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Abstract

The motivation to study dominance came from the framework of probabilistic metric

spaces, where it turned out to be crucial for construction of Cartesian products of such

spaces. In this early setting the operations considered with respect to dominance were

mainly the triangle functions and the triangular norms. Later on researchers from the

field of fuzzy logic proved that the concept of dominance plays an important role in

a much wider class of problems related to construction of product-like structures. In

particular it has been clarified how dominance allows to construct T-transitive fuzzy

relations as Cartesian products of T-transitive factors.

In this thesis the notion of dominance has been reviewed from the most general view-

point. We start with considering how the dominance arises and the instances where it

occurs. A weaker notion of weak dominance has also been discussed. More attention

has been paid to the class of t-norms, specifically continuous t-norms where several

results have been presented to characterize the dominance property. We also present

important results regarding preservation of T-transitivity with respect to fuzzy relations.

Finally, we give a summary of some important parametric families of continuous T-

norms where dominance has been shown to be a partial order.

The intention of the thesis is to be a self contained exposition on the relation of domi-

nance and its relevance, and present the results in a constructive way.
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Chapter 1

Products of (Probabilistic) Metric
Spaces

We start off with defining (probabilistic) metric spaces, and will examine the conditions

under which their products also become metric spaces.

1.1 Metric Spaces

Definition 1.1.1 (Metric Space). A metric space is an ordered pair (S, d) where S is a

set and d is a metric on S, that is, a function

d : S × S → R

such that for all x, y, z ∈ S

• d(x, y) ≥ 0,

• d(x, y) = 0⇔ x = y,

• d(x, y) = d(y, x),

• d(x, y) + d(y, z) ≥ d(x, z).

Definition 1.1.2 (Product Metric Space). Suppose (S1, d1) and (S2, d2) are two metric

spaces. If p1, q1 ∈ S1 and p2, q2 ∈ S2, and d : (S1 × S2)× (S1 × S2)→ R given by,

1



Chapter 1. Products of (Probabilistic) Metric Spaces 2

d((p1, p2), (q1, q2)) = K(d1(p1, q1), d2(p2, q2))

is a metric on S1×S2 then (S1×S2, d) is called a product metric space. whereK : R+×
R+ → R+ is a suitable binary operation.

Lemma 1.1.1. If K(0, x) = K(x, 0) = x for all x ∈ R+, and K(x, y) > 0 when x > 0

or y > 0, then d satisfies, for p = (p1, p2), q = (q1, q2)

• d(p, q) ≥ 0,

• d(p, q) = 0⇔ p = q,

• d(p, q) = d(q, p).

d is then called a semi metric space.

Proof. d(p, q) = d((p1, p2), (q1, q2)) = K(d1(p1, q1), d2(p2, q2)) > 0 when d1(p1, q1) >

0 or d2(p2, q2) > 0, and d(p, q) = 0 when d1(p1, q1) = d2(p2, q2) = 0 i.e. p1 = q1 and

p2 = q2.

ClearlyK(x, y) = 0 iff x = y = 0 . Hence if d((p1, p2), (q1, q2)) = K(d1(p1, q1), d2(p2, q2)) =

0, then d1 = d2 = 0 or p1 = q1 and p2 = q2. Hence p = (p1, p2) = (q1, q2) = q.

Conversely if p = (p1, p2) = (q1, q2) = q, then p1 = q1 and p2 = q2. Hence

d1 = d2 = 0, or K = d = 0.

d(q, p) = d((q1, q2), (p1, p2)) = K(d1(q1, p1), d2(q2, p2)) = K(d1(p1, q1), d2(p2, q2)),

since d1, d2 are commutative. Hence d(q, p) = d(p, q).

Lemma 1.1.2. If K is commutative, then d is isometric to the corresponding metric

induced on S2 × S1 under the natural map M(p1, p2) = (p2, p1).

Proof. If p1, q1 ∈ S1 and p2, q2 ∈ S2, then we can define a product metric space (S2 ×
S1, d

′) given by,

d′((p2, p1), (q2, q1)) = K(d2(p2, q2), d1(p1, q1))

Let K be commutative, i.e. K(x, y) = K(y, x).

Then, K(d2(p2, q2), d1(p1, q1)) = K(d1(p1, q1), d2(p2, q2)).

Or d′((p2, p1), (q2, q1)) = d((p2, p1), (q2, q1)) = d((p1, p2), (q1, q2)).
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Now we examine the condition required on K such that the semi-metric space d(p, q)

becomes a metric space.

Theorem 1.1.3. If K is subadditive, i.e. K(x1, y1) +K(x2, y2) ≥ K(x1 +x2, y1 + y2) ,

and non-decreasing, i.e. K(x1, y1) ≥ K(x2, y2) for allx1, x2, y1, y2 ∈ R+ with x1 ≥ x2

y1 ≥ y2, then for p, q, r ∈ S1 × S2, we have,

d(p, q) + d(q, r) ≥ d(p, r)

Proof.

d(p, q) + d(q, r) = d((p1, p2), (q1, q2)) + d((q1, q2), (r1, r2))

= K(d1(p1, q1), d2(p2, q2)) +K(d1(q1, r1), d2(q2, r2))

≥ K(d1(p1, q1) + d1(q1, r1), d2(p2, q2) + d2(q2, r2))

≥ K(d1(p1, r1), d2(p2, r2))

= d(p, r)

Note 1.1.1. If we require K to be associative, we can define the product of three or

more metric spaces in a canonical way.

1.2 Probabilistic Metric Spaces

We first need to define distance distribution functions and triangle functions in order to

formulate the co-domain and products resp. in the case of probabilistic metric spaces.

Definition 1.2.1 (Distance Distribution Function). A function F̃ : [0,∞]→ [0, 1], which

is non-decreasing, left-continuous on R, with F̃ (∞) = 1 and F̃ (0) = 0 is called a dis-

tance distribution function. The set of all such functions is denoted by ∆+.

The elements of ∆+ are partially ordered following the usual pointwise order,

F̃ ≥ G̃⇔ F̃ (x) ≥ G̃(x) ∀x ∈ R
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Also, (∆+,≤, ε∞, ε0) is a bounded lattice with smallest and greatest elements given by,

ε∞(x) =

1 if x =∞,

0 otherwise,
and ε0(x) =

1 if x > 0,

0 otherwise.

Definition 1.2.2 (Triangle Function). A triangle function is a binary commutative and

associative operator on ∆+ (i.e. from ∆+ × ∆+ → ∆+), which is non-decreasing in

each argument and has neutral element ε0.

Corollary 1.2.1. Let F̃ , G̃ ∈ ∆+, and let τ be a triangle function, then,

τ(F̃ , G̃) ≤ τ(F̃ , ε0) = F̃

also, τ(F̃ , G̃) ≤ τ(F̃ , ε0) = G̃

Hence, τ(F̃ , G̃) = ε0 if and only if F̃ = G̃ = ε0

Definition 1.2.3 (Probabilistic Semi Metric Space). A probabilistic semi-metric Space

is an ordered pair (S, F ), where S is a set, F is a mapping from S × S to ∆+, such that

for all p, q ∈ S,

• F (p, q) = ε0 if and only if p = q,

• F (p, q) = F (q, p).

