max-parity games

12

3.2. Boolean Equation Systems

We can optimise solving parity games using SCC decomposition as follows. First decompose
the parity game into SCCs. All terminal SCCs (SCCs that do not have outgoing edges in the
resulting DAG), including trivial terminal SCCs, are solved using a parity game solver. Observe
that these local solutions can be used as solutions in the global game.

Next the attractors for both players are computed with respect to their winning sets obtained
from the solved SCCs. These attractors are removed from the game. The result is still a game, but
some of the SCCs may not be SCCs anymore (because of the removal of vertices in the attractor
sets). These modified SCCs are again decomposed into SCCs resulting in a new decomposition.
This process is repeated until the entire game has been solved.

This results in subgames that are smaller with respect to the number of vertices and the number
of edges. In most cases it will also be the case that the number of priorities in such a subgame is
smaller than the number of priorities in the entire game. Furthermore it may give rise to single
player or single parity games which can in turn be solved efficiently.

3.2 Boolean Equation Systems

Boolean Equation Systems (BESs) [Mad97] are a class of equation system that can be employed
to perform model checking of modal µ-calculus formulae. Basically, BESs are finite sequences of
least and greatest fixpoint equations, where each right-hand side of an equation is a proposition in
positive form. It has been shown [Mad97] that solving a BES is equivalent to the model-checking
problem. BESs are used for this purpose in e.g. the tool sets CADP [GLMS07] and mCRL2
[GMWU07]. Several algorithms for solving BESs exist, see [Mad97, Kei06]. Furthermore there
are efficient algorithms for some special cases, see [Mat03, Kei06]. We formally introduce the
theory required for understanding the results obtained in this paper.

Definition 3.2.1. We assume a set X of Boolean variables, with typical elements X, X1, X2, . . .
and a type B with elements true, false representing the Booleans. Furthermore we have fixpoint
symbols µ for least fixpoint and ν for greatest fixpoint.

A Boolean Equation System is a system of fixpoint equations, inductively defined as follows:

• ε is the empty BES

• if E is a BES, then (σX = f)E is also a BES, with σ ∈ {µ, ν} a fixpoint symbol and f a
negation free formula over X , defined by the following grammar:

f, g ::= c | X | f ∧ g | f ∨ g

where X ∈ X is a proposition variable of type B and c ∈ {true, false} is a Boolean constant.

For any equation system E , the set of bound proposition variables, bnd(E), is the set of variables
occurring at the left-hand side of some equation in E . The set of occurring proposition variables,
occ(E), is the set of variables occurring at the right-hand side of some equation in E .

bnd(ε) ∆= ∅ bnd((σX = f) E) ∆= bnd(E) ∪ {X}

occ(ε) ∆= ∅ occ((σX = f) E) ∆= occ(E) ∪ occ(f)

where occ(f) is defined inductively as follows:

occ(c) ∆= ∅ occ(X) ∆= {X}

occ(f ∨ g) ∆= occ(f) ∪ occ(g) occ(f ∧ g) ∆= occ(f) ∪ occ(g)

BESs E and F with bnd(E) ∩ bnd(F) = ∅ are referred to as non-conflicting BESs.
As usual, we consider only equation systems E in which every proposition variable occurs at

the left-hand side of at most one equation of E . We define an ordering P on bound variables of

13

Chapter 3. Parity games and Boolean Equation Systems

an equation system E , where X P X ′ indicates that the equation for X precedes the equation for
X ′.

Proposition formulae are interpreted in a context of an environment η:X → B. For an arbitrary
environment η, we write η[X := b] for the environment η in which the proposition variable X has
Boolean value b.

Finding a solution of a BES amounts to finding an assignment of true or false to each variable
Xi such that all equations are satisfied. Furthermore if σi = µ, then the assignment to Xi is
as strong as possible, and if σi = ν it is as weak as possible, where the leftmost equation takes
priority over equations that follow. The concept of a solution is formalised below.

Definition 3.2.2. Let η:X → B be an environment. The interpretation [[f]]η maps a proposition
formula f to true or false:

[[c]]η ∆= c [[X]]η ∆= η(X)

[[f ∨ g]]η ∆= [[f]]η ∨ [[g]]η [[f ∧ g]]η ∆= [[f]]η ∧ [[g]]η

Let η be an environment. Let bµ = false and bν = true. The solution of a BES, given η, is
inductively defined as follows:

[[ε]]η = η

[[(σX = f)E]]η = [[E]]η[X := f([[E]]η[X := bσ])]

We also write η(X) to denote the interpretation of X in environment η. In the sequel, when we
refer to solving a BES we mean computing the solution of the BES.

We introduce the following terminology.

Definition 3.2.3. Let E be an equation system. Then

• E is closed whenever occ(E) ⊆ bnd(E);

• E is solved whenever occ(E) = ∅;

For closed BES E , [[E]]η = [[E]]η′ for arbitrary environments η and η′, hence we may omit the
environment in this case. Also observe that according to the semantics ∧ and ∨ are commutative
and associative, hence we may write e.g.

∧j
i=0 fi instead of f0 ∧ . . . fn, for formulae fi.

In the remainder we restrict ourselves to closed BESs. For a closed BES E we define the right
hand side rhs of a propositional variable X ∈ bnd(E) as the right hand side of the defining equation
of X in E :

rhs(X, (σY = f)E) ∆=

{
f if X = Y

rhs(X, E) otherwise

Definition 3.2.4. A BES E is in simple form (SF) if every equation in E is of the form σX = f ,
σX =

∧n
i=0 fi or σX =

∨n
i=0 fi, where n > 0, and f is either a propositional variable, or one of

the Boolean constants true or false.

That is, a BES is in simple form if every right hand side is either a single variable or Boolean
constant, or it is a conjunction or a disjunction over propositional variables or Boolean constants.
Conjunctions and disjunctions may not appear mixed in a single right hand side. Note that every
BES can be transformed into simple form in polynomial time in such a way that the variables in
the original BES are preserved, and variables that occur in both BESs have the same solution,
see [Mad97]. An equation can, for example, be transformed to simple form as follows. Given an
equation σX =

∧k
i=0 fi, and some fj is disjunctive, replace this single equation by two equations

(σX =
∧j−1
i=0 ∧X ′

∧k
i=j+1)(σX ′ = fj), where X ′ is fresh. The case for ∨ is analogous, and the

transformation can be repeated until a BES in simple form is obtained.
We can also restrict a BES such that it does not contain Boolean constants. This is referred

to as recursive form.

14

3.2. Boolean Equation Systems

Definition 3.2.5. A BES E is in recursive form (RF) if the Boolean constants true and false do
not occur in E .

The transformation of a BES to a BES in RF can also be done in a solution preserving way,
introducing auxiliary equations for Boolean constants true and false.

When we combine the notions of simple form and recursive form we obtain the concept of
simple recursive form.

Definition 3.2.6. A BES E is in simple recursive form (SRF) if E is in simple form, and the
Boolean constants true and false do not occur in E .

The translation of a BES to SRF is simply the composition of the translations of a BES to SF
and RF, and hence is also solution preserving.

Definition 3.2.7. A BES E is in conjunctive form if every equation in E is of the form σX =∧n
i=0 fi, with n > 0, and fi a propositional variable or a Boolean constant.

That is, a BES in conjunctive form only contains conjuncts, single variables or Boolean constants
as right hand sides. It has been shown [Mad97] that given a BES E and an environment η there
is a BES E ′ in conjunctive form such that E and E ′ have the same solutions in η.

A similar notion is a BES in disjunctive form, i.e. a BES that only contains disjuncts, single
variables or Boolean constants as right hand sides.

Definition 3.2.8. A BES E is in disjunctive form if every equation in E is of the form σX =∨n
i=0 fi, with n > 0, and fi a propositional variable or Boolean constant.

A derived notion of a closed equation system E is its dependency graph GE , which is defined as
a structure 〈V,→〉, where:

• V = bnd(E);

• X → Y iff there is some equation σX = f in E with Y ∈ occ(f);

We introduce the notion of rank of an equation, and some derived notions. These notions are
an indication of the complexity of the BES, as well as a measure that occurs in the computational
complexity of some of the algorithms for solving BESs.

Definition 3.2.9. Let E be an arbitrary equation system. The rank of some X ∈ bnd(E), denoted
rank(X), is defined as rank(X) = rankν,X(E), where rankν,X(E) is defined inductively as follows:

rankσ,X(ε) = 0

rankσ,X((σ′Y = f)E) =


0 if σ = σ′ and X = Y

rankσ,X(E) if σ = σ′ and X 6= Y

1 + rankσ′,X((σ′Y = f)E) if σ 6= σ′

Observe that rank(X) is odd iff X is defined in a least fixpoint equation.

The alternation hierarchy of an equation system can be thought of as the number of syntactic
alternations of fixpoint signs occurring in the equation system. The alternation hierarchy ah(E) of
an equation system E can be defined as the difference between the largest and the smallest rank
occurring in E , formally ah(E) = max{rank(X) | X ∈ bnd(E)} −min {rank(X) | X ∈ bnd(E)}.

Given an equation (σX = f) in SF, the function op(X) returns whether f is conjunctive (∧),
disjunctive (∨) or neither (⊥);

An alternative characterisation of the solution of a particular proposition variable X in an
equation system E in SRF is obtained through the use of the dependency graph GE . We first
define the notion of a ν-dominated lasso.

15

Chapter 3. Parity games and Boolean Equation Systems

Definition 3.2.10. Let E be a closed equation system, and let GE be its dependency graph. A
lasso through GE , starting in a node X, is a finite path 〈X0, X1, . . . , Xn〉, satisfying X0 = X,
Xn = Xj for some j ≤ n, and for each 1 < i ≤ n, Xi−1 → Xi. A lasso is said to be ν-dominated
if min{rank(Xi) | j ≤ i ≤ n} is even; otherwise, it is µ-dominated.

The following lemma is loosely based on lemmata taken from Keinänen (see lemmata 40 and 41
in [Kei06]).

Lemma 3.2.11. Let E be a closed equation system in SRF, and let GE be its dependency graph.
Let X ∈ bnd(E). Then:

1. If E is disjunctive, then [[E]](X) = true iff some lasso starting in X in GE is ν-dominated;

2. If E is conjunctive, then [[E]](X) = false iff some lasso starting in X in GE is µ-dominated;

Proof We only consider the first statement; the proof of the second statement is analogous.
Observe that when the proposition variable on the cycle of the lasso has an even lowest rank, it
is a greatest fixpoint equation νX ′ = f , with X ′ P Y for all other equations σY = g that are
on the cycle. This follows from the fact that these have higher ranks. Gauß elimination [Mad97]
allows one to substitute g for Y in the equation for X ′, yielding νX ′ = f [Y :=g]. Since, ultimately,
X ′ depends on X ′ again, this effectively enables one to rewrite νX ′ = f to νX ′ = f ′ ∨X ′. The
solution to νX ′ = f ′ ∨ X ′ is easily seen to be X ′ = true. Since all equations on the lasso are
disjunctive, this solution ultimately propagates through the entire lasso, leading to X = true.

Conversely, observe that there is an equation system E ′ consisting entirely of equations of
the form σX ′ = X ′′ (follows from Corollary 3.37 in [Mad97]), with the additional property that
[[E]] = [[E ′]]. In E ′, the answer to X can only be true if it depends at some point on some νX ′ = X ′′,
where ultimately, X ′′ again depends on X ′, leading to a cycle in the dependency graph with even
lowest rank. ut

3.3 Relation between BES and games

In this section we investigate how Boolean Equation Systems and various kinds of graph games
are related. We mainly focus our attention to the equivalence between BESs and parity games,
but we first investigate the similar notion of graph games.

3.3.1 Equivalence of Boolean Equation Systems and Graph games

Mader [Mad97] showed the equivalence of Boolean Equation Systems and a variation of game
graphs equivalent to Stirling games and parity games that we refer to as Mader games. The
translation by Mader [Mad97] contains some small mistakes leading to incorrect results, hence we
present a corrected version of the translation here for the sake of completeness. This translation
also is the basis for the translation of BESs to parity games by Keinänen [Kei06].

A Mader game consists of a set of vertices {1, . . . , n}. Each vertex gets two labels, one from
{I, II} and one from {µ, ν}. Furthermore, for each vertex i the graph contains at least one edge
i→ j. A play π is an infinite sequence of moves starting with a token at some vertex i, such that
player I has to move if the token is on a vertex labelled I, similarly if the token is on a vertex
labelled II player II has to move.

Definition 3.3.1. [Mad97, Section 8.2] Consider the set of vertices Inf (π), denoting the set of
vertices of the Mader game, occurring infinitely often on play π. Let w = min(Inf (π)) be the
least vertex that occurs infinitely often. Player I wins the play if vertex w is labelled µ, otherwise
player II wins the play.

16

3.3. Relation between BES and games

From Boolean Equation Systems to Mader games

Given a closed Boolean Equation System E in SRF, the corresponding game graph GgE can be
defined as follows. Let the game graph GgE be the dependency graph of the E , where each vertex
is decorated with two labels:

• For every equation σXi = f in E , vertex i in GgE is labelled with σ;

• if op(Xi) = ∧ then vertex i is labelled with I

• all other vertices are labelled with II.

As is shown by the following theorem, the translation preserves the solution in such a way that
player II wins the game if and only if the BES has solution true.

Theorem 3.3.2.[Mad97] Player II has a winning strategy for the game on GgE with initial vertex
i iff [[E]](Xi) = true.

From Mader games to Boolean Equation Systems

Given game graph G, the corresponding Boolean Equation System EG in SRF can be obtained as
follows.

• If vertex i of G is labelled σ, then there is an equation σXi = fi in EG ;

• if vertex i has label I and Si = {j | i → j is an edge is G}, then σXi =
∧
j∈Si

Xj is an
equation of EG ;

• if vertex i has label II and Si = {j | i → j is an edge is G}, then σXi =
∨
j∈Si

Xj is an
equation of EG ;

• if i < j, then Xi C Xj in EG .

Given game graph G, the corresponding Boolean Equation System EG in SRF can be obtained
as follows.

Theorem 3.3.3.[Mad97] Player II has a winning strategy for the game on GgE with initial vertex
i iff [[E]](Xi) = true.

Note that in the original definition by Mader [Mad97]
∧

and
∨

are exchanged in the translation
from graph games to BESs, leading to an incorrect transformation as is shown by the following
counterexample to Theorem 3.3.3.

Example 3.3.4. Consider the following BES:

µX = Y ∨X
νY = X ∧ Y

The Mader game constructed from this is the game with vertices X,Y , where X is labelled {µ, II},
and Y is labelled {ν, I}, furthermore there are edges X → X, X → Y , Y → X and Y → Y .

When we apply the reverse translation (according to the original definition by Mader) we
obtain the following BES:

µX = Y ∧X
νY = X ∨ Y

As we see, the ∧ and ∨ symbols have been exchanged, and the solutions of both BESs differ.
(As the first BES has solution X = Y = false, whereas the second BES has solution X = false,
Y = true.

17

Chapter 3. Parity games and Boolean Equation Systems

3.3.2 Equivalence of Boolean Equation Systems and parity games

Given a closed BES E in SRF, we can find a parity game ΓE such that [[E]](X) is true for some
variable X if and only if player Even has a winning strategy on ΓE from vertex X [Kei06].

From Boolean Equation Systems to parity games

We translate a BES E to a parity game Γ = (V,E, p, (VEven , VOdd)) as follows. As game graph we
take the dependency graph GE of E . Furthermore priorities are assigned according to the ranks
in the BES, i.e. p(X) = rank(X). Furthermore, all X ∈ bnd(E) with op(X) = ∧ are assigned to
VOdd , the other vertices to VEven .

From parity games to Boolean Equation Systems in SRF

Analogously, we translate a parity game to a BES as follows. For each vertex v ∈ V , with edges
(v, w1), . . . (v, wnv

), we create the following equation. If v in VOdd , we create σXv =
∨nv

i=0Xi, for
vertices v in VEven , equation σXv =

∧nv

i=0Xi is introduced. In both bases σ = µ if p(v) is odd,
and σ = ν otherwise. Furthermore, if p(v) < p(u) for two vertices v and u in the parity game, it
holds that Xv C Xu in the BES.

Theorem 3.3.5. [Kei06] Player Even has a winning strategy for GE from vertex Xi if and only
if ([[E]]η)(Xi) = true.

3.3.3 Simplification on Boolean Equation Systems

Mader has shown a large number of equivalences on Boolean equation systems [Mad97]. We
investigate how the simplifications for parity games coincide with the knowledge about BESs.
Some of the simplifications for parity games give rise to new results in the framework of BESs.

We give an overview of the BES related theory that corresponds to the parity game theory from
Section 3.1.1. In the cases where new simplifications are introduced we also give proofs directly
on BESs.

3.3.4 Reducing the sizes of formulae

In the literature, e.g. [Mad97] techniques are described that reduce the size of formulae in the
right hand sides of an equation.

Local resolution Using the semantics of an equation in a BES, self-references can be removed
from the right hand side of an equation. This technique is referred as local resolution. Some local
resolution steps in BES coincide with the elimination of self-loops in parity games. Consider the
following equivalences:

µX = X ∨ Y ≡ µX = Y

νX = X ∧ Y ≡ νX = Y

µX = X ∧ Y ≡ µX = false

νY = X ∨ Y ≡ νY = true

Proofs that these equivalences hold can be found in [Mad97]. The first two rules coincide with
the cases in which a vertex in a parity game has a self-loop, and the evenness of the priority and
the player differ, hence a self-loop can be removed. The other two rules coincide with the cases in
which a trivial dominion is found, and hence part of the game is solved.

Note that in general right hand sides in BESs can be simplified using equivalence results on
Boolean formulae known from the literature, and hence such simplifications are not restricted to
the four that we have mentioned.

It is evident that the simplifications in this section reduce the cumulative size of the right hand
sides in a BES, and hence also the size of the BES.

18

3.3. Relation between BES and games

Rank reducing simplifications

In the discussion of parity games we have seen some simplifications that reduce the number
of priorities in the game. Investigating similar operations in the setting of BESs gives rise to
optimisations in BES that have not occurred in the literature yet.

Observe that the priority compaction technique on parity games does not have a natural
corresponding manipulation on Boolean Equation Systems, as we choose the rank of an equation
as priority in the corresponding parity game.

Irrelevance of fixpoint operator The priority propagation technique leads to a new equiva-
lence for Boolean Equation Systems. Observe that in priority propagation, the priority of a node
v in the parity game changes if either all of its predecessors or all of its successors have a priority
that is lower than the priority of v. When we also take into account the reduction of a BES in SRF
to a parity game, observe that we use the rank of an equation as its priority. This gives rise to the
following observation. If, in the parity game corresponding to a BES E there are priorities that
change from even to odd, or from odd to even, then there are equations in E of which the fixpoint
symbol may be changed, preserving the solution of E . This follows immediately from translating
E to parity game, applying priority propagation on the game, and translating the resulting game
back to BES. Next we will show the correctness of this technique directly on BESs.

