
 Eindhoven University of Technology

MASTER

Ad-hoc e-voting

Koenders, F.A.J.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/51345eca-aa9f-41e9-8148-e01084d45307

Eindhoven University of Technology

Department of Mathematics and Computer Science

Master’s Thesis

Ad-hoc e-voting

by

Frank Koenders

Supervisor: Simona Orzan

Eindhoven, July 24, 2009

Abstract

Mobile devices like smartphones and PDAs are becoming increasingly popular these days, which
leads to a demand for mobile applications. Since these mobile devices often support short distance
wireless communication technologies like Bluetooth, it is possible to form a small ad-hoc network
connecting these devices that can be used in a number of applications.

In this thesis we use an ad-hoc network of mobile devices for the purpose of voting. We define
ad-hoc e-voting as a new concept in e-voting, where mobile devices are used to set up a e-voting
session on the spot. Since normal e-voting protocols are not suited for an ad-hoc e-voting session
we first identify building blocks and properties of an ad-hoc e-voting protocol. After this has been
done we give four simple e-voting protocols that are intended to be used in the ad-hoc setting.

For two of the protocols we have constructed we use formal methods to verify some of their
properties. We do this for one protocol by performing model-checking on a model of the protocol
in the mCRL2 specification language, which is unfortunately only possible for a small number
of voters. For the other protocol we prove that the protocol with an arbitrary number of voters
preserves privacy. We do this by proving an equivalence relation on processes using recently
developed techniques on Parameterized Boolean Equation Systems.

Contents

1 Introduction 4
1.1 A brief history of electronic voting . 4
1.2 Ad-hoc e-voting . 5
1.3 Roadmap . 8

2 New protocols 9
2.1 General assumptions . 9
2.2 A poor man’s (k,n) threshold ad-hoc voting scheme 10

2.2.1 The protocol . 10
2.2.2 Analysis . 11
2.2.3 Conclusion . 13

2.3 A second voting protocol based on shuffling . 14
2.3.1 The protocol . 14
2.3.2 Analysis . 15
2.3.3 Conclusion . 16

2.4 Ad-hoc voting using trusted devices (1) . 17
2.4.1 The protocol . 17
2.4.2 Analysis . 18
2.4.3 Conclusion . 18

2.5 Ad-hoc voting using trusted devices (2) . 19
2.5.1 The protocol . 19
2.5.2 Analysis . 20
2.5.3 Variant: a veto protocol . 23
2.5.4 Conclusion . 23

3 Verifying properties of the poor man’s protocol 24
3.1 The mCRL2 specification language and toolset . 26
3.2 An honest model . 28
3.3 Linearizing the model . 33
3.4 Modelling dishonesty . 34

3.4.1 General remarks on modelling dishonest actions 35
3.4.2 Sending multiple blinded votes . 36
3.4.3 Casting multiple ballots . 37
3.4.4 Dishonest actions for signers . 38
3.4.5 Keeping track of dishonest signers . 39
3.4.6 Rename file . 41
3.4.7 State spaces . 42

3.5 Strong synchronicity . 42
3.6 Verification . 44

3.6.1 Privacy property . 45
3.6.2 Model checking . 46
3.6.3 Observations . 51

2

4 Proving privacy in the TD-1 protocol 52
4.1 Model . 52
4.2 PBES theory . 55
4.3 Proving privacy . 58

5 Conclusion 66

A Poor man’s model 72
A.1 Honest parallel model . 72

A.1.1 Honest parallel model rename file . 74
A.2 Honest linear model . 75
A.3 Dishonest model . 78

A.3.1 Dishonest model rename file . 93
A.4 Model using strong synchronicity . 93
A.5 Unicity model . 97
A.6 Modal formulae . 99

B TD-1 model 101
B.1 mCRL model . 101

B.1.1 Rename file . 103

C Proofs of invariants 104

3

Chapter 1

Introduction

In this thesis we present the results of our study on ad-hoc electronic voting. Electronic voting (e-
voting) in general is an interesting topic that has been actively researched in the last few decades.
We introduce a new concept in the world of e-voting: ad-hoc e-voting, e-voting using mobile
devices like PDAs or mobile phones. In this chapter we start by giving a brief history of e-voting,
after which we introduce the concept of ad-hoc e-voting. We conclude this chapter by providing
an overview of the remainder of the thesis.

1.1 A brief history of electronic voting

After the rise of distributed systems in the seventies and early eighties researchers have looked at
the numerous possibilities of these systems. In the late eighties security protocols were developed
based on distributed computation that could be used in different areas, including that of e-voting
[GMW87, BOGW88]. These security protocols were made possible by the invention of two new
methods: secure key-agreement and zero-knowledge proofs. Using the Diffie-Hellman key-exchange
protocol [DH76] it was made possible to establish a shared secret key over an insecure channel.
Zero-knowledge proofs introduced by Goldwasser et al. [GMR85] provided a way to prove a
certain statement without revealing any of the corresponding secrets. This way it became possible
to detect when an entity does not follow the protocol correctly without disrupting the protocol.

Soon after the introduction of those distributed computation schemes that allowed some kind
of voting to be possible [GMW87, BOGW88], the first real electronic voting schemes emerged
[Cha88, FOO92, BT94]. With these schemes, the concept of electronic voting was further explored.
The setting of electronic voting was described and a number of properties of a voting session were
defined. Most of these properties, for example that a voter can only vote once, came directly from
similar properties in normal non-electronic voting. The challenge has since then been to construct
a simple protocol that satisfies as many of these properties as possible.

Since the early nineties, the research on electronic voting has shifted from the small-scale voting
schemes in the distributed computation setting to large-scale voting sessions [Cha88, FOO92,
BT94, OU98, Sch99, HS00]. Where the early voting schemes based on distributed computation
relied on broadcast to achieve their properties, these new large-scale voting schemes needed another
method to do that. Using broadcast communication each message is sent to every other entity in the
network. Thus each entity in the network has full knowledge of what happens in the protocol and
can check whether the protocol is performed correctly. Broadcast communication can however not
be used in practice in large-scale voting schemes, since it generates too many messages. Therefore
large-scale voting schemes use point-to-point communication (also called unicast communication),
where one entity can send a message to only one other entity. Unfortunately, by using point-to-
point communication, entities in large-scale voting schemes do not have full knowledge of what
happens in the protocol and are unable to check whether the protocol is performed correctly.

Most of the large-scale voting schemes solve the problem of not being able to check whether

4

the protocol is performed correctly by introducing one or more central authorities in the protocol.
Typical roles for these extra parties are administrators (that for example check whether a voter
is eligible to vote), collectors or counters (that construct the tally). By giving a small number of
central authorities crucial responsibilities in the protocol, it has to be made sure that these parties
are trustworthy. In some schemes the presence of a trusted third party is assumed to do this. A
trusted third party is an entity that is trusted in the protocol and that can be used to establish some
sort of secure method to interact between different parties in the protocol. There is unfortunately
a major drawback with the introduction of these central authorities, namely that they are often
solely responsible for a single task in the voting scheme, ranging from the registration of individual
voters to the publishing of a tally. Therefore trust has to be placed in such parties. For a large
part this trust can be gained by letting them prove or motivate their actions, but it is difficult to
establish a protocol in which a central authority can do absolutely nothing dishonest.

Another disadvantage that comes with the introduction of central authorities is that they each
form a single point of failure. Since typically each task is performed by a single party, the protocol
is not able to fully function if such party can for some reason not perform its task. Reasons can
include hardware failure or denial-of-service attacks from a malicious collective. Thus although
the introduction of extra parties can greatly help to satisfy the properties of a voting scheme, one
has to be aware of the disadvantages that come with them.

As mentioned earlier, the majority of the voting schemes developed in recent years are targeted
towards large-scale elections. A reason for this can be that there have been a number of discussions
and plans (some of which that have already been implemented) to use electronic voting schemes
over the Internet in state- or nation-wide elections [MM06, JRSW04]. It should be noted that
the idea of small-scale voting is still researched, examples include work by Fouque et al. [FPS01],
Kiayias and Yung [KY02], Damg̊ard and Jurik [DJ03], and Groth [Gro04]. This research mostly
concerns stronger notions of properties of e-voting protocols and how these can be satisfied most
efficiently.

1.2 Ad-hoc e-voting

In this thesis we introduce a new concept in electronic voting: ad-hoc e-voting. An ad-hoc e-voting
session is a small-scale e-voting session that is typically performed using mobile devices, that can
be set up without prior arrangements and that does not include a central authority. Think for
example of a corporate meeting in which the board of directors wants to vote on a certain proposal.
Another example can be a social gathering of a group of people that want to decide what they are
going to do next, for example what movie will be shown on the big screen that is present in the
hall they are in. In such situations it is likely that one wants to initiate the voting session ad-hoc,
that is without the need to first set up some central authorities. Thus one wants to be able to
set up a voting session on the spot without preparations. Another property of ad-hoc e-voting
networks is that the number of voters is not always known in advance and that the number of
participants during the voting session is dynamic. When we think of the social gathering example
it is easy to imagine that voters want to join an already started voting session or that voters leave
the voting session early.

Ad-hoc networks are actively researched, although most research is not on applications of this
type of networks but on creating and using such networks. Many research is on routing protocols
for ad-hoc networks or on Media Access Control protocols, which provide control mechanisms for
channel access. One of the prototypical applications of ad-hoc networks is mobile conferencing,
but, like with many other ad-hoc applications, the idea has been researched [BFHB05] but there
are no protocols in literature on how such ideas can be realized in practice.

By using mobile devices like mobile phones or PDAs we have strong building blocks to construct
an ad-hoc e-voting protocol. All mobile devices in a certain range can form the network upon which
the voting session is carried out. These devices form the nodes of a so called piconet (introduced
by Bennett et al. [BCE+97]): an ad-hoc computer network that links individual mobile devices.
By using mobile devices we can assume both anonymous as well as authenticated broadcast. The

5

most interesting building block we have is an anonymous broadcast channel, that can not, contrary
to authenticated broadcast, easily be established in most types of networks. Since most computer
networks do not support anonymous broadcast out-of-the-box, protocol designers have to rely on
often complex methods to establish it. A widely used example are mix-nets [Cha81], in which
multiple layers of encryption are added on a message, which is then sent through a number of
decrypters thereby gaining the desired anonymity.

Another building block is the ability of mobile devices to create a synchronous network. In
a synchronous network the sending of messages is regulated by a clock and as a result of that
the delay of a message is a fixed number of time units. Therefore it is possible, contrary to
asynchronous networks, to check in a fixed number of time units whether a message has been
received. Furthermore, synchronous networks ensure that messages arrive in the same order as
they are sent.

One can think of situations where it is not wanted or even possible to perform an ad-hoc
e-voting session on the voter’s mobile phones or PDAs. It can be the case that for example not
all voters have the possession of a mobile device. In the protocols we have designed each voter is
identified by his mobile device in order to prevent that a single voter casts multiple votes, it is
thus not possible to share a mobile device. Another reason to not want to use your own mobile
device to vote can be for reasons of security. When mobile phones or PDAs are used for ad-hoc
e-voting it might be worth the trouble to install some sort of malware on someone else’s mobile
device. Think for example of a corporate setting where the chief supplies his team PDAs with
pre-installed malware to see how they vote.

As an alternative, therefore we come up with some protocols that use trusted devices. In our
setting, a trusted device is a device that is needed to participate in a voting session and where
the users place trust in the fact that the device works as specified. Using these trusted devices
voters can set up or participate in a voting session. We have designed two protocols depending
on the assumptions made on what is possible with the trusted devices, for example if the trusted
device’s internal memory can be read or not. Note that trusted devices are not a way to achieve
security-through-obscurity. The design and implementation of the trusted devices can be open,
thereby hopefully gaining the required trust from the voters.

Properties of an ad-hoc e-voting protocol Since the ad-hoc e-voting setting differs from
the normal e-voting setting the properties that the protocols ideally satisfy are slightly different.
First, let us review the standard list of properties for a voting protocol. Some properties are not
always defined exactly the same, the definition given here is thus an interpretation.

eligibility only legitimate voters can vote

fairness no early results can be obtained (that can influence remaining voters)

privacy no one can get to know the vote of another voter

receipt-freeness a voter is unable to prove that he voted in a certain way (to prevent coercion
or vote-buying)

individual verifiability a voter can verify that his vote is really counted

universal verifiability a voter can verify that the published tally is equal to the sum of all
(valid) votes

unicity no voter can vote more than once

coercion-resistance a voter can not cooperate with a coercer to prove to the coercer that he
voted in a certain way

As far as we know, there is no voting protocol that satisfies all of the above properties. This is
mainly because the list contains two contradicting properties: namely individual verifiability and
receipt-freeness. To explain the problem briefly: in order to have individual verifiability you need
to have some sort of identification of your vote, such that you can identify your vote in the list of
votes that is published at the end of the voting session. However, when you can identify your vote

6

uniquely, you have a receipt for your vote. Hence receipt-freeness and individual verifiability are
hard (if not impossible) to achieve at the same time. There has been proposed a solution [Cet08],
but we feel this does not really solve the problem: it only makes it harder to coerce someone.

In the ad-hoc e-voting setting we add two properties to the list of properties above:

on-line property a voter can join or leave the voting session at any time without losing the
possibility to vote once

walk-away property after a voter has cast his vote he can leave the voting session (“walk-away”)
with the assurance that his vote is counted

Both properties are ideally satisfied in an ad-hoc e-voting protocol. Consider the following example.
Say the city council of some town wants to ask the opinion on some topic, for example the closing
time of the weekly street market. Instead of setting up some referendum on this topic, they can
put up an ad-hoc e-voting on the street market itself. It is suggested that the voter participation
increases when the issue on which needs to be voted relates to the voter’s time and place [DiM02].
Then it is preferred that voters can join the voting session at any time they like, in order to cast
their vote. This is described by the on-line property. The walk-away property [OMA+99] makes
sure that voters do not have to come back at a later time after they have cast their vote, for
example to disclose some key.

Since mobile devices have limited processing power we want to make our protocols as light as
possible. Thereby we do not only want to make them light in terms of computation, but we also
want to keep the number of messages as low as possible since we use broadcast communication. In
order to do this we may have to weaken, or even sacrifice some properties. We think we are allowed
to do this since most ad-hoc e-voting sessions will be in relatively small groups, often consisting
of acquaintances, and about relatively light topics. The protocols we design are thus not intended
to be used in for example local elections in order to choose members of the city council.

Why existing protocols do not suffice Now the ad-hoc e-voting setting has been defined,
one may wonder why we can not use existing broadcast protocols to perform an ad-hoc e-voting
session. There are several reasons for this:

On-line property with respect to leaving voters In a number of broadcast protocols the on-line
property is not properly satisfied with respect to leaving voters. For example in the voting protocol
by Groth [Gro04] the voting part of the protocol needs to be started over when some voter leaves
the protocol without casting a vote.

On-line property with respect to joining voters Practically all voting protocols (both small- and
large-scale) only consider a fixed set of n voters. They do not consider voters that want to join
the protocol at a later stage.

Central authorities A number of broadcast protocols still require the presence of a central
authority in order to perform the protocol. For example the self-tallying voting protocol by
Kiayias and Yung [KY02] requires a bulletin board authority for administering the election.

Computationally expensive Most broadcast protocols are designed to satisfy as many properties
as possible, and in the strongest sense as possible. This is of course a good principle, however this
often results in computationally expensive protocols (for example the protocol by Damg̊ard and
Yurik [DJ03]). In ad-hoc e-voting protocols the aim is to find a balance between the computational
complexity and the satisfaction of properties.

Walk-away property In a number of broadcast protocols the walk-away property is not properly
satisfied. For example in the voting protocol by Groth [Gro04]: a voter has to wait for his turn to
cast his vote after he has registered his key.

Difficulties in constructing voting protocols In constructing voting protocols, the privacy
and the unicity properties are generally the most difficult properties to satisfy. While one can
think of situations in which the privacy property is not required, it is hard to find an application
for a voting protocol that does not satisfy the unicity property. When either the privacy property
or the unicity property is not required, very easy protocols can be constructed.

7

A voting protocol without privacy When no privacy is required, it is possible to construct a
protocol that in general consists of sending the votes encrypted using a key generated by a threshold
encryption scheme. In a threshold encryption scheme there is a single (public) encryption key that
can be used by all voters to encrypt messages. However, in order to decrypt a message encrypted
using that key, at least k (the threshold value) parties need to collaborate to disclose the decryption
key. Assume that this cooperation is done by exchanging messages si (1 ≤ i ≤ n, where n is the
number of voters) and that using k unique messages si it is possible to disclose the decryption
key. In order to be an effective threshold scheme, we need to assume that the number of dishonest
voters is at most k − 1 and the number of honest voters at least k. That way, a collective of
dishonest voters can not disclose the key when this is not allowed yet.

In the protocol, voters can join and send their votes by encrypting the pair containing their
vote vi and a newly generated nonce ni (basically a random value) with the public threshold
encryption key. This continues until a certain deadline has been reached. After that deadline,
at least k voters have to send their message si. Then the decryption key can be disclosed and
everyone can count the tally. For communication, an authenticated broadcast channel is used, that
is a broadcast channel on which for each message the identity of the sender is known.

In a more formal notation we can describe this protocol as follows, where Vi denotes the voter
with identity i and where K denotes the threshold encryption key.

Voter Vi (1 ≤ i ≤ n)
1. Vi ⇒ : {|(vi, ni)|}K
2. (⇔ Vj : {|(vj , nj)|}K)n−1 for all j, 1 ≤ j ≤ n ∧ i 6= j

Deadline
3. Vi ⇒ : si
4. (⇔ Vj : sj)≥k−1

We explain this notation in detail in Chapter 3. For now it is enough to know that A ⇒: m
means that entity A broadcasts message m, that ⇔ B : m′ means that message m′ is received
from entity B and that (a)n means that action a is repeated n times.

In this protocol fairness is guaranteed due to the threshold encryption scheme and unicity can
be guaranteed by only accepting the first encrypted vote per voter. The privacy property is not
satisfied since an authenticated broadcast channel is used.

A voting protocol without unicity When we want to construct a voting protocol without
unicity, but with privacy, we can use the same protocol as we have just described with only one
difference. We have to replace the authenticated broadcast channel by a anonymous broadcast
channel. The anonymous broadcast channel is used to satisfy the privacy property, but by using
that it becomes impossible to guarantee unicity.

Since there is thus a substantial difference between regular broadcast e-voting protocols and
ad-hoc e-voting protocols and since it is not trivial to come up with a protocol satisfying as many
properties as possible, we think the ad-hoc e-voting setting is interesting to research.

1.3 Roadmap

This thesis is structured as follows. In the next chapter we present four ad-hoc e-voting protocols
that we have developed. Two of these are using regular mobile devices like mobile phones or PDAs
and two are using trusted devices. Since we want to know whether these protocols are correct
we verify two of them. In Chapter 3 we make a model of the protocol from Section 2.2 and use
this model for the verification of some properties for a specific number of voters. In Chapter 4,
we use recently developed techniques to prove the privacy property of the protocol in Section 2.4
for an arbitrary number of voters. Chapter 2 thus contains the descriptions of our protocols and
Chapters 3 and 4 contain the verification of (properties of) two protocols. Each of these chapters
can be read independently, but for the chapters on verification it is highly advised to read the
corresponding protocol description in Chapter 2.

8

Chapter 2

New protocols

In this chapter we present four ad-hoc e-voting protocols. First we start by describing some
general assumptions on the environment in which the protocols can be used and then we discuss
each protocol separately. We do this by first giving a general overview of the protocol. After that,
we explain the protocol in-depth by dividing it into phases and by clearly stating what happens per
phase. Once the protocol is defined we give an analysis of the protocol: we explain why certain
constructs are needed, we address potential security risks and we explain ways to improve the
protocol when possible. We finish each protocol description by summarizing which of the ad-hoc
e-voting properties are satisfied.

2.1 General assumptions

Before we start describing the protocols, we first discuss some general assumptions on the envi-
ronment and introduce some notation. First, we assume the existence of a reliable authenticated
broadcast channel. A channel is reliable when no messages get lost on the channel, that is when
all messages that are sent arrive at the intended recipient. Then we also assume the existence of a
reliable anonymous broadcast channel for the protocols using regular mobile devices. The number
of honest voters needs to be at least the threshold value k and the number of dishonest voters can
be at most k − 1. Furthermore we assume that the protocols are used in an on-line setting, that
is that voters can join the protocol at any time.

On the cryptographic level we use the following notation: {m}K denotes the deterministic sym-
metric encryption of message m using key K and {|m|}K the deterministic asymmetric encryption
of message m using key K. To denote that a message m is signed by signer S we write σS(m). In
one protocol we use blinded signatures, which are a form of digital signing where the content of
the message is disguised before it gets signed. After the message has been signed, it is possible to
unblind it while preserving the signature. To denote a message m blinded using blinding factor b
we write χ(m, b). Finally we use #(m) to denote the hash of message m.

For the protocols using the trusted devices we have to make some extra assumptions on what
is possible using these devices. We assume that the data in the memory of the trusted device can
not be altered illegally. In Section 2.4 we describe a protocol for the situation in which the voter
is also unable to read the internal memory, whereas in Section 2.5 we describe a protocol where a
voter can read the internal memory. From the inability to illegally alter data it follows that a voter
can not alter messages or send extra messages. The only way to prevent a message from being
sent is by switching off a trusted device. We assume that it is possible to eavesdrop on the trusted
devices using other devices. However it is not possible to send messages using other devices since
we assume that the trusted devices have a method to authenticate themselves to each other.

9

2.2 A poor man’s (k,n) threshold ad-hoc voting scheme

The first protocol we describe is a protocol for regular mobile devices. It is called “A poor man’s
(k, n) threshold ad-hoc voting scheme” since it is inspired by threshold signature schemes but
only satisfies some of the properties of those schemes, although in a cheaper way (using less
cryptography). In a (k, n) threshold signature scheme a group of at least k out of n signers are
needed to sign a message. From this message, it is not possible to extract information as to
which k signers collaborated to sign the message. We however do not need such strict property in
our voting scheme.

The general idea of this protocol is as follows. Someone initiates a voting session by announcing
the session and its candidates. A voter who wants to vote picks a vote and a nonce. He combines
these into a blinded message and broadcasts this message (authenticated) over the network. By
sending this message the voter tells everyone he wants to register his vote. All members of a
pre-determined (static) signing group (a subset of the set of voters) check whether this voter did
not already register a vote. If he did, the members take no action. If he did not, each member of
the signing group signs the blinded vote and broadcasts that. Then the voter unblinds all these
messages in order to construct his initial ballot, consisting of all signed unblinded votes.

After a certain deadline, no more votes can be registered. Then the signing group broadcasts
which signers have been dishonest. Votes signed by these signers have to be removed by the voters
from their ballots. After that, the ballots can be cast over the anonymous channel such that every
voter can construct the tally.

A disadvantage of this protocol is that a static group of signers is required. This requirement
can however be removed at the cost of computational complexity by using a (k, n) threshold
blind signature scheme instead of our signature scheme. From the signatures created by such
scheme it is impossible to extract which subset of signers constructed the signature and therefore
the dishonesty lists can be removed from the protocol. There exists a few of those schemes in
literature [KKL01, LJY02], however they are very expensive in terms of computation and can
therefore be impractical when used on mobile devices with limited processing power. Thus we
have here a trade-off between the weight and the robustness of the protocol.

2.2.1 The protocol

Announcement

– The initiator announces the voting session, including the candidates.

– All voters that want to vote reply by sending a message over the authenticated channel.

Deadline

Preparation

– The initial number of voters is set. Based on that number and some public formula,
the threshold value k is calculated.

– A static group of 2k − 1 signers is set.

Registration

– Each voter Vi:

∗ picks a vote vi, generates a nonce ni and a blinding factor bi
∗ constructs the pair (vi, ni) and blinds it using the blinded signature scheme with

blinding factor bi; xi := χ((vi, ni), bi)
∗ broadcasts his blinded vote xi over the authenticated channel, in order to get it

registered

– Each signer Sl checks whether voter Vi has not already applied to register a vote:

10

∗ if voter Vi did not, signer Sl signs the blinded vote and sends it back over the
authenticated broadcast channel

∗ if voter Vi did already apply to register his vote, Sl does not sign the message

– Each signer Sl keeps a list Dl of signers that he finds dishonest. He adds a signer Sd
to the list if and only if:

∗ Sd does not (properly) sign a vote when he had to
∗ Sd signs a vote from a voter that already registered a vote

– Voter Vi has at this point received m signed (blinded) votes, where k ≤ m ≤ 2k − 1.
He unblinds these and constructs his ballot: (σS1(vi, ni), σS2(vi, ni), . . . , σSm(vi, ni)).

Deadline

Identification

– Each signer Sl broadcasts (over the authenticated channel) his list Dl containing the
signers that he has found dishonest.

Deadline

Voting

– Each voter Vi removes the votes signed by any of the signers Sl that are on at least k
lists Dj containing dishonest signers.

– Each voter Vi broadcasts his ballot over the anonymous channel.

Tallying

– Everyone can tally the votes, since they are sent unencrypted and unblinded over the
anonymous broadcast channel.

2.2.2 Analysis

Announcement phase

Voters that join in the Preparation and Registration phases are likely to have missed the
initial announcement of the voting session. To inform potential new voters that a voting session is
taking place there are several options. One option can be that the initiator of the voting session
repeats the announcement at a regular interval. The main problem that needs to be handled
here is the lack of knowledge of the joining voter: he does not know the threshold value nor the
identity of the initiator. This makes it for a joining voter impossible to determine whether an
announcement is fake or not. In order to try to prevent potential damage we can let a group of
at least k voters respond to a fake announcement.

The deadline between the Announcement and Registration phase is needed to get an
initial number of voters upon which the threshold value k can be computed. In some cases the
maximum number of voters is known from the start of the voting session, it is then possible to
remove the deadline.

Preparation phase

In the preparation phase, the threshold value k is calculated according to some public formula
(or rule of thumb). However it is possible that the threshold value is set too low if a voting session
becomes very popular (when many new voters join). This can be prevented by setting a maximum
number of voters and to use this number to calculate the threshold value. The number of signers
is set to 2k − 1 in order to take the dishonest voters into account. If the maximum number
of dishonest voters (k − 1) are all in the group of signers, there still remain k honest voters to

11

construct a proper threshold signature. This way O(nk) messages are needed to sign n messages,
which is optimal in a threshold signature scheme.

Unfortunately the group of signers needs to be static in order to protect privacy. Ideally,
one would want that any subset of voters could sign a given blinded vote. The problem when a
vote is signed by a dynamic group is that this leaves a footprint on the vote. Consider the case
where a dynamic signing group is used. If the signatures are sent authenticated, every voter can
observe which blinded vote corresponds to which set of voters. When the ballots are cast over the
anonymous broadcast channel, the subset of ballots containing a specific set of signatures can be
found. When the signatures are sent over an anonymous channel (encrypted using the receiver’s
public key) a signer can sign just a single blinded vote without being noticed. When the ballots
are cast he can then identify a single ballot. Since the privacy property can not be guaranteed
when using a dynamic group of singers we use a static group. Deciding who the members of this
group are can be done in various ways: for example by asking voters to volunteer or by using some
one-way hash function that decides who is a signer and who is not.

Registration phase

Each blinded vote has to contain a nonce, this is done to make each vote unique and to provide
individual verifiability. If the nonce was left out of a blinded vote, two ballots containing a
vote for the same candidate can not be distinguished, which is a problem since ballots are sent
anonymously. Individual verifiability is contradictory to receipt-freeness [Cet08]. But even if we
would be able to remove the nonce here, receipt-freeness still would not be possible to achieve.
This is because the blinding factor can also be used as a receipt.

Blinding is used in combination with anonymous broadcasting to remove the link between a
voter and his vote. It also provides a commitment here, because the actual vote is included in the
blinded message. A blinded message needs to be sent over an authenticated channel, such that a
signer can check whether the voter has already applied for registration or not. If a voter did not
already apply to register his vote, at least k honest signers sign his blinded vote. If he did already
apply to register his vote, it is possible that k − 1 dishonest signers do not care and still send a
signature but this is not enough for a vote to be counted.

Among the set of 2k − 1 signers there can be at most k − 1 dishonest ones. These need to
be identified because they can for example mark votes (as described earlier in this section). In
order to do that each signer keeps a list of dishonest signers. A signer Si puts a signer Sj on
the list if and only if: (1) Sj signs a vote from a voter that already registered a vote, or (2) Sj
does not (properly) sign a vote corresponding to a voter that did not register yet. Both scenarios
can be observed by all voters since all signatures are broadcast authenticated. Scenario 1 can be
considered unharmful since the voter can never get enough votes to legitimize a second ballot.
Scenario 2 is more serious since then signers can mark a vote.

The deadline between the Registration and the Identification phase is needed to construct
complete dishonesty lists. If this deadline would be omitted it is possible that there are votes or
signatures sent after some signers have already sent their dishonesty lists, which can make these
lists incomplete.

Identification phase

In the Identification phase each signer broadcasts his list of dishonest signers. If a signer Si
is on k or more lists, he has to be dishonest. Since there are at most k − 1 dishonest voters
it is not possible that a voter is falsely marked as dishonest voter. The deadline between the
Identification and the Voting phase is needed to know make sure that no voter sends his
ballot before all dishonesty lists are made public.

Voting phase

When a certain signer is on at least k dishonesty lists, then all voters have to remove their
votes signed by that signer (if it exists) from their ballots. This is because signer Si could have

12

(or has, if type 1 offences are discarded) marked votes. Once all signatures of dishonest voters
are removed, all ballots look uniform on the outside (except for the nonces and votes). Once
the ballots are ‘cleaned up’ (when all signatures of dishonest signers are removed) they can be
broadcast anonymously.

Tallying phase

Since the votes are broadcast unblinded, everyone can tally the votes. Note that double bal-
lots (ballots containing the same (vote, nonce) pairs) are only counted once. Ballots containing
something else than the right number of unique signed (vote, nonce) pairs are not counted at all.

Time analysis

An overview of how the phases are separated by deadlines (denoted by ||), and when voters can
still join the protocol:

Announcement Preparation Identification
Registration Voting

Tallying
initial voter group is set up new voters can still join no new voters can join anymore

As can be seen in the overview above, the on-line property is satisfied for a large part. Up
until the Identification phase new voters can still join the protocol.

The efficiency of the protocol can slightly be increased by creating c parallel, non-overlapping,
signing groups. Each group then signs the votes for a certain group of voters (distributed uniformly
over the signing groups by for example a hash function). The privacy property is not satisfied
fully in this case since the ballots are not all uniform on the outside now.

2.2.3 Conclusion

The analysis in the previous section provides arguments to support that this protocol satisfies the
following properties:

• privacy

• individual verifiability

• unicity

• universal verifiability

Properties that are not satisfied:

• receipt-freeness

• coercion-resistance

Coercion-resistance is not satisfied for the same reason as receipt-freeness.

Partially satisfied:

• fairness

• on-line property

• walk-away property

Fairness is only partially satisfied since the votes do not need to be disclosed at the same time.
Based on already cast votes, a voter can decide to not cast his vote, however he can not change
his vote at that point. The on-line property is partially satisfied since voters can join until the
Identification phase. The walk-away property is partially satisfied since after a voter has cast
his vote he can walk-away. He does not have to wait for the Tallying phase.

13

2.3 A second voting protocol based on shuffling

This second protocol is also a protocol for regular mobile devices. The general idea of this protocol
is to remove the link between a voter and his ballot by repeatedly shuffling the set of ballots. The
ballots are initially encrypted using multiple layers of encryption, where one layer is removed in
each shuffling round. By using k+1 shuffling rounds, it should be impossible to obtain the keys for
all rounds. After the last shuffling round, a list remains that contains (vote, nonce) pairs encrypted
with a threshold encryption key. The corresponding private decryption key is then made public,
giving all voters the opportunity to tally.

2.3.1 The protocol

Announcement

– The initiator announces the voting session, including the candidates.

– All voters that want to participate reply by sending a message over the authenticated
channel.

Deadline

Preparation

– A (k, n) threshold encryption scheme is set up.

– This scheme is used to generate k+1 public threshold encryption keys K1,K2, . . . ,Kk+1

for the shuffling rounds.

– Furthermore the scheme is used to generate another public threshold encryption key
K’ for the encryption of the vote itself.

Voting

– Each voter Vi:

∗ picks a vote vi and generates a nonce ni′ in order to construct the ballot xi :=
{|(vi, ni′)|}K′

∗ computes k + 1 nonces ni1 , ni2 , . . . , nik+1

∗ creates his “packed” ballot:

pi := {|
(
{| · · · {|

(
{|(xi, nik+1)|}Kk+1 , nik

)
|}Kk · · · |}, ni1

)
|}K1

∗ broadcasts the packed ballot pi

Deadline

Shuffling

– A list of packed ballots P0 := (p1, p2, . . . , pm) is created.

– The following is repeated k + 1 times, where shuffler Fj is a different voter each round
(and where j denotes the round number (1 ≤ j ≤ k + 1)).

– A shuffler Fj :

∗ announces that he takes care for the shuffling in round j

∗ receives, when he has not shuffled before, at least k valid parts of the private
decryption key PrK j

∗ constructs private key PrK j

∗ decrypts all ballots pi ∈ Pj−1 to (p′i, ni)
∗ drops the nonces from the pairs (p′i, ni) and constructs the list Pj , containing all
p′i in shuffled order

14

∗ broadcasts Pj

Tallying

– At this point a list Pk+1 is known, containing unpacked ballots of the form {|(vi, ni)|}K′ .
– Each voter broadcasts his part of the private decryption key PrK ′.

– When k valid parts are known, the private decryption key PrK ′ can be computed.

– All votes can be opened.

2.3.2 Analysis

Preparation phase

The protocol contains k + 1 shuffling rounds, which is the minimum number of rounds needed to
support privacy. When only k rounds would be used a honest shuffler can reconstruct the link
between a voter and his ballot when k − 1 dishonest shufflers leak their round’s decryption key.
For this reason it is required in this protocol that the number of honest voter is k + 1.

Voting phase

In the construction of the “packed” ballot k + 1 nonces are used. These are used for obfuscation
purposes, that is to hide the link between ballots in the input and output lists in a certain round
of the shuffle. Because the shuffler drops the nonces in the shuffling process, it is not possible
to re-encrypt ballots from the output list in order to get ballots from the input list. After the
shuffling is completed a list containing encrypted (vote, nonce) pairs remains. When the last
shuffling round was performed correctly, the decryption key can be made public such that every
voter can tally.

Shuffling phase

Since there are at least k+ 1 honest voters, there are always enough voters to construct a correct
shuffle. Each voter can only perform a single shuffling round, since for a second round he will not
receive enough parts of the private decryption key.

There are two types of offences for a dishonest shuffler Fi: (1) shuffler Fi replaces some votes
by self-made other votes or by garbage, or (2) shuffler Fi leaks the round’s private key, or leaks
(p′i, ni) pairs. First, let us look at the first offence. A voter can notice when his encrypted ballot
is not in the output list of a certain shuffling round, when he notices this, he makes an accusation
over the anonymous broadcast channel. He does this by sending the pair (p′i, ni) that should have
been the result of the decryption. Note that only the voter who casted the vote and the shuffler
know this pair. All other voters can re-encrypt the pair (p′i, ni) with the round’s public key, in
order to see if that pair was (in encrypted form) in the round’s input list.

Unfortunately, a voter does not always stay anonymous when putting an accusation on the
anonymous broadcast channel. When the vote of a certain voter in the first round is not properly
decrypted, that voter needs to put an accusation over the anonymous broadcast channel by an-
nouncing the pair (p′i, ni). From that pair, p′i contains his encrypted ballot for the second round.
Then his identity can also in the second round be coupled to a ballot in the input list of that
round. This can follow the voter for a most k − 1 rounds, until a honest voter correctly decrypts
his ballot. The other type of offence does not pose a problem since there are always at least two
shuffles that are performed correctly.

For shufflers who only committed offences of type 2 no extra measures need to be taken since
their dishonesty is handled by the number of shuffling rounds. Shuffling rounds that contain an
incorrect shuffle (offence 1) need to be done over. Multiple voters get to know the decryption key
then, but this poses no problem since the key could have been leaked anyways. Voters themselves
can also be dishonest by constructing an invalid packed ballot. When a shuffler comes around

15

such ballot he publishes the result of the decryption and then removes the ballot. Other voters
can re-encrypt the result in order to verify whether the claim was valid.

Time analysis

An overview of how the phases are separated by deadlines (denoted by ||), and when voters can
still join the protocol:

Announcement Preparation Shuffling
Voting Tallying

initial voter group is set up new voters can still join no new voters can join anymore

All voters that join in the Announcement phase can participate in setting up the threshold
encryption scheme. Voters that join in the Preparation or Voting phase cannot co-operate in
setting up that scheme anymore, but they can vote and even participate in the shuffling process.
There is a deadline before the Shuffling phase because the shuffle needs to be performed over
a fixed list of votes; no new votes can be added during the shuffling. Voters can in principle
leave after they have cast their votes, but there should remain at least 2k voters to complete the
shuffling process. When a voter wants to verify that his vote is counted correctly, he has to stay
until the tally has been produced.

2.3.3 Conclusion

The analysis in the previous sections provides arguments to support that this protocol satisfies
the following properties:

• privacy

• individual verifiability

• unicity

• fairness

The unicity property is not discussed in earlier sections because it is satisfied trivially. Voters
can publish multiple votes, but this is noticed since they are sent authenticated.

Properties that are not satisfied:

• receipt-freeness

• coercion-resistance

Partially satisfied:

• universal verifiability

• on-line property

• walk-away property

Universal verifiability is only partially satisfied since the final tally can be verified by every
voter, but during the shuffling process a voter can only follow his own vote. The on-line property is
partially satisfied since new voters can join until the Shuffling phase. The walk-away property
is partially satisfied since voters can leave after they have cast their vote. However by doing
this, possible fraud with their ballot remains undetected. The walk-away property would be fully
satisfied when the shufflers need to provide a zero-knowledge proof to prove that the shuffle has
been performed correctly. This also removes the need for an anonymous broadcast channel. The
zero-knowledge proof has to prove that for two given sets S and S′, set S′ contains the projection
of the first items of the tuples that are formed by decrypting all elements in set S. Unfortunately,
we were not able to set up such a proof procedure.

16

2.4 Ad-hoc voting using trusted devices (1)

In this section we describe a protocol that uses trusted devices for the purpose of voting. In our
setting, a trusted device is a device that is needed to participate in a voting, where the users (the
voters) place trust in the fact that the device works as specified. The idea of trusted devices comes
from a paper by Avoine et al. [AGGV05], where trusted devices are used to solve the fair exchange
problem. Depending on the context, it is possible that each voter has its own trusted device or
that multiple voters have to share a trusted device. Here we study a protocol where a trusted
device is shared among multiple voters. When a device is not shared between multiple voters, the
protocol works as if each voter has its own trusted device.

We study how a trusted device can be used in an environment with very strong assumptions
on the device itself, in the next section we present a protocol that can be used in an environment
with weaker assumptions. In this section we assume that a voter can not read the internal memory
of the trusted device and that he can not illegally alter data in the internal memory. Since we
have such strict assumptions on the environment, any voter can be dishonest in this protocol.

2.4.1 The protocol

Announcement

– The initiator announces the voting session, including the candidates.

– The initiator starts a group key exchange protocol (for example one based on the basic
Diffie-Hellman key exchange protocol [BCP07]) in order to set up a shared secret key k.

– All active trusted devices participate in the key exchange protocol.

Deadline

Voting

– At this point, the shared secret key k has been established.

– Say a voter Vi registers himself at trusted device Dl.

– Trusted device Dl:

∗ checks whether voter Vi has not already cast a vote before, by looking in his local
list of ballots

∗ denies voter Vi access when voter Vi did already cast a vote before
∗ logs voter Vi in when voter Vi did not cast a vote earlier
∗ waits for voter Vi to input his vote vi
∗ constructs the ballot bi := {(Vi, vi)}k
∗ broadcasts ballot bi and adds it to its local list of ballots
∗ logs out voter Vi

– Upon receiving a ballot {(Vi, vi)}k, all trusted devices immediately decrypt this and add
the decrypted ballot to their local lists of ballots. This step is interleaved throughout
the entire Voting phase.

Deadline

Tallying

– Every trusted device sanitizes its local list of votes (that is, it removes the identity of
the voters from the list) and then publishes it.