Note 1.2.1. F (p, q) can be denoted by F̃p,q, i.e. a distance distribution function F̃ for a

given pair of points p and q; and F̃p,q(x), its value at x is interpreted as the probabilty

such that the distance between p and q is less than x.

Definition 1.2.4 (Probabilistic Metric Space). A probabilistic metric space (S, F, τ) is

a probabilistic semi-metric space (S, F ) equipped with a triangle function τ such that

for all p, q, r ∈ S,

F (p, q) ≥ τ(F (p, r), F (r, q))

Definition 1.2.5 (σ-Product). Let (S1, F1) and (S2, F2) be probabilistic metric spaces

and σ be a triangle function. Then (S1 × S2, F1 ×σ F2) is called the σ Product Space,

when, if p1, q1 ∈ S1, and p2, q2 ∈ S2, then,

F1 ×σ F2(p, q) = σ(F1(p1, q1), F2(p2, q2))

where, p = (p1, p2), q = (q1, q2).
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Such product spaces are examined in more details by, for instance, Tardiff [1].

Lemma 1.2.2. Let (S1, F1) and (S2, F2) be probabilistic metric spaces and σ be a

triangle function. Then the σ-product space, i.e. (S1 × S2, F1 ×σ F2) is a probabilistic

semi-metric space.

Proof. If F1 ×σ F2(p, q) = ε0, then σ(F1(p1, q1), F2(p2, q2)) = ε0.

Hence, F1(p1, q1) = F2(p2, q2) = ε0, i.e.

F̃1,(p1,q1)(x) = F̃2,(p2,q2)(x) =

1 if x > 0,

0 if x = 0.

Hence, p1 = q1 and p2 = q2, i.e.p = (p1, p2) = (q1, q2) = q

Now,

F1 ×σ F2(q, p) = σ(F1(q1, p1), F2(q2, p2))

= σ(F1(p1, q1), F2(p2, q2)) from Definition 1.2.3

= F1 ×σ F2(p, q)

Lemma 1.2.3. (S1×S2, F1×σF2) is isometric to (S2×S1, F2×σF1) under the natural

map M(p1, p2) = (p2, p1).

Proof.

F2 ×σ F1((p2, p1), (q2, q1)) = σ(F2(p2, q2), F1(p1, q1))

= σ(F1(p1, q1), F2(p2, q2))

= F1 ×σ F2((p1, p2), (q1, q2))

= F1 ×σ F2(p, q)

We now examine the condition required such that σ-product becomes a probabilistic

metric space.

Theorem 1.2.4. If (S1, F1, τ) and (S2, F2, τ) are two probabilistic metric spaces under

the same triangle function τ , then their σ Product (S1×S2, F1×σ F2) is a probabilistic
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metric space when,

σ(τ(F1, G1), τ(F2, G2)) ≥ τ(σ(F1, F2), σ(G1, G2)) ∀F1, G1, F2, G2 ∈ ∆+

Proof. From Lemma 1.2.1, (S1 × S2, F1 ×σ F2) is a Probabilistic Semi Metric Space.

Let p = (p1, p2), q = (q1, q2), r = (r1, r2) ∈ S1 × S2, then,

F1 ×σ F2(p, q) = σ(F1(p1, q1), F2(p2, q2))

≥ σ(τ(F1(p1, r1) + F1(r1, q1)), τ(F2(p2, r2) + F2(r2, q2))

≥ τ(σ(F1(p1, r1) + F1(p2, r2)), σ(F2(r1, q1) + F2(r2, q2))

= τ(F1 ×σ F2(p, r) + F1 ×σ F2(r, q))

Note 1.2.2. By requiring σ to be associative, we can extend the definition of σ product

to more than two probabilistic metric spaces in a canonical way.



Chapter 2

Notion of Dominance

2.1 Dominance in Binary Operators

We are now ready to introduced the generalized definition of dominance. The notion

was first introduced by Schweizer and Sklar [2].

Definition 2.1.1. Consider a partially ordered set (P,≥) and two binary operations f, g

on P . Then f dominates g written as f � g if for all x, y, u, v ∈ P ,

f(g(x, y), g(u, v)) ≥ g(f(x, u), f(y, v)) (2.1)

It can be readily seen that the conditions in Theorem 1.1.3 and Theorem 1.2.4 can be

written in terms of dominance operator, i.e.,

• When K is a suitable binary operation on R+,

K(x1, y1) +K(x2, y2) ≥ K(x1 + x2, y1 + y2) from Theorem 1.1.3

i.e. A(K(x1, y1), K(x2, y2)) ≥ K(A(x1, x2),A(y1, y2)) where A is the addition operator

i.e. A � K.

• When σ and τ are triangle functions on ∆+

σ(τ(F1, G1), τ(F2, G2)) ≥ τ(σ(F1, F2) from Theorem 1.2.3

i.e. σ � τ.

7
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2.1.1 Examples

Many classical inequalities can be regarded as the special cases of generalized notion

of dominance.

1. If P = R and f is addition operator, then Equation 2.1 becomes,

g(x, y) + g(u, v) ≥ g(x+ u, y + v)

which says that g is subadditive.

2. If P = R and g is addition operator, then,

f(x+ y, u+ v) ≥ f(x+ u) + f(y + v)

which says that f is superadditive.

3. If f(x, y) = 1
2
(x+ y), then,

1

2
(g(x, y) + g(u, v)) ≥ g

(
1

2
(x+ u),

1

2
(y + v)

)
g is then midpoint convex.

4. If g(x, y) = 1
2
(x+ y), then,

f

(
1

2
(x+ y),

1

2
(u+ v)

)
≥ 1

2
(f(x, u) + g(y, v))

f is then midpoint concave.

5. If P = R, f is addition operator and g(x, y) = (xp + yp)
1
p where p ≥ 1, then,

(xp + yp)
1
p + (up + vp)

1
p ≥ ((x+ u)p + (y + v)p)

1
p

is called Minkowski inequality.

6. In case when equality holds in Equation 2.1, i.e. when,

f(g(x, y), g(u, v)) = g(f(x, u), f(y, v))

the equation is known as generalised bisymmetry equation.
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7. If, moreover, f = g, i.e.,

f(f(x, y), f(u, v)) = f(f(x, u), f(y, v))

the equation is known as classical bisymmetry equation.

Theorem 2.1.1. Consider a partial ordered set (P,≥) and two binary operations f, g

on P . Let f and g have a common identity element e. Then,

1. f � g implies f ≥ g.

2. The dominance relation is antisymmetric (i.e. if f � g and g � f then f = g).

3. The dominance relation is reflexive (i.e. f � f ) if and only if f is associative and

commutative.

Proof. 1. In Equation 2.1, set y = u = e, Then, f(g(x, e), g(e, v)) ≥ g(f(x, e), f(e, v)),

i.e. f(x, v) ≥ g(x, v).

2. From part 1, f � g implies f ≥ g, and g � f implies g ≥ f . Hence if f � g

and g � f then f = g.

