
 Eindhoven University of Technology

MASTER

Static analysis and task scheduling for multi-mode software-defined radio applications

Yang, F.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/82c950e9-ee74-4899-8f13-8c3e6c2ad124

MASTER’S THESIS

Doc ID Rev Rev Date Aug 18th ,2009 Root Part No.

Static Analysis and Task Scheduling for Multi-mode
Software-Defined Radio Applications

by

Feiteng Yang

Document Type: Master thesis Eindhoven University of Technology (TU/e)

MSc Work: Performed at ST-Ericsson, Technology & Tools, Advanced
R&D, HTC, Eindhoven

Period of Work: November 1st, 2008 – August 18th, 2009

Supervisor: Prof.Dr.Ir. C. H. van Berkel

Tutor: M.Sc. Orlando. Moreira (ST-Ericsson)

Static Analysis and Task Scheduling for Multi-mode Software-Defined Radio Applications

Abstract

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No.

Static Analysis and Task Scheduling for Multi-mode Software-Defined Radio Applications

Abstract

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No.

Abstract

Synchronous Data Flow (SDF) Graphs can be scheduled on a multi-processors architecture with

hard real-time constraints. The Heracles tool, designed by the researchers from ST-Ericsson,

Eindhoven, can perform automatic scheduling and rigorous timing analysis of SDF graphs.

However, SDF is too restrictive to model the baseband processing of radio applications.

This thesis describes the extension of Heracles tool to mode controlled data flow graphs to express

data-dependent concurrency in software-defined radio applications. A new scheduling strategy, the

combination of quasi-static and TDM/round robin is designed and implemented to schedule the

mode controlled data flow graphs. Two new timing analysis methods, self-timed scheduling and

static periodic scheduling, are introduced to do the timing analysis of the scheduled data flow

graphs, and implemented on Heracles tool.

Static Analysis and Task Scheduling for Multi-mode Software-Defined Radio Applications

Abstract

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No.

Static Analysis and Task Scheduling for Multi-mode Software-Defined Radio Applications

Abstract

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No.

Preface

This document is my Master’s thesis and is the result of a graduation project to obtain the degree of

Master of Science in Computer Science with a specialization in Embedded Systems. This work is

carried out at ST-Ericsson Advanced R&D, Eindhoven.

I would like thank: Kees van Berkel for his supervision in ST-Ericsson. He also helps me with the

knowledge of software-defined radios. I also would like to thank Orlando Moreira for his help in

understanding the SDF graph, scheduling strategies, timing analysis methods, and OCaml language.

Orlando Moreira spent much time reviewing and correcting my thesis.

Feiteng Yang

Eindhoven, August 2009

Static Analysis and Task Scheduling
for Multi-mode Software-Defined

Radio Applications

MASTER’S THESIS Contents

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No.

Legal Information

© Copyright ST-Ericsson, 2009. All Rights Reserved.

Disclaimer

The contents of this document are subject to change without prior notice. ST-Ericsson

makes no representation or warranty of any nature whatsoever (neither expressed nor

implied) with respect to the matters addressed in this document, including but not limited

to warranties of merchantability or fitness for a particular purpose, interpretability or

interoperability or, against infringement of third party intellectual property rights, and in

no event shall ST-Ericsson be liable to any party for any direct, indirect, incidental and or

consequential damages and or loss whatsoever (including but not limited to monetary

losses or loss of data), that might arise from the use of this document or the information

in it.

ST-Ericsson and the ST-Ericsson logos are trademarks of the ST-Ericsson group of

companies or used under a license from STMicroelectronics NV or Telefonaktiebolaget LM

Ericsson.

All other names are the property of their respective owners.

Static Analysis and Task Scheduling
for Multi-mode Software-Defined

Radio Applications

MASTER’S THESIS Contents

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No.

Contents

1 Introduction 11

1.1 Background 11

1.2 Software-Defined Radio 11

1.3 Multi-Processors System on Chip 12

1.4 Synchronous Data Flow Graph 13

1.4.1 Directed Graph 14

1.4.2 Data Flow Graph 14

1.4.3 Synchronous Dataflow Graph 15

1.4.4 Homogeneous Synchronous Dataflow Graph 15

1.4.5 Analytical Properties of SDF Graphs 16

1.4.6 SDF Conversion to HSDF 17

1.5 Application Model 17

1.6 Real-Time Constraints 18

1.7 Scheduling Strategy 18

1.8 Mapping Model 19

1.9 Building the Analysis Model 20

1.9.1 Modeling TDM Scheduling 20

1.9.2 Modeling Static-Order Scheduling 21

1.9.3 Modeling Combination of Static-Order and TDM 21

1.10 Timing Analysis 22

1.10.1 Maximum Cycle Mean 22

1.10.2 Self-timed Schedules 23

1.10.3 Static Periodic Schedules 23

1.11 Heracles 24

1.11.1 Scheduling and Analysis Procedure 24

1.12 Structure of Thesis 26

2 Mode-Controlled Data Flow 27

2.1 MCDF Overview 29

2.2 Data-Dependent Actors 31

Static Analysis and Task Scheduling
for Multi-mode Software-Defined

Radio Applications

MASTER’S THESIS Contents

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No.

2.3 Tunnel Representation 31

2.4 The Construction Rules of MCDF Graph 33

3 Problem Description 35

3.1 Contribution of This Thesis 36

4 Overall Approach 37

4.1 Timing Analysis 37

4.1.1 Mode Sequence 37

4.1.2 Self-timed Schedule with Mode Sequence 37

4.1.3 Static-periodic Schedule with Mode Sequence 39

4.1.4 Self-Timed Scheduling versus Static Periodic Scheduling 42

4.2 Building the Analysis Model 43

4.2.1 Modeling Quasi-static Ordering Schedule 43

4.2.2 Modeling Round Robin Schedule 45

4.2.3 Modeling Combination of Quasi-static Ordering and TDM/Round
Robin Schedule 46

4.3 MCDF Scheduling Strategy 48

4.3.1 Adapting the Original Scheduler 49

4.3.2 Adding Mode Switch to Processor 49

5 Analysis Tool Design 53

5.1 Objective Caml 53

5.2 Heracles Analysis Tool 53

5.2.1 Graph File 53

5.2.2 Architecture File 55

5.2.3 Mode Sequence File 56

6 Implementation 57

6.1 MCDF Graph Scheduling Procedure 57

6.2 Self-timed Scheduling with Mode Sequence 58

6.2.1 Symbolic Simulation Procedure 58

6.2.2 Alternative to Building Sub Graph 60

6.2.3 Symbolic Simulation Modification with Mode Sequence 61

Static Analysis and Task Scheduling
for Multi-mode Software-Defined

Radio Applications

MASTER’S THESIS Contents

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No.

6.3 Static-periodic Schedule with Mode Sequence 63

6.3.1 The Procedure of Solving Linear Programming Problem 63

7 Experiment and Results 67

7.1 Case 1 DVB-T MCDF Graph 67

7.2 Case 2 Wireless Lan MCDF Graph 70

7.3 Case 3 Corner Example 74

7.4 Summary 76

8 Conclusions and Future Work 79

References 80

Acronyms and Terms 81

Appendix A: MPSOC PLATFORM FILE 82

Appendix B: DVB-T Graph File 83

Appendix C: Wireless LAN Graph File 84

Appendix D: Corner Example Graph File 85

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 11 (85)

1 Introduction

1.1 Background

Many multimedia applications are integrated on mobile terminals. Cellular phones

nowadays not only serve as a tool to make phone calls, but also perform some other tasks

like web browsing and media playing. The applications, which involve baseband radio

processing, may start or stop at any time and run simultaneously.

At the Advanced R&D group of ST-Ericsson in Eindhoven, a project is being carried out to

study the usage of embedded multiprocessor systems to process multiple Software-

Defined Radios (SDRs) simultaneously. These SDRs may start/stop execution at any time

and each one has its own rate of operation. The Heracles tool is designed to schedule the

SDRs on a target Multi-Processor System on Chip and do the timing analysis of the

scheduling. In Heracles, the SDR jobs are represented as Data Flow (DF) graphs. Currently,

one restriction of Heracles is that the amount of data produced and consumed per

activation of each processing task must be independent of the values of the input data.

1.2 Software-Defined Radio

A Software-Defined Radio (SDR) is a wireless communication system where components

(e.g. mixers, filters, amplifiers, modulators/demodulators, detectors. etc.) are

implemented using software on the embedded computing devices instead of using

hardware. [2]

In the market of high-end mobile phones, multiple standards are required to be

implemented on a single device. These mobile phones should support all kinds of cellular

networking standards, wireless internet standards, mobile television standards, and peer-

to-peer communication standards. The cellular networking standards include Global

System for Mobile Communication (GSM), Wideband Code Division Multiple Access

(WCDMA), and High-Speed Downlink Packet Access (HSDPA). The wireless internet

standards include 802.11a/b/g. The Mobile Television standards include Digital Video

Broadcasting-Handheld (DVB-H). The peer-to-peer standards include Bluetooth.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 12 (85)

Table 1 Mobile Phone Standards

Standards Wi-Fi ultra-
wideband

802.11a/
b/g

802.1
1n

Wireles
s

broadba
nd

(WiBro)

Mobile
WiMax

3G LTE
(Cellular
WAN)

Digital
Video

Broadcastin
g-Handheld

Digital
Video

Broadcastin
g-Terrestrial

Applicatio
n

High-speed
local

interconnect,
wireless
USB

Medium-
speed
LAN

High-
spee
d

LAN

Mobile
wireless
access

Mobile
wireles

s
access

Mobile
Data/Voi

ce

Mobile TV Mobile TV

Range 10m 80m 50-
150m

1-5km 1-5km 1+km Broadcast Broadcast

Rate 480Mbps 11
Mbps(b)

54
Mbps(a/

g)

100-
600
Mbps

3-50
Mbps
(downli
nk)

63
Mbps
(downli
nk)

100
Mbps

(downlink
)

384 Kbps 7 Mbps

Frequency 3.1- 10.6
GHz

2.45/5.8
GHz

2.45/
5.8
GHz

2-6/2,3
GHz

2-6/2,3
GHz

1.25/2.2/
5/10/2
GHz

0.8 MHz,
1.6 GHz

0.8 MHz,
1.6 GHz

Table 1 [2] gives an overview of radio standards, including wireless access, mobile TV,

mobile data/voice, and local connectivity. If all these standards are implemented with

dedicated hardware, several different hardware devices should be assembled in the mobile

phone which is very costly to realize. However, if the functions are implemented with

software-defined radios, changing the service type or the modulation protocol can be done

simply by selecting and launching the appropriate computer programs. Furthermore, there

may be several applications running simultaneously.

The ultimate goal of SDR engineers is to provide a single radio transceiver capable of

playing the roles of cordless telephone, cell phone, wireless videoconferencing unit, Global

Positioning System (GPS) unit, and other functions still in the realm of science fiction,

operable from any location on the surface of the earth, and perhaps in space as well.

1.3 Multi-Processors System on Chip

The Multi-Processor System on Chip (MPSoC) has emerged in the past decade as an

important class of Very Large Scale Integration (VLSI) systems. An MPSoC combines

multiple processing elements, memory and other digital functions (like I/O ports). [3] All

these components are linked to each other by a bus or Network-On-Chip (NOC)

interconnect.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 13 (85)

As an embedded hardware platform, MPSoC provides a good balance between cost, power

efficiency, and flexibility. Typically, Embedded MPSoCs are heterogeneous with general

processing elements (such as ARM processor cores) and application-specific processing

elements (such as a Turbo decoder). The flexible functions which vary according to

different applications will be implemented on general processors. The functions that will

be the same for every application will be implemented on application-specific processors

which bring low power cost. In order to allow maximum flexibility at the lowest cost,

applications share computation, storage, and communication resources.

Mobile terminals may run several applications simultaneously. In order to design a flexible

hardware platform with low power cost, embedded MPSoCs are employed. Figure 1 shows

a template of an MPSoC architecture for Software-Defined Radio. The MPSoC template

contains three processors and Input/Output ports linked to each other by bus. Each

processor has its own local memory which is represented as “MEM” in the figure. All the

processors are connected via a Network Interface (NI) to the bus. Each NI has a number of

input and output queues with limited buffer capacity. There are three types of processors

which are Embedded Vector Processor (EVP) [1], ARM and ASIP for software decoding.

Figure 1 MPSoC Architecture

1.4 Synchronous Data Flow Graph

In the context of the ST-Ericsson Software-Defined Radio Project, data flow graphs are

employed to model the SDRs. In this section, we introduce the graph definitions and

terminology that we will need in the remainder of this document. A graph G is an ordered

pair G = (V, E). Here V is a set of nodes and E is a set of edges.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 14 (85)

A B

C

Figure 2 Normal Graph

1.4.1 Directed Graph

A directed graph is a graph G= (V,E) where every edge is an ordered pair (v
1
, v

2
), where v

1
,

v
2
 ∈V. For an edge e = (v

1
, v

2
) ∈ E, we say that e is directed from v

1
to v

2
, v

1
 is the source

of e, and v
2
is the sink of e. In a directed graph, we can not have two or more edges with

both the same source and sink. [7]

A B

C

Figure 3 Directed Graph

1.4.2 Data Flow Graph

A data flow graph is a directed graph (See Figure 3), where the actors represent

computation and edges represent First-In-First-Out (FIFO) queues. Data is transferred

between actors in tokens of fixed size. Edges can have an initial number of tokens stored

in them at execution start time; this number is often referred to as the delay of the edge.