In general, if the defining equations of all variables that occur in the right hand side of an
equation σX = f occur before σX = f in the BES, then we may replace σX = f with σ′X = f ,
where σ′ is an arbitrary fixpoint symbol. Similarly, if X only occurs in equations that occur after
σX = f in the BES we may also choose an arbitrary fixpoint.

Lemma 3.3.6. Let η be an arbitrary environment, and E1, E2 be arbitrary non-conflicting BESs.
Then

[[E1(σX = f)E2]]η = [[(σ′X = f)E1E2]]η

provided that X 6∈ occ(E1) ∪ occ(E2) and X ∈ occ(f)⇒ σ = σ′.

Proof We prove this by induction on the length of E1.
Case E1 = ε) We show that

[[(σX = f)E2]]η = [[(σ′X = f)E2]]η

provided that X 6∈ occ(E2), and X ∈ occ(f)⇒ σ = σ′.

[[(σX = f)E2]]η
= {Semantics}

[[E2]]η[X := f([[E2]]η[X := bσ])]
= {X 6∈ occ(E∈), and X ∈ occ(f)⇒ σ = σ′}

[[E2]]η[X := f([[E2]]η[X := bσ′])]
= {Semantics}

[[(σ′X = f)E2]]η

Case E1 = (σY Y = g)E ′1) We use as induction hypothesis that

[[E ′1(σX = f)E2]]η = [[(σ′X = f)E ′1E2]]η

19

Chapter 3. Parity games and Boolean Equation Systems

for arbitrary η, provided that X 6∈ occ(E1) ∪ occ(E2) and X ∈ occ(f)⇒ σ = σ′.

[[(σY Y = g)E ′1(σX = f)E2]]η
= {Semantics}

[[E ′1(σX = f)E2]]η[Y := g([[E ′1(σX = f)E2]]η[Y := bσY
])]

= {Introduce ηY
∆= η[Y := g([[E ′1(σX = f)E2]]η[Y := bσY

])]}
[[E ′1(σX = f)E2]]ηY

= {Induction hypothesis}
[[(σ′X = f)E ′1E2]]ηY

= {Semantics}
[[E ′1E2]]ηY [X := f([[E ′1E2]]ηY [X := bσ′])]

= {Definition of ηY }
[[E ′1E2]]η[Y := g([[E ′1(σX = f)E2]]η[Y := bσY

])][X := f([[E ′1E2]]ηY [X := bσ′])]
= {Induction hypothesis}

[[E ′1E2]]η[Y := g([[(σ′X = f)E ′1E2]]η[Y := bσY
])][X := f([[E ′1E2]]ηY [X := bσ′])]

= {Semantics, use that X 6∈ occ(g) ∪ occ(E ′1) ∪ occ(E2)}
[[E ′1E2]]η[Y := g([[E ′1E2]]η[Y := bσY

])][X := f([[E ′1E2]]ηY [X := bσ′])]
= {Semantics}

[[(σY Y = g)E ′1E2]]η[X := f([[E ′1E2]]ηY [X := bσ′])]
= {Definition of ηY }

[[(σY Y = g)E ′1E2]]η[X := f([[E ′1E2]]η[Y := g([[E ′1(σX = f)E2]]η[Y := bσY
])][X := bσ′])]

= {Induction hypothesis}
[[(σY Y = g)E ′1E2]]η[X := f([[E ′1E2]]η[Y := g([[(σ′X = f)E ′1E2]]η[Y := bσY

])][X := bσ′])]
= {Semantics, use that X 6∈ occ(g) ∪ occ(E ′1) ∪ occ(E2)}

[[(σY Y = g)E ′1E2]]η[X := f([[E ′1E2]]η[Y := g([[E ′1E2]]η[Y := bσY
])][X := bσ′])]

= {Semantics}
[[(σY Y = g)E ′1E2]]η[X := f([[(σY Y = g)E ′1E2]]η[X := bσ′])]

= {Semantics}
[[(σ′X = f)(σY Y = g)E ′1E2]]η

ut
This lemma can be generalised as follows.

Theorem 3.3.7. Let η be an arbitrary environment, and E0, E1 and E2 be arbitrary non-conflicting
BESs. Then

[[E0E1(σX = f)E2]]η = [[E0(σ′X = f)E1E2]]η

provided that X 6∈ occ(E1) ∪ occ(E2) and X ∈ occ(f)⇒ σ = σ′.

Proof Follows immediately from Lemma 3.3.6 and Lemma 3.14 from Mader [Mad97]. ut
Similarly, we show that if all variables that occur in an equation are defined before that

equation, we may reposition it and choose an arbitrary fixpoint symbol.

Lemma 3.3.8. Let η be an arbitrary environment, and E1 and E2 arbitrary non-conflicting BESs.
Then

[[(σX = f)E1E2]]η = [[E1(σ′X = f)E2]]η

provided that occ(f) ∩ bnd(E1E2) = ∅, and X ∈ occ(f)⇒ σ = σ′.

20

3.3. Relation between BES and games

Proof We prove this by induction to the length of E1.
Case E1 = ε). We show that

[[(σX = f)E2]]η = [[(σ′X = f)E2]]η

provided that occ(f) ∩ bnd(E2) = ∅ and X ∈ occ(f)→ σ = σ′.

[[(σX = f)E2]]η
= {Semantics}

[[E2]]η[X := f([[E2]]η[X := bσ])]
= {∀Z ∈ occ(f) : [[E2]]η[X := bσ](Z) = [[E2]]η[X := bσ′](Z)}

[[E2]]η[X := f([[E2]]η[X := bσ′])]
= {Semantics}

[[(σ′X = f)E2]]η

Case E1 = (σY Y = g)E ′1). As induction hypothesis we use

[[(σX = f)E ′1E2]]η = [[E ′1(σ′X = f)E2]]η

provided that occ(f) ∩ bnd(E ′1E2) = ∅, and X ∈ occ(f) =⇒ σ = σ′.

[[(σX = f)(σY Y = g)E ′1E2]]η
= {Semantics}

[[(σY Y = g)E ′1E2]]η[X := f([[(σY Y = g)E ′1E2]]η[X := bσ])]
= {Use: ∀Z ∈ occ(f) : η(Z) = [[(σY Y = g)E ′1E2]]η[X := bσ](Z)}

[[(σY Y = g)E ′1E2]]η[X := f(η)]
= {Semantics}

[[E ′1E2]]η[X := f(η)][Y := g([[E ′1E2]]η[X := f(η)][Y := bσY
])]

= {Use: ∀Z ∈ occ(f) : η(Z) = [[E ′1E2]]η[Y := bσY
](Z)}

[[E ′1E2]]η[X := f(η)][Y := g([[E ′1E2]]η[X := f([[E ′1E2]]η[Y := bσY
])][Y := bσY

]
= {Semantics}

[[E ′1E2]]η[X := f(η)][Y := g([[(σ′X = f)E ′1E2]]η[Y := bσY
])]

= {Introduce ηY
∆= η[Y := g([[(σ′X = f)E ′1E2]]η[Y := bσY

])]}
[[E ′1E2]]ηY [X := f(η)]

= {Use: ∀Z ∈ occ(f) : η(Z) = ηY (Z)}
[[E ′1E2]]ηY [X := f(ηY)]

= {X ∈ occ(f)⇒ σ = σ′}
[[(σ′X = f)E ′1E2]]ηY

= {Induction hypothesis (twice)}
[[E ′1(σ′X = f)E2]]η[Y := g([[E ′1(σ′X = f)E2]]η[Y := bσY

])]
= {Semantics}

[[(σY Y = g)E ′1(σ′X = f)E2]]η

ut
Lemma 3.3.8 generalises to the following theorem.

Theorem 3.3.9. Let η be an arbitrary environment, and E0, E1 and E2 arbitrary non-conflicting
BESs. Then

[[E0(σX = f)E1E2]]η = [[E0E1(σ′X = f)E2]]η
provided that occ(f) ∩ bnd(E1E2) = ∅, and X ∈ occ(f)⇒ σ = σ′.

Proof This theorem follows immediately from Lemma 3.3.8 and Lemma 3.14 from Mader
[Mad97]. ut

21

Chapter 3. Parity games and Boolean Equation Systems

Algorithms for special cases

Similar to the parity game environment, in the setting of BES some efficient algorithms for subsets
of BES are known. These could in the BES setting be used to speed up computation, provided
that the special cases can be detected efficiently.

Alternation free BES The single parity parity games, for which we know that linear time
algorithms exist, correspond to special cases of alternation free BESs, i.e. BESs E with ah(E) = 1.
To be more precise, a single parity parity game with odd parity corresponds to an alternation
free BES in SRF in which each equation has µ as fixpoint symbol. Analogously, every single
parity parity game with even parity corresponds to an alternation free BES in SRF with only ν
as fixpoint symbol. Observe that these classes of Boolean Equation Systems are always false or
true respectively.

It is known that alternation free BESs can be solved in time linear in the number of equations
and the cumulative size of the right hand sides in the BES [Mat03].

Conjunctive/Disjunctive BES Single player games, which can also be solved in linear time,
correspond to the classes of conjunctive and disjunctive Boolean Equation Systems. A parity
game in which all vertices with more than one outgoing edge belong to player Even corresponds
to a disjunctive BES, a parity game in which all vertices with more than one outgoing edge are
owned by Odd corresponds to a conjunctive BES. For this class of Boolean Equation Systems an
algorithm running in O(|E| · ah(E)) is known [GK05]. Note that technically, the equation σX = X
can be translated to a vertex v in a parity game with either v ∈ VEven or v ∈ VOdd .

SCC decomposition

As observed by Keinänen [Kei06], SCC decomposition can also be used to speed up BES solving.
Given a BES E in simple form, let Y ⊆ X be a set of propositional variables defined in E ,

furthermore ⊕ ∈ {∧,∨}, where ∧ = ∨ and ∨ = ∧. We denote with X⊕ the variables with a formula
containing ⊕ as right hand side. Note that we consider a formula without Boolean connectives
to be part of both X∧ and X∨. X⊕ is formally defined as X⊕ = {X | X ∈ bnd(E) ∧ (op(X) =
⊕ ∨ op(X) = ⊥)}. We define the attractor sets inductively as follows:

Attractor0
⊕(Y) = Y

Attractork+1
⊕ (Y) = Attractork⊕(Y)

∪ (X⊕ ∩ {Y | occ(rhs(Y, E)) ∩Attractork⊕(Y) 6= ∅})
∪ (X⊕ ∩ {Y |occ(rhs(Y, E)) ⊆ Attractork⊕(Y)})

Attractor⊕(Y) =
⋃
k∈N

Attractork⊕(Y)

Intuitively the attractor sets are the sets of variables that can be determined to have the same
solution as the variables in Y. More specifically, if all variables in Y are known to have solution
false, Attractor∧(Y) is the set of variables that can then also be determined to be false. Similarly
if all variables in Y are true all variables in Attractor∨(Y) are also true. Other combinations of
operators and sets of variables known to be true or false are less meaningful, hence we do not
consider them.

We can then optimise solving Boolean Equation Systems as follows. Compute the strongly
connected components of the dependency graph underlying the BES. Solve the equations per
terminating SCC using a BES solving algorithm. These solutions can be used as solutions in the
rest of the BES.

Next the attractors for {∨,∧} can be computed with respect to the sets of variables that have
become true and false. These attractors get the corresponding solutions and can also be removed
from the BES. The result remains a BES, but the SCCs may be altered, hence we decompose the

22

3.4. Bisimulation reduction

altered SCCs into SCCs again, resulting in a new decomposition. This process is repeated until
the entire BES has been solved.

3.4 Bisimulation reduction

A well-known strategy for combating the state space explosion problem is reducing the state space
prior to model checking. Minimising the state space is a well-known strategy that is used in this
area. In practice the time required for performing bisimulation reduction followed by executing
the model checking algorithm on the reduced state space often exceeds the running time required
for model checking the original state space.

Though they seem slightly out of place in the setting of BESs, similar techniques can be applied.
The work done in [KW09] however shows that this work is relevant. In this setting it is also shown
that for the BES setting it is in most cases beneficial to apply the reduction before solving the
BES. We will briefly summarise the relevant results.

Definition 3.4.1. Let E , E ′ be closed equation systems in SRF. A relation R ⊆ bnd(E)× bnd(E ′)
is said to be a bisimulation if, whenever XRY , then:

• rank(X) = rank(Y) and op(X) = op(Y);

• for all U ∈ occ(X), there is a V ∈ occ(Y), such that URV ;

• for all V ∈ occ(Y), there is a U ∈ occ(X), such that URV ;

We say equations for X and Y are bisimilar, denoted X ∼ Y , if there exists a bisimulation
relation R such that XRY ; we say E and E ′ are bisimilar, denoted E ∼ E ′, if their first equations
are bisimilar.

The following lemma shows that variables that are bisimulation equivalent have the same
solution.

Lemma 3.4.2. Let E be an arbitrary closed BES in SRF, and X and Y variables in bnd(E), then

X ∼ Y ⇒ [[E]](X) = [[E]](Y)

For every BES E in SRF, there is corresponding BES E/∼, such that ∀X ∈ bnd(E), Y ∈
bnd(E/∼) : X ∼ Y =⇒ [E](X) = [E/∼](Y). In other words, ∼ can be quotiented, and it preserves
solution equivalence.

In addition a variation of strong bisimulation which provides a coarser partitioning called
oblivious bisimulation can be constructed. Oblivious bisimulation can be computed in the same
running time as strong bisimulation but provides a coarser partitioning by sometimes identifying
equations with different Boolean connectives in their right hand sides. Furthermore it has more
pleasing theoretic properties when used for quotienting.

Reductions using strong bisimulation as well as oblivious bisimulation can be achieved in
O(m log n) time using the Paige-Tarjan partition refinement algorithm [PT87].

3.5 Summary

In this section we have introduced the equivalence of parity games and BESs. Furthermore we
have investigated optimisation techniques that exist in the parity game framework. We have
investigate how similar optimisations recur in the framework of BESs. Where no similar techniques
were available we have introduced new theory that accomplishes simplifications similar to the
simplifications in parity games. We have also briefly introduced bisimulation reduction on BESs
as this is a promising technique for improving the performance of BES solving.

23

Chapter 4

Overview of parity game
algorithms

In Chapter 2 we described that we are interested in solving Boolean Equation Systems for model
checking problems and other verification problems. Our experience shows that algorithms like
Gauß elimination, and approximation (see e.g. [Mad97]) are not sufficiently efficient for the more
complex model checking problems, viz. solving BESs with alternation. We therefore investigate
the algorithms for solving parity games that are known in the literature. It follows from the
previous chapter that these algorithms can also be applied to BESs in SRF, hence they might be
an improvement for solving BESs in comparison to the known algorithms for solving BESs.

In this chapter we give a brief description of the parity game algorithms known in the literature
[Lan05, FL09, McN93, Zie98, VJ00, SV00, Sch08, Jur00, JPZ06, SS98, Sch07]. Characteristic
properties like worst case running time and space bounds are given. For all global algorithms
examples are known where the algorithm achieves its worst case running time bound. For two of
the algorithms this is a fairly recent result, see [Fri09].

We use the following conventions in the running time and memory bounds. We denote the
number of vertices with n, the number of edges with e, and the number of priorities with d. All
of the algorithms that are described here are implemented in the PGSolver toolset [FL09].

The parity game algorithms can be divided into several categories. First there are some algo-
rithms based on fixpoint computation in Section 4.1. Furthermore there are some encodings of the
problem into satisfiability described in Section 4.2. Section 4.3 presents some recursive algorithms
that stem directly from constructive proofs of determinacy in the literature. Section 4.4 concludes
with one algorithm for local model checking; the others are all global algorithms. Subsequently a
summary of the algorithms with an hypothesis of the performance of the algorithms in practice is
given in Section 4.5. This hypothesis is tested by the experiments in Chapter 5.

4.1 Fixed point algorithms

The algorithms with the most favourable theoretic running time bounds are the algorithms based
on fixpoint computations. They assign a measure to each vertex, and transform that measure until
a fixpoint is reached. From the resulting measure, winning sets and strategies can be computed.

4.1.1 Small progress measures algorithm [Jur00]

The small progress measures algorithm by Jurdziński [Jur00] attaches to each vertex a tuple of
natural numbers. The values of these tuples are bound, and can be found iteratively starting from
0. When a fixpoint is reached, these tuples can be used to find a winning strategy for one of the
players. This algorithm is referred to as smallprog. The small progress measures algorithm runs
in O(d · e · (nd)d/2) time and O(d · n · log n) space. Jurdziński also gives a class of parity games

24

4.2. Satisfiability encodings

on which this algorithm indeed has this worst case running time. This algorithm is presented in
more detail in Chapter 6.

4.1.2 Strategy improvement algorithm [VJ00, SV00]

The strategy improvement algorithm by Vöge and Jurdziński [VJ00] selects an initial strategy
for player Even. Then in each step a valuation of the current strategy is computed. Using this
valuation the strategy for player Even is updated by choosing transitions that are locally optimal
for player Even. This process is iterated until a fixpoint is reached. Subsequently winning sets and
winning strategies are inferred from the final valuation. A description of an implementation of the
algorithm was presented by Schmitz and Vöge [SV00]. We refer to this algorithm as stratimprove.
The algorithm runs in O(2e · n · e) time and O(n2 + n · log d + e) space. It has been unknown
for quite some time whether this algorithm was polynomial. However, Friedmann [Fri09] showed
the existence of a class of examples where the algorithm indeed has a running time matching this
bound, showing that the algorithm is exponential.

4.1.3 Optimal strategy improvement method [Sch08]

The strategy improvement algorithm by Vöge and Jurdziński suffers from the problem that an
update that seems beneficial locally in one step, turns out to be the worst possible improvement
when considering the game globally. The optimal strategy improvement method due to Schewe
[Sch08] overcomes this problem, and guarantees in each improvement step that a globally optimal
combination of local modifications is made. Again updates are made until a fixpoint is reached.
We refer to this algorithm as optstratimprov. The algorithm runs in O(e ·(n+d

d)d · log(n+d
d)) time

and O(n2) space (observe that d < n and e 6 n2, hence the space for strategy improvement could
also be taken to be O(n2), and coincide with the space for the optimal strategy improvement
algorithm). With respect to computational complexity, this algorithm has a history similar to
the strategy improvement algorithm; it has been unknown whether the algorithm was polynomial
for some time. Along with the examples obtaining the worst case running time for strategy
improvement, Friedmann [Fri09] also showed that there are examples where the optimal variant
performs according to its worst case running time bounds.