3. Let f � f , then for x, y, u, v ∈ S, we have,

f(f(x, y), f(u, v)) ≥ f(f(x, u), f(y, v))

and, f(f(x, u), f(y, v)) ≥ f(f(x, y), f(u, v))

then, f(f(x, y), f(u, v)) ≥ f(f(x, u), f(y, v)) ≥ f(f(x, y), f(u, v))

hence, f(f(x, y), f(u, v)) = f(f(x, u), f(y, v)).

Now let u = e, then,

f(f(x, y), v) = f(x, f(y, v)) associativity

From this,

f(x, y) = f(f(e, x), f(y, e)) ≥ f(f(e, y), f(x, e)) = f(y, x)

f(y, x) = f(f(e, y), f(x, e)) ≥ f(f(e, x), f(y, e)) = f(x, y) commutativity
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Now let f be associative and commutative. Then,

f(f(x, y), f(u, v)) = f(f(f(x, y), u), v) = f(f(f(y, u)x), v)

= f(f(f(u, y), x), v) = f(f(f(x, u), y), v)

= f(f(x, u), f(y, v))

It follows that,

f(f(x, y), f(u, v)) ≥ f(f(x, u), f(y, v)) ≥ f(f(x, y), f(u, v))

Or, f � f reflexivity.

The dominance relation is reflexive and antisymmetric, but not transitive on set of binary

operators, hence it is not a partial order.

Counterexample regarding transitivity

A counter example showing that dominance is not transitive is given due to H. Sherwood

[3].

Let P = {0, 1, 2} be lineraly ordered by 0 < 1 < 2 and let f, g, h be binary operations

on P defined by multiplication tables:

f 0 1 2

0 0 1 2

1 1 0 2

2 2 2 2

g 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

h 0 1 2

0 0 1 2

1 1 2 2

2 2 2 2

Then, f, g, h are commutative and associative operators on P . 0 is the common identity.

Also h� g and g � f . Assume that h� f .

Now h � f implies h(f(x, u), f(y, v)) ≥ f(h(x, y), h(u, v)) for all x, y, u, v ∈ P .

Now let x = 1, y = 1, u = 1 and v = 0. Then f(h(x, y), h(u, v)) = 2 while

h(f(x, u), f(y, v)) = 1 i.e.1 ≥ 2. Hence the assumption h� f is contradictory.
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2.2 Weak Dominance in Binary Operators

A weaker case of dominance is weak dominance. The notion had been developed by

Alsina, Frank, Schweizer [3].

Definition 2.2.1. Consider a partial ordered set (P,≥) and two binary operations f, g

on P . Then f weakly dominates g written as f �w g if for allx, y, u ∈ P ,

f(g(x, y), u)) ≥ g(f(x, u), y) (2.2)

Clearly, Equation 2.2 is a special case of Equation 2.1 by substituting identity element

e in place of v (provided f and g have the same identity element).

Theorem 2.2.1. Consider a partial ordered set (P,≥) and two binary operations f, g

on P . Let f and g have a common identity element e. Then,

1. f �w g implies f ≥ g if at least one of f and g is commutative.

2. The weak-dominance relation is antisymmetric (i.e. if f �w g and g �w f then

f = g).

3. The weak-dominance relation is reflexive (i.e. f �w f ) if and only if f is asso-

ciative and commutative.

Proof. 1. In Equation 2.1, set x = e, Then, f(g(e, y), u) ≥ g(f(e, u), y), i.e.

f(y, u) ≥ g(u, y).

Now if f resp. g is commutative, we have f(u, y) ≥ g(u, y) resp. f(y, u) ≥
g(y, u).

2. From part 1, f �w g implies f ≥ g, and g >>w f implies g ≥ f . Hence if

f �w g and g �w f then f = g.

3. Let f �w f , then for x, y, u ∈ S, we have,

f(f(x, y), u) ≥ f(f(x, u), y)

and, f(f(x, u), y) ≥ f(f(x, y), u)

then, f(f(x, y), u) ≥ f(f(x, u), y) ≥ f(f(x, y), u)

hence, f(f(x, y), u) = f(f(x, u), y)
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Now let x = e, then,

f(y, u) = f(u, y) commutativity

Rearranging by using commutativity,

f(u, f(x, y)) = f(f(u, x), y) associativity

Now let f be associative and commutative. Then,

f(f(x, y), u) = f(f(y, x), u) = f(y, f(x, u))

= f(f(x, u), y)

It follows that,

f(f(x, y), u) ≥ f(f(x, u), y) ≥ f(f(x, y), u)

Hence, f �w f reflexivity

The weak dominance relation is not transitive on set of binary operators, hence it is not

a partial order.

Counterexample regarding transitivity

A counter example showing that weak dominance is not transitive is given due to H.

Sherwood [3].

Let P = {0, 1, 2} be lineraly ordered by 0 < 1 < 2 and let f, g, h be binary operations

on P defined by multiplication tables:

f 0 1 2

0 0 1 2

1 1 0 2

2 2 2 2

g 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

h 0 1 2

0 0 1 2

1 1 2 2

2 2 2 2

Then, f, g, h are commutative and associative operators on P . 0 is the common identity.

Also h�w g and g �w f . Assume that h�w f .
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Now h >>w f implies h(f(x, u), v) ≥ f(h(x, y), u) for all x, y, u ∈ P . Now let

x = y = u = 1. Then f(h(x, y), u) = 2 while h(f(x, u), y) = 1 i.e. 1 ≥ 2. Hence the

assumption h�w f is contradictory.

2.3 Dominance in Aggregation Operators

The definition of dominance can be extended from the class of binary operators to n-ary

operators called aggregation operators.

Definition 2.3.1 (Aggregation Operators). An operator A :
⋃
n∈N[0, 1]n → [0, 1] is

called an aggregation operator if,

• A(x1, ..., xn) ≤ A(y1, ..., yn) whenever xi ≤ yi for all i ∈ {1, ..., n},

• A(x) = x for all x ∈ [0, 1],

• A(0, ..., 0) = 0 and A(1, ..., 1) = 1.

Definition 2.3.2 (Dominance in Aggregation Operators). We denote by A(n) an aggre-

gation operator A having n arguments. Consider two Aggregation operators A and B.

We say A� B if A(n) � B(m) for all n,m ∈ N.

Definition 2.3.3 (Aggregation Operators on a bounded Lattice). Consider two aggrega-

tion operators A,B on a bounded Lattice (L,≥, 0, 1), then A � B if for all n,m ∈ N
it holds that,

A(B(x1,1, ..., xm,1), ..., B(x1,n, ..., xm,n)) ≥ B(A(x1,1, ..., x1,n), ..., A(xm,1, ..., xm,n))

where xi,j ∈ L for all i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n}.
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A schematics of interpretaion of dominance in aggregation operators, as a two step

aggregation process is presented. Here a = B(a1, ..., am) and b = A(b1, ..., bn).

A →
B x1,1, . . ., x1,n → a1

↓ . . .

. . .

. . .

xm,1, . . ., xm,n → am

↓ ↓
b1 bn b ≥ a

We will now see an important result regarding the dominance in aggregation operators

that will enable us to go back from the class of n-ary to binary operators.