When an actor is activated by data availability, it is said to be fired. The firing of an actor

comprises three steps. First, the actor consumes tokens from its inputs. Then the actor

performs the computation. Finally, the actor produces tokens to all its outputs.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 15 (85)

1.4.3 Synchronous Dataflow Graph

Synchronous Data Flow (SDF) graph (See Figure 4) is a restricted dataflow model proposed

by Lee and Messerschmitt [6]. In the SDF model, each actor consumes/produces the same

fixed-number of tokens in each input/output edge in every firing. An actor can fire

whenever all its input edges have enough tokens for a firing of the actor to consume.

There may be data dependencies across iterations. These dependencies are modeled as

initial tokens on the FIFO edges. The delay of an edge is represented by a function d(e)

that for an edge e returns the initial number of tokens stored in that edge. The classical

SDF model is un-timed. However, there is an extension to SDF in which a fixed execution

time is associated with each actor [7]. This extension makes the model amenable to timing

analysis. We define the function e(a
i
) as the execution time of actor a

i
.

Definition: An iteration of an SDF graph is a sequence of actor firings such that the graph

is brought back to its initial token distribution.

Take the SDF graph shown in Figure 4 as an example. An iteration of this SDF graph is a

sequence of firings of the actors in this graph such that the graph again has one token in

edge (A, C) and zero token in edge (A, B).

A B

C

1

1

2 1

Figure 4 Synchronous Dataflow Graph

1.4.4 Homogeneous Synchronous Dataflow Graph

An SDF graph in which every actor consumes and produces only one token from each of

its inputs and outputs is called a Homogeneous Synchronous Dataflow (HSDF) graph (See

Figure 5). [7]

An HSDF graph actor fires when it has one or more tokens on each of its input edge. One

token from each of the actor’s inputs is consumed. When it finishes a firing, one token is

produced on each of its output edges. In the graphical representation of HSDF graphs, one

can omit the productions and consumptions, as these are none to be all equal to 1, as

shown in Figure 5.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 16 (85)

An iteration of a HSDF graph is that all the actors in this graph are fired once. The

function s(i,k) denotes the time at which the kth iteration of actor a
i
 is fired. The iteration

number is counted from 0, so kth iteration means the (k+1)th execution of actor a
i
. Let d(i,j)

denote the delay number of edge from actor a
i
 to actor a

j
, and let e(a

i
) denote the

execution time of actor a
i
. With HSDF, we have the basic rule below:

)()),(,(),(iaejidkiskjs +−≥ (1-1)

The rule means that for an edge with source actor a
i
 and sink actor a

j
, the start time of

actor a
j
 should be later than the finishing time of actor a

i
 of delay number of iterations

before.

A B

C

Figure 5 HSDF Graph

1.4.5 Analytical Properties of SDF Graphs

An SDF graph can be compactly represented by its topology matrix Γ. The matrix

represents the graph structure, and contains one column for each vertex, and one row for

each edge in the SDF graph. The value of entry (i, j) in the matrix corresponds to the

number of tokens produced by the actor numbered j onto the edge numbered i. If the

actor j consumes tokens from the edge i, the value of entry (i, j) is negative. Also, if the

actor j neither produces nor consumes tokens from the edge i, the value of entry (i, j) is

set to be zero. For example, the topology matrix of the graph in Figure 4 is:

ΓΓΓΓ = 








−

−

101

012
 (1-2)

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 17 (85)

Where the actors A, B and C are numbered as 1, 2, and 3, and the edges of (A,B) and (A,C)

are numbered as 1, 2 and 3.

Definition: The repetitions vector q for an SDF graph with s actors is a column vector of

length s, with the property that if each actor i is invoked a number of times equal to the i
th

entry of q, then the number of tokens on each edge of the SDF graph remains unchanged.

Furthermore, q is the smallest integer vector for which this property holds.

Theorem: The repetitions vector of an SDF graph with consistent sample rates is the

smallest integer vector in the null space of its topology matrix. That is, q is the smallest

integer vector such that

Γ q = 0 (1-3)

For the example above, q is equal to

















1

2

1

.More details and proof can be found in [7].

The repetitions vector indicates how many times each actor should execute to bring the

graph back to its initial token distribution. In this example, to return the graph back to its

initial token distribution, i.e. zero tokens in the edge (A,B) and one token in the edge

(A,C), one execution, actor A and C should be executed once and actor B should be

executed 2 times.

With the repetitions vector, we can define an iteration of an SDF graph to be a sequence

of actor firings such that each actor in the graph executes a number of times equal to its

repetition vector entry.

1.4.6 SDF Conversion to HSDF

In order to analyze an SDF graph’s throughput and schedule it, it is convenient to first

perform a conversion to its equivalent HSDF. The resulting equivalent HSDF graph has as

many actors as specified by the original dataflow graph repetitions vector q and each of

these actors represents an execution of the original actor. Detailed SDF-to-HSDF

conversion algorithm can be found in [7].

1.5 Application Model

In our application model, we define a job as a particular multi-processor program that can

be started or stopped independently of other jobs. It can contain several processing tasks,

which can communicate data with each other. Each job is represented as a dataflow graph.

In the graph, each node represents a task and each edge represents a FIFO channel.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 18 (85)

1.6 Real-Time Constraints

SDR jobs typically have real-time requirements. Real-time applications can be classified

depending on how strict their real-time requirements are. For example, the deadlines of

hard real time jobs must not be missed, while the deadlines of soft real time jobs can be

missed, but the rate of the misses must be kept below a specific value.

There are also two essentially different types of deadlines. Some applications are required

to generate a certain number of outputs with a time period. This is referred to as a

throughput requirement. For example, a television signal receiver must display a certain

number of frames per second to avoid flickering.

There are also applications like online gaming where the temporal requirement is that the

system responds to a button click within 10 mili-seconds. This is a latency requirement.

Latency is the time interval between an input event and an output event. For example, we

can measure the latency as the difference between the start times of two specific firings of

two actors. [5]

There are also examples having both throughput and latency requirements. Like the video

conference meeting, it is required displaying a good quality video and sending the voice in

time. The requirement of displaying is a throughput requirement. The requirement of

voice sending in time is a latency requirement.

1.7 Scheduling Strategy

This section describes the scheduling strategy. Scheduling an application graph involves

assigning actors in the graph to processors, ordering the execution order of these actors

on each processor, and determining when each actor fires such that all data precedence

constraints are met. Each of these three steps may be performed either at run-time

(dynamic strategy) or at compile-time (static strategy).

With the assumption that the assignments to the processors of the actors are given before

scheduling, a fully dynamic schedule is avoided. The researchers from ST-Ericsson

designed a scheduling strategy that allows a heterogeneous MPSoC to handle a dynamic

mix of hard-real-time jobs which can start or stop independently. To solve this problem, a

combination of Time Division-Multiplex (TDM) schedule and static-order of actors per

processor is applied. [4]

As jobs may start or stop independently, the scheduler has to decide whether a new

requested job should be started or not during run time. The scheduler tries to map the

actors of the job graph on the processor. The resource requirement including computation

period and memory size will be analyzed according to the real-time requirement of the

job. If the scheduler finds enough resource for this job, the job is scheduled. Otherwise,

the job is denied or asked to have lower real-time requirement.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 19 (85)

If a job is accepted to execute on the platform, the scheduler then applies the combination

of TDM and static-ordering schedule to the job graph. Assuming that a TDM wheel period

P is implemented on the processor and that a time slice with duration S is allocated for an

actor a
i
, such that PS ≤ . The actor starts to execute when the time slice arrives. If the

actor cannot finish execution in one time slice, it has to wait for P-S time to get the

resource again.

A group of actors may be mutually exclusive as they are from the same single-delay cycle.

Here, mutually exclusive means when one of the actors from the group is executing on the

processor, the other actors can not execute. If they are mapped on the same processor,

allocating different slices to each actor wastes resources. If they share the same time slice,

each actor in the group can use the whole time slice when enabled. A more detailed

discussion of this can be found in [4]. The static ordering scheduling is used to order

these actors even in some case where they do not have data dependencies in between.

Mixing static ordering and TDM scheduling is to take the statically ordered actors as a big

actor executing on the processor. TDM scheduler assigns time slice to the big actor

instead of to each actor. For example, we have actors A and B which are both mapped on

processor P. Instead of assign time slices individually to actor A and actor B, we take these

two actors as a big actor AB. And the actor AB is assigned a time slice by the TDM

scheduler.

1.8 Mapping Model

After mapping the actors of an SDF graph on the given processors, we build the timing

analysis model by calculating the worst case response time of the actors that corresponds

to that mapping.

Several definitions are defined below to help building the timing analysis model. We define

execution time e(a
i
) to be the time it takes for the actor to execute on the processor

without resources contention. After an actor is enabled, the actor may not get the resource

immediately. The time between when an actor is enabled and when it starts to execute is

defined as arbitration time a(a
i
). We calculate the worst case for this arbitration time.

After an actor starts to execute, the execution may be preempted. So we define

processing time p(a
i
) as the time from the moment an actor starts to execute until it

finishes on the processor. Here we have:

)()(ii aeap ≥ (1-4)

The response time r(a
i
) counts from the moment that an actor is enabled until it finishes.

So we have:

)()()(iii apaaar += (1-5)

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 20 (85)

1.9 Building the Analysis Model

This section describes the modeling of scheduling strategy. The analysis model built with

the assumption of worst case will be used in timing analysis. To build the analysis model,

the response time, arbitration time and processing time of each actor will be calculated

according to the scheduler and the actor’s execution time.

1.9.1 Modeling TDM Scheduling

Under TDM scheduling, the worst-case execution time of the actors represents the worst-

case response time when that scheduler is used. This response time counts from the

moment when the actor meets its enabling condition until this actor finishes firing.

Assuming that a TDM wheel period P is implemented on the processor and that a time

slice with duration S(a
i
) is allocated for the actor a

i
, such that S(a

i
) P≤ . Two different

effects will affect the actual response time of actor a
i
. The first one is the arbitration time

which counts from the moment that a
i
 is enabled until the moment that resource is

granted to a
i
. The worst case would be that a

i
 is enabled just after the slice S for a

i

finishes. In the worst case, actor a
i
 has to wait for P-S time. The arbitration time is

calculated in the equation (1.6).

)()(ii aSPaa −= (1-6)

The second effect is when the slice assigned to the actor a
i
 is smaller than the execution

time of the actor a
i
. So the actor a

i
 can not finish execution in one time slice. Therefore,

the processing time it takes to fire the actor a
i
 is equal to:

 ))(mod)(()(/)()(iiiii aSaePaSaeap −⋅= (1-7)

The total response time of actor a
i
 will be the sum of the two times above:

 )())/S(ae())(()(i iiii aeaaSPar +⋅−= (1-8)

After all the response times are calculated for the actors, timing analysis methods can be

applied to the graph to evaluate whether the real-time constraints are met or not.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 21 (85)

1.9.2 Modeling Static-Order Scheduling

Assume that a set of actors A = {a
1
, a

2
, …a

n
} are mapped to the processor P. Extra

precedence constraints are added to this set of actors in the way that a
k
 will be the first to

execute, followed by a
m
, and so on up to a

l
. After the last actor is executed, the sequence

is reset, and execution order restarts for the next iteration of the graph. This strategy is

called static-order scheduling. [4]

Any extra dependency added by static order scheduling can be represented as an edge

without token in the graph. From the last actor to the first actor, an edge with one token is

added to represent that when the current iteration is finished, it restarts from the first

actor in that static-order for the next iteration.

1.9.3 Modeling Combination of Static-Order and TDM

Instead of assigning a time slice to each actor, we assign the time slice to a group of

actors and statically order these actors. To model this combination, extra edges are added

between the actors in the group to represent the static-ordering. After one actor is

mapped onto a processor, the system groups the actor with other actors mapped onto the

same processor. The serialization of the actors in a group is represented in the data flow

model delay-less edges. An edge with one delay is added for each group from the last

actor of the group to the first actor of the group. Figure 6 shows an example of

combination of static ordering and TDM scheduling. In Figure 6, actors C and B are

grouped together. Extra delay-less edge from actor C to actor B is added to represent the

static execution order. One edge with one token is added from actor B to actor C.

Figure 6 Combination of Static Ordering and TDM

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 22 (85)

As illustrated in [4], the timing analysis model is built with response model. The time

valuation of each grouped actor will be set as the processing time. In order to model the

arbitration time, an extra actor is created if this group of actors has input edges from

outside this group. Take the mapping example shown in the left of Figure 7, actors A and

B are grouped together and actor A has an input edge from another group. A time slice S

is assign to the group of actor A and actor B. The graph shown in the right part of Figure

7 is the response model of the group. An extra actor a
s
 is added to represent the

arbitration time of this group. The time of the actor a
s
 is set to be P –S. The time for actor

A is set to be its processing time:

 )mod)((/)(SAePSAe −⋅

The time for actor B is set to be its processing time:

 )mod)((/)(SBePSBe −⋅

Figure 7 Analysis Model of combination of Static Ordering and TDM

1.10 Timing Analysis

The analysis model is built according to the scheduling strategy. In this section, 3 timing

analysis methods are explained. The goal of timing analysis is to find whether the

scheduling meets the real-time requirement or not.

1.10.1 Maximum Cycle Mean

In order to calculate the throughput of a timed SDF graph, the concept of Maximum Cycle

Mean (MCM) is introduced. Assume there is a timed SDF graph: G = (V, E). A directed cycle

c in the graph G is a path from a node to itself that traverses each node in it only once [9].