17

2.4.2 Analysis

Announcement phase

In this protocol all messages containing votes are encrypted with a shared secret key. The en-
cryption is needed because otherwise an eavesdropper would be able to read the votes, thereby
violating the fairness and privacy properties. Since all trusted devices are honest entities in the
protocol, we can use a single shared secret key.

Since the internal memory of the trusted devices can not be read, it is possible to use a static
shared secret key to encrypt the messages in the protocol. This way, the group key exchange
protocol can be removed from the voting protocol, including the deadline that was introduced for
it. When a static key is used, a nonce needs to be added to each ballot, to prevent an eavesdropper
to extract information from two voting sessions with overlapping sets of candidates.

Ideally this approach works as well as the approach using the group key exchange protocol.
However, might the unfortunate situation occur that the key gets disclosed, the trusted devices are
rendered useless since other devices can eavesdrop on the messages sent between trusted devices.
It is also possible to adapt a middle course here by using a shared key that is semi-dynamic, then
the shared key does not change unless the group key exchange protocol is triggered manually.

Voting phase

When the protocol is used in a setting where trusted devices are not shared it is possible to leave
out the voter registration step, since the trusted device then identifies the voter. The ballots in
this protocol are cast immediately. This has two reasons: to prevent voters from voting twice and
to prevent dishonest voters from destroying votes by switching off a device. To prevent a voter
from voting twice all local lists of ballots need to be kept synchronized. These lists can be seen
as one global list since ballots are cast as soon as a voter has entered its vote and since received
ballots are processed immediately.

Time analysis

It is possible for trusted devices to later join the protocol, for example when it was not yet powered
on at the start of the voting session. A trusted device can join the protocol in any phase, however
it can only participate in setting up the secret key if it joins before the deadline between the
Announcement and Voting phases. When a new trusted device joins it announces this, such
that some other trusted device can inform it about the state of the voting session. Therefore
the two devices first generate a shared secret key to communicate privately. Then the following
information needs to be sent to the joining device (encrypted with their secret key): information
on the voting session and its candidates, the globally shared secret key and the current list of
ballots.

It is no problem for a trusted device to leave the protocol early, this can for example be the
case when a voter switches off the trusted device or when the trusted device suffers from some
(hardware) failure. If the ballot of a voter that is logged in has not been cast, the voter is still
able to vote on another device (or on the same device after it is powered on again). Since the list
of votes is kept globally, at least one trusted device has to be on-line at any time, otherwise it is
possible that votes get destroyed. When a trusted device that has left the protocol re-enters the
protocol, the same procedure as with the new trusted device can be carried out. Nothing needs
to be done further since the trusted device does not contain any information that has not been
synchronized.

2.4.3 Conclusion

The analysis in the previous sections provides arguments to support that this protocol satisfies
the following properties:

• privacy

18

• unicity

• fairness

• receipt-freeness

• walk-away property

• on-line property

Properties that are not satisfied:

• individual verifiability

• universal verifiability

• coercion-resistance

There is no verifiability for a voter, because he does not know what is sent by the trusted
devices. The coercion-resistance property is also not satisfied, because someone can coerce a voter
to give (or sell) his login code. Individual verifiability can be satisfied instead of receipt-freeness
by including a nonce on each ballot.

2.5 Ad-hoc voting using trusted devices (2)

In this protocol we study how a trusted device can be used in an environment in which the full
internal memory of a trusted device can be read be any user. We however need to add some
extra assumptions here. The first is that decryption is done in a black box (for example through
the use of a smartcard): a voter can not extract the private decryption key of a trusted device.
Incoming messages are however immediately decrypted and the black box decryption can thus not
be used as a way of caching encrypted values. Furthermore we assume that a set of at least k (the
threshold value) trusted devices are active throughout the entire protocol and that a collective of
dishonest voters can not get access to k trusted device at the same time.

2.5.1 The protocol

Announcement

– The initiator sets a maximum number of voters nv.

– The initiator announces the voting session, including the list of nc candidates. For
each candidate there is a corresponding integer encoding that is used in the ballots
(candidate ei is encoded by the integer (nv + 1)i).

– The setA of all m active trusted devices is set and based on a threshold value k (k ≤ m).

Voting

– Say a voter Vi enters a login code l′i onto a trusted device Dj .

– Trusted device Dj :

∗ checks whether #(l′i) corresponds with the hash of voter Vi’s real login li stored in
its internal memory

∗ denies voter Vi access when those two do not correspond and removes personal
information of voter Vi from its memory (that is Vi, li)

∗ continues when those two do correspond
∗ checks whether voter Vi is in the list of registered voters
∗ denies voter Vi access if he is already on the list of registered voters and removes

personal information of voter Vi from its memory (that is Vi, li)

19

∗ logs voter Vi in when he is not on that list
∗ broadcasts voter Vi’s identity in order to register him and adds the identity to its

local list of registered voters
∗ waits for voter Vi to input his candidate of choice el
∗ generates k − 1 random coefficients aik−1 , . . . , ai1 to form voter Vi’s polynomial

qi(x) := aik−1x
k−1 + aik−2x

k−2 + · · ·+ ai2x
2 + ai1x+ (nv + 1)l

∗ broadcasts for each trusted device Dp ∈ A (p 6= j) : {|qi(p)|}PubKey(Dp)

∗ adds qi(j) to its own count Cj
∗ removes all personal information of voter Vi from its memory (that is Vi, li, qi(x),
qi(j), aik−1 , . . . , ai1 , l, el, all messages {|qi(·)|}PubKey(·), but not Vi’s identity in
the list of registered voters)

∗ logs out voter Vi
– Upon receiving the identity of a voter Vi, all trusted devices immediately add this value

to their local lists of registered voters.

– Upon reception of a message {|qi(j)|}PubKey(Dj), trusted device Dj decrypts this mes-
sage and adds qi(j) to its count Cj .

Deadline

Tallying

– All trusted devices Dj who have been active throughout the entire protocol publish
their count Cj .

– When k or more values Ci are known, the final polynomial qF (x) can be determined.

– The encoded tally T can be computed: T := qF (0).

– The encoded tally T can be opened by any trusted device:

∗ number of votes for candidate enc−1: T div (nv+1)nc−1; T := T mod (nv+1)nc−1

∗ number of votes for candidate enc−2: T div (nv+1)nc−2; T := T mod (nv+1)nc−2

∗ . . .
∗ number of votes for candidate e1: T div (nv + 1); T := T mod (nv + 1)
∗ number of votes for candidate e0: T

2.5.2 Analysis

In this protocol voter registration is done separately from sending the actual ballot corresponding
to that voter, this is done to hide the link between a voter and its ballot. We have chosen again
for a global list (which can be implemented as synchronized local lists) that contains the identities
of the registered voters.

Since voters can read the full internal memory of a trusted device it is not possible to send
plain ballots. Encrypting ballots is also not possible since there is a link between each encrypted
ballot and a voter. Then, when the decryption key is disclosed, the vote of that voter is revealed.
Therefore we use a (k, n) secret sharing scheme (based on one by Shamir [Sha79]), where a message
is divided into n shares and where k different shares are needed to reconstruct the shared message.

The threshold value k is a trade-off between two factors here: (1) the number of trusted devices
that are on-line throughout the entire protocol, and (2) the number of trusted devices a collective
of dishonest voters can get a hold of at the same time. Here we use a secret sharing method method
described by Benaloh [Ben06], where several small secrets (the individual ballots) together form
one big secret (the tally). We combine this with the vote-as-integer representation as described by
Groth [Gro04]. When we combine these two techniques, it is not necessary that each individual
ballot is opened. Only the tally gets opened in the Tallying phase, the individual ballots thus

20

get lost in the final tally. When no trusted device can be powered down, it is possible to replace
the secret sharing scheme by an easier scheme (for example one mentioned in the introduction of
a paper by Karnin et al. [KGH83]) since we do not have to restrict our choice to (k, n) secret
sharing schemes anymore.

Time analysis: basic approach

New trusted devices can join the protocol at any time. However they can only participate in
storing parts of the secret when they have been active in the Announcement phase. Once a
trusted device has left the protocol and returns some time later, it can not participate (anymore)
in storing parts of the secret. This is because it might have missed values that needed to be added
to its count. In order to allow new voters to vote on the recovered trusted device, another trusted
device sends the recovered trusted device the current list of registered voters.

Time analysis: extended approach

In this section we present an extended approach to the protocol, which adds two techniques to the
protocol: cloning and caching messages. Furthermore the crash recovery procedure is improved
a lot: in the basic approach a recovered trusted device was only treated as a new trusted device.
Using these improvements we can relax one of the strongest assumptions, that is that a set of at
least k (the threshold value) trusted devices need to be active throughout the entire protocol in
order for the protocol to finish. We now only need at least k distinct points on the polynomial
in the Tallying phase. Furthermore we assume that the contents of a trusted device’s memory
are preserved when it suffers from a crash. For the caching part the trusted devices need to have
some free storage space. If this is not available, the cloning part can still be used.

It should be noted that this extended approach does not result in the satisfaction of more
properties. The main improvement of the approach is that it is more robust against (hardware)
failures and collectives of dishonest voters, thereby improving the chance of a successful voting
session.

Cloning A new trusted device can join the protocol at any time, however it only gets assigned
an individual point on the polynomial in the secret sharing scheme if it is active in the An-
nouncement phase. All new trusted devices that join the protocol at a later phase get to work
as a clone. The idea of cloning is as follows: a new trusted device Dn joins the protocol after
the Announcement phase. Then an existing trusted device De informs the new trusted device
of the current voting session. Therefore trusted device De sends trusted device Dn the following
information, encrypted with PubKey(Dn):

• information on the voting session and its candidates

• the current count Ce of the value on the polynomial at point e

• its private key, PrivKey(De)

This enables trusted device Dn to act as trusted device De. The purpose is thus to let multiple
devices keep track of the same point on the polynomial, such that the protocol is more robust
against hardware failure and dishonest voters. Note that the decryption key has to be kept
invisible for the voters. This can for example be done by lending out the smartcard (if one is
used), such that the key can be transferred. This cloning technique even has a positive impact on
the possibilities of a collective of dishonest voters: it becomes harder to get access to k different
points on the polynomial since not every trusted device needs to identify a unique point.

Caching messages To make the protocol more robust against trusted devices that are powered
down (being switched off by a dishonest voter or stopped because of a (hardware) failure) we can
cache unreceived messages of the form {|qi(j)|}PubKey(Dj). Before we explain how this works we
separate two cases in which it can be used:

21

1. Every trusted device has enough memory to store all messages that are broadcast during a
single voting session.

2. A trusted device can not store all message that are broadcast during a single voting session.

Introduction and case 1 Since we only want to cache unreceived messages we need some
method to detect whether a message has been received or not. An easy method is to send ac-
knowledgements for every received message. Suppose a trusted device Dj is powered down, then
all trusted devices cache for all i (1 ≤ i ≤ k) messages of the form {|qi(j)|}PubKey(Dj). Caching
all those messages poses no risk to the protocol, since all messages that are cached are encrypted.

Once trusted device Dj (or one of its clones) returns in the protocol, it announce this. Then
one trusted device sends all Dj ’s cached messages to Dj (or to the clone). From this point Dj ’s
messages do not need to be cached anymore and every trusted device can delete the messages it
has cached for Dj . Now there are two cases: either Dj ’s stored count contains the sum of all
messages up to the first cached message, or there is a gap (introduced when there was still an
active clone when Dj left). In the first case Dj can just decrypt the received messages, add these
to its count and continue business as normal. In the second case Dj sets its counter to the sum
of the decrypted values. Then, when its clone that last left returns, the two synchronize their
values. Then they are both back in business as normal. Whenever a trusted device (re-)joins, all
messages cached for other trusted devices also need to be transferred. Using this caching method,
the protocol can still end if at a certain point in time there is only one trusted device active, but
only if there are k trusted devices active that all hold a different share of the secret.

Case 2 A serious disadvantage of this caching approach is that a trusted device has to
have enough storage to cache for all i, j messages of the form {|qi(j)|}PubKey(Dj). A possible
optimization is to let just s trusted devices cache messages for a certain trusted device, instead
of letting all trusted devices do this. While this approach is in the worst case still as bad as the
old one, it can be useful on average. When a certain trusted device’s storage is full, that trusted
device broadcasts a message that the protocol has to halt. Then the trusted device offers the other
trusted devices the set that includes all cached votes for a single point on the polynomial. Any
active trusted device that has enough free space to store that set can then take over the set and
the protocol can be resumed. If no active trusted device is able to take over the set a message can
be displayed on all active trusted devices stating this, until enough trusted devices (either new or
recovering) are added that can take over the set.

Unfortunately this can be exploited by dishonest voters. If they can prevent that trusted
devices (re-)join the protocol, the protocol can not continue. To prevent this, we can add a
timeout: when after a certain time t there have not (re-)joined enough trusted devices, other
measures need to be taken. For example that active trusted devices can ‘give up’ some count Ci
on the polynomial according to some heuristic. By ‘giving up’ we mean here that all trusted
devices remove all messages they cached for trusted device Di. The heuristic on which a certain
trusted device is chosen can be for example: the trusted device for which the largest number of
messages are cached or the trusted device that has the lowest chance to return.

Note that this method of giving up points can only be applied a number of times. For the
protocol to finish there have to be at least k distinct values Ci known in the Tallying phase.
When a certain value Ci has been given up and trusted device Di (or one of its clones) returns
in the protocol, another trusted device informs it that its value Ci has been given up. Trusted
device Di is then handled as a new trusted device and becomes a clone for another trusted device.

Improvement on caching To optimize the space consumption and the time it takes to
re-join the protocol we can use homomorphic encryption for the encryption of the shares. Homo-
morphic encryption is a form of encryption where the contents of an encrypted message can be
manipulated by performing an algebraic operation on the encrypted value. We can use this to sum
up the contents of encrypted messages, that way only a single value needs to be sent to a re-joining

22

trusted device instead of a set of values. In order to do this the homomorphic encryption scheme
needs to have the following property (where E(m) denotes that message m is encrypted using some
encryption scheme and where ⊗ is some algebraic operation): E(m1) ⊗ E(m2) = E(m1 + m2).
Fortunately a number of schemes have this property [OU98, DJ01, Pai99, BT94].

2.5.3 Variant: a veto protocol

We can easily adapt this protocol to a veto protocol. A veto protocol is a voting protocol where
voters can only vote against or in favor of a proposal, the result of the protocol being that at
least one voter voted against (‘vetoed’) or that all voted in favor. The main difference with a
voting protocol with two candidates (‘in favor’ and ‘against’) and a veto protocol is that in a veto
protocol it has to be kept secret how many voters vetoed. In literature, there exist only a small
number of veto protocols [KY03, Gro04, Bra06, HZ06, BT07], therefore we think it is interesting
to show that our protocol can be used as a veto protocol in an ad-hoc setting without any major
changes. From the trusted device’s point of view, the following in changed. Instead of receiving a
candidate el as the vote of voter Vi, the trusted device receives a bit representing a ‘in favor’ or
‘against’ vote. Once the trusted device has received this bit it computes the voter’s polynomial as
follows:

qi(x) := aik−1x
k−1 + aik−2x

k−2 + · · ·+ ai2x
2 + ai1x+ e

Here the value e depends on the value of the vote. For an ‘in favor’ vote, the trusted device
uses e := 0 in the computation of the polynomial. In case of an ‘against’ vote the trusted device
generates a random re and uses e := re in the computation of the polynomial.

In the Tallying phase the opening of the tally can be skipped: the only thing that needs to
be checked is whether qF (0) = 0. No voter vetoed if and only if qF (0) = 0, but if only one voter
vetoed he can see that he is the only one who did so. This problem is also present in for example
the veto protocols of Hao and Zieliński [HZ06] and Groth [Gro04], where it is fixed by introducing
a trusted third party.

2.5.4 Conclusion

The analysis in the previous sections provides arguments to support that this protocol satisfies
the following properties:

• privacy

• unicity

• fairness

• receipt-freeness

• walk-away property

• on-line property

Properties that are not satisfied:

• individual verifiability

• universal verifiability

• coercion-resistance

There is no verifiability for a voter, because the voter can not observe all trusted devices at the
same time (in practice). The coercion-resistance property is also not satisfied, because some voter
can coerce a voter to give (or sell) his login code. This scheme does not allow a trivial way to add
individual verifiability by for example including a nonce.

23

Chapter 3

Verifying properties of the poor
man’s protocol

In this chapter we verify some properties of the poor man’s protocol. We do this by constructing
a formal model of the protocol on which several techniques can be applied to verify specific
properties. The protocol itself has already been discussed in detail in Section 2.2, therefore we
start straight away with formalizing the protocol.

For point-to-point protocols there exists a notation to describe communication in a protocol
[SNS88]. We illustrate this notation using an example. Say we have a protocol with two entities:
a client C and a server S. In the protocol the client sends a message m to the server and the
server replies with the hash of the message, computed using a hash function #. Formally we can
denote this as follows.

1. C → S : m
2. S → C : #(m)

For protocols using broadcast communication there is no such standard notation to formalize
the protocol. Therefore we introduce our own notation, based on the notation for point-to-point
protocols, and we explain it by example: the formal notation of the poor man’s protocol can be
found in Figure 3.1.

Voter Vi (1 ≤ i ≤ n)
1. ⇔ I : (voting, candidates)
2. Vi ⇒ : χ((vi, ni), bi)
3. ⇔ Sl : σSl(χ((vi, ni), bi)) m times, k ≤ m ≤ 2k − 1

Deadline
4. ⇔ Sl : Dishonestl m′ times, k ≤ m′ ≤ 2k − 1
5. Vi ?⇒ : (σS′1(vi, ni), . . . , σS′h(vi, ni)) h ≥ k
6. ?⇔ Vj : (σS′1(vj , nj), . . . , σS′h(vj , nj)) for all j, 1 ≤ j ≤ n

Signer Sl (1 ≤ l ≤ 2k − 1)
1. (⇔ Vi : msg
2. Sl ⇒ : σSl(msg))≤n

Deadline
3. Sl ⇒ : Dishonestl

Figure 3.1: Poor man’s protocol in formal notation.

24

The symbols used in this notation are defined as follows.

A ⇒ : m A sends message m over the authenticated broadcast channel
A ?⇒ : m A sends message m over the anonymous broadcast channel

⇔ B : m message m is received from B over the authenticated broadcast channel
?⇔ B : m message m is received from B over the anonymous broadcast channel

In the sending of messages, as can be seen in the example, we include only the sender, whereas in
the point-to-point protocol notation both the sender as well as the receiver are included. There,
A → B : m means that A sends message m to B and that B receives the message. In broadcast
communication we have a set of receivers, where it is possible that a subset of the receivers in this
set are unknown to the sender. For this reason we model the entities separately, which is also the
reason for the separate send and receive actions.

Some actions in the protocol description in Figure 3.1 need to be repeated multiple times.
When this is the case (or when other conditions apply) this is added in italics next to the action.
In the notation for a signer Sl we see the construct (a; b)≤n followed by a deadline. This means
that actions a and b are executed (in sequence) a number of times until the deadline is reached,
where the exact number is unknown but smaller than n.

ProVerif

A well-known tool to analyze security protocols automatically with is ProVerif [Bla01]. It has
been used to prove a number of properties for different protocols, for example the FOO’92 voting
protocol [KR05], the JFK key establishment protocol [ABF07] and Ferguson’s electronic cash
protocol [LCPD07]. ProVerif is able to prove (strong) secrecy, authentication (and some more
general correspondences) and a number of equivalences between processes. Since ProVerif is
especially targeted at cryptographic protocols we would have liked to use it to analyze some of
our protocols, but unfortunately ProVerif is not suited for this.

The main reason why ProVerif can not be used is that it is too restrictive. ProVerif does not
provide primitives for broadcast communication, all communication is done point-to-point. It may
be possible to simulate a broadcast channel in ProVerif, but as far as we know this has not been
done before and it is not straightforward. Furthermore ProVerif lacks support for loops, which is
a major disadvantage since we need those to properly model the various threshold schemes we use
in our protocols. This problem has recently been addressed in a paper by Ryan and Mukhamedov
[MR07]. To overcome this problem they have chosen to extend the syntax of ProVerif by a for-loop
construct, thereby losing the ability to automatically verify the protocol. Finally ProVerif also
lacks support for lists, which we would like to have to for example keep a list of voters who have
voted. That way we can easily check if some voter wants to vote twice (note that this property is
also not verified by Kremer and Ryan in their analysis of the FOO’92 protocol [KR05]).

For the above reasons we think that it is not possible to come up with a simple, parameterized
model for any of our protocols. We could construct a model with a fixed number of voters and
a fixed number of dishonest voters, but we think that we then need to spend more time working
around ProVerif’s limitations rather than modelling the protocol. When we would simplify the
protocol such that it is better to model in ProVerif the verification almost becomes trivial since
the interesting constructs, which are needed for the satisfaction of a number of properties, are the
hardest to model. Therefore we have chosen to model our protocols in mCRL2 [GMR+06], which
provides all the constructs we need to model our protocols and includes tools with which we can
perform model checking.

In the next section we start with an introduction to the mCRL2 specification language. Then
we present in Section 3.2 a first, intuitive model of the protocol with only honest voters. For reasons
of efficiency we linearize this model ourselves, which we explain in Section 3.3. In Section 3.4 we
explain in detail how we add dishonest voters to the model and to optimize the model even further
we introduce the notion of strong synchronicity in Section 3.5. Finally, in the last section we use
these models for the formal verification of some properties of the protocol.

25

3.1 The mCRL2 specification language and toolset

The mCRL2 specification language [GMR+06] can be used to describe the behaviour of distributed
systems and therefore we can use it to describe our voting protocols. The language is a direct
successor of the µCRL specification language [GP95], which is based on the Algebra of Communi-
cating Processes (ACP) [BW90]. The mCRL2 language includes support for abstract data types
on top of a basic timed process algebra.

In this section we give a short introduction to the mCRL2 specification language and to the
mCRL2 toolset. In this introduction we do not consider timed processes since we do not use time
in the models of our protocols. Furthermore we do not give the formal semantics and axioms of
the language, but we rather give an informal introduction using various examples.

Actions

Every process consists of a sequence of (either observable or unobservable) actions, therefore we
can see actions as building blocks for processes. The process that can not do any action (nor
terminate) is called deadlock and is denoted by δ. In the mCRL2 language actions can contain
data. Consider for example a process cnt that is used to count how often a certain event occurs.
Two actions associated with this process are action reset, which resets the counter to zero, and
action inc, which increases the counter by a given value. These actions can be declared as follows.

act reset;
inc : N;

This declares the two actions, action reset without parameters and action inc with a parameter
of type (also called sort) natural numbers. We can now use actions like reset, inc(1) and inc(8)
in the specification of a process. Actions in the mCRL2 language are atomic, which means that
they have no duration. From this it follows that for two actions a and b, action a must happen
before action b or vice versa: they can not overlap. If two actions a and b happen at the exact
same time, this is denoted by the multi-action a|b. The term τ represents the empty multi-action
(also called internal action), which does not contain any action and is unobservable.

Since actions are the building blocks of processes, the mCRL2 language provides some con-
structs to combine these actions into processes, namely alternative composition and sequential
composition. The sequential composition of two processes p and q (denoted by p · q) expresses
that the process first acts as process p and after termination of p acts as process q. For example
the process a · b · c denotes the process where actions a, b and c are performed in a row and then
terminates. Sequential composition is associative, but not commutative or idempotent.

The alternative composition of two process p and q (denoted by p+ q) expresses choice: either
the behaviour of process p can be chosen, or that of process q. For example the process a · b+ c · d
can do an a action followed by a b action, or a c action followed by a d action. The alternative
composition is commutative, associative and idempotent. Furthermore the sequential composition
right distributes over the alternative composition, but not on the left. It is possible to generalize
over the alternative composition operator, which can be very useful for actions with data parame-
ters. Consider for example a process with parameter d of sort D, then we can write

∑
d:D p(d) for

some value d of sort D. For finite sorts D it is possible to replace the sum operator by a sequence
of choices. For example:∑

d:B
p(d) = p(true) + p(false)

Using the conditional operator it is possible to express deterministic choice. For a Boolean
condition c and processes p and q we can denote if c then p else q by c→ p� q. It should be noted
that condition c can only consist of data, it is not allowed to contain processes.

The mCRL2 language also provides recursion. In order to use recursion, processes need to

26

have names. For example, our counter can be specified as follows.

act reset;
inc : N;

proc cnt(value : N) = (value ≈ 0)→
∑
n:N ·inc(n) · cnt(n)

� reset · cnt(0) +
∑
n:N ·inc(n) · cnt(n+ value);

init cnt(0);

This specification defines the process cnt as follows. If the value of the counter is equal to zero,
the counter can only be increased by a natural number n, resulting in the counter with value n.
If the value of the counter is larger than zero it is possible to reset the counter or increase the
counter by n. The initial value of the counter is zero, as denoted by the line with keyword init.

Data types

There are a few predefined data types in mCRL2: Booleans, numbers, structured types, lists, sets
and functions. To declare arbitrary sorts the keyword sort needs to be used. For example the
sort Nat, representing the natural numbers, can be declared as follows.

sort Nat;
cons zero : Nat;

succ : Nat→ Nat;

Functions can be declared using the keywords map, var and eqn. Using the keyword map the
name and type of the function is specified, using var the variables used in the definition of the
function and keyword eqn is used to give the equations that define the function. An example
function on natural numbers is the following function odd on the just defined sort Nat.

map odd : Nat→ B;
var n : Nat;
eqn odd(zero) = false;

odd(succ(zero)) = true;
odd(succ(succ(n))) = odd(n);

Structured types can be used to define more complex sorts. Consider the following definition of
a tree where each node and each leaf contains a natural number. Using recognizers isLeaf and
isNode we can get to know whether a value t of sort Tree is either a node or a leaf. If t is a leaf,
we can use projection function lval(t) to determine the value of t.

sort Tree = struct leaf(lval:N)?isLeaf | node(left:Tree, nval:N, right:Tree)?isNode

Parallel processes

The parallel operator can be used to put two processes p and q in parallel (denoted by p ‖ q). This
means that the actions of process p are performed independently from the actions of process q, for
example a ‖ b = a · b+ b ·a+a | b. It should be noted that every expression containing the parallel
operator can be rewritten using the axioms to an expression without the parallel operator.

Process operators

To manipulate processes the mCRL2 language provides some operators on processes. The com-
munication operator ΓC(p) replaces actions by a single action when their data is equal. Communi-
cations are of the form a1| · · · |an → c, where ai and c are action names and n ≥ 2. An example to
illustrate how the operator works: Γ{send|recv→comm}(send(7) | recv(7)) = comm(7). The allow
operator ∇V (p) is used to explicitly allow the multi-actions in V and thereby implicitly block
all other multi-actions. An example to illustrate how this operator works: ∇{comm}(comm(7) +

27

send(8)|recv(6)) = comm(7). The blocking operator ∂B(p) does the opposite of the allow op-
erator, it explicitly blocks all multi-actions in B and thereby implicitly allows all other multi-
actions. The renaming operator ρR(p) is used to rename action names using the renamings
in R. These renamings are of the form a → b. An example to illustrate how the opera-
tor works: ρ{comm→bcast}(comm(7) + a(10)) = bcast(7) + a(10). Finally, the hiding operator
τI(p) is used to hide internal behaviour. This is done by removing the action names in I from
the multi-actions. Two examples to illustrate how the operator works: τ{a}(a(10)) = τ and
τ{send}(send(7)|recv(7)) = recv(7).

The toolset

The mCRL2 toolset consists of a number of tools that can be divided into three categories: LPS
tools, LTS tools and PBES tools. A graphical overview of the toolset is included in Figure 3.2.
As can be seen in the graphical overview, the linear process is the heart of the toolset. A linear
process specification (LPS) (also called linear process equation (LPE)) is a process in the mCRL2
language in a restricted form. In an LPS only a single process name can occur at the right hand
side of the process definition. Furthermore, every recursive call to the process is preceded by
exactly one action. Every mCRL2 specification can be transformed into an LPS. This process is
called linearization and can be done using the tool mcrl22lps. Since LPSs have such restricted
form it is easy to manipulate them. The toolset contains a number of tools to manipulate LPSs,
we discuss some of these tools further on when we use them.

In order to study the behaviour of a process we can generate the state space of an LPS (when
the model is finite), using the tool lps2lts. A labelled transition system (LTS) consists of a set of
states that are connected using transitions. One of these states is defined as the initial state and
all transitions are labelled using actions. We use the tool ltsview to visualize LTSs, from these
visualizations it is possible to extract the global structure of the process.

The last class of tools are the PBES tools. These tools can be used for verification. Given an
LPS and a modal-µ calculus formula [GW05] it is possible to construct a PBES that is equal to
true if and only if the formula holds on the LPS. For now it is enough to know that a PBES is
an ordered sequence of equations consisting of predicate formulae, which explicitly contain data.
PBESs and some of the accompanying techniques are explained in depth in Section 4.2.

Environment

All experiments in this thesis are performed on a system with a dual core AMD Opteron 885
processor running at 2.6GHz, containing 128GB internal memory and running Fedora Core 8
with kernel 2.6.24. We have used the release branch of the mCRL2 toolset, compiled at revision
6517-shared.

3.2 An honest model

When modelling reactive systems often simplifications have to be made. Especially when one
wants to be able to construct the state space or traverse all paths of a model, it is not always
feasible to include every scenario. The same holds for the voting protocol we model.

The first assumption we make for our model is that the set of voters is static, which means
that no voters can join the protocol after it has started. Allowing voters to join the protocol at
any time would lead to an exponential blow-up of the state space. Our second assumption is that
voters are able to cache messages, but that they do process them in the order they are received
in. Therefore we model the broadcast channel as a queue, where each voter has its own queue. If
voters are not able to cache messages, we would need a synchronization step after each message
that is broadcast to see whether all voters have processed that message. Furthermore we assume
that each voter handles in its own interest and therefore first sends his blinded signature before
he sends his signatures of other voters blinded votes. This is not so much a complexity issue, but

28

Figure 3.2: Graphical overview of the mCRL2 toolset [wpc].

it is done in order to reduce the state space. Finally, we restrict the type of the votes to Boolean,
but any other type can be used without problems.

For now we model that every voter is also a signer and vice versa and that every voter is
honest. Later we add dishonest voters and adapt the model such that we can have any number of
signers. We model a voter using two processes: one that takes care of voter registration and one
that takes care of the rest: receiving messages, sending signatures and sending the ballot. The
full model is included in Appendix A.1, we give here a detailed explanation of the model.

The registration process is modelled as follows.

0 proc regVoter(i: Nat , v: Bool , N: Nat) =

send(i, blind(i, vote(v, nonce))) .

Voter(i, [sign(i, vote(v, nonce))], [], 0, N);

The process needs to be called with a natural number i representing the voter’s identity, a
Boolean v representing his vote and a natural number N representing the number of voters. The
process performs action send that models putting the blinded vote on the authenticated broadcast
channel. After that, the corresponding V oter process is called, where the voter’s own signature
of the vote is already in the list of signatures. We do this to keep the state space within limits.
If we would let a voter explicitly receive and sign its own blinded vote, then for example for two
voters the state space consists of 4105 states and 7570 transitions compared to 619 states and
1108 transitions when we put the voter’s own signature already in his list of signatures.

The voter process is included in Figure 3.3. The process needs to be called with natural num-
ber i that again represents the voter’s identity, a list sigList of items of type Data containing
signatures, another list tally containing items of type Data representing the tally, a natural num-
ber j representing the index on the broadcast channel and natural number N , representing the
total number of voters in the protocol. Action request(j,d) models getting the message with
index j from the broadcast channel (or local cache). After that a decision is made based on the
type of the message and the appropriate action is performed. The action request(j,d) is, due
to the way the broadcast channel is modelled, only enabled if there is actually a message with
index j. When the action is not enabled the process has to wait until it is enabled again, or

29

0 proc Voter(i: Nat , sigList: List(Data), tally: List(Data), j: Nat , N: Nat) =

sum d: Data. request(j, d) . (

isBlind(d) ->

((blinder(d) != i) ->

send(i, sign(i, d)) .

5 Voter(i, sigList , tally , j+1, N)

<> selfSigned(i, d) .

Voter(i, sigList , tally , j+1, N))

+ isSign(d) ->

(unblind(i, d) != err) ->

10 unblinded(i, d) .

Voter(i, insListData(unblind(i, d), sigList), tally , j+1, N)

<> cannotUnblind(i, d) .

Voter(i, sigList , tally , j+1, N)

+ isBallot(d) ->

15 receivedBallot(i, d) .

Voter(i, sigList , insListData(d, tally), j+1, N)

)

+ (# sigList == N) -> sdone .

sum o: Nat . asend(ballot(sigList , o)) .

20 Voter(i, sigList , tally , j, N);

Figure 3.3: Process Voter from the parallel, honest model of the poor man’s protocol.

perform action sdone if #sigList = N .
The condition #sigList = N models the deadline in the protocol. In practice this deadline

will be a timed deadline, which we can not model realistically using time. After the deadline
has passed, action asend(ballot(sigList, o)), which models the sending of a ballot over the
anonymous broadcast channel, is enabled for some natural number o.

In order to support this model of the deadline, the broadcast channel needs to have some
intelligence. The broadcast channel is modelled as follows.

0 proc bChannel(l: List(Data), N: Nat , order: Nat) =

sum d:Data , i:Nat . recv(i, d) . bChannel(l <| d, N, order) +

sum i: Nat . (i < #(l)) -> give(i, l.i) . bChannel(l, N, order) +

(N > 0) -> rdone . bChannel(l, Int2Nat(N-1), order) +

(N == 0) -> sum d:List(Data) .

5 arecv(ballot(d, order)) .

bChannel(l <| ballot(d, order), N, order +1);

Action recv(i,d) models that the broadcast channel receives some data item d from some
voter i, after which the item is added to the end of the list l. This list l models a cache of
all message received during the current run of the protocol. When a data item with index i is
requested, it is given using action give if the index is valid. Then the intelligent part for the
deadline: after the broadcast channel has performed N rdone actions it starts accepting messages
over the anonymous broadcast channel.

In the above text we have introduced a number of actions. Some of these actions need to
communicate, for example a send action from a voter needs to communicate with a recv action
from the broadcast channel, to make sure that the message the voter wants to send ends up on the
broadcast channel. The full set of communicating actions is recv|send→ bcast, request|give→
retrieve, rdone|sdone → done, asend|arecv → abcast, where a|b → c means that the multi-
action a|b communicates to the action c.

Not all multi-actions communicate to an action, consider for example give|send that does
not communicate and thus does not make sense in the model. Therefore we only allow a cer-
tain set of actions in the process, which is for our model the set {bcast, retrieve, unblinded,
cannotUnblind, receivedBallot, selfSigned, abcast, done}.

After that, we hide all internal behaviour, that is behaviour that can not be externally observed.
Actions that are hidden are replaced by the internal action τ . Here all actions except the broadcast
action bcast and anonymous broadcast action abcast are hidden. The set of hidden actions is

30

thus {retrieve, unblinded, cannotUnblind, receivedBallot, selfSigned, done}.
To make the model complete we need some initial process calls. For example the complete

initial call for a model consisting of a broadcast channel and two voters (one with vote true and
one with vote false) looks like:

0 in i t hide({retrieve , unblinded , cannotUnblind , receivedBallot , selfSigned , done},

allow({bcast , retrieve , unblinded , cannotUnblind , receivedBallot ,

selfSigned , abcast , done},

comm({recv|send ->bcast , request|give ->retrieve , rdone|sdone -> done ,

asend|arecv ->abcast},

5 bChannel ([], numVoters , 0) ||

regVoter(0, true , numVoters) || regVoter(1, false , numVoters)

)

)

);

Using the full model we are able to construct an LPS using the tool mcrl22lps. The LPS
contains a linearization of the parallel process of the initial call, which can be used by a number
of tools. The sending of blinded votes is modelled by the action bcast(i, blind(i, vote(v,
nonce))). Since blind and vote are just constructors, this action bcast(i, blind(i, vote(v,
nonce))) is present in the LPS, which means that vote v can be coupled to voter i (thus vio-
lating the privacy property). Therefore we rename the bcast and abcast actions using the tool
lpsactionrename with the following rename file (also included in Appendix A.1.1).

0 var i: Nat;

d: Data;

rename
isBlind(d) -> bcast(i, d) => bcast(i, blindmsg(blinder(d)));

isSign(d) && isBlind(smsg(d)) -> bcast(i, d) =>

5 bcast(i, sign(signer(d), blindmsg(blinder(smsg(d)))));

isBallot(d) ->

abcast(d) => abcast(ballot(addOrderToNonces(listc(d), order(d)), order(d)));

Since in the honest model every voter only sends a single blinded vote we rename the blinded
vote of voter i to blindmsg(i). This corresponds with what an observer can observe in practice:
he can observe who has sent a certain blinded message but the message itself looks like random
data. The observer can identify the message after he has seen it once since he then knows what it
looks like.

The action for the casting of a ballot is renamed to casting a ballot where the list of sig-
natures is processed by the function addOrderToNonces. This function replaces the nonce in the
vote(v,nonce) constructor by an ordered nonce ordNonce(o), where o represents the order in which
the ballot is cast. The first ballot has order zero, the second order one, and so on. This also cor-
responds with what an observer can observe: since he has not seen the nonces yet and since all
nonces are random, it follows that he can distinguish between them but does not know how to
order them.

Issues regarding mCRL2 We have encountered some problems using revision 6517-shared of
the mCRL2 toolset and some of these have influenced the model.

First of all, the mCRL2 specification language has support for sets, however in the implementa-
tion of the toolset these are not normalized yet. This means that two equal sets can have different
denotations. For example, the empty set is syntactically not the same object as the empty set to
which an item is added and then removed again. Therefore it is advised [wpa] to use lists when the
state space has to be generated. We have done this, but the disadvantage of lists is that the lists
[a, b] and [b, a] are two different lists, whereas {a, b} and {b, a} represent the same set. We have
overcome this deficiency by using sorted lists instead of sets, using our own function insListData.

The second problem we encountered was using the tool lpsactionrename. According to the
documentation [wpb] it is possible to define extra constructors, actions and functions in the rename
file. We would have liked to move function addOrderToNonces to the rename file since it is not
used in the model itself. Unfortunately the tool lpsactionrename is then not able to parse the LPS
anymore.

31

Generating the state space In order to generate the state space we first need to linearize the
mCRL2 specification using the tool mcrl22lps. This generates a linear process specification (LPS),
which can be used by a number of tools. Generating an LPS from the mCRL model (included in
Appendix A.1) and rename file (included in Appendix A.1.1) is done as follows:

mcrl22lps --delta <name>.mcrl | lpsconstelm | lpsactionrename
--renamefile=<renfilename>.ren | lpssuminst | lpsconstelm > <name>.lps

The option delta is used to add delta summands to the specification. These are not in the
original specification to improve readability. If this option is not used the given specification
translates into an LPS with time, which is unwanted since the model does not use time. We
manipulate the LPS using various tools of the toolset in order to get a smaller or less complex
LPS. From tests we have done we have found out that this can drastically reduce the generating
of the state space. For example for the linear model in the next section with n = 3 it takes using
the full toolchain 10s to generate the state space, while when we use only the tools mcrl22lps and
lpsactionrename it takes 1m45s to generate the state space.

The tool lpsconstelm tries to find variables that stay constant in the whole process and re-
places them by that constant value. Here for example, the voter identity i and the total number
of voters N are constant and are replaced by their corresponding value. After that, the tool lpsac-
tionrename applies the renaming as defined in file <renfilename>.ren. Then the tool lpssuminst
instantiates summation variables of the LPS. Finally the tool lpsconstelm is used to clean up some
summands of which the condition is false.

From the generated LPS we can construct a labelled transition system (LTS), using the tool
lps2lts. This is done as follows:

lps2lts [--rewriter=jittyc] <name>.lps <name>.svc

Here the parameter rewriter=jittyc is optional. By supplying this parameter the tool uses a
faster rewriter, although it takes some time to initialize the rewriter. So only for large state spaces
time can be gained.

As an example we generate the model for two voters, where the first voter is assigned vote
true and the second voter vote false (we use v = 〈T,F〉 to denote this). This model can be
generated as described above in under one second. The resulting transition system has 619 states
and 1072 transitions. When we visualize this transition system using the tool ltsview we get the
figure in Figure 3.4. In the figure we can see that the figure branches a few times. Whenever it
branches there is a choice that has to be made: either the first voter sends a certain message or the
other voter does. We have also constructed a model for three voters, where the first voter votes
false, the second true and the third also false. It takes about 10 minutes to generate this model
and the resulting state space consists of 7568050 states and 20855299 transitions. This model is
unfortunately too large to visualize using ltsview.