Theorem 2.3.1. Consider two aggregation operators A and B on a bounded Lattice

(L,≥, 0, 1). Then,

1. If A resp. B are associative, then A� B if and only if A2 � B resp.A� B2. If

both A and B are associative, then A� B if and only A2 � B2.

2. Assume that A resp. B possess neutral elements eA resp. eB. Then A � B

implies eA ≥ eB. If eA = eB then A ≥ B.

3. A� A if and only if A is bisymmetric, i.e. if for all n ∈ N it holds that,

A(B(x1,1, ..., xn,1), ..., B(x1,n, ..., xn,n)) = A(A(x1,1, ..., x1,n), ..., A(xn,1, ..., xn,n))

where xi,j ∈ L for all i, j ∈ {1, 2, ..., n}.

For a proof see Saminger et al. [4].

Note 2.3.1. Hence, dominance in associative aggregation operators is characterized by

dominance in binary aggregation operators. Under the assumptions of Theorem 2.3.1,

dominance is a reflexive and antisymmetric operator.

Counterexample regarding transitivity

Dominance is not transitive on the set of aggregation operators. A counter example due

to Saminger is given [4]. Let us define three aggregation operators given by,
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A(w)(x1, ..., xn) =

1, if x1 = ... = xn = 1,

0, otherwise.

Amin(x1, ..., xn) = min(x1, ..., xn)

Amean(x1, ..., xn) =
(x1 + ...+ xn)

n

Then A(w) � Amin and Amin � Amean, but A(w) 6� Amean.



Chapter 3

Dominance in t-norms

3.1 t-norms

t-norms are an important type of binary aggregation operators which are used in the

framework of fuzzy logic. They play a central role in generalizing the notion of con-

junction from classical logic to fuzzy logic. See the works by Klement et al. for more

details [5], [6], [7], [8].

Definition 3.1.1 (t-norm). A binary aggregation operator T : [0, 1]2 → [0, 1] is called

a triangular norm (briefly t-norm) if it is associative, commutative and monotonically

increasing with 1 as the neutral element.

Note 3.1.1. Since t-norms are a special class of binary aggregation operators, by Theo-

rem 2.3.1 dominance on t-norms is reflexive and antisymmetric.

Corollary 3.1.1. From the definition of t-norm, it follows that for all x ∈ [0, 1], we have,

T (x, 0) ≤ T (1, 0) = 0

Hence, T (x, 0) = 0.

We will next see few important examples of t-norms, which occur frequently in context

of fuzzy logic.

3.1.1 Examples

For all x, y ∈ [0, 1], we have

16
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• Minimum t-norm,

TM(x, y) = min(x, y)

• Product t-norm,

TP (x, y) = x.y

• Lukasiewicz t-norm,

TL(x, y) = max(x+ y − 1, 0)

• Drastic t-norm,

TD(x, y) =


x, if y = 1,

y, if x = 1,

0, otherwise.

We will now consider an important result which shows that TM and TD are the biggest

and smallest t-norms resp. with respect to dominance.

Lemma 3.1.2. For all t-norms T , we have,

TM � T and T � TD

Proof. Let a, b, c, d ∈ [0, 1]. Clearly a ≥ min(a, c) and b ≥ min(b, d). Now since T is

monotonically increasing, we have,

T (a, b) ≥ T (min(a, c),min(b, d))

similarly, T (c, d) ≥ T (min(a, c),min(b, d))

hence, min(T (a, b), T (c, d)) ≥ T (min(a, c),min(b, d))

Hence, TM � T for all T .

Now if we have a = c = 1, then,

T (TD(a, b), TD(c, d)) = T (b, d) = TD(T (a, c), T (b, d))

Similarly, if b = d = 1, then,

T (TD(a, b), TD(c, d)) = T (a, c) = TD(T (a, c), T (b, d))
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In all other cases,

T (TD(a, b), TD(c, d)) ≥ 0 = TD(T (a, c), T (b, d))

Hence, T � TD for all T .

We will now see the relation between the three partial orders, viz. dominance, weak-

dominance and pointwise ordering on the class of t-norms.

Lemma 3.1.3. For t-norms T1 and T2, if T1 � T2 then T1 �w T2. If T1 �w T2 then

T1 ≥ T2.

Proof. For a, b, c, d ∈ [0, 1], T1 � T2 means,

T1(T2(a, b), T2(c, d)) ≥ T2(T1(a, c), T1(b, d))

Choosing d = 1 gives,

T1(T2(a, b), c) ≥ T2(T1(a, c), b)

Hence, T1 �w T2. If now we choose a = 1, we obtain,

T1(b, c) ≥ T2(c, b) = T2(b, c)

Hence, T1 ≥ T2

Note 3.1.2. The converse of the previous lemma does not hold. The counterexamples

regarding this are given in subsection 3.4.3.

3.2 Continuous t-norms

Definition 3.2.1 (Continuous t-norm). A t-norm T is continuous if for all convergent

sequences (xn)n∈N, (yn)n∈N ∈ [0, 1]N, we have,

T ( lim
n→∞

xn, lim
n→∞

yn) = lim
n→∞

T (xn, yn)

Note 3.2.1. The monotonicity condition in the class of t-norms allows us to formulate a

simpler definition of continuous t-norms. It follows that a t-norm T (x, y) is continuous

if and only if it is continuous in both arguments x and y.
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3.2.1 Representation of Continuous t-norms

We will now consider the t-norms satisfying the Archimedean property, which will be

used for the characterization of continuous t-norms. For proofs, see Klement et al. [6].

Definition 3.2.2 (Archimedean t-norm). A t-norm T is called Archimedean if, for all

x, y ∈ (0, 1), there exists a n ∈ N such that,

T (x, T (x, T (x, ...)))n times < y

From a given family of t-norms Ti, we can generate a t-norm T termed as the ordinal

sum of Ti’s.

Definition 3.2.3 (Ordinal Sum). Let (ai, bi)i∈I be a nonempty pairwise-disjoint open

subinterval of [0, 1] and let {Ti} be a family of t-norm, then the t-norm T = (〈ai, bi, Ti〉)i∈I :

[0, 1]2 → [0, 1] defined by,

T (x, y) =

ai + (bi − ai)Ti
(
x−ai
bi−ai ,

y−ai
bi−ai

)
if (x, y) ∈ [ai, bi]

2,

TM(x, y) otherwise.

is called the ordinal sum of the summands 〈ai, bi, Ti〉, i ∈ I . Ti are called summand

operations, and the intervals [ai, bi]i∈I are called summand carriers.

Definition 3.2.4 (Ordinally Irreducible t-norm). A t-norm T which entertains (〈0, 1, T 〉)
as the only ordinal sum representation is called ordinally irreducible t-norm.

Theorem 3.2.1. A t-norm T is a continuous if and only if T is an ordinal sum of contin-

uous Archimedean t-norms. Such a characterization of continuous t-norms as ordinal

sum of continuous Archimedean t-norms is unique.

3.2.2 Dominance in Continuous t-norms

As in the case of t-norms, dominance is reflexive and antisymmetric in the case of

continuous t-norms.
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Counterexample regarding transitivity

A counterexample by Sarkoci [9] shows that dominance is not transitive in the class of

continuous t-norms.