The cycle mean of cycle c in graph G is calculated in the equation (1.9):

∑
∑

∈

∈
=

)(

)(

)(

)(
)(

cEe

cVa i

ed

ae
c iµ (1-9)

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 23 (85)

Here V(c) and E(c) denote, respectively, the sets of nodes and edges belonging to the

directed cycle c. And d(e) denotes the delay value of edge e. The maximum cycle mean of

the graph G is calculated in the equation (1.10):

)
)(

)(
(max)(

)(

)(

)(∑
∑

∈

∈

∈=

cEe

cVa i

GCc
ed

ae
G iµ (1-10)

Where C(G) is the set of cycles in graph G.

The inverse of the MCM provides the minimum guaranteed throughput. By assigning the

amount of MCM as the period of the execution, the start times of all the actors in each

iteration can be predicted.

1.10.2 Self-timed Schedules

The generation of a self-time schedule can be used as an alternative way to calculate the

throughput. A self-timed schedule (STS) is also known as an as-soon-as-possible schedule.

By applying STS to an SDF graph, the firing of each actor starts immediately if there are

enough tokens in all its input edges.

The Worst Case Self-Time Schedule (WCSTS) is a schedule of an SDF graph such that all the

actors in the graph take worst case time to execute. The WCSTS of an SDF graph has a

property: after a transition phase of K iterations, it will reach to a periodic pattern.[8] The

period is N(G)*µ(G) time units, where N(G) is the minimum among the sums of delays of

the critical cycles of the graph. The schedule of the periodic pattern is:

)()(),())(,(GGNkisGNkis µ⋅+=+)(GKk ≥ (1-11)

During the periodic execution, N(G) firings of actor i happen in N(G)*µ(G) time units, which

means that the throughput of the graph is 1/ µ(G). For the period of transient phase, that

is k < K(G), the schedule can be derived by symbolic simulation with worst case execution

time actors which will be explained in Section 6.

1.10.3 Static Periodic Schedules

Applications may require that each iteration finishes within a given period time. Then we

can apply static periodic scheduling (SPS) to the application with the desired period. An

SPS of an SDF graph is a schedule such that for all nodes i∈V,

kTiskis ⋅+=)0,(),((1-12)

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 24 (85)

Here T is the desired period of the SPS. The SPS can be represented uniquely by the values

of s(i, 0) for all nodes.

It is proved in [8] that for any SDF graph; it is always possible to find an SPS schedule, as

long as)(GT µ≥ . If T < µ(G), then no SPS schedule exits.

1.11 Heracles

This section describes the Heracles tool designed by the researchers from ST-Ericsson.

Heracles takes an SDF graph file (including graph information, actor mapping, and real-

time requirements) and a multiprocessor platform file description as inputs. As outputs, if

run simply for analysis, Heracles verifies if the timing constraints are feasible. If run as a

scheduler, Heracles can produce a partial mapping of the graph to the multiprocessor

template, where actors are assembled in statically-ordered groups, and for each statically

ordered group, a scheduler budget (i.e., an amount of required resources for a specific

single-core scheduler) is associated. The budget also includes sufficient buffer sizes for all

inter-group FIFOs, which Heracles can also compute.

1.11.1 Scheduling and Analysis Procedure

This subsection describes the scheduling and analysis procedure carried out by Heracles

(as shown in Figure 8).

Figure 8 Heracles Scheduling Procedure

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 25 (85)

The graph and multiprocessor platform are stored in text files. The tool first parses the

graph into the system. The input graph is then checked in several aspects listed below:

• Whether all the actors are mapped on one of the processors;

• Whether the type of the processor that an actor is mapped onto matches the type of

the actor or not;

• Whether the slice time assigned to each actor overflows the whole period of the

processor this actor mapped on;

• The input file may require that some actors are placed in the same group, which

means that these actors should be mapped on the same processor. The tool then

checks whether these actors are required to run on the same processor/processor type

or not.

A correct input graph will then be converted into an HSDF graph. After having a correct

HSDF graph, the procedure enters the scheduling loop with backtracking. The actors

without input or with only delay inputs are the candidates ready to be fired. The system

initializes the candidate list with these ready actors and enters the backtracking phase. We

show the backtracking procedure with the HSDF graph example depicted in Figure 5. In

the graph, the actor C is ready to be fired at the beginning as it has no delay-less inputs.

Assume there are two processors, P
1
 and P

2
, to be mapped on for the actors, and each

actor can be mapped on any processor. So we create a Candidate List (CL) in the form of

{(C, P
1
), (C, P

2
)}. The system maps actor C according to the head of CL. After mapping, the

analysis model is built to calculate MCM. If the MCM meets the real-time requirement, the

CL is updated with the possible mappings of newly activated actors. Then it falls into the

loop of scheduling again. If the requirement is not met, the system undoes the mapping

and back tracks to the previous states. The method of back tracking is show in Figure 9.

The CL is the candidate list. We start with CL
1
which has two elements.

By doing mapping

according to CL
1
’s first element, an updated CL

11
is obtained. As the same trick, CL

11
 can be

extended to CL
111

and CL
112
. If both CL

111
and CL

112
 fail to guarantee the requirement, which

means that the branch of CL
11
 fails, the system then back tracks to the state of CL

1
 and try

the second element of CL
1
. The second element will lead to some other sub branches.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Introduction

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 26 (85)

Figure 9 Backtracking

When the candidate list is empty, the system then checks whether all the actors are

mapped or not. If yes, the system tries to reduce the slice time for each group and leads to

a solution. If not all the actors are mapped, the scheduler fails.

For computing the MCM, the analysis model is built according to the combination of TDM

and static-order scheduling. After one actor is mapped on a processor, the system groups

the actor with other actors mapped on the same processor. The actors are grouped with

delay-less edges. An edge with one delay is added for each group from the last actor of

the group to the first actor of the group. Response actors are added if the mapped actor

has inputs from other processors. The executing time are set for both mapped actor and

added response actors.

1.12 Structure of Thesis

In Section 2, the Mode-Controlled Data Flow (MCDF) computation model is introduced. The

problem description will be explained in Section 3. We present the approach used to solve

the problem in Section 4. In Section 5, the analysis tool is explained. We show the

implementation in Section 6. Three case studies are discussed in Section 7 with conclusion

and future work in Section 8.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Mode-Controlled Data Flow

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 27 (85)

2 Mode-Controlled Data Flow

Many SDR jobs need to execute different sub graphs depending on the received data.

Often, this will cause the data consumption/production rates of tasks to also become

dependent on the values of the input data. For example, a Wireless Local Area Network

(WLAN) receiver must attempt to synchronize to the incoming packet until it is successful.

When this happens, the WLAN receiver must decode the packet, which implies the

activation of a different task. As a result, these jobs cannot be represented by static data

flow graphs like Single-Rate DF, Multi-Rate DF, or Cyclo-Static DF. A new dataflow model

called Mode Controlled Data Flow (MCDF, see an example in Figure 10) is proposed to

express these jobs.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Mode-Controlled Data Flow

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 28 (85)

Source

4000

Switch

0

Shifter

1

Crc

500

Csyn

355

Hdem

920

Fsyn

0

Pdem

920

Hdec

920

Hana

0

Pdec

920

Data

920

Select

0

MC

500

Tunne

l

1

Crc

Crc

Syn

Syn

Header

Header

Payload

Figure 10 MCDF Graph of Wireless LAN

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Mode-Controlled Data Flow

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 29 (85)

2.1 MCDF Overview

An MCDF graph G = (V,E) has a set of modes M:

M = {m1, m2, …, mn}

MCDF actors are classified into modal actors and non-modal actors. An actor belongs to a

mode m if it is connected to another actor that belongs to mode m or to a data-dependent

port associated with mode m. If an actor belongs to a mode it is referred to as a modal

actor.

For each actor Vai ∈ , we have:



 ∈

=
null

Mmm
ae

jj

i)(mod (2-1)

Here we define mode(a
i
) as the function which returns the mode attribution of actor a

i
. For

modal actors, the function returns the mode name of the actor. For non-modal actor, the

function returns null. The MCDF graph may execute in certain mode m
j
. When the MCDF

graph executes in mode Mm j ∈ , only the non-modal actors and modal actors belong to

mode m
j
are enabled. Therefore, we define the concept of sub-graph G

j
 = (V

j
, E

j
) for

mode m
j
 as:

VaV ij ∈∀= Such that mode(a
i
) = null or m

j
 (2-2)

 EeE j ∈∀= Such that source(e) ∈ V
j
& sink(e) ∈V

j
(2-3)

Here source(e) denotes the source actor of edge e; and sink(e) denotes the sink actor of

edge e. When the MCDF graph G executes in mode m
j
, the sub-graph G

j
 should be built.

For each sub-graph G
j
 of graph G, MCM

j
 can be calculated which is the MCM calculated

from the sub-graph G
j
. If the current mode of an MCDF graph is m

j
, we define the current

iteration of the MCDF graph is an iteration of the sub-graph G
j
 = (V

j
, E

j
).

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Mode-Controlled Data Flow

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 30 (85)

MCDF contains a special actor, the Mode Controller (MC). MC is fired in every iteration. We

define port to be the interface for each MCDF actor to send or receive data. MC has one

special output port referred to as the mode control port. All the data-dependent actors

have control input ports. At every iteration of MC, the value produced in the mode

control port is used to drive the control input ports of all data-dependent actors in the

MCDF. The main point of an MCDF graph is that after each firing of MC, a specific sub-

graph will be executed according to the control signal produced by MC. The sub-graphs

are iteration exclusive, i.e. only one of them will be executed for each iteration. A special

actor called Tunnel is designed to model the communication between two sub-graphs.

The MCDF actors can also be classified into data-dependent actors and date-independent

actors. Data-dependent actors are switch actors, select actors and tunnel actors. The rest

are data-independent actors.

A simple example of MCDF is shown in Figure 11. There is one mode controller. Actors A

and B are modal actors belonging to mode1; actors C and D are modal actors belonging to

mode2. Actors “source” and “sink” are non-modal actors. The pair actor Mode Switch and

Mode Select are data-dependent actors will be explained in the next subsection. Also,

actor tunnel is a data-dependent actor.

Figure 11 Mode Control Data Graph

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Mode-Controlled Data Flow

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 31 (85)

2.2 Data-Dependent Actors

Data-dependent actors are classified into 3 types: mode switch, mode select and mode

tunnel. Mode switch and mode select branch the graph into sub-graphs according to the

control signal from MC. Tunnel is a special actor that allows the communication between

sub-graphs without causing deadlocks while keeping determinist.

A Mode Switch actor has one control input port, one data input port, and M output ports.

Each output port is associated with a mode. When a token is present on the control input

port and on the data input port, the Mode Switch actor is fired. It consumes both input

tokens and produces a token in the output port associated with the Mode indicated by the

token consumed on the control input port. The output token has the same size and value

as the token consumed on the data input port.

A Mode Select actor has a mode control input port, M data input ports and one output

port. Each input port is associated with a mode. When a token is present on the control

input port, its value is read and used to decide from which input port to consume a token.

The actor is fired when a token is present in the control input port and in the data input

port associated with the mode indicated by the token in the control input port. When fired

it consumes both of these tokens. At the end of the firing, it produces on the output port

a token with the same size and value as read from the modal input port. If the input port

was not connected, the output token will have some pre-defined default value. Note that

the firing rule must be evaluated in two steps.

A Mode Tunnel actor has one input control signal from the mode controller, one data

input from Mode 1 (M1) and one data output to Mode 2 (M2). When the tunnel receives a

control signal of M1, it fires, consumes one token from the input and stores this token in

its internal memory. When the tunnel receives a control signal of M2, it copies the token

stored in its internal memory to the output actor. If there are more than one executions of

Mode 1, the internal token of tunnel will be replaced by the latest one. So the actor from

Mode 2 only reads the latest token from tunnel.

2.3 Tunnel Representation

In a MCDF graph, actors represent the computation only. However, tunnels store tokens of

previous iteration which can not be modeled as a single actor. Therefore an expanded

model is designed to represent tunnels (See Figure 12).

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Mode-Controlled Data Flow

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 32 (85)

Figure 12 Tunnel Representation

As shown in Figure 12, this MCDF graph has actor set V = {MC, Source, Mode Switch, Mode

Select, Tunnel, Sink, A, B, C, D}. Here the red colored actors are modal actors of mode1,

and the yellow colored actors are modal actors of mode2.

The tunnel actor is replaced by four actors: one switch, one select, one tunnel out and one

tunnel in. When MC sends Mode1 control signal to switches and selects in the graph, all

the actors in the sub-graph of Mode1 fire in order. The token produced by tunnel select

actor is stored in the FIFO edge. When MC sends Mode2 control signal to switches and

selects, the tunnel switch actor consumes the token from the FIFO edge and produces it to

actor tunnel in. If the graph has been executing in mode1 for more than one time before

mode2 is activated, only the data produced by the last iteration will be stored in the FIFO

edge. This procedure well models the behavior of the tunnels with the existing types of

actors and FIFO edges.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Mode-Controlled Data Flow

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 33 (85)

2.4 The Construction Rules of MCDF Graph

The construction rules of MCDF are designed to guarantee that each firing of the Mode

Controller (MC) enables all the actors within a mode and the data dependent actors to fire

until all edges return to the initial state, without any other activation of the MC being

required. The construction rules are listed below:

• An MCDF graph has one mode controller, one or more switch actors, one or more

select actors, zero or more tunnel actors, and arbitrary number of non-modal actors.