Figure 3.4: Visualization of state space of poor man’s protocol for n = 2 and v = 〈T,F〉.

32

3.3 Linearizing the model

As can be seen in the previous section generating the state space can take quite some time, even
for small values of n. Therefore we optimize the model before we add dishonest voters. We do
this by creating a linear process ourselves instead of letting mcrl22lps make a linear process from
the parallel model for us. We do not linearize the process by applying all rules by hand, since this
would be too much work. Instead we try to construct a linear process that behaves exactly like
the parallel model.

Constructing a linear process gives us a number of advantages over the parallel model. First,
we can remove the explicit communication between the voters and the broadcast channel. We do
this by modelling the broadcast channel as a parameter instead of as a separate process. Another
change is that each voter now has its own local cache of the broadcast channel, which we can
use to reduce the state space. In the parallel version a voter broadcasts a message to all voters,
including himself. In the linear model this is not needed: whenever a voter broadcasts a message,
the message is put in all local caches except that of the voter that sent the message. Instead the
voter processes the message immediately.

Another advantage is that we can make choices in the model based directly on data. For
example, in the parallel version we need to explicitly request a message from the broadcast channel
and only after that it can be decided, based on the type of the message, what needs to be done
with the message. In the linear model we can directly inspect the first message in the local cache.
When all voters are modelled in a single process this means that this model needs to keep track of
the parameters of all voters. We do this by making a list of all parameters, except the parameters
that are shared. Then, the list at index i represents the specific parameter for voter i. The full
model, including comments, can be found in Appendix A.2. Here we only show the main process
V oters in Figure 3.5. Note the similarities in the structure of the linear model and the structure of
the parallel model. The function updSingleList is the abstract version of the function insListData;
it applies the function insListData on the list with the given index.

When we compare the size of the state spaces and the time to generate them in the parallel
model with the linear model we see that the state spaces in the linear model are a lot smaller
and can be generated a lot faster. Some measurements are included in the following table. We
have also tried to generate the state space for n = 4 and v = 〈F,T,F,T〉 but we stopped this
when almost 30GB of memory was used. At that time there were more than 37,5 million states
processed and the indication was that the state space generation was not merely finished.

n votes time #states #transitions

linear parallel linear parallel linear parallel

2 T,F 0m01s 0m01s 22 619 28 1072
3 F,T,F 0m10s 10m00s 37448 7568050 101617 20855299

Of course we want to know whether our linear model models the same process as the parallel
model. While this is not possible to do for an arbitrary n, it is possible using the toolset to
compare two processes using some equivalence relation. We use the tool ltscompare to compare
the LTSs for the parallel model and the linear model. As equivalence relation we choose branching
bisimulation since the explicit communication in the parallel model is hidden. For n = 2 and
v = 〈T,F〉 we can verify within one second that the two models are branching bisimilar. For
n = 3 and v = 〈F,T,F〉 we can verify that the models are branching bisimilar in 2m20s. To check
whether two state spaces are branching bisimilar we use the tool as follows.

ltscompare --equivalence=branching-bisim <file1>.svc <file2>.svc

When we visualize the transition system of the linear model we get the figures in Figure 3.6.
The figure does not branch as often as the parallel model. Due to the fact that there now only is a
single process, the only branching comes from the sending of ballots since these include an order.

33

0 proc Voters(N: Nat , inBuf: List(List(Data)), regList: List(Nat), sigList:

List(List(Data)), votes: List(Bool), tally: List(List(Data)), order: Nat ,

castList: List(Nat)) =

sum i:Nat . (0 <= i && i < N) ->

!(i in regList) ->

5 bcast(i, blind(i, vote(votes.i, nonce))) .

Voters(N, removeToe(i, updBuf(blind(i, vote(votes.i,

nonce)), inBuf)), insListNat(i, regList),

updSingleList(i, sign(i, vote(votes.i, nonce)), sigList),

votes , tally , order , castList)

10 <>

(

(#(inBuf.i)>0) -> (

isBlind(head(inBuf.i)) ->

bcast(i, sign(i, head(inBuf.i))).

15 Voters(N, removeToe(i, removeHead(i, updBuf(sign(i,

head(inBuf.i)), inBuf))), regList , sigList , votes ,

tally , order , castList)

+ isSign(head(inBuf.i)) -> (

(unblind(i, head(inBuf.i)) != err) ->

20 unblinded(i, head(inBuf.i)) .

Voters(N, removeHead(i, inBuf), regList , updSingleList(i,

unblind(i, head(inBuf.i)), sigList), votes , tally ,

order , castList)

<> cannotUnblind(i, head(inBuf.i)) .

25 Voters(N, removeHead(i, inBuf), regList , sigList , votes , tally ,

order , castList)

)

+ isBallot(head(inBuf.i)) ->

receivedBallot(i, head(inBuf.i)) .

30 Voters(N, removeHead(i, inBuf), regList , sigList , votes ,

updSingleList(i, head(inBuf.i), tally), order , castList)

)

+ (reachedDeadline(inBuf)) ->

!(i in castList) ->

35 abcast(ballot(sigList.i, order)) .

Voters(N, removeToe(i, updBuf(ballot(sigList.i, order), inBuf)),

regList , sigList , votes , updSingleList(i, ballot(sigList.i,

order), tally), order+1, insListNat(i, castList))

40);

Figure 3.5: Process V oters from the linear, honest model of the poor man’s protocol.

3.4 Modelling dishonesty

In this section we describe how we model dishonesty in our model of the poor man’s protocol.
The main focus is on what dishonest actions are possible for voters and for signers and how
these are modelled. The full dishonest model is included in Appendix A.3 and the rename file in
Appendix A.3.1.

In general the following dishonest actions are possible in the protocol:

• For a voter:

1. sending multiple blinded votes

2. casting multiple ballots

• For a signer:

3. not (properly) signing a blinded vote for a voter that did not register yet

4. signing a vote from a voter that already registered a vote

34

(a) n = 2, v = 〈T,F〉 (b) n = 3, v = 〈F,T,F〉

Figure 3.6: LTSs for linear model of poor man’s protocol (scaled).

We discuss these dishonest actions one-by-one in the following subsections, where the emphasis
lies on how these actions are modelled, but first we start with a discussion about some general
points on modelling dishonest actions.

3.4.1 General remarks on modelling dishonest actions

There are a number of things we need to consider when modelling dishonest actions. First, since
we use mCRL2 for our model we need to model a dishonest entity explicitly. This is not the case
for all tools, ProVerif for example includes an implicit attacker. Therefore we have to think of all
possible dishonest actions that are possible, since they all should be modelled.

Secondly, we need to keep in mind that we are constructing a model for which we want to
construct the state space. A number of dishonest actions consist of repeating a certain action or
sending a (slightly different) message over and over. In these cases the honest behaviour is often
sending a certain message once, whereas the dishonest behaviour can be sending a number of
similar messages instead of or including the honest message. Since it is easy to detect if the exact
same message is sent more than once, we only consider unique messages in our model. If we would
not do this it is likely that the state space becomes too large to generate. We have introduced
a parameter limit which limits the number of dishonest actions. This means that each dishonest
voter gets to perform a certain action, either honest or dishonest, limit times. In our model it is
not possible that a certain voter sends the exact same message more than once. This is done in
order to keep the state space within limits and since duplicate message are trivial to ignore in an
implementation.

In our model we have modelled the number of dishonest voters using the process parameter
numDishonestVoters. The default value of this parameter is set to the threshold value minus
one (k− 1), which is the maximum number of dishonest voters that is allowed in our protocol. In
the model, the dishonest voters are chosen by their identity; all voters with an identity smaller
than numDishonestVoters (voter identities are in the range [0, N)) can be dishonest. All dishonest
voters in the model have the ability to sign, since the signers are also chosen by index: when a
voter has index smaller than parameter numSigners (at least 2k − 1) he is also a signer.

With the introduction of dishonest actions a large increase of the state space is expected. Every
dishonest voter gets for each possible dishonest action the choice to either perform it, or to not

35

perform it and behave honest for that moment. Since there are a number of points in the protocol
where a dishonest voter can decide to either behave honest or dishonest, there are many different
combinations of dishonest and honest actions. These combinations are all represented by branches
in the LTS.

Since we want to verify properties on the model, we would like to have some action from which
we can observe the tally. In the honest model it is only possible to observe the tally at the end of
the protocol, after all messages have been processed by inspecting the parameter tally.i for some i.
Since this can not be done in model checking and since dishonest voters can have an incorrect
tally, we introduce an objective external observer which sole task is to produce a final tally at
the end of the protocol. For that, he needs all ballots and all dishonesty lists, but not the other
messages like blinded votes and signatures. We have therefore modelled an extra cache of the
broadcast channel, represented by the parameter inBufObs. The external observer publishes the
final tally using function ftally, which contains a list of ballots as parameter. This function marks
the end of the protocol.

3.4.2 Sending multiple blinded votes

In the protocol, a dishonest voter can be dishonest by sending multiple blinded votes. He could
do this for example to try to get his vote counted multiple times. The easiest way to do this is
by sending the same blinded vote more than once, however this can easily be detected. A smarter
way is to generate a number of different blinded votes, using a different nonce each time. However,
it can always be detected when a dishonest voter sends multiple blinded votes since the blinded
votes need to be sent over an authenticated broadcast channel. So from each voter, only the first
blinded message it sends is signed by all (honest) signers. In order to see how this is modelled we
first recall how blinded votes are sent in the honest model.

0 !(i in regList) ->

bcast(i, blind(i, vote(votes.i, nonce))) .

Voters(N, removeToe(i, updBuf(blind(i, vote(votes.i,

nonce)), inBuf)), insListNat(i, regList),

updSingleList(i, sign(i, vote(votes.i, nonce)), sigList),

5 votes , tally , order , castList)

In the honest model, the parameter regList is just a list of voters that have cast their votes.
In the dishonest model this principle is not changed, however some extra information is kept. For
each voter, the parameter regList contains a tuple containing:

voterid The identity of the voter.

tries The number of times the voter has sent a blinded vote plus the number of times he has
decided to not send a blinded vote. For honest voters, tries can not become higher than one,
for dishonest voter not higher than limit.

bindex The index of the blinded vote. That is, the first blinded vote has index zero, the next
one has index one and so on. This index is used in the nonce.

If a dishonest voter decides to send multiple blinded votes, each blinded vote is constructed
uniquely using a nonce with index bindex. Since the number of signers is variable in this model
it is not always the case that every voter is a signer. We thus have to make a case distinction on
which honest voters can sign and which can not (recall that dishonest voters are modelled such
that they can always sign). In the dishonest model, the part for sending a blinded vote is modelled
as follows, where s denotes the number of signers and d the number of dishonest voters.

0 % I f vo t e r i has not ye t ca s t i t s b l i nded vote , he can do t h i s .
% check whether vo t e r i has a l ready cas t a b l i nded vote
((i >= d) && (bindex(regList.i) < 1)) -> (

(i < s) -> % voter i s a l s o a s igner , hence he can s i gn h i s own vote
bcast(i, blind(i, vote(votes.i, nonce (0)))) .

5 Voters(N, k, d, s, removeToe(i, updBuf(blind(i, vote(votes.i,

nonce (0))), inBuf)), addOneTries(i, addOneBindex(i,

36

regList)), updSingleList(i, sign(i, vote(votes.i,

nonce (0))), sigList), votes , tally , order , castList , limit ,

signedList , dcList , alldcList , inBufObs)

10 <> % voter i s not a s igner , and can hence not s i gn h i s own vote
bcast(i, blind(i, vote(votes.i, nonce (0)))) .

Voters(N, k, d, s, removeToe(i, updBuf(blind(i, vote(votes.i,

nonce (0))), inBuf)), addOneTries(i, addOneBindex(i,

regList)), sigList , votes , tally , order , castList , limit ,

15 signedList , dcList , alldcList , inBufObs)

)

<>

% dishones t vo t e r can cas t ‘ l im i t ’ b l i nded vo t e s
((i < d) && (tries(regList.i) < limit)) -> (%has not ye t reached l im i t

20 % in t e rna l d ec i s i on : ca s t i n g a b l i nded vote
bcast(i, blind(i, vote(votes.i, nonce(bindex(regList.i))))) .

Voters(N, k, d, s, removeToe(i, updBuf(blind(i, vote(votes.i,

nonce(bindex(regList.i)))), inBuf)),

addOneTries(i, addOneBindex(i, regList)), updSingleList(i,

25 sign(i, vote(votes.i, nonce(bindex(regList.i)))),

sigList), votes , tally , order , castList , limit , signedList ,

dcList , alldcList , inBufObs)

+ % or not ca s t i n g a b l i nded vote
noBlind . Voters(N, k, d, s, inBuf , addOneTries(i, regList),

30 sigList , votes , tally , order , castList , limit ,

signedList , dcList , alldcList , inBufObs)

)

Where in the honest model a static nonce was included in each blinded vote, we use a parame-
terized nonce in the dishonest model. This is done to model that a different nonce is used in each
blinded vote. That way the first blinded vote can always be recognized since it is modelled such
that it contains nonce(0). In the model it is possible to force a dishonest voter to always choose
the sending of a blinded vote, that way limit-1 blinded votes are sent dishonestly. This can be
done by blocking the action noBlind. This replaces the action noBlind by the action δ, which
has the result that the action that sends a blinded vote is always chosen.

3.4.3 Casting multiple ballots

Since dishonest voters can sign any vote they like (as we explain in Section 3.4.4), it is possible
that a dishonest voter collects a number of signatures for more than just the first blinded vote.
First, recall how ballots are cast in the honest model. Note the similarities with sending a blinded
vote.

0 (reachedDeadline(inBuf)) ->

% Check whether vo t e r has a l ready cas t a b a l l o t or not to avoid t ha t a
% vo te r sends an i n f i n i t e number o f b a l l o t s .
!(i in castList) ->

abcast(ballot(sigList.i, order)) .

5 Voters(N, removeToe(i, updBuf(ballot(sigList.i, order), inBuf)),

regList , sigList , votes , updSingleList(i, ballot(sigList.i,

order), tally), order+1, insListNat(i, castList))

In the dishonest model we again need to make a case distinction on honest and dishonest
voters. For the honest voters the model for casting a ballot remains largely the same, except
that we need to use information from the dishonesty lists. For now it is enough to know that
there is a parameter alldcList that for each voter contains a list that includes the union of all
received dishonesty lists that that voter received. Using function kTimesDishonest we can extract
all signers from such list that are accused at least k times of dishonesty. From these signers the
signatures have to be removed from the ballots, since privacy can otherwise not be guaranteed (as
explained in Section 2.2.2), this can be done using function removeDishonestSignatures. Since the
ballots are needed to construct a tally, these are also added to the cache of the external observer.

The case for the dishonest voter is a generalization of the honest case. Since a dishonest voter
can send (at most) limit blinded votes, he can construct the same number of ballots. To construct

37

a ballot, signatures that include the same nonce have to be collected. This is done using the
function filterSigByNonce. The dishonest voter also filters signatures of dishonest signers from
his ballots, since ballots containing signatures of dishonest signers are not accepted (we explain
this in Section 3.4.5). Then, dishonest voters also get the choice to not send a ballot, which is
represented by the action noBallot. This action can not just be blocked like the action noBlind,
since the alternative (casting a ballot) is preceded by a condition. The part for sending a ballot is
modelled as follows.

0 (reachedDeadline2(inBuf , dcList)) -> (

% An honest vo t e r can only cas t a s i n g l e b a l l o t .
((i >= d) && (#(castList.i) < 1)) ->

abcast(ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)),

5 order)) .

Voters(N, k, d, s, removeToe(i, updBuf(ballot(

removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)), order), inBuf)),

regList , sigList , votes , updSingleList(i,

10 ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)), order), tally),

order+1, updSingleList(i, ballotIdx (0), castList),

limit , signedList , dcList , alldcList , inBufObs <|

ballot(removeDishonestSignatures(kTimesDishonest (0, k,

15 alldcList.i), uniq(sigList.i)), order))

<> (i < d) -> (

% A di shones t vo t e r has the cho ice to broadcas t ‘ l im i t ’ b a l l o t s .
sum j: Nat . (0 <= j && j < limit) ->

!(ballotIdx(j) in castList.i) ->

20 (% Sending a b a l l o t .
(removeDishonestSignatures(kTimesDishonest (0, k, alldcList.i),

uniq(filterSigByNonce(j, sigList.i))) != []) -> (

abcast(ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(filterSigByNonce(j, sigList.i))),

25 order)) .

Voters(N, k, d, s, removeToe(i, updBuf(ballot(

removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(filterSigByNonce(j, sigList.i))),

order), inBuf)), regList , sigList , votes ,

30 updSingleList(i, ballot(removeDishonestSignatures(

kTimesDishonest (0, k, alldcList.i), uniq(

filterSigByNonce(j, sigList.i))), order), tally),

order+1, updSingleList(i, ballotIdx(j), castList),

limit , signedList , dcList , alldcList , inBufObs <|

35 ballot(removeDishonestSignatures(kTimesDishonest (0,

k, alldcList.i), uniq(filterSigByNonce(j,

sigList.i))), order))

)

+ % Sending no b a l l o t .
40 noBallot .

Voters(N, k, d, s, inBuf , regList , sigList , votes , tally ,

order , updSingleList(i, ballotIdx(j), castList),

limit , signedList , dcList , alldcList , inBufObs)

)

45)

)

3.4.4 Dishonest actions for signers

In the poor man’s protocol, all signers have to sign, for every voter, the first blinded message they
receive from that voter. There are two dishonest actions a dishonest signer can perform:

1. not (properly) signing a blinded vote for a voter that did not register yet

2. signing a vote from a voter that already registered a vote

38

As discussed in Section 2.2.2 the second dishonest action does not pose a threat to the protocol,
we check this by also including this action in the model. First, recall how signatures are sent in
the honest model.

0 isBlind(head(inBuf.i)) ->

bcast(i, sign(i, head(inBuf.i))).

Voters(N, removeToe(i, removeHead(i, updBuf(sign(i,

head(inBuf.i)), inBuf))), regList , sigList , votes ,

tally , order , castList)

In the dishonest model, dishonest signers get the choice between two options: signing or not
signing an incoming blinded message. Since the dishonest signer can sign or not sign any message,
we do not need to check whether the blinded message that is received is actually the first blinded
message that the signer received from a certain voter. For the honest signers we do check this by
keeping a list of all voters of which the signer has signed a blinded message. The signing part is
thus modelled as follows.

0 isBlind(head(inBuf.i)) ->

(i >= d) -> (%honest vo t e r s
% Honest s i gne r s check whether they have a l ready s igned a b l i nded vote
% by the sender o f the current b l i nded vote . I f i t i s not the case ,
% then s i gn the b l i nded vote .

5 (!(voter(blinder(head(inBuf.i))) in signedList.i) && (i < s)) ->

bcast(i, sign(i, head(inBuf.i))) .

Voters(N, k, d, s, removeToe(i, removeHead(i, updBuf(sign(i,

head(inBuf.i)), inBuf))), regList , sigList , votes ,

tally , order , castList , limit , updSingleList(i,

10 voter(blinder(head(inBuf.i))), signedList), dcList ,

alldcList , inBufObs)

<> % I f i t i s the case , do not s i gn the b l i nded vote . Also do not s i gn
% the b l i nded vote i f the vo t e r i s not a s i gne r .
notSign(i, head(inBuf.i)) .

15 Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

tally , order , castList , limit , signedList , dcList ,

alldcList , inBufObs)

)

<> %i < d ; d i shones t vo t e r s
20 (

% Dishonest s i gne r s s i gn a b l i nded vote wi thout check ing whether i t
% was the f i r s t b l i nded vote t ha t was sent by the sender .
bcast(i, sign(i, head(inBuf.i))).

Voters(N, k, d, s, removeToe(i, removeHead(i, updBuf(sign(i,

25 head(inBuf.i)), inBuf))), regList , sigList , votes , tally ,

order , castList , limit , signedList , dcList , alldcList ,

inBufObs)

+

% A di shones t vo t e r can dec ide to behave d i shones t by not s i gn ing a
30 % b l inded vote .

notSign(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

tally , order , castList , limit , signedList , dcList , alldcList ,

inBufObs)

35)

3.4.5 Keeping track of dishonest signers

As discussed in the previous sections, it is important to keep track of which signers are dishonest
and filter out their signatures. We therefore need to identify signers that do not sign blinded
messages when they have to. This is done as follows: every signer Si stores every incoming
signature in a local list represented by parameter dcList.i. He does this for every signature, not
only for the signatures that are intended for him but also for every other signature. This way
the signer can later check which voters did not sign all blinded messages. In the following code
snippet, which shows how signatures are processed in the dishonest model, storing signatures is
represented by updDCList(i, head(inBuf.i), dcList).

39

0 isSign(head(inBuf.i)) -> (

(i < s) -> (% Signers need to s t o r e a l l incoming s i gna tu r e s to
% cons t ruc t the d i shones ty l i s t s .

(unblind(i, head(inBuf.i)) != err) ->

unblinded(i, head(inBuf.i)) .

5 Voters(N, k, d, s, removeHead(i, inBuf), regList , updSingleList(

i, unblind(i, head(inBuf.i)), sigList), votes , tally ,

order , castList , limit , signedList , updDCList(i,

head(inBuf.i), dcList), alldcList , inBufObs)

<> cannotUnblind(i, head(inBuf.i)) .

10 Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList ,

votes , tally , order , castList , limit , signedList ,

updDCList(i, head(inBuf.i), dcList), alldcList ,

inBufObs)

)

15 <>

(%Voters t ha t are not s i gne r s do not need to s t o r e a l l s i gna tu r e s .
% (s k i p) same as f o r the s i gners , excep t t ha t dcL i s t i s not updated
)

)

Once the deadline has been reached, no new signatures can be sent or received and the signers
can thus check which other signers have been dishonest. We have constructed the model such
that a signer never accuses himself of being dishonest. This is done using the function identify-
DishonestSigners which has as input a local list dcList.i of all signatures that signer observed on
the network. The result of this function is a list of dishonest signers (called the dishonesty list),
which is broadcasted over the network if it is not empty. Dishonest signers have the possibility to
send an invalid list of dishonest signers, which is modelled by sending a list containing all signers,
except the dishonest signer itself. The sending of a dishonesty list is included in the model as
follows. Note that the dishonesty lists are also put in the cache of the external observer, since he
also needs these to filter out invalid ballots.

0 ((dcList.i != [null]) && (i < s)) -> (

(identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(regList),

dcList.i) != []) -> (

bcast(i, dishonestList(identifyDishonestSigners (0, remove(voter(i),

5 constructSignersList(s)), getListOfRegisteredVoters(regList),

dcList.i))) .

Voters(N, k, d, s, removeToe(i, updBuf(dishonestList(

identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(

10 regList), dcList.i)), inBuf)), regList , sigList , votes ,

tally , order , castList , limit , signedList ,

nullSingleList(i, dcList), updADC(i, dishonestList(

identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(

15 regList), dcList.i)), alldcList), insListListData(

identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(

regList), dcList.i), inBufObs))

)

20 <>

(% empty d i shones ty l i s t −> no need to broadcas t d i shones ty l i s t
emptyDishonestList(i) .

Voters(N, k, d, s, inBuf , regList , sigList , votes , tally , order ,

castList , limit , signedList , nullSingleList(i, dcList),

25 alldcList , inBufObs)

)

% dishones t : mark a l l o ther s i gne r s as d i shones t vo t e r s
+ (i < d) -> (

bcast(i, dishonestList(remove(voter(i), constructSignersList(s)))) .

30 Voters(N, k, d, s, removeToe(i, updBuf(dishonestList(

remove(voter(i), constructSignersList(s))), inBuf)), regList ,

sigList , votes , tally , order , castList , limit , signedList ,

nullSingleList(i, dcList), updADC(i,

40

dishonestList(remove(voter(i), constructSignersList(s))),

35 alldcList), insListListData(remove(voter(i),

constructSignersList(s)), inBufObs))

)

)

Every voter needs to store all incoming dishonesty lists, such that he can extract the really
dishonest signers (signers that are accused of dishonesty at least k times) from them. This is easily
done by updating a local list represented by parameter alldcList.i.

0 isDishonestList(head(inBuf.i)) ->

receivedDishonestList(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

tally , order , castList , limit , signedList , dcList , updADC(i,

head(inBuf.i), alldcList), inBufObs)

Once all dishonesty lists are processed, the protocol proceeds to the phase where the ballots are
cast. There, first the dishonest ballots are filtered out using function removeDishonestSignatures
which takes local list alldcList.i as parameter, as discussed in Section 3.4.3. Finally, ballots that
are sent that contain either too few signatures or signatures from dishonest signers, are rejected
by honest voters. Dishonest voters accept all ballots, as can be seen in the following code snippet.

0 isBallot(head(inBuf.i)) ->

((#(uniq(listc(head(inBuf.i)))) < k ||

containsDishonestSignatures(kTimesDishonest (0, k, alldcList.i),

listc(head(inBuf.i)))) && !(head(inBuf.i) in tally.i) && i >= d) ->

% I f a b a l l o t conta ins i n s u f f i c i e n t s i gna tu r e s or s i gna tu r e s o f
5 % dishones t s i gne r s or i f the b a l l o t i s a l ready rece i v ed (the se are

% ca l l e d i n v a l i d b a l l o t s) , then do not s t o r e the b a l l o t (only done
% by honest vo t e r s) .
receivedBallot(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

10 tally , order , castList , limit , signedList , dcList , alldcList ,

inBufObs)

<> % Otherwise the b a l l o t i s s to red . In case the vo t e r i s d i shones t ,
% he a l s o s t o r e s i n v a l i d b a l l o t s in order to t r y to ge t them
% accepted .

15 receivedBallot(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

updSingleList(i, head(inBuf.i), tally), order , castList ,

limit , signedList , dcList , alldcList , inBufObs)

3.4.6 Rename file

In the dishonest model the nonces in the blinded votes are not static anymore (which they were
in the honest model) but are parameterized using an order, as has been discussed in Section 3.4.2.
Therefore we need to change how blinded votes are renamed. In the honest model this was done
as follows.

isBlind(d)-> bcast(i, d)=> bcast(i, blindmsg(blinder(d)));

In the dishonest model we also include the order of the nonce. The rename rule then becomes.

isBlind(d)-> bcast(i, d)=> bcast(i, blindmsg(blinder(d), ord(nonce(bmsg(d)))));

The rename rule for the sending of a signature is adapted in the same way. Since we added
an external observer to the dishonest model we need to include the following rename rule, which
adds the order to all ballots in a tally in a similar way as is done for a single ballot.

isTally(d)-> finalTally(d)=> finalTally(vtally(addOrderToNoncesTally(tallyc(d))));

The full rename file is included in Appendix A.3.1.

41

3.4.7 State spaces

Since we have introduced a large number of options in the dishonest model it was expected that
the state space is a lot larger than that for the honest model. That this expectation was correct
can be seen in the following results. Recall that n denotes the total number of voters, d the number
of dishonest voters, s the number of signers and k the threshold value.

n k d s limit 〈v〉 time #states #transitions

3 2 k − 1 2k − 1 2 F,T,F 0m57s 234575 668894
3 2 k − 1 2k − 1 3 F,T,F 2m57s 748309 2197328
3 2 k − 1 2k − 1 4 F,T,F 10m53s 2302971 7054958
3 2 k − 1 2k − 1 5 F,T,F 70m44s 9509212 31575572

As an example of what the state space for the dishonest model looks like we have visualized
the state space for the model with n = 3, k = 2, d = k−1, s = 2k−1, limit = 2 and v = 〈F,T,F〉.
This figure is included as Figure 3.7.

Figure 3.7: LTS for dishonest model of poor man’s protocol, with n = 3 and v = 〈F,T,F〉.

3.5 Strong synchronicity

In our search for the model that generates the smallest state space while still preserving the prop-
erties of the poor man’s protocol, we try to adapt our model to the setting of strong synchronicity.
The idea of strong synchronicity is that every participant in the protocol is processing the same
message at the same time. This can be used to add some sort of ordering on the broadcast mes-
sages, which reduces the state space. We do not model strong synchronicity in the strictest sense
since internal actions and the processing of data can not be observed by other entities. Since
the broadcast buffer is modelled as a queue, sometimes a number of internal actions need to be
performed before a certain message can be processed.

42

The strong synchronicity scheme has most effect in the Registration phase, where the voters
send their blinded votes and the signers send their signatures of these votes. What happens when
the strong synchronicity scheme is used is the following. After a voter Vi sends a blinded vote, all
signers have to send their signature before another voter Vj is allowed to send his blinded vote.
Recall that in the other phases of the protocol the (anonymous) broadcast messages are protected
by deadlines. The strong synchronicity scheme does therefore not have effect in these phases.

The current dishonest model uses a blind-then-sign approach, where each voter first sends
its blinded vote before signing other votes. This does not work in combination with the strong
synchronicity scheme since there would arise a deadlock after the first voter sends his blinded vote.
Thus in order to model the strong synchronicity we need to drop the blind-then-sign approach. We
model the strong synchronicity using semaphores. In this model, we only need a single semaphore s,
which is used as follows.

s = 0 → Some voter can send a blinded vote, after doing that the semaphore s is
set to the number of voters minus one (the number of voters that need to
process that message). While s = 0, sending signatures is prohibited.

s > 0 → Some signer can send a signature for the blinded vote that was sent when
the semaphore was set to the number of voters minus one. After that,
s is decreased by one. Also when a voter does not sign the blinded vote
(either because he is not a signer or if he is a signer and he has decided
not to), s is decreased by one. While s > 0, sending blinded votes is
prohibited.

After a blinded vote has been cast the semaphore s is set to the number of voters minus one,
which is the number of voters that need to process that blinded vote. Since not all voters can
sign, some voters process the message by not signing it. This is modelled by the action notSign,
which is in the set of hidden actions. This action can also be performed in some cases by voters
that are signers, for example when a dishonest voter decides to not sign some blinded vote. This
gives some trouble here since we do not know exactly how many signatures can be expected for
a single blinded vote. We only know that it should be between the number of honest signers and
the number of all signers. If we knew the exact number of signatures to expect, we could use that
number to set the semaphore to after a blinded vote has been cast. Then the semaphore can be
lowered by one each time a signature is broadcasted. Unfortunately, it is not possible to determine
that number and therefore we also have to change the semaphore on the action notSign.

Using this scheme with semaphores, the sending of messages is now regulated since signatures
can only be sent when the semaphore s is larger than zero and blinded votes can only be sent
when the semaphore s is equal to zero.

Adapting the model

In order to adapt the model to the strong synchronicity setting, we need to add the semaphore s
to the model. We do this by adding an extra parameter semaphore of type natural to the end of
the parameter list. Then the following changes have to be applied to the model to transform it to
a model with strong synchronicity.

• Sending blinded votes is only enabled when the semaphore is equal to zero. This can be
done by adding the condition semaphore = 0 before the part where the blinded votes are
sent.

• We replace the blind-then-sign strategy by a strategy where blinded votes and signatures
are sent mixed. This is done by replacing the else (<>) between the part where the blinded
votes are sent and the rest of the protocol by an alternative composition (+).

• Each time a blinded vote is broadcast, the semaphore needs to be set to N-1.

• Each time a blinded vote is processed the semaphore needs to be lowered by one.

43

• All other recursive calls should be adapted such that they include the semaphore. The value
of the semaphore in this calls should remain unchanged.

• The initial value of the semaphore is zero.

The model using strong synchronicity is included in Appendix A.4. Only the process V oters
and its initialization is included there since all actions, sorts and functions remain the same as
for the dishonest model. We have done some tests by generating the state space of the models
with strong synchronicity, which can be found in the table below. An example visualization of the
model with parameters n = 3, k = 2, d = k − 1, s = 2k − 1, limit = 2 and v = 〈F,T,F〉 can be
found in Figure 3.8.

model n k d s limit 〈v〉 time #states #transitions

dishonest 3 2 k − 1 2k − 1 2 F,T,F 0m57s 234575 668894
strong sync. 3 2 k − 1 2k − 1 2 F,T,F 0m16s 19232 52586
strong sync. 4 2 k − 1 2k − 1 2 F,T,F,T 8m48s 1313229 4773822

Figure 3.8: LTS for model with strong synchronicity of poor man’s protocol, with n = 3 and
v = 〈F,T,F〉.

3.6 Verification

The next step after the construction of the model of the protocol is the verification of some
properties on the model. Since we verify properties on the model of the protocol, it is expected
that if the properties hold for the model, they also hold for the protocol. We do two types
of verification, where we discuss each type individually. First, we use equivalence relations on
processes to verify the privacy property and then we use model checking to verify the unicity
property and some other less-general properties.

44

3.6.1 Privacy property

The privacy property says that no one can get to know the vote of another voter. We can formalize
this by checking whether an external observer can tell whether votes are changed in two protocol
runs. We do this by generating two processes: one where the votes are assigned using a certain
list of votes and one where they are assigned using the permutation of that list. When an external
observer can not tell the difference between these two processes, that is when these two models
are strongly bisimilar, the privacy property holds for the model.

We however only guarantee the privacy of honest voters, so we only need to check models where
the votes of honest voters are permuted. We can not guarantee the privacy of dishonest voters.
Consider for example a model with a single dishonest voter. It is then possible that the dishonest
voter casts more than one blinded vote and thus also more than one ballot. From the extra blinded
vote the observer can not deduce any more information than that the voter is dishonest. However
since the ballot contains the plain-text vote, the observer notices when the vote of the dishonest
voter is changed. This is not a flaw in the model, the choice of the dishonest voter leads to the
fact that privacy can not be guaranteed for dishonest voters.

We can determine whether two processes are related using some equivalence relation on pro-
cesses using two different techniques:

1. Generating two state spaces using the tool lps2lts and comparing these for the given equiv-
alence relation using the tool ltscompare.

2. Expressing the equivalence relation on the two processes as a Parameterized Boolean Equa-
tion System (PBES) using the tool bisimulation.

Technique 1: ltscompare In order to compare two state spaces we first need to generate two
models with the the same set of parameters, except for the list of votes. The state spaces can be
generated in the normal way, as defined in Section 3.2. After the state spaces have been generated
we can use the tool ltscompare as follows to check whether the equivalence relation holds.

ltscompare --equivalence=bisim <model1>.svc <model2>.svc

When the tool is finished it reports whether the equivalence holds or not. We have done some
tests using this technique, the results are in the following table. The first parameter specifies
which model is used, the dishonest model or the strong synchronicity model. The next two
columns specify the values of the parameters of both processes, then the column 〈v〉 specifies the
distribution of votes for the first process, 〈π(v)〉 the distribution for the second process, timesg the
time to generate the state space for a single process and timelc the time it takes to run ltscompare.
Finally, the last column contains whether the two processes are bisimilar. The whole technique
thus takes for a certain set of parameters, 2·timesg + timelc time. All models use the same values
for parameters d (= k − 1), s (= 2k − 1) and limit (= 2).

model n k 〈v〉 〈π(v)〉 timesg timelc bisimilar

dishonest 2 1 F,T T,F 0m01s 0m01s yes
dishonest 3 2 F,T,F F,F,T 0m57s 0m11s yes
dishonest 3 2 T,F,F F,F,T 0m57s 0m06s no
strong sync. 4 2 F,T,F,T F,F,T,T 8m48s 14m39s yes

Recall that dishonest voters are chosen by their identity, the first d voters are dishonest in a
model. We indeed observe that privacy is only guaranteed for honest voters: when the vote of the
dishonest voter is changed (third result in the above table), the models are not bisimilar.

Technique 2: bisimulation Using the tool bisimulation it is possible to express a equivalence
relation on processes as a PBES. We can use the tool pbes2bool to solve the resulting PBES to find

45

out whether the equivalence relation holds or not. This way it is not needed to explicitly generate
the state spaces for the two processes.

Since the tool bisimulation is not a standard tool in the mCRL2 toolset (revision 6517-
shared), we first need to build the tool. This is done as follows. From the source directory
libraries/pbes/example the following command needs to be run to compile the tool:

../../../build/bin/bjam link=static

This compiles the tool and places it in the subdirectory dist. To construct a PBES expressing
the bisimulation relation between the two processes the following command is used. The parameter
bisimulation=1 tells the tool to use strong bisimulation.

bisimulation --bisimulation=1 <process1>.lps <process2>.lps <pbesname>.pbes

Then we can apply the tool pbesrewr (without any additional parameters) on the PBES that
rewrites data expressions in a PBES. This can lead to a reduction in the time required to solve the
PBES. Note that there exist tools like pbesconstelm, pbesparelm and pbeseqelm. We have tested
these tools on some instantiations of the model, but they did not lead to improvements. Most
likely this is since the LPSs that are used in the tool bisimulation are already transformed using
a number of LPS tools before these are given to the bisimulation tool.

To solve the PBES we use the tool pbes2bool with parameters precompile to precompile the
PBES and for large PBESs the parameter rewriter=jittyc. Both parameters can lead to faster
rewriting, although the latter only improves the total running time on large PBESs.

pbes2bool --precompile [--rewriter=jittyc] <pbesname>.pbes

Unfortunately it takes a lot longer to check the equivalence relation using this technique com-
pared to the previous technique using ltscompare, therefore the technique using ltscompare is pre-
ferred. Some results are presented in the following table. The column timelts contains the time that
is required to check the equivalence relation using the technique using ltscompare and the column
timepbes contains the time it takes to run pbes2bool (the tools bisimulation and pbesrewr run within
one second for these models). All models use the same values for parameters d (= k−1), s (= 2k−1)
and limit (= 2).

model n k 〈v〉 〈π(v)〉 timelts timepbes #equations bisimilar

dishonest 2 1 F,T T,F 0m01s 0m01s 52 yes
dishonest 3 2 F,T,F F,F,T 2m05s 62m08s 8811982 yes
dishonest 3 2 T,F,F F,F,T 2m00s 61m15s 8661350 no
strong sync. 4 2 F,T,F,T F,F,T,T 32m15s (*) (*) yes

(*): No result after running 23 hours and 15 minutes. Upon termination, more than 60GB of memory was used and more

than 100 million Boolean equations were generated.

3.6.2 Model checking

Tools

In order to verify certain properties on our model we express these properties as modal µ-calculus
formulae. When we have expressed a property on our model in a modal formula, we can use the
tool lps2pbes to generate a PBES that equals true if and only if the corresponding modal formula is
true on the given LPS. Besides the modal formula the tool lps2pbes also needs an LPS of the model
as input. This LPS can be generated from the mCRL specification as described in Section 3.2.
The PBES expressing the validity of the modal formula on the LPS can be constructed as follows.

lps2pbes --formula=<formulaname>.mcf <lpsname>.lps |
pbesrewr > <pbesname>.pbes

We again use the tool pbesrewr in the toolchain that can rewrite data expressions in a PBES,
simplify expressions and remove quantified variables that are not used. To solve a PBES we use the

46

tool pbes2bool, again with parameters precompile and rewriter=jittyc to speed up the computation
of the result of the PBES. We thus use the following command to solve a PBES.

pbes2bool --precompile [--rewriter=jittyc] <pbesname>.pbes

Modal µ-formulae

In this section we describe how some properties can be expressed as modal µ-calculus formulae.
In the following text we use the model with n = 2, n = 3 and n = 4 to denote one of the models
in the following table. In the following paragraphs we discuss each property we verify in isolation.
We present all formulae in standard mathematical notation, the formulae in the format of lps2pbes
are included in Appendix A.6.

parameter value n=2 value n=3 value n=4

model dishonest dishonest strong sync.
numVoters 2 3 4
threshold 1 2 2
numDishonestVoters threshold-1 threshold-1 threshold-1
numSigners 2*threshold-1 2*threshold-1 2*threshold-1
votesVector [F,T] [F,T,F] [F,T,F,T]
limit 2 2 2

Always action finalTally We start with a property that is easy to express and can be de-
scribed very short. We want to check whether the external observer is always able to eventually
construct a final tally. This means that we need to check whether action finalTally is always
eventually performed. We can formalize this using the following modal µ calculus formula.

[(∃d:D.finalTally(d))?]〈true?.∃d:D.finalTally(d)〉true

This formula expresses that as long as no action finalTally(d) has happened for some d:D,
it must be the case that there is a path for which it holds that action finalTally(d) is possible
for some d:D.

n #equations time solution

2 43 0m01s true
3 469149 2m26s true
4 2626457 19m11s true

At least one signature We want to check whether every blinded vote that is sent as first
blinded vote is signed at least once by one of the signers. We express this using the following
modal µ-calculus formula. In this formula we use the val operator, this operator evaluates the
value of the Boolean data expression that is given as parameter to true or false.