4.2 Satisfiability encodings

All algorithms in this section are encodings of the problem of solving parity games into satisfiability,
i.e. the problem is encoded as a Boolean formula, for which a satisfying assignment needs to be
found. As the problem is known to be in NP such an encoding must exist, but the efficiency of
the encoding is not fixed.

4.2.1 Small progress measures encoding [Lan05]

The small progress measures algorithm induces a straightforward encoding of the parity game
problem into satisfiability. A description of the encoding has been presented by Lange [Lan05]
and is related to similar work in the BES setting by Keinänen [Kei06]. We refer to this algorithm
as viasat. The algorithm runs in time O(e · d) plus the running time needed for the SAT solver.
The space complexity is O(e · d) plus the space needed for the SAT solver.

4.2.2 Strategy improvement encoding [FL09]

Similar to the small progress measures algorithm, the strategy improvement algorithm attaches
a measure to each vertex. Using fixpoint computation a value of the measure is computed from
which the solution for the parity game can be inferred. This leads to a strategy improvement
encoding that uses techniques similar to the encoding for small progress measures. This variant
only occurs in the literature as an informal description by Friedmann and Lange [FL09]. We refer

25

Chapter 4. Overview of parity game algorithms

to this algorithm as stratimprsat. The algorithm runs in time O(n2) and space O(n2) plus the
time and space needed for the SAT solver.

4.2.3 Direct reduction [FL09]

The direct reduction to satisfiability formalises the existence of strategies, and requires the strate-
gies to be winning by checking whether all cycles that can be reached by following the strategy
of player Player are good for Player . No detailed description of the encoding is available, but
some hints describing the algorithm are given by Friedmann and Lange [FL09]. We refer to this
algorithm as satsolve. The algorithm runs in time O(n3) plus the running time needed for the
SAT solver. The space complexity is O(n3) plus the space needed for the SAT solver.

4.3 Recursive algorithms

The algorithms in this section are inspired by inductive proofs of determinacy in the literature,
and are characterised by their recursive nature.

4.3.1 Recursive algorithm [McN93, Zie98]

The determinacy proof for parity games as given by McNaughton [McN93] and Zielonka [Zie98]
gives rise to a recursive algorithm for solving parity games. The game is decomposed into smaller
subgames using induction on the number of priorities and the number of nodes in the game.
The base cases are single player and single parity games, where a strategy can be obtained in a
straightforward manner. In the other cases strategies are obtained out of the strategies of smaller
subgames. This algorithm is referred to as recursive. The algorithm runs in O(e · nd) time, and
requires O(e · n) space.

4.3.2 Recursive preservation algorithm [FL09]

The recursive algorithm disregards already computed information at some points during the ex-
ecution. The recursive preservation algorithm tries to preserve as much of this information as
possible. This is an optimisation by Friedmann [FL09], but the full details remain unpublished to
this date. We refer to this algorithm as recpreserve. The worst case running times and space
of the recursive algorithm are not affected by the optimisation, hence this algorithm also runs in
O(e · nd) time, and requires O(e · n) space.

4.3.3 Dominion decomposition algorithm [JPZ06]

The dominion decomposition algorithm by Jurdziński, Paterson and Zwick [JPZ06] is similar to
the recursive algorithm, and based on the same principles. Instead of immediately recursing
it first tries to identify dominions (of size d

√
ne). If there is a dominion, the attractor set is

constructed and, as the vertices in the attractor set are solved, they are removed from the game.
The remaining subgame is solved recursively. If no dominion is found, the recursive algorithm is
used. In successive steps the search for dominions is enabled again. We refer to this algorithm as
dominiondec. The dominion decomposition algorithm runs in time O(nO(

√
n)) and space O(e ·n).

Observe that the running time of this algorithm is independent of the number of priorities in the
game.

4.3.4 Big step algorithm

The big step algorithm due to Schewe [Sch07] is a refinement of the dominion decomposition
algorithm that uses a restricted version of small progress measures algorithm finding small domin-
ions. We refer to this algorithm with bigstep. The algorithm runs in time O(e · n d

3) and space
O((e+ d · log n) · n).

26

4.4. Local algorithms

4.4 Local algorithms

Whereas the algorithms we have seen so far are designed to find winners for all vertices, i.e.
provide global solutions to the model checking problem. The algorithm in this section is local.

4.4.1 Local model checking algorithm [SS98]

The local model checking algorithm by Stevens and Stirling [SS98] is based on depth-first search
with backtracking, making sure all possible choices for the losing player have been considered. We
refer to this algorithm as modelchecker. The literature does not give any sensible bounds for the
running time and space requirements of this algorithm.

4.5 Summary

To summarise all running times we list all the algorithms given in this chapter with their running
time and memory bounds in Table 4.1. The table also introduces abbreviations for the algorithms
that will be used in the presentation of our experimental results in Chapter 5.

In the setting of model checking the modal µ-calculus, we expect d to be much smaller that
n and e in general (in fact even smaller than

√
n), hence we expect the dominion decomposition

algorithm to be the algorithm with worst performance. Furthermore, the small progress mea-
sures algorithm is expected to perform better than the optimal strategy improvement algorithm,
which then again is expected to outperform the strategy improvement algorithm. Note that the
expectancy of the strategy improvement algorithm to be outperformed by the optimal strategy
improvement algorithm is also fed by the comparison between the two algorithms presented by
Schewe [Sch08]. We also expect that the recursive and recursive preservation algorithms have
performance similar to the optimal strategy improvement algorithm. The big step algorithm is
expected to outperform all other algorithms in most cases. We do not make any prediction on the
algorithms using satisfiability encoding as they are highly dependent on the performance of the
SAT solver on the specific encoding, which we consider to be out of the scope of this thesis.

Table 4.1: Running time and memory bounds of parity game algorithms
Algorithm Running time Space
viasat (vs) O(e · d) + time for SAT solver O(e · d) + space for SAT solver
stratimprsat (is) O(n2) + time for SAT solver O(n2) + space for SAT solver
satsolve (ss) O(n3) + time for SAT solver O(n3) + space for SAT solver
smallprog (sp) O(d · e · (nd)d/2) O(d · n · log n)
stratimprove (si) O(2e · n · e) O(n2 + n · log d+ e)
optstratimprove (os) O(e · (n+d

d)d · log(n+d
d)) O(n2)

recursive (re) O(e · nd) O(e · n)
recpreserve (rp) O(e · nd) O(e · n)
dominiondec (dd) O(nO(

√
n)) O(e · n)

bigstep (bs) O(e · n d
3) O((e+ d · log n) · n)

modelchecker (mc) unknown unknown

27

Chapter 5

Experimental comparison of
parity game algorithms

The large scala of parity game solving algorithms leads one to wonder about their performance
in practical model checking problems. We do not know of any large scale comparison between
parity game algorithms. It is however good to note that some experiments can be found in the
literature [Sch08]. We have also described some optimisations for solving parity games. Of these
optimisations no experiments showing their usefulness are available in the literature either.

Additionally, we show how much the algorithms suffer from an increasing number of priorities
by varying the number of priorities in a single example. This shows how the dependency on the
number of priorities of some algorithms manifests itself in practice.

We present an analyse a series of experiments that gives an insight in the practical aspects of
parity game solvers.

Setup All experiments were run on a workstation consisting of 8 Dual Core 1 AMD Opteron(tm)
processors running at 2.6 GHz, with 128GB of shared main memory, running a 64-bit Linux
distribution using kernel version 2.6.24.

All parity games have been generated using the mCRL2 toolset2 [GMWU07], by first producing
a BES, and then converting the BES to a parity game using the prototype tool paritygame that
employs the translation from Section 3.3.2. The parity games were subsequently solved with
version 2.0 of the PGSolver toolset3. The solving process was terminated after 30 minutes, as for
most cases there were algorithms that terminated well within that time limit.

For our experiments we consider model checking examples, i.e. given a model of a system and
a property expressed as a modal formula, does the model satisfy the property. In addition, we
treat the encoding of the branching bisimulation problem into PBES [CPPW07]. Both problems
are described in Chapter 2.

Specifications The set of examples that we have used consists of a number of well known
communication protocols, viz., two variants of the Alternating Bit Protocol (ABP), the Concurrent
Alternating Bit Protocol (CABP), the Sliding Window Protocol (SWP) with window sizes 2
and 3, the Bounded Retransmission Protocol (BRP), and the Onebit Protocol (OP). In these
communication protocols the number of messages is a parameter, i.e. they consider a set of
messages M = {d1, . . . dn}, in the specifications we refer to the set of messages with D. With |M |
we refer to the number of messages.

Furthermore, a number of examples from the mCRL2 toolset have been considered, viz., the
physical layer service of the 1394 protocol (1394), a chat box (Chatbox), some variants of the

1None of our experiments employ multi-core features
2See http://www.mcrl2.org, revision 5832 (trunk)
3See http://www.tcs.ifi.lmu.de/pgsolver/

28

http://www.mcrl2.org
http://www.tcs.ifi.lmu.de/pgsolver/

dining philosophers problem (Dining), a game called domineering (Domineering), a process with
states 1, . . . , 1000, where each state i has transitions to all states 1, . . . , , i + 1 (Goback), two
variants of a leader election protocol (Leader), two variants of a system for lifting trucks (Lift),
a controller for Movable Patient Support Unit (MPSU), a simple Producer-Consumer protocol
(PC), the game Snake (Snake), Milner’s well known scheduler (Scheduler), and some variants
of Petterson’s mutual exclusion protocol, modelled as a pair of trains entering a common track
(Trains).

Model checking BESs for the model checking problems have been generated using the mCRL2
tools lps2pbes and pbes2bool with on-the-fly local resolution during BES generation enabled
(observe that this is an efficient optimisation, linear in the size of the BES, and is generally
used in practice; it is similar to self-loop elimination in parity games). All of the specifications
mentioned are used in some model checking experiments.

We list the modal formulae in the syntax of [Koz83] that we have used during our experiments,
the precise combinations of formulae and specifications are described in the actual experiment
descriptions. The modal formulae in the syntax of the mCRL2 toolset are included in Appendix C.

We have checked for two desired properties in all of our examples: absence of deadlock (5.1) and
livelock (5.2). Furthermore there is a number of properties that is applicable to the communication
protocols that we have tested. First of all it is desired for communication protocols that a message
of a certain type (d1) can be received (through r1) infinitely often (5.3). The same can be checked
for all message types in the specification (5.4). We also check whether it holds that if a receive of
message is infinitely often enabled, then it is infinitely often taken (5.5). We also consider some
properties of the dining philosophers problem. We do not want philosophers to starve, i.e. for
all reachable states it should eventually be possible to perform an eat action for all philosophers
(Phil) (5.6). Also, we want philosophers to have healthy habits; they need to stop eating after
a finite amount of time, so they do not stuff themselves (5.7). The last two properties that we
consider are typical for simple board games like snake. It is desirable that a game eventually
finishes, i.e. one of the two players wins (5.8). Of course the game should be fair, hence it must
be possible both for player 1 and player 2 to win. We show the formula for player 1, player 2 is
analogous (5.9).

[true∗]〈true〉true (5.1)
[true∗]µX.[τ]X (5.2)

νX.µY.(〈r1(d1)〉X ∨ 〈¬r1(d1)〉Y) (5.3)
∀d : D.(νX.µY.(〈r1(d)〉X ∨ 〈¬r1(d)〉Y)) (5.4)

∀d : D.([true∗]νX.µY.νZ.([r1(d)]X ∧ ([r1(d)]false ∨ [¬r1(d)]Y) ∧ [¬r1(d)]Z)) (5.5)
[true∗](∀p : Phil .(µY.([¬eat(p)]Y ∧ 〈true〉true))) (5.6)
∀p : Phil .(νX.µY.[eat(p)]Y ∧ [¬eat(p)]X) (5.7)

µX.〈Player1Wins ∨ Player2Wins〉true ∨ [true]X (5.8)
µX.〈Player1Wins〉true ∨ 〈true〉X (5.9)

The parity games that correspond to these formulae have the following alternation depths. For
(5.1), (5.8) and (5.9) the alternation hierarchy is 1. Formula (5.5) has alternation hierarchy 3, and
all the others have alternation hierarchy 2.

Equivalence checking The encoding of the branching bisimulation equivalence problem yields
parity games with two priorities. The BES from which the parity games have been generated for
these problems were generated using the tools bisimulation and pbes2bool.

The rest of this chapter is structured as follows. Section 5.1 describes the influence of various
optimisations to the running time of the solving algorithms. Section 5.2 shows how increasing

29

Chapter 5. Experimental comparison of parity game algorithms

the number of priorities affects the running time of the algorithms. A comparison of all parity
game algorithms described in Chapter 4 applied to a large number of examples is presented in
Section 5.3.

5.1 Practical influence of optimisation techniques

We have investigated the influence of the optimisation techniques described in Section 3.1.1 as
follows. We consider the sliding window protocol (SWP) with |M | = 1, i.e. a single message type,
and buffers of size 2. The SWP is a well known network communications protocol; this particular
version has the same external behaviour as a buffer.

To determine the influence of optimisation techniques we check the specification for (5.1)
deadlock freedom, (5.2) absence of livelock, (5.3) whether a receive of a message is done infinitely
often, and (5.5) if a receive of a message is enabled infinitely often, then it is taken infinitely often.

5.1.1 Experiments

For each of the four modal formulae, and for each of the eleven algorithms described in Chapter 4 we
have run PGSolver with any possible combination of the optimisations as described in Section 3.1.1,
i.e. a total number of 5632 experiments. The full set of results is given in Appendix A.

5.1.2 Analysis technique

The large set of numeric data that results from this experiment is hard to interpret in its raw
form. As we are looking for the effects of optimisations on the running time of the experiments,
we have created scatter plots with on the x-axis the experiment number (determined by the
optimisations were enabled). On the y-axis the running time has been set out. Note that runs
with the lowest running time, and hence the best performance are found in the top of the graphs.
Each graph contains either 128 or 64 points, each of which identifies a run of PGSolver on a specific
problem instance (consisting of a single specification with a single modal formula) with the same
algorithm, but with different combinations of the optimisations enabled (i.e. 27 combinations of
the 7 optimisations that we have described). In the cases where only 64 measurements are depicted
decomposition into strongly connected components was always enabled. Clusters in these graphs
are courtesy of certain combinations of optimisations.

We consider an optimisation to be relevant if all runs where the optimisation is disabled show
a running time that is significantly longer than the fastest running time.

In the figures, all measurements that have been carried out are marked with +, in addition,
experiments where a certain optimisation was disabled are marked with X. Exactly which optimi-
sation was disabled is marked in the legend of each graphs.

5.1.3 Results

From the results of our experiments we observe that it is highly beneficial to enable decomposition
of the parity game into strongly connected components. A representative image with experimental
results is shown in Figure 5.1. This shows all runs, and marks the runs in which SCC decomposition
is disabled. An overview of all results for this experiment (with only the optimisations highlighted
that we consider in this section) is given in Appendix A.

In all cases where enabling SCC decomposition is not an improvement, either the running time
of the experiment is too small (< 0.5seconds) to make any reliable comparison, or enabling SCC
decomposition does not significantly degrade performance. Note that in general the parity game
that is provided as input consists of a single large SCC, hence SCC decomposition only turns
effective once part of the parity game has been solved.

30

5.1. Practical influence of optimisation techniques

Figure 5.1: Infinitely often receive for SWP, |M | = 1, using the bigstep algorithm, visualising
effect of SCC decomposition

Figure 5.2: Infinitely often receive for SWP, |M | = 1, using the strategy improvement algorithm,
visualising the effect of SCC decomposition

As can be observed from Figure 5.2, there are some other optimisations that boost the perfor-
mance of the solver. Because we have seen that SCC decomposition is always beneficial we only
consider results in which this optimisation was enabled in the rest of this section.

It turns out that disabling the solving of special (i.e. single player and single parity) games is
responsible for the other peaks in the running times. A good example in which this can be seen

31

Chapter 5. Experimental comparison of parity game algorithms

Figure 5.3: Infinitely often receive for SWP, |M | = 1, using the strategy improvement algorithm,
visualising the effect of solving special games

is Figure 5.3. The full set of results is presented in Appendix A.2. As in all cases where there are
any significant differences between running times these are accounted for by the solving of special
games, using these optimisations is advisable as well. It is good to note that enabling only one of
the two optimisations is not sufficient.

This experiment is by no means exhaustive. To make more reliable conclusions about the
effects of the optimisations one would need to extend the experiments. Given that time is limited,
and running an extensive series of experiments is extremely time consuming, combined with the
fact that we are more interested in the differences between the actual algorithms for solving parity
games, and not the optimisations on meta-level as such, we have limited ourselves to the set of
experiments described in this section.

We do feel though, that these experiments give a good indication of the optimisations that
provide the greatest performance boost in practice. Hence, based on our experiments we consider
it good practice to enable decomposition into strongly connected components, as well as the solving
of special games.

Note that for solving parity games the optimisation of priority compaction may also be bene-
ficial. However, as we generate the parity games from BESs using the ranks as priority, priority
compaction does not alter the priorities, hence from a BES solving point of view priority com-
paction is not relevant.

5.2 Influence of priorities on the performance of the algo-
rithms

The running time of most parity game algorithms depends on the number of priorities in the parity
game, as can be seen in Table 4.1. To show how this manifests itself in practice, we use the model
checking problems from the previous section, and alter their priorities; technically we alter the
translation of BESs to parity games, by assigning different priorities according to the translation
given in the next section.

32

5.2. Influence of priorities on the performance of the algorithms

5.2.1 Experiments

We again use SWP with |M | = 1 and buffer size 2. The parity games used in the previous section
have been modified such that for each priority there are at most n nodes with that priority,
where the experiment is run for n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128, 256, 512, 1024, 2048,∞} (so
17 different values of n). Note that for smaller maximal block sizes, the number of priorities in
the parity game increases. The run with n = ∞ reflects the original version of the problem, i.e.
with the ranks used as priority. For all runs SCC decomposition has been enabled, in line with
the observations from the previous section. For the other optimisations we have done runs for all
64 remaining combinations.

More formally, given a BES E , we have assign priorities to X ∈ bnd(E) according to the func-
tion limrankn(X), which is defined as limrankn(X) = limrankν,X,n(E ,m), where limrankν,X,E(n,) is
inductively defined as follows:

limrankσ,X,n(ε,m) = 0

limrankσ,X,n((σ′Y = f)E ,m) =


0 if σ = σ′ and X = Y

limrankσ,X,n(E ,m+ 1) if σ = σ′ and X 6= Y and m < n

1 + limrankσ,X,n(E , 0) if σ = σ′ and X 6= Y and m > n

1 + limrankσ′,X,n((σ′Y = f)E , 0) if σ 6= σ′

Let E be a BES. limrankσ,X,n(E ,m) assigns a priority to X, where n is the maximal number of
nodes per priority, m is the number of nodes of the same priority seen so far and σ is the last
encountered fixpoint symbol.