We consider three ordinal sum t-norms, defined by,

T1 = (〈0, 1

2
, TL〉, 〈

1

2
, 1, TM〉),

T2 = (〈0, 1

2
, TL〉, 〈

1

2
, 1, TL〉),

T3 = TL.

Then T1 � T2 and T2 � T3, but T1 6� T3.

We will now look into the properties of summands of continuous t-norms T1 and T2,

whenever T1 � T2. For proofs and related discussions, see the paper by Saminger et al.

[10].

Lemma 3.2.2. Consider T1 = (〈ai, bi, T1,i〉)i∈I and T2 = (〈ai, bi, T2,i〉)i∈I , i.e. both

t-norms having identical summand carriers. Then T1 � T2 if and only if T1,i � T2,i

for all i ∈ I .

Theorem 3.2.3. Consider T1 = (〈ai, bi, T1,i〉)i∈I and T2 = (〈aj, bj, T2,j〉)j∈J with or-

dinally irreducible summands T1,i and T2,j , with different summand carriers. Then

T1 � T2 if and only if,

• ∪j∈JIj = I, with Ij = {i ∈ I : [ai, bi] ⊆ [aj, bj]},

• ∀j ∈ J : T ji � T2,j

where T ji = (〈φj(ai), φj(bi), T1,i〉)i∈Ij ,

φj : [aj, bj]→ [0, 1], φj(x) =
x− aj
bj − aj

Apart from the summand operations, the condition for dominance in ordinal sum t-

norms can also be formulated in terms of the set of idempotent elements of the t-norms.

Definition 3.2.5 (Set of idempotent elements). For a t-norm T and x ∈ [0, 1], define,

I(T ) = {x|T (x, x) = x}
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Theorem 3.2.4. Consider T1 = (〈ai, bi, T1,i〉)i∈I and T2 = (〈aj, bj, T2,j〉)j∈J with ordi-

nally irreducible summands T1,i and T2,j . If T1 � T2 then,

I(T2) ⊆ I(T1),

and, I(T1) is closed under T2.

Corollary 3.2.5. In the special case when T1,i = T2,j = TL, i.e. T1 = (〈ai, bi, TL〉)i∈I
and T2 = (〈aj, bj, TL〉)j∈J , we have the result that T1 � T2 if and only if,

I(T2) ⊆ I(T1),

and, I(T1) is closed under T2.

3.3 Continuous Archimedean t-norms

In the previous section, we saw that the dominance between continuous t-norms can be

characterized by considering the dominance between their summand operations, which

are given by a unique family of continuous Archimedean t-norms. Hence it becomes

important to consider the properties of continuous Archimedean t-norms. See the paper

by Klement et al. [7].

3.3.1 Representation of Continuous Archimedean t-norms

Definition 3.3.1 (Additive Generator Representation). Let f : [0, 1] → [0,+∞] be a

strictly decreasing function such that f(1) = 0 for all x, y ∈ [0, 1]. Then the function

T : [0, 1]2 → [0, 1] defined as,

T (x, y) = min(f(0), f−1(f(x) + f(y)))

is a t-norm. f is called the additive generator of T .

Theorem 3.3.1. A t-norm T which is generated by an additive generator f is necessar-

ily Archimedean. It is continuous if and only if f is continuous.

Note 3.3.1. All continuous Archimedean t-norms are uniquely characterized by additive

generator representation, i.e. there exists a unique additive generator f for a given

continuous Archimedean t-norm T .
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3.3.2 Dominance in Continuous Archimedean t-norms

The dominance between continuous Archimedean t-norms T1 and T2 can be character-

ized by their additive generators f1 and f2. For proofs and related discussions, see the

paper by Saminger-Platz et al. [11]. We have the following theorem.

Theorem 3.3.2. Consider two continuous Archimedean t-norms T1 and T2, generated

by f1 and f2 resp. Consider a function h : [0,∞]→ [0,∞] given by h = f1 ◦ f−1
2 . Then

T1 � T2 if and only if, for all a, b, c, d ∈ [0, f2(0)], it holds that,

h(−1)(h(a) + h(c)) + h(−1)(h(b) + h(d)) ≥ h(−1)(h(a+ b) + h(c+ d)) (3.1)

where the function h(−1) : [0,∞]→ [0,∞] is the pseudo-inverse of h, given by h(−1) =

f2 ◦ f−1
1 .

Note 3.3.2. If the function h satisfies equation for all a, b, c, d ∈ [0,∞], we say that h

satisfies the generalized Mulholland inequality.

Corollary 3.3.3. The function h fulfills h(0) = 0, and h(x) = f1(0) for all x ∈
[f2(0),∞]. Furthermore, h is superadditive on [0, f2(0)].

It is natural to examine the properties of the composite generator h for the conditions

when it satisfies the inquality 3.1. We will formulate the conditions in terms of defini-

tions given as follows.

Definition 3.3.2 (Convexity). A function h : [0,∞) → [0,∞) is called convex on an

interval (a, b) if for any k ∈ (0, 1), we have, for all x, y ∈ (a, b),

h(kx+ (1− k)y) ≤ kh(x) + (1− k)h(y)

It implies that if h is a differentiable function than h is convex if and only if h′′(x) > 0

for all x ∈ (a, b).

Definition 3.3.3 (Geometric Convexity). A function h : [0,∞) → [0,∞) is called

geometric-convex (geo-convex) on an interval (a, b) if, we have, for all x, y ∈ (a, b),

h(
√
xy) ≤

√
h(x)h(y)

Definition 3.3.4 (Logarithmic Convexity). A function h : [0,∞) → [0,∞) is called

logarithmic-convex (log-convex) on an interval (a, b) if, the function log ◦ h : [0,∞)→
[−∞,∞) is convex on (a, b).
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The following lemma shows the relation between the three preceding definitions.

Lemma 3.3.4. If a function h such that h ((0,∞)) ⊆ (0,∞) is continuous, then,

• h is geo-convex on (0, t) if and only if the function log ◦ h ◦ exp is convex on

(−∞, log(t)) (hence equivalent to function h ◦ exp log-convex on (−∞, log(t))).

• If h(0) = 0, then geo-convexity holds for [0, t).

• If h is strictly increasing, its log-convexity on (0, t) implies its geo-convexity on

(0, t).

We now define a function g : [0,∞]→ [0,∞] and H : [0,∞]2 → [0,∞] by,

g(x) =

h−1(x) if x ∈ [0, h(t)],

t otherwise.

H(x, y) = g(h(x) + h(y))

Based on the conditions on h given by the preceding definitions, we have the following

theorems.

Lemma 3.3.5. Consider a function h : [0,∞]→ [0,∞] and a constant t ∈ (0,∞). We

have the following results,

• If h is continuous, strictly increasing, convex and geo- convex on (0, t), h is in-

creasing elsewhere, and h(0) = 0, then,

H(a+ b, c+ d) ≤ H(a, c) +H(b, d) for all a, b, c, d ∈ [0,∞]

• If h is continuous, strictly increasing, convex on (0, t) and h′ is geo- convex on

(0, t), h is increasing elsewhere, and h(0) = 0, then,

H(a+ b, c+ d) ≤ H(a, c) +H(b, d) for all a, b, c, d ∈ [0,∞]

• If h is continuous and strictly increasing on (0, t), h is increasing elsewhere, and

h(0) = 0, then,

H is convex if H(a+ b, c+ d) ≤ H(a, c) +H(b, d) for all a, b, c, d ∈ [0,∞]
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For continuous Archimedean t-norms T1 and T2, generated by f1 and f2 resp., and h =

f1 ◦ f−1
2 , we have H(x, y) = h(−1)(h(x) + h(y)). From this and Lemma 3.3.4, we can

restate the results from previous lemma in terms of dominance between Archimedean

continuous t-norms. Thus we have the follwoing theorem.