∀n : N.val(n < numV oters)→ [true?.bcast(n, blindmsg(n, 0))]
〈true?.∃m : N.bcast(m, sign(m, blindmsg(n, 0)))〉true

n #equations time solution

2 68 0m01s false
3 705724 2m00s true
4 5349482 27m07s true

Note that the solution is false for n = 2. This is since the threshold value is in that case one
and the number of signers is also one. Therefore, the voter which is the signer signs his own ballot,
but does not broadcast this. The answer false is thus the correct answer. The formula is true for
n = 3 and n = 4 since there are two signers then.

47

At least k signatures As a more general version of the previous formula, we now check whether
each first blinded vote is signed at least k (the threshold value, here represented by the parameter
threshold) times. We express this using the following formula.

∀n:N.val(n < numV oters)→ ([true?.bcast(n, blindmsg(n, 0))]
(νX(cnt:N := 0).[(∃m:N.bcast(m, sign(m, blindmsg(n, 0))))]X(cnt)∧

[∃m:N.bcast(m, sign(m, blindmsg(n, 0)))]X(cnt+ 1)∧
(∀d:D.[finalTally(d)]val((n < numSigners→ (cnt+ 1 ≥ threshold))∧

(n ≥ numSigners→ (cnt ≥ threshold))))))

Let us look at this formula in detail. The first universal quantification says that we want to express
something for all voters n. Then the part [true?.bcast(n, blindmsg(n, 0))]φ says that we want to
verify whether property φ holds after every action bcast(n, blindmsg(n, 0)). That property φ is
here a fixed point formula with data. The first part νX(cnt:N = 0) says that parameter cnt is
initialized with 0. We use this parameter to count signatures. Every time a signature is received for
voter n (represented by [∃m:N.bcast(m, sign(m, blindmsg(n, 0)))]) the counter is increased by one.
If another action occurs (represented by [∃m:N.bcast(m, sign(m, blindmsg(n, 0)))]), the counter
is not increased. Upon encountering action finalTally(d) for some d:D it is checked whether
enough signatures are received. Since signers sign their own vote, we check whether cnt+1 ≥
threshold for signers and cnt ≥ threshold for voters that can not sign.

Note that in this formula duplicate messages are counted multiple times. For example, when
a signer m broadcasts his signature for the blinded message of a voter n two times in a row, the
parameter cnt is increased by one two times. This would make the formula not very useful, since a
single signer could broadcast his signature k times, which makes the formula true. Fortunately, it
is in our model by construction not possible for a voter to send the same message more than once
(the motivation of this decision is included in Section 3.4.1). This also applies to other formulas
which are discussed further on.

n #equations time solution

2 86 0m01s true
3 1404363 4m16s true
4 10073756 62m30s true

No signer signs twice The next property we verify is whether no signer signs the same blinded
vote twice. We formalize this using the following modal µ calculus formula.

∀n:N.val(n < numSigners)→ ∀blinder:N.val(blinder < numV oters)→
∀order:Nat.val(order < limit)→ [true?.bcast(n, sign(n, blindmsg(blinder, order))).true?.
bcast(n, sign(n, blindmsg(blinder, order)))]false

n #equations time solution

2 107 0m01s true
3 5424986 15m05s true
4 40772339 363m29s true

Sound final tally The next property we verify is whether the number of ballots in the final
tally is greater than or equal to the number of blinded votes that are sent by honest voters. We
can unfortunately only verify this for honest voters and not for all voters. The reason for this is
that a dishonest voter can decide to cast a blinded vote and not cast the corresponding ballot.
Therefore we do not check whether the number of ballots in the tally is equal to the number of
blinded votes that are sent first. The formula is again using the counting construct using the

48

largest fix point operator with data.

νX(cnt:N := 0).([(∃n:N.val(n ≥ numDishonestV oters) ∧ bcast(n, blindmsg(n, 0)))]X(cnt)∧
[∃n:N.val(n ≥ numDishonestV oters) ∧ bcast(n, blindmsg(n, 0))]X(cnt+ 1)∧
∀d:D.([finalTally(d)]val(cnt ≤ countItems(tallyc(d)))))

Note the use of function countItems in the formula. This function is in the formula since the
length operator # does not work in the val operator inside a modal formula. The condition we
would have like to check instead of val(cnt ≤ countItems(tallyc(d))) is val(cnt ≤ #(tallyc(d))).
Unfortunately, the tool pbes2bool can not rewrite this expression and can therefore not solve the
PBES. We have solved this by adding the function countItems to the model which counts the
number of elements of a list of Data elements. We further discuss this issue at the end of this
section.

n #equations time solution

2 23 0m01s true
3 234576 0m55s true
4 1313230 8m05s true

Identification of dishonest signers The last property we verify before the unicity property
concerns the identification of dishonest signers. We verify whether it is always the case that a
dishonest signer is in the list of dishonest signers of an honest signer if and only if it has not signed
all first blinded messages of all voters. We formalize this using the following modal µ calculus
formula.

∀n:N.val(n < numDishonestV oters)→ νX(scnt:N := 0, vcnt:N := 0).
([(∃m:N.bcast(n, sign(n, blindmsg(m, 0))) ∨ ∃m:N.bcast(m, blindmsg(m, 0)))]X(scnt, vcnt)∧

[∃m:N.bcast(n, sign(n, blindmsg(m, 0)))]X(scnt+ 1, vcnt)∧
[∃m:N.bcast(m, blindmsg(m, 0))]X(scnt, vcnt+ 1)∧

(∀m:N.val(numDishonestV oters ≤ m ∧m < numSigners)→
(∀d:D.[val(isDishonestList(d)) ∧ bcast(m, d)]
val(scnt < vcnt− 1⇒ containsItem(voter(n), dList(d))∧
containsItem(voter(n), dList(d))⇒ scnt < vcnt− 1))))

Here again we have the same issue as with formula soundFinalTally. We want to test whether
voter(i) ∈ dList(d), but pbes2bool can again not rewrite this expression. Therefore have constructed
the function containsItem, which acts as a replacement function.

n #equations time solution

2 2 0m01s true
3 234582 0m58s true
4 1313238 7m30s true

Unicity

Using modal formulae we can also check whether the model of the protocol satisfies the unicity
property. In order to verify this property we need to adapt the model, since it is not possible
to check this property in the original model. In the original model it is not possible to see how
many ballots there are cast per voter and how many ballots per voter there are in the final tally.
We adapt the model such that this can be checked, but by doing this the privacy property is
not satisfied anymore and the adapted model should therefore only be used to check the unicity
property.

The model is adapted by adding the identity of a voter to each ballot that he sends. Since
the tally is formed out of a number of ballots, the tally also contains the identities of the voters.

49

The model is changed as follows. In the regular (dishonest) model a ballot is modelled as a list of
signatures combined with an order that is used to indicate the order in which the ballot is sent.

ballot(listc: List(Data), order: Nat)?isBallot

In the model for unicity we add a Data parameter that represents the identity of the voter.
For a given ballot d, the identity can be extracted using projection function bsender.

ballot(bsender: Data, listc: List(Data), order: Nat)?isBallot

When a ballot is sent, the identity of the voter that sends the ballot is added to the ballot.
As an example the case where an honest voter Vi casts his first (and only) ballot. In the regular
model it is modelled by constructing the ballot from a list of signatures and adding an order.
After that the ballot is broadcasted anonymously using the abcast action and the V oters process
is called with the appropriate parameters (not shown here). In the regular model this is modelled
as follows.

abcast(ballot(removeDishonestSignatures(kTimesDishonest(0, k, alldcList.i), filterSigByNonce(0,

sigList.i)), order))

In the model for unicity we add the identity of the voter to the ballot as follows.

abcast(ballot(voter(i), removeDishonestSignatures(kTimesDishonest(0, k, alldcList.i),

filterSigByNonce(0, sigList.i)), order))

The full list of differences can be found in Appendix A.5. This includes the other cases where
ballots are cast by voters, changes in the functions smaller and addOrderToNoncesTally and a
change in the rename file.

Using the adapted model we can check whether the model satisfies the unicity property. We
check this by verifying whether there is (at most) one ballot in the final tally for each voter that
has sent at least one blinded vote. Since dishonest voters do not always send a ballot after they
have sent a blinded vote, it is possible that there is no ballot from a dishonest voter in the final
tally. For that reason we check whether the number of ballots in the final tally per voter is less
than or equal to one if the voter is a dishonest voter and equal to one when the voter is honest.
We can express this using the following formula, where the function countBallotsInTally counts
the number of ballots for a specific voter.

∀n:N.val(n < numV oters)→
(∀d:D.([true?.bcast(n, blindmsg(n, 0)).true?.finalTally(d)]
val((n < numDishonestV oters⇒ countBallotsInTally(voter(n), tallyc(d)) ≤ 1)∧

(n ≥ numDishonestV oters⇒ countBallotsInTally(voter(n), tallyc(d)) = 1))))

However, when trying to check this formula on the adapted model using the tool pbes2bool it
seems that the universal quantification over Data elements d is a problem. The tool starts by
trying to eliminate the universal quantifier for at least ten minutes without results (for the model
with n = 3). From the semantics of µ-calculus formulae [GW05] it follows that it is allowed to
move quantifiers that are outside a box or diamond modality whenever possible, that is if the same
variables are still bound to the same quantifiers. For example the following equality holds.

∀d:D.[true?.a(d)]false = [true?]∀d:D.[a(d)]false

When we do this here, we get the following formula, which can be checked using pbes2bool
within six minutes, for the model with n = 3. We have not tested the formula for n = 4 since we
have not adapted the strong synchronicity model.

∀n:N.val(n < numV oters)→
([true?.bcast(n, blindmsg(n, 0)).true?]∀d:D.[finalTally(d)]
val((n < numDishonestV oters⇒ countBallotsInTally(voter(n), tallyc(d)) ≤ 1)∧

(n ≥ numDishonestV oters⇒ countBallotsInTally(voter(n), tallyc(d)) = 1)))

50

n #equations time solution

2 451 0m01s true
3 1410025 5m32s true

Extra functions

Since a number of standard operations on lists do not rewrite using the tool pbes2bool as discussed
in the previous sections, we have replaced them by functions that do the same. Note that where
the standard operations are polymorphic, our replacement functions are not since it is not possible
to define your own polymorphic function in mCRL2. Our replacement functions thus only work
for certain data types, which gives no problems in the way we apply them. Furthermore we
have added an extra function that is needed for the verification of the unicity property. We have
added the following three functions: countItems, containsItem and countBallotsInTally. Function
countItems is a replacement function for the length operator # on lists, function containsItem is
a replacement function for element test on lists and function countBallotsInTally is needed for the
verification of the unicity property and counts for a given voter the number of ballots in the tally.

The functions are rather trivial, so we do not elaborate on them (they can be found in the
models in Appendix A.3 and Appendix A.5). The first two functions, countItems and containsItem,
are included in the regular model. The third function, countBallotsInTally, is only included in the
adapted model.

3.6.3 Observations

We have shown that the privacy property, the unicity property and some less general properties
hold for the regular dishonest model for up to three voters. We have also shown that these
properties (except the unicity property) hold for four voters in the model with strong synchronicity.
All formulae used for model checking are parameterized, that way larger models can easily be
checked – given that there is enough time and space – by only generating a new model.

Unfortunately we have not been able to do model checking on a model with five voters. The
reason for this is that the models with five voters are too large to model check in our environment.
This is mainly due to the number of messages in our protocol and then particularly the messages
introduced by signing the blinded votes. In a näıve approach this leads to n · s messages for the
signatures in an honest model, where s is the number of signers (typically close to n) and n the
number of voters. This leads to roughly O((ns)!) different orders in which the messages can be
sent (it is not exactly (ns)! since signatures for a certain blinded vote can only be sent when the
blinded vote has been cast).

We have reduced the number of orders by not letting signers broadcast the signature of their
own blinded vote and by using a blind-then-sign approach. Since this did not help enough we
further reduced the number by applying a strong synchronicity approach. Using that approach
the number of orders is (for the honest case) reduced from O((ns)!) in the näıve approach to
O(n! ·s!). Although this did enable us to do model checking with four voters, it is still not possible
to do model checking with five voters. It should be noted that the complexity of the model not just
comes from sending the large number of messages, it also comes from processing these messages.
For example, every signature that is sent is received by n − 1 voters and can often be processed
in various orders.

A way to further reduce the number of orders is to put an ordering on the messages. For
example when a blinded vote is sent, first voter 0 may send its signature, then voter 1 and so on.
We have not investigated this since we feel that this restricts the model too much and since it is
likely only a relatively small reduction on the total state space because we are still stuck with the
large number of messages.

51

Chapter 4

Proving privacy in the TD-1
protocol

In the previous chapter we have shown how we have verified properties for a model of one our
protocols. Unfortunately this was only possible for a small number of voters since the state space
had to be generated (to check equivalence relations) or because all paths had to be traversed (for
model-checking). Although such approach can find errors in the model and may give confidence
that the protocol is also correct for a larger number of voters, it is impossible to know for sure
whether it really is correct for an arbitrary number of voters.

In this chapter we prove that the privacy property is satisfied for an arbitrary number of voters n
in the protocol of Section 2.4, which we call the TD-1 protocol. Recent work [CPvdPW07, OW08,
OWW09] has made it possible to determine equivalence relations on models where n is kept
variable. We have chosen for this relatively simple protocol since the techniques we use for the
proof need to be applied by hand, involve a large number of equations and can be quite complex.

Before we start explaining the techniques, we first construct a model of the protocol. In
order to apply the technique it is needed that the model is in the form of an LPE (introduced
in Section 3.1). We have chosen to construct a model directly as an LPE, however it would have
also been possible to construct a model using parallel processes and then to linearize it using the
mCRL2 toolset.

4.1 Model

In order to keep the model small and clear, we have modelled the most basic setting. Trusted
devices are not shared: each user has its own trusted device and therefore explicit voter registration
can be left out. For the encryption of messages a static key is used instead of a dynamic key.
Furthermore we assume that the trusted devices do not cache any broadcast messages: there is
only one message on the broadcast channel that can be processed by the trusted devices.

The model is quite straightforward and can be found in Figure 4.1 (only the process V oters).
The full model is included in Appendix B.1 and the rename file in Appendix B.1.1. Function
insListNat inserts a natural number in a sorted list of natural numbers. Function updSingleList is
similar, it inserts a ballot in a sorted list that is in a list of lists. Then, function sanitize takes care
of the sanitization of the ballots: it removes the voter identities of the ballots such that the privacy
property is not violated. The process V oters works as follows, castList contains a list of voters
that have cast their vote and is used to take care that voters can only vote once. After a ballot
has been cast, the process is called with an empty procList. The parameter procList contains a list
of voters that have processed the message that is currently on the broadcast channel (represented
by parameter bc). Only when all trusted devices have processed that message, it is possible that
a new ballot is cast. Since all trusted devices are honest, it suffices to only check the tally of one
of them. We do this by inspecting the tally of trusted device with identity 0, which is always

52

in the protocol for realistic instantiations (numV oters > 0). Since all trusted devices can only
perform honest actions we can choose a single device to read out the tally. The model has only two
parameters that are used to change the model: numVoters, which specifies the number of voters
(and thus trusted devices) in the protocol and votes, which contains the distribution of the votes.

0 proc Voters(N: Nat , bc: Data , votes: List(Bool), castList: List(Nat), key: Data ,

tallyList: List(List(Data)), procList: List(Nat)) =

sum i: Nat . (0 <= i && i < N) -> (

(!(i in castList) && #(procList) == N) ->

bcast(i, encrypt(ballot(i, votes.i), key)) .

5 Voters(N, encrypt(ballot(i, votes.i), key), votes , insListNat(i,

castList), key , tallyList , [])

+

(!(i in procList)) -> (

(decrypt(bc, key) != err) ->

10 storedMessage(i, decrypt(bc , key)) .

Voters(N, bc, votes , castList , key , updSingleList(i, decrypt(bc, key),

tallyList), insListNat(i, procList))

<>

invalidMessage(i, bc) .

15 Voters(N, bc, votes , castList , key , tallyList , insListNat(i,

procList))

)

+

(#(tallyList.i)==N && i== 0) ->

20 ftally(sanitize(tallyList.i)) . delta
);

Figure 4.1: mCRL2 model of TD-1 protocol (main process only).

To call the process initially, the following process call should be used, where numVoters is
the number of voters in the protocol, votesVector is a list of Boolean votes, eKey is a static
key of type Data, initList(numVoters) initializes a list containing numVoters empty lists and
initProcList(numVoters) generates the list [0, . . . , numV oters− 1].

Voters(numVoters, null, votesVector, [], eKey, initlist(numVoters), initProcList(numVoters))

In the initial process the value null is on the broadcast channel. This is done since we have
to define some value of type Data for the initial call. We however do not want that this message
is processed, therefore we initialize the parameter procList with the list containing the identities
of all voters. In order to generate the state space of the model we first need to generate an LPS.
To construct an LPS from the model (included in Appendix B.1) and the rename file (included in
Appendix B.1.1) we use the following toolchain.

mcrl22lps --delta <name>.mcrl | lpsconstelm | lpsactionrename
--renamefile=<renfilename>.ren | lpssuminst | lpsconstelm > <name>.lps

We have generated the state space of the model for a number of parameters. The results
are presented in the table below. The state spaces are generated using the tool lps2lts without
parameters for n ≤ 6. For n > 6 the parameter rewriter=jittyc is added to speed up state space
generation. The column time contains the time it takes to generate a certain LTS.

53

n 〈v〉 time #states #transitions

1 F 0m01s 4 3
2 F,T 0m01s 18 24
3 F,T,F 0m01s 106 187
4 F,T,F,F 0m01s 738 1626
5 F,T,F,F,T 0m01s 4450 11721
6 F,T,F,F,T,F 0m24s 37122 115380
7 F,T,F,F,T,F,T 0m50s 255874 917651
8 F,T,F,F,T,F,T,F 12m37s 2583042 10535270

We have constructed figures of some of the LTSs using the tool ltsview, these figures can be
found in Figure 4.2. In these figures we can see number the broadcast messages: after a ballot
has been broadcast there follows a bulb. This is because there are a number of different orders in
which broadcast messages can be processed. In the model it is only checked whether the number
of ballots in the tally of trusted device with identity 0 is equal to the number of trusted devices
before publishing the tally. It can very well be the case that a number of other trusted devices
has not yet processed the last broadcast message; this is represented by the various nodes at the
bottom of the figures. When we would check whether all tallies contain enough ballots, then these
would be replaced by a single state at the bottom of the figure.

(a) n = 4, v = 〈F,T,F,F〉 (b) n = 5, v = 〈F,T,F,F,T〉 (c) n = 6, v = 〈F,T,F,F,T,F〉

Figure 4.2: LTSs for model of TD-1 protocol (scaled).

We have used the tool ltscompare on some instantiations in order to get some intuition about
whether the model is strongly bisimilar for different vote vectors. For example, we have generated
two instantiations of the model with n = 6 and votes=[F,T,F,F,T,F] and votes=[F,F,F,T,F,T].
Using the tool ltscompare with parameter equivalence=bisim we have validated in one second that
the two models are strongly bisimilar. We do not know anything about whether the equivalence
holds for arbitrary n, but if we would have found out here that the equivalence did not hold for
n = 6 we would not need to spend time trying to prove the model for arbitrary n.

54

4.2 PBES theory

Now that we have constructed a model of the protocol we proceed with explaining the techniques
we use to verify the privacy property. Please note that this is established theory, therefore we use
in this section (slightly adapted) definitions, lemmas and theorems from earlier work [CPvdPW07,
OW08, OWW09] for some established concepts.

Parameterized Boolean Equation Systems

To verify the privacy property we need to check whether two instantiations of the model of the
protocol are strongly bisimilar (as is explained in Section 3.6.1). As means to express the equiva-
lence relation we use Parameterized Boolean Equation Systems (PBESs). In work of Chen et al.
[CPvdPW07] it is explained how a number of equivalence relations can be expressed as a PBES.
Let us first explain what a PBES is before we proceed with explaining the technique. Since a
PBES contains a number of equations consisting of predicate formulae, we first define those.

Definition 1. A predicate formula is a formula φ in positive form, defined by the following
grammar:

φ ::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | ∀d:D. φ | ∃d:D. φ | X(e)

where b is a data term of Boolean sort B, possibly containing data variables d ∈ D. Furthermore,
X (taken from some set P of predicate variables) is a (parameterized) predicate variable and e is
a vector of data terms.

The set of all predicate formulae is denoted by Pred and a predicate formula is called a simple
predicate formula if it does not contain predicates variables. Then some things have to be noted
here. First, predicate variable X in the above definition of a predicate formula is associated with
a vector dX of sort DX. We however use, without loss of generality [OW08], a single variable dX
of sort DX . Then we would like to introduce some shorthand notation. Since Definition 1 does
not contain negation, we use for Boolean terms b, b =⇒ φ as a shorthand for ¬b ∨ φ. This is
allowed since negation is an operator on data terms. Likewise, for Boolean terms b1, b2, we define
b1 ⇐⇒ b2 as a shorthand for (¬b1 ∨ b2) ∧ (¬b2 ∨ b1).

Predicate formulae can contain both bound (by a universal or existential quantifier) and free
data variables. We assume that a data variable is not both bound and free in the same predi-
cate formula, that is that the sets of bound variables and the set of free variables are disjoint.
Furthermore we assume an interpretation function [[]] over closed data terms (data terms that do
not contain free variables). This function maps closed term e to the semantic data element [[e]]
it represents. For open terms (terms that do contain free variables) we use a data environment ε
that maps each variable from D to a data variable of the right sort. The interpretation of an open
term e is noted as [[e]] ε.

Definition 2. Let θ be a predicate environment assigning a function of type DX → B to every
predicate variable X, and let ε be a data environment assigning a value from domain D to every
variable d of sort D. The interpretation [[]] θε of a predicate formula in the context of environment
θ and ε is either true or false, determined by the following induction:

[[b]] θε =def [[b]] ε
[[φ1 ∧ φ2]] θε =def [[φ1]] θε and [[φ2]] θε
[[φ1 ∨ φ2]] θε =def [[φ1]] θε or [[φ2]] θε
[[∀d:D. φ]] θε =def for all v ∈ D, [[φ]] θ(ε[v/d])
[[∃d:D. φ]] θε =def for some v ∈ D, [[φ]] θ(ε[v/d])
[[X(e)]] θε =def true if θ(X)([[e]] ε) and false otherwise

55

Furthermore we use the notation φ→ ψ to denote that the interpretation of predicate formula φ
implies the interpretation of predicate formula ψ.

Definition 3. Let φ and ψ be predicate formulae. We write φ → ψ iff for all predicate environ-
ments θ and all data environments ε, [[φ]] θε implies [[ψ]] θε.

A Parameterized Boolean Equation System (PBES) is a sequence of fixed point equations.
Each equation in a PBES is of the form σX(dX :DX) = φ, where X is a predicate variable, φ a
predicate formula and where σ denotes the least fix point (µ) or largest fixed point (ν). Variable
dX is of sort DX and may occur in predicate formula φ. The empty PBES is denoted by ε. In the
remainder of this thesis, we use the terms Parameterized Boolean Equation System, PBES and
equation system interchangeably.

An equation system is called closed if for all equations it contains it holds that all predicate
variables at the right hand side of some equation also occur at the left hand side of some (possibly
different) equation. When an equation is not closed it is called open. For an equation system E
the set bnd(E) is defined as the set of predicate variables at the left hand sides of the equations.
The predicate variables at the right hand sides are collected in the set occ(E).

The solution of a PBES is defined in the context of a predicate environment. It assigns to
each predicate variable X a function of type DX → B. This way it can be decided for every
predicate variable whether the solution for the corresponding equation is true or false for a given
data environment.

Expressing bisimilarity

Now that we have defined what a PBES is we can explain how we can generate a PBES expressing
strong bisimilarity between two specifications S and M . Assume that these specifications S and
M are given by the following LPEs, where Aτ =def A ∪ {τ}:

M(d:DM) =
∑

a∈Aτ

∑
ea:EMa

cMa (d, e) =⇒ a(fMa (d, e)) ·M(gMa (d, e))

S(d:DS) =
∑

a∈Aτ

∑
ea:ESa

cSa (d, e) =⇒ a(fSa (d, e)) · S(gSa (d, e))

We can use Algorithm 1 [CPvdPW07] to generate a PBES that expresses strong bisimulation
between LPEs M and S. The resulting PBES resolves to true for a given data environment if and
only if the processes M and S are strongly bisimilar in that environment.

Algorithm 1 Generation of a PBES encoding Strong Bisimilarity between LPEs M and S.
sbisim = νE, where

E := {XM,S(d:DM , d′:DS) = matchM,S(d, d′) ∧matchS,M (d′, d) ,
XS,M (d′:DS , d:DM) = XM,S(d, d′) }

Where (for all a ∈ Act ∧ (p, q) ∈ {(M,S), (S,M)}) we use the following abbreviations:

matchp,q(d:Dp, d′:Dq) =
∧

a∈Act ∀e:Epa .(cpa(d, e) =⇒ stepp,qa (d, d′, e));

stepp,qa (d:Dp, d′:Dq, e:Epa) =
∃e′:Eqa .cqa(d′, e′) ∧ (fpa (d, e) = fqa (d′, e′)) ∧Xp,q(gpa (d, e), gqa(d′, e′));

The following lemma (which is a shortened version of a lemma by Orzan and Willemse [OW08])
says that substitution does not affect the solution of an equation system. This lemma can for
example be used to remove occurrences of a certain predicate variable in the equation of another
predicate variable.

56

Lemma 1. Let E0, E1, E2 be arbitrary equation systems and let X,Y be predicate variables with
X,Y /∈ bnd((Ei)) for i = 0..2. Then:

(Substitution) Let φ and ψ be arbitrary predicate formulae. Let

E :≡ E0 (σX(dX :DX) = φ) E1 (σ′Y (dY :DY) = ψ) E2 and
F :≡ E0 (σX(dX :DX) = φ[ψ〈dY 〉/Y]) E1 (σ′Y (dY :DY) = ψ) E2

where substitution of predicate function ψ〈dX〉 for a predicate variable X in a predicate for-
mula φ is defined as follows.

b[ψ〈dX〉/X] =def b

Y (e)[ψ〈dX〉/X] =def

{
ψ[e/dX] if Y = X
Y (e) otherwise

(φ1 ∧ φ2)[ψ〈dX〉/X] =def φ1[ψ〈dX〉/X] ∧ φ2[ψ〈dX〉/X]
(φ1 ∨ φ2)[ψ〈dX〉/X] =def φ1[ψ〈dX〉/X] ∨ φ2[ψ〈dX〉/X]
(∀d:D. φ)[ψ〈dX〉/X] =def ∀d:D. φ[ψ〈dX〉/X]
(∃d:D. φ)[ψ〈dX〉/X] =def ∃d:D. φ[ψ〈dX〉/X]

Then E and F have the same solution, regardless of the predicate environments and data environ-
ments that are used.

Invariants

Invariants on PBESs are relations on the data variables of a PBES. They are predicates that are
valid for certain parts of the ‘parameter space’ of an equation system. We use the concept of
global invariants on PBESs [OW08], but before we bring the definition of that concept we first
give the definition of a simple function. A function f : V → Pred, where V is a vector of predicate
variables, is a simple function if for all predicate variables X ∈ V the predicate f(X) is simple.

Definition 4. The simple function f :V → Pred is said to be a global invariant for an equation
system E iff V ⊇ bnd(E) and for each (σX(dX :DX) = φ) occurring in E, we have:

f(X) ∧ φ ↔ (f(X) ∧ φ)
[
Xi∈V

(f(Xi) ∧Xi(dXi))〈dXi 〉/Xi

]
where φ

[
Xi∈V

φi〈dXi 〉
/Xi

]
denotes consecutive substitution for predicate formula φ. This is

inductively defined as:

φ
[
Xi∈〈〉

φi〈dXi 〉
/Xi

]
=def φ

φ
[
Xi∈〈X1,...,Xn〉

φi〈dXi 〉
/Xi

]
=def (φ[φ1〈dX1 〉

/X1])
[
Xi∈〈X2,...,Xn〉

φi〈dXi 〉
/Xi

]
A number of properties in the global invariants theory are only defined on predicate formulae

in Predicate Formula Normal Form (PFNF) [OWW09], which is defined as follows.

Definition 5. A predicate formula is said to be in Predicate Formula Normal Form (PFNF) if it
has the following form:

Q1 v1:V1. · · ·Qn vn:Vn.h ∧
∧
i∈I

(gi =⇒
∨
j∈Ji

Xj(ej))

where Xj ∈ X (the domain of predicate variables), Qi ∈ {∀,∃}, I is a (possible empty) finite index
set, each Ji is a non-empty finite index set, and h and every gi are simple formulae.

57

In order to prove that a simple function f :V → Pred is a global invariant we use the following
theorem [OWW09].

Theorem 2. Let E be an equation system where every equation k is in PFNF:

(σkXk(dXk :Dk) = Qk1 v1. · · ·Qknk vnk .(h
k ∧

∧
i∈Ik

(gki =⇒
∨
j∈Ji

Xj(ej))))

Then the simple function f :V → Pred is a global invariant for E if for each k:∧
i∈Ik

∧
j∈Ji

((f(Xk) ∧ hk ∧ gki)→ f(Xj)[ej/dXj])

The conjunction of two global invariants is, as one might expect, again a global invariant.
Formally this is stated by the following property [OW08].

Property 3. Let f, g:V → Pred be global invariants for an equation system E. Then also f ∧ g
and f ∨ g are global invariants for E.

Using a global invariant that is strong enough to satisfy certain conditions, it is possible that
the solution of predicate variable can be expressed in terms of the global invariant. This is formally
expressed in the following proposition [OW08].

Proposition 1. Let E be an equation system. Let f be a global invariant for E and assume E
contains an equation for X of the form:

(νX(d:D) = f(X) ∧
∧
i∈I

Q1 e
1
i :E

1
i . . .Qmi e

mi
i :Emii . ψi =⇒ X(gi(d, e1i , . . . , e

mi
i)))

where Qj ∈ {∀,∃} for any j, and for all i, ψi are simple predicate formulae and gi is a data term
that depends only on the values of d and e1i , . . . , e

mi
i . Then X has the solution f(X).

4.3 Proving privacy

In this section we apply the techniques from the previous section to prove the privacy property
of the TD-1 protocol. As discussed before, we can do this by checking whether two instantiations
of the model of the protocol are strongly bisimilar. Here we do not instantiate the model with
constants like in Section 4.1, instead we prove that the equivalence relation holds for arbitrary n.
What we want to show is that the processes V oters(n, null, V, ∅, [∅, ∅, . . . , ∅], {0, 1, . . . n− 1}) and
V oters(n, null, π(V), ∅, [∅, ∅, . . . , ∅], {0, 1, . . . n − 1}) are strongly bisimilar, where V is a list of
votes, π(V) a permutation of that list and where [∅, ∅, . . . , ∅] denotes a list of n empty sets. In the
remainder of this section we work with a mathematical model, where we define the set of Booleans
as B = {⊥,>}, where ⊥ denotes false and > denotes true.

Since we want to compute a PBES expressing strong bisimilarity by hand, we want to have a
model that is as small as possible. Therefore we have constructed the following simplified model,
where D denotes type Data. In this model we have already applied the hiding and renaming
operators. Note that in the original model there was a check whether the broadcast message could
properly be decrypted. This check is removed here because it always evaluates to true since no
undecryptable messages are broadcasted.

V oters(N :N, bc:D, votes:List(B), cast:Set(N), tally:List(Set(D)), proc:Set(N)) =∑N−1
i=0 ((i /∈ cast ∧#(proc) = N) =⇒

bcast(i, cmsg(i)) · V oters(N, enc(blt(i, votes.i)), votes, {i} ∪ cast, tally, ∅)
+ i /∈ proc =⇒ τ · V oters(N, bc, votes, cast, updSet(i, dec(bc), tally), {i} ∪ proc)
+ (#(tally.i) = N ∧ i = 0) =⇒ ftally(count(>, tally.i), count(⊥, tally.i)) · δ

)

58

Furthermore we have replaced function sanitize by a tuple containing the number of votes
containing ⊥ and the number of votes containing >. These can be computed using the function
count:

map count : B× List(D)→ N;
var b : B;

x : D;
xs : List(D);

eqn count(b, []) = 0;
count(b, x . xs) = b ≈ cand(x)→ 1 + count(b, xs) � count(b, xs);

We have done this since it is easier to reason about this tuple than about the less intuitive func-
tion sanitize. The action ftally(sanitize(tally.0)) is then replaced by the action ftally(count(>,
tally.0), count(⊥, tally.0)). Both functions produce a similar result; function sanitize produces a
list of count(⊥, tally.0) ⊥ items concatenated with a list consisting of count(>, tally.0)) > items
whereas the tuple (count(>, tally.0), count(⊥, tally.0)) only contains these numbers.

There is another minor difference from this model and the mCRL model. Since sets are not
properly supported in revision 6517-shared (as explained in Section 3.2), we have used lists in
the mCRL model where we would have wanted to use sets. Now that we are working with a
mathematical model, we can use sets in the protocol description above. Therefore we replace the
function updateSingleList by the function updSet that is defined as follows.

map updSet : N× D× List(Set(D))→ List(Set(D));
var i : N;

x : Set(D);
xs : List(Set(D));

eqn updSet(i,m, x . xs) =
i > 0→ x . updSet(i− 1,m, xs) � ({m} ∪ x) . xs);

Since the simplified model is already an LPE, we can use Algorithm 1 to construct a PBES
expressing strong bisimilarity between the model and the model where the votes are permuted.
When we apply the algorithm on our model, we get the equation system in Table 4.1. In that
equation system we can simplify some conjuncts using logical rewriting. Consider the following
conjunct.

∀i:[0,N).((i /∈ cast ∧#proc = N) =⇒
∃j:[0,N ′).(j /∈ cast′ ∧#proc′ = N ′ ∧ (i = j ∧ cmsg(i) = cmsg(j))∧

X(N, enc(blt(i, votes.i)), votes, {i} ∪ cast, tally, ∅, N ′, enc(blt(j, votes′.j)), votes′,
{j} ∪ cast′, tally′, ∅)

Since i = j needs to hold for the variable j we can eliminate the existential quantification over j,
which results in the following equation. The same simplification can be made on the primed
version, that is the equation where the variables with a prime mark are replaced by variables
without a prime mark and vice versa.

∀i:[0,N).((i /∈ cast ∧#proc = N) =⇒
i /∈ cast′ ∧#proc′ = N ′∧

X(N, enc(blt(i, votes.i)), votes, {i} ∪ cast, tally, ∅, N ′, enc(blt(i, votes′.i)), votes′,
{i} ∪ cast′, tally′, ∅)

Furthermore we can simplify the following equation (again, the same can be done for the primed
version):

∀i:[0,N).((#tally.i = N ∧ i = 0) =⇒
∃j:[0,N ′).#tally′.j = N ′ ∧ j = 0 ∧ (cnt(>, tally.0) = cnt(>, tally′.0)∧

cnt(⊥, tally.0) = cnt(⊥, tally′.0))

59

Since i and j are bound to 0, we can rewrite this equation to:

#tally.0 = N =⇒
#tally′.0 = N ′ ∧ (cnt(>, tally.0) = cnt(>, tally′.0) ∧ cnt(⊥, tally.0) = cnt(⊥, tally′.0))

Using the result from Lemma 1 we can apply the following substitutions that remove the
occurrences of predicate variable X ′ from the equations of X. The first occurrence of predicate
variable X ′ is the following.

X ′(N ′, enc(blt(i, votes′.i)), votes′, {i} ∪ cast′, tally′, ∅, N, enc(blt(i, votes.i)), votes,
{i} ∪ cast, tally, ∅)

Using Lemma 1 this occurrence of predicate variable X ′ can be substituted by the following
predicate formula containing predicate variable X instead of X ′.

X(N, enc(blt(i, votes.i)), votes, {i} ∪ cast, tally, ∅, N ′, enc(blt(i, votes′.i)), votes′,
{i} ∪ cast′, tally′, ∅)

νX(N :N, bc:D, votes:List(B), cast:Set(N), tally:List(List(D)), proc:Set(N),
N ′:N, bc′:D, votes′:List(B), cast′:Set(N), tally′:List(List(D)), proc′:Set(N) =
∀i:[0,N).((i /∈ cast ∧#proc = N) =⇒

∃j:[0,N ′).(j /∈ cast′ ∧#proc′ = N ′ ∧ (i = j ∧ cmsg(i) = cmsg(j))∧
X(N, enc(blt(i, votes.i)), votes, {i} ∪ cast, tally, ∅, N ′, enc(blt(j, votes′.j)), votes′,
{j} ∪ cast′, tally′, ∅)

∧
∀i:[0,N).(i /∈ proc =⇒

∃j:[0,N ′).j /∈ proc′∧
X(N, bc, votes, cast, updSet(i, dec(bc), tally), {i} ∪ proc,N ′, bc′, votes′, cast′,

updSet(j, dec(bc′), tally′), {j} ∪ proc′)
∧
∀i:[0,N).((#tally.i = N ∧ i = 0) =⇒

∃j:[0,N ′).#tally′.j = N ′ ∧ j = 0 ∧ (cnt(>, tally.0) = cnt(>, tally′.0)∧
cnt(⊥, tally.0) = cnt(⊥, tally′.0))

∧
∀i:[0,N ′).((i /∈ cast′ ∧#proc′ = N ′) =⇒

∃j:[0,N).(j /∈ cast ∧#proc = N ∧ (i = j ∧ cmsg(i) = cmsg(j))∧
X ′(N ′, enc(blt(i, votes′.i)), votes′, {i} ∪ cast′, tally′, ∅, N, enc(blt(j, votes.j)),

votes, {j} ∪ cast, tally, ∅)
∧
∀i:[0,N ′).(i /∈ proc′ =⇒
∃j:[0,N).j /∈ proc∧

X ′(N ′, bc′, votes′, cast′, updSet(i, dec(bc′), tally′), {i} ∪ proc′, N, bc, votes, cast,
updSet(j, dec(bc), tally), {j} ∪ proc)

∧
∀i:[0,N ′).((#tally′.i = N ′ ∧ i = 0) =⇒

∃j:[0,N).#tally.j = N ∧ j = 0 ∧ (cnt(>, tally.0) = cnt(>, tally′.0)∧
cnt(⊥, tally.0) = cnt(⊥, tally′.0))

νX ′(N ′:N, bc′:D, votes′:List(B), cast′:Set(N), tally′:List(List(D)), proc′:Set(N),
N :N, bc:D, votes:List(B), cast:Set(N), tally:List(List(D)), proc:Set(N)) =
X(N, bc, votes, cast, tally, proc,N ′, bc′, votes′, cast′, tally′, proc′)

Table 4.1: Encoding of strong bisimilarity between two Voters processes.

60

The second occurrence of predicate variable X ′ is the following.

X ′(N ′, bc′, votes′, cast′, updSet(i, dec(bc′), tally′), {i} ∪ proc′, N, bc, votes, cast,
updSet(j, dec(bc), tally), {j} ∪ proc)

Using Lemma 1 this occurrence can be replaced by the following predicate formula.

X(N, bc, votes, cast, updSet(j, dec(bc), tally), {j} ∪ proc,N ′, bc′, votes′, cast′,
updSet(i, dec(bc′), tally′), {i} ∪ proc′)

When we apply these simplifications and substitutions we get the equation system in Table 4.2.
There the equation for predicate variable X ′ is removed since it is not used in the equation for
predicate variable X and it is thus not needed for the computation of the solution of X.