5.2.2 Analysis technique

In this section we investigate the change in running time of the algorithms as the number of
priorities decreases. For each of the model checking examples we have created a graph for each
of the 64 optimisation configurations. In each of these graphs we show the running times for all
algorithms for the cases of 1 to 32 nodes per priority, with on the x-axis the maximal number of
nodes with the same priority, and on the y-axis the running time. Note that runs with the lowest
running time, and hence the best performance are found in the top of the graphs Note that we
omit the measurements with a timeout or memory error, as they clutter the graphs, making them
hard to interpret. Generally the timeouts occur in the cases of 1− 4 nodes per priority.

5.2.3 Results

We first consider the results of the runs in which priority compaction is disabled. We disable
priority compaction because it counters the artificial way in which we have assigned priorities, and
we expect it to be the only optimisation that does so. Figures 5.4–5.7 show the running times
per algorithm, in which the maximal number of vertices with the same priority is restricted to 32.
This does not show any connection between the number of priorities and the running times.

It turns out that the optimisations for solving special games interfere with the original al-
gorithms in our example. This is the case because we have restricted ourselves to a very basic
specification (|M | = 1) in our experiments, where these optimisations are indeed able to solve
the problem more efficiently. Figures 5.8–5.11 we show the measurements for solving the parity
games without solving special games, and with priority compaction enabled (hence first reducing
the number of priorities). This can be compared to Figures 5.12–5.15 where we present the results
of the same experiments for the case where solving of special games as well as priority compaction
have been disabled. This properly shows the running times of the original algorithms, and the
influence of increased numbers of priorities on the performance of the algorithms.

In Figures 5.12–5.15 we see that indeed for all algorithms (except bigstep) that have a theoretic
running time dependency on the number of priorities d, this also occurs in practice (even when
the rest of the structure of the parity game remains the same). Note that the figures are restricted

33

Chapter 5. Experimental comparison of parity game algorithms

Figure 5.4: No deadlock Figure 5.5: No livelock

Figure 5.6: Infinitely often sent Figure 5.7: Infinitely often enabled then in-
finitely often taken

to a maximal running time of 200 seconds, and a maximal block size of 32, as these are the areas
where the biggest effects are observed. The full set of experiments has running times to 1800
seconds, and maximal block sizes of 2048.

The dependency on d for the bigstep algorithm does not show up in our experiments. This
can mostly be explained by the fact that the dependence on d in the bigstep algorithm is accounted
for by the use of small progress measures as sub-algorithm in dominion decomposition. Hence it
is a fair probability that the number of priorities in the sub-game that small progress measures
is called for is fairly small anyway. To show that the dependency of the bigstep algorithm on the
number of priorities indeed shows in practice, a more in-depth examination of the algorithm with
a larger collection of experiments is required.

For small progress measures the effect is not entirely clear from the figures, hence we list the
measurements in Table 5.1, to make clear that this algorithm does indeed also show the dependency
on d. Recall that the run with n =∞ denotes the parity game generated according to the original
rank function. From this table we observe that small progress measures is extremely sensitive to
changes in number of priorities when considering formulae with alternation.

The experiments from this section confirm what one might expect from the theoretic running
times. All algorithms, except for bigstep, that have a running time dependency on d in theory,
also show this dependency in practice. However, in some cases the algorithms for solving special
games can be used to prevent running into the dependency on d altogether.

34

5.2. Influence of priorities on the performance of the algorithms

Figure 5.8: No deadlock Figure 5.9: No livelock

Figure 5.10: Infinitely often sent Figure 5.11: Infinitely often enabled then in-
finitely often taken

Table 5.1: Effect of variable block size for small progress measures
Solving times

Max. block size (5.1) (5.2) (5.3) (5.5)

1 0.03 0.06 t/o t/o

2 0.03 0.07 t/o t/o

3 0.04 0.06 t/o t/o

4 0.04 0.07 t/o t/o

5 0.03 0.07 t/o t/o

6 0.04 0.07 t/o t/o

7 0.03 0.05 t/o t/o

8 0.04 0.06 t/o t/o

16 0.03 0.07 t/o t/o

32 0.03 0.06 t/o t/o

64 0.03 0.07 t/o t/o

128 0.03 0.06 t/o 593.40

256 0.03 0.07 t/o 8.28

512 0.03 0.06 t/o 1.22

1014 0.03 0.06 t/o 0.69

2048 0.03 0.06 t/o 0.56

∞ 0.03 0.06 30.34 0.52

35

Chapter 5. Experimental comparison of parity game algorithms

Figure 5.12: No deadlock Figure 5.13: No livelock

Figure 5.14: Infinitely often sent Figure 5.15: Infinitely often enabled then in-
finitely often taken

36

5.3. Comparison of parity game algorithms

5.3 Comparison of parity game algorithms

In this section we compare the algorithms described in Chapter 4 with respect to their performance
in practical model checking cases. Therefore we have taken a large number of model checking
problems from the examples in the mCRL2 toolset. The experiments are carried out on the parity
game versions of these problems, obtained through the mentioned encodings.

5.3.1 Experiments

Based on the results from the previous sections, we run all algorithms with the default optimi-
sations supplied by PGSolver. The most important reason for allowing the optimisations to be
carried out is that we want to get an indication of the performance of the algorithm for practical
model checking purposes. We are aware that the optimisations that are used might improve the
actual running times of the algorithms in some examples. In the rest of this section we provide
and analyse the results of a total of 2783 experiments.

Model checking problems We consider the examples from the introduction of this chapter,
in combination with the modal formulae described there. In Table 5.2 we give an overview of the
properties that we checked, and for which specifications these properties were checked.

Equivalence checking As input to the equivalence checking problem we used four descriptions
of well-studied communications protocols, viz., the one-place buffer (OPB), two variations of the
Alternating Bit Protocol (ABP) and the Concurrent Alternating Bit Protocol (CABP). For each
protocol we varied the size of the set of messages M that could be exchanged.

5.3.2 Analysis techniques

Because of the large number of experiments that we consider in this section, and the number of
different cases that we consider, we use a tabulated presentation of the measurements. Each of the
tables considers one specification, and lists for each of the properties, and each of the algorithms,
the time required for executing PGSolver with the algorithm. This allows for a relatively quick
inventarisation of the best and worst algorithms in each of the cases. Additionally we have created
tools to compute the number of times that an algorithm is among the best an worst performing
algorithms in order to get a better overall view. In the tables that we present, t/o denotes a
timeout of the corresponding run; the time required exceeds 30 minutes. Furthermore ME denotes
termination of PGSolver with a memory error.

Table 5.2: Combinations of modal formulae and specifications
Formula Specifications

No deadlock (5.1) All
No livelock (5.2) All
Infinitely often receive d1 (5.3) ABP, CABP, SWP
Infinitely often receive all d (5.4) ABP, CABP, SWP
Infinitely often enabled then infinitely often taken receive (5.5) ABP, CABP, SWP
No starvation (5.6) Dining
No stuffing (5.7) Dining
Eventually player 1 or player 2 (black or white) wins (5.8) Domineering, Snake
Player 1/Player 2 (Black/White) can win (5.9) Domineering, Snake

37

Chapter 5. Experimental comparison of parity game algorithms

5.3.3 Results

The full set of results corresponding to the model checking experiments are presented in Ap-
pendix B.1, the equivalence checking results can be found in Appendix B.2. In Table 5.3 the
results are shown for the SWP with buffer size two, and varying numbers of messages. The results
that we see here are representative for all measurements for model checking that we have collected.
Table 5.4 shows the results of equivalence checking experiments in which one of the two processes
involved was CABP. These results are representative for the equivalence checking experiments.

Table 5.3: SWP, buffer size 2
Solving times

|M | size vs is ss sp si os re rp dd bs mc

nodeadlock

2 71,094 0.29 0.30 0.30 0.34 0.30 0.30 0.29 0.29 0.30 0.30 0.29

3 269,286 1.38 1.38 1.37 1.47 1.38 1.38 1.37 1.38 1.38 1.38 1.39

4 728,390 3.82 3.82 3.80 4.34 3.83 3.88 3.83 3.81 3.80 3.80 3.87

5 1,614,606 10.77 8.72 8.73 9.95 8.76 8.73 8.71 8.79 8.70 8.80 8.73

6 3,135,606 19.64 19.91 21.03 24.70 19.95 19.79 21.41 20.18 21.41 22.04 20.36

7 5,540,534 ME ME ME ME ME ME ME ME ME ME ME

8 9,120,006 ME ME ME ME ME ME ME ME ME ME ME

nolivelock

2 113,286 0.51 0.50 0.50 0.62 0.50 0.52 0.50 0.52 0.51 0.49 0.51

3 426,426 2.14 2.03 2.13 2.66 2.12 2.12 2.13 2.13 2.13 2.13 2.12

4 1,149,446 6.02 6.01 5.77 6.94 5.76 5.77 5.73 5.75 5.79 5.74 5.79

5 2,542,506 13.73 13.71 13.67 16.56 13.74 15.42 13.76 13.75 13.71 13.73 13.71

6 4,930,566 ME ME ME ME ME ME ME ME ME ME ME

7 8,703,386 ME ME ME ME ME ME ME ME ME ME ME

8 14,315,526 ME ME ME ME ME ME ME ME ME ME ME

infinitely often receive d1

2 78,584 0.37 0.36 0.35 0.67 0.37 0.37 0.37 0.37 0.36 0.37 0.36

3 290,672 1.58 1.52 1.53 2.91 1.57 1.55 1.54 1.53 1.55 1.55 1.54

4 774,472 4.21 4.21 4.19 7.73 4.21 4.33 4.20 4.20 4.19 4.21 4.19

5 1,699,208 9.68 9.74 10.97 19.79 9.74 9.65 11.15 10.95 9.72 9.70 9.70

6 3,275,576 24.01 24.07 22.13 41.77 23.18 23.14 22.28 22.59 22.22 22.64 22.28

7 5,755,744 ME ME ME ME ME ME ME ME ME ME ME

8 9,433,352 ME ME ME ME ME ME ME ME ME ME ME

infinitely often receive for all d

2 157,165 0.80 0.79 0.80 1.31 0.80 0.81 0.81 0.81 0.81 0.81 0.81

3 872,008 4.83 4.83 4.83 9.58 4.98 4.88 4.83 4.72 5.01 4.90 4.83

4 3,097,875 19.04 19.13 19.01 31.21 18.87 19.13 18.97 19.09 18.98 19.96 19.01

5 8,496,022 ME ME ME ME ME ME ME ME ME ME ME

infinitely often enabled then infinitely often taken receive

2 457,833 13.10 13.42 13.55 27.90 12.75 11.76 12.05 11.69 12.17 11.75 11.83

3 2,574,406 ME ME ME ME ME ME ME ME ME ME ME

4 9,223,947 ME ME ME ME ME ME ME ME ME ME ME

5 25,444,512 ME ME ME ME ME ME ME ME ME ME ME

The observation that stands out most from these results is that small progress measures is
the slowest algorithm throughout the experiments. Even for large instances of model checking
problems (see e.g. SWP with window size 2, with |M | = 5) it seems that the overhead of the
algorithm is too large for the better theoretic complexity of the algorithm to pose an improvement
in practice.

In addition to the bad performance of small progress measures there are two interesting cases
in the equivalence checking problem, viz. ABP - CABP and ABP - OPB. We see that in these
cases some algorithms do not terminate within 30 minutes, or terminate with memory errors. 4

Other algorithms however terminate within seconds on the same problem instances. One would

4The memory errors are specific to the used version of the PGSolver toolset. A development version obtained
through personal communication with Oliver Friedmann does not suffer from these issues, with that version however,
all cases that show a memory error time out.

38

5.3. Comparison of parity game algorithms

Table 5.4: Branching bisimilarity with CABP
Solving times (bigstep)

|M | size vs is ss sp si os re rp dd bs mc

ABP1 – CABP

2 205,846 t/o ME ME 1.97 t/o t/o 1.53 2.15 ME 1.81 ME

3 334,038 t/o ME ME 3.61 t/o t/o 2.59 3.89 ME 3.06 ME

4 479,158 t/o ME ME 5.27 t/o t/o 3.83 5.36 ME 4.37 ME

5 641,206 ME ME ME 8.88 t/o t/o 6.34 7.27 t/o 5.93 ME

6 820,182 ME ME ME 10.30 t/o t/o 6.77 11.70 ME 7.77 ME

7 1,016,086 ME ME ME 11.08 t/o t/o 8.78 16.03 ME 11.03 ME

8 1,228,918 ME ME ME 13.92 ME t/o 10.26 14.32 ME 11.91 ME

9 1,458,678 ME ME ME 16.08 ME t/o 12.58 17.85 t/o 14.81 ME

10 1,705,366 ME ME ME 19.00 ME t/o 15.26 21.19 ME 17.61 ME

16 3,540,982 ME ME ME ME ME ME ME ME ME ME ME

20 5,103,286 ME ME ME ME ME ME ME ME ME ME ME

24 6,936,438 ME ME ME ME ME ME ME ME ME ME ME

28 9,040,438 ME ME ME ME ME ME ME ME ME ME ME

32 11,415,286 ME ME ME ME ME ME ME ME ME ME ME

ABP2 – CABP

2 36,492 0.13 0.14 0.14 0.20 0.14 0.13 0.13 0.14 0.13 0.13 0.14

3 55,149 0.22 0.22 0.21 0.38 0.22 0.22 0.21 0.21 0.22 0.22 0.22

4 74,094 0.30 0.30 0.29 0.44 0.29 0.30 0.29 0.29 0.30 0.30 0.29

5 218,352 1.24 8.04 8.19 1.38 1.17 1.29 1.29 1.29 1.29 1.29 1.15

6 264,414 1.48 9.61 9.17 1.93 1.55 1.51 1.37 1.37 1.53 1.52 1.52

7 311,276 1.84 11.07 10.75 2.03 1.74 1.71 1.72 1.69 1.72 1.71 1.71

8 152,754 0.68 0.67 0.67 1.02 0.68 0.67 0.68 0.68 0.68 0.68 0.67

9 173,139 0.77 0.76 0.76 1.17 0.75 0.76 0.76 0.76 0.75 0.76 0.76

10 193,812 0.91 0.90 0.90 1.38 0.95 0.91 0.95 0.91 0.91 0.90 0.90

16 323,898 1.51 1.50 1.50 2.61 1.50 1.51 1.49 1.50 1.50 1.51 1.53

20 993,282 6.06 31.56 32.26 7.00 5.62 5.70 5.53 5.54 5.55 5.52 5.51

24 1,230,330 8.70 39.57 40.12 9.01 8.23 7.57 7.85 7.53 7.44 7.34 7.45

28 1,480,178 11.05 47.22 49.41 11.71 9.74 8.82 9.63 9.72 8.80 9.68 9.61

32 1,742,826 11.46 53.56 55.56 13.19 10.81 10.71 10.65 10.93 10.71 10.51 11.04

CABP – OPB

2 12,022 0.04 0.04 0.04 0.05 0.04 0.03 0.04 0.03 0.04 0.04 0.04

3 21,470 0.08 0.08 0.08 0.10 0.07 0.07 0.07 0.07 0.08 0.08 0.08

4 33,270 0.14 0.14 0.13 0.15 0.13 0.13 0.14 0.13 0.13 0.13 0.13

5 47,422 0.19 0.22 0.21 0.26 0.20 0.22 0.22 0.21 0.20 0.21 0.22

6 63,926 0.30 0.31 0.32 0.33 0.31 0.30 0.28 0.31 0.28 0.31 0.28

7 82,782 0.37 0.37 0.37 0.43 0.37 0.36 0.37 0.37 0.39 0.37 0.37

8 103,990 0.48 0.49 0.49 0.57 0.48 0.48 0.49 0.49 0.48 0.49 0.48

9 127,550 0.60 0.61 0.66 0.71 0.61 0.61 0.61 0.61 0.60 0.61 0.61

10 153,462 0.73 0.73 0.74 0.86 0.73 0.74 0.74 0.73 0.73 0.74 0.73

16 358,326 1.78 1.77 1.86 2.31 1.77 1.77 1.78 1.80 1.78 1.78 1.77

20 541,942 2.81 2.81 2.80 3.22 2.79 2.88 2.78 2.84 2.81 2.78 2.84

24 763,190 4.26 4.27 4.12 4.84 4.12 4.19 4.19 4.05 4.11 4.33 4.00

28 1,022,070 5.56 6.09 6.15 7.07 6.11 5.47 6.10 6.06 6.11 6.16 5.53

32 1,318,582 7.89 7.82 7.66 8.69 7.72 7.51 7.81 7.55 7.54 7.60 7.58

expect that the BES for branching bisimilarity of both variants of ABP with CABP and OPB
would behave similarly, hence we have verified these results by repeating the experiment, showing
similar results. The most important difference between both parity games is the difference in size,
which can be accounted for by the different structure of the processes ABP1 and ABP2.

In order to get a better insight in the general performance of the algorithms, we show for each
algorithm the number of times that algorithm is amongst the top 10 percent, and the slowest 10
percent of the runs in a problem instance. These results are shown in Table 5.5. Note that we
always count results that are within 0.1 seconds of the slowest/fastest run.

From these results we observe that except for small progress measures, all algorithms are
relatively close with respect to the number of cases in which they perform extremely good or
bad. When looking at the absolute numbers, the recursive algorithm is the one that is among the
best 10% most often, and among the worst 10% least often, hence we may consider this the most
efficient algorithm based on our experiments.

39

Chapter 5. Experimental comparison of parity game algorithms

Table 5.5: Number of times that algorithms are within 10 percent of the best/worst algorithm
Strategy # top 10% # worst 10%
viasat 278 216
stratimprsat 285 216
satsolve 282 215
smallprog 198 296
stratimprove 286 214
optstratimprov 283 218
recursive 292 212
recpreserve 285 219
dominiondec 291 215
bigstep 277 220
modelchecker 286 215

An interesting observation that we may make based upon our experiments, is that the recur-
sive algorithm scores better than the recursive algorithm with preservation, whereas the latter is
supposed to be an optimisation of the first. A similar effect occurs when comparing the strategy
improvement algorithm with the optimal strategy improvement algorithm. For the strategy im-
provement, this difference contrasts with the results by Schewe [Sch08], where results are presented
that show that the optimal strategy improvement by far outperforms the strategy improvement
algorithm. It turns out that the difference in running times is affected by the optimisations that
were enabled for our experiments, of which we expect that similar optimisations were not used
by Schewe, but which have been shown to have dramatic effects on the running time in Sec-
tion 5.1. Table 5.6 shows the differences between having all optimisations enabled and having
all optimisations disabled, and indeed displays differences similar to the results in [Sch08] in case
optimisations are disabled. Additional differences could be caused by our choice of examples, as
we are interested in realistic model checking problems, compared to the random games that are
presented in [Sch08].