• An actor of an MCDF graph belongs to at most one mode

• The control ports of switch, select, and tunnel actors are connected to MC with delay-

less edges.

• There is no delay-less cycle in the graph that does not traverse at least one Tunnel

actor.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Problem Description

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 35 (85)

3 Problem Description

Based on the description above, the challenge of my thesis work is to adapt the existing

scheduler to allow hard real-time quasi-static ordering schedule of MCDF graphs.

The existing scheduling strategy which uses the combination of TDM and static-order

scheduling is no longer suitable for MCDF graphs. There are three effects that make the

existing scheduling strategy fail to schedule MCDF graphs.

First, static-order scheduling adds dependent delay-less edges between the actors mapped

on the same processor which is not always allowed by the construction rules of MCDF.

Assume two actors A (belonging to mode1) and B (belonging to mode2) are mapped on

the same processor. Under the static-order scheduling strategy, one delay-less edge will be

added either from A to B or from B to A. According to the construction rules of MCDF

graph, there should not be any delay-less edges between two actors belonging to two

different modes.

Second, the current timing analysis method MCM computation provides the minimum

guaranteed throughput. This method can not provide the tightest bounds on throughput

or latency of the MCDF graph.

If we create the sub-graphs for each mode in an MCDF graph, each sub-graph may have

quite different MCM values. Take the example of the timed MCDF graph shown in Figure

13 (a) as an example, the number in each actor represents the execution time. If all the

actors have the information of execution time, this graph is a timed graph. Figure 13(a) is

an MCDF graph. Figure 13(b) and Figure 13(c) are the sub-graphs of mode1 and mode2 of

that MCDF graph.

The MCM of the graph is 1+1+10+1= 13 which is also the MCM for the sub-graph of

mode2. However, the MCM for the sub-graph of mode1 is 4. Assume that the application

executes in mode1 for 10 iterations. If we simply use MCM of the whole graph, the

throughput of these 10 iterations is 1/13. However, if we know the MCM for the sub graph

of mode1, the throughput of these 10 iterations will be improved to 1/4. By computing the

MCM for each mode, a much tighter timing analysis result can be found.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Problem Description

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 36 (85)

Figure 13 Timed MCDF Graph

Third, the timing analysis methods we have now can not provide latency analysis of the

analysis model. There may be requirement like that the time the platform takes to execute

in mode1 once followed by executing in mode2 once should be less than 100 micro-

seconds. This latency information can not be calculated with the current timing analysis

method.

Furthermore, not all the processors support preemptive scheduling. For instance,

preemption is not allowed by some processors like EVP [1]. However, TDM scheduling is

preemptive which means that high priority task can take the resource away from lower

priority task. So the combination of TDM and static-order can not be applied on all the

processors. New schedule strategy should be designed and schedule strategy for each

processor should be extended to other strategies but not only TDM schedule.

3.1 Contribution of This Thesis

In this thesis, new scheduling strategies are introduced to schedule MCDF graph

applications. Several timing analysis methods are implemented to analyze the temporal

performance of MCDF graph running on the MPSoC. The contribution is listed below:

• A scheduling strategy of combination of quasi-static ordering and TDM/Round Robin

scheduling is designed for MCDF graphs;

• A timing analysis method of Self-Timed Scheduling Timing analysis is introduced to

analyze the scheduling mentioned in the first item;

• A second timing analysis method of Static-Periodic Scheduling Timing analysis is

introduced to analyze the scheduling mentioned in the first item.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 37 (85)

4 Overall Approach

In this section, we describe the approach used to schedule the MCDF graph on MPSoC and

timing analysis methods used to analyze the schedule in the way of throughput or latency

with certain mode sequence. They will be introduced in the following order: Timing

Analysis Methods, Analysis Model Building and Scheduling Strategy.

4.1 Timing Analysis

As explained in Section 3, the throughput calculated from MCM for the whole MCDF graph

is conservative comparing with MCM for each mode of the MCDF graph. In order to save

more resources for other applications, it is necessary to investigate the MCM for each

mode. Furthermore, we are interested in the time consumption of execution the graph in

the order specified by a mode list. Therefore we want to define a new concept called Mode

Sequence.

4.1.1 Mode Sequence

A mode sequence is a valid sequence of control signals produced by the mode controller.

The MCDF graphs will execute in the order of the mode sequence. We let (Anum) represent a

mode sequence where the graph executes mode A for num times. Therefore, the mode

sequence AnBmCp means the graph executes n times in mode A followed by m times in

mode B followed by p times in mode C.

4.1.2 Self-timed Schedule with Mode Sequence

As explained in Section 3, the MCM for different modes may be very different. In order to

find tighter timing analysis results, we try to execute the MCDF graph in a Self-Timed

Schedule (STS). To show the effect of STS, we try to do the timing analysis on the graph

shown in Figure 14. Figure 14 is an analysis model of an MCDF graph. First, we calculate

the MCM of the analysis graph. Then, we try to execute the MCDF graph static periodically

with a mode sequence of Mode11Mode21. For each iteration, the period is assigned as the

calculated MCM for the whole graph.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 38 (85)

MC

1

Mode Switch

1

A

1

Mode Select

1

B

10

Mode 1

Mode 1

Mode 2

Mode 2

P

Figure 14 Timed Analysis Graph

The Gantt chart depicted in Figure 15 shows the periodic execution with mode sequence

Mode11Mode21 which assigns the MCM as the period for every mode. The horizontal axis is

time. The block means that the processor is assigned to the actor shown on the block. The

shadowed block means the processor is idle during this time interval. We can find out that

the processor is idle for 9 time units because it takes less time to execute in mode1 than

in mode2.

Figure 15 Periodic Schedule

The Gantt chart depicted in Figure 16 shows the self-timed execution with mode sequence

of Mode11Mode21. There is no idle time in the processor which leads to the tightest timing

result for this mode sequence. It takes 17 time units to finish executing in this mode

sequence. It is impossible to find a schedule which takes less than 17 time units.

Figure 16 STS Schedule

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 39 (85)

Therefore, we can find the tightest timing analysis result for the MCDF graph with STS

timing analysis method. However, performing self-timed timing analysis takes long time as

it has to compute all the execution in the mode sequence.

4.1.3 Static-periodic Schedule with Mode Sequence

There is an alternative method, Static Periodic Schedule (SPS), to do the timing analysis.

The SPS assigns a static period for every iteration. Since the MCM for each mode may vary

a lot, we calculate the MCM for each mode and assign the period of each mode with its

MCM. The graph is forced to execute in static periodically but each mode has a different

period. By doing this, tighter timing analysis results can be obtained. Next, we show how

to perform the static periodic timing analysis.

Assume there is an MCDF graph G = (V, E) with a mode sequence of ANBP, MCM

for mode A

and mode B are µ
A
and µ

B
. For mode A and mode B, we create sub-graph G

A
 = (V

A
, E

A
) and G

B

= (V
B
, E

B
). Under SPS, we force the execution into the periodic phase after the first iteration

with the provided period.

It is stated in [12] that in order to not violate the firing rule, two conditions shown in (4.1)

and (4.2) should be met.

Ai Va ∈∀ 0)0,(≥ias (4-1)

AEjie ∈∀),()()),(,(),(iij aejidkaskas +−≥ Nk ≤ (4-2)

As the graph is executing under SPS, we have the following two properties in (4.3) and

(4.4).

AEjie ∈∀),(),(),()),(,(jidkasjidkas Aii ⋅−=− µ Nk ≤ (4-3)

Ai Va ∈∀)1()0,(),(−⋅+= kaskas Aii µ Nk ≤ (4-4)

From (4.2), (4.3), and (4.4), we can get the inequality shown in (4.5).

AEjie ∈∀),()(),()0,()0,(iAij aejidasas +⋅−≥ µ (4-5)

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 40 (85)

Therefore, (4.1) and (4.5) give the linear bounds of all the actors active in mode A. After

executing for N iterations, the graph starts to execute in mode B. The SPS forces the

execution to be periodic with the period of µ
B.
 We denote the start times of the actors in

executing in mode B as)0,(' ias . According to the proof above, we have the following two

linear bounds for actor start times in mode B shown in (4.6) and (4.7).

Bi Va ∈∀ 0)0,(' ≥ias (4-6)

BEjie ∈∀),()(),()0,(')0,(' iBij aejidasas +⋅−≥ µ (4-7)

The first iteration in mode B does not start from time 0. It depends on the last execution in

mode A. As the graph executes periodically, the start time of the first iteration in mode A

for each actor is AN µ⋅−)1(before the last iteration in mode A of that actor. Therefore,

we can build the dependency of the first iteration in mode B on the first execution in mode

A. The inequality is shown in (4.8). There will be such dependency only when there is an

edge with delays larger than 1. This includes self-edges. Edges with more than 1 delay will

be converted into several edges with 1 delay. This will be explained in the following

subsection. So here we only talk about edges with 1 delay.

1),(&),(=∈∀ jidEjie B)()0,()0,(' iij aeasas +≥ (4-8)

Therefore, the start times of the actors in graph G during the transition phase from mode

A to mode B are bounded by (4.1), (4.5), (4.6), (4.7) and (4.8). Furthermore, we get the

execution time of mode sequence ANBP under SPS shown in equation (4.9).

)1()1()()(11
−⋅+−⋅+= PNBAfBAf BASPS

PN

SPS µµ (4-9)

Here f
 SPS
 (ANBP) means the time it takes to execute in the mode sequence of

ANBP under SPS,

and f
 SPS
 (A1B1) means the time it takes to execute in the mode sequence of A1B1under SPS. f

SPS
 (A1B1) is also called finishing time which can be calculated by adding the response time

to the start time.

4.1.3.1 Expressing the Problem as a Linear Program

Many problems can be formulated as maximizing or minimizing an objective, given limited

resources and competing constraints. If we can specify the objective as a linear function of

certain variables, and if we can specify the constraints on resources as linear equalities or

inequalities on those variables, then we have a Linear Programming (LP) problem. [11]

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 41 (85)

We have explained in section 4.1.3 that the execution time of an MCDF under SPS with a

given mode sequence can be calculated from equation (4.9). In this subsection, we explain

how to compute the start times of the actors in mode transition phase under SPS. As the

start times of all the actors in the MCDF graph are bounded by inequalities of (4.1), (4.5),

(4.6), (4.7) and (4.8), this problem can be represented as a linear program. The variables

are the start times of the actors for every first execution of a specific mode in the mode

sequence. The objective is to minimize the start time for each actor in the last mode of the

mode sequence. Together with the inequalities mentioned above, a linear programming

problem is built. By solving this linear programming problem, we get the solution for the

start times of the actors.

To build the right time dependency in the current mode, an extra inequality should be

added as the start time of all the actors depend on the start times of the previous

executions. We can show this by an MCDF graph G = (V, E) with a mode sequence like

A1B1C1. There are two edges e
1
(i,j) and e

2
(j,k), where d(e

1
) = 1 and d(e

2
) = 2. We define

s
m
(a

i
,0) to be the start time of actor a

i
 in the mth execution of the mode sequence. So for

these two delay edges, we have the following constraints:

)()0,()0,(23 iij aeasas +≥ (4-10)

)()0,()0,(13 jjk aeasas +≥ (4-11)

The inequality means that the current start time of an actor depends on the start time of

this actor d(i,j) number of iterations before. If the edges have delay like 1, 2, we need to

know the start times of the actors 1 and 2 iterations before. If the graph has variance

delay numbers, too much previous start time information will be needed to compute the

current start time constraint. In order to avoid this problem, we try to make the current

start time only depend on current execution or its last execution. This is done by

distributing the delays bigger than one into sub delays (shown in Figure 17).

Figure 17 Delay Distribution

 In the graph, there is a delay edge from actor A to actor B with 2 token sizes. To solve the

linear programming problem, we have to store the start time information 2 iterations

before. By adding an extra actor AB with execution time of 0, the start time of A is stored

in actor AB. So we only need to get the start time information from the last iteration.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 42 (85)

4.1.4 Self-Timed Scheduling versus Static Periodic Scheduling

Although STS can provide a tighter temporal performance, it also has disadvantages. We

explain the disadvantage of STS with an MCDF graph executing in the mode sequence of

ANBP such that 0,0 ≥≥ PN . If the values of N and P are rather small, it will be fast to

perform the self-timed execution. However, when these two values become rather large,

self timed execution may take rather long time to do the timing analysis with the long

mode sequence. In this situation, the static periodic execution can be performed fast

because SPS is predictable. Figure 18 shows the Gantt chart of the static periodic

execution in mode sequence of ANBP.

Figure 18 SPS Execution with Mode Sequence

We execute an MCDF graph with mode A and mode B on 3 processors. The blue blocks

mean the processor is assigned to the actors from the sub-graph of Mode A. The red

blocks mean that the processor is assigned to the actors from the sub-graph of Mode B.

First, it executes in mode A which is depicted as blue blocks. After the first execution, it is

forced to execute in a static periodic regime. The execution repeats for N-1 times and

starts to execute in Mode B. The first execution is depicted in left-most red blocks. The

execution again is forced to execute in a static periodic regime. After repeating the red

blocks for P-1 times, the execution finishes. Therefore, we only compute the start times of

all the actors for the transition phase from mode A to mode B. The complexity of SPS

timing analysis does not grow with multiple consecutive executions of the same mode.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 43 (85)

The time it takes to do SPS timing analysis depends on the complexity of the linear

programming problem. We define the complexity of LP problem as a pair of (M, N). Here M

means the variables this LP has and N means the number of the inequalities of this LP.