νX(N :N, bc:D, votes:List(B), cast:Set(N), tally:List(List(D)), proc:Set(N),
N ′:N, bc′:D, votes′:List(B), cast′:Set(N), tally′:List(List(D)), proc′:Set(N) =
∀i:[0,N).((i /∈ cast ∧#proc = N) =⇒

i /∈ cast′ ∧#proc′ = N ′∧
X(N, enc(blt(i, votes.i)), votes, {i} ∪ cast, tally, ∅, N ′, enc(blt(i, votes′.i)), votes′,
{i} ∪ cast′, tally′, ∅)

∧
∀i:[0,N).(i /∈ proc =⇒

∃j:[0,N ′).j /∈ proc′∧
X(N, bc, votes, cast, updSet(i, dec(bc), tally), {i} ∪ proc,N ′, bc′, votes′, cast′,

updSet(j, dec(bc′), tally′), {j} ∪ proc′)
∧
#tally.0 = N =⇒

#tally′.0 = N ′ ∧ cnt(>, tally.0) = cnt(>, tally′.0) ∧ cnt(⊥, tally.0) = cnt(⊥, tally′.0)
∧
∀i:[0,N ′).((i /∈ cast′ ∧#proc′ = N ′) =⇒

i /∈ cast ∧#proc = N∧
X(N, enc(blt(i, votes.i)), votes, {i} ∪ cast, tally, ∅, N ′, enc(blt(i, votes′.i)), votes′,
{i} ∪ cast′, tally′, ∅)

∧
∀i:[0,N ′).(i /∈ proc′ =⇒

∃j:[0,N).j /∈ proc∧
X(N, bc, votes, cast, updSet(j, dec(bc), tally), {j} ∪ proc,N ′, bc′, votes′, cast′,

updSet(i, dec(bc′), tally′), {i} ∪ proc′)
∧
#tally′.0 = N ′ =⇒

#tally.0 = N ∧ cnt(>, tally.0) = cnt(>, tally′.0) ∧ cnt(⊥, tally.0) = cnt(⊥, tally′.0)

Table 4.2: Encoding of strong bisimilarity between two Voters processes after reduction.

Now we need to solve this equation system in order to find a solution for which we can check
whether it holds in the initial process call. Before we can apply the techniques from the previous
section, we need to bring the predicate formula of our equation system in PFNF. This predicate
formula consists of six conjuncts, which we split into six separate predicate formulae and then bring
these individually in PFNF. This is done because we can reason more easily on these separate
parts that on one large formula. The conjunction of these formula in PFNF can easily be brought
in PFNF. Of six of the conjuncts three are very similar, therefore we only consider the first three
conjuncts.

61

The first conjunct in the predicate formula can be written in PFNF as follows.

∀i:[0,N).(((i /∈ cast ∧#proc = N) =⇒ (i /∈ cast′ ∧#proc′ = N ′)) ∧ ((i /∈ cast ∧#proc = N)=⇒
X(N, enc(blt(i, votes.i)), votes, {i} ∪ cast, tally, ∅, N ′, enc(blt(i, votes′.i)), votes′, {i} ∪ cast′,
tally′, ∅)))

The second conjunct in the predicate formula can be written in PFNF as follows.

∀i:[0,N).∃j:[0,N).(i /∈ proc =⇒ j /∈ proc′) ∧ (i /∈ proc =⇒
X(N, bc, votes, cast, updSet(i, dec(bc), tally), {i} ∪ proc,N ′, bc′, votes′, cast′,
updSet(j, dec(bc′), tally′), {j} ∪ proc′))

The third conjunct is already in PFNF.

#tally.0 = N =⇒
#tally′.0 = N ′ ∧ (cnt(>, tally.0) = cnt(>, tally′.0) ∧ cnt(⊥, tally.0) = cnt(⊥, tally′.0))

We have defined a number of invariants in Table 4.3. For these invariants we need to prove that
each of them is a global invariant for the equation system. The proofs can be found in Appendix C,
where we also explain each invariant in words.

In predicates involving summation, > (or true) is counted as one and ⊥ (or false) as zero.

ι1 : N = N ′

ι2 : ∀k,l:[0,N).k /∈ cast =⇒ (blt(k, votes.k) /∈ tally.l ∧ blt(k, votes.k) 6= dec(bc))
ι3 : ∀k:[0,N).(k ∈ proc⇐⇒ dec(bc) ∈ tally.k)
ι4 : (cand(dec(bc)) ∧ dec(bc) /∈ tally.0) + count(>, tally.0) +

∑
k:[0,N)∧k/∈cast votes.k =

(cand(dec(bc′)) ∧ dec(bc′) /∈ tally′.0) + count(>, tally′.0) +
∑
k:[0,N ′)∧k/∈cast′ votes

′.k

ι5 : (cand(dec(bc)) ∧ dec(bc) /∈ tally.0) + count(>, tally.0) + count(⊥, tally.0) =
(cand(dec(bc′)) ∧ dec(bc′) /∈ tally′.0) + count(>, tally′.0) + count(⊥, tally′.0)

ι6 : #proc = N ⇐⇒ proc = {0, . . . , N − 1}
ι7 : (dec(bc) /∈ tally.0 + #tally.0) = N ⇐⇒ cast = {0, . . . , N − 1}
ι8 : proc ⊆ {0, . . . , N − 1}
ι9 : cast = cast′

ι10 : #tally.0 = N =⇒ dec(bc) ∈ tally.0
ι11 : cast ⊆ {0, . . . , N − 1}
ι12 : dec(bc) /∈ tally.0 + #tally.0 = #cast
ι13 : #tally.0 ≤ N

ι2′ : ∀k,l:[0,N ′).k /∈ cast′ =⇒ (blt(k, votes′.k) /∈ tally′.l ∧ blt(k, votes′.k) 6= dec(bc′))
ι3′ : ∀k:[0,N ′).(k ∈ proc′ ⇐⇒ dec(bc′) ∈ tally′.k)
ι6′ : #proc′ = N ′ ⇐⇒ proc′ = {0, . . . , N ′ − 1}
ι7′ : (dec(bc′) /∈ tally′.0 + #tally′.0) = N ′ ⇐⇒ cast′ = {0, . . . , N ′ − 1}
ι8′ : proc′ ⊆ {0, . . . , N ′ − 1}
ι10′ : #tally′.0 = N ′ =⇒ dec(bc′) ∈ tally′.0
ι11′ : cast′ ⊆ {0, . . . , N ′ − 1}
ι12′ : dec(bc′) /∈ tally′.0 + #tally′.0 = #cast′

ι13′ : #tally′.0 ≤ N ′

Table 4.3: List of invariants for the equation system in Table 4.2.

Since we have proven that all invariants from Table 4.3 are global invariants for predicate
variable X, we define predicate ι as the conjunction of all these invariants.

ι =

(
13∧
i=1

ιi

)
∧ ι2′ ∧ ι3′ ∧ ι6′ ∧ ι7′ ∧ ι8′ ∧ ι10′ ∧ ι11′ ∧ ι12′ ∧ ι13′ (4.1)

62

By using Property 3 on invariants ι1, ι2, . . . , ι13, ι2′ , ι3′ , ι6′ , ι7′ , ι8′ , ι10′ , ι11′ , ι12′ , ι13′ it follows
that ι, as defined in Equation 4.1, is a global invariant for our equation system. Therefore we can
use this predicate ι to strengthen the equation system.

Lemma 4. For equation X of the equation system in Table 4.2 and predicate ι as defined in
Equation 4.1, it holds that:

ι→ #tally.0 = N =⇒
#tally′.0 = N ′ ∧ count(>, tally.0) = cnt(>, tally′.0) ∧ count(⊥, tally.0) = count(⊥, tally′.0)

Proof. From ι1 it follows that N = N ′. Then we split the proof obligation in two parts, which we
prove separately.

1. #tally.0 = N =⇒ #tally′.0 = N
From #tally.0 = N in combination with invariant ι10 it follows that dec(bc) ∈ tally.0.
The same holds for the primed version, that is from #tally′.0 = N in combination with
invariant ι10 it follows that dec(bc′) ∈ tally.0. Then from invariants ι9 and ι12 it follows that
#tally.0 = #tally′.0. Hence #tally.0 = N =⇒ #tally′.0 = N .

2. #tally.0 = N=⇒ count(>, tally.0) = cnt(>, tally′.0)∧count(⊥, tally.0) = count(⊥, tally′.0)
Here we can use what we have already derived: dec(bc) ∈ tally.0 ∧ dec(bc′) ∈ tally′.0 ∧
#tally′.0 = N ′. From invariants ι7, ι7′ and ι9 it follows that cast = cast′ = {0, . . . , N − 1}.
Then from invariant ι4 it follows that count(>, tally.0) = count(>, tally′.0). Finally, from
invariant ι5 it follows what needs to be proven, that is count(>, tally.0) = cnt(>, tally′.0)∧
count(⊥, tally.0) = count(⊥, tally′.0).

Now we can derive the solution of our equation system. This is, as shown below, the global
invariant ι.

Lemma 5. Global invariant ι, as defined in Equation 4.1, is a solution to the equation system in
Table 4.2.

Proof. From Lemma 4 it follows that the following predicate is valid.

ι↔ ι ∧ (#tally.0 = N =⇒ #tally′.0 = N ′ ∧ count(>, tally.0) = cnt(>, tally′.0)∧
count(⊥, tally.0) = count(⊥, tally′.0))

Now we can use global invariant ι to strengthen the equation system. Then according to
Proposition 1 it follows that global invariant ι is a solution for the equation system.

Now we need to check whether the global invariant ι is also valid in the initial state.

Lemma 6. The global invariant ι, as defined in Equation 4.1 holds in the initial states of the
following two instantiations of the process: V oters(n, null, V, ∅, [∅, ∅, . . . , ∅], {0, 1, . . . n − 1}) and
V oters(n, null, π(V), ∅, [∅, ∅, . . . , ∅], {0, 1, . . . n−1}), where V is a list of votes, π(V) a permutation
of that list and where [∅, ∅, . . . , ∅] denotes a list of n empty sets.

Proof. In order to check whether the global invariant ι holds in the initial states we check per
invariant from Table 4.3 whether it holds for the given instantiation. An overview of how the
variables in the invariants are instantiated is given below. We only consider processes where
n > 0. Parameters bc and bc′ are instantiated with the value null, for this value we define that
dec(null) = err, cand(null) = ⊥ and cand(err) = ⊥.

N : n N ′: n
bc: null bc′: null
votes: V votes′: π(V)
cast: ∅ cast′: ∅
tally: [∅, ∅, . . . , ∅] N ′: [∅, ∅, . . . , ∅]
proc: {0, 1, . . . , n− 1} N ′: {0, 1, . . . n− 1}

63

Below follows a list of the invariants after they have been instantiated. It must be shown that
all these predicates hold.

ι1 : n = n
ι2 : ∀k,l:[0,n).k /∈ ∅ =⇒ (blt(k, V.k) /∈ [∅, ∅, . . . , ∅].l ∧ blt(k, V.k) 6= dec(null))
ι3 : ∀k:[0,n).(k ∈ {0, 1, . . . , n− 1} ⇐⇒ dec(null) ∈ [∅, ∅, . . . , ∅].k)
ι4 : (cand(dec(null)) ∧ dec(null) /∈ [∅, ∅, . . . , ∅].0) + count(>, [∅, ∅, . . . , ∅].0)+∑

k:[0,n)∧k/∈∅ V.k = (cand(dec(null)) ∧ dec(null) /∈ [∅, ∅, . . . , ∅].0)+
count(>, [∅, ∅, . . . , ∅].0) +

∑
k:[0,n)∧k/∈∅ π(V).k

ι5 : (cand(dec(null)) ∧ dec(null) /∈ [∅, ∅, . . . , ∅].0)+
count(>, [∅, ∅, . . . , ∅].0) + count(⊥, [∅, ∅, . . . , ∅].0) = (cand(dec(null))∧
dec(null) /∈ [∅, ∅, . . . , ∅].0) + count(>, [∅, ∅, . . . , ∅].0) + count(⊥, [∅, ∅, . . . , ∅].0)

ι6 : #{0, 1, . . . , n− 1} = n⇐⇒ {0, 1, . . . , n− 1} = {0, . . . , n− 1}
ι7 : (dec(null) /∈ [∅, ∅, . . . , ∅].0 + #[∅, ∅, . . . , ∅].0) = n⇐⇒ ∅ = {0, . . . , n− 1}
ι8 : {0, 1, . . . , n− 1} ⊆ {0, . . . , n− 1}
ι9 : ∅ = ∅
ι10 : #[∅, ∅, . . . , ∅].0 = n =⇒ dec(null) ∈ [∅, ∅, . . . , ∅].0
ι11 : ∅ ⊆ {0, . . . , n− 1}
ι12 : dec(null) /∈ [∅, ∅, . . . , ∅].0 + #[∅, ∅, . . . , ∅].0 = #∅
ι13 : #[∅, ∅, . . . , ∅].0 ≤ n

Invariants 1, 6, 8, 9, 11, 13 Trivial.

Invariant 2 For all k ∈ [0, N) we need to prove that blt(k, V.k) /∈ [∅, ∅, . . . , ∅] which is true and
that blt(k, V.k) 6= dec(null) which is also true since dec(null) rewrites to the error value err.

Invariant 3 This invariant does not hold for the given instantiation. This is because ∀k:[0,N).k ∈
{0, 1, . . . , n− 1} evaluates to true, whereas ∀k:[0,N).dec(null) ∈ [∅, ∅, . . . ∅].k evaluates to false. So,
although it is an invariant for the process, it does not hold for our initial set of parameters. This
is desired behaviour, since if the invariant would hold for this initial set, then this would mean
that for all k ∈ [0, n] the value dec(null) = err is in tally.k. We can unfortunately not change the
set of initial parameters: since bc is of type Data we have to give some value as initial parameter
and we have chosen for the value null. We however do not want that this message is actually
processed, therefore we set proc to {0, 1, . . . , N − 1}. In order to fix this problem we strengthen
our invariant ι3 to bc 6= null =⇒ ∀k:[0,N).(k ∈ proc ⇐⇒ dec(bc) ∈ tally.k). It is easy to see that
this strengthened invariant holds for the initial state. The proof of invariant ι3 remains the same:
since value null is never used inside the process, bc 6= null always evaluates to true.

Invariant 4 Since cand(dec(null)) = cand(err) is defined as ⊥, we can rewrite the proof obli-
gation to

∑
k:[0,n) V.k =

∑
k:[0,n) π(V).k. This holds since π(V) is a permutation of V .

Invariant 5 Since cand(dec(null)) is defined as ⊥, we can rewrite the proof obligation to the
following predicate: count(>, [∅, ∅, . . . , ∅].0) + count(⊥, [∅, ∅, . . . , ∅].0) = count(>, [∅, ∅, . . . , ∅].0) +
count(⊥, [∅, ∅, . . . , ∅].0), which holds since count(b, ∅) = 0 for all b ∈ B.

Invariant 7 Term dec(null) /∈ [∅, ∅, . . . , ∅].0 rewrites to one and term #[∅, ∅, . . . , ∅].0 to zero.
Therefore this invariant does not hold for n = 1. We strengthen this invariant in the same way
as is done for invariant ι3. That is, bc 6= null =⇒ (dec(bc) /∈ tally.0 + #tally.0) = N ⇐⇒ cast =
{0, . . . , N − 1}. Then it is easy to see that the invariant holds.

Invariant 10 Term #[∅, ∅, . . . , ∅].0 = n rewrites to false for n > 0, hence the implication is true.

64

Invariant 12 This invariant also does not hold due to the fact that bc is instantiated with null.
Therefore we also strengthen this invariant in the same way as is done for invariants ι3 and ι7.
The invariant then becomes: bc 6= null =⇒ dec(bc) /∈ tally.0 + #tally.0 = #cast.

The primed invariants ι2′ , ι3′ , ι6′ , ι7′ , ι8′ , ι10′ , ι11′ , ι12′ , ι13′ can be proven to hold in the same
way. Since we have now shown that all invariants hold for the initial set of parameters, it follows
that the conjunction of all those invariants, the global invariant ι, also holds for the initial set of
parameters.

From the results in this section we can conclude that the process instantiations are strongly
bisimilar and therefore we can conclude that privacy is guaranteed.

Theorem 7. The processes V oters(n, null, V, ∅, [∅, ∅, . . . , ∅], {0, 1, . . . n− 1}) and V oters(n, null,
π(V), ∅, [∅, ∅, . . . , ∅], {0, 1, . . . n − 1}) are strongly bisimilar for n > 0, where V is a list of votes,
π(V) a permutation of that list and where [∅, ∅, . . . , ∅] denotes a list of n empty sets.

Proof. The equation system in Table 4.2 expresses that process V oters(n, null, V, ∅, [∅, ∅, . . . , ∅],
{0, 1, . . . n − 1}) and V oters(n, null, π(V), ∅, [∅, ∅, . . . , ∅], {0, 1, . . . n − 1}) are strongly bisimilar.
From Property 3 and the invariants in Table 4.3 it follows that ι, as defined in Equation 4.1, is
a global invariant for the equation system. From Lemma 4 and Lemma 5 it follows that ι is a
solution for the equation system. Then Lemma 6 states that the invariant also holds for the specific
instantiation we want to prove. Hence the two processes are strongly bisimilar. Therefore it is for
an external observer impossible to distinguish between the two, and thus privacy is guaranteed
for all n > 0.

65

Chapter 5

Conclusion

In this thesis we have introduced the concept of ad-hoc e-voting. For this setting we have added
two properties to the standard list of properties that a voting protocol ideally satisfies, namely
the on-line property and the walk-away property. It turns out that the ad-hoc e-voting setting,
although simpler than the traditional one, does not allow a fundamentally simpler solution for
e-voting. This is because the main e-voting puzzles remain: how to satisfy both the privacy
and unicity property, where to place trust and how to establish this trust. However, anonymous
broadcast and trusted devices are two instruments that are better imaginable in a mobile devices
context than in a traditional wired network and they do simplify e-voting in practice.

We have developed four voting protocols for the ad-hoc e-voting setting: two using regular
mobile devices and two using trusted devices. For each of these protocols we have using informal
analysis determined which properties are likely satisfied. Furthermore we have used formal veri-
fication methods to verify some properties: we have verified for small numbers of voters that the
poor man’s protocol satisfies the privacy and unicity property and we have verified the privacy
property of the TD-1 protocol for an arbitrary number of voters. We have summarized these results
in the following table, where properties that are formally verified are marked with an asterisk.

Poor man’s Shuffling TD-1 TD (2)

general properties
fairness partial 3 3 3
privacy 3* 3 3* 3
receipt-freeness 7 7 3 3
individual verifiability 3 3 7 7
universal verifiability 3 partial 7 7
unicity 3* 3 3 3
coercion-resistance 7 7 7 7

ad-hoc properties
on-line property partial partial 3 3
walk-away property partial partial 3 3

In this table we see that the protocols using regular mobile devices only partially support the
on-line and walk-away property, whereas the protocols using trusted devices fully support these
properties. This is due to the fact that trusted devices provide a safe method to create and store
ballots that regular devices can not provide. On the trusted devices we have studied it is not
possible to illegally alter data, therefore we know for example that when a value for the secret
sharing method (second protocol using trusted devices) is published, that this value is correct.
Using regular devices, voters can alter data and thus construct invalid values, which can often not
easily be identified among valid values. To prevent this type of dishonesty, in many cases complex

66

commitment schemes and zero-knowledge proofs have to be introduced. This is not wanted in
an ad-hoc setting since this introduces a number of extra messages and often adds computational
intensive cryptography. The choice for an ad-hoc e-voting protocol thus depends on the situation:
only when trusted devices are available we can choose a protocol that fully satisfies the ad-hoc
properties.

Verification of e-voting protocols remains a huge challenge. We have used different verification
methods: we have constructed a model of the poor man’s protocol in mCRL2 and we have used
PBESs to prove an equivalence relation on a model of the TD-1 protocol. The mCRL2 specifi-
cation language is an expressive language that is well-suited for modelling protocol details. It is
supported by a toolset that allows various manipulations, such that user understanding can be
properly exploited in the verification process. For example, in Section 3.3 we give some intelli-
gent optimizations and Section 3.4 contains a reasonable dishonesty model. A general unguided
dishonesty model would not be tractable by the toolset, even with our model it is only possible
to verify properties for a small number of voters, as can be seen in the results in Section 3.6.
The technique using invariants on PBESs requires a model with a high level of abstraction, but
comes with a major advantage over methods on state spaces: it can be used to verify the privacy
property for an arbitrary number of voters. But even a relatively simple protocol like the TD-1
protocol needs a large number of invariants in order to prove an equivalence relation, as we have
shown in Section 4.3.

We encountered some minor technical limitations of the mCRL2 toolset: the implementation
of sets is not fully completed, which we have solved by using sorted lists instead, and the tool
lpsactionrename does not properly import functions from a rename file, which we have solved
by including these functions in the model (both discussed in Section 3.2). Furthermore the tool
pbes2bool does not support the standard operators on lists, which we have solved by constructing
replacement functions (discussed in Section 3.6.2). All in all, there were only some small technical
problems that we were able to solve easily.

67

Bibliography

[ABF07] Mart́ın Abadi, Bruno Blanchet, and Cédric Fournet. Just fast keying in the pi calcu-
lus. ACM Transactions on Information and System Security (TISSEC), 10(3):1–59,
July 2007.

[AGGV05] Gildas Avoine, Felix C. Gärtner, Rachid Guerraoui, and Marko Vukolic. Gracefully
degrading fair exchange with security modules. In Proceedings EDCC’05, volume
3463 of Lecture Notes in Computer Science, pages 55–71, 2005.

[BCE+97] Frazer Bennett, David Clarke, Joseph B. Evans, Andy Hopper, Alan Jones, and
David Leask. Piconet: Embedded mobile networking. IEEE Personal Communica-
tions, 4(5):8–15, 1997.

[BCP07] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Provably-secure au-
thenticated group Diffie-Hellman key exchange. ACM Transactions on Information
and System Security, 10(3):10, July 2007.

[Ben06] Josh Benaloh. Simple verifiable elections. In EVT’06: Proceedings of the
USENIX/Accurate Electronic Voting Technology Workshop 2006 on Electronic Vot-
ing Technology Workshop, Berkeley, CA, USA, 2006. USENIX Association.

[BFHB05] Jeremy P. Birnholtz, Thomas A. Finholt, Daniel B. Horn, and Sung Joo Bae.
Grounding needs: achieving common ground via lightweight chat in large, dis-
tributed, ad-hoc groups. In Proceedings of ACM CHI 2005 Conference on Human
Factors in Computing Systems, volume 1 of Large communities, pages 21–30, 2005.

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog rules.
In 14th IEEE Computer Security Foundations Workshop (CSFW ’01), pages 82–96,
Washington - Brussels - Tokyo, June 2001. IEEE.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proceedings of the
20th Annual ACM Symposium on Theory of Computing, STOC’88 (Chicago, IL,
May 2-4, 1988), pages 1–10, New York, 1988. ACM, ACM Press.

[Bra06] Felix Brandt. Efficient cryptographic protocol design based on distributed El Gamal
encryption. In Dongho Won and Seungjoo Kim, editors, International Conference
on Information Security and Cryptology, volume 3935 of Lecture Notes in Computer
Science, pages 32–47. Springer, 2006.

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections. In Proceed-
ings of the 26th Annual Symposium on the Theory of Computing, pages 544–553,
New York, 1994. ACM Press.

[BT07] Anne Broadbent and Alain Tapp. Information-theoretic security without an honest
majority. In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of Lecture Notes
in Computer Science, pages 410–426. Springer, June 13 2007.

68

[BW90] Jos Baeten and Peter Weijland. Process Algebra, volume 18 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, UK, 1990.

[Cet08] Orhan Cetinkaya. Analysis of security requirements for cryptographic voting pro-
tocols (extended abstract). In ARES, pages 1451–1456. IEEE Computer Society,
2008.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[Cha88] David Chaum. Elections with unconditionally- secret ballots and disruption equiva-
lent to breaking RSA. In Advances in Cryptology (EUROCRYPT ’88), volume 330,
pages 177–182, Berlin - Heidelberg - New York, May 1988. Springer.

[CPvdPW07] Taolue Chen, Bas Ploeger, Jaco van de Pol, and Tim A. C. Willemse. Equivalence
checking for infinite systems using parameterized boolean equation systems. In
Lúıs Caires and Vasco Thudichum Vasconcelos, editors, CONCUR, volume 4703
of Lecture Notes in Computer Science, pages 120–135. Springer, 2007. Extended
version: CS-Report 07-14 of TU/e.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Trans-
actions on information Theory, 22(6):644–654, 1976.

[DiM02] Joan Morris DiMicco. Mobile ad hoc voting. In Proceedings of CHI Workshop on
Mobile Ad-Hoc Collaboration, 2002.

[DJ01] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In Kwangjo Kim, editor, Public
Key Cryptography, volume 1992 of Lecture Notes in Computer Science, pages 119–
136. Springer, 2001.

[DJ03] Ivan Damg̊ard and Mads Jurik. A length-flexible threshold cryptosystem with appli-
cations. In Reihaneh Safavi-Naini and Jennifer Seberry, editors, Information Secu-
rity and Privacy, 8th Australasian Conference, ACISP 2003, Wollongong, Australia,
July 9-11, 2003, Proceedings, volume 2727 of Lecture Notes in Computer Science,
pages 350–364. Springer, 2003.

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting
scheme for large scale elections. In Jennifer Seberry and Yuliang Zheng, editors,
Advances in Cryptology—AUSCRYPT ’92, volume 718 of Lecture Notes in Com-
puter Science, pages 244–251, Gold Coast, Queensland, Australia, December 1992.
Springer-Verlag.

[FPS01] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Sharing decryption
in the context of voting or lotteries. In FC ’00: Proceedings of the 4th International
Conference on Financial Cryptography, pages 90–104, London, UK, 2001. Springer-
Verlag.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. In Proceedings of the 17th Annual Symposium on Theory
of Computing (STOC), pages 291–304, Providence, RI USA, 1985. ACM Press.

[GMR+06] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko, and Muck van
Weerdenburg. The formal specification language mCRL2. In Ed Brinksma, David
Harel, Angelika Mader, Perdita Stevens, and Roel Wieringa, editors, MMOSS,
volume 06351 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

69

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play ANY mental
game. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
STOC’87 (New York City, May 25–27, 1987), pages 218–229, New York, 1987.
ACM, ACM Press.

[GP95] Jan Friso Groote and Alban Ponse. The syntax and semantics of µCRL. In A. Ponse,
C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes
’94, Workshops in Computing Series, pages 26–62. Springer-Verlag, 1995.

[Gro04] Jens Groth. Efficient maximal privacy in boardroom voting and anonymous broad-
cast. In Ari Juels, editor, Financial Cryptography, 8th International Conference,
FC 2004, Key West, FL, USA, February 9-12, 2004. Revised Papers, volume 3110
of Lecture Notes in Computer Science, pages 90–104. Springer, 2004.

[GW05] Jan Friso Groote and Tim A.C. Willemse. Model-checking processes with data.
Science of Computer Programming, 56(3):251–274, 2005.

[HS00] Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomorphic
encryption. In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT ’ 2000,
volume 1807 of Lecture Notes in Computer Science, pages 539–556. Springer-Verlag,
Berlin Germany, 2000.

[HZ06] Feng Hao and Piotr Zieliński. A 2-round anonymous veto protocol. In the 14th
International Workshop on Security Protocols, 2006.

[JRSW04] David Jefferson, Aviel D. Rubin, Barbara Simons, and David Wagner. Analyzing
internet voting security. Communications of the ACM, 47(10):59–64, 2004.

[KGH83] Ehud D. Karnin, Jonathan W. Greene, and Martin E. Hellman. On secret sharing
systems. IEEE Transactions on Information Theory, 29(1):35–41, 1983.

[KKL01] Jinho Kim, Kwangjo Kim, and Chulsoo Lee. An efficient and provably secure
threshold blind signature. In Kwangjo Kim, editor, ICISC, volume 2288 of Lecture
Notes in Computer Science, pages 318–327. Springer, 2001.

[KR05] Steve Kremer and Mark Ryan. Analysis of an electronic voting protocol in the
applied pi calculus. In Shmuel Sagiv, editor, ESOP: 14th European Symposium on
Programming, volume 3444 of Lecture Notes in Computer Science, pages 186–200.
Springer, 2005.

[KY02] Aggelos Kiayias and Moti Yung. Self-tallying elections and perfect ballot secrecy. In
David Naccache and Pascal Paillier, editors, Public Key Cryptography, 5th Interna-
tional Workshop on Practice and Theory in Public Key Cryptosystems, PKC 2002,
Paris, France, February 12-14, 2002, Proceedings, volume 2274 of Lecture Notes in
Computer Science, pages 141–158. Springer, 2002.

[KY03] Aggelos Kiayias and Moti Yung. Non-interactive zero-sharing with applications
to private distributed decision making. In Rebecca N. Wright, editor, Financial
Cryptography, volume 2742 of Lecture Notes in Computer Science, pages 303–320.
Springer, 2003.

[LCPD07] Zhengqin Luo, Xiaojuan Cai, Jun Pang, and Yuxin Deng. Analyzing an electronic
cash protocol using applied pi calculus. In Jonathan Katz and Moti Yung, editors,
ACNS, volume 4521 of Lecture Notes in Computer Science, pages 87–103. Springer,
2007.

[LJY02] Chin-Laung Lei, Wen-Shenq Juang, and Pei-Ling Yu. Provably secure blind thresh-
old signatures based on discrete logarithm. Journal of Information Science and
Engineering, 18(1):23–39, 2002.

70

[MM06] Ülle Madise and Tarvi Martens. E-voting in Estonia 2005. the first practice of
country-wide binding internet voting in the world. In Robert Krimmer, editor,
Electronic Voting, volume 86 of Lecture Notes in Informatics, pages 15–26. GI,
2006.

[MR07] Aybek Mukhamedov and Mark Ryan. Anonymity protocol with identity escrow and
analysis in the applied π-calculus. In Gilles Barthe and Cédric Fournet, editors,
TGC, volume 4912 of Lecture Notes in Computer Science, pages 330–346. Springer,
2007.

[OMA+99] Miyako Ohkubo, Fumiaki Miura, Masayuki Abe, Atsushi Fujioka, and Tatsuaki
Okamoto. An improvement on a practical secret voting scheme. In ISW ’99: Pro-
ceedings of the Second International Workshop on Information Security, pages 225–
234, London, UK, 1999. Springer-Verlag.

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem as se-
cure as factoring. In Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT
’ 98, volume 1403 of Lecture Notes in Computer Science, pages 308–318. Interna-
tional Association for Cryptologic Research, Springer-Verlag, Berlin Germany, 1998.

[OW08] Simona Orzan and Tim A. C. Willemse. Invariants for parameterised boolean equa-
tion systems. In Franck van Breugel and Marsha Chechik, editors, CONCUR, vol-
ume 5201 of Lecture Notes in Computer Science, pages 187–202. Springer, 2008.
Extended version: CS-Report 08-17 of TU/e.

[OWW09] Simona Orzan, Wieger Wesselink, and Tim A.C. Willemse. Static analysis tech-
niques for parameterised boolean equation systems. In S. Kowalewski and A. Philip-
pou, editors, TACAS, volume 5505 of Lecture Notes in Computer Science, pages
230–245. Springer, 2009.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT ’ 99,
volume 1599 of Lecture Notes in Computer Science, pages 223–238. International
Association for Cryptologic Research, Springer-Verlag, Berlin Germany, 1999.

[Sch99] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and its
application to electronic voting. In Michael Wiener, editor, Advances in Cryptology
– CRYPTO ’ 99, volume 1666 of Lecture Notes in Computer Science, pages 148–
164. International Association for Cryptologic Research, Springer-Verlag, Berlin
Germany, 1999.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
November 1979.

[SNS88] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller. Kerberos: An authen-
tication service for open network systems. In USENIX Association, editor, USENIX
Conference Proceedings (Dallas, TX, USA), pages 191–202. USENIX, Winter 1988.

[wpa] mCRL2 wiki page. User manual: FAQ. http://www.mcrl2.org/mcrl2/wiki/
index.php/User_manual/FAQ#Support_for_sets_and_bags. Accessed June 11th,
2009.

[wpb] mCRL2 wiki page. User manual: lpsactionrename. http://www.mcrl2.org/mcrl2/
wiki/index.php/User_manual/lpsactionrename. Accessed June 11th, 2009.

[wpc] mCRL2 wiki page. User manual: Toolset overview. http://www.mcrl2.org/
mcrl2/wiki/index.php/User_manual/Toolset_overview. Accessed June 11th,
2009.

71

http://www.mcrl2.org/mcrl2/wiki/index.php/User_manual/FAQ#Support_for_sets_and_bags
http://www.mcrl2.org/mcrl2/wiki/index.php/User_manual/FAQ#Support_for_sets_and_bags
http://www.mcrl2.org/mcrl2/wiki/index.php/User_manual/lpsactionrename
http://www.mcrl2.org/mcrl2/wiki/index.php/User_manual/lpsactionrename
http://www.mcrl2.org/mcrl2/wiki/index.php/User_manual/Toolset_overview
http://www.mcrl2.org/mcrl2/wiki/index.php/User_manual/Toolset_overview

Appendix A

Poor man’s model

All models in this appendix need to be transformed into an LPS as follows.

mcrl22lps --delta <name>.mcrl | lpsconstelm | lpsactionrename
--renamefile=<renfilename>.ren | lpssuminst | lpsconstelm > <name>.lps

To construct an LTS from this LPS the tool lps2lts is used as follows.

lps2lts -v [--rewriter=jittyc] <name>.lps <name>.svc

A.1 Honest parallel model

0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SORTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Def in i t i on o f a nonce .
sort Nonce = struct nonce?isPlainNonce |

ordNonce(order: Nat)? isOrdNonce;

5 %General da ta type .
sort Data =

struct sign(signer: Nat , smsg: Data)? isSign |

blind(blinder: Nat , bmsg: Data)? isBlind |

vote(cand: Bool , nonce: Nonce)? isVote |

10 ballot(listc: List(Data), order: Nat)? isBallot|

blindmsg(blinderm: Nat)? isBlindMsg |

err?isErr; % error va lue

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ACTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
15 act recv: Nat#Data;

act give: Nat#Data;

act bcast: Nat#Data;

act request: Nat#Data;

act send: Nat#Data;

20 act retrieve: Nat#Data;

act selfSigned: Nat#Data;

act unblinded: Nat#Data;

act cannotUnblind: Nat#Data;

act receivedBallot: Nat#Data;

25 %anon
act done;

act sdone;

act rdone;

act asend: Data;

30 act arecv: Data;

act abcast: Data;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define an order on Data e lements (only f o r the ones t ha t are needed) .

72

35 map smaller: Data#Data -> Bool;

var d,e: Data;

i,j: Nat;

l,m: List(Data);

eqn smaller(sign(i,d), sign(j,e)) = i < j;

40 smaller(ballot(l,i), ballot(m,j)) = i < j;

% unb l ind : s e t o f equa t ions i nd i c a t i n g what Data cons t ruc t s can be unb l inded . I f
% a ce r t a in cons t ruc t can not be unbl inded , the term reduces to the error va lue
% ’ err ’ .

45 map unblind: Nat#Data -> Data;

var i,j,k: Nat;

x: Data;

eqn unblind(i, sign(k, blind(j, x))) = if(i==j, sign(k, x), err);

unblind(i, blind(j, x)) = if(i==j, x, err);

50 !(isBlind(x) || isSign(x)) -> unblind(i,x) = err;

!(isBlind(x)) -> unblind(i, sign(j, x)) = err;

% insLis tData : func t i on tha t i n s e r t s a Data item in a sor t ed l i s t .
map insListData: Data#List(Data) -> List(Data);

55 var x,d: Data;

xs: List(Data);

eqn insListData(d, []) = [d];

insListData(d, x |> xs) = if(smaller(d, x),

d |> (x |> xs),

60 x |> insListData(d, xs));

% addOrderToNonces ; Function tha t r ep l a c e s the gener i c ’ p la in ’ nonce : Nonce in
% each s igned (vote , nonce) pa i r by a nonce which has an order . This i s done in
% order to be ab l e to d i s t i n g u i s h between d i f f e r e n t b a l l o t s . I f the p l a in nonces

65 % were kept , one can not proper l y d i s t i n g u i s h between two b a l l o t s . The only d i f−
% ference would then be the order t ha t i s in b a l l o t (l i s t c : L i s t (Data) , order :
% Nat) . However , t h i s order can e a s i l y be adapted s ince i t i s p l a in t e x t in
% the t up l e . Hence a vo te r can abuse t h i s to add ex t ra b a l l o t s .
%

70 % The meaning o f ordNonce (i) i s t ha t i t i s the i ˆ th nonce observed on the anon−
% ymous broadcas t channel .
map addOrderToNonces: List(Data)#Nat -> List(Data);

var x: Data;

xs: List(Data);

75 order: Nat;

eqn addOrderToNonces ([], order) = [];

isSign(x) ->

addOrderToNonces(x |> xs, order) =

if(isVote(smsg(x)),

80 sign(signer(x), vote(cand(smsg(x)), ordNonce(order))) |>

addOrderToNonces(xs, order),

x |> addOrderToNonces(xs , order));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PROCESSES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
85 % bchannel : The broadcas t channel . This process models both the au then t i ca t ed

% as we l l as the anonymous broadcas t channel . Although i t only accep t s messages
% on the anonymous broadcas t channel a f t e r i t has r ece i v ed a ‘ done ’ ac t ion from
% a l l n vo t e r s .
%

90 % Note t ha t there i s some i n t e l l i g e n c e on the anonymous par t o f the broadcas t
% channel . The anonymous broadcas t channel only opens when N vo t e r s have
% performed a sdone ac t ion . Then , i f the channel i s opened the channel only
% re c e i v e s b a l l o t s . This i s done (f o r now) to add an order ing on the b a l l o t s .
proc bChannel(l: List(Data), N: Nat , order: Nat) =

95 sum d:Data , i:Nat . recv(i, d) . bChannel(l <| d, N, order) +

sum i: Nat . (i < #(l)) -> give(i, l.i) . bChannel(l, N, order) +

(N > 0) -> rdone . bChannel(l, Int2Nat(N-1), order) +

(N == 0) -> sum d:List(Data) .

arecv(ballot(d, order)) .

100 bChannel(l <| ballot(d, order), N, order +1);

73

%Voter r e g i s t r a t i o n process
proc regVoter(i: Nat , v: Bool , N: Nat) =

send(i, blind(i, vote(v, nonce))) .

105 Voter(i, [sign(i, vote(v, nonce))], [], 0, N);

%Voter process
proc Voter(i: Nat , sigList: List(Data), tally: List(Data), j: Nat , N: Nat) =

sum d: Data. request(j, d) . (

110 isBlind(d) ->

((blinder(d) != i) ->

send(i, sign(i, d)) .

Voter(i, sigList , tally , j+1, N)

<> selfSigned(i, d) .

115 Voter(i, sigList , tally , j+1, N))

+ isSign(d) ->

(unblind(i, d) != err) ->

unblinded(i, d) .

Voter(i, insListData(unblind(i, d), sigList), tally , j+1, N)

120 <> cannotUnblind(i, d) .

Voter(i, sigList , tally , j+1, N)

+ isBallot(d) ->

receivedBallot(i, d) .

Voter(i, sigList , insListData(d, tally), j+1, N)

125)

+ (# sigList == N) -> sdone .

sum o: Nat . asend(ballot(sigList , o)) .