Table 5.6: SWP with window size 2 and |M | = 1, measurements from strategy improvement and
optimal strategy improvement, where optimised means that all optimisations were enabled, and
unoptimised means no optimisations were enabled.

Formula Optimised Unoptimised

stratimprov optstratimprov stratimprov optstratimprov

5.1 0.02 0.02 23.01 1.13
5.2 0.04 0.04 92.60 2.14
5.3 0.03 0.03 9.90 0.06
5.5 0.27 0.26 276.73 3.81

5.4 Conclusions

We assume that it is desired that algorithms do not show extremely bad behaviour in practice, when
there are other algorithms that do perform fairly well. This leaves only the recursive algorithm,
recursive with preservation and bigstep that should be considered for practical use. Based on our
results we recommend further investigation of the use of the recursive and bigstep algorithms for
solving BESs.

Furthermore we have seen that it pays to try to reduce the number priorities in the input, as

40

5.4. Conclusions

a large number of priorities adversely affects the time required for solving. Likewise it pays to
enable optimisations like decomposition into strongly connected components, as well as employing
optimal algorithms for solving special cases.

41

Chapter 6

Small progress measures for
Boolean Equation Systems

Despite the results in the previous section, where it was shown that small progress measures
[Jur00] is generally not the most efficient algorithm for solving parity games, we investigate the
translation of the algorithm to the BES framework. As small progress measures is used as part of
the bigstep algorithm, which was shown to be one of the most efficient algorithms, this chapter is
a first step towards applying the bigstep algorithm to BESs.

The work in this chapter also serves as a proof of concept to show that parity game algorithms
can be applied to BESs in SRF almost immediately. This opens up the way of solving BESs
using parity game algorithms without explicitly translating the BES. In addition we show that
the algorithm can be generalised to BESs with arbitrary right hand sides, hence also eliminating
the translation to SRF. Note that a parallel implementation of this algorithm has been presented
by Van de Pol and Weber [PW08]; this opens up the way to solving BESs in parallel.

6.1 Small progress measures

The small progress measures algorithm utilises a decoration of the game graph. Each vertex
is attributed with a tuple with as length the maximal priority occurring in the parity game.
Initially this is the tuple 0 with 0 in all positions. Furthermore, all even positions always remain
0, and odd positions i are limited to the number of vertices with priority i. On these tuples
a lexicographic ordering is defined such that (n0, n1, . . . , nk) ≡i (m0,m1, . . . ,ml) if and only if
(n0, n1, . . . , ni) ≡ (m0,m1, . . . ,mi) with ≡∈ {<,6,=,>, >}. If k < i or l < i positions nj with
k 6 j 6 i and mj with l 6 j 6 i are assumed to be 0. The following example illustrates the
orderings.

Example 6.1.1. (0, 1, 0, 1) =0 (0, 2, 0, 1) is equivalent to (0) = (0) and hence is true. (0, 1, 0, 1) <1

(0, 2, 0, 1) is equivalent to (0, 1) < (0, 2) and hence is also true, whereas (0, 1, 0, 1) >3 (0, 2, 0, 1) is
(0, 1, 0, 1) > (0, 2, 0, 1) is false.

Definition 6.1.2. A function %:V → Nd, with d = max({p(v) | v ∈ V }) the maximal priority in
the game, is a parity progress measure for parity graph G = (V,E, p) if for all (v, w) ∈ E we have{

%(v) >p(v) %(w) if p(v) is even
%(v) >p(v) %(w) if p(v) is odd

Consider game graph G = (V,E, p:V → N). For every i ∈ N we denote with Vi ⊆ V the set of
vertices in G with priority i. Furthermore we let ni = |Vi|, the number of vertices with priority i.

42

6.1. Small progress measures

We define the finite subset M of Nd, such that it is the finite set of d-tuples with zeros on even
positions (counting from 0), and non-negative integers bound by ni on odd positions i as follows:

M =

{
[1]× [n1 + 1]× [1]× [n3 + 1]× · · · × [1]× [nd−1 + 1] if d is even
[1]× [n1 + 1]× [1]× [n3 + 1]× · · · × [1]× [nd−2 + 1]× [1] if d is odd

In which [n] is defined formally as [n] ∆= {i | 0 6 i < n}.

Theorem 6.1.3. [Jur00] There is a parity progress measure %:V → M for parity graph G if and
only if all cycles in G are even.

The parity progress measure is still too restrictive to be used for computing a winning strategy,
as it does not allow for the expression of odd cycles, hence we add a largest element > to M , such
that M> = M ∪ {>}. Given %:V →M> and (v, w) ∈ E then Prog(%, v, w) is the least (w.r.t. 6)
m ∈M> such that {

m >p(v) %(w) if p(v) is even
m >p(v) %(w), or m = %(w) = > if p(v) is odd

A function %:V →M> is a game parity progress measure if and only if for all v ∈ V :

• if v ∈ VEven then ∃(v,w)∈E%(v) >p(v) Prog(%, v, w), i.e. %(v) >p(v) min{(v, w) ∈ E |
Prog(%, v, w)}

• if v ∈ VOdd then ∀(v,w)∈E%(v) >p(v) Prog(%, v, w), i.e. %(v) >p(v) max{(v, w) ∈ E |
Prog(%, v, w)}

Given a game parity progress measure %, we define strategy ψEven :VEven → V for player Even
such that for all v ∈ VEven , ψEven(v) = u, with %(u) = min{%(w) | vEw}. In words, ψEven is the
successor u of v which minimises %(u). The winning set ||%|| is the set {v | v ∈ V and %(v) 6= >}.

It was proven by Jurdziński that strategy ψEven computed from game parity progress measure
% is a winning strategy for player Even from ||%|| [Jur00]. Furthermore it was shown that there is
a game parity progress measure %:V →M> such that ||%|| is the winning set of player Even.

Algorithm We repeat the algorithm for solving parity games based on small progress measures
as presented by Jurdziński [Jur00]. Let v be an ordering on the set of functions of type V →M>.
Given functions µ, %:V → M>, µ v % if and only iff µ(v) 6 %(v) for all v ∈ V . As we are dealing
with finite graphs, the set of functions of type V →M> is finite. Furthermore there are greatest
and least elements, hence v defines a complete lattice. We use @ if µ v % and µ 6= %.

The algorithm uses a family of Lift(, v)() operators on V →M> for all v ∈ V . Lift(%, v)() is
defined as follows:

Lift(%, v)(u) =


%(u) if u 6= v

min(v,w)∈E Prog(%, v, w) if u = v ∈ VEven

max(v,w)∈E Prog(%, v, w) if u = v ∈ VOdd

Observe that for every v ∈ V , Lift(, v)() is v-monotonous, i.e. for %1 v %2, Lift(%1, v)() v
Lift(%2, v)(). Furthermore, a game parity progress measure can be computed by determining the
simultaneous fixpoint of all Lift(, v)() operators. This leads to Algorithm 1 by Jurdziński [Jur00].

Given parity game Γ = (V,E, p:V → N, (VEven , VOdd)). Algorithm 1 computes winning sets
for both players and a winning strategy for player Even from his winning set in O(d ·e · nd

d/2) time
and O(d · n · log n) space.

43

Chapter 6. Small progress measures for Boolean Equation Systems

Algorithm 1 ProgressMeasureLifting [Jur00]

µ← λv ∈ V.0
while µ @ λu ∈ V.Lift(µ, v)(u) for some v ∈ V do
µ := λu ∈ V.Lift(µ, v)(u)

end while

6.2 Progress measures on Boolean Equation Systems

We show that the small progress measures algorithm can also be adjusted in such a way that it
can directly be applied to BESs in SRF. In addition we show that we can generalise the algorithm
such that it can be applied to BESs with arbitrary right hand sides.

6.2.1 Progress measures on Boolean Equation Systems in SRF

Given the equivalence of BESs and parity games from Section 3.3.2, we can apply Algorithm 1
directly to a closed BES E in SRF. Instead of first translating E to a parity game, we use Es depen-
dency graph GE . We omit the proofs in this section, as they follow directly from the correspondence
between BESs and parity games, and the corresponding results in Section 6.1.

The algorithm we present attaches to each equation a tuple with as length the maximal rank
occurring in the BES. Initially this is the tuple 0. Furthermore all even positions always remain
0, and odd positions i are limited to the number of equations in the block with rank i. We use
the same lexicographic ordering as in Section 6.1.

Definition 6.2.1. A function %:bnd(E)→ Nah(E) is a parity progress measure for BES E in SRF
if for all X ∈ bnd(E) and Xi ∈ occ(rhs(X, E)) we have{

%(X) >rank(X) %(Xi) if rank(X) is even
%(X) >rank(X) %(Xi) if rank(X) is odd

Consider a BES E in SRF. For every i ∈ N we denote with Ei the block of equations in E with
rank i, i.e. Ei

∆= {σX = f | rank(X) = i}. We let ni = |Ei|, the number of equations with rank i.
We define finite subset M of Nah(E), such that it is the finite subset of ah(E)-tuples with zeros on
even positions, and non-negative integers bound by ni on odd positions i as follows:

M =

{
[1]× [n1 + 1]× [1]× [n3 + 1]× · · · × [1]× [nah(E)−1 + 1] if ah(E) is even
[1]× [n1 + 1]× [1]× [n3 + 1]× · · · × [1]× [nah(E)−2 + 1]× [1] if ah(E) is odd

Theorem 6.2.2. There is a parity progress measure for BES E in SRF if and only if all cycles in
the dependency graph of E are ν-dominated.

As before we extend the parity progress measure by adding largest element > to M , such that
M> = M∪{>}. Given %:bnd(E)→M>, X ∈ bnd(E) and Xi ∈ occ(rhs(X, E)), then Prog(%,X,Xi)
is the least m ∈M> such that{

m >rank(X) %(Xi) if rank(X) is even
m >rank(X) %(Xi), or m = %(Xi) = > if rank(X) is odd

A function %:bnd(E)→M> is a BES parity progress measure if and only if for all X ∈ bnd(E):

• if rank(X) is even then ∃Y ∈occ(rhs(X,E))%(X) >rank(X) Prog(%,X, Y),
i.e. %(X) >rank(X) min{Y ∈ occ(rhs(X, E)) | Prog(%,X, Y)}

• if rank(X) is odd then ∀Y ∈occ(rhs(X,E))%(X) >rank(X) Prog(%,X, Y),
i.e. %(X) >rank(X) max{Y ∈ occ(rhs(X, E)) | Prog(%,X, Y)}

44

6.2. Progress measures on Boolean Equation Systems

Observe that the notion of strategy in the parity game approach corresponds to a witness for
truth of a disjunctive equation in the domain of BES. Intuitively, for every propositional variable
X with op(X) = ∨ and solution true, the witness determines a disjunct that makes the valuation
of X true.

Given Xν = {X | X ∈ bnd(E) and rank(X) is even }, we define witness ων :Xν → bnd(E) for
all equations in X in Xν such that ων(X) = Y , with %(Y) = min{%(Z) | Z ∈ occ(rhs(X, E))}. In
other words, ων(X) is the variable Y in the right hand side of X which minimises %(Y).
||%|| = {X|X ∈ bnd(E) and %(X) 6= >} is the set of variables having solution true.
The following two properties follow immediately.

Corollary 6.2.3. ων computed from BES parity progress measure % is a witness for the truth of
each X in ||%||.

Corollary 6.2.4. Let E be a BES in SRF. There is a BES parity progress measure %:bnd(E)→M>

such that ||%|| is the set of variables that are true.

Algorithm We define an ordering v on the set of functions of type bnd(E) → M>. Given
functions µ, %:bnd(E) → M>, µ v % if and only if µ(X) 6 %(X) for all X ∈ bnd(E). Also we are
dealing with finite Boolean Equation Systems, hence the set of functions of type bnd(E)→M> is
finite. Additionally there are greatest and least elements, hence v defines a complete lattice.

The algorithm uses a family of Lift(, X)() operators on bnd(E)→M> for all X ∈ bnd(E) and
%:bnd(E)→M>. Lift(%,X)(), for X ∈ bnd(E) is defined as follows:

Lift(%,X)(Y) =


%(Y) if X 6= Y

minZ∈occ(rhs(X,E)) Prog(%,X,Z) if X = Y and op(X) 6= ∧
maxZ∈occ(rhs(X,E)) Prog(%,X,Z) if X = Y and op(X) = ∧

As before, for every X ∈ bnd(E), Lift(, X)() is v-monotonous. A BES parity progress measure
can be computed by determining the simultaneous fixpoint of all Lift(, X)() operators. This
results in Algorithm 2.

Algorithm 2 BESProgressMeasureLifting
µ← λX ∈ bnd(E).0
while µ @ λY ∈ bnd(E).Lift(µ,X)(Y) for some X ∈ bnd(E) do
µ← λY ∈ bnd(E).Lift(µ,X)(Y)

end while

Given the algorithm for parity games and the similarity between BESs and parity games we
find that Algorithm 2 computes the set of variables that is true in O(ah(E) · e · n

ah(E)
ah(E)/2), where

n is the number of equations and e is the cumulative size of the right hand sides in E .

6.2.2 Progress measures for Boolean Equation Systems in RF

The algorithm as presented in the previous section only works for BESs in SRF. The definitions
that are used can however be generalised elegantly such that the algorithm can be applied to BESs
in RF.

This generalisation enables the solving of arbitrary BESs without the penalty of the linear blow-
up needed for transformation to SRF. This is useful for BES in which conjuncts and disjuncts occur
mixed in a single right hand side.

BES with such right-hand sides occur e.g. in the context of process equivalence checking
problems [CPPW07], and more complex model checking problems. Recall the model checking
example from Chapter 2.

45

Chapter 6. Small progress measures for Boolean Equation Systems

Example 6.2.5. The unreliable channel can read messages from the environment, and send or
lose these next. In case the message is lost, subsequent attempts are made to send the message
until this finally succeeds. The labelled transition system, modelling this system is given below.

s0start s1 s2

r

s

τ

l

We use the formula that expresses for which states it holds whether along all paths consisting
of reading and sending actions, it is infinitely often possible to potentially never perform a send
action. The problem is formalised as follows:

φ ≡ νX.µY.(([r]X ∧ [s]X ∧ (νZ.〈s〉Z)) ∨ ([r]Y ∧ [s]Y))

Using translation of Mader [Mad97], the BES given below is obtained. The solution to Xsi answers
whether si satisfies formula φ.

(νXs0 = Ys0) (νXs1 = Ys1) (νXs2 = Ys2)
(µYs0 = (Xs1 ∧ Zs0) ∨ Ys1) (µYs1 = (Xs0 ∧ Zs1) ∨ Ys0) (µYs2 = true)
(νZs0 = Zs1) (νZs1 = Zs2) (νZs2 = Zs1)

As illustrated by this example, BES with mixed occurrences of ∧ and ∨ occur in realistic model
checking examples. To eliminate the translation to SRF we show that there indeed is a progress
measure on closed BESs with arbitrary right hand sides. We use the following property of the
translation of a BES to SRF.

Lemma 6.2.6. Given a BES E in recursive form, all cycles in E are ν-dominated if and only if
all cycles in the corresponding BES E ′ in SRF are ν-dominated.

Proof
⇒) Assume we have a BES E in which all cycles are ν-dominated. We show that all cycles

in the corresponding BES E ′ in SRF (obtained by applying the translation from Section 3.2) are
ν-dominated.

We show that the translation does not introduce µ-dominated cycles in E ′. We assume that
there is a µ-dominated cycle in E ′. All edges introduced by the translation to SRF are of the form
X → X1, Xi → Xi+1 or Xn → Y in E ′. In E there were edges X → Y . Furthermore we know
that each Xi has got exactly one incoming edge. Hence, if there is a cycle Z → · · · → X → X1 →
· · · → Xn → Y → · · · → Z, then there originally was a cycle Z → · · · → X → Y → · · · → Z.
Because rank(Xi) = rank(X) for all i, the original cycle must also be µ-dominated, which is a
contradiction to the assumption that E does not contain µ-dominated cycles.
⇐) Assume we have a BES E ′ in simple form, which is the result of normalizing a BES, in

which all cycles are ν-dominated. We need to show that in any BES E of which E ′ is the simple
form equivalent all cycles are ν-dominated. The proof of this direction follows a similar line of
reasoning to the other case. Assume there is a µ-dominated cycle in E , and show that than there
also must have been a µ-dominated cycle in E ′, deriving a contradiction. ut

Theorem 6.2.7. There is a progress measure for a BES E if and only if all cycles in dependency
graph GE of E are ν-dominated.

Proof Follows directly from Lemma 6.2.6 and Theorem 6.2.2. ut
We extend the definitions of Prog(, ,) and Lift(,)() from Section 6.2 such that they can

be applied to BESs in RF. Given %:X → M> and propositional formula f , then Prog(%,X, f) is
the least m ∈M> such that{

m >rank(X) ϕ(%, f) if rank(X) is even
m >rank(X) ϕ(%, f) if rank(X) is odd

46

6.2. Progress measures on Boolean Equation Systems

where ϕ(%, f) is defined inductively as follows:

ϕ(%, f) =


%(Y) if f = Y

min{ϕ(%, fi)} if f =
∨
i fi

max{ϕ(%, fi)} if f =
∧
i fi

A function %:X →M> is a BES progress measure if and only if for all X in X :
%(X) >rank(X) Prog(%,X, Y) if rhs(X, E) = Y

∃fi%(X) >rank(X) Prog(%,X, fi) if rhs(X, E) =
∨
i fi

∀fi%(X) >rank(X) Prog(%,X, fi) if rhs(X, E) =
∧
i fi

By ||%|| we denote the set {X ∈ X |%(X) 6= >}.
The family of lifting functions Lift(, X)() is extended to the general setting as follows:

Lift(%,X)(Y) =


%(Y) if X 6= Y

Prog(%,X,Z) if X = Y and rhs(X, E) = Z

min{Prog(%,X, fi)} if X = Y and rhs(X, E) =
∨
i fi

max{Prog(%,X, fi)} if X = Y and rhs(X, E) =
∧
i fi

Observe that in case the BES is in SRF, the definitions given in this section are equivalent to
the definitions from Section 6.2. We show this in the following example.