Assume we have an MCDF graph G = (V, E) with mode set {A,B,C}. We define X(G) as the

number of actors the graph G has, Y(G) as the number of edges the graph G has, and D(G)

as the number of delay edges the graph G has. We define the number of mode transition T

to be the number of mode changes in the mode sequence. For mode sequence ANBP, the T

is 1. To do SPS timing analysis for mode sequence, we build the LP problem. The

complexity of this LP problem can be derived according to the inequalities (4.1), (4.5),

(4.6), (4.7) and (4.8). Therefore, for the mode sequence of ANBP, we have the complexity

(M
LP
, N

LP
) in below:

)()(BALP GXGXM += (4-12)

)()()(BBALP GDGYGYN ++= (4-13)

From the example shown above, we can find that the complexity of the LP problem grows

with the growing of the number of mode transitions. Therefore, the time it takes to do SPS

timing analysis depends on the number of mode transitions.

4.2 Building the Analysis Model

Before doing timing analysis, an analysis model must be built which includes mapping

decisions that have already been taken. Based on the mapping and execution order of the

actors, we generate response time models for all actors. In this subsection, we explain

how to generate response time models for quasi-static ordered schedules running within

run-time TDM or round robin schedulers.

4.2.1 Modeling Quasi-static Ordering Schedule

In a static ordering schedule, the actors mapped on the same processor execute in a static

order. In a quasi-static ordering, each mode has a specific static ordering, but the decision

on which mode to execute is taken independently at run-time for each iteration In a quasi-

static model, the modal actors start branching after mode switch. Each branch after mode

switch contains only actors belonging to a specific mode. The modal actors belonging to

the same mode are statically ordered.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 44 (85)

For static ordering scheduling, there is a delay edge with one token from the last mapped

actor of the group to the first mapped actor. While for quasi-static ordering, an edge with

one token is added from the last mapped actor of each mode to the first mapped actor.

Take the MCDF graph from Figure 11 as an example. Assume the platform to execute this

graph has 2 processors P
1
 and P

2
. The mapping list of the actor is [(MC, P

1
), (Source, P

1
),

(Mode Switch, P
1
), (A, P

1
), (C, P

1
), (Tunnel, P

1
), (B, P

2
), (D, P

2
), (Select, P

2
), (Sink, P

2
)]. We then

build the analysis model of quasi-static ordering schedule (See Figure 19).

In order to avoid more than one mode switch/select in the MCDF graph, we further expand

tunnel switch and tunnel select shown in Figure 12 into 4 modal actors shown in Figure
19. Each tunnel switch is replaced by two modal actors in the two modes that the tunnel

connects. Each tunnel select is replaced by two modal actors in the two modes that the

tunnel connects. The two new modal actors generated from tunnel switch inherit all the

input edges from the tunnel switch actor and inherit the output edges from the tunnel

switch according to the mode. The two new modal actors generated from tunnel select

inherit all the output edges from the tunnel switch actor and inherit the input edges from

the tunnel switch according to the mode. Each modal actor generated from tunnel select

has one delay edge to each modal actor generated from tunnel switch. In Figure 19, we
can see that the tunnel switch is replaced by two modal actors “Swi_T_A” and “Swi_T_C” in

mode 1 and mode 2. The tunnel select is replaced by two modal actors “Sel_T_A” and

“Sel_T_C” in mode 1 and mode 2. They are connected to actors “T_out” and “T_in” which

represent the actor tunnel out and actor tunnel in. There are four delay edges from each of

the actor “Sel_T_A” and “Sel_T_C” to each of the actors “Swi_T_A” and “Swi_T_C”.

To further simplify the analysis model, we delete the mode select actors. We define a

mode merges to the select if there is an edge connects this select actor to an actor

belongs to that mode. The non-modal actors after select actors will be scheduled in each

mode which merges to the select actor. In Figure 19, both mode 1 and mode 2 merge to

the select actor. There is a non-modal actor “sink” after the mode select. So this “sink”

actor is scheduled in both mode 1 and mode 2.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 45 (85)

Figure 19 Quasi-static Ordering Analysis Model

From the analysis model, we can find that there are two branches corresponding to 2

modes after mode switch and inside each branch, modal actors are statically ordered.

For processor P
2
, an extra mode switch actor is created which has an input edge from MC

and output edges to the first actor of each mode mapped on P
2
.

For processor P
2
, actor Sink1 is the last mapped actor in mode 1; actor Sink2 is the last

mapped actor of mode 2; while actor Mode Switch2 is the first actor mapped on P
2
.

According to our model building method, an edge with one token delay is added from

Sink1 to Mode Swithc2, also from Sink2 to Mode Switch2.

4.2.2 Modeling Round Robin Schedule

We have explained in Section 3 that TDM scheduling strategy is not suitable for every

processor. Therefore, we employ round robin as the local scheduler for some processors.

In a similar way to TDM, the effects over the response times of task executing under a

Round Robin (RR) scheduling can be modeled by generating a response time model. The

response time of an actor a
i
 counts from the moment that a

i
 meets its enabling conditions

until a
i
 finishes firing. Let e(a

i
) is the execution time of actor a

i
.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 46 (85)

Assuming that the processor that actor a
i
 is mapped on has time period P, The time slice

assigned to actor a
i
 is S, such that PS ≤ . The response time of actor a

i
 is composed of

two parts. One is the arbitration time which counts from the moment that a
i
 is activated

until a
i
 gets the resource to start execution. The other one is the processing time when a

i

starts execution until it finishes. The worst case of arbitration time happens if a
i
 is

activated just after the slice time for a
i
 finishes. In this case, a

i
 has to wait for P-S time

units. Round robin scheduling is non-preemptive, so the actor executes in a full slice time

without being interrupted. This means that the processing time of a
i
 is equal to t(a

i
). As a

result, the total worst-case response time of actor a
i
 is shown in equation 4-1.

)()(ii aeSPar +−= (4-14)

4.2.3 Modeling Combination of Quasi-static Ordering and TDM/Round
Robin Schedule

Figure 19 shows the quasi-static ordering analysis model of the graph shown in Figure 11.

To model the combination of quasi-static ordering and TDM/round robin scheduling, the

response time of all mapped actors should be adapted with the worst-case response time.

As described in the previous subsection, the worst-case response time of an actor is

composed of two parts, arbitration time and processing time. Here actors mapped on the

same processor are grouped by quasi-static ordering schedule. A group of actors are taken

as a single big actor execution on the processor. Therefore, we calculate the worst case

response time for this group of actors but not for each single actor. The arbitration time

of the group starts when the first actor of this group is activated and finishes when this

actor gets the resources to execute. As shown in Figure 20, one group of actors are

mapped on P
1
, while another group of actors are mapped no P

2
. There are 4 edges

between these two groups. Four Extra actors are added to the analysis model to represent

the arbitration time of round robin scheduling. The response times for the actors are

explained in the rest of this subsection.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 47 (85)

Figure 20 Modeling Combination of Quasi-static Ordering and Round Robin
Schedule

Assume that the period of a processor is P. For quasi-static ordering, the round robin

scheduler assigns a slice time S to a group of actors V
 =
[a

1
, a

2
 … a

n
] instead of only one

actor. The group of actors should be assigned enough computation resources to ensure

that they can finish execution in one slice time. The group of actors is divided into non-

modal actors V
n
 and modal actors V

m
. The mode set of this group of actors is M = {m

1,
m

2
,

…, m
k
}. So the resource requirement for mode m

k
 ∈M is equal to:

∑∑
=∈∈

+=
kjmjni maVa

j

Va

ik aeaemsource
)mod(&

)()()(Re
 (4-15)

The scheduler then assigns the maximum resource requirement of all modes to the group,

which is:

∑∑
=∈

∈

∈

+=
kjmj

k

ni maVa

jMm

Va

i aeaegroupsource
)mod(&

)(max)()(Re

 (4-16)

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 48 (85)

The worst case arbitration situation happens in the situation that the time slice assigned

to this group just finishes and the first actor of this group is activated. This will cause the

group to wait for the worst case arbitration time a(group) shown in:

)(Re)(groupsourcePgroupa −= (4-17)

We model the arbitration time with extra actors. The arbitration time happens when there

is an edge from other groups. And the response time for the actors in the group will be set

as the execution time of that actor.

The analysis model for the scheduling strategy of combination of quasi-static ordering and

TDM is the same as the combination of quasi-static ordering and round robin. The only

difference is the value of time for each actor. As explained in 1.9.1, we have represented

the arbitration time and processing time for actors under the combination of static

ordering and TDM scheduling. For the combination of quasi-static ordering and TDM

scheduling, the arbitration time and processing time are the same. They are:

 ))(mod)(()(/)()(iiiii aSaePaSaeap −⋅= (4-18)

)()(ii aSPaa −= (4-19)

According to the scheduling strategy, the response time of the added extra actors will be

set as the arbitration time of the group, and the response time of the actors in the group

will be set as their processing times.

4.3 MCDF Scheduling Strategy

As explained in Section 3, static ordering scheduler cannot correctly schedule an MCDF

graph. In an MCDF graph, you can not define a fixed execution order for the data-

dependent actors. However, MCDF graph can have fixed execution order inside the mode

branch. Therefore, we adapt the scheduler to have static order inside each mode branch

which is called quasi-static ordering. When doing scheduling, we combine quasi-static

ordering with TDM scheduling.

Further more, to solve the problem that not all processors support TDM scheduling, round

robin scheduling is introduced as the local scheduler for processors. Thus, for processor

who does not support TDM scheduling, we apply the combination of quasi-static ordering

and round robin scheduling to it.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 49 (85)

4.3.1 Adapting the Original Scheduler

For MCDF, the basic point of the scheduling strategy is to guarantee that only the actors

belonging to one single mode are activated per each firing of mode controller. The

scheduler is adapted in the following aspects:

• Per processor, before scheduling any modal actors, the scheduler first schedules a

mode switch that reads a control signal from the mode controller and decides which

mode branch to execute. The reason is explained in the following subsection.

• The mode select actors are deleted. Deleting mode select actors do not affect the

temporal behavior of the graph. The actors after the mode select will be handled in the

next rule.

• Any non-modal actors after mode select will be scheduled independently in every

mode. That means these non-modal actors will be copied as many as the number of

the modes, and each copy in different mode share the same properties (including

execution time, and mapping) except the name.

4.3.2 Adding Mode Switch to Processor

In order to guarantee that only modal actors belonging to the current mode will be fired,

we add mode switch to the processor on which more than two types of modal actors are

mapped. We show the reason by comparing between two different analysis models built

from the same MCDF graph.

Figure 21 depicts the analysis model without scheduling extra mode switch on each

processor. Figure 22 depicts the analysis model with scheduling mode switch when there

are more than two types of modal actors mapped on this processor. For both analysis

models, actors A, B, and C are modal actors belonging to mode blue, and actors D and E

are modal actors belonging to mode red. In Figure 22, an extra mode switch is scheduled

on processor P3 as there are two types of modal actors C and E mapped on this processor.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 50 (85)

MC
0

Mode Switch

0

A

1
D

1

B
1

C
1

E
1

Mode Select

0

Figure 21 Analysis Model with Mode Switch

MC
0

Mode Switch

0

A
1

D
1

B

1
C
1

E
1

Mode Select
0

Mode Switch2
0

P1 P2

P3

Figure 22 Analysis Model without Mode Switch

If we execute the graph in the mode sequence of mode blue once followed by mode red

once, we obtain the Gantt chart for both of the schedule strategies. Figure 23 (a) shows

the scheduler without adding an extra switch. With this schedule strategy, the worst case

for both mode blue and mode red are 4 time units. Figure 23 (b) shows the scheduler with

adding extra switches. With this schedule strategy, the worst case to finish executing in

mode blue is 3 while for mode red is 4. From the example above, we can prove that it may

be necessary to add extra mode switches on certain processors.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Overall Approach

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 51 (85)

Figure 23 Gantt chart of the Self-time Execution of Switch Analysis Model

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Analysis Tool Design

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 53 (85)

5 Analysis Tool Design

To model the real-time scheduling procedure, we use Objective Caml (OCaml) language to

build the simulation Heracles tool. With Heracles, we build the analysis model according to

the scheduling strategy. Timing analysis methods are implemented too.

5.1 Objective Caml

Caml is a general-purpose programming language, designed with program safety and

reliability in mind. Caml supports functional, imperative, and object-oriented programming

styles. It has been developed and distributed by INRIA, France's national research institute

for computer science.

The Objective Caml system is the main implementation of the Caml language. It features a

powerful module system and a full-fledged object-oriented layer. It comes with a native-

code compiler that supports numerous architectures, for high performance; a bytecode

compiler, for increased portability; and an interactive loop, for experimentation and rapid

development. [10]

There are several properties that make Ocaml different from other programming

languages. First, the functions can be taken as values in the code. So the name of the

function can be passed as a parameter of other function. Second, the programmers do not

have to give the type information of variables. The compiler will deduce the type

information from the code. And also, the verification of the type will also be done during

the compile period. Third, Ocaml can raise an exception when certain condition is met.

With this, the programmer can get some intermediate result from the code. Also, Ocaml

has imperative features. It has memory states that the programmer can modify like the

mutable elements in the record structure. Supporting reference, loops, control structures

are also the features of imperative language.