Theorem 3.3.6. Consider two continuous Archimedean t-norms T1 and T2, generated

by f1 and f2 resp. Consider a function h : [0,∞]→ [0,∞] given by h = f1 ◦ f−1
2 . Then

the following holds,

1. If h is convex on (0, f2(0)), and log- or geo- convex on (0, f2(0)), then T1 � T2.

2. If h is differentiable and convex on (0, f2(0)), and if h′ is log- or geo- convex on

(0, f2(0)), then T1 � T2.

3. If T1 � T2, then h is convex on (0, f2(0)).

3.3.3 Easy to check conditions

Since the function h is defined in terms of f1 and f2, we need to check conditions on f1

and f2 whenever h satisfies convexity, geo- or log- convexity. We give the relationship

of f1, f2 to the required conditions on h.

Theorem 3.3.7. For h = f1 ◦ f−1
2 ,

1. The function h is convex on (0, f2(0)) if and only if for all x ∈ (0, 1), we have,

f ′1(x)f ′′2 (x)− f ′2(x)f ′′1 (x) ≥ 0

2. The function h is log- convex on (0, f2(0)) if and only if for all x ∈ (0, 1), we

have,

f ′21 (x)f ′2(x)− f1(x) (f ′1(x)f ′′2 (x)− f ′2(x)f ′′1 (x)) ≥ 0

3. The function h is geo- convex on (0, f2(0)) if and only if for all x ∈ (0, 1), we

have,
f ′21 (x)− f ′1(x)f ′′1 (x)

f1(x)f ′1(x)
≥ f ′22 (x)− f ′2(x)f ′′2 (x)

f2(x)f ′2(x)
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4. The function h′ is log- convex on (0, f2(0)) if and only if for all x ∈ (0, 1), we

have,

f ′21 (x)
(
2f ′′22 (x)− f ′2(x)f ′′′2 (x)

)
≥ f ′22 (x)

(
2f ′′21 (x)− f ′1(x)f ′′′1 (x)

)
+f ′1(x)f ′′1 (x)f ′2(x)f ′′2 (x)

5. The function h′ is geo- convex on (0, f2(0)) if and only if for all x ∈ (0, 1), we

have,

f ′1(x)f ′2(x)(f ′′′1 (x)f ′2(x)− f ′′′2 (x)f ′1(x))− (f ′′1 (x)f ′2(x)− f ′′2 (x)f ′1(x))

− (2f ′′1 (x)f ′2(x) + f ′′2 (x)f ′1(x)) ≥ f−1
2 (x)

(
f ′1(x)f ′22 (x) (f ′′2 (x)f ′1(x) + f ′′1 (x)f ′2(x))

)

3.4 Strict t-norms

Definition 3.4.1 (Strict t-norms). A t-norm T (x, y) is strict if it is continuous for all

x, y ∈ [0, 1], and strictly increasing in each place for all x, y ∈ (0, 1].

We now give an equivalent definition of a strict t-norm in terms of additive generator f .

Lemma 3.4.1. If f : [0, 1]→ [0,∞] be a continuous additive generator of a continuous

Archimedean t-norm T , then T is strict if and only if f(0) =∞.

Note 3.4.1. A t-norm T is called nilpotent if it is continuous and if each x ∈ (0, 1) is a

nilpotent element of of T , i.e. if there exists a n ∈ N such that

T (x, T (x, T (x, ...)))n times = 0

An equivalent condition for nilpotence is that a t-norm T having an additive generator

f is nilpotent if and only if f(0) < ∞. Clearly, a continuous Archimedean t-norm can

only be either strict or nilpotent, and that depends solely on the additive generator f .

An important result is that each continuous t-norm can be approximated by some con-

tinuous Archimedean t-norm with arbitrary precision. Since a continuous Archimedean

t-norm can either be strict or nilpotent, we have the following theorem, see the paper by

Klement et al. [7].
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Theorem 3.4.2. Let T be a continuous t-norm. Then for each ε > 0 we have a strict

t-norm T1 and a nilpotent t-norm T2 such that for all x, y ∈ [0, 1],

|T (x, y)− T1(x, y)| < ε,

|T (x, y)− T2(x, y)| < ε

Since strict t-norms are also continuous Archimedean t-norms, Theorem 3.3.2 and

Corollary 3.3.3 holds for them. We have certain additional results for dominance and

weak dominance in their case. For details, see the book by Alsina, Frank, Schweizer

[3].

3.4.1 Transitivity of Dominance in Strict t-norms

Lemma 3.4.3. If under the assumptions of Theorem 3.3.2, the t-norm T2 is strict, then

necessarily T1 is strict. Furthermore h is a strictly increasing bijection, and h(−1) is the

standard inverse h−1 of h.

Note 3.4.2. Under the assumptions of Lemma 3.4.3, the generalized Mulholland in-

equality 3.1 is called classical Mulholland inequality.

Theorem 3.3.6 which characterizes dominance in the class the continuous Archimedean

t-norms also holds for the strict t-norms. Moreover, we can show that under certain

conditions dominance is transitive on the class of strict t-norms.

Lemma 3.4.4. If T1 and T2 are strict t-norms with additive generators f1 and f2 resp.

with h given by h = f1 ◦ f−1
2 such that T1 � T2. Then h is convex on [0,∞).

This lemma can be generalized to the following theorem due to Tardiff [3].

Theorem 3.4.5. Consider a subset D of strict t-norms, then for any two strict t-norms

T1 and T2 ∈ D generated by f1 and f2 resp., and a function h : [0,∞] → [0,∞] given

by h = f1 ◦ f−1
2 , the following holds,

1. If h is geo- convex on (0, f2(0)), then T1 � T2 for all T1, T2 ∈ D Moreover for

all T1, T2, T3 ∈ D, if T1 � T2 and T2 � T3, then T1 � T3.

2. If h is at least thrice differentiable and if h′ geo- convex on (0, f2(0)), then T1 �
T2 for all T1, T2 ∈ D. Moreover for all T1, T2, T3 ∈ D, if T1 � T2 and T2 � T3,

then T1 � T3.
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3.4.2 Transitivity of Weak dominance in Strict t-norms

Lemma 3.4.4 for the case of dominance in strict t-norms can be strengthened for weak

dominance. We have

Lemma 3.4.6. Let T1 and T2 be strict t-norms with additive generators f1 and f2 resp.

with h = f1 ◦ f−1
2 . Then T1 �w T2 if and only if h is convex.