Example 6.2.8. Consider an equation σX = Y , and a progress measure %, then Lift(%,X)(X)
equals Prog(%,X, Y), which is in turn the least m such that m >rank(X) ϕ(%, Y), which is the
least m such that m >rank(X) %(Y) according to the definition of ϕ. Similar observations hold for
conjunctive and disjunctive equations, using the fact that no mixing of conjuncts and disjuncts
occurs in a single equation.

It is not at all clear whether a witness can be computed directly from the progress measure in
its general form as provided in this section. Corresponding results are therefore absent. Note that
this does not form a restriction, as we are generally interested in the solution of the BES, and not
its witness. It does, however, form an inconvenience, as the witness may be used by the user in
convincing himself of the correctness of the solution.

We show the correctness of the generalised algorithm by showing that the progress measure
computed for a BES in RF is the same as the progress measure computed for the BES obtained
through a naive translation to SRF.

For the sake of argument we consider the following translation to SRF. Let E be a BES in
RF. We define the augmented BES Eaug as follows. For each equation σX = f ∨ g, where g is a
subformula containing ∧ as top-level symbol we introduce an equation νXg = g at the end of E .
Note thatXg is fresh. This transformation is applied recursively to the newly introduced equations.
A similar transformation is done for f , if f is a subformula containing ∧ as top-level symbol. The
translation for equations σX = f∧g with g a subformula with ∨ as top level symbol is similar. The
BES Eaug hence is the BES E with subformulae with non-trivial alternations appended in a large
block of greatest fixpoint equations. Note that E and Eaug have the same solutions for X ∈ bnd(E),
i.e. for all X ∈ bnd(E) it holds that [[E]](X) = [[Eaug]](X). Furthermore [[Eaug]] ≡ [[ESRF]]. Now
define the corresponding BES in SRF ESRF to be Eaug where the occurrences of formulae g for
which a corresponding equation νXg = g was introduced are replaced by Xg. We show that Eaug
and ESRF have the same progress measure in the fixed point.

Lemma 6.2.9. Let Eaug be an augmented BES, let ESRF be the corresponding BES in SRF.
Consider progress measures %′, which is a fixpoint of Lift on Eaug , and %, which is a fixpoint of
Lift on ESRF . So, %′ and % are the solutions of applying GeneralBESProgressMeasures on the
corresponding BESs. It holds that % = %′.

47

Chapter 6. Small progress measures for Boolean Equation Systems

Proof We prove that % = %′ by showing that backwards substitution of augmenting equations in
ESRF preserves %. Let a substitution step be defined as taking the last equation σX = f in the
BES, and applying the substitution X := f to the last occurrence of X in the right hand side
in the BES. If X does not occur in any right hand side we consider the equation preceding X as
substitution.

Let E iSRF be ESRF with i substitution steps applied, similarly, %i is the progress measure that
results of applying the algorithm on E iSRF . We prove preservation of % by backwards substitution
with induction on the number of substitution steps n, i.e. we show that for all values of n it holds
that %n = %. The base case, with 0 substitution steps is trivial, as E0

SRF = ESRF , hence %0 = %.
Now we assume induction hypothesis %n = %. We need to show that %n+1 = %. We show this
for an equation with ∧ as top-level symbol. The case with ∨ as top-level symbol is analogous.
Without loss of generality assume that EnSRF is of the form

E0(σX = f ∧Xg∨h)E1(νXg∨h = g ∨ h)E2

A single application of the substitution Xg∨h := g ∨ h leads to the following BES En+1
SRF

E0(σX = f ∧ (g ∨ h))E1(νXg∨h = g ∨ h)E2

Observe that this substitution can only change the progress measure for X. The lemma
therefore follows if we can show that %n+1(X) = %n(X). That this equivalence holds is shown in
the following derivation.

%n+1(X)
= { %n+1 is a fixed point for Lift }

Lift(%n+1, X)(X)
= {Definition of Lift}

max(Prog(%n+1, X, f),Prog(%n+1, X, g ∨ h))
= {Definition of Prog}

max(Prog(%n+1, X, f), ϕ(%n+1, g ∨ h))
= {Definition of ϕ}

max(Prog(%n+1, X, f),min(ϕ(%n+1, g), ϕ(%n+1, h)))
= {Definition of ϕ}

max(Prog(%n+1, X, f),min(Prog(%n+1, Xg∨h, g),Prog(%n+1, Xg∨h, h)))
= {Definition of Lift}

max(Prog(%n+1, X, f), Lift(%n+1, Xg∨h)(Xg∨h))
= {Definition of Prog}

max(Prog(%n+1, X, f),Prog(%n+1, Xg∨h, g ∨ h))
= {%n+1 is a fixed point}

max(Prog(%n+1, X, f),Prog(%n+1, X, g ∨ h))
= {%n+1(Xg∨h) = %n(Xg∨h)}

max(Prog(%n, X, f),Prog(%n, X, g ∨ h))
= {Definition of Lift}

Lift(%n, X)(X)
= { %n is a fixed point for Lift }

%n(X)

As noted, the proof for equations with ∨ as top-level symbol is analogous, and the lemma follows.
ut

48

6.3. Summary

Observe that augmenting a BES does not alter the progress measure for already existing
equations (as the newly added equations are not used in the rest of the BES). Furthermore, given
that m equations are introduced in augmenting, EmSRF = Eaug , and the proof shows that therefore
%m = %′. We may thus apply the generalised version of small progress measures to a BES in RF.

The following lemma shows that the solution of a BES in RF can be characterised using the
progress measure.

Lemma 6.2.10. Let E be a BES in RF. There is a BES progress measure %:bnd(E)→ M> such
that ||%|| is the set of propositional variables that are true in E .

Proof Follows directly from Lemma 6.2.9 and Theorem 6.2.2. ut
Using these definitions, we can apply the same algorithm as in Section 6.2.

Algorithm 3 GeneralBESProgressMeasureLifting
µ← λX ∈ bnd(E).0
while µ @ λY ∈ bnd(E).Lift(µ,X)(Y) for some X ∈ bnd(E) do
µ← λY ∈ bnd(E).Lift(µ,X)(Y)

end while

Observe that in general the algorithm in this section runs on BESs with a smaller number of
equations, and the sum of the sizes of the right hand sides will be smaller. Also the time required
for each step in the algorithm remains the same. The algorithmic complexity of the algorithm is
the same as the algorithm for BESs in SRF, but in general the constants will be smaller, and the
algorithm can be expected to perform better.

Theorem 6.2.11. Given a BES E , with n equations, and cumulative size e of its right hand sides,
Algorithm 3 computes the solution of E in time O(ah(E) · e · n

ah(E)
ah(E)/2).

6.3 Summary

We have demonstrated that the small progress measures algorithm can be applied to BESs in SRF
straightforwardly. In addition we have shown that the algorithm can be generalised such that it
can be applied to BESs in RF. This results in an algorithm for solving BESs that does not require
preprocessing involving a linear blow-up of the BES. Note that in itself this is not a novelty–BES
algorithms like Gauß elimination can also be applied to bes with arbitrary right hand sides–but it
does indicate that the performance of parity game algorithms might be improved when we apply
them to BESs. Furthermore the generalisation of small progress measures indicates that it may be
possible to generalise other parity game algorithms in the BES framework. The most interesting
algorithm to consider in that respect is bigstep, which was demonstrated to be efficient in the
previous chapter, and uses small progress measure as subroutine.

49

Chapter 7

Conclusions

We have investigated algorithms and techniques to improve the performance of solving parity
games. It turns out that performing decomposition into strongly connected components prior
to solving, as well as solving special cases with specialised algorithms give significant improve-
ments. We have also shown that in practice the recursive and bigstep algorithms show the best
performance. It was demonstrated that there is room for generalisation of the algorithms when
applied to Boolean Equation Systems by showing a generalisation of the small progress measures
algorithm.

We have presented the connection between Boolean Equation Systems and parity games in
detail. Investigating the equivalence between both frameworks gives rise to a more thorough
understanding of BESs. As a result of this we have presented some new manipulations on BESs,
as well as some meta-techniques that can be used in all solvers that work on BESs in SRF.

In addition we have compared a large number of algorithms for solving parity games, using
concrete model checking examples as input. Furthermore the effect of the meta-techniques for
solving parity games is investigated, as well as the effect of an increasing number of priorities on
the running time of the algorithms.

It was shown that decomposition of a parity game into strongly connected components and the
solving of special cases using an efficient tailor-made algorithm vastly improve the running time
of all algorithms. The optimisations also decrease the relative differences between the various
algorithms, hence diminishing the dramatic difference between algorithms as it occurs in the
literature.

The effect seen when increasing the number of priorities in the parity games on the running
time coincides with the expectation based on the theoretic worst case running times. Our results
show that indeed the algorithms that depend on the number of priorities show this dependency
in practice, but only as long as optimisations are switched off.

The literature provides hardly any experiments concerning the running times of parity game
solving algorithms. Furthermore all experiments that are available treat pathologic examples in-
stead of concrete model checking examples. Therefore this work may serve as a basis for further
development of the area of parity game solving, and even model checking in general. The most
important and somewhat unsettling conclusion of the experiments is that even though a tremen-
dous amount of work has been carried out to find more efficient algorithms for solving parity
games during the past decades, in general they are all beaten by one of the most straightforward
algorithms based on an elegant determinacy proof. On the other hand it is shown by the results
concerning the bigstep algorithm that combining different algorithms may lead to good results as
well.

As we have looked at these parity game algorithms with an application to Boolean Equation
Systems in the back of our minds, we have shown that parity game algorithms can straightfor-
wardly be applied to BESs in standard recursive form by transforming the small progress measures
algorithm to this framework. Additionally we have demonstrated how this algorithm can be gen-
eralised to be applicable to BESs with arbitrary right hand sides.

50

Future work The choice for concentrating on the small progress measures algorithm for showing
the feasibility of applying parity game algorithm to BESs, and generalisation of the resulting
algorithm was made, based on its appealing theoretic worst-case running times. Although the
algorithm was shown not to be the most effective in practice, it is also part of the bigstep algorithm
which was successful, hence the generalisation may serve as a first step towards generalising the
full bigstep algorithm.

We think it is an interesting exercise to implement the most efficient algorithms, the recursive
algorithm and the bigstep algorithm, directly in the BES framework, hence to eliminate the
transformation from BES to parity game. That also paves the way for investigating generalisation
of these algorithms to work on arbitrary BESs, similar to what we have demonstrated with small
progress measures. Note that a lot of verification problems give rise to systems in standard form.
However, the class of BESs generated for e.g. branching bisimilarity is typically not in standard
form, i.e. conjuncts and disjuncts occur mixed in a single right hand side. Therefore, generalising
the algorithms in the framework of BESs will probably pose an improvement for this class of
systems.

Implementations in the BES framework of both the original algorithms, and possible gener-
alised versions could be compared to the experiments we have presented. This should at least
make it possible to compare the performance of the PGSolver toolset with other implementations.
Furthermore the effect of the generalisation of the algorithms on the running times could be shown.

Besides investigating efficient algorithms for solving BESs and parity games, reduction tech-
niques for BESs based on equivalence (weaker than strong bisimulation and oblivious bisimulation)
should be further investigated. Furthermore similar techniques on the symbolic level of Parame-
terized Boolean Equation Systems (PBESs) should be investigated.

51

Bibliography

[BC04] Y. Bertot and P. Castéran. Interactive theorem proving and program development;
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EACTS Series. 2004.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst., 8(2):244–263, 1986.

[CPPW07] T. Chen, B. Ploeger, J.v.d. Pol, and T.A.C. Willemse. Equivalence checking for
infinite systems using parameterized boolean equation systems. In Proceedings of
the 18th International Conference on Concurrency Theory (CONCUR 2007), volume
4703 of LNCS, pages 120–135. Springer, 2007.

[EJ91] E.A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In
SFCS ’91: Proceedings of the 32nd annual symposium on Foundations of computer
science, pages 368–377, Washington, DC, USA, 1991. IEEE Computer Society.

[EL86] E. A. Emerson and C.L. Lei. Efficient model checking in fragments of the propositional
mu-calculus. In Proceedings of LICS 1986, pages 267–278. IEEE Computer Society,
1986.

[FL09] O. Friedmann and M. Lange. The PGSolver collection of parity game solvers. Tech-
nical report, Institut für Informatik, Ludwig-Maximilians-Universität München, Ger-
many, 2009.

[Fri09] O. Friedmann. A super-polynomial lower bound for the parity game strategy im-
provement algorithm as we know it. 2009. To appear in LICS2009; available from
the author’s website http://www.tcs.informatik.uni-muenchen.de/~friedman/.

[GA94] M.J.C. Gordon and A.M.Pitts. The HOL logic and system. In J. Bowen, editor,
Towards Verified Systems, volume 2 of Real-Time Safety Critical Systems, chapter 3,
pages 49–70. Elsevier Science B.V., 1994.

[GH82] Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC ’82: Proceed-
ings of the fourteenth annual ACM symposium on Theory of computing, pages 60–65,
New York, NY, USA, 1982. ACM.

[GK05] J.F. Groote and M. Keinänen. A sub-quadratic algorithm for conjunctive and disjunc-
tive boolean equation systems. In Theoretical Aspects of Computing – ICTAC 2005,
volume 3722 of Lecture Notes in Computer Science, pages 532–545, Berlin/Heidelberg,
2005. Springer.

[GLMS07] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. Cadp2006: A toolbox for the
construction and analysis of distributed processes. In Proceedings of the 19th Inter-
national Conference on Computer Aided Verification CAV2007, 2007.

52

http://www.tcs.informatik.uni-muenchen.de/~friedman/

BIBLIOGRAPHY

[GM99] J.F. Groote and R. Mateescu. Verification of temporal properties of processes in a
setting with data. In A.M. Haeberer, editor, AMAST’98, volume 1548 of Lecture
Notes in Computer Science, pages 74–90. Springer, 1999.

[GMWU07] J.F. Groote, A. Mathijssen, M. v. Weerdenburg, and Y.S. Usenko. The formal speci-
fication language mcrl2. In Proceedings of Methods for Modelling Software Systems,
volume 06351 of Dagstuhl Seminar Proceedings, 2007.

[GP08] J.F. Groote and B. Ploeger. Switching graphs. Electron. Notes Theor. Comput. Sci.,
223:119–135, 2008.

[GW05] J.F. Groote and T.A.C. Willemse. Parameterised boolean equation systems. The-
oretical Computer Science, 343(3):332–369, 2005. Formal Methods for Components
and Objects.

[JPZ06] M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm
for solving parity games. In SODA ’06: Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm, pages 117–123, New York, NY, USA, 2006.
ACM.

[Jur00] M. Jurdziński. Small progress measures for solving parity games. In STACS ’00: Pro-
ceedings of the 17th Annual Symposium on Theoretical Aspects of Computer Science,
pages 290–301, London, UK, 2000. Springer-Verlag.

[Kei06] M.K. Keinänen. Solving Boolean Equation Systems. PhD thesis, Helsinki University
of Technology, Department of Computer Science and Engineering, April 2006.

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27(3):333–354, 1983.

[KW09] J. Keiren and T.A.C. Willemse. Bisimulation minimisations for boolean equation
systems, 2009. Submitted for publication. To appear as technical report.

[Lan05] M. Lange. Solving parity games by a reduction to sat. In In Proc. of the Workshop
on Games in Design and Verification, GDV05, 2005.

[Mad97] A. Mader. Verification of Modal Properties Using Boolean Equation Systems. PhD
thesis, Technische Universität München, 1997.

[Mar75] D.A. Martin. Borel determinacy. The Annals of Mathematics, 102(2):363–371, 1975.

[Mat97] R. Mateescu. Vérification des propriétés temporelles des programmes parallèles. PhD
thesis, INRIA Rhne-Alpes, 1997.

[Mat03] R. Mateescu. A generic on-the-fly solver for alternation-free boolean equation systems.
In TACAS, volume 2619 of Lecture Notes in Computer Science, pages 81–96. Springer,
2003.

[McN93] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied
Logic, 65(2):149–184, 1993.

[ORS92] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, jun 1992. Springer-Verlag.

[Pau86] L.C. Paulson. Natural deduction as higher-order resolution. J. Log. Program.,
3(3):237–258, 1986.

53

BIBLIOGRAPHY

[Pnu77] A. Pnueli. The temporal logic of programs. In Foundations of Computer Science,
1977., 18th Annual Symposium on, pages 46–57, 11 1977.

[PT87] R. Paige and R.E. Tarjan. Three partition refinement algorithms. Siam J. Comput.,
16(6), 1987.

[PW08] J. v.d. Pol and Michael Weber. A multi-core solver for parity games. In I. Cerna and
G. Lüttgen, editors, Proceedings of PDMC 2008, volume 220, pages 19–34. Elsevier
Science Publishers B. V., 2008.

[RW09] M.A. Reniers and T.A.C. Willemse. Analysis of boolean equation systems through
structure graphs, 2009. Submitted for publication.

[Sch07] S. Schewe. Solving parity games in big steps. In FSTTCS 2007: Foundations of
Software Technology and Theoretical Computer Science, volume 4855, pages 449–460,
Berlin/Heidelberg, 2007. Springer.

[Sch08] S. Schewe. An optimal strategy improvement algorithm for solving parity and payoff
games. In Computer Science Logic, volume 5213, pages 369–384, Berlin/Heidelberg,
2008. Springer.

[SS98] P. Stevens and C. Stirling. Practical model-checking using games. In TACAS ’98:
Proceedings of the 4th International Conference on Tools and Algorithms for Con-
struction and Analysis of Systems, pages 85–101, London, UK, 1998. Springer-Verlag.

[Sti95] C. Stirling. Local model checking games. In CONCUR ’95: Proceedings of the 6th
International Conference on Concurrency Theory, pages 1–11, London, UK, 1995.
Springer-Verlag.

[Sti96] C. Stirling. Model checking and other games. Notes for Mathfit Workshop on Finite
Model Theory, University of Wales Swansea, 1996.

[SV00] D. Schmitz and J. Vöge. Implementation of a strategy improvement algorithm for
finite-state parity games. In CIAA, pages 263–271, 2000.

[Use02] Y.S. Usenko. Linearisation in µCRL. PhD thesis, Eindhoven University of Technol-
ogy, December 2002.

[vDPW] A. van Dam, B. Ploeger, and T.A.C. Willemse. Instantiation for parameterised
boolean equation systems.

[VJ00] J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving
parity games. In CAV, pages 202–215, 2000.

[Zie98] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

54

Appendix A

Experimental results for
optimisation techniques

In this chapter we present the results of our experiments showing the effects of various optimisation
techniques in solving parity games, applied to concrete model checking examples. In Section A.1
we show the effects of decomposition into strongly connected components. In Section A.2 we show
the influence of solving special games, assuming that SCC decomposition is always enabled.