5.2 Heracles Analysis Tool

Heracles analysis tool is designed by the researchers from ST-Ericsson, Eindhoven. The

tool takes graph file, platform architecture file and mode sequence file as inputs. It

outputs the scheduling of the graph and possible temporal performance analysis. The

scheduling includes the actor mapping and execution order. The temporal performance

can be the throughput for the graph or for each mode, the self-timed execution of certain

mode sequence, or the static periodic execution of certain mode sequence.

5.2.1 Graph File

The implementation of the graph data type on Heracles was already done by previous

developers. It is designed as below:

type (a’, b’) Graph = a’ list * ((a’ * a’) * b’) list

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Analysis Tool Design

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 54 (85)

a’ is a template type which can be replaced by any type such as SDF actor type. b’ is also a

template type which can be replaced by any type such as edge type. The data structure of

the graph is composed of two elements. The first element is a list of type a’ such as a list

of SDF actors. The second element is a list of edges. The edge is a tuple which represent

the source and sink of the edge and an edge information type b’.

Figure 24 shows an example of graph file. It is the graph description of the MCDF graph

shown in Figure 11. Each actor has a unique name which is used to identify the actor and a

property “exec” which represents the execution time of this actor. Each actor may also has

properties like “slice” means the slice time assigned by TDM scheduler, “group” which

means the group number this actor belongs to, “proct” which means the processor type

this actor should be mapped on, and “mode” which means the mode this actor belongs to.

Each edge should has the properties like “src” which means the source of this edge, “dst”

which means the destination of this edge, “prod” which means the production rate of this

edge, “cons” which means the consumption rate of this edge and “type” which indicates

the type of the edge. Each edge may also have the property of “delay” which indicates the

initial token on this edge.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Analysis Tool Design

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 55 (85)

Figure 24 Graph File

The parser reads the graph file and stores it in the data structure of Graph.

5.2.2 Architecture File

The graph is executed on an MPSoC platform. One example of the input architecture is

shown in Figure 25. Each processor should have a unique name which identifies the

processor, “type” which represents the type of the processor, “sched” which indicates the

local scheduling strategy of the processor, “wheeltime” which represent the total resource

of this processor, and “weight” which is used in reducing the slice time.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Analysis Tool Design

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 56 (85)

Figure 25 Architecture File

5.2.3 Mode Sequence File

The real time requirement of executing in certain mode sequence is described in mode

sequence file. Figure 26 shows an example of mode sequence file. In Heracles tool, we

define a type:

(name*time)

Here name indicates the mode name and time indicates how many times this mode should

be executed. The data structure of a mode sequence is:

(name*time) list * int

It is composed of a list of (name*time) and an integer which means the execution of the

mode sequence should takes less time than the value of the integer.

Figure 26 Mode Sequenc File

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Implementation

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 57 (85)

6 Implementation

We already described the data structure for graph, platform architecture and mode

sequence in section 5. In this section, we describe the scheduling procedure for MCDF

graph, analysis model building and timing analysis implementation.

6.1 MCDF Graph Scheduling Procedure

Figure 27 shows the scheduling procedure and analysis model building procedure which

is based on the original implementation designed by researcher from ST-Ericsson. We

modified the implementation to schedule MCDF graph.

Figure 27 Heracles Scheduling Procedure for MCDF Graph

After parsing the MCDF graph into the system, the tool first checks the correctness of the

input MCDF graph according to the construction rule explained in section 2.

After we get the correct input MCDF graph, we do the graph transformation. The graph

transformation includes tunnel representation and graph adaptation to the scheduler. The

tunnel representation is done according to description in section 2. The adaptation is

implemented according to section 4.3.1 which includes deleting switch actors as extra

switch actors will be scheduled by the scheduler, deleting select actors, copying non-

modal actors after select actors.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Implementation

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 58 (85)

Currently, we only consider single rate MCDF, so MCDF is already HSDF without SDF-to-

HSDF conversion. The system then initialize the candidate list and enters the backtracking

procedure which is described in section 1. The modification to the scheduling with back

track procedure includes changing the schedule strategy and analysis model building.

After each mapping of the actor, the group of actors is quasi-statically ordered. For each

processor, extra mode switch actor is added if necessary. The response time of the

arbitration actors are set according to equation 4-17 and 4-19. Timing analysis methods

include STS and SPS will be used to check the validation of the mapping.

6.2 Self-timed Scheduling with Mode Sequence

STS is used to calculate MCM for the graph in the existing analysis tool. To calculate the

MCM, the system starts to execute the graph until it enters the periodic regime. The MCM

then can be calculated from the periodic phase. If we want to know the throughput for

executing certain mode, we create sub graph according to the mode and do symbolic

simulation on this sub graph which is implemented by previous developers from ST-

Ericsson and explained in the next subsection. Here we want to execute the MCDF graph

with certain mode sequence under STS. We want to stop the execution when the systems

finished executing the mode sequence no matter it enters the periodic phase or not. The

following sub sections will explain the symbolic simulation to calculate MCM under STS

and the modification we do to make symbolic simulation calculate the latency for mode

sequence.

6.2.1 Symbolic Simulation Procedure

The state space is used to simulate the status of the graph during execution. By doing

this, the transient phase and periodic phase of STS execution can be found. Further, the

MCM can be calculated from the timing analysis of the periodic phase.

The state of a dataflow graph is a pair (γ, v), composed by the state of each actor and the

state of its FIFO edges.

As we may have several actors running concurrently, an actor state v is the sorted multi-

set (one element per executing actor) of the remaining execution time for each of the

actor firings.

The FIFO state γ is defined by how many tokens are stored within the edge.

Let us define a dataflow graph transition as changing from a state into another different

state. We may denote a transition as (γ
1
, v

1
) ->β (γ

2
, v

2
), where β ∈ {start, finish, update}

denotes the type of transitions. A start transition may only occur, accordingly to the

dataflow graph firing rules, when enough tokens are present on all of the actor's input

FIFOs.

A finish transaction is scheduled as soon as a start transition is, as we have knowledge of

the actor execution/response time. An update transition is issued when a pre-determined

actor executes so that we may update and compare the states.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Implementation

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 59 (85)

A graph execution is therefore the set of transitions from t = 0 until t = 1, where t stands

for the simulation clock time. In [8] is demonstrated that a consistent graph execution

flow is composed of two parts. The transient phase consisting of a finite number of

transitions, and in the periodic phase, a sequence of transitions will repeat infinitely.

Suppose we have a timed sub graph shown in Figure 28.

Figure 28 Simple Sub Graph

The state space exploration of Figure 28 is shown in Figure 29. The numbers in the circle

means the time of the state. The shadowed rectangular near the circle contains the events

happening at this state. We can find out that the state of 60 has the exactly the same state

of 30 which means that the periodic phase of the STS execution is found.

Figure 29 State Space Exploration

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Implementation

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 60 (85)

6.2.2 Alternative to Building Sub Graph

In order to calculate the MCM for certain mode or execute the graph in certain mode, we

do not create sub-graph for that mode during implementation. Instead, we set the

response time of the modal actors which do not belong to the current mode to be 0.

MC

1

Source

1

Mode Switch

1

A

1
C

2

P1

MC

1

Source

1

Mode Switch

1

A

1

P1

MC

1

Source

1

Mode Switch

1

A

1
C

0

P1

(a) (b) (c)

Mode1 Mode2
Mode2Mode1 Mode1

Figure 30 Sub Graph Building

Figure 30 shows an example about how we build the sub-graph and the alternative to the

sub-graph. Figure 30 (a) is the original MCDF graph. To build the sub-graph of mode1,

actor C is deleted and the edges associated with actor C are deleted too. The sub-graph

for mode1 is shown in Figure 30(b). Instead of building sub-graphs, we design an

alternative model to represent sub-graphs by setting the response times of the modal

actors not belonging to the current mode to be 0. The alternative for sub-graph shown in

Figure 30(b) is depicted in Figure 30 (c). During STS execution the alternative graph in

Mode1, the actor C will be executed too. They will not affect the timing analysis result

because their time valuations are zero. This means that by applying symbolic simulation to

Figure 30 (b) and Figure 30 (c), we get the same timing analysis result. We explain this by

doing state space exploration to the sub-graph shown in Figure 30(b) and to the graph

shown in Figure 30(c). The state spaces are depicted in Figure 31(a) and Figure 31(b). We

can get exactly the same timing analysis results from these two state space explorations.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Implementation

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 61 (85)

Figure 31 Symbolic Simulation State Space of Sub Graph

By applying the symbolic simulation to the alternative graph of sub-graph of mode1, we

can compute the MCM for mode1. Although the alternative graph of sub-graph does not

violate the time consumption during execution, it increases the buffer size of the output

edges of the modal actors. The reason is the modal actors which do not belong to the

current mode execute and produce tokens to their output edges. Therefore, the buffer

size requirement is increased. When there is requirement about buffer size, the alternative

graph for sub-graph can not be used.

6.2.3 Symbolic Simulation Modification with Mode Sequence

In the current version of Heracles, symbolic simulation is used to calculate the MCM for

the input graph. However, we want to calculate the latency of a mode sequence. The

symbolic simulation function should be modified in the way of changing the stop

condition.

Assume we have the graph shown in Figure 30(a) as the input graph and a mode sequence

of Mode11Mode22. Symbolic simulation first calculates the length of the mode sequence,

and unfolds the mode sequence into a list of {Mode1, Mode2, Mode2}. Each actor is

assigned one property called number of firings.

During symbolic simulation, the system checks the number of firings of all the actors. No

matter what the current mode it is, all the actors will be executed as the time valuations of

those modal actors not belonging to the current are set to be 0. If all the actors have the

number of firings bigger or equal than the length of mode sequence, the symbolic

simulation stops and outputs the time of that moment. The time here is exactly how long

it takes to execute in the entire mode sequence.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Implementation

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 62 (85)

As for the MCDF graph, each actor executes once for every iteration. The number of firings

of an actor is increased by 1 after each firing. Before every execution of modal actors, the

system checks the number of firings of that actor. With this number, the system finds the

next mode from the mode sequence. For example, if actor A has the number of firing an

FN
A
, then the systems searches the unfolded mode sequence in the position of (FN

A
 +1).

The system matches the search mode with the mode of actor A. If it does not match, the

response time of A is set to be 0. Otherwise, A executes with its original response time.

We show the symbolic simulation procedure of the MCDF graph shown in Figure 30(a) with

the mode sequence of Mode11Mode21 below in Figure 32.

Time Actor Event Fired Times

0 source starts 0

1 source finishes 1

1 MC starts 0

2 MC finishes 1

2
Mode
Switch starts 0

3
Mode
Switch finishes 1

3 A starts 0

3 C starts 0

3 C finishes 1

4 A finishes 1

4 source starts 0

5 source finishes 2

5 MC starts 1

6 MC finishes 2

6
Mode
Switch starts 1

7
Mode
Switch finishes 2

7 A starts 1

7 C starts 1

7 A finishes 2

8 C finishes 2

Figure 32 Symbolic Simulation Mode Sequence

From Figure 32, we can find out that modal actors A and C execute in each iteration.

However, the response time of actor C is zero when executing in mode1 and the response

time actor A is zero when executing in mode2. It takes 8 time units to execute the mode

sequence of Mode11Mode21.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Implementation

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 63 (85)

6.3 Static-periodic Schedule with Mode Sequence

To do the timing analysis of an MCDF graph in a mode sequence with SPS, we need to

compute the transition time from one mode to another. As explained in section 4, the

transition problem is translated into linear programming constraints. This section, we

explain the methods to solve linear programming problem and the method we use in

implementation.

6.3.1 The Procedure of Solving Linear Programming Problem

One of the classical methods to solve linear programming problem is simplex algorithm.

GNU Linear Programming Kit (GLPK) solves the LP problem with primal and dual simplex

methods. The GLPK package is intended for solving large-scale Linear Programming (LP),

Mixed Integer Programming (MIP), and other related problems. [13]

As the Heracles tool is implemented in OCaml, we use OCaml-GLPK which is OCaml

bindings to GLPK. We show how OCaml-GLPK solves LP problem with the MCDF graph G =

(V, E) shown in Figure 30(a) with modes mode1 (M1), µ
1
= 4 and mode2 (M2), µ

2
= 5. In

order to do the timing analysis of the graph execute in mode sequence of M1NM2P (M1

stands for mode1, and M2 stands for mode2) under SPS, we build the linear programming

problem to find the bounds for start times of the actors in the transition phase of M11M21.