Lemma 3.4.7. Let T1 and T2 be strict t-norms with additive generators f1 and f2 resp.

with h1,2 = f1 ◦f−1
2 , h2,3 = f2 ◦f−1

3 , and h1,3 = f1 ◦f−3
2 . If h1,2 and h2,3 are increasing

and convex on [0,∞), then h1,3 is increasing and convex on [0,∞).

From the preceding two lemma we can immediately deduce the transitivity of weak

dominance on the set of strict t-norms.

Theorem 3.4.8. Let T1, T2 and T3 be strict t-norms. Then if T1 �w T2 and T2 �w T3,

then T1 �w T3, i.e. the weak dominance relation is transitive on the set of all strict

t-norms.

3.4.3 Distinction between Relations

As we saw in Lemma 3.1.3, dominance implies weak dominance and weak dominance

implies pointwise ordering for t-norms. We will now provide a counterexample showing

that the converse does not hold. Hence dominance, weak dominance and pointwise

order are distinct relations.

Counterexample showing Weak dominance does not imply Dominance

Let T1 and T2 be strict t-norms with additive generators f1 and f2 resp. given by,

f1(x) = x−1 − 1, f2(x) =

(2x)−1, 0 < x ≤ 1
2
,

f1(x), 1
2
≤ x ≤ 1.

Now since f1◦f−1
2 is convex, hence from Lemma 3.4.6 T1 �w T2. But, for h = f1◦f−1

2

and a = c = d = 1, b = 1
2
, we immediately see that
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h−1(h(a) + h(c)) + h−1(h(b) + h(d)) 6≥ h−1(h(a+ b) + h(c+ d))

So by Theorem 3.3.2 T1 6� T2.

Counterexample showing Pointwise ordering does not imply Weak dominance

We first need a lemma in order to proceed with the counterexample.

Lemma 3.4.9. Let T1 and T2 be continuous Archimedean t-norms, not necessarily strict,

with additive generators f1 and f2 resp. Then T1 ≥ T2 if and only if f2 ◦ f (−1)
1 is

subadditive.

Let T1 and T2 be strict t-norms with additive generators f1 and f2 resp. such that f2 =

ϕ ◦ f1, with ϕ given by,

ϕ(x) =


1− (1− x)2, 0 ≤ x ≤ 1,

2− (2− x)2, 1 ≤ x ≤ 2,

x, 2 ≤ x.

Now since ϕ = f2 ◦ f−1
1 is subadditive, hence from the previous lemma it follows that

T1 ≥ T2. But since ϕ is not concave, h−1 = f1 ◦ f−1
2 is not convex, and hence by

Lemma 3.4.6 T1 6�w T2.
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Preservation of T-transitivity

4.1 Fuzzy Equivalence

In this section we will define the notion of equivalence for the elements of a fuzzy set.

Definition 4.1.1 (Fuzzy Set). A fuzzy set is a pair (X,µ) where X is a non-empty set

and µ : X → [0, 1] is a membership function which maps each element from X to the

unit interval.

Definition 4.1.2 (Fuzzy Relation). Let X and Y be two non-empty sets. A fuzzy subset

R of the cartesian product X×Y is called a fuzzy relation from X to Y . For (x, y) ∈ R
for some pair (x, y), the degree to which x isR-related to y is denoted byR(x, y), where

R(x, y) ∈ [0, 1].

Note 4.1.1. If X = Y , i.e. R is a fuzzy subset of X×X , we say that R is a binary fuzzy

relation on X .

Definition 4.1.3 (T-transitive Relation). Consider a binary fuzzy relation R on some set

X and an arbitrary t-norm T . R is called T-transitive if and only if for all x, y, z ∈ X
the following holds,

T (R(x, y), R(y, z)) ≤ R(x, z)

Definition 4.1.4 (Fuzzy Equivalence Relation). Consider a t-norm T . A binary fuzzy

relation R on some set X is called a T-equivalence relation (also called an equality

relation) on X if and only if it is reflexive, symmetric and T-transitive, i.e. for all

x, y, z ∈ X the following holds,

29
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• R(x, x) = 1,

• R(x, y) = R(y, x),

• T (R(x, y), R(y, z)) ≤ R(x, z).

Note 4.1.2. The T-equivalence relation on a fuzzy set generalizes the property of relation

on a crisp set. If x, y ∈ X are T-equivalent, then it signifies the closeness of the two

elements with respect to a given t-norm T .

4.2 Preservation of T-transitivity

As we saw in the last section, T-transitivity is the defining property of T-equivalence. If

we have two sets such that the relations between the corresponding elements of the sets

are T-equivalent, it is natural to require that the the aggregation of these relations is also

a T-equivalent relation. This situation desires that T-transitivity be preserved after the

aggregation step. For proofs and more details, see the paper by Saminger et al. [4].

This motivates the following definition.

Definition 4.2.1 (Preservation of T-transitivity). An aggregation operator A preserves

T-transitivity if for all n ∈ N and for all binary T-transitive fuzzy relationsRi on a setXi

with i ∈ {1, ..., n}, the aggregated relation R̃ = A(R1, ..., Rn) on a cartesian product of

all Xi given by,

R̃(A,B) = R̃((a1, ...an), (b1, ..., bn)) = A(R1(a1, b1), ..., Rn(an, bn))

is also T-transitive, i.e. for all A,B,C ∈
∏n

i=1Xi,

T (R̃(A,B), R̃(B,C)) ≤ R̃(A,C)

For a given t-norm, we define,

Definition 4.2.2 (Dominating class of Aggregation Operators). We denote the class of

aggregation operators A which dominates the t-norm T by,

DT = {A|A� T}
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The preservation of T-transitivity has been shown to be related to the dominance of the

chosen aggregation operator and the given t-norm. We have the following result.

Theorem 4.2.1. Let Xi = X for all i ∈ {1, ..., n}, and let |X| > 3. Then, an aggre-

gation operator A preserves the T-transitivity of fuzzy relations on X for an arbitrary

t-norm T if and only if A ∈ DT .

4.2.1 Isomorphic Operators

Definition 4.2.3 (Isomorphic Aggregation Operators). Consider an aggregation opera-

tor A : [a, b]N → [a, b] and a monotone bijection ϕ : [c, d] → [a, b]. Then the operator

Aϕ : [c, d]N → [c, d] defined by,

Aϕ(x1, ..., xn) = ϕ−1(A(ϕ(x1), ...ϕ(xn)))

is an aggregation operator isomorphic to A.

Note 4.2.1. In an anologues way, we can define Tϕ, a t-norm isomorphic to T .

For continuous Archimedean t-norms, we have the following result.

Lemma 4.2.2. A t-norm T is strict if and only if it is isomorphic to the product TP . It

is nilpotent if and only if it is isomorphic to the Lukasiewicz t-norm TL.

The problem of finding a class of aggregation operators dominating a t-norm can be

reformulated in their respective isomorphic operators.

Theorem 4.2.3. Consider an aggregation operator A and a given t-norm T . Then

A ∈ DT if and only if Aϕ ∈ DTϕ for all strictly increasing bijections ϕ : [0, 1]→ [0, 1].

4.2.2 Ordinal sum

Next, we have a result relating the lower ordinal sum of a dominating class of aggrega-

tion operators to the ordinal sum of the corresponding t-norms.