The large set of numeric data that results from this experiment is hard to interpret in its raw
form. As we are looking for the effects of optimisations on the running time of the experiments,
we have created scatter plots where on the x-axis the experiment number (determined by the
optimisations were enabled) and on the y-axis the running time have been set out. Note that runs
with the lowest running time, and hence the best performance are found in the top of the graphs.
Each graph contains either 128 or 64 points, each of which identifies a run of PGSolver on a specific
problem instance (consisting of a single specification with a single modal formula) with the same
algorithm, but with different combinations of the optimisations enabled (i.e. 27 combinations of
the 7 optimisations that we have described). In the cases where only 64 measurements are depicted
decomposition into strongly connected components was always enabled. Clusters in these graphs
are courtesy of certain combinations of optimisations.

We consider an optimisation to be relevant if all runs where the optimisation is disabled show
a running time that is significantly longer than the fastest running time.

In the figures, all measurements that have been carried out are marked with +, in addition,
experiments where a certain optimisation was disabled are marked with X. Exactly which optimi-
sation was disabled is marked in the legend of each graphs.

Note that a value of −1 in the graphs means that PGSolver did not terminate within 30
minutes, and −2 indicates that PGSolver terminated with a memory error.

A.1 SCC Decomposition

In this section we present an overview of the measurements that establish the usefulness of SCC
decomposition in the process of solving parity games, using various algorithms. In each of the
plots the cases where SCC decomposition is disabled have been marked, showing that overall it is
advisable to enable SCC decomposition.

This section has been split up according to the modal properties that have been tested.

A.1.1 Deadlock freedom

55

Chapter A. Experimental results for optimisation techniques

Figure A.1: Viasat Figure A.2: Stratimprsat

Figure A.3: Satsolve Figure A.4: Small progress measures

Figure A.5: Strategy improvement Figure A.6: Optimal strategy improvement

56

A.1. SCC Decomposition

Figure A.7: Recursive Figure A.8: Recursive preservation

Figure A.9: Dominion decomposition Figure A.10: Bigstep

Figure A.11: Model checker

57

Chapter A. Experimental results for optimisation techniques

A.1.2 Livelock freedom

Figure A.12: Viasat Figure A.13: Stratimprsat

Figure A.14: Satsolve Figure A.15: Small progress measures

Figure A.16: Strategy improvement Figure A.17: Optimal strategy improvement

58

A.1. SCC Decomposition

Figure A.18: Recursive Figure A.19: Recursive preservation

Figure A.20: Dominion decomposition Figure A.21: Bigstep

Figure A.22: Model checker

A.1.3 Infinitely often receive

59

Chapter A. Experimental results for optimisation techniques

Figure A.23: Viasat Figure A.24: Stratimprsat

Figure A.25: Satsolve Figure A.26: Small progress measures

Figure A.27: Strategy improvement Figure A.28: Optimal strategy improvement

60

A.1. SCC Decomposition

Figure A.29: Recursive Figure A.30: Recursive preservation

Figure A.31: Dominion decomposition Figure A.32: Bigstep

Figure A.33: Model checker

61

Chapter A. Experimental results for optimisation techniques

A.1.4 Infinitely often enabled, then infinitely often taken

Figure A.34: Viasat Figure A.35: Stratimprsat

Figure A.36: Satsolve Figure A.37: Small progress measures

Figure A.38: Strategy improvement Figure A.39: Optimal strategy improvement

62

A.2. Solving special games

Figure A.40: Recursive Figure A.41: Recursive preservation

Figure A.42: Dominion decomposition Figure A.43: Bigstep

Figure A.44: Model checker

A.2 Solving special games

In order to improve the understanding of the effects of optimisations other than SCC decomposi-
tion, we present data where SCC decomposition is always enabled in this section. Furthermore,
we show where one of the special game solving (single player or single parity) is enabled.

63

Chapter A. Experimental results for optimisation techniques

A.2.1 Deadlock freedom

Figure A.45: Viasat Figure A.46: Stratimprsat

Figure A.47: Satsolve Figure A.48: Small progress measures

Figure A.49: Strategy improvement Figure A.50: Optimal strategy improvement

64

A.2. Solving special games

Figure A.51: Recursive Figure A.52: Recursive preservation

Figure A.53: Dominion decomposition Figure A.54: Bigstep

Figure A.55: Model checker

A.2.2 Livelock freedom

65

Chapter A. Experimental results for optimisation techniques

Figure A.56: Viasat Figure A.57: Stratimprsat

Figure A.58: Satsolve Figure A.59: Small progress measures

Figure A.60: Strategy improvement Figure A.61: Optimal strategy improvement

66

A.2. Solving special games

Figure A.62: Recursive Figure A.63: Recursive preservation

Figure A.64: Dominion decomposition Figure A.65: Bigstep

Figure A.66: Model checker

67

Chapter A. Experimental results for optimisation techniques

A.2.3 Infinitely often receive

Figure A.67: Viasat Figure A.68: Stratimprsat

Figure A.69: Satsolve Figure A.70: Small progress measures

Figure A.71: Strategy improvement Figure A.72: Optimal strategy improvement

68

A.2. Solving special games

Figure A.73: Recursive Figure A.74: Recursive preservation

Figure A.75: Dominion decomposition Figure A.76: Bigstep

Figure A.77: Model checker

A.2.4 Infinitely often enabled, then infinitely often taken

69

Chapter A. Experimental results for optimisation techniques

Figure A.78: Viasat Figure A.79: Stratimprsat

Figure A.80: Satsolve Figure A.81: Small progress measures

Figure A.82: Strategy improvement Figure A.83: Optimal strategy improvement

70

A.2. Solving special games

Figure A.84: Recursive Figure A.85: Recursive preservation

Figure A.86: Dominion decomposition Figure A.87: Bigstep

Figure A.88: Model checker

71

Appendix B

Experimental results for
comparison of parity game
algorithms

In this appendix we we present the full set of results that were carried out to compare the algo-
rithms as described in Chapter 4 with respect to their performance in practical model checking
cases. The analysis was described in Section 5.3.

Because of the large number of experiments that we consider in this section, and the number of
different cases that we consider, we use a tabulated presentation of the measurements. Each of the
tables considers one specification, and lists for each of the properties, and each of the algorithms,
the time required for executing PGSolver with the algorithm. This allows for a relatively quick
inventarisation of the best and worst algorithms in each of the cases. Additionally we have created
tools to compute the number of times that an algorithm is among the best an worst performing
algorithms in order to get a better overall view. In the tables that we present, t/o denotes a
timeout of the corresponding run; the time required exceeds 30 minutes. Furthermore ME denotes
termination of PGSolver with a memory error.

B.1 Model checking

This section lists the measurements of the algorithms on model checking examples.

72

B.1. Model checking

Table B.1: abp
Solving times

|M | size vs is ss sp si os re rp dd bs mc

nodeadlock

2 172 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 254 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 336 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 664 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 1320 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 1976 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

32 2632 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00

nolivelock

2 394 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 584 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 774 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 1534 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 3054 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 4574 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

32 6094 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.02

infinitely often receive d1

2 178 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 260 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 342 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 670 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 1326 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 1982 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

32 2638 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00

infinitely often receive for all d

2 353 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 772 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 1355 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 5327 0.01 0.01 0.01 0.03 0.02 0.01 0.01 0.02 0.02 0.01 0.02

16 21143 0.12 0.11 0.10 0.19 0.12 0.11 0.11 0.11 0.12 0.11 0.10

24 47455 0.25 0.25 0.25 0.41 0.25 0.33 0.33 0.33 0.35 0.36 0.25

32 84263 0.66 0.50 0.50 1.09 0.50 0.64 0.50 0.50 0.49 0.49 0.50

infinitely often enabled then infinitely often taken receive

2 1417 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 3160 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

4 5595 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02

8 22255 0.17 0.18 0.18 0.31 0.17 0.18 0.16 0.18 0.18 0.17 0.16

16 88791 1.46 1.47 1.46 2.68 1.35 1.47 1.36 1.47 1.49 1.49 1.38

24 199615 5.34 6.14 5.33 11.67 5.75 5.74 6.14 6.16 5.72 5.77 5.73

32 354727 20.84 27.36 17.94 36.44 18.88 17.95 17.92 19.19 18.99 17.93 17.94

73

Chapter B. Experimental results for comparison of parity game algorithms

Table B.2: abp bw
Solving times

|M | size vs is ss sp si os re rp dd bs mc

nodeadlock

2 225 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 333 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 441 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 873 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 1737 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 2601 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

32 3465 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

nolivelock

2 516 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 765 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 1014 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 2010 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 4002 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01

24 5994 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01

32 7986 0.02 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.02

infinitely often receive d1

2 233 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 341 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 449 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 881 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 1745 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 2609 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01

32 3473 0.01 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.01 0.01

infinitely often receive for all d

2 463 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 1015 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 1783 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 7015 0.02 0.02 0.03 0.05 0.02 0.02 0.02 0.02 0.03 0.03 0.03

16 27847 0.15 0.15 0.15 0.26 0.15 0.16 0.15 0.15 0.14 0.16 0.16

24 62503 0.36 0.37 0.37 0.58 0.37 0.37 0.37 0.36 0.38 0.36 0.36

32 110983 0.66 0.65 0.66 1.06 0.66 0.65 0.67 0.65 0.66 0.67 0.67

infinitely often enabled then infinitely often taken receive

2 1861 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 4150 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

4 7347 0.03 0.03 0.03 0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03

8 29215 0.22 0.24 0.22 0.43 0.24 0.25 0.25 0.24 0.22 0.24 0.24

16 116535 1.50 1.67 1.64 3.17 1.72 1.53 1.63 1.65 1.50 1.51 1.51

24 261967 5.30 6.12 6.24 10.62 6.12 6.42 5.94 5.96 5.73 6.05 6.00

32 465511 18.24 29.90 18.60 31.74 24.41 16.67 20.01 16.60 27.13 29.07 17.93

74

B.1. Model checking

Table B.3: cabp
Solving times

|M | size vs is ss sp si os re rp dd bs mc

nodeadlock

2 2102 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 3390 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

4 4854 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

8 12470 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.03

16 36150 0.18 0.16 0.16 0.20 0.19 0.16 0.19 0.20 0.16 0.16 0.21

24 71094 0.35 0.29 0.35 0.42 0.29 0.30 0.31 0.36 0.31 0.31 0.36

32 117302 0.75 0.96 0.82 0.97 0.87 0.83 0.91 0.83 0.98 0.99 0.73

nolivelock

2 4502 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01

3 7222 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02

4 10294 0.02 0.03 0.03 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02

8 26102 0.09 0.10 0.11 0.11 0.10 0.10 0.10 0.10 0.11 0.11 0.10

16 74614 0.37 0.38 0.35 0.45 0.39 0.36 0.36 0.38 0.35 0.32 0.37

24 145654 0.69 0.66 0.63 0.80 0.65 0.62 0.62 0.64 0.62 0.71 0.62

32 239222 3.33 2.84 2.89 3.20 2.89 3.24 2.99 3.00 3.14 3.03 2.84

infinitely often receive d1

2 2200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 3520 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00

4 5016 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.06 0.01 0.01

8 12760 0.04 0.04 0.04 0.09 0.05 0.04 0.05 0.04 0.04 0.04 0.04

16 36696 0.16 0.16 0.16 0.30 0.16 0.16 0.16 0.16 0.16 0.19 0.16

24 71896 0.37 0.29 0.30 0.71 0.37 0.38 0.37 0.37 0.29 0.37 0.29

32 118360 0.60 0.70 0.51 0.93 0.50 0.50 0.50 0.65 0.64 0.65 0.65

infinitely often receive for all d

2 4397 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.01 0.01

3 10552 0.03 0.03 0.03 0.05 0.03 0.03 0.04 0.03 0.03 0.03 0.03

4 20051 0.06 0.07 0.06 0.12 0.07 0.07 0.07 0.07 0.06 0.07 0.08

8 102047 0.53 0.54 0.41 0.82 0.51 0.42 0.42 0.42 0.42 0.42 0.41

16 587063 3.58 3.02 2.92 5.21 3.47 3.17 3.32 3.50 3.14 3.12 3.33

24 1725391 11.13 8.36 11.09 18.01 8.64 8.36 11.03 8.34 10.90 8.33 8.34

32 3787367 19.27 20.14 20.28 30.84 20.05 19.93 19.33 19.36 19.92 19.91 19.93

infinitely often enabled then infinitely often taken receive

2 13417 0.07 0.06 0.06 0.13 0.07 0.07 0.07 0.06 0.06 0.06 0.06

3 32338 0.19 0.20 0.21 0.43 0.22 0.20 0.22 0.21 0.21 0.20 0.20

4 61579 0.41 0.45 0.44 0.77 0.45 0.46 0.46 0.45 0.46 0.44 0.46

8 314383 2.71 2.55 2.59 3.89 2.34 2.60 2.56 2.50 2.77 2.68 2.73

16 1811479 20.83 20.61 19.02 35.75 20.62 20.51 20.53 20.47 20.50 20.42 18.79

24 5326879 ME ME ME ME ME ME ME ME ME ME ME

32 11696167 ME ME ME ME ME ME ME ME ME ME ME

75

Chapter B. Experimental results for comparison of parity game algorithms

Table B.4: swp lists2
Solving times

|M | size vs is ss sp si os re rp dd bs mc

nodeadlock

2 71094 0.29 0.30 0.30 0.34 0.30 0.30 0.29 0.29 0.30 0.30 0.29

3 269286 1.38 1.38 1.37 1.47 1.38 1.38 1.37 1.38 1.38 1.38 1.39

4 728390 3.82 3.82 3.80 4.34 3.83 3.88 3.83 3.81 3.80 3.80 3.87

5 1614606 10.77 8.72 8.73 9.95 8.76 8.73 8.71 8.79 8.70 8.80 8.73

6 3135606 19.64 19.91 21.03 24.70 19.95 19.79 21.41 20.18 21.41 22.04 20.36

7 5540534 ME ME ME ME ME ME ME ME ME ME ME

8 9120006 ME ME ME ME ME ME ME ME ME ME ME

nolivelock

2 113286 0.51 0.50 0.50 0.62 0.50 0.52 0.50 0.52 0.51 0.49 0.51

3 426426 2.14 2.03 2.13 2.66 2.12 2.12 2.13 2.13 2.13 2.13 2.12

4 1149446 6.02 6.01 5.77 6.94 5.76 5.77 5.73 5.75 5.79 5.74 5.79

5 2542506 13.73 13.71 13.67 16.56 13.74 15.42 13.76 13.75 13.71 13.73 13.71

6 4930566 ME ME ME ME ME ME ME ME ME ME ME

7 8703386 ME ME ME ME ME ME ME ME ME ME ME

8 14315526 ME ME ME ME ME ME ME ME ME ME ME

infinitely often receive d1

2 78584 0.37 0.36 0.35 0.67 0.37 0.37 0.37 0.37 0.36 0.37 0.36

3 290672 1.58 1.52 1.53 2.91 1.57 1.55 1.54 1.53 1.55 1.55 1.54

4 774472 4.21 4.21 4.19 7.73 4.21 4.33 4.20 4.20 4.19 4.21 4.19

5 1699208 9.68 9.74 10.97 19.79 9.74 9.65 11.15 10.95 9.72 9.70 9.70

6 3275576 24.01 24.07 22.13 41.77 23.18 23.14 22.28 22.59 22.22 22.64 22.28

7 5755744 ME ME ME ME ME ME ME ME ME ME ME

8 9433352 ME ME ME ME ME ME ME ME ME ME ME

infinitely often receive for all d

2 157165 0.80 0.79 0.80 1.31 0.80 0.81 0.81 0.81 0.81 0.81 0.81

3 872008 4.83 4.83 4.83 9.58 4.98 4.88 4.83 4.72 5.01 4.90 4.83

4 3097875 19.04 19.13 19.01 31.21 18.87 19.13 18.97 19.09 18.98 19.96 19.01

5 8496022 ME ME ME ME ME ME ME ME ME ME ME

infinitely often enabled then infinitely often taken receive

2 457833 13.10 13.42 13.55 27.90 12.75 11.76 12.05 11.69 12.17 11.75 11.83

3 2574406 ME ME ME ME ME ME ME ME ME ME ME

4 9223947 ME ME ME ME ME ME ME ME ME ME ME

5 25444512 ME ME ME ME ME ME ME ME ME ME ME

Table B.5: swp lists3
Solving times

|M | size vs is ss sp si os re rp dd bs mc

nodeadlock

2 1187910 6.52 6.56 6.65 8.09 6.53 6.52 6.44 6.44 6.67 6.43 6.47

3 8922156 ME ME ME ME ME ME ME ME ME ME ME

nolivelock

2 1858086 10.29 10.27 10.27 11.85 10.45 10.36 10.41 10.25 10.44 10.57 10.47

3 13880328 ME ME ME ME ME ME ME ME ME ME ME

infinitely often receive d1

2 1329992 8.52 8.24 8.74 14.35 8.64 8.44 8.47 8.37 8.82 8.51 8.31

3 9712070 ME ME ME ME ME ME ME ME ME ME ME

infinitely often receive for all d

2 2659981 16.53 17.76 17.10 30.59 16.81 17.99 17.12 17.16 16.95 17.28 17.74

76

B.1. Model checking

Table B.6: brp
Solving times

|M | size vs is ss sp si os re rp dd bs mc

nodeadlock

2 9040 0.04 0.05 0.04 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04

3 22722 0.14 0.14 0.14 0.18 0.14 0.17 0.14 0.14 0.14 0.14 0.14

4 46448 0.34 0.34 0.34 0.41 0.34 0.42 0.35 0.43 0.35 0.35 0.42

8 298192 2.89 2.87 2.87 4.23 2.87 3.03 2.86 2.85 2.86 2.86 2.89

16 2141072 28.68 28.47 32.18 ME 28.40 25.43 26.20 25.69 25.46 31.99 26.02

nolivelock

2 22272 0.09 0.09 0.10 0.12 0.10 0.09 0.09 0.10 0.10 0.09 0.09

3 55986 0.29 0.29 0.28 0.36 0.29 0.29 0.29 0.29 0.29 0.28 0.29

4 114448 0.66 0.65 0.65 0.80 0.64 0.69 0.68 0.70 0.65 0.67 0.67

8 734736 5.02 5.03 6.10 6.10 5.27 5.24 5.10 5.25 5.72 5.81 5.82

16 5275408 ME ME ME ME ME ME ME ME ME ME ME

Table B.7: onebit
Solving times

|M | size vs is ss sp si os re rp dd bs mc

nodeadlock

2 550086 2.68 2.66 2.67 2.99 2.68 2.68 2.68 2.67 2.68 2.68 2.67

3 1978998 10.52 10.47 10.52 11.69 10.46 10.63 10.49 10.61 10.70 12.12 10.59

4 5140230 ME ME ME ME ME ME ME ME ME ME ME

nolivelock

2 1044870 5.20 5.20 5.23 5.97 5.20 5.21 5.19 5.23 5.23 5.22 5.23

3 3724710 21.76 21.73 21.61 25.27 21.88 21.49 21.41 21.42 21.86 21.76 21.66

4 9616902 ME ME ME ME ME ME ME ME ME ME ME

Table B.8: 1394-fin
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

517118 4.41 4.48 4.50 5.33 4.50 4.46 4.58 4.49 4.47 4.48 4.45

nolivelock

1120841 6.91 7.40 6.90 10.67 7.37 6.92 6.94 6.96 6.37 6.87 7.02

Table B.9: chatbox
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

589830 2.64 2.70 2.61 3.23 2.73 2.60 2.69 2.66 2.85 2.75 2.65

nolivelock

1245190 5.79 5.90 5.62 6.33 6.24 5.89 5.64 6.06 6.36 6.05 5.97

77

Chapter B. Experimental results for comparison of parity game algorithms

Table B.10: dining 10
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

1140887 4.23 4.43 4.34 7.34 4.31 4.38 4.15 4.34 4.31 4.56 4.39

nolivelock

1604236 9.82 9.65 9.40 11.04 9.45 10.04 9.59 9.57 10.10 10.10 9.42

Table B.11: dining3 cs
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

146 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

254 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostarvation

663 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00

nostuffing

638 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.01

Table B.12: dining3 cs seq
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

111 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

219 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostarvation

529 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostuffing

533 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

78

B.1. Model checking

Table B.13: dining3
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

172 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

809 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostarvation

1594 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostuffing

2134 0.09 0.09 0.09 0.19 0.08 0.08 0.09 0.09 0.08 0.08 0.09

Table B.14: dining3 ns
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

243 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostarvation

550 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostuffing

613 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table B.15: dining3 ns seq
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