Voter(i, sigList , tally , j, N);

130 % numVoters : d e f i n e s the number o f vo t e r s in the p ro t oco l .
map numVoters: Nat;

eqn numVoters = 2;

in i t hide({retrieve , unblinded , cannotUnblind , receivedBallot , selfSigned ,

135 done},

allow({bcast , retrieve , unblinded , cannotUnblind , receivedBallot ,

selfSigned , abcast , done},

comm({recv|send ->bcast , request|give ->retrieve , rdone|sdone -> done ,

asend|arecv ->abcast},

140 bChannel ([], numVoters , 0) ||

regVoter(0, true , numVoters) ||

regVoter(1, false , numVoters)

)

)

145);

A.1.1 Honest parallel model rename file

0 var i: Nat;

d: Data;

%rename func t i ons
rename

5 % bcas t (i , d) g e t s r ewr i t t en to bcas t (i , b l indmsg (j)) i f f d i s a b l i nded message
% and where j i s the index o f the vo t e r who b l i nded the message
isBlind(d) -> bcast(i, d) => bcast(i, blindmsg(blinder(d)));

% bcas t (i , d) g e t s r ewr i t t en to bcas t (i , s i gn (j , b l indmsg (k))) i f f d i s a s igned
% message conta in ing a b l i nded message . I d e n t i f i e r j r ep re s en t s the index o f the

10 % voter who s igned the message (which i s needed to s i gn the r ewr i t t en message)
% and index k rep re s en t s the index o f the vo t e r who b l i nded the message .
isSign(d) && isBlind(smsg(d)) -> bcast(i, d) =>

bcast(i, sign(signer(d), blindmsg(blinder(smsg(d)))));

15 % abcas t (d) g e t s r ewr i t t en to abcas t (d ’) when d i s a b a l l o t . Data item d ’ con−
% ta in s the s i gna ture l i s t and the order−number o f b a l l o t d , where in the l i s t
% of s i gna tu r e s every nonce i s converted to an ordered nonce .
isBallot(d) ->

abcast(d) => abcast(ballot(addOrderToNonces(listc(d), order(d)), order(d)));

74

A.2 Honest linear model

0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SORTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Def in i t i on o f a nonce .
sort Nonce = struct nonce?isPlainNonce |

ordNonce(order: Nat)? isOrdNonce;

5 %General da ta type .
sort Data =

struct sign(signer: Nat , smsg: Data)? isSign |

blind(blinder: Nat , bmsg: Data)? isBlind |

vote(cand: Bool , nonce: Nonce)? isVote |

10 ballot(listc: List(Data), order: Nat)? isBallot |

blindmsg(blinderm: Nat)? isBlindMsg |

err?isErr; % error va lue

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ACTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
15 act abcast: Data; %anonymous broadcas t

act bcast: Nat#Data; %authen t i ca t ed broadcas t
act cannotUnblind: Nat#Data; %act ion when incoming message cannot be unb l inded
act unblinded: Nat#Data; %act ion when incoming message i s unb l inded
act receivedBallot: Nat#Data; %act ion when a b a l l o t i s r e ce i v ed

20

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define an order on Data e lements (only f o r the ones t ha t are needed) .
map smaller: Data#Data -> Bool;

var d,e: Data;

25 i,j: Nat;

l,m: List(Data);

eqn smaller(sign(i,d), sign(j,e)) = i < j;

smaller(ballot(l,i), ballot(m,j)) = i < j;

30 % updS ing l eL i s t : Function to add a data item to a l o c a l l i s t .
%
% parameters :
% m: the data item to be added
% i : the index o f the l o c a l l i s t in the the L i s t o f L i s t s

35 % x |> xs : the L i s t o f L i s t s , conta ing a l l l o c a l l i s t s
%
% pre : va lue o f Nat parameter i s sma l l e r than l eng t h o f L i s t (L i s t (Data) param .
map updSingleList: Nat#Data#List(List(Data)) -> List(List(Data));

var m: Data;

40 x: List(Data);

xs: List(List(Data));

i: Nat;

eqn updSingleList(i, m, x |> xs) =

if(i>0,

45 (x |> updSingleList(Int2Nat(i-1), m, xs)),

insListData(m, x) |> xs);

% updBuf : Function to update a l l b u f f e r s a f t e r a broadcas t (mimicking the
% recep t i on o f the broadcas t message) .

50 map updBuf: Data#List(List(Data)) -> List(List(Data));

var m: Data;

x: List(Data);

xs: List(List(Data));

eqn updBuf(m, []) = [];

55 updBuf(m, x |> xs) = (x <| m) |> updBuf(m, xs);

% removeHead : Removes the the head o f the l i s t wi th the index as g iven by the
% f i r s t parameter . Used fo r example when a message has been processed by a g iven
% vo te r and can thus be removed from i t s input b u f f e r .

60 % pre : va lue o f Nat parameter i s sma l l e r than l eng t h o f L i s t (L i s t (Data) param .
map removeHead: Nat#List(List(Data)) -> List(List(Data));

var x: List(Data);

xs: List(List(Data));

i: Nat;

75

65 eqn removeHead(i, x |> xs) = if(i>0,

x |> removeHead(Int2Nat(i-1), xs),

tail(x) |> xs);

% removeToe : Removes the toe (l a s t element o f a l i s t) o f the l i s t wi th the
70 % index as g iven by the f i r s t parameter . Only used (f o r now) to remove a

% broadcas ted message from a vo t e r s own bu f f e r . Done in order to reduce s t a t e
% space .
% pre : va lue o f Nat parameter i s sma l l e r than l eng t h o f L i s t (L i s t (Data)) param .
map removeToe: Nat#List(List(Data)) -> List(List(Data));

75 var x: List(Data);

xs: List(List(Data));

i: Nat;

eqn removeToe(i, x |> xs) = if(i>0,

x |> removeToe(Int2Nat(i-1), xs),

80 rtail(x) |> xs);

% unb l ind : Set o f equa t ions i nd i c a t i n g what Data cons t ruc t s can be unb l inded .
% I f a c e r t a in cons t ruc t can not be unbl inded , the term reduces to the error
% va lue ’ err ’ .

85 map unblind: Nat#Data -> Data;

var i,j,k: Nat;

x: Data;

eqn unblind(i, sign(k, blind(j, x))) = if(i==j, sign(k, x), err);

unblind(i, blind(j, x)) = if(i==j, x, err);

90 !(isBlind(x) || isSign(x)) -> unblind(i,x) = err;

!(isBlind(x)) -> unblind(i, sign(j, x)) = err;

% reachedDeadl ine : Function to check whether the f i r s t dead l ine has been
% reached . The parameter o f t h i s func t i on i s the l i s t o f a l l l o c a l b u f f e r s . When

95 % a l l t he s e b u f f e r s are empty , the dead l ine i s reached . Pruning i s used by
% in sp e c t i n g the head o f a non−empty l o c a l l i s t . When t h i s head i s e i t h e r
% a b a l l o t or a d i shone s tL i s t , then the dead l ine must have been passed .
map reachedDeadline: List(List(Data)) -> Bool;

var x: List(Data);

100 xs: List(List(Data));

eqn reachedDeadline ([]) = true;

reachedDeadline(x |> xs) =

if(#x==0,

reachedDeadline(xs),

105 if(isBallot(head(x)),

true ,

false));

% insLis tData : Function tha t i n s e r t s a Data item in a sor t ed l i s t .
110 map insListData: Data#List(Data) -> List(Data);

var x,d: Data;

xs: List(Data);

eqn insListData(d, []) = [d];

insListData(d, x |> xs) = if(smaller(d, x),

115 d |> (x |> xs),

x |> insListData(d, xs));

map insListNat: Nat#List(Nat) -> List(Nat);

var x, n: Nat;

120 xs: List(Nat);

eqn insListNat(n, []) = [n];

insListNat(n, x |> xs) = if(n < x,

n |> (x |> xs),

x |> insListNat(n, xs));

125

% i n i t L i s t : Function to i n i t i a l i z e L i s t s o f n empty L i s t s o f Data .
map initList: Nat -> List(List(Data));

var n: Nat;

eqn initList(n) = if(n>1,

130 [] |> initList(Int2Nat(n-1)),

[[]]);

76

% addOrderToNonces ; Function tha t r ep l a c e s the gener i c ’ p la in ’ nonce : Nonce in
% each s igned (vote , nonce) pa i r by a nonce which has an order . This i s done in

135 % order to be ab l e to d i s t i n g u i s h between d i f f e r e n t b a l l o t s . I f the p l a in nonces
% were kept , one can not proper l y d i s t i n g u i s h between two b a l l o t s . The only d i f−
% ference would then be the order t ha t i s in b a l l o t (l i s t c : L i s t (Data) , order :
% Nat) . However , t h i s order can e a s i l y be adapted s ince i t i s p l a in t e x t in
% the t up l e . Hence a vo te r can abuse t h i s to add ex t ra b a l l o t s .

140 %
% The meaning o f ordNonce (i) i s t ha t i t i s the i ˆ th nonce observed on the anon−
% ymous broadcas t channel .
map addOrderToNonces: List(Data)#Nat -> List(Data);

var x: Data;

145 xs: List(Data);

order: Nat;

eqn addOrderToNonces ([], order) = [];

isSign(x) ->

addOrderToNonces(x |> xs , order) =

150 if(isVote(smsg(x)),

sign(signer(x), vote(cand(smsg(x)), ordNonce(order))) |>

addOrderToNonces(xs, order),

x |> addOrderToNonces(xs , order));

155 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PROCESSES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%Voters process
% parameters :
% N: Number o f vo t e r s .

160 % inBuf : The ’ broadcas t channel ’ ; b u f f e r where messages ge t exchanged on .
% re gL i s t : L i s t o f r e g i s t e r e d voters , i . e . v o t e r s who have broadcas ted a
% b l inded vote . For now , t h i s l i s t i s model led as a g l o b a l l i s t .
% s i g L i s t : L i s t o f l i s t o f s i gna tu r e s .
% vo t e s : L i s t o f vo t e s .

165 % t a l l y : L i s t o f l i s t o f b a l l o t s .
% order : Order in which the b a l l o t s are cast , used to so r t them i n t e r n a l l y .
proc Voters(N: Nat , inBuf: List(List(Data)), regList: List(Nat), sigList:

List(List(Data)), votes: List(Bool), tally: List(List(Data)), order: Nat ,

castList: List(Nat)) =

170 sum i:Nat . (0 <= i && i < N) ->

% I f vo t e r i has not ye t ca s t i t s b l i nded vote , he can do t h i s .
!(i in regList) ->

bcast(i, blind(i, vote(votes.i, nonce))) .

Voters(N, removeToe(i, updBuf(blind(i, vote(votes.i,

175 nonce)), inBuf)), insListNat(i, regList),

updSingleList(i, sign(i, vote(votes.i, nonce)), sigList),

votes , tally , order , castList)

<>

(% I f vo t e r i has cas t i t s b l i nded vote , he can not cas t another b l i nded
180 % vote . He can only process incoming messages now , u n t i l the dead l ine i s

% reached . Af ter the dead l ine has been reached , he can s t i l l process
% messages .

(#(inBuf.i)>0) -> (

isBlind(head(inBuf.i)) ->

185 bcast(i, sign(i, head(inBuf.i))).

Voters(N, removeToe(i, removeHead(i, updBuf(sign(i,

head(inBuf.i)), inBuf))), regList , sigList , votes ,

tally , order , castList)

+ isSign(head(inBuf.i)) -> (

190 (unblind(i, head(inBuf.i)) != err) ->

unblinded(i, head(inBuf.i)) .

Voters(N, removeHead(i, inBuf), regList , updSingleList(i,

unblind(i, head(inBuf.i)), sigList), votes , tally ,

order , castList)

195 <> cannotUnblind(i, head(inBuf.i)) .

Voters(N, removeHead(i, inBuf), regList , sigList , votes , tally ,

order , castList)

)

77

+ isBallot(head(inBuf.i)) ->

200 receivedBallot(i, head(inBuf.i)) .

Voters(N, removeHead(i, inBuf), regList , sigList , votes ,

updSingleList(i, head(inBuf.i), tally), order , castList)

)

% Once the dead l ine has been reached , vo t e r i may cas t h i s b a l l o t .
205 + (reachedDeadline(inBuf)) ->

% Check whether vo t e r has a l ready cas t a b a l l o t or not to avoid t ha t a
% vo te r sends an i n f i n i t e number o f b a l l o t s .
!(i in castList) ->

abcast(ballot(sigList.i, order)) .

210 Voters(N, removeToe(i, updBuf(ballot(sigList.i, order), inBuf)),

regList , sigList , votes , updSingleList(i, ballot(sigList.i,

order), tally), order+1, insListNat(i, castList))

);

215

% numVoters : Def ines the number o f vo t e r s in the p ro t oco l .
map numVoters: Nat;

eqn numVoters = 3;

220 map votesVector: List(Bool);

eqn votesVector = [false , true , false];

in i t hide({ cannotUnblind , unblinded , receivedBallot}, Voters(numVoters ,

initList(numVoters), [], initList(numVoters), votesVector ,

225 initList(numVoters), 0, []));

A.3 Dishonest model

0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SORTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Def in i t i on o f a nonce .
% ∗ nonce (n) i s used l o c a l l y in the cons t ruc t i on o f a b l i nded vote
% ∗ ordNonce (n) i s used to d i f f e r e n t i a t e between nonce on the anonymous
% broadcas t channel

5 sort Nonce = struct nonce(ord: Nat)? isPlainNonce |

ordNonce(order: Nat)? isOrdNonce;

%General da ta type .
sort Data =

10 struct sign(signer: Nat , smsg: Data)? isSign | % signed message
blind(blinder: Nat , bmsg: Data)? isBlind | % b l inded message
vote(cand: Bool , nonce: Nonce)? isVote | % vote
voter(id: Nat)? isVoter | % i d e n t i t y o f a vo t e r
ballot(listc: List(Data), order: Nat)? isBallot | % b a l l o t message

15 blindmsg(blinderm: Nat , norder: Nat)? isBlindMsg | % b l inded message
% (e x t e r n a l l y observed)

ballotIdx(index: Nat)? isBallotIdx | % index o f a b a l l o t
dishonestList(dList: List(Data))? isDishonestList |

% l i s t o f d i shones t s i gne r s
20 signed(signerf: Nat , signedf: Nat)? isSigned | % re l a t i o n expre s s ing

% tha t vo t e r s i g n e r f s i gned the f i r s t vo te o f vo t e r s i gn ed f
vtally(tallyc: List(Data))? isTally | % t a l l y o f a vo t e r
regInfo(voterid: Nat , tries: Nat , bindex: Nat)? isRegInfo |

%re g i s t r a t i o n informat ion
25 null?isNull | % nu l l va lue

err?isErr; % error va lue

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ACTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
act abcast: Data; % anonymous broadcas t

30 act bcast: Nat#Data; % authen t i ca t ed broadcas t
act cannotUnblind: Nat#Data; % act ion when incoming message cannot be unb l inded
act unblinded: Nat#Data; % act ion when incoming message i s unb l inded
act receivedBallot: Nat#Data; % act ion when a b a l l o t i s r e ce i v ed
act receivedDishonestList: Nat#Data; %act ion when a vo te r r e c e i v e s a d i shones t

35 % l i s t from a s i gne r
act emptyDishonestList: Nat; % act ion tha t i s performed when a vo te r does not

78

% cas t i t s d i shones ty l i s t because i t i s empty
act noBlind; % act ion when d i shones t vo t e r dec ide s not to send

% a b l i nded vote
40 act noBallot; % act ion when d i shones t vo t e r dec ide s not to send

% a b a l l o t
act notSign: Nat#Data; % act ion when d i shones t s i gne r dec ide s not to s i gn

% a b l i nded vote
act finalTally: Data; % observer act ion , used to see what the f i n a l

45 % t a l l y i s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% smal l e r : Function tha t d e f i n e s an order on Data e lements (only f o r the ones
% tha t are used in sor t ed l i s t s) .

50 map smaller: Data#Data -> Bool;

var d, e: Data;

i, j, i2, j2: Nat;

l, m: List(Data);

eqn smaller(sign(i, d), sign(j, e)) = i < j;

55 smaller(ballot(l, i), ballot(m, j)) = i < j;

smaller(ballotIdx(i), ballotIdx(j)) = i < j;

smaller(voter(i), voter(j)) = i < j;

smaller(signed(i, j), signed(i2, j2)) = ((i == i2) && (j < j2)) || (i < i2);

60 % updS ing l eL i s t : Function to add a data item to a l o c a l so r t ed l i s t , g iven a
% l i s t o f l o c a l l i s t s .
%
% parameters :
% 1 s t parameter i : Nat ; the index o f the l o c a l l i s t in the l i s t o f l i s t s

65 % 2nd parameter m: Data ; the data item to be added
% 3rd parameter x |> xs : L i s t (L i s t (Data)) ; a l i s t o f l i s t s , conta in ing a l l
% l o c a l l i s t s
%
% pre : va lue o f i parameter i s sma l l e r than l eng t h o f the l i s t o f l i s t s

70 map updSingleList: Nat#Data#List(List(Data)) -> List(List(Data));

var m: Data;

x: List(Data);

xs: List(List(Data));

i: Nat;

75 eqn updSingleList(i, m, x |> xs) = if(i>0,

(x |> updSingleList(Int2Nat(i-1), m, xs)),

insListData(m, x) |> xs);

% emptyS ing l eL i s t : Function to empty a l o c a l l i s t , g iven a l i s t o f l o c a l l i s t s .
80 %

% parameters :
% 1 s t parameter i : Nat ; the index o f the l o c a l l i s t in the l i s t o f l i s t s
% 2nd parameter x |> xs : L i s t (L i s t (Data)) ; a l i s t o f l i s t s , conta in ing a l l l o c a l
% l i s t s

85 %
% pre : va lue o f i parameter i s sma l l e r than l eng t h o f the l i s t o f l i s t s
map emptySingleList: Nat#List(List(Data)) -> List(List(Data));

var x: List(Data);

xs: List(List(Data));

90 i: Nat;

eqn emptySingleList(i, x |> xs) = if(i>0,

(x |> emptySingleList(Int2Nat(i-1), xs)),

[] |> xs);

95 % nu l l S i n g l e L i s t : Function tha t r ep l a c e s a s p e c i f i c l o c a l l i s t by a l i s t
% conta in ing only the va lue nu l l , g iven a l i s t o f l o c a l l i s t s .
%
% parameters :
% 1 s t parameter i : Nat ; the index o f the l o c a l l i s t in the l i s t o f l i s t s

100 % 2nd parameter x |> xs : L i s t (L i s t (Data)) ; a l i s t o f l i s t s , conta in ing a l l l o c a l
% l i s t s
%
% pre : va lue o f i parameter i s sma l l e r than l eng t h o f the l i s t o f l i s t s

79

map nullSingleList: Nat#List(List(Data)) -> List(List(Data));

105 var x: List(Data);

xs: List(List(Data));

i: Nat;

eqn nullSingleList(i, x |> xs) = if(i>0,

x |> nullSingleList(Int2Nat(i-1), xs),

110 [null] |> xs);

% updBuf : Function to update a l l b u f f e r s with a new message (mimicking the
% recep t i on o f the broadcas t message) . A l l b u f f e r s can be seen as a queue , the
% new message i s thus p laced at the end o f the b u f f e r s .

115 %
% parameters ;
% 1 s t parameter m: Data ; the data item conta in ing the message
% 2nd parameter x |> xs : L i s t (L i s t (Data)) ; a l i s t o f l i s t s , conta in ing a l l l o c a l
% l i s t s

120 map updBuf: Data#List(List(Data)) -> List(List(Data));

var m: Data;

x: List(Data);

xs: List(List(Data));

eqn updBuf(m, []) = [];

125 updBuf(m, x |> xs) = (x <| m) |> updBuf(m, xs);

% removeHead : Removes the the head o f the l i s t wi th the index as g iven by the
% f i r s t parameter . Used fo r example when a message has been processed by a g iven
% vo te r and can thus be removed from i t s input b u f f e r .

130 %
% parameters :
% 1 s t parameter i : Nat ; index o f the l i s t o f which the head has to be removed
% 2nd parameter x |> xs : L i s t (L i s t (Data)) ; a l i s t o f l i s t s , conta in ing a l l l o c a l
% l i s t s

135 %
% pre : va lue o f Nat parameter i s sma l l e r than l eng t h o f the l i s t o f l i s t s
map removeHead: Nat#List(List(Data)) -> List(List(Data));

var x: List(Data);

xs: List(List(Data));

140 i: Nat;

eqn removeHead(i, x |> xs) = if(i>0,

x |> removeHead(Int2Nat(i-1), xs),

tail(x) |> xs);

145 % removeToe : Removes the toe (l a s t element o f a l i s t) o f the l i s t wi th the
% index as g iven by the f i r s t parameter . Used to remove a broadcas ted message
% from a vo t e r s own bu f f e r . Done in order to reduce the s t a t e space .
%
% parameters :

150 % 1 s t parameter i : Nat ; index o f the l i s t o f which the head has to be removed
% 2nd parameter x |> xs : L i s t (L i s t (Data)) ; a l i s t o f l i s t s , conta in ing a l l l o c a l
% l i s t s
%
% pre : va lue o f Nat parameter i s sma l l e r than l eng t h o f the l i s t o f l i s t s

155 map removeToe: Nat#List(List(Data)) -> List(List(Data));

var x: List(Data);

xs: List(List(Data));

i: Nat;

eqn removeToe(i, x |> xs) = if(i>0,

160 x |> removeToe(Int2Nat(i-1), xs),

rtail(x) |> xs);

% unb l ind : Set o f equa t ions i nd i c a t i n g what Data cons t ruc t s can be unb l inded .
% I f a c e r t a in cons t ruc t can not be unbl inded , the term reduces to the error

165 % va lue ’ err ’ .
map unblind: Nat#Data -> Data;

var i,j,k: Nat;

x: Data;

eqn unblind(i, sign(k, blind(j, x))) = if(i==j, sign(k, x), err);

170 unblind(i, blind(j, x)) = if(i==j, x, err);

80

!(isBlind(x) || isSign(x)) -> unblind(i, x) = err;

!(isBlind(x)) -> unblind(i, sign(j, x)) = err;

% reachedDeadl ine : Function to check whether the f i r s t dead l ine has been
175 % reached . The parameter o f t h i s func t i on i s the l i s t o f a l l l o c a l b u f f e r s . When

% a l l t h e se b u f f e r s are empty , the dead l ine i s reached . Pruning i s used by
% in sp e c t i n g the head o f a non−empty l o c a l l i s t . When t h i s head i s e i t h e r
% a b a l l o t or a d i shone s tL i s t , then the dead l ine must have been passed .
%

180 % parameters :
% 1 s t parameter x |> xs : L i s t (L i s t (Data)) ; l i s t o f l o c a l l i s t s
map reachedDeadline: List(List(Data)) -> Bool;

var x: List(Data);

xs: List(List(Data));

185 eqn reachedDeadline ([]) = true;

reachedDeadline(x |> xs) =

if(#x==0,

reachedDeadline(xs),

if((isBallot(head(x)) || isDishonestList(head(x))),

190 true ,

false));

% reachedDeadl ine2 : Function to check whether the second dead l ine has been
% reached . The dead l ine i s reached when a l l l o c a l b u f f e r s are empty and when

195 % a l l d i shones ty l i s t s have va lue [n u l l] . This means t ha t a l l d i shones ty l i s t s
% are processed , thus the dead l ine i s reached . Pruning i s again app l i ed .
%
% parameters :
% 1 s t parameter x |> xs : L i s t (L i s t (Data)) ; l i s t o f a l l l o c a l b u f f e r s

200 % 2nd parameter y |> ys : L i s t (L i s t (Data)) ; l i s t o f a l l l o c a l d i shones ty l i s t s
map reachedDeadline2: List(List(Data))# List(List(Data)) -> Bool;

var x, y: List(Data);

xs, ys: List(List(Data));

eqn reachedDeadline2 ([], []) = true;

205 reachedDeadline2 ([], y |> ys) =

if(y == [null],

reachedDeadline2 ([], ys),

false);

reachedDeadline2(x |> xs, ys) =

210 if(#x==0,

reachedDeadline2(xs, ys),

if(isBallot(head(x)),

true ,

false));

215

% reachedDeadl ine3 : Function to check whether the t h i r d dead l ine has been
% reached . The dead l ine i s reached when a l l v o t e r s have cas t (or f o r the
% d i shones t vo t e r s : sk ipped) the b a l l o t s they have prepared and when the l o c a l
% bu f f e r s are empty .

220 %
% parameters :
% 1 s t parameter d : Nat ; number o f d i shones t vo t e r s
% 2nd parameter l im i t : Nat ; l im i t va lue
% 3rd parameter x |> xs : L i s t (L i s t (Data)) ; l i s t o f l o c a l ca s t l i s t s , conta in ing

225 % i d e n t i f i e r s f o r b a l l o t s t ha t have been cas t
% 4 th parameter y |> ys : L i s t (L i s t (Data)) ; l i s t o f l o c a l b u f f e r s
map reachedDeadline3: Nat#Nat#List(List(Data))# List(List(Data)) -> Bool;

var d, limit: Nat;

x, y: List(Data);

230 xs, ys: List(List(Data));

eqn reachedDeadline3(d, limit , [], []) = true;

reachedDeadline3(d, limit , [], y |> ys) =

if(#y==0,

reachedDeadline3(d, limit , [], ys),

235 false);

reachedDeadline3(d, limit , x |> xs , ys) =

% i < d , hence f i r s t d > 0 ind i c e s need to be checked

81

if(d > 0,

if(#x == limit ,

240 % current l i s t ok , proceed to next one
reachedDeadline3(Int2Nat(d-1), limit , xs, ys),

% not a l l b a l l o t s ca s t
false),

if(#x == 1,

245 reachedDeadline3(d, limit , xs, ys),

false));

% insLis tData : Function tha t i n s e r t s a Data item in a sor t ed l i s t .
%

250 % parameters :
% 1 s t parameter d : Data ; data item tha t needs to be i n s e r t e d
% 2nd parameter x |> xs : L i s t (Data) ; l i s t o f data i tems in which the item needs
% to be i n s e r t e d
map insListData: Data#List(Data) -> List(Data);

255 var x, d: Data;

xs: List(Data);

eqn insListData(d, []) = [d];

insListData(d, x |> xs) = if(smaller(d, x),

d |> (x |> xs),

260 x |> insListData(d, xs));

% insL i s tL i s tDa ta : Function tha t t ha t i n s e r t s the e lements o f a l i s t o f Data
% items in (another) sor t ed l i s t o f Data .
%

265 % parameters :
% 1 s t parameter x |> xs : L i s t (Data) ; l i s t o f data i tems to be i n s e r t e d
% 2nd parameter ys : L i s t (Data) ; l i s t in which the data i tems need to be i n s e r t e d
map insListListData: List(Data)#List(Data) -> List(Data);

var x: Data;

270 xs, ys: List(Data);

eqn insListListData ([], ys) = ys;

insListListData(x |> xs, ys) = insListData(x, insListListData(xs, ys));

% i n i t L i s t : Function to i n i t i a l i z e l i s t s conta in ing a s p e c i f i c number o f empty
275 % l i s t s .

%
% parameters :
% 1 s t parameter n : Nat ; the number o f l i s t s t ha t need to be i n i t i a l i z e d .
map initList: Nat -> List(List(Data));

280 var n: Nat;

eqn initList(n) = if(n>1,

[] |> initList(Int2Nat(n-1)),

[[]]);

285 % count : Function tha t counts the number o f occurrences o f a item in a l i s t .
%
% parameters :
% 1 s t parameter d : Data ; data item which i s searched fo r
% 2nd parameter x |> xs : L i s t (Data) ; l i s t o f data i tems to be searched in

290 map count: Data#List(Data) -> Nat;

var d, x: Data;

xs: List(Data);

eqn count(d, []) = 0;

count(d, x |> xs) = if(d == x,

295 1 + count(d, xs),

count(d, xs));

% uniq : Function tha t removes dup l i c a t e en t r i e s from a l i s t .
%

300 % parameters :
% 1 s t parameter x |> xs : L i s t (Data) ; l i s t o f data i tems
map uniq: List(Data) -> List(Data);

var x: Data;

xs: List(Data);

82

305 eqn uniq ([]) = [];

uniq(x |> xs) = if(!(x in xs),

x |> uniq(xs),

uniq(xs));

310 % remove : Function tha t removes a l l occurrences o f a g iven item from a l i s t .
%
% parameters :
% 1 s t parameter x |> xs : L i s t (Data) ; l i s t o f data i tems
map remove: Data#List(Data) -> List(Data);

315 var m, x: Data;

xs: List(Data);

eqn remove(m, []) = [];

remove(m, x |> xs) = if(m == x,

remove(m, xs),

320 x |> remove(m, xs));

% fi l t e rS igByNonce : Function tha t g iven a l i s t o f s i gna tu r e s and the order o f a
% nonce re turns a l l s i gna tu r e s which contain t ha t order .
%

325 % parameters :
% 1 s t parameter n : Nat ; order o f a nonce
% 2nd parameter x |> xs : L i s t (Data) ; l i s t o f s i gna tu r e s
map filterSigByNonce: Nat#List(Data) -> List(Data);

var x: Data;

330 xs: List(Data);

n: Nat;

eqn filterSigByNonce(n, []) = [];

filterSigByNonce(n, x |> xs) = if(isSign(x),

if(ord(nonce(smsg(x)))==n,

335 x |> filterSigByNonce(n, xs),

filterSigByNonce(n, xs)),

filterSigByNonce(n, xs));

% updDCList : Function tha t updates a l o c a l l i s t conta in ing who s igned the
340 % vote s o f which other vo t e r s .

% Al l v o t e r s have to s i gn the f i r s t b l i nded vote t ha t i s ca s t by another vo t e r .
% This vo te can be i d e n t i f i e d by the order o f i t s nonce , t h i s has to be 0 . I f
% the g iven s i gna ture conta ins a b l i nded message conta in ing a nonce with order
% 0 , then the s i gne r i s honest and a data item de s c r i b i n g t ha t t ha t vo t e r

345 % signed a vote from a s p e c i f i c o ther vo t e r i s added to the l i s t .
%
% parameters :
% 1 s t parameter i : Nat ; i d e n t i f i e r f o r the l o c a l l i s t
% 2nd parameter m: Data ; the s i gna tu re t ha t needs to be processed

350 % 3rd parameter x |> xs : L i s t (L i s t (Data)) ; a l i s t o f l o c a l l i s t s conta in ing
% who s igned the vo t e s o f which other vo t e r s .
map updDCList: Nat#Data#List(List(Data)) -> List(List(Data));

var m: Data;

x: List(Data);

355 xs: List(List(Data));

i: Nat;

eqn updDCList(i, m, x |> xs) =

if(i>0,

(x |> updDCList(Int2Nat(i-1), m, xs)),

360 if(ord(nonce(bmsg(smsg(m)))) == 0,

insListData(signed(signer(m), blinder(smsg(m))), x) |> xs,

x |> xs)

);

365 % getLi s tOfCorrec tS igned : Helper func t i on fo r the func t i on
% iden t i f yD i s hone s tS i gne r s . Constructs a l i s t o f vo t e r s f o r which a s p e c i f i c
% s i gner has s igned a b l i nded vote .
%
% parameters :

370 % 1 s t parameter v : Nat ; the i d e n t i t y o f a s i gner
% 2nd parameter x |> xs : L i s t (Data) ; a l i s t o f pa i r s t ha t say which

83

% signer s igned the b l i nded vo t e s o f which vo t e r s .
map getListOfCorrectSigned: Nat#List(Data) -> List(Data);

var x: Data;

375 xs: List(Data);

v: Nat;

eqn getListOfCorrectSigned(v, []) = [];

getListOfCorrectSigned(v, x |> xs) =

if(signerf(x) == v,

380 insListData(voter(signedf(x)), getListOfCorrectSigned(v, xs)),

getListOfCorrectSigned(v, xs));

% iden t i f yD i s hone s tS i gne r s : Function tha t compares per s i gne r the l i s t o f
% r e g i s t e r e d vo t e r s with a l i s t o f s i gn e r s and the senders o f the messages

385 % they s igned . When the se l i s t s are equal , the s i gne r i s honest , when the se
% are not equal , the s i gne r has sk ipped at l e a s t one message . Therefore he i s
% put on the l i s t o f d i shones t s i gne r s .
%
% parameters :

390 % 1 s t parameter i : Nat ; i t e r a t o r ;
% 2nd parameter s i g n e r sL i s t : L i s t (Data) ; l i s t o f s i gne r s
% 3rd parameter r e gL i s t : L i s t (Data) ; l i s t o f r e g i s t e r e d vo t e r s
% 4 th parameter dcL i s t : L i s t (Data) ; a l i s t o f pa i r s t ha t say which
% s i gner s igned the b l i nded vo t e s o f which vo t e r s .

395 map identifyDishonestSigners: Nat#List(Data)#List(Data)#List(Data)-> List(Data);

var i: Nat;

signersList , regList , dcList: List(Data);

eqn i == #(signersList) ->

identifyDishonestSigners(i, signersList , regList , dcList) = [];

400 i < #(signersList) ->

identifyDishonestSigners(i, signersList , regList , dcList) =

if(getListOfCorrectSigned(id(signersList.i),

dcList) == remove(signersList.i, regList),

%every th ing ok
405 identifyDishonestSigners(i+1, signersList , regList , dcList),

%skipped at l e a s t one s i gna tu re => d i shones t
insListData(signersList.i, identifyDishonestSigners(i+1,

signersList , regList , dcList))

);

410

% cons t ru c tS i gne r sL i s t : Function tha t take s a l i s t o f vo t e r s and removes the
% vo t e r s with an index l a r g e r than a g iven number .
%
% parameters :

415 % 1 s t parameter s : Nat ; number o f s i gne r s (used as i t e r a t o r)
map constructSignersList: Nat -> List(Data);

var i: Nat;

eqn i > 0 -> constructSignersList(i) =

constructSignersList(Int2Nat(i-1)) <| voter(Int2Nat(i-1));

420 i == 0 -> constructSignersList(i) = [];

% updADC: Function tha t adds the e lements o f a g iven d i shones ty l i s t to a l i s t
% conta in ing the items o f a l l r e ce i v ed d i shones ty l i s t s .
%

425 % parameters :
% 1 s t parameter i : Nat ; the index o f the l o c a l l i s t in the l i s t o f l i s t s
% 2nd parameter m: Data ; the d i shones ty l i s t to be added
% 3rd parameter x |> xs : L i s t (L i s t (Data)) ; a l i s t o f l i s t s , conta in ing a l l
% l o c a l l i s t s

430 %
% pre : va lue o f i parameter i s sma l l e r than l eng t h o f the l i s t o f l i s t s
map updADC: Nat#Data#List(List(Data)) -> List(List(Data));

var i: Nat;

m: Data;

435 x: List(Data);

xs: List(List(Data));

eqn updADC(i, m, x |> xs) =

if(i>0,

84

(x |> updADC(Int2Nat(i-1), m, xs)),

440 insListListData(dList(m), x) |> xs);

% kTimesDishonest : Function that , g iven a t h r e s ho l d va lue and a l i s t o f
% po s s i b l y d i shones t s i gners , determines which vo t e r s are r e a l l y d i shones t . That
% is , which s i gne r s are accused at l e a s t k t imes o f d i shones ty .

445 %
% parameters :
% 1 s t parameter i : Nat ; i t e r a t o r
% 2nd parameter k : Nat ; t h r e s ho l d va lue
% 3rd parameter adcLis t : L i s t (Data) ; a l l r e ce i v ed d i shones ty l i s t s from a

450 % s p e c i f i c vo t e r
map kTimesDishonest: Nat#Nat#List(Data) -> List(Data);

var i, k: Nat;

adcList: List(Data);

eqn i == #(uniq(adcList)) -> kTimesDishonest(i, k, adcList) = [];

455 i < #(uniq(adcList)) ->

kTimesDishonest(i, k, adcList) =

if(count ((uniq(adcList)).i, adcList) >= k,

insListData ((uniq(adcList)).i, kTimesDishonest(i+1, k, adcList)),

kTimesDishonest(i+1, k, adcList));

460

% removeDishonestSignatures : Function tha t g iven a l i s t o f d i shones t s i gne r s
% and a l i s t o f s i gna tu r e s removes the s i gna tu r e s t ha t are s igned by any o f the
% d i shones t s i gne r s .
%

465 % parameters :
% 1 s t parameter dL i s t : L i s t (Data) ; l i s t o f d i shones t s i gne r s
% 2nd parameter s |> s i g L i s t : L i s t (Data) ; a l i s t o f s i gna tures , a l l
% corresponding to the same vote (f i l t e r e d by nonce)
map removeDishonestSignatures: List(Data)#List(Data) -> List(Data);

470 var d, s: Data;

dList , sigList: List(Data);

eqn removeDishonestSignatures(dList , []) = [];

removeDishonestSignatures(dList , s |> sigList) =

if(voter(signer(s)) in dList ,

475 % then s i gna ture i s from a d i shones t s i gne r and shou ld be removed
removeDishonestSignatures(dList , sigList),

% e l s e s i gna tu re i s from an honest s i gne r and shou ld be kep t
insListData(s, removeDishonestSignatures(dList , sigList)));

480 % conta insDishones tS igna tures : Function tha t checks whether a l i s t o f s i gna tu r e s
% conta ins s i gna tu r e s o f d i shones t s i gne r s .
%
% parameters :
% 1 s t parameter x |> xs : L i s t (Data) ; l i s t o f d i shones t s i gne r s

485 % 2nd parameter ys : L i s t (Data) ; l i s t o f s i gna tu r e s
map containsDishonestSignatures: List(Data)#List(Data) -> Bool;

var y: Data;

xs, ys: List(Data);

eqn containsDishonestSignatures(xs, []) = false;

490 containsDishonestSignatures(xs, y |> ys) =

if(voter(signer(y)) in xs,

true ,

containsDishonestSignatures(xs, ys));

495 % ex t r a c tTa l l y : Function tha t e x t r a c t s the t a l l y g iven a l i s t o f b a l l o t s and a
% l i s t o f d i shones t s i gne r s .
%
% parameters :
% 1 s t parameter k : Nat ; t h r e s ho l d va lue

500 % 2nd parameter x |> xs : L i s t (Data) : l i s t o f b a l l o t s
% 3rd parameter a l l d c L i s t : L i s t (Data) : l i s t o f d i shones t s i gne r s
map extractTally: Nat#List(Data)#List(Data) -> List(Data);

var k: Nat;

x: Data;

505 xs, alldcList: List(Data);

85

eqn extractTally(k, [], alldcList) = [];

extractTally(k, x |> xs, alldcList) =

if(isBallot(x),

if((#(uniq(listc(x))) >= k &&

510 !(containsDishonestSignatures(kTimesDishonest (0, k, alldcList),

listc(x)))),

x |> extractTally(k, xs , alldcList),

extractTally(k, xs, alldcList)),

extractTally(k, xs, alldcList));

515

% f i l t e rDCL i s t : Function tha t g iven a l i s t o f data items , cons t ruc t s a
% s i n g l e sor t ed l i s t conta in ing a l l e lements o f type vo t e r . This func t i on i s
% used by the e x t e rna l observer to e x t r a c t the d i shones t vo t e r s from i t s input
% bu f f e r .

520 %
% parameters :
% 1 s t parameter x |> xs : L i s t (Data) ; L i s t o f data , conta ins d i shones ty l i s t s
map filterDCList: List(Data) -> List(Data);

var x: Data;

525 xs: List(Data);

eqn filterDCList ([]) = [];

filterDCList(x |> xs) =

if(isVoter(x),

insListData(x, filterDCList(xs)),

530 filterDCList(xs));

% addOneBindex : Function tha t g iven a l i s t conta in ing r e g i s t r a t i o n informat ion
% for the voters , adds one to the index o f the b l i nded vo t e s (b index) f o r a
% s p e c i f i c vo t e r .

535 %
% parameters :
% 1 s t parameter i : Nat ; the index o f the reg In fo in the l i s t o f data items
% conta in ing reg In fo
% 2nd parameter : x |> xs : L i s t (Data) ; l i s t o f data i tems conta in ing reg In fo

540 %
% pre : va lue o f i parameter i s sma l l e r than l eng t h o f the l i s t o f l i s t s
map addOneBindex: Nat#List(Data)->List(Data);

var i: Nat;

x: Data;

545 xs: List(Data);

eqn addOneBindex(i, x |> xs) =

if(i>0,

x |> addOneBindex(Int2Nat(i-1), xs),

regInfo(voterid(x), tries(x), bindex(x)+1) |> xs);

550

% addOneBindex : Function tha t g iven a l i s t conta in ing r e g i s t r a t i o n informat ion
% for the voters , adds one to the t r i e s f o r a s p e c i f i c vo t e r .
%
% parameters :

555 % 1 s t parameter i : Nat ; the index o f the reg In fo in the l i s t o f data items
% conta in ing reg In fo
% 2nd parameter : x |> xs : L i s t (Data) ; l i s t o f data i tems conta in ing reg In fo
%
% pre : va lue o f i parameter i s sma l l e r than l eng t h o f the l i s t o f l i s t s

560 map addOneTries: Nat#List(Data)->List(Data);

var i: Nat;

x: Data;

xs: List(Data);

eqn addOneTries(i, x |> xs) =

565 if(i>0,

x |> addOneTries(Int2Nat(i-1), xs),

regInfo(voterid(x), tries(x)+1, bindex(x)) |> xs);

% getL i s tOfReg i s t e r edVote r s : Function tha t e x t r a c t s a l i s t o f vo t e r s t ha t have
570 % cas t at l e a s t one b l i nded vote from a l i s t o f data items conta in ing reg In fo .

%
% parameters :

86

% 1 s t parameter : x |> xs : L i s t (Data) ; l i s t o f data i tems conta in ing reg In fo
map getListOfRegisteredVoters: List(Data) -> List(Data);

575 var x: Data;

xs: List(Data);

eqn getListOfRegisteredVoters ([]) = [];

getListOfRegisteredVoters(x |> xs) =

if(bindex(x) > 0,

580 voter(voterid(x)) |> getListOfRegisteredVoters(xs),

getListOfRegisteredVoters(xs));

% in i tRegL i s t : Function tha t i n i t i a l i z e s a l i s t data i tems conta in ing i n i t i a l
% reg In fo . That i s , a unique vo te r i d en t i t y , t r i e s = 0 and bindex = 0.