For each actor active in mode1, we have inequalities below according to inequalities (4.1):

0)0,(≥srcs

0)0,(≥MCs

0)0,(≥MSs

0)0,(≥As

0)0,(≥Cs

And inequalities (4.5):

1)0,()()0,()0,(+=+≥ srcssrctsrcsMCs

1)0,()()0,()0,(+=+≥ MCsMCtMCsMSs

1)0,()()0,()0,(+=+≥ MSsMStMSsAs

1)0,()()0,()0,(+=+≥ MSsMStMSsCs

41)0,(1)()0,()0,(1 −+=⋅−+≥ AsAtAssrcs µ

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Implementation

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 64 (85)

40)0,(1)()0,()0,(1 −+=⋅−+≥ CsCtCssrcs µ

And inequalities (4.6):

0)0,(' ≥srcs

0)0,(' ≥MCs

0)0,(' ≥MSs

0)0,(' ≥As

0)0,(' ≥Cs

And inequalities (4.7):

1)0,(')()0,(')0,(' +=+≥ srcssrctsrcsMCs

1)0,(')()0,(')0,(' +=+≥ MCsMCtMCsMSs

1)0,(')()0,(')0,(' +=+≥ MSsMStMSsAs

1)0,(')()0,(')0,(' +=+≥ MSsMStMSsCs

50)0,(1)(')0,(')0,(' 2 −+=⋅−+≥ AsAtAssrcs µ

52)0,(1)(')0,(')0,(' 2 −+=⋅−+≥ CsCtCssrcs µ

And inequalities (4.8):

)0,()0,(' srcssrcs ≥

)0,()0,(' MCsMCs ≥

)0,()0,(' MSsMSs ≥

)0,()0,(' AsAs ≥

)0,()0,(' CsCs ≥

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Implementation

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 65 (85)

1)0,()()0,()0,(' +=+≥ AsAtAssrcs

0)0,()()0,()0,(' +=+≥ CsCtCssrcs

We set the objective function to minimize:

)0,(')0,(')0,(')0,(')0,(' CsAsMSsMCssrcs ++++

The start times of the actors in each mode will be the variables for the linear programming

problem. With the inequalities and the objective function, we create a complete linear

programming problem. That can be solved by OCaml-GLPK.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Experiment and Results

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 67 (85)

7 Experiment and Results

In this section, 3 cases will be studied to show how to apply our scheduling strategy and

timing analysis to the MCDF graphs. We want to prove that the combination of quasi-static

ordering and TDM/round robin scheduling can schedule MCDF graphs. Furthermore, with

the 3 case studies, we want to find the advantage and disadvantage of timing analysis

methods, STS and SPS.

In the first 2 cases, the MCDF graphs will be running on the MPSoC platform template

depicted in Figure 1. It includes the type general core like ARM, to handle control and

generic functionality, the type vector processor core, like EVP, to handle detection,

synchronization, and demodulation, and the type of application-specific Software Codec

processor that takes care of the baseband coding and decoding functions, and

input/output (I/O) ports (see Figure 1). The platform is used to handle several radio

standards (Wireless Lan, TD-SCDMA, DVB-H, and UMTS).

7.1 Case 1 DVB-T MCDF Graph

We apply the combination of quasi-static ordering and TDM/round robin to the MCDF

graph of Digital Video Broadcasting-Terrestrial (DVB-T) baseband receiver shown running

on the MPSoC platform template depicted in Figure 1. The MCDF graph of DVB-T baseband

receiver (see Figure 33) has 3 modes: “synch_mode (syn)”, “drop_mode (drp)”, and

“dem_mode (dem)”. The actors colored in blue belong to “dem_mode”, the actors colored in

green belong to “drop_mode”, and the actors colored in red belong to “synch_mode”. There

are 2 data-dependent actors switch and select, one mode controller MC, and one non-

modal actor “source”. The numbers on the actors are the execution times with the time

unit of Nano-Second (ns). The mappings of the actors are given in the graph file (See 0).

Actor “source” is mapped on the ARM core. Actor “dec_sink” and “data_out” are mapped on

the core of software decoder. The rest are mapped on EVP. The summarized DVB-T MCDF

graph information is shown in Table 2. The input graph file of DVB-T can be found in

Appendix B.

Table 2 DVB-T MCDF Graph Information

Actor_name Short_name Time Mode Map_on_Processor
Mode
Controller MC 427 ns Null EVP

Source Src 0 ns Null ARM

Switch Switch 683 ns Null EVP

Select Select 250 ns Null EVP

Synch_acq Syn 57200 ns Syn EVP

Drop Drop 843 ns Drop EVP

Demode Dem 57400 ns Dem EVP

Decode&Sink Dec 335500 ns Dem Software Decoder

Data_out Data 0 Dem Software Decoder

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Experiment and Results

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 68 (85)

The real-time constraint for DVB-T is that the throughput of mode “dem_mode (dem)”

should be larger than)896/(1 sµ . Here we can represent this constraint as the MCM for

mode “dem_mode” should be smaller than sµ896 which is equal to ns896000 .

Source

0

MC

427

Switch

683

Syn

57200
drop

843

dem

57400

Select

250

Dec

335500

Data

0

Syn

Syn

Drop

Drop

Dem

Dem

Figure 33 DVB-T Baseband Receiver

As there is only real-time constraint about throughput, we do the scheduling and compute

the MCM as the timing analysis method. It is done with command:

./time Heracles –c2h –how –scc –cyc –f graphfile –s systemfile

Here graphfile is the graph file of the DVB-T, and the systemfile is the MPSoC platform file.

The DVB-T MCDF graph is scheduled by our scheduling strategy with the real-time

requirement mentioned above. The Heracles tool outputs the schedule of the graph in

Figure 34. The mapping of the actors is shown in the “bindings” information, and the

execution order is shown in the “DAG” information. We can generation the analysis model

with “bindings” and “DAG”. By running this MCDF graph on the MPSoC platform mentioned

above, we get the result of the MCM for mode “dem_mode” which is ns335500 . This MCM

is less than the required 896000ns which means that it meets the real-time requirement.

This example shows that our scheduling strategy can schedule an MCDF graph and

perform timing analysis methods on the timing analysis model.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Experiment and Results

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 69 (85)

Figure 34 DVB-T Schedule Result

According to the inequality 4.16, we can reduce the slice time assigned to each group of

actor. For the group mapped on software decoder processor, the time slice can be reduced

to 335500 ns. For the group mapped on EVP processor, the time slice can be reduced to

427+683+250+57400 = 58760 ns. For the group mapped on ARM processor, the time

slice can be reduced to 0 ns.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Experiment and Results

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 70 (85)

7.2 Case 2 Wireless Lan MCDF Graph

We apply the combination of quasi-static ordering and TDM/round robin to the MCDF

graph of Wireless LAN baseband receiver shown in Figure 35 running on the MPSoC

platform depicted in Figure 1. The graph file of Wireless LAN baseband receiver can be

found in Figure 35. The number on each actor is the execution time of that actor. Wireless

LAN MCDF graph has modal actors belonging to 4 modes: “crc_mode (crc)” in blue,

“synch_mode (syn)” in green, “hearder_mode (hd)” in red, and “payload_mode (pay)” in

yellow, 3 data-dependent actors Mode Switch, Mode Select, and Tunnel, one Mode

Controller, and 3 non-modal actors source, shifter, and blackhole.

The mappings of the actors are given in the graph file (see Appendix C). Actor Source is

mapped on ARM processor. Actor header_decode and payload_decode are mapped on

Software Codec processor. Actor data_out is mapped on external I/O ports. The rest are

mapped on the EVP processor. The summarized Wireless LAN MCDF graph information is

shown in Table 3.

Table 3 WLAN MCDF Graph Information

 A complete Wireless Lan job runs twice in “synch_mode”, once in “header_mode”, 1-255

times in “payload_mode”, followed by once in “crc_mode”. The real-time requirement for

Wireless LAN is that the system should finish execution in sn µ)428(⋅+ with the mode

sequence of syn2header1payloadncrc1.

In this example, we want to:

� Prove that the combination of Quasi-static ordering and TDM/round robin

scheduling can schedule MCDF graph

� Compute the MCM for each mode can be computed by symbolic simulation

� Perform STS timing analysis of the MCDF graph in certain mode sequence

� Perform SPS timing analysis of the MCDF graph in certain mode sequence

Actor_name Short_name Time Mode Map_on_Processor

Mode Controller MC 500 µs Null EVP

Source Src 4000 µs Null ARM

Shifter Shifter 1 µs Null EVP

Mode Switch Switch 0 µs Null EVP

Mode Select Select 0 µs Null EVP

Tunnel Tunnel 1 µs Null EVP

Crc Crc 500 µs Crc EVP

Cfensynch Csyn 355 µs Syn EVP

Ffensynce Fsyn 0 µs Syn EVP

Header_demode Hdem 920 µs Header EVP

Header_decode Hdec 920 µs Header Software Decoder

Header_analysis Hana 0 µs Header EVP

Payload_demode Pdem 920 µs Payload EVP

Payload_decode Pdec 920 µs Payload Software Decoder

Data_out Data 920 µs Payload Extern

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Experiment and Results

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 71 (85)

� Calculate the time it takes to get the timing analysis result

Source

4000

Switch

0

Shifter

1

Crc

500

Csyn

355

Hdem

920

Fsyn

0

Pdem

920

Hdec

920

Hana

0

Pdec

920

Data

920

Select

0

MC

500

Tunne

l

1

Crc

Crc

Syn

Syn

Header

Header

Payload

Figure 35 MCDF Graph of Wireless LAN Baseband Receiver

First, we only do the scheduling of the MCDF graph of Wireless LAN. The schedule is

checked by computing MCM with the command of:

./time Heracles –c2h –how –scc –cyc –f graphfile –s systemfile

Here the time wheels of the processors under round robin scheduling are all set to be

3000. The tool computes the MCM for the MCDF graph to be 5997 and finds critical cycle

depicted on the top of Figure 36. The time that the tool takes to do the scheduling with

MCM computation timing analysis method is 0.26s.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Experiment and Results

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 72 (85)

Figure 36 Wireless LAN Schedule Result

According to the inequality 4.16, we can reduce the slice time assigned to each group of

actor. For the group mapped on software decoder processor, the time slice can be reduced

to 920 µs. For the group mapped on EVP processor, the time slice can be reduced to 1425

µs. For the group mapped on ARM processor, the time slice can be reduced to 4000 µs.

For the group mapped on Extern, the time slice can be reduced to 4000 µs.

Second, we use symbolic simulation to compute the MCM for each mode which will be

further used in static periodic scheduling. The result is shown in Table 4. Here the left

column denotes the name of the modes, and the right column denotes the MCM for the

mode on its left.

Table 4 MCM for Each Mode

Third, we do the scheduling with STS timing analysis method. The command we use is

shown below. Here mosefile is the input mode sequence file.

./time Heracles –c2h –how –scc –sim –simms –f graphfile –s systemfile –ms mosefile

Mode Name MCM

crc 4000

synch 4000

header 5997

payload 4000

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Experiment and Results

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 73 (85)

The result of self-timed execution of mode sequence is shown in Table 5. The column of

Mode Sequence denotes that after each scheduling, the system check the real-time

requirement with this mode sequence. The column of time consumption denotes the time

it takes to execute in the mode sequence shown on its left. The column of Real-Time

Requirement means that the time the result of STS timing analysis should be smaller than

this requirement. The analysis time denotes that the time the tool spends to find the

schedule with STS timing analysis by checking the mode sequence shown on the column

of “Mode Sequence”. The application could have real-time requirements with more than one

mode sequence. In this Wireless LAN example, after each scheduling, it is required to

check 255 mode sequences which are Synch2header1payloadncrc1

where n = 1—255. For

different mode sequence, different time constraint is checked. From the Table 5, we can

find that it takes 21 minutes 37 seconds for the tool to find the schedule with STS timing

analysis method with the 255 mode sequences.

Table 5 Self-timed Execution of Mode Sequence

Mode Sequence Time Consumption Analysis Time Real-Time
Requirement

Synch
2
header

1
payload

1
crc

1
 26495 ns 1.22s 28000 ns

Synch
2
header

1
payload

2
crc

1
 29076 ns 1.25s 32000 ns

Synch
2
header

1
payload

3
crc

1
 32497 ns 1.26s 36000 ns

Synch
2
header

1
payload

4
crc

1
 36497 ns 1.28s 40000 ns

Synch
2
header

1
payload

5
crc

1
 40497 ns 1.32s 44000 ns

Synch
2
header

1
payload

255
crc

1
 1040497 ns 5.55s 1044000 ns

Synch
2
header

1
payload

n
crc

1
 - 21min37sec nsn 1000)428(⋅⋅+

Fourth, we show the scheduling with SPS timing analysis method. The command for

Heracles too is:

./Heracles –c2h –how –scc –sps -simms –f graphfile –s systemfile –ms mosefile

If we have a mode sequence like synch2header1payloadNcrc1 (1≥N), we compute the start

times of the actors during mode transition under SPS. We get the finishing time of

executing the mode transition under SPS from the information of the start times of the

actors. The result is shown in Table 6. We also have the time it takes for the analysis tool

to get the analysis result which is 1.82s. If we subtract this time by the time the system

takes to schedule and build analysis model, we get the time the tool takes to solve linear

programming problem with OCmal-GLPK. The time is 1.82 – 0.26s = 1.56s.

Table 6 Mode Transition under SPS

 Mode Transition Finishing Time Analysis Time

synch
1
header

1
payload

1
crc

1
 22495µs 1.82s

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Experiment and Results

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 74 (85)

By applying equation 4.9, we can get the static periodic execution time of mode sequence

synchaheaderbpayloadccrcd)1,,,(≥dcba . The time consumption of executing in mode

sequences that we are interested under SPS can be found in Table 7. The graph executes

static periodically. Therefore, in order to compute the time consumption of certain mode

sequence under SPS, we just add some certain numbers of the MCM of the repeating mode

to the finishing time of mode transition. For this example, loads of analysis time is saved.

Because the real-time requirement of this example is to check the time consumption of

mode sequence Synch2header1payloadncrc1 where n = 1—255. With SPS timing analysis

method, we only compute the time consumption of mode transition

Synch2header1payload1crc1. With simple mathematical computation, the time consumption

of mode sequence Synch2header1payloadncrc1 can be obtained as shown in Table 7.

Table 7 SPS Timing Analysis of Mode Sequence

The time consumptions of the mode sequences are all smaller than their real-time

requirement. Therefore, the schedule is verified.