108 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

212 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostarvation

512 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostuffing

520 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.16: dining3 schedule
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

132 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

267 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostarvation

639 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostuffing

652 0.03 0.03 0.03 0.07 0.03 0.03 0.03 0.03 0.03 0.03 0.03

79

Chapter B. Experimental results for comparison of parity game algorithms

Table B.17: dining3 schedule seq
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

132 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

267 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostarvation

639 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostuffing

652 0.03 0.03 0.03 0.07 0.03 0.04 0.03 0.03 0.07 0.03 0.04

Table B.18: dining3 seq
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

326 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

603 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostarvation

1554 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nostuffing

1516 0.07 0.07 0.07 0.14 0.07 0.07 0.07 0.07 0.07 0.07 0.07

Table B.19: domineering
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

2518019 12.64 13.24 12.57 15.27 14.98 13.50 12.87 13.07 12.36 13.12 12.71

nolivelock

3883970 21.54 19.47 20.96 25.00 20.06 19.84 20.92 19.39 20.11 19.17 19.44

eventually player1 or player2 wins

2518019 10.92 11.05 11.10 14.68 11.14 11.08 11.05 11.07 11.90 11.84 11.17

player1 can win

2518019 12.84 12.42 12.21 15.84 12.14 12.20 12.23 12.19 12.81 15.15 12.17

player2 can win

2518019 15.09 12.37 13.65 17.84 12.11 13.16 12.41 12.12 12.40 12.45 12.14

80

B.1. Model checking

Table B.20: goback
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

502505 1.23 1.25 1.21 1.25 1.23 1.23 1.27 1.22 1.22 1.23 1.22

nolivelock

505505 1.28 1.24 1.26 1.29 1.24 1.24 1.25 1.24 1.24 1.24 1.26

Table B.21: leader5
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

1527 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

3439 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.22: leader8
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

19139 0.04 0.04 0.04 0.07 0.04 0.04 0.04 0.04 0.04 0.04 0.05

nolivelock

41842 0.11 0.11 0.10 0.13 0.11 0.10 0.10 0.11 0.10 0.11 0.10

Table B.23: lift3-final
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

14236 0.05 0.05 0.04 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.04

nolivelock

28032 0.10 0.09 0.10 0.14 0.10 0.10 0.10 0.10 0.09 0.09 0.10

Table B.24: lift3-init
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

150213 0.60 0.60 0.60 0.82 0.60 0.60 0.63 0.61 0.60 0.60 0.60

nolivelock

259154 1.14 1.14 1.14 1.45 1.15 1.14 1.14 1.14 1.13 1.13 1.14

81

Chapter B. Experimental results for comparison of parity game algorithms

Table B.25: mpsu
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

171 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

327 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.26: producer consumer
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.27: snake
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

171343 1.10 1.09 1.08 1.36 1.08 1.08 1.07 1.11 1.08 1.08 1.07

nolivelock

399349 2.11 2.09 2.09 2.66 2.11 2.11 2.20 2.10 2.11 2.11 2.11

black can win

171343 1.00 0.99 0.99 1.61 0.99 0.99 0.99 0.99 0.97 1.00 1.00

eventually white or black wins

171343 0.93 0.93 0.94 1.23 0.92 0.94 0.93 0.94 0.94 0.93 0.94

white can win

171343 1.00 1.00 0.99 1.65 1.00 1.00 1.00 0.99 0.99 1.00 1.00

Table B.28: tree
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

2568 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

5130 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

82

B.1. Model checking

Table B.29: scheduler
Solving times

|M | size vs is ss sp si os re rp dd bs mc

nodeadlock

2 38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 116 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 344 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 968 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 2600 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 16904 0.05 0.05 0.05 0.06 0.04 0.04 0.04 0.04 0.04 0.05 0.05

nolivelock

2 77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 227 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 635 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 1691 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 4331 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00

8 26123 0.08 0.08 0.08 0.10 0.08 0.09 0.08 0.08 0.09 0.08 0.09

83

Chapter B. Experimental results for comparison of parity game algorithms

Table B.30: trains1
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.31: trains2
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.32: trains3
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

202 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.33: trains4
Solving times

size vs is ss sp si os re rp dd bs mc

nodeadlock

165 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nolivelock

356 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B.2 Equivalence checking

This section lists the measurements of the algorithms on equivalence checking examples.

84

B.2. Equivalence checking

Table B.34: Branching bisimilarity abp – abp bw
Solving times

|M | size vs is ss sp si os re rp dd bs mc

2 4509 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

3 6780 0.02 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01

4 9065 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02

5 23664 0.12 0.09 0.09 0.14 0.10 0.09 0.12 0.12 0.10 0.11 0.09

6 28539 0.11 0.12 0.12 0.17 0.12 0.11 0.12 0.12 0.13 0.11 0.12

7 33462 0.15 0.16 0.15 0.20 0.14 0.14 0.15 0.15 0.15 0.14 0.16

8 18345 0.06 0.06 0.06 0.09 0.06 0.06 0.06 0.06 0.06 0.06 0.06

9 20700 0.07 0.08 0.08 0.15 0.08 0.07 0.07 0.07 0.07 0.08 0.07

10 23069 0.08 0.08 0.08 0.12 0.08 0.08 0.08 0.08 0.08 0.08 0.08

16 37577 0.16 0.16 0.16 0.25 0.16 0.16 0.16 0.16 0.16 0.15 0.16

20 101829 0.52 0.52 0.55 0.70 0.53 0.55 0.57 0.55 0.54 0.54 0.54

24 124497 0.68 0.63 0.66 0.83 0.63 0.64 0.63 0.64 0.63 0.63 0.64

28 147933 0.80 0.80 0.78 1.06 0.79 0.79 0.85 0.80 0.80 0.81 0.79

32 172137 1.11 0.92 1.11 1.35 1.01 0.91 0.91 1.01 1.01 1.01 0.91

Table B.35: Branching bisimilarity abp – cabp
Solving times

|M | size vs is ss sp si os re rp dd bs mc

2 205846 t/o ME ME 1.97 t/o t/o 1.53 2.15 ME 1.81 ME

3 334038 t/o ME ME 3.61 t/o t/o 2.59 3.89 ME 3.06 ME

4 479158 t/o ME ME 5.27 t/o t/o 3.83 5.36 ME 4.37 ME

5 641206 ME ME ME 8.88 t/o t/o 6.34 7.27 t/o 5.93 ME

6 820182 ME ME ME 10.30 t/o t/o 6.77 11.70 ME 7.77 ME

7 1016086 ME ME ME 11.08 t/o t/o 8.78 16.03 ME 11.03 ME

8 1228918 ME ME ME 13.92 ME t/o 10.26 14.32 ME 11.91 ME

9 1458678 ME ME ME 16.08 ME t/o 12.58 17.85 t/o 14.81 ME

10 1705366 ME ME ME 19.00 ME t/o 15.26 21.19 ME 17.61 ME

16 3540982 ME ME ME ME ME ME ME ME ME ME ME

20 5103286 ME ME ME ME ME ME ME ME ME ME ME

24 6936438 ME ME ME ME ME ME ME ME ME ME ME

28 9040438 ME ME ME ME ME ME ME ME ME ME ME

32 11415286 ME ME ME ME ME ME ME ME ME ME ME

Table B.36: Branching bisimilarity abp – oneplacebuffer
Solving times

|M | size vs is ss sp si os re rp dd bs mc

2 844 0.12 1573.34 ME 0.00 0.62 0.03 0.00 0.00 t/o 0.00 0.01

3 1434 0.46 t/o ME 0.00 3.45 0.08 0.00 0.00 t/o 0.01 0.03

4 2140 0.80 t/o ME 0.01 12.18 0.16 0.00 0.01 t/o 0.01 0.07

5 2962 3.37 ME ME 0.02 32.52 0.32 0.01 0.01 t/o 0.02 0.13

6 3900 3.08 ME ME 0.03 80.73 0.54 0.01 0.02 t/o 0.03 0.24

7 4954 5.59 ME ME 0.04 158.65 0.81 0.01 0.02 t/o 0.04 0.34

8 6124 11.98 ME ME 0.05 306.73 1.19 0.02 0.04 t/o 0.05 0.51

9 7410 85.56 ME ME 0.07 540.73 1.74 0.03 0.05 t/o 0.06 0.74

10 8812 38.61 ME ME 0.09 898.05 2.35 0.03 0.06 t/o 0.08 1.06

16 19660 462.46 ME ME 0.26 t/o 11.40 0.11 0.16 t/o 0.23 5.05

20 29212 t/o ME ME 0.47 t/o 26.71 0.19 0.27 t/o 0.38 11.92

24 40620 t/o ME ME 0.65 t/o 42.99 0.28 0.39 t/o 0.55 26.33

28 53884 t/o ME ME 0.81 t/o 71.54 0.38 0.54 t/o 0.90 48.62

32 69004 t/o ME ME 1.12 t/o 106.00 0.50 0.71 t/o 1.08 113.75

85

Chapter B. Experimental results for comparison of parity game algorithms

Table B.37: Branching bisimilarity abp bw – cabp
Solving times

|M | size vs is ss sp si os re rp dd bs mc

2 36492 0.13 0.14 0.14 0.20 0.14 0.13 0.13 0.14 0.13 0.13 0.14

3 55149 0.22 0.22 0.21 0.38 0.22 0.22 0.21 0.21 0.22 0.22 0.22

4 74094 0.30 0.30 0.29 0.44 0.29 0.30 0.29 0.29 0.30 0.30 0.29

5 218352 1.24 8.04 8.19 1.38 1.17 1.29 1.29 1.29 1.29 1.29 1.15

6 264414 1.48 9.61 9.17 1.93 1.55 1.51 1.37 1.37 1.53 1.52 1.52

7 311276 1.84 11.07 10.75 2.03 1.74 1.71 1.72 1.69 1.72 1.71 1.71

8 152754 0.68 0.67 0.67 1.02 0.68 0.67 0.68 0.68 0.68 0.68 0.67

9 173139 0.77 0.76 0.76 1.17 0.75 0.76 0.76 0.76 0.75 0.76 0.76

10 193812 0.91 0.90 0.90 1.38 0.95 0.91 0.95 0.91 0.91 0.90 0.90

16 323898 1.51 1.50 1.50 2.61 1.50 1.51 1.49 1.50 1.50 1.51 1.53

20 993282 6.06 31.56 32.26 7.00 5.62 5.70 5.53 5.54 5.55 5.52 5.51

24 1230330 8.70 39.57 40.12 9.01 8.23 7.57 7.85 7.53 7.44 7.34 7.45

28 1480178 11.05 47.22 49.41 11.71 9.74 8.82 9.63 9.72 8.80 9.68 9.61

32 1742826 11.46 53.56 55.56 13.19 10.81 10.71 10.65 10.93 10.71 10.51 11.04

Table B.38: Branching bisimilarity abp bw – oneplacebuffer
Solving times

|M | size vs is ss sp si os re rp dd bs mc

2 237 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 375 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 529 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 1489 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 1935 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 2431 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 1305 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 1539 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 1789 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 3625 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.00

20 13429 0.04 0.04 0.04 0.07 0.04 0.04 0.04 0.04 0.04 0.04 0.04

24 18513 0.07 0.06 0.07 0.12 0.07 0.07 0.06 0.07 0.07 0.06 0.07

28 24397 0.09 0.09 0.08 0.14 0.09 0.08 0.09 0.10 0.08 0.09 0.09

32 31081 0.13 0.12 0.11 0.19 0.13 0.12 0.11 0.12 0.11 0.12 0.11

Table B.39: Branching bisimilarity cabp – oneplacebuffer
Solving times

|M | size vs is ss sp si os re rp dd bs mc

2 12022 0.04 0.04 0.04 0.05 0.04 0.03 0.04 0.03 0.04 0.04 0.04

3 21470 0.08 0.08 0.08 0.10 0.07 0.07 0.07 0.07 0.08 0.08 0.08

4 33270 0.14 0.14 0.13 0.15 0.13 0.13 0.14 0.13 0.13 0.13 0.13

5 47422 0.19 0.22 0.21 0.26 0.20 0.22 0.22 0.21 0.20 0.21 0.22

6 63926 0.30 0.31 0.32 0.33 0.31 0.30 0.28 0.31 0.28 0.31 0.28

7 82782 0.37 0.37 0.37 0.43 0.37 0.36 0.37 0.37 0.39 0.37 0.37

8 103990 0.48 0.49 0.49 0.57 0.48 0.48 0.49 0.49 0.48 0.49 0.48

9 127550 0.60 0.61 0.66 0.71 0.61 0.61 0.61 0.61 0.60 0.61 0.61

10 153462 0.73 0.73 0.74 0.86 0.73 0.74 0.74 0.73 0.73 0.74 0.73

16 358326 1.78 1.77 1.86 2.31 1.77 1.77 1.78 1.80 1.78 1.78 1.77

20 541942 2.81 2.81 2.80 3.22 2.79 2.88 2.78 2.84 2.81 2.78 2.84

24 763190 4.26 4.27 4.12 4.84 4.12 4.19 4.19 4.05 4.11 4.33 4.00

28 1022070 5.56 6.09 6.15 7.07 6.11 5.47 6.10 6.06 6.11 6.16 5.53

32 1318582 7.89 7.82 7.66 8.69 7.72 7.51 7.81 7.55 7.54 7.60 7.58

86

Appendix C

Modal formulae in mCRL2 syntax

This chapter lists the modal formulae that have been used in the experiments in mCRL2 syntax.
Absence of deadlock (5.1):

[true*]<true>true

Absence of livelock (5.2):

[true*]mu X.[tau]X

Message d1 can be received through r1 infinitely often (5.3):

nu X. mu Y. (<r1(d1)>X || <!r1(d1)>Y)

All messages d can be received through r1 infinitely often (5.4):

forall d:D . nu X. mu Y. (<r1(d)>X || <!r1(d)>Y)

For all messages d it holds that if a receive of d is infinitely often enabled, then it is infinitely
often taken (5.5):

forall d:D . ([true*] nu X. mu Y. nu Z.
([r1(d)]X && ([r1(d)]false || [!r1(d)]Y) && [!r1(d)]Z))

No starvation (5.6):

[true*](forall p: Phil. mu Y. ([!eat(p)]Y && <true>true))

No stuffing (5.7):

forall p:Phil. nu X. mu Y. [eat(p)]Y && [!eat(p)]X

Eventually player 1 or player 2 wins (5.8):

mu X.<Player1Wins || Player2Wins>true || [true]X

Player 1 can win (5.9):

mu X. <Player1Wins>true || <true>X

87

	Abstract
	Contents
	1. Introduction
	2. Context
	Process description
	Modal -calculus
	Parameterized Boolean Equation Systems
	Integration

	3. Parity games and Boolean Equation Systems
	Parity games
	Simplifications of parity games

	Boolean Equation Systems
	Relation between BES and games
	Equivalence of Boolean Equation Systems and Graph games
	Equivalence of Boolean Equation Systems and parity games
	Simplification on Boolean Equation Systems
	Reducing the sizes of formulae

	Bisimulation reduction
	Summary

	4. Overview of parity game algorithms
	Fixed point algorithms
	Small progress measures algorithm Jurdzinski2000
	Strategy improvement algorithm VogeJ2000, SchmitzV2000
	Optimal strategy improvement method Schewe2008

	Satisfiability encodings
	Small progress measures encoding Lange2005
	Strategy improvement encoding FriedmannL2009
	Direct reduction FriedmannL2009

	Recursive algorithms
	Recursive algorithm McNaughton1993, Zielonka1998
	Recursive preservation algorithm FriedmannL2009
	Dominion decomposition algorithm JurdzinskiPZ2006
	Big step algorithm

	Local algorithms
	Local model checking algorithm StevensS1998

	Summary

	5. Experimental comparison of parity game algorithms
	Practical influence of optimisation techniques
	Experiments
	Analysis technique
	Results

	Influence of priorities on the performance of the algorithms
	Experiments
	Analysis technique
	Results

	Comparison of parity game algorithms
	Experiments
	Analysis techniques
	Results

	Conclusions

	6. Small progress measures for Boolean Equation Systems
	Small progress measures
	Progress measures on Boolean Equation Systems
	Progress measures on Boolean Equation Systems in SRF
	Progress measures for Boolean Equation Systems in RF

	Summary

	7. Conclusions
	Bibliography
	Appendix A

	SCC Decomposition
	Deadlock freedom
	Livelock freedom
	Infinitely often receive
	Infinitely often enabled, then infinitely often taken

	Solving special games
	Deadlock freedom
	Livelock freedom
	Infinitely often receive
	Infinitely often enabled, then infinitely often taken

	Appendix B
	Model checking
	Equivalence checking

	Appendix C