585 %
% parameters
% 1 s t parameter n : Nat ; number o f vo t e r s
map initRegList: Nat -> List(Data);

var n: Nat;

590 eqn initRegList(n) =

if(n > 0,

initRegList(Int2Nat(n-1)) <| regInfo(Int2Nat(n-1), 0, 0),

[]);

595 % a l lR e g i s t e r e d : Function tha t checks whether a l l v o t e r s are done r e g i s t e r i n g
% t h e i r b l i nded vo t e s .
%
% parameters
% 1 s t parameter d : Nat ; the number o f d i shones t vo t e r s

600 % 2nd parameter l im i t : Nat ; the l im i t va lue o f d i shones t ac t i ons
% 3rd parameter x |> xs : L i s t (Data) ; l i s t o f data items conta in ing reg In fo
map allRegistered: Nat#Nat#List(Data)->Bool;

var d, limit: Nat;

x: Data;

605 xs: List(Data);

eqn allRegistered(d, limit , []) = true;

allRegistered(d, limit , x |> xs) =

if(voterid(x) < d,

if(tries(x) == limit ,

610 allRegistered(d, limit , xs),

false),

if(tries(x) == 1,

allRegistered(d, limit , xs),

false));

615

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EXTRA FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Some ex t ra func t i ons t ha t are not d i r e c t l y used in the model , but are needed
% for some t o o l s t ha t take the model as input .

620 % addOrderToNonces : Function tha t r ep l a c e s the gener i c ’ p la in ’ nonce : Nonce in
% each s igned (vote , nonce) pa i r by a nonce which has an order . This i s done in
% order to be ab l e to d i s t i n g u i s h between d i f f e r e n t b a l l o t s . I f the p l a in nonces
% were kept , one can not proper l y d i s t i n g u i s h between two b a l l o t s . The only d i f−
% ference would then be the order t ha t i s in b a l l o t (l i s t c : L i s t (Data) , order :

625 % Nat) . However , t h i s order can e a s i l y be adapted s ince i t i s p l a in t e x t in
% the t up l e . Hence a vo te r cou ld abuse t h i s to add ex t ra b a l l o t s .
%
% The meaning o f ordNonce (i) i s t ha t i t i s the i ˆ th nonce observed on the anon−
% ymous broadcas t channel .

630 %
% parameters :
% 1 s t parameter x |> xs : L i s t (Data) ; l i s t o f s i gna tu r e s
% 2nd parameter order : Nat ; order t ha t i s used in the ordNonce
map addOrderToNonces: List(Data)#Nat -> List(Data);

635 var x: Data;

xs: List(Data);

order: Nat;

eqn addOrderToNonces ([], order) = [];

isSign(x) ->

87

640 addOrderToNonces(x |> xs , order) =

if(isVote(smsg(x)),

sign(signer(x), vote(cand(smsg(x)), ordNonce(order))) |>

addOrderToNonces(xs, order),

x |> addOrderToNonces(xs , order));

645

% addOrderToNoncesTally : Function tha t c a l l s func t i on addOrderToNonces f o r a l l
% b a l l o t s in a t a l l y .
%
% parameters :

650 % 1 s t parameter x |> xs : L i s t (Data) ; l i s t o f b a l l o t s (t a l l y)
map addOrderToNoncesTally: List(Data)->List(Data);

var x: Data;

xs: List(Data);

eqn addOrderToNoncesTally ([]) = [];

655 addOrderToNoncesTally(x |> xs) =

ballot(addOrderToNonces(listc(x), order(x)), order(x))

|> addOrderToNoncesTally(xs);

660 % countItems : Replacement func t i on fo r the l eng t h operator #. This replacement
% func t ion i s needed fo r formula check ing with PBES s ince #(l i s t) does not work
% to count the i tems o f a l i s t when us ing the t o o l pbes2boo l (on r e v i s i on
% 6517− shared) .
map countItems: List(Data) -> Nat;

665 var x: Data;

xs: List(Data);

eqn countItems ([]) = 0;

countItems(x |> xs) = 1 + countItems(xs);

670 % countItems : Replacement func t i on fo r the element t e s t operator i n . This
% replacement func t i on i s needed fo r formula check ing with PBES s ince x in xs
% does not work to count the i tems o f a l i s t when us ing the t o o l pbes2boo l
% (on r e v i s i on 6517− shared) .
map containsItem: Data#List(Data) -> Bool;

675 var d, x: Data;

xs: List(Data);

eqn containsItem(d, []) = false;

containsItem(d, x |> xs) = if(d==x,

true ,

680 containsItem(d, xs));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PROCESSES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%Voters process

685 % parameters :
% N: Number o f vo t e r s .
% k : Threshold va lue .
% d : Number o f d i shones t vo t e r .
% s : Number o f s i gne r s .

690 % inBuf : The ’ broadcas t channel ’ ; b u f f e r where messages ge t exchanged on .
% re gL i s t : L i s t o f r e g i s t e r e d voters , i . e . v o t e r s who have broadcas ted a
% b l inded vote . For now , t h i s l i s t i s model led as a g l o b a l l i s t .
% s i g L i s t : L i s t o f l i s t s (per vo t e r) o f s i gna tu r e s .
% vo t e s : L i s t o f vo t e s .

695 % t a l l y : L i s t o f l i s t s (per vo t e r) o f b a l l o t s .
% order : Order in which the b a l l o t s are cast , used to so r t them i n t e r n a l l y .
% ca s tL i s t : L i s t o f l i s t s (per vo t e r) o f b a l l o t s . Contains f o r each vo t e r
% the ind i c e s o f the b a l l o t s he has cas t .
% l im i t : The maximum number o f t imes a vo te r can perform a d i shones t ac t ion

700 % (inc l ud ing the honest ac t i ons) .
% s i gnedL i s t : L i s t o f l i s t s (per vo t e r) t ha t contain the i d e n t i t i e s o f the
% vo t e r s o f which a vo te r has s igned a message .
% dcLi s t : L i s t o f l i s t s (per vo t e r) t ha t contain a l i s t o f pa i r s t ha t say
% which s i gne r s igned the b l i nded vo t e s o f which vo t e r s

705 % a l l d c L i s t : L i s t o f l i s t s (per vo t e r) t ha t contain the rece i v ed d i shones t
% l i s t s .

88

% inBufObs : The b u f f e r o f the broadcas t channel f o r the observer .
proc Voters(N: Nat , k: Nat , d: Nat , s: Nat , inBuf: List(List(Data)), regList:

List(Data), sigList: List(List(Data)), votes: List(Bool), tally:

710 List(List(Data)), order: Nat , castList: List(List(Data)), limit: Nat ,

signedList: List(List(Data)), dcList: List(List(Data)), alldcList:

List(List(Data)), inBufObs: List(Data)) =

sum i:Nat . (0 <= i && i < N) -> (

% I f vo t e r i has not ye t ca s t i t s b l i nded vote , he can do t h i s .
715 % check whether vo t e r i has a l ready cas t a b l i nded vote

((i >= d) && (bindex(regList.i) < 1)) -> (

(i < s) -> % voter i s a l s o a s igner , hence he can s i gn h i s own vote
bcast(i, blind(i, vote(votes.i, nonce (0)))) .

Voters(N, k, d, s, removeToe(i, updBuf(blind(i, vote(votes.i,

720 nonce (0))), inBuf)), addOneTries(i, addOneBindex(i,

regList)), updSingleList(i, sign(i, vote(votes.i,

nonce (0))), sigList), votes , tally , order , castList , limit ,

signedList , dcList , alldcList , inBufObs)

<> % voter i s not a s igner , and can hence not s i gn h i s own vote
725 bcast(i, blind(i, vote(votes.i, nonce (0)))) .

Voters(N, k, d, s, removeToe(i, updBuf(blind(i, vote(votes.i,

nonce (0))), inBuf)), addOneTries(i, addOneBindex(i,

regList)), sigList , votes , tally , order , castList , limit ,

signedList , dcList , alldcList , inBufObs)

730)

<>

% dishones t vo t e r can cas t ‘ l im i t ’ b l i nded vo t e s
((i < d) && (tries(regList.i) < limit)) -> (%has not ye t reached l im i t

% in t e r na l d ec i s i on : ca s t i n g a b l i nded vote
735 bcast(i, blind(i, vote(votes.i, nonce(bindex(regList.i))))) .

Voters(N, k, d, s, removeToe(i, updBuf(blind(i, vote(votes.i,

nonce(bindex(regList.i)))), inBuf)),

addOneTries(i, addOneBindex(i, regList)), updSingleList(i,

sign(i, vote(votes.i, nonce(bindex(regList.i)))),

740 sigList), votes , tally , order , castList , limit , signedList ,

dcList , alldcList , inBufObs)

+ % or not ca s t i n g a b l i nded vote
noBlind . Voters(N, k, d, s, inBuf , addOneTries(i, regList),

sigList , votes , tally , order , castList , limit ,

745 signedList , dcList , alldcList , inBufObs)

)

<>

(% I f vo t e r i has processed a l l i t s b l i nded vo t e s (an honest vo t e r can only
% cas t a s i n g l e b l i nded vote , a d i shones t g e t s ‘ l im i t ’ b l i nded votes ,

750 % which he can sk i p or cas t) , he can only process incoming messages or
% send s i gna tu r e s (i f he i s a s i gne r) u n t i l the dead l ine i s reached .

(#(inBuf.i)>0) -> (

isBlind(head(inBuf.i)) ->

(i >= d) -> (%honest vo t e r s
755 % Honest s i gne r s check whether they have a l ready s igned a b l i nded vote

% by the sender o f the current b l i nded vote . I f i t i s not the case ,
% then s i gn the b l i nded vote .
(!(voter(blinder(head(inBuf.i))) in signedList.i) && (i < s)) ->

bcast(i, sign(i, head(inBuf.i))) .

760 Voters(N, k, d, s, removeToe(i, removeHead(i, updBuf(sign(i,

head(inBuf.i)), inBuf))), regList , sigList , votes ,

tally , order , castList , limit , updSingleList(i,

voter(blinder(head(inBuf.i))), signedList), dcList ,

alldcList , inBufObs)

765 <> % I f i t i s the case , do not s i gn the b l i nded vote . Also do not s i gn
% the b l i nded vote i f the vo t e r i s not a s i gne r .
notSign(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

tally , order , castList , limit , signedList , dcList ,

770 alldcList , inBufObs)

)

<> %i < d ; d i shones t vo t e r s
(

89

% Dishonest s i gne r s s i gn a b l i nded vote wi thout check ing whether i t
775 % was the f i r s t b l i nded vote t ha t was sent by the sender .

bcast(i, sign(i, head(inBuf.i))).

Voters(N, k, d, s, removeToe(i, removeHead(i, updBuf(sign(i,

head(inBuf.i)), inBuf))), regList , sigList , votes , tally ,

order , castList , limit , signedList , dcList , alldcList ,

780 inBufObs)

+

% A di shones t vo t e r can dec ide to behave d i shones t by not s i gn ing a
% b l inded vote .
notSign(i, head(inBuf.i)) .

785 Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

tally , order , castList , limit , signedList , dcList , alldcList ,

inBufObs)

)

+ isSign(head(inBuf.i)) -> (

790 (i < s) -> (% Signers need to s t o r e a l l incoming s i gna tu r e s to
% cons t ruc t the d i shones ty l i s t s .

(unblind(i, head(inBuf.i)) != err) ->

unblinded(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , updSingleList(

795 i, unblind(i, head(inBuf.i)), sigList), votes , tally ,

order , castList , limit , signedList , updDCList(i,

head(inBuf.i), dcList), alldcList , inBufObs)

<> cannotUnblind(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList ,

800 votes , tally , order , castList , limit , signedList ,

updDCList(i, head(inBuf.i), dcList), alldcList ,

inBufObs)

)

<>

805 (%Voters t ha t are not s i gne r s do not need to s t o r e a l l s i gna tu r e s .
(unblind(i, head(inBuf.i)) != err) ->

unblinded(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , updSingleList(

i, unblind(i, head(inBuf.i)), sigList), votes , tally ,

810 order , castList , limit , signedList , dcList , alldcList ,

inBufObs)

<> cannotUnblind(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList ,

votes , tally , order , castList , limit , signedList ,

815 dcList , alldcList , inBufObs)

)

)

+ isBallot(head(inBuf.i)) ->

((#(uniq(listc(head(inBuf.i)))) < k ||

820 containsDishonestSignatures(kTimesDishonest (0, k, alldcList.i),

listc(head(inBuf.i)))) && !(head(inBuf.i) in tally.i) && i >= d) ->

% I f a b a l l o t conta ins i n s u f f i c i e n t s i gna tu r e s or s i gna tu r e s o f
% d i shones t s i gne r s or i f the b a l l o t i s a l ready rece i v ed (the se are
% ca l l e d i n v a l i d b a l l o t s) , then do not s t o r e the b a l l o t (only done

825 % by honest vo t e r s) .
receivedBallot(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

tally , order , castList , limit , signedList , dcList , alldcList ,

inBufObs)

830 <> % Otherwise the b a l l o t i s s to red . In case the vo t e r i s d i shones t ,
% he a l s o s t o r e s i n v a l i d b a l l o t s in order to t r y to ge t them
% accepted .

receivedBallot(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

835 updSingleList(i, head(inBuf.i), tally), order , castList ,

limit , signedList , dcList , alldcList , inBufObs)

+ isDishonestList(head(inBuf.i)) ->

receivedDishonestList(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

840 tally , order , castList , limit , signedList , dcList , updADC(i,

90

head(inBuf.i), alldcList), inBufObs)

)

% Once the dead l ine has been reached , d i shones ty l i s t s can be cons t ruc ted
% and sent . Note t ha t d i shones ty l i s t s are a l s o added to the b u f f e r o f the

845 % ex t e rna l observer (represen ted by parameter inBufObs) s ince the se are
% needed to cons t ruc t the f i n a l t a l l y .

+ (reachedDeadline(inBuf) && allRegistered(d, limit , regList)) -> (

% cons t ruc t and send d i shones ty l i s t s
((dcList.i != [null]) && (i < s)) -> (

850 (identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(regList),

dcList.i) != []) -> (

bcast(i, dishonestList(identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(regList),

855 dcList.i))) .

Voters(N, k, d, s, removeToe(i, updBuf(dishonestList(

identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(

regList), dcList.i)), inBuf)), regList , sigList , votes ,

860 tally , order , castList , limit , signedList ,

nullSingleList(i, dcList), updADC(i, dishonestList(

identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(

regList), dcList.i)), alldcList), insListListData(

865 identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(

regList), dcList.i), inBufObs))

)

<>

870 (% empty d i shones ty l i s t −> no need to broadcas t d i shones ty l i s t
emptyDishonestList(i) .

Voters(N, k, d, s, inBuf , regList , sigList , votes , tally , order ,

castList , limit , signedList , nullSingleList(i, dcList),

alldcList , inBufObs)

875)

% dishones t : mark a l l o ther s i gne r s as d i shones t vo t e r s
+ (i < d) -> (

bcast(i, dishonestList(remove(voter(i), constructSignersList(s)))) .

Voters(N, k, d, s, removeToe(i, updBuf(dishonestList(

880 remove(voter(i), constructSignersList(s))), inBuf)), regList ,

sigList , votes , tally , order , castList , limit , signedList ,

nullSingleList(i, dcList), updADC(i,

dishonestList(remove(voter(i), constructSignersList(s))),

alldcList), insListListData(remove(voter(i),

885 constructSignersList(s)), inBufObs))

)

)

<>

(reachedDeadline2(inBuf , dcList)) -> (

890 % Once the second dead l ine has been reached , the b a l l o t s can be cas t .
% Note t ha t the b a l l o t s are a l s o added to the b u f f e r o f the e x t e rna l
% observer .
% An honest vo t e r can only cas t a s i n g l e b a l l o t .
((i >= d) && (#(castList.i) < 1)) ->

895 abcast(ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)),

order)) .

Voters(N, k, d, s, removeToe(i, updBuf(ballot(

removeDishonestSignatures(kTimesDishonest (0, k,

900 alldcList.i), uniq(sigList.i)), order), inBuf)),

regList , sigList , votes , updSingleList(i,

ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)), order), tally),

order+1, updSingleList(i, ballotIdx (0), castList),

905 limit , signedList , dcList , alldcList , inBufObs <|

ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)), order))

91

<> (i < d) -> (

% A di shones t vo t e r has the cho ice to broadcas t ‘ l im i t ’ b a l l o t s .
910 sum j: Nat . (0 <= j && j < limit) ->

!(ballotIdx(j) in castList.i) ->

(% Sending a b a l l o t .
(removeDishonestSignatures(kTimesDishonest (0, k, alldcList.i),

uniq(filterSigByNonce(j, sigList.i))) != []) -> (

915 abcast(ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(filterSigByNonce(j, sigList.i))),

order)) .

Voters(N, k, d, s, removeToe(i, updBuf(ballot(

removeDishonestSignatures(kTimesDishonest (0, k,

920 alldcList.i), uniq(filterSigByNonce(j, sigList.i))),

order), inBuf)), regList , sigList , votes ,

updSingleList(i, ballot(removeDishonestSignatures(

kTimesDishonest (0, k, alldcList.i), uniq(

filterSigByNonce(j, sigList.i))), order), tally),

925 order+1, updSingleList(i, ballotIdx(j), castList),

limit , signedList , dcList , alldcList , inBufObs <|

ballot(removeDishonestSignatures(kTimesDishonest (0,

k, alldcList.i), uniq(filterSigByNonce(j,

sigList.i))), order))

930)

+ % Sending no b a l l o t .
noBallot .

Voters(N, k, d, s, inBuf , regList , sigList , votes , tally ,

order , updSingleList(i, ballotIdx(j), castList),

935 limit , signedList , dcList , alldcList , inBufObs)

)

)

)

)

940)

)

% Externa l o b j e c t i v e observer ; e x t r a c t s t a l l y from message observed from
% authen t i ca t ed broadcas t channel (d i shones ty l i s t s) and anonymous broadcas t
% channel (b a l l o t s) . Makes t h i s t a l l y o b s e r vab l e us ing func t i on f i n a lT a l l y .

945 + reachedDeadline3(d, limit , castList , inBuf) -> (

finalTally(vtally(extractTally(k, inBufObs , filterDCList(inBufObs)))) .

delta
)

;

950

% numVoters : Def ines the number o f vo t e r s in the p ro t oco l .
map numVoters: Nat;

eqn numVoters = 3;

955 % thr e sho l d : Def ines the t h r e s ho l d va lue .
map threshold: Nat;

eqn threshold = 2;

% numDishonestVoters : Def ines the number o f d i shones t vo t e r s .
960 % Maximum: thre sho ld −1.

map numDishonestVoters: Nat;

% Defau l t : maximum number o f d i shones t vo t e r s .
eqn numDishonestVoters = Int2Nat(threshold -1);

965 % numSigners : Def ines the number o f s i gne r s .
% Minimum: 2∗ t h re sho ld −1.
map numSigners: Nat;

% Defau l t : minimum number o f s i gne r s .
eqn numSigners = Int2Nat (2* threshold -1);

970

% votesVector : Def ines the vo t e s o f the voters , vo tesVector . i i s vo t e r i ’ s vo te .
map votesVector: List(Bool);

eqn votesVector = [false , true , false];

92

975 % l im i t : The maximum number o f t imes a vo t e r can perform a d i shones t ac t ion
% (inc l ud ing the honest ac t i ons) .
map limit: Nat;

eqn limit = 2;

980 in i t hide({ cannotUnblind , unblinded , receivedBallot , receivedDishonestList ,

emptyDishonestList , notSign , noBlind , noBallot},

Voters(

numVoters , %parameter N
threshold , %parameter k

985 numDishonestVoters , %parameter d
numSigners , %parameter s
initList(numVoters), %parameter inBuf
initRegList(numVoters), %parameter r e gL i s t
initList(numVoters), %parameter s i g L i s t

990 votesVector , %parameter vo t e s
initList(numVoters), %parameter t a l l y
0, %parameter order
initList(numVoters), %parameter c a s tL i s t
limit , %parameter l im i t

995 initList(numVoters), %parameter s i gnedL i s t
initList(numSigners), %parameter dcL i s t
initList(numVoters), %parameter a l l d c L i s t
[]) %parameter inBufObs

);

A.3.1 Dishonest model rename file

0 var i: Nat;

d: Data;

l: List(Data);

rename
% bcas t (i , d) g e t s r ewr i t t en to bcas t (i , b l indmsg (j)) i f f d i s a b l i nded message

5 % and where j i s the index o f the vo t e r who b l i nded the message
isBlind(d) ->

bcast(i, d) => bcast(i, blindmsg(blinder(d), ord(nonce(bmsg(d)))));

% bcas t (i , d) g e t s r ewr i t t en to bcas t (i , s i gn (j , b l indmsg (k))) i f f d i s a s igned
% message conta in ing a b l i nded message . I d e n t i f i e r j r ep re s en t s the index o f the

10 % voter who s igned the message (which i s needed to s i gn the r ewr i t t en message)
% and index k rep re s en t s the index o f the vo t e r who b l i nded the message .
isSign(d) && isBlind(smsg(d)) -> bcast(i, d) =>

bcast(i, sign(signer(d),

blindmsg(blinder(smsg(d)), ord(nonce(bmsg(smsg(d)))))));

15

% abcas t (d) g e t s r ewr i t t en to abcas t (d ’) when d i s a b a l l o t . Data item d ’ con−
% ta in s the s i gna ture l i s t and the order−number o f b a l l o t d , excep t t ha t in the
% l i s t o f s i gna tu r e s every nonce i s converted to an ordered nonce .
isBallot(d) ->

20 abcast(d) => abcast(ballot(addOrderToNonces(listc(d), order(d)), order(d)));

% f i n a lT a l l y (d) g e t s r ewr i t t en to f i n a lT a l l y (d ’) when d i s a t a l l y . Data item d ’
% i s a t a l l y conta ing a l i s t o f b a l l o t s where an order i s added on the nonces
% of the b a l l o t .

25 isTally(d) ->

finalTally(d) => finalTally(vtally(addOrderToNoncesTally(tallyc(d))));

A.4 Model using strong synchronicity

Only the process V oters and its initialization is included. All sorts, actions and functions are as
in the dishonest model, which can be found in Appendix A.3.

0 proc Voters(N: Nat , k: Nat , d: Nat , s: Nat , inBuf: List(List(Data)), regList:

List(Data), sigList: List(List(Data)), votes: List(Bool), tally:

List(List(Data)), order: Nat , castList: List(List(Data)), limit: Nat ,

signedList: List(List(Data)), dcList: List(List(Data)), alldcList:

List(List(Data)), inBufObs: List(Data), semaphore: Nat) =

5 sum i:Nat . (0 <= i && i < N) -> (

93

% Check whether b l i nded vote may be cas t (i . e . whether semaphore == 0) .
(semaphore == 0) -> (% Semaphore i s s e t to N−1 when a b l i nded vote i s sent .

((i >= d) && (bindex(regList.i) < 1)) -> (

(i < s) ->

10 bcast(i, blind(i, vote(votes.i, nonce (0)))) .

Voters(N, k, d, s, removeToe(i, updBuf(blind(i, vote(votes.i,

nonce (0))), inBuf)), addOneTries(i, addOneBindex(i,

regList)), updSingleList(i, sign(i, vote(votes.i,

nonce (0))), sigList), votes , tally , order , castList , limit ,

15 signedList , dcList , alldcList , inBufObs , Int2Nat(N-1))

<>

bcast(i, blind(i, vote(votes.i, nonce (0)))) .

Voters(N, k, d, s, removeToe(i, updBuf(blind(i, vote(votes.i,

nonce (0))), inBuf)), addOneTries(i, addOneBindex(i,

20 regList)), sigList , votes , tally , order , castList , limit ,

signedList , dcList , alldcList , inBufObs , Int2Nat(N-1))

)

<>

((i < d) && (tries(regList.i) < limit)) -> (

25 bcast(i, blind(i, vote(votes.i, nonce(bindex(regList.i))))) .

Voters(N, k, d, s, removeToe(i, updBuf(blind(i, vote(votes.i,

nonce(bindex(regList.i)))), inBuf)),

addOneTries(i, addOneBindex(i, regList)), updSingleList(i,

sign(i, vote(votes.i, nonce(bindex(regList.i)))),

30 sigList), votes , tally , order , castList , limit , signedList ,

dcList , alldcList , inBufObs , Int2Nat(N-1))

+ % No b l inded vote i s sent , thus do not change semaphore .
noBlind . Voters(N, k, d, s, inBuf , addOneTries(i, regList),

sigList , votes , tally , order , castList , limit ,

35 signedList , dcList , alldcList , inBufObs , semaphore)

)

)

+

(

40 (#(inBuf.i)>0) -> (

isBlind(head(inBuf.i)) ->

(i >= d) -> (% Lower sempahore by one i f b l i nded vote i s processed .
(!(voter(blinder(head(inBuf.i))) in signedList.i) && (i < s)) ->

bcast(i, sign(i, head(inBuf.i))) .

45 Voters(N, k, d, s, removeToe(i, removeHead(i, updBuf(sign(i,

head(inBuf.i)), inBuf))), regList , sigList , votes ,

tally , order , castList , limit , updSingleList(i,

voter(blinder(head(inBuf.i))), signedList), dcList ,

alldcList , inBufObs , Int2Nat(semaphore -1))

50 <>

notSign(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

tally , order , castList , limit , signedList , dcList ,

alldcList , inBufObs , Int2Nat(semaphore -1))

55)

<>

(

bcast(i, sign(i, head(inBuf.i))).

Voters(N, k, d, s, removeToe(i, removeHead(i, updBuf(sign(i,

60 head(inBuf.i)), inBuf))), regList , sigList , votes , tally ,

order , castList , limit , signedList , dcList , alldcList ,

inBufObs , Int2Nat(semaphore -1))

+

notSign(i, head(inBuf.i)) .

65 Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

tally , order , castList , limit , signedList , dcList , alldcList ,

inBufObs , Int2Nat(semaphore -1))

)

+ isSign(head(inBuf.i)) -> (

70 (i < s) -> (

(unblind(i, head(inBuf.i)) != err) ->

unblinded(i, head(inBuf.i)) .

94

Voters(N, k, d, s, removeHead(i, inBuf), regList , updSingleList(

i, unblind(i, head(inBuf.i)), sigList), votes , tally ,

75 order , castList , limit , signedList , updDCList(i,

head(inBuf.i), dcList), alldcList , inBufObs , semaphore)

<> cannotUnblind(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList ,

votes , tally , order , castList , limit , signedList ,

80 updDCList(i, head(inBuf.i), dcList), alldcList ,

inBufObs , semaphore)

)

<>

(

85 (unblind(i, head(inBuf.i)) != err) ->

unblinded(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , updSingleList(

i, unblind(i, head(inBuf.i)), sigList), votes , tally ,

order , castList , limit , signedList , dcList , alldcList ,

90 inBufObs , semaphore)

<> cannotUnblind(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList ,

votes , tally , order , castList , limit , signedList ,

dcList , alldcList , inBufObs , semaphore)

95)

)

+ isBallot(head(inBuf.i)) ->

((#(uniq(listc(head(inBuf.i)))) < k ||

containsDishonestSignatures(kTimesDishonest (0, k, alldcList.i),

100 listc(head(inBuf.i)))) && !(head(inBuf.i) in tally.i) && i >= d) ->

receivedBallot(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

tally , order , castList , limit , signedList , dcList , alldcList ,

inBufObs , semaphore)

105 <>

receivedBallot(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

updSingleList(i, head(inBuf.i), tally), order , castList ,

limit , signedList , dcList , alldcList , inBufObs , semaphore)

110 + isDishonestList(head(inBuf.i)) ->

receivedDishonestList(i, head(inBuf.i)) .

Voters(N, k, d, s, removeHead(i, inBuf), regList , sigList , votes ,

tally , order , castList , limit , signedList , dcList , updADC(i,

head(inBuf.i), alldcList), inBufObs , semaphore)

115)

+ (reachedDeadline(inBuf) && allRegistered(d, limit , regList)) -> (

((dcList.i != [null]) && (i < s)) -> (

(identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(regList),

120 dcList.i) != []) -> (

bcast(i, dishonestList(identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(regList),

dcList.i))) .

Voters(N, k, d, s, removeToe(i, updBuf(dishonestList(

125 identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(

regList), dcList.i)), inBuf)), regList , sigList , votes ,

tally , order , castList , limit , signedList ,

nullSingleList(i, dcList), updADC(i, dishonestList(

130 identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(

regList), dcList.i)), alldcList), insListListData(

identifyDishonestSigners (0, remove(voter(i),

constructSignersList(s)), getListOfRegisteredVoters(

135 regList), dcList.i), inBufObs), semaphore)

)

<>

(

emptyDishonestList(i) .

95

140 Voters(N, k, d, s, inBuf , regList , sigList , votes , tally , order ,

castList , limit , signedList , nullSingleList(i, dcList),

alldcList , inBufObs , semaphore)

)

+ (i < d) -> (

145 bcast(i, dishonestList(remove(voter(i), constructSignersList(s)))) .

Voters(N, k, d, s, removeToe(i, updBuf(dishonestList(

remove(voter(i), constructSignersList(s))), inBuf)), regList ,

sigList , votes , tally , order , castList , limit , signedList ,

nullSingleList(i, dcList), updADC(i,

150 dishonestList(remove(voter(i), constructSignersList(s))),

alldcList), insListListData(remove(voter(i),

constructSignersList(s)), inBufObs), semaphore)

)

)

155 <>

(reachedDeadline2(inBuf , dcList)) -> (

((i >= d) && (#(castList.i) < 1)) ->

abcast(ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)),

160 order)) .

Voters(N, k, d, s, removeToe(i, updBuf(ballot(

removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)), order), inBuf)),

regList , sigList , votes , updSingleList(i,

165 ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)), order), tally),

order+1, updSingleList(i, ballotIdx (0), castList),

limit , signedList , dcList , alldcList , inBufObs <|

ballot(removeDishonestSignatures(kTimesDishonest (0, k,

170 alldcList.i), uniq(sigList.i)), order), semaphore)

<> (i < d) -> (

sum j: Nat . (0 <= j && j < limit) ->

!(ballotIdx(j) in castList.i) ->

(

175 (removeDishonestSignatures(kTimesDishonest (0, k, alldcList.i),

uniq(filterSigByNonce(j, sigList.i))) != []) -> (

abcast(ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(filterSigByNonce(j, sigList.i))),

order)) .

180 Voters(N, k, d, s, removeToe(i, updBuf(ballot(

removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(filterSigByNonce(j, sigList.i))),

order), inBuf)), regList , sigList , votes ,

updSingleList(i, ballot(removeDishonestSignatures(

185 kTimesDishonest (0, k, alldcList.i), uniq(

filterSigByNonce(j, sigList.i))), order), tally),

order+1, updSingleList(i, ballotIdx(j), castList),

limit , signedList , dcList , alldcList , inBufObs <|

ballot(removeDishonestSignatures(kTimesDishonest (0,

190 k, alldcList.i), uniq(filterSigByNonce(j,

sigList.i))), order), semaphore)

)

+

noBallot .

195 Voters(N, k, d, s, inBuf , regList , sigList , votes , tally ,

order , updSingleList(i, ballotIdx(j), castList),

limit , signedList , dcList , alldcList , inBufObs ,

semaphore)

)

200)

)

)

)

)

205 + reachedDeadline3(d, limit , castList , inBuf) -> (

finalTally(vtally(extractTally(k, inBufObs , filterDCList(inBufObs)))) .

96

delta
)

;

210

in i t hide({ cannotUnblind , unblinded , receivedBallot , receivedDishonestList ,

emptyDishonestList , notSign , noBlind , noBallot},

Voters(

numVoters , %parameter N
215 threshold , %parameter k

numDishonestVoters , %parameter d
numSigners , %parameter s
initList(numVoters), %parameter inBuf
initRegList(numVoters), %parameter r e gL i s t

220 initList(numVoters), %parameter s i g L i s t
votesVector , %parameter vo t e s
initList(numVoters), %parameter t a l l y
0, %parameter order
initList(numVoters), %parameter c a s tL i s t

225 limit , %parameter l im i t
initList(numVoters), %parameter s i gnedL i s t
initList(numSigners), %parameter dcL i s t
initList(numVoters), %parameter a l l d c L i s t
[], %parameter inBufObs

230 0) %parameter semaphore
);

A.5 Unicity model

In this section we describe the full list of changes to the dishonest model (as can be found in
Appendix A.3) and the rename file for the dishonest model (as can be found in Appendix A.3.1)
in order to construct a model for which we can check the unicity property.

First we start by adding the parameter bsender to the ballot constructor. In the dishonest
model we have a constructor that creates a ballot of type Data as follows.

blindmsg(blinderm: Nat, norder: Nat)?isBlindMsg

In the model for unicity we add the parameter bsender of type Data as follows.

blindmsg(blinderm: Nat, norder: Nat)?isBlindMsg

This has as result that we need to add the parameter to every occurrence of the ballot con-
structor. The first occurrence of in the V oters process is when a ballot is broadcast by an honest
voter. In the dishonest model this is modelled as follows.

0 abcast(ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)), order)) .

Voters(N, k, d, s, removeToe(i, updBuf(ballot(

removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)), order), inBuf)),

5 regList , sigList , votes , updSingleList(i,

ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)), order), tally),

order+1, updSingleList(i, ballotIdx (0), castList),

limit , signedList , dcList , alldcList , inBufObs <|

10 ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)), order))

In the model for unicity we give the parameter bsender the value voter(i), this is done as
follows.

0 abcast(ballot(voter(i),

removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)), order)) .

Voters(N, k, d, s, removeToe(i, updBuf(ballot(voter(i),

removeDishonestSignatures(kTimesDishonest (0, k,

97

5 alldcList.i), uniq(sigList.i)), order), inBuf)),

regList , sigList , votes , updSingleList(i,

ballot(voter(i), removeDishonestSignatures(

kTimesDishonest (0, k, alldcList.i), uniq(sigList.i)),

order), tally), order+1, updSingleList(i,

10 ballotIdx (0), castList), limit , signedList , dcList ,

alldcList , inBufObs <| ballot(voter(i),

removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(sigList.i)), order))

The second and last occurrence is the case where a dishonest voter casts its ballot. In the
dishonest model this is modelled as follows.

0 abcast(ballot(removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(filterSigByNonce(j, sigList.i))),

order)) .

Voters(N, k, d, s, removeToe(i, updBuf(ballot(

removeDishonestSignatures(kTimesDishonest (0, k,

5 alldcList.i), uniq(filterSigByNonce(j, sigList.i))),

order), inBuf)), regList , sigList , votes ,

updSingleList(i, ballot(removeDishonestSignatures(

kTimesDishonest (0, k, alldcList.i), uniq(

filterSigByNonce(j, sigList.i))), order), tally),

10 order+1, updSingleList(i, ballotIdx(j), castList),

limit , signedList , dcList , alldcList , inBufObs <|

ballot(removeDishonestSignatures(kTimesDishonest (0,

k, alldcList.i), uniq(filterSigByNonce(j,

sigList.i))), order))

In the model for unicity we again add tern voter(i).

0 abcast(ballot(voter(i),

removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(filterSigByNonce(j, sigList.i))),

order)) .

Voters(N, k, d, s, removeToe(i, updBuf(ballot(voter(i),

5 removeDishonestSignatures(kTimesDishonest (0, k,

alldcList.i), uniq(filterSigByNonce(j, sigList.i))),

order), inBuf)), regList , sigList , votes ,

updSingleList(i, ballot(voter(i),

removeDishonestSignatures(kTimesDishonest (0, k,

10 alldcList.i), uniq(filterSigByNonce(j, sigList.i))),

order), tally), order+1, updSingleList(i,

ballotIdx(j), castList), limit , signedList , dcList ,

alldcList , inBufObs <| ballot(voter(i),

removeDishonestSignatures(kTimesDishonest (0,

15 k, alldcList.i), uniq(filterSigByNonce(j,

sigList.i))), order))

Furthermore, we need to update some functions involving ballots. The first function is the
function smaller that defines an order on ballots. In the dishonest model we have the following
equation expressing that.

smaller(ballot(l, i), ballot(m, j))= i < j;

In the model for unicity we replace this equation by the following, where d, e are of type Data.

smaller(ballot(d, l, i), ballot(e, m, j))= i < j;

Then we also need to update function addOrderToNoncesTally. In the dishonest model we
have the following equation.

0 addOrderToNoncesTally(x |> xs) =

ballot(addOrderToNonces(listc(x), order(x)), order(x))

|> addOrderToNoncesTally(xs);

This equation is replaced in the model for unicity by the following equation.

98

0 addOrderToNoncesTally(x |> xs) =

ballot(bsender(x), addOrderToNonces(listc(x), order(x)), order(x))

|> addOrderToNoncesTally(xs);

Finally, we need to update the rename file. In the rename file we only need to update a single
rename rule. This is the following one.

isBallot(d)-> abcast(d)=> abcast(ballot(addOrderToNonces(listc(d), order(d)), order(d)));

This is replaced by the following rename rule.

isBallot(d)-> abcast(d)=> abcast(ballot(bsender(d), addOrderToNonces(listc(d), order(d)), order(

d)));

Finally, we need to add function countBallotsInTally, which is needed in one of the modal
µ-formulae. This function is as follows.

0 map countBallotsInTally: Data#List(Data)->Nat;

var d, x: Data;

xs: List(Data);

eqn countBallotsInTally(d, []) = 0;

countBallotsInTally(d, x |> xs) = if(d == bsender(x),

5 1 + countBallotsInTally(d, xs),

countBallotsInTally(d, xs));

When all these changes are applied, we have a model on which we can verify the unicity
property.

A.6 Modal formulae

In this section all formulae of Section 3.6.2 are given in the syntax used by lps2pbes.

File name: alwaysFinalTally.mcf
In words: For every path, eventually the action finalTally occurs.
Formula: [(!(exists d: Data . finalTally(d)))*]<true* . exists d:

Data . finalTally(d)>true

File name: atLeastOneSignature.mcf
In words: Every blinded vote is at least signed once by one of the signers.
Formula: forall n: Nat . val(n < numVoters) => [true* . bcast(n,

blindmsg(n, 0))]<true* . exists m : Nat . bcast(m, sign(m,
blindmsg(n, 0)))>true

File name: atLeastKSignatures.mcf
In words: Every blinded vote is signed at least k times.
Formula: forall n: Nat . val(n < numVoters) => ([true* . bcast(n,

blindmsg(n, 0))](nu X (cnt: Nat = 0) . [!(exists m: Nat .
bcast(m, sign(m, blindmsg(n, 0))))] X(cnt) && [exists m: Nat .
bcast(m, sign(m, blindmsg(n, 0)))] X(cnt+1) && (forall d: Data
. [finalTally(d)](val((n < numSigners => (cnt+1 >= threshold))
&& (n >= numSigners => (cnt >= threshold)))))))

File name: noSignerSignsTwice.mcf
In words: A signer does not sign the same blinded message twice.
Formula: forall n: Nat . val(n < numSigners) => forall blinder: Nat .

val(blinder < numVoters) => forall order: Nat . val(order <
limit) => [true* . bcast(n, sign(n, blindmsg(blinder, order)))
. true* . bcast(n, sign(n, blindmsg(blinder, order)))]false

99

File name: soundFinalTally.mcf
In words: The number of ballots in the final tally is greater than or equal to the number

of blinded votes that are cast by honest voters.
Formula: nu X (cnt: Nat = 0) . ([!(exists n: Nat . val(n >=

numDishonestVoters) && bcast(n, blindmsg(n, 0)))] X(cnt)
&& [exists n: Nat . val(n >= numDishonestVoters) &&
bcast(n, blindmsg(n, 0))] X(cnt+1) && forall d: Data .
([finalTally(d)](val(cnt <= countItems(tallyc(d))))))

File name: putOnDishonestList.mcf
In words: A dishonest signer is put on the list of dishonest signers of every honest

signer when it has not signed all first blinded messages of all voters.
Formula: forall n: Nat . val(n < numDishonestVoters) => nu X (scnt:

Nat = 0, vcnt: Nat = 0) . ([!(exists m: Nat . bcast(n,
sign(n, blindmsg(m, 0))) || exists m: Nat . bcast(m,
blindmsg(m, 0)))] X(scnt, vcnt) && [exists m: Nat . bcast(n,
sign(n, blindmsg(m, 0)))] X(scnt+1, vcnt) && [exists m: Nat
. bcast(m, blindmsg(m, 0))] X(scnt, vcnt+1) && (forall m:
Nat . val(numDishonestVoters <= m && m < numSigners) =>
(forall d: Data . [val(isDishonestList(d)) && bcast(m,
d)](val(scnt < vcnt-1 => containsItem(voter(n), dList(d)) &&
containsItem(voter(n), dList(d)) => scnt < vcnt-1)))))

File name: unicity.mcf
In words: A voter can only vote once.
Formula: forall n: Nat . val(n < numVoters) => ([true* .

bcast(n, blindmsg(n, 0)) . true*] forall d: Data
. [finalTally(d)](val((n < numDishonestVoters =>
(countBallotsInTally(voter(n), tallyc(d)) <= 1)) && (n >=
numDishonestVoters => (countBallotsInTally(voter(n), tallyc(d))
== 1)))))

100

Appendix B

TD-1 model

B.1 mCRL model

0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SORTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sort Data = struct ballot(voter: Nat , cand: Bool)? isBallot |

encrypt(msg: Data , key: Data)? isCrypted |

cryptedMsg(sender: Nat)? isCryptedMsg |

eKey?isKey |

5 null?isNull |

err?isErr;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ACTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% act ion regard ing pu t t i n g data on the broadcas t channel

10 act bcast: Nat#Data;

% act i ons regard ing data
act storedMessage , invalidMessage: Nat#Data;

% act ion regard ing pu b l i s h i n g o f t a l l y
act ftally: List(Bool);

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% in sL i s tBa l l o t : Function tha t i n s e r t s a b a l l o t in a sor t ed l i s t o f b a l l o t s .
map insListBallot: Data#List(Data) -> List(Data);

var x, d: Data;

xs: List(Data);

20 eqn insListBallot(d, []) = [d];

insListBallot(d, x |> xs) = if(cand(d) < cand(x),

d |> (x |> xs),

x |> insListBallot(d, xs));

25 % insLi s tNat : Function tha t i n s e r t s a va lue o f type nat in a sor t ed l i s t .
map insListNat: Nat#List(Nat) -> List(Nat);

var x, d: Nat;

xs: List(Nat);

eqn insListNat(d, []) = [d];

30 insListNat(d, x |> xs) = if(d < x,

d |> (x |> xs),

x |> insListNat(d, xs));

% updS ing l eL i s t : Function to add a b a l l o t to a l o c a l so r t ed l i s t , g iven a
35 % l i s t o f l o c a l l i s t s .