Definition 4.2.4 (Lower Ordinal Sum of Aggregation Operators). If (Aα)α∈I be a fam-

ily of aggregation operators, and (aα, eα)|α∈I be a family of non-empty, pairwise dis-

joint open subintervals of [0, 1], then the lower ordinal sum of the family A(w) =

(〈aα, eα, Aα〉)α∈I is given by,
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A(w)(x1, ..., xn) =

supα∈I{A∗α(min(x1, ei), ...,min(xn, ei))|aα < u} if u < 1,

1 otherwise.

with sup{φ} = 0, u = min(x1, ..., xn) and,

A∗α(x1, ..., xn) = aα + (eα − aα) · Aα
(
x1 − aα
eα − aα

, ...,
xn − aα
eα − aα

)
Theorem 4.2.4. Let (Tα)α∈I be a family of t-norms, (Aα)α∈I be a family of aggregation

operators, and (aα, eα)|α∈I be a family of non-empty, pairwise disjoint open subinter-

vals of [0, 1]. If Aα ∈ DTα for all α ∈ I , then A(w) ∈ DT for T = (〈aα, eα, Tα〉)α∈I .

4.2.3 Domination of basic t-norms

For t-norms TM and TD, we have the following results for the class of dominating

aggregation operators.

Lemma 4.2.5. For any n ∈ N, the class of all n-ary aggregation operators A(n) domi-

nating the t-norm TM is given by,

D(n)
TM

= {min
F
|F =(f1, ..., fn)

fi : [0, 1]→ [0, 1], non-decreasing, with

fi(1) = 1 for all i ∈ {1, ..., n},

fi(0) = 0 for at least one i ∈ {1, ..., n}},

where minF(x1, ..., xn) = min(f1(x1), ..., fn(xn)).

Lemma 4.2.6. For any n ∈ N, consider an n-ary aggregation operators A(n). Then

A(n) � TD if and only if there exists a non-empty subset I = {k1, ..., km} ⊆ {1, ..., n}, k1 <

... < km and a non-decreasing mapping B : [0, 1]m → [0, 1] satisfying,

1. B(0, ..., 0) = 0,

2. B(u1, ..., um) = 1 if and only if u1 = ... = um = 1,

such that A(x1, ..., xn) = B(xk1 , ..., xkm).



Appendix A

Transitivity of Dominance on
Parametric Families of t-norms

Although dominance has been shown to be not transitive in general on continuous t-

norms, it nevertheless exhibits transitivity on several important parametric families of

continuous t-norms. We now enlist some of such families where dominance is transitive

and hence a partial order; and also give the criteria for dominance in these families in

terms of their respective parameters.

For analysis and further discussions, see [10], [11], [12].

A.1 Ordinal sum t-norms

Dubois- Prade family

The Dubois- Prade t-norms family is given by,

(TDP
λ )λ∈[0,1] = (〈0, λ, TP 〉) for λ ∈ [0, 1]

Then, TDP
λ1
� TDP

λ2
if and only if either λ1 = 0 or λ1 = λ2.

33
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Mayor- Torrens family

The Mayor- Torrens t-norms family is given by,

(TMT
λ )λ∈[0,1] = (〈0, λ, TL〉) for λ ∈ [0, 1]

Then, TMT
λ1
� TMT

λ2
if and only if either λ1 = 0 or λ1 = λ2.

Modified Mayor- Torrens family

The Modified Mayor- Torrens t-norms family is given by,

(TMMT
λ )λ∈[0,1] = (〈λ, 1, TL〉) for λ ∈ [0, 1]

Then, TMMT
λ1

� TMMT
λ2

if and only if λ1 ≥ λ2.

A.2 Continuous Archimedean t-norms

We present several families of continuous Archimedean t-norms in which dominance is

a transitive relation.

Schweizer- Sklar family

The Schweizer- Sklar t-norms family is given by,

(T SS
λ (x, y))λ∈[−∞,∞] =



TM(x, y) if λ = −∞,

TP (x, y) if λ = 0,

TD(x, y) if λ =∞,

max(xλ + yλ − 1, 0)
1
λ if λ = (−∞, 0) ∪ (0,∞)

Then, T SS
λ1
� T SS

λ2
if and only if λ1 ≤ λ2.
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Frank family

The Frank t-norms family is given by,

(T F
λ (x, y))λ∈[−∞,∞] =



TL(x, y) if λ = −∞,

TP (x, y) if λ = 0,

TM(x, y) if λ =∞,

− 1
λ
log

(
1 +

(e−λx − 1)(e−λy − 1)

e−λ − 1

)
if λ = (−∞, 0) ∪ (0,∞)

Then, T F
λ1
� T F

λ2
if and only if either λ1 =∞ or λ1 = λ2, or λ2 = −∞.

Hamacher family

The Hamacher t-norms family is given by,

(TH
λ (x, y))λ∈[−∞,1] =


TD(x, y) if λ = −∞,

0 if λ = 1 x = y = 0,
xy

1− λ(1− x)(1− y)
otherwise

Then, TH
λ1
� TH

λ2
if and only if either λ1 = 1 or λ1 = λ2, or λ2 = −∞.

Sugeno- Weber family

The Sugeno- Weber t-norms family is given by,

(T SW
λ (x, y))λ∈[0,∞] =


TP (x, y) if λ = 0,

TD(x, y) if λ =∞,

max(0, (1− λ)xy, λ(x+ y − 1)) if λ ∈ (0,∞)

Then, T SW
λ1
� T SW

λ2
if either λ1 ≤ min(1, λ2) or 1 < λ1 ≤ λ2 ≤ 6.00914. On the other

hand if T SW
λ1
� T SW

λ2
, then λ1 ≤ λ2.
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A.3 Dominance between different families of continu-

ous t-norms

We present three families of continuous t-norms, in which dominance between the mem-

bers of different families can be characterized by the relationship between their param-

eters.

Dombi family

The Dombi t-norms family is given by,

(TD
λ (x, y))λ∈[0,∞] =



TD(x, y) if λ = 0,

TM(x, y) if λ =∞,
1

1 +
(

(1−x
x

)λ + (1−y
y

)λ
) 1
λ

if λ = (0,∞)

Yager family

The Yager t-norms family is given by,

(TY
λ (x, y))λ∈[0,∞] =


TD(x, y) if λ = 0,

TM(x, y) if λ =∞,

max
(

1− ((1− x)λ + (1− y)λ)
1
λ , 0
)

if λ = (0,∞)

Aczel- Alsina family

The Aczel- Alsina t-norms family is given by,

(TAA
λ (x, y))λ∈[0,∞] =


TD(x, y) if λ = 0,

TM(x, y) if λ =∞,

e−((−logx)λ+(−logy)λ)
1
λ

if λ = (0,∞)

We have the following Lemma regarding the dominance between members of preceding

families.
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Lemma A.3.1. Let Tλ1 ∈ {TD
λ1
, T Y

λ1
, T AA

λ1
}, and Tλ2 ∈ {TD

λ2
, T Y

λ2
, T AA

λ2
}. Then, Tλ1 �

Tλ2 if and only if λ1 ≥ λ2.
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