From this example, we can find that the timing analysis result of STS is tighter or equal

than SPS.

7.3 Case 3 Corner Example

In order to show the difference between STS and SPS in the tightness of timing analysis,

we artificially build the MCDF graph shown in Figure 37. This artificial graph has 2 modes:

mode red and mode blue. The numbers on the actors are the execution times. The graph

file is shown in Appendix D. The graph information is summarized in Table 8.

Table 8 Graph Information of Corner Example

Actor_name Short_name Time Mode Map_on_Processor
Mode
Controller MC 0 s Null Proc1

Switch Switch 0 s Null Proc1

Tunnel Tunnel 0 s Null Proc2

A A 1 s red Proc3

C C 3 s red Proc4

B B 1 s blue Proc5

Mode Sequence Time Consumption
under SPS

Real-Time Requirement

synch
1
header

1
payload

1
crc

1
 22495 ns -

Synch
2
header

1
payload

2
crc

1
 30495 ns 32000 ns

Synch
2
header

1
payload

10
crc

1
 62495 ns 64000 ns

Synch
2
header

1
payload

100
crc

1
 422495 ns 424000 ns

Synch
2
header

1
payload

255
crc

1
 1042495 ns 1044000 ns

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Experiment and Results

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 75 (85)

We assume there is always enough resource which means that the actor can start to

execute when it is activated. This is done by assigning the full time wheel of a processor

to the actor, and all the actors are mapped on the different processors. By doing this,

there is no arbitration time for all the actors. We try to do the timing analysis with mode

sequence of “red2blue2”.

Figure 37 Corner Example

With the STS timing analysis result, we draw the Gantt chart for this STS execution in

Figure 38. In this figure, we define X
i
as the ith execution of actor X.

From the Gantt chart,

we can find that the STS execution finishes at time 7, and the start time of actor B’s

second execution is 2.

Figure 38 STS Gantt chart

We also try to do SPS timing analysis with the mode sequence of “red2blue2”. The start

times in mode red and in mode blue is shown in Table 9. With these start times, we draw

the Gantt chart for SPS execution in Figure 39.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Experiment and Results

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 76 (85)

Table 9 Start Times under SPS

Mode Red Mode Blue

start_A_1_1 -> 0
start_B_1_1 -> 0
start_C_1_1 -> 1
start_mc_1_1 -> 0

start_A_1_1 -> 4
start_B_1_1 -> 3
start_C_1_1 -> 4
start_mc_1_1 -> 3

Figure 39 Gantt chart of SPS Execution

Both STS and SPS execution finish in time 7. However, the start time of B
2
 with STS is 2

while it is 4 with SPS. In this corner example, it is shown that the timing analysis result of

STS is tighter than SPS.

Furthermore, we can do timing analysis to mode sequence (red2blue2)n which means that

the MCDF graph executes in the mode sequence of red2blue2 for n times. We define s(B
2
, i)

as the second execution of actor B in the ith execution of mode sequence red2blue2. We can

find the s(B
2
, i) from the timing analysis result with both STS and SPS. They are

represented in the following equations.

46),(2 += iiBs SPS 0≥i (7-1)

23),(2 += iiBs STS 0≥i (7-2)

From the equations above, we can find the difference between SPSiBs),(2 and STSiBs),(2

is 3i+2.

7.4 Summary

From the 3 cases above, we can conclude that when doing timing analysis with a mode

sequence, STS timing analysis method computes tighter timing analysis result than SPS

timing analysis method.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Experiment and Results

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 77 (85)

Further more, the time it takes for STS timing analysis method to get the result depends

on the length of the mode sequence. Longer mode sequence leads to longer time

consumed to do STS timing analysis. However, the time it takes for SPS timing analysis

method to get the result depends on the complexity of the mode transition. For example,

if an MCDF graph has n modes with mode set M = {M
1,
 M

2,
 M

3,
 M

4,
 M

5,
…, M

n
 }. The real-time

requirement is represent with a mode sequence like: (M
1
 M

2
 M

3
 M

4
 M

5
… M

n
), which means

the graph execute in each of its mode once continuously. It has lots of mode transitions

which will make the linear programming very complex and requires long time to solve the

linear programming problem.

Therefore, we can conclude that if the mode sequence is short, STS timing analysis should

be chosen as the timing analysis method. If there is a very long mode sequence which do

not have complex mode transition, SPS timing analysis method will be the better choice.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

Conclusions and Future Work

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 79 (85)

8 Conclusions and Future Work

We have presented that the combination of quasi-static ordering and TDM/round robin can

schedule the MCDF graphs. Timing analysis methods include MCM computation, STS, and

SPS are explained and implemented. We also compare the advantage and disadvantage of

the timing analysis methods. STS timing analysis method provides the tightest timing

analysis result. It is fast to do STS timing analysis when the mode sequence is short

enough. SPS timing analysis can be converted into linear programming problem. With the

same mode sequence, it may be faster to do SPS timing analysis than STS timing analysis

when the mode sequence has long mode sequence and not so many mode transitions.

However, there are still many aspects of the scheduling strategy and timing analysis

methods should be improved. First, for STS timing analysis method, we can try to find a

way to avoid simulating all the mode sequences. As illustrated in [8], for every consistent

SDF graph, the self-timed execution will finally become periodic. Therefore, the symbolic

simulation of mode sequence can stop when enter the periodic phase. Second, we can

investigate the time consumption of executing in the mode sequence of (AmBn)p which

means the graph execute in mode sequence of AmBn for p times. The cyclical of executing

in mode sequence (AmBn)p can be researched. Third, MCDF graphs are assumed to be single

rate. Our scheduling strategy can not schedule multi-rate graphs. Further research can be

carried out for multi-rate MCDF graphs. Finally, the SPS timing analysis is converted into LP

problem. The complexity of the LP problem is discussed in subsection 4.1.4. Further study

can be carried out to reduce the complexity of the LP problem.

Static Analysis and Task Scheduling for
Multi-mode Software-Defined Radio

Applications

MASTER’S
THESIS

References

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 80 (85)

References

[1] K. van Berkel et al. “Vector Processing as an Enabler for Software-Defined Radio in Handheld Devices”, EURASIP

Journal on Applied Signal Processing, vol. 2005, pp. 2613-2625, January, 2005.

[2] Ulrich Ramacher. “Software-Defined Radio Prospects for Multistandard Mobile Phones”, IEEE Computer, vol. 40,

issue. 10, pp. 62-69, October, 2007.

[3] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor System-on-Chip (MPSoC) Technology”, IEEE Trans.

On CAD Integrated Circuits and Systems 27(10), pp. 1701-1713, October, 2008.

[4] O.Moreira, F.Valente, and M.Bekooij, “Scheduling Multiple Independent Hard-Real-Time Jobs On a

Heterogeneous Multiprocessor”, Proceeding of the 7
th
 ACM & IEEE international conference on

Embedded Software, Salzburg, Austria, pp. 59-66, September 30 - October 3, 2007.

[5] O.Moreira, and M.J.G.Bekooij, “Self-Timed Scheduling Analysis for Real-Time Applications”, EURASIP

Journal on Analysis in Signal Processing, vol 2007, Article ID 83710.

[6] Edward A. Lee, and David G.Messerschmitt, “Synchronous Data Flow”, Proceedings of the IEEE, vol.

75, no. 9, pp. 1235-1245 September, 1987.

[7] S. Sriram, and S.S. Bhattacharyya, “Embedded Multiprocessors Scheduling and Synchronization”,

Chapter 3 Background Terminology and Notation, pp.31-53,ISBN: 0-8247-9318-8 MARCEL DEKKER,
INC.

[8] A.H.Ghamarian, M.C.W.Geilen, S.Stuijk, et al., “Throughput analysis of synchronous data flow graphs”,

in Proceedings of the 6th International Conference on Application of Concurrency to System Design
(ACSD ‘06), pp. 25-36, Turku, Finland, June, 2006.

[9] O.Moreira, Jan-David Mol, M. Bekooij, and Jef van Meerbergen, “Multiprocessor Resource Allocation

for Hard-real-time Streaming with a Dynamic job-mix”, In Proceedings of the 11
th
 IEEE Real Time on

Embedded Technology and Applications Symposium, pp.332-341, 2005.

[10] http://caml.inria.fr/ocaml/index.en.html

[11] T.H. Cormen, C.E.Leiserson, R.L.Rivest, and C.Stein “Introduction to Algorithms, Second Edition”,

Chapter 7 Linear Programming, pp.770-804, The MIT Press.

[12] R.Govindarajan and G.R. Gao, “A Novel framework for multi-rate scheduling in DSP scheduling”, In

Proceeding s of International Conference on Application-Specific Array Processors, pp.77-88, Venice,
Italy, October, 1993.

[13] http://www.gnu.org/software/glpk/

STE Common Word Template, Word 2003
Version

Document Type Acronyms and Terms

Subtitle

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 81 (85)

Acronyms and Terms

SDR Software Defined Radio

DF Data Flow

GSM Global System for Mobile

Communication

WCDMA Wideband Code Division

Multiple Access

HSDPA High-Speed Downlink

Packet Access

DVB-H Digital Video Broadcasting-

Handheld

GPS Global Positioning System

MPSoC Multi-Processor System on

Chip

VLSI Very Large Scale Integration

NOC Network On Chip

FIFO First-In-First-Out

TDM Time Division-Multiplex

MCDF Mode Controlled Data Flow

MC Mode Controller

MCM Maximum Cycle Mean

STS Self-Timed Schedule

SPS Static Periodic Schedule

LP Linear Programming

RR Round Robin

OCaml Objective Caml

GLPK GNU linear programming kit

MIP Mixed Integer Programming

DVB-T Digital Video Broadcasting-

Terrestrial

WLAN Wireless Local Area Network

EVP Embedded Vector Processor

STE Common Word Template, Word 2003
Version

Document Type Appendix A: MPSOC
PLATFORM FILE

Subtitle

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 82 (85)

Appendix A: MPSOC PLATFORM FILE

processor

name="EVP" wheeltime=896000 type=1 sched="roundrobin" weight=100;
name="SwDecoder" wheeltime=896000 type=2 sched="roundrobin" weight=100;
name="ARM" wheeltime=896000 type=3 sched="roundrobin" weight=100;
name="Src" wheeltime=1 type=4 sched="tdma" weight=0;
name="Lat1" wheeltime=1 type=5 sched="off" weight=0;
name="Lat2" wheeltime=1 type=6 sched="off" weight=0;
name="Lat3" wheeltime=1 type=7 sched="off" weight=0;

end

STE Common Word Template, Word 2003
Version

Document Type Appendix B: DVB-T
Graph File

Subtitle

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 83 (85)

Appendix B: DVB-T Graph File

actors
name="synch_acq" exec=57200 slice=80000 group=1 proct=1 mode=1;
name="drop" exec=843 slice=80000 group=1 proct=1 mode=2;
name="dem" exec=57400 slice=80000 group=1 proct=1 mode=3;
name="dec_sink" exec=335500 slice=671000 group=2 proct=2 mode=3;
name="data_out" exec=0 slice=671000 group=2 proct=2 mode=3;
name="mc" exec=427 slice=80000 group=1 proct=1 type="mode_controller";
name="source" exec=1 slice=80000 group=3 proct=3;
name="switch" exec=683 slice=80000 group=1 proct=1 type="switch";
name="select" exec=250 slice=80000 group=1 proct=1 type="join";
arcs
src="source" dst="switch" prod=1 cons=1 type="fifo";
src="mc" dst="switch" prod=1 cons=1 delay=0 type="control";
src="mc" dst="select" prod=1 cons=1 delay=0 type="control";
src="switch" dst="synch_acq" prod=1 cons=1 type="fifo";
src="switch" dst="drop" prod=1 cons=1 type="fifo";
src="switch" dst="dem" prod=1 cons=1 type="fifo";
src="synch_acq" dst="select" prod=1 cons=1 type="fifo";
src="drop" dst="select" prod=1 cons=1 type="fifo";
src="dem" dst="select" prod=1 cons=1 type="fifo";
src="dem" dst="dec_sink" prod=1 cons=1 type="fifo";
src="dec_sink" dst="data_out" prod=1 cons=1 type="fifo";
src="select" dst="mc" prod=1 cons=1 delay=1 type="fifo";
constraints
mud=896000;
end

STE Common Word Template, Word 2003
Version

Document Type Appendix C: Wireless
LAN Graph File

Subtitle

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 84 (85)

Appendix C: Wireless LAN Graph File

actors

name="mc" exec=500 slice=1425 group=1 proct=1 type="mode_controller";
name="source" exec=4000 slice=4000 group=2 proct=2;
name="shifter" exec=1 slice=1425 group=1 proct=1;
name="mswitch" exec=0 slice=1 group=1 proct=1 type="switch";
name="mselect" exec=0 slice=1425 group=1 proct=1 type="join";
name="mtunnel" exec=1 slice=1425 group=3 proct=3 type="tunnel";
name="blackhole" exec=1 slice=1425 group=1 proct=1;
name="cfensynch" exec=355 slice=1425 group=1 proct=1 mode=1;
name="ffence" exec=0 slice=1425 group=1 proct=1 mode=1;
name="header_demode" exec=920 slice=1425 group=1 proct=1 mode=2;
name="header_decode" exec=920 slice=2000 group=3 proct=3 mode=2;
name="header_analysis" exec=0 slice=1425 group=1 proct=1 mode=2;
name="payload_demode" exec=920 slice=1425 group=1 proct=1 mode