%
% parameters :
% 1 s t parameter i : Nat ; the index o f the l o c a l l i s t in the l i s t o f l i s t s
% 2nd parameter m: Data ; the b a l l o t to be added

40 % 3rd parameter x |> xs : L i s t (L i s t (Data)) ; a l i s t o f l i s t s , conta in ing a l l
% l o c a l l i s t s
%
% pre : va lue o f i parameter i s sma l l e r than l eng t h o f the l i s t o f l i s t s
map updSingleList: Nat#Data#List(List(Data)) -> List(List(Data));

45 var m: Data;

101

x: List(Data);

xs: List(List(Data));

i: Nat;

eqn updSingleList(i, m, x |> xs) = if(i>0,

50 (x |> updSingleList(Int2Nat(i-1), m, xs)),

insListBallot(m, x) |> xs);

% decrypt : Function to decrypt messages g iven a key . When the message can be
% decrypted us ing the g iven key , the message i s re turned . I f i t can not , err i s

55 % returned .
map decrypt: Data#Data -> Data;

var d, k: Data;

eqn decrypt(d, k) =

if(isCrypted(d),

60 if(k==key(d),

msg(d),

err),

err);

65 % san i t i z e : Function tha t removes vo t e r i d e n t i t i e s from b a l l o t s .
map sanitize: List(Data) -> List(Bool);

var v: Nat;

c: Bool;

x: Data;

70 xs: List(Data);

eqn sanitize ([]) = [];

sanitize(x |> xs) = cand(x) |> sanitize(xs);

% in i tP ro cL i s t : Function tha t genera te s a l i s t [0 , 1 , . . . n−1] , where n i s g iven
75 % as a parameter .

map initProcList: Nat -> List(Nat);

var i: Nat;

eqn initProcList(i) = if(i > 0,

initProcList(Int2Nat(i-1)) <| Int2Nat(i-1),

80 []);

% i n i t L i s t : Function to i n i t i a l i z e l i s t s conta in ing a s p e c i f i c number o f empty
% l i s t s .
%

85 % parameters :
% 1 s t parameter n : Nat ; the number o f l i s t s t ha t need to be i n i t i a l i z e d .
map initlist: Nat -> List(List(Data));

var n: Nat;

eqn initlist(n) = if(n>1,

90 [] |> initlist(Int2Nat(n-1)),

[[]]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PROCESSES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
proc Voters(N: Nat , bc: Data , votes: List(Bool), castList: List(Nat), key: Data ,

95 tallyList: List(List(Data)), procList: List(Nat)) =

sum i: Nat . (0 <= i && i < N) -> (

(!(i in castList) && #(procList) == N) ->

bcast(i, encrypt(ballot(i, votes.i), key)) .

Voters(N, encrypt(ballot(i, votes.i), key), votes , insListNat(i,

100 castList), key , tallyList , [])

+

(!(i in procList)) -> (

(decrypt(bc, key) != err) ->

storedMessage(i, decrypt(bc , key)) .

105 Voters(N, bc, votes , castList , key , updSingleList(i, decrypt(bc, key),

tallyList), insListNat(i, procList))

<>

invalidMessage(i, bc) .

Voters(N, bc, votes , castList , key , tallyList , insListNat(i,

110 procList))

)

+

102

(#(tallyList.i)==N && i== 0) ->

ftally(sanitize(tallyList.i)) . delta
115);

map numVoters: Nat;

eqn numVoters = 6;

120 map votesVector: List(Bool);

eqn votesVector = [false , true , false , false , true , false];

in i t hide({ storedMessage , invalidMessage},

Voters(numVoters , null , votesVector , [], eKey , initlist(numVoters),

125 initProcList(numVoters))

);

B.1.1 Rename file

0 var
d: Data;

i: Nat;

rename
isCrypted(d) -> bcast(i, d) => bcast(i, cryptedMsg(i));

103

Appendix C

Proofs of invariants

In this chapter we provide proofs for the invariants in Table 4.3. We prove the invariants one by
one, but since we (as is shown in Section 4.3) need that the conjunct of the invariants of Table 4.3
hold in the equation system, we are allowed to use other invariants in the proof of a certain
invariant as long as the proof of those invariants does not rely on the validity of the invariant we
are proving. The predicate formula in the equation system of Table 4.2 contains six conjuncts.
Due to similarities (as discussed in Section 4.3), we only consider the first three. Since the third
conjunct does not contain a predicate variable, we only need to prove that the invariant holds for
the first two conjuncts. For clarity we prove each of these conjuncts separately.

Invariant 1 The first invariant says that the number of voters in both systems should be the
same. Formally, ι1 : N = N ′.

1. First conjunct, to prove:

∀i:[0,N).
((N = N ′)∧
((i /∈ cast ∧#proc = N) =⇒ (i /∈ cast′ ∧#proc′ = N ′)) ∧ i /∈ cast ∧#proc = N) =⇒
(N = N ′)

Which is trivially true.

2. Second conjunct, to prove:

∀i,j:[0,N).((N = N ′) ∧ (i /∈ proc =⇒ j /∈ proc′) ∧ i /∈ proc) =⇒ (N = N ′)

Which is also trivially true.

Therefore we can conclude that ι1 is a global invariant for our equation system.

Invariant 2 The second invariant says that when a certain voter has not yet cast his vote,
his ballot is not in a tally of a voter and is also not on the broadcast channel. Formally, ι2 :
∀k,l:[0,N).k /∈ cast =⇒ (blt(k, votes.k) /∈ tally.l ∧ blt(k, votes.k) 6= dec(bc)).

1. First conjunct, to prove:

∀i:[0,N).
(∀k,l:[0,N).k /∈ cast =⇒ (blt(k, votes.k) /∈ tally.l ∧ blt(k, votes.k) 6= dec(bc))∧

((i /∈ cast ∧#proc = N) =⇒ (i /∈ cast′ ∧#proc′ = N ′)) ∧ i /∈ cast ∧#proc = N) =⇒
(∀k,l:[0,N).k /∈ ({i} ∪ cast) =⇒

(blt(k, votes.k) /∈ tally.l ∧ blt(k, votes.k) 6= dec(enc(blt(i, votes.i)))))

For the proof we start with the following case distinction.

104

(a) i = k
Term k /∈ ({i} ∪ cast) evaluates to false when i = k. Since false implies everything, the
invariant holds for the case i = k.

(b) i 6= k
We again need to make a case distinction.

i. k ∈ cast
If k ∈ cast then also k ∈ ({i} ∪ cast). Then k /∈ ({i} ∪ cast) is again false and the
invariant thus also holds when i 6= k and k ∈ cast.

ii. k /∈ cast
If k /∈ cast, we know also that ∀l:[0,N).(blt(k, votes.k) /∈ tally.l ∧ blt(k, votes.k) 6=
dec(bc)). Since k /∈ cast and i 6= k, it holds that k /∈ ({i}∪cast). Therefore we need
to prove that the following holds: ∀l:[0,N).(blt(k, votes.k) /∈ tally.l∧blt(k, votes.k) 6=
dec(enc(blt(i, votes.i)))). The first conjunct, blt(k, votes.k) /∈ tally.l, follows from
the assumptions (that is, the left hand side of the implication). The second con-
junct, blt(k, votes.k) 6= dec(enc(blt(i, votes.i))), follows from the fact that i 6= k.
Hence the invariant also holds when i 6= k and k /∈ cast.

The invariant thus holds for the first conjunct.

2. Second conjunct, to prove:

∀i,j:[0,N).
(∀k,l:[0,N).k /∈ cast =⇒ (blt(k, votes.k) /∈ tally.l ∧ blt(k, votes.k) 6= dec(bc))∧
(i /∈ proc =⇒ j /∈ proc′) ∧ i /∈ proc) =⇒
(∀k,l:[0,N).k /∈ cast =⇒ (blt(k, votes.k) /∈ updSet(i, dec(bc), tally).l∧
blt(k, votes.k) 6= dec(bc)))

Note that function updSet(i, dec(bc), tally) inserts the value dec(bc) in the set tally.i. For
the proof we start with the following case distinction.

(a) i = l

i. k ∈ cast
Trivial, since k /∈ cast evaluates to false.

ii. k /∈ cast
If k /∈ cast, we need to prove that: (blt(k, votes.k) /∈ updSet(i, dec(bc), tally).l ∧
blt(k, votes.k) 6= dec(bc)). The first conjunct follows from the assumptions: it
holds that blt(k, votes.k) /∈ (dec(bc) ∪ tally.l) since blt(k, votes.k) /∈ tally.l and
blt(k, votes.k) 6= dec(bc). The second conjunct follows directly from the assump-
tions.

(b) i 6= l
Since updSet(i, dec(bc), tally) only updates tally.i, all tallies tally.j for j 6= i remain
unchanged. For those i, what needs to be proven follows directly from the assumptions,
since no parameters are changed for i 6= l.

The invariant ι2 is thus a global invariant for our equation system.

Invariant 3 The third invariant says that if and only if a trusted device has processed the
message that is on the broadcast channel, the decryption of that message is in its tally. Formally,
ι3 : ∀k:[0,N).(k ∈ proc⇐⇒ dec(bc) ∈ tally.k).

1. First conjunct, to prove:

∀i:[0,N).
(∀k:[0,N).(k ∈ proc⇐⇒ dec(bc) ∈ tally.k)∧

((i /∈ cast ∧#proc = N) =⇒ (i /∈ cast′ ∧#proc′ = N ′)) ∧ i /∈ cast ∧#proc = N) =⇒
(∀k:[0,N).(k ∈ ∅ ⇐⇒ dec(enc(blt(i, votes.i))) ∈ tally.k))

105

Term k ∈ ∅ evaluates to false for all k ∈ [0, N). Now we need to prove that for all k ∈ [0, N)
the term dec(enc(blt(i, votes.i))) ∈ tally.k also evaluates to false. Hence we need to prove
that blt(i, votes.i) /∈ tally.k for all k ∈ [0, N). From our assumptions we know that i /∈ cast.
In combination with invariant ι2 it follows that for all l ∈ [0, N) it holds that blt(i, votes.i) /∈
tally.l ∧ blt(i, votes.i) 6= dec(bc). Since no tally is changed, it follows from the assumptions
in combination with invariant ι2 that blt(i, votes.i) /∈ tally.k for all k ∈ [0, n). Hence the
invariant is true for the first conjunct.

2. Second conjunct, to prove:

∀i,j:[0,N).
(∀k:[0,N).(k ∈ proc⇐⇒ dec(bc) ∈ tally.k)∧
(i /∈ proc =⇒ j /∈ proc′) ∧ i /∈ proc) =⇒
(∀k:[0,N).(k ∈ ({i} ∪ proc)⇐⇒ dec(bc) ∈ updSet(i, dec(bc), tally).k))

For the proof we start with the following case distinction.

(a) i = k
If i = k then k ∈ ({i} ∪ proc) is true. Then we need to prove that dec(bc) ∈
updSet(i, dec(bc), tally).k is also true. Function updSet(i, dec(bc), tally).k returns, for
i = k, {dec(bc)} ∪ tally.i. Hence dec(bc) ∈ updSet(i, dec(bc), tally).k.

(b) i 6= k
Term updSet(i, dec(bc), tally).k rewrites to tally.k for all k ∈ [0, N)∧ k 6= i. Therefore,
what we need to prove is already in the assumptions.

The invariant ι3 is thus also a global invariant for our equation system.

Invariant 4 The fourth invariant says that the lists of votes in the two processes are permu-
tations of each other. Formally, ι4 : (cand(dec(bc)) ∧ dec(bc) /∈ tally.0) + count(>, tally.0) +∑
k:[0,N)∧k/∈cast votes.k = (cand(dec(bc′)) ∧ dec(bc′) /∈ tally′.0) + count(>, tally′.0) +∑
k:[0,N ′)∧k/∈cast′ votes

′.k. Recall that > is counted as one in a summation and ⊥ as zero.

1. First conjunct, to prove:

∀i:[0,N).
((cand(dec(bc)) ∧ dec(bc) /∈ tally.0) + count(>, tally.0) +

∑
k:[0,N)∧k/∈cast votes.k =

(cand(dec(bc′)) ∧ dec(bc′) /∈ tally′.0) + count(>, tally′.0) +
∑
k:[0,N ′)∧k/∈cast′ votes

′.k

∧((i /∈ cast ∧#proc = N)=⇒ (i /∈ cast′ ∧#proc = N)) ∧ i /∈ cast ∧#proc = N)=⇒
(((cand(dec(enc(blt(i, votes.i)))) ∧ dec(enc(blt(i, votes.i))) /∈ tally.0)+
count(>, tally.0) +

∑
k:[0,N)∧k/∈({i}∪cast) votes.k = (cand(dec(enc(blt(i, votes′.i))))∧

dec(enc(blt(i, votes′.i))) /∈ tally′.0) + count(>, tally′.0)+∑
k:[0,N ′)∧k/∈({i}∪cast′) votes

′.k)

First, we reduce the right hand side of the implication, which gives us the following term:
(votes.i∧blt(i, votes.i) /∈ tally.0)+cnt(>, tally.0)+

∑
k:[0,N)∧k/∈({i}∪cast) votes.k = (votes′.i∧

blt(i, votes′.i) /∈ tally′.0) + cnt(>, tally′.0) +
∑
k:[0,N ′)∧k/∈({i}∪cast′) votes

′.k. From the as-
sumptions it holds that #proc = N . In combination with invariant ι6 it follows that
proc = {0, . . . , N − 1}. Then, when we combine that with invariant ι3 it follows that
for all i ∈ [0, N) it holds that dec(bc) ∈ tally.i. Hence cand(dec(bc)) ∧ dec(bc) /∈ tally.0 (in
the left hand side of the implication) reduces to zero.

From the assumptions it also holds that i /∈ cast. In combination with invariant ι2 it
follows that for all l ∈ [0, N), blt(k, votes.k) /∈ tally.l. Therefore the conjunction (votes.i ∧
blt(i, votes.i) /∈ tally.0) reduces to votes.i. Since, given that i /∈ cast it holds that:

votes.i+
∑

k:[0,N)∧
k/∈({i}∪cast)

votes.k =
∑

k:[0,N)
∧k/∈cast

votes.k

106

The same holds for the primed version (which can be checked in the same way). Hence it
follows that the invariant holds for the first conjunct.

2. Second conjunct, to prove:

∀i,j:[0,N).
((cand(dec(bc)) ∧ dec(bc) /∈ tally.0) + count(>, tally.0) +

∑
k:[0,N)∧k/∈cast votes.k =

(cand(dec(bc′)) ∧ dec(bc′) /∈ tally′.0) + count(>, tally′.0) +
∑
k:[0,N ′)∧k/∈cast′ votes

′.k

∧(i /∈ proc =⇒ j /∈ proc′) ∧ i /∈ proc) =⇒
((cand(dec(bc)) ∧ dec(bc) /∈ updSet(i, dec(bc), tally).0) + count(>,
updSet(i, dec(bc), tally).0) +

∑
k:[0,N)∧k/∈cast votes.k = (cand(dec(bc′)) ∧ dec(bc′) /∈

updSet(j, dec(bc′), tally).0) + count(>, updSet(j, dec(bc′), tally′).0)+∑
k:[0,N ′)∧k/∈cast′ votes

′.k)

From i /∈ proc (and thus also j /∈ proc′) it follows in combination with invariant ι3 that
dec(bc) /∈ tally.i) (respectively dec(bc′) /∈ tally′.0). Then we proceed by making the following
case distinction.

(a) i = 0
If i = 0, it follows from invariant ι3 that dec(bc) /∈ tally.0, hence on the LHS of
the implication (cand(dec(bc)) ∧ dec(bc) /∈ tally.0) rewrites to cand(dec(bc)). On the
RHS of the implication (cand(dec(bc)) ∧ dec(bc) /∈ updSet(i, dec(bc), tally).0) rewrites
to zero. Since dec(bc) /∈ updSet(i, dec(bc), tally).0 for rewrites for i = 0 to dec(bc) ∪
tally.0 it follows that count(>, updSet(i, dec(bc), tally).0 rewrites to the same term as
count(>, tally.0) + cand(dec(bc)). Since

∑
k:[0,N)∧k/∈cast votes.k is both at the LHS as

well as the RHS of the implication, it follows that the LHS of the equation remains
constant. That is, the LHS of the equation at the LHS of the implication has the same
value as the LHS of the equation at the RHS of the implication.

(b) i 6= 0
When i 6= 0, the LHS of the equation is the same for the LHS and the RHS of the
implication.

The same case distinction can be made for j. Then it follows that the LHS of the invariant
is always constant, as well as the RHS of the invariant. Therefore the invariant holds.

Since the invariant holds for both conjuncts we conclude that invariant ι5 holds for our equation
system.

Invariant 5 The fifth invariant says that the total number of votes expressed in both processes
should be the same. Formally, ι5 : (cand(dec(bc)) ∧ dec(bc) /∈ tally.0) + count(>, tally.0) +
count(⊥, tally.0) = (cand(dec(bc′)) ∧ dec(bc′) /∈ tally′.0) + count(>, tally′.0) + count(⊥, tally′.0)

1. First conjunct, to prove:

∀i:[0,N).
((cand(dec(bc)) ∧ dec(bc) /∈ tally.0) + count(>, tally.0) + count(⊥, tally.0) =

(cand(dec(bc′)) ∧ dec(bc′) /∈ tally′.0) + count(>, tally′.0) + count(⊥, tally′.0)∧
((i /∈ cast ∧#proc = N) =⇒ (i /∈ cast′ ∧#proc′ = N ′)) ∧ i /∈ cast ∧#proc = N) =⇒

((cand(dec(enc(blt(i, votes.i)))) ∧ dec(enc(blt(i, votes.i))) /∈ tally.0)+
count(>, tally.0) + count(⊥, tally.0) = (cand(dec(enc(blt(i, votes′.i))))∧
dec(enc(blt(i, votes′.i))) /∈ tally′.0) + count(>, tally′.0) + count(⊥, tally′.0))

We can rewrite the RHS of the implication to the following term: (votes.i ∧ blt(i, votes.i) /∈
tally.0) + count(>, tally.0) + count(⊥, tally.0) = (votes′.i ∧ blt(i, votes′.i) /∈ tally′.0) +
count(>, tally′.0) + count(⊥, tally′.0). On the LHS of the implication term (cand(dec(bc))∧

107

dec(bc) /∈ tally.0) rewrites to zero since #proc = N in combination with invariants ι3 and ι6.
On the RHS of the implication the term (votes.i ∧ blt(i, votes.i) /∈ tally.0) rewrites to zero
since i /∈ cast in combination with invariant ι2. The same holds for the primed version.
Hence the invariant holds for this case.

2. Second conjunct, to prove:

∀i,j:[0,N).
((cand(dec(bc)) ∧ dec(bc) /∈ tally.0) + count(>, tally.0) + count(⊥, tally.0) =

(cand(dec(bc′)) ∧ dec(bc′) /∈ tally′.0) + count(>, tally′.0) + count(⊥, tally′.0)∧
(i /∈ proc =⇒ j /∈ proc′) ∧ i /∈ proc) =⇒
((cand(dec(bc)) ∧ dec(bc) /∈ updSet(i, dec(bc), tally).0)+
count(>, updSet(i, dec(bc), tally).0) + count(⊥, updSet(i, dec(bc), tally).0) =
(cand(dec(bc′)) ∧ dec(bc′) /∈ updSet(j, dec(bc′), tally′).0)+
count(>, updSet(j, dec(bc′), tally′).0) + count(⊥, updSet(j, dec(bc′), tally′).0))

For the proof we start with the following case distinction.

(a) i = 0
Since i /∈ proc in combination with invariant ι3 it follows that cand(dec(bc))∧dec(bc) /∈
tally.0 rewrites to cand(dec(bc)). Furthermore, the term cand(dec(bc)) ∧ dec(bc) /∈
updSet(i, dec(bc), tally).0 rewrites to zero. Note that the following equality holds for all
b ∈ B: count(b, updSet(i, dec(bc), tally).0) = count(b, tally.0) + (b ⇐⇒ cand(dec(bc))).
Hence we can make the following derivation:

count(>, updSet(i, dec(bc), tally).0) + count(⊥, updSet(i, dec(bc), tally).0)
=

count(>, tally.0) + count(⊥, tally.0) + (> ⇐⇒ cand(dec(bc)))+
(⊥ ⇐⇒ cand(dec(bc)))

=
count(>, tally.0) + count(⊥, tally.0) + cand(dec(bc))

Hence the LHS of the equation remains constant.

(b) i 6= 0
For i 6= 0 nothing changes on the RHS of the implication since the tally for i 6= 0 is not
inspected.

The same case distinction can be made for j. Then it follows that the LHS of the invariant
is always constant, as well as the RHS of the invariant. There the invariant holds.

Since the invariant holds for both conjuncts we conclude that also invariant ι6 holds for our
equation system.

Invariant 6 The sixth invariant says that if and only if all trusted devices have processed a
certain message, the length of the set indicating which devices have processed a message is equal
to the number of trusted devices. Formally, ι6 : #proc = N ⇐⇒ proc = {0, . . . , N − 1}. This
invariant is needed to reason about sets in the proof of other invariants, for example invariants ι4
and ι5.

1. First conjunct, to prove:

∀i:[0,N).
(#proc = N ⇐⇒ proc = {0, . . . , N − 1}∧

((i /∈ cast ∧#proc = N) =⇒ (i /∈ cast′ ∧#proc′ = N ′)) ∧ i /∈ cast ∧#proc = N) =⇒
(#∅ = N ⇐⇒ ∅ = {0, . . . , N − 1})

For the proof we make the following case distinction.

108

(a) N = 0
Both the LHS and the RHS of the bi-implication evaluate to true.

(b) N > 0
Both the LHS and the RHS of the bi-implication evaluate to false.

Hence for this case the invariant holds.

2. Second conjunct, to prove:

∀i,j:[0,N).
(#proc = N ⇐⇒ proc = {0, . . . , N − 1}∧
(i /∈ proc =⇒ j /∈ proc′) ∧ i /∈ proc) =⇒
(#({i} ∪ proc) = N ⇐⇒ ({i} ∪ proc) = {0, . . . , N − 1})

For the proof we start with the following case distinction.

(a) #({i} ∪ proc) = N

i. (#({i} ∪ proc) = N =⇒ ({i} ∪ proc) = {0, . . . , N − 1})
From invariant ι8 we know that proc ⊆ {0, . . . , N−1}. Since i ∈ [0, N) it also holds
that ({i}∪proc) ⊆ {0, . . . , N−1}. Note that #({i}∪proc) = N = #{0, . . . , N−1}.
Then, according to Theorem 8 it holds that ({i} ∪ proc) = {0, . . . , N − 1}.

ii. (#({i} ∪ proc) = N ⇐= ({i} ∪ proc) = {0, . . . , N − 1})
This implication holds since #({0, . . . , N − 1}).

Hence the invariant holds for this case.

(b) #({i} ∪ proc) 6= N

i. #({i} ∪ proc) 6= N =⇒ ({i} ∪ proc) 6= {0, . . . , N − 1}
Since #({i}∪ proc) 6= N and #{0, . . . , N − 1} = N it follows that #({i}∪ proc) 6=
#{0, . . . , N −1}. Then, by Theorem 8 it follows that ({i}∪proc) 6= {0, . . . , N −1}.

ii. #({i} ∪ proc) 6= N ⇐= ({i} ∪ proc) 6= {0, . . . , N − 1}
From invariant ι8 we know that proc ⊆ {0, . . . , N − 1} and we also known that
i ∈ [0, N), thus ({i} ∪ proc) ⊆ {0, . . . , N − 1}. Using Theorem 8 it follows that
that: ¬(({i}∪proc) ⊆ {0, . . . , N−1})∨¬(#({i}∪proc) = #({0, . . . , N−1})). Since
we have proven that ({i}∪proc) ⊆ {0, . . . , N−1} it follows that #({i}∪proc) 6= N .

Hence the invariant also holds for this case.

Therefore we can conclude that invariant ι6 holds for our equation system.

Theorem 8. Given two sets A and B it holds that:

A ⊆ B ∧#A = #B ⇔ A = B

Proof. We proof the bi-implication by proving the two implications separately.

1. A ⊆ B ∧#A = #B ⇒ A = B
To prove A = B we need to prove A ⊆ B and B ⊆ A.

(a) A ⊆ B ∧#A = #B ⇒ A ⊆ B
Trivial.

(b) A ⊆ B ∧#A = #B ⇒ B ⊆ A
We can rewrite the proof obligation to: ¬(A ⊆ B) ∨ ¬(#A = #B) ∨ B ⊆ A. Assume
the negation of that: A ⊆ B ∧#A = #B ∧ ¬(B ⊆ A). Since ¬(B ⊆ A) there has to
be an x ∈ B for which x /∈ A. When that is the case it follows that A ⊆ (B \ {x}).
This means that #A ≤ #(B \ {x}) and thus (given that x ∈ B) #A ≤ #B − 1 hence
#A < #B. This contradicts with #A = #B. Hence A ⊆ B ∧#A = #B ⇒ B ⊆ A.

109

2. A ⊆ B ∧#A = #B ⇐ A = B
By definition.

Invariant 7 The seventh invariant says that the number of items in the tally, plus one when
the current message on the broadcast channel is not processed, is equal to the number of voters
if and only if all ballots are cast. Formally, ι7 : (dec(bc) /∈ tally.0 + #tally.0) = N ⇐⇒ cast =
{0, . . . , N − 1}.

1. First conjunct, to prove:

∀i:[0,N).
((dec(bc) /∈ tally.0 + #tally.0) = N ⇐⇒ cast = {0, . . . , N − 1}∧

((i /∈ cast ∧#proc = N) =⇒ (i /∈ cast′ ∧#proc′ = N ′)) ∧ i /∈ cast ∧#proc = N) =⇒
((dec(enc(blt(i, votes.i))) /∈ tally.0 + #tally.0) = N ⇐⇒ ({i} ∪ cast) = {0, . . . , N − 1})

We can rewrite the RHS of the implication to the following term: (blt(i, votes.i) /∈ tally.0 +
#tally.0) = N ⇐⇒ ({i} ∪ cast) = {0, . . . , N − 1}. From i /∈ cast follows by invariant ι2 that
for all l ∈ [0, N) that blt(i, votes.i) /∈ tally.l∧ blt(i, votes.i) 6= dec(bc). Hence blt(i, votes.i) /∈
tally.0 rewrites to one. Using #proc = N in combination with invariants ι6 and ι3 it follows
that dec(bc) ∈ tally.0. Hence dec(bc) /∈ tally.0 rewrites to zero and blt(i, votes.i) /∈ tally.0
to one. Then we continue the proof by making the following case distinction.

(a) blt(i, votes.i) /∈ tally.0 + #tally.0 = #tally.0 + 1 = N
To prove: ({i}∪ cast) = {0, . . . , N −1}. From invariant ι11 we have cast ⊆ {0, . . . , N −
1}, furthermore we know i ∈ [0, N). Hence we have ({i}∪cast) ⊆ {0, . . . , N−1}. From
invariant ι12 we know that dec(bc) /∈ tally.0 + #tally.0 = N − 1 = #cast. Now we can
apply Theorem 8 to conclude that ({i} ∪ cast) = {0, . . . , N − 1}.

(b) dec(bc) /∈ tally.0 + #tally.0 = #tally.0 = N
When #tally.0 = N it holds that cast = {0, . . . , N−1}. Therefore there is no i ∈ [0, N)
for which i /∈ cast. Thus we have a universal quantification over an empty domain.
Hence the invariant holds for this case.

(c) #tally.0 6= N ∧#tally.0 + 1 6= N
From #tally.0 6= N ∧ #tally.0 + 1 6= N in combination with invariant ι13 it follows
that #tally.0 ≤ N − 2. From invariant ι12 it follows then that #cast ≤ N − 2. Since
#tally.0 6= N it follows that cast 6= {0, . . . , N − 1}. We have to prove: ({i} ∪ cast) 6=
{0, . . . , N−1}. From what we know it follows that #({i}∪cast) ≤ N−1 and {0, . . . , N−
1} = N . Now we can apply Theorem 8 to conclude that ({i} ∪ cast) 6= {0, . . . , N − 1}.

2. Second conjunct, to prove:

∀i,j:[0,N).
((dec(bc) /∈ tally.0 + #tally.0) = N ⇐⇒ cast = {0, . . . , N − 1}∧
(i /∈ proc =⇒ j /∈ proc′) ∧ i /∈ proc) =⇒
((dec(bc) /∈ updSet(i, dec(bc), tally).0 + #updSet(i, dec(bc), tally).0) = N ⇐⇒
cast = {0, . . . , N − 1})

For the proof we start with the following case distinction.

(a) i = 0
From i /∈ proc we know using invariant ι3 that dec(bc) /∈ tally.i. The term dec(bc) /∈
tally.0 therefore rewrites to one. The term (dec(bc) /∈ updSet(i, dec(bc), tally).0 rewrites
to zero, but #updSet(i, dec(bc), tally).0 rewrites to #tally.0 + 1. Hence the LHS of the
equation remains constant and the invariant holds for this case.

110

(b) i 6= 0
Nothing changes since tally.i for i 6= 0 is not inspected. Hence the invariant holds also
for this case.

Therefore we can conclude that invariant ι7 holds for our equation system.

Invariant 8 The eighth invariant says that the set of trusted devices that processed a certain
broadcast message is a subset of the the set of all trusted devices. Formally, ι8 : proc ⊆ {0, . . . , N−
1}.

1. First conjunct, to prove:

∀i:[0,N).
(proc ⊆ {0, . . . , N − 1}∧

((i /∈ cast ∧#proc = N) =⇒ (i /∈ cast′ ∧#proc′ = N ′)) ∧ i /∈ cast ∧#proc = N) =⇒
(∅ ⊆ {0, . . . , N − 1})

The empty set is a subset of all sets. Hence for this case the invariant holds.

2. Second conjunct, to prove:

∀i,j:[0,N).
(proc ⊆ {0, . . . , N − 1} ∧ (i /∈ proc =⇒ j /∈ proc′) ∧ i /∈ proc) =⇒
(({i} ∪ proc) ⊆ {0, . . . , N − 1})

Since i ∈ [0, N) and proc ⊆ {0, . . . , N − 1} it holds that ({i} ∪ proc) ⊆ {0, . . . , N − 1}.

Since the invariant holds for both conjuncts we conclude that the invariant ι8 holds for our equation
system.

Invariant 9 The ninth invariant says that the number of votes that has been cast in both
systems should be the same. Formally, ι9 : cast = cast′.

1. First conjunct, to prove:

∀i:[0,N).
(cast = cast′∧

((i /∈ cast ∧#proc = N) =⇒ (i /∈ cast′ ∧#proc′ = N ′)) ∧ i /∈ cast ∧#proc = N) =⇒
(({i} ∪ cast) = ({i} ∪ cast′))

Holds trivially.

2. Second conjunct, to prove:

∀i,j:[0,N).
(cast = cast′ ∧ (i /∈ proc =⇒ j /∈ proc′) ∧ i /∈ proc) =⇒ (cast = cast′)

Holds also trivially.

Therefore we can conclude that invariant ι9 holds for our equation system.

111

Invariant 10 The tenth invariant says that when all ballots are in the tally, it must be that the
ballot on the broadcast channel has been processed. Formally, ι10 : #tally.0 = N =⇒ dec(bc) ∈
tally.0.

1. First conjunct, to prove:

∀i:[0,N).
(#tally.0 = N =⇒ dec(bc) ∈ tally.0∧

((i /∈ cast ∧#proc = N) =⇒ (i /∈ cast′ ∧#proc′ = N ′)) ∧ i /∈ cast ∧#proc = N) =⇒
(#tally.0 = N =⇒ dec(enc(blt(i, votes.i))) ∈ tally.0)

We start the proof by making the following case distinction.

(a) #tally.0 6= N
Trivial, false implies all.

(b) #tally.0 = N
We strengthen the assumptions with invariant ι7 : (dec(bc) /∈ tally.0 + #tally.0) =
N ⇐⇒ cast = {0, . . . , N − 1}. Since #tally.0 = N and therefore dec(bc) ∈ tally.0, it
follows from invariant ι7 that for all k ∈ [0, N) it holds that k ∈ cast. Hence there
is no i for for which i /∈ cast. Thus we have a universal quantification over an empty
domain. Therefore it follows that the invariant holds.

2. Second conjunct, to prove:

∀i,j:[0,N).
(#tally.0 = N =⇒ dec(bc) ∈ tally.0 ∧ (i /∈ proc =⇒ j /∈ proc′) ∧ i /∈ proc) =⇒
(#updSet(i, dec(bc), tally).0 = N =⇒ dec(bc) ∈ updSet(i, dec(bc), tally).0)

We make the following case distinction.

(a) i 6= 0
Holds since tally.0 is not updated when i 6= 0.

(b) i = 0

i. #updSet(i, dec(bc), tally).0 6= N
Trivial since false implies all.

ii. #updSet(i, dec(bc), tally).0 = N
To prove: dec(bc) ∈ updSet(i, dec(bc), tally).0) holds given the assumptions. This
holds since updSet(i, dec(bc), tally).0) is equal to {dec(bc)} ∪ tally.0

Therefore we can conclude that invariant ι10 also holds for our equation system.

Invariant 11 The eleventh invariant says that the set of trusted devices that have cast a ballot
is a subset of all trusted devices. Formally, ι11 : cast ⊆ {0, . . . , N − 1}.

1. First conjunct, to prove:

∀i:[0,N).
(cast ⊆ {0, . . . , N − 1}∧

((i /∈ cast ∧#proc = N) =⇒ (i /∈ cast′ ∧#proc′ = N ′)) ∧ i /∈ cast ∧#proc = N) =⇒
(({i} ∪ cast) ⊆ {0, . . . , N − 1})

Holds since cast ⊆ {0, . . . , N − 1} and i ∈ [0, N). Therefore it follows that ({i} ∪ cast) ⊆
{0, . . . , N − 1}.

112

2. Second conjunct, to prove:

∀i,j:[0,N).
(cast ⊆ {0, . . . , N − 1}∧
(i /∈ proc =⇒ j /∈ proc′) ∧ i /∈ proc) =⇒
(cast ⊆ {0, . . . , N − 1})

Holds trivially.

Therefore we can conclude that invariant ι11 holds for our equation system.

Invariant 12 The twelfth invariant says that the number of ballots cast is equal to the number
of ballots in the tally plus one for the ballot in the broadcast channel if that one has not been
processed yet. Formally, ι12 : dec(bc) /∈ tally.0 + #tally.0 = #cast.

1. First conjunct, to prove:

∀i:[0,N).
(dec(bc) /∈ tally.0 + #tally.0 = #cast∧

((i /∈ cast ∧#proc = N) =⇒ (i /∈ cast′ ∧#proc′ = N ′)) ∧ i /∈ cast ∧#proc = N) =⇒
(dec(enc(blt(i, votes.i))) /∈ tally.0 + #tally.0 = #({i} ∪ cast))

The RHS of the implication can be rewritten to blt(i, votes.i) /∈ tally.0+#tally.0 = #({i}∪
cast). From i /∈ cast and invariant ι2 it follows that for all l ∈ [0, N) that dec(bc) /∈ tally.l.
Hence blt(i, votes.i) /∈ tally.0 rewrites to zero. From #proc = N in combination with
invariants ι6 and ι3 it follows that dec(bc) /∈ tally.0. The invariant holds for this case since
#tally.0 = #cast implies #tally.0 + 1 = #({i} ∪ cast) = #cast+ 1.

2. Second conjunct, to prove:

∀i,j:[0,N).
(dec(bc) /∈ tally.0 + #tally.0 = #cast∧
(i /∈ proc =⇒ j /∈ proc′) ∧ i /∈ proc) =⇒
(dec(bc) /∈ updSet(i, dec(bc), tally).0 + #updSet(i, dec(bc), tally).0 = #cast)

(a) i = 0
From i ∈ proc it follows using invariant ι10 that dec(bc) /∈ tally.i. Term dec(bc) /∈
tally.0 rewrites thus to one and therefore #tally.0 + 1 = #cast. Term dec(bc) /∈
updSet(i, dec(bc), tally).0 rewrites to zero. It holds that #updSet(i, dec(bc), tally).0
= #tally.0 + 1 and therefore it follows that the invariant holds for this case.

(b) i 6= 0
When i 6= 0 tally.0 is not updated. Therefore it follows that the invariant holds.

Therefore we can conclude that invariant ι12 holds for our equation system.

Invariant 13 The thirteenth invariant says that the number of ballots in the tally can never
exceed the number of trusted devices in the protocol. Formally, ι13 : #tally.0 ≤ N .

1. First conjunct, to prove:

∀i:[0,N).
(#tally.0 ≤ N∧

((i /∈ cast ∧#proc = N) =⇒ (i /∈ cast′ ∧#proc′ = N ′)) ∧ i /∈ cast ∧#proc = N) =⇒
(#tally.0 ≤ N)

For this conjunct the invariant holds trivially.

113

2. Second conjunct, to prove:

∀i,j:[0,N).
(#tally.0 ≤ N∧
(i /∈ proc =⇒ j /∈ proc′) ∧ i /∈ proc) =⇒
(#updSet(i, dec(bc), tally).0 ≤ N)

From i /∈ proc in combination with invariant ι3 it follows that dec(bc) /∈ tally.i. Then we
proceed the proof with the following case distinction.

(a) i 6= 0
Invariant holds since tally.0 is not updated.

(b) i = 0

i. #tally.0 = N
If #tally.0 = N it follows using invariant ι10 that dec(bc) ∈ tally.0 This contradicts
with dec(bc) /∈ tally.0. Hence we have a universal quantifier over an empty domain,
thus the invariant holds for this case.

ii. #tally.0 < N
Since #updSet(i, dec(bc), tally).0 rewrites to #tally.0+1 it follows that the invari-
ant holds because #tally.0 + 1 ≤ N .

Therefore we can conclude that invariant ι13 holds for our equation system.

114

	Abstract
	Contents
	1. Introduction
	2. New protocols
	3. Verifying properties of the poorman's protocol
	4. Proving privacy in the TD-1protocol
	5. Conclusion
	Bibliography
	Appendix A
	Appendix B
	Appendix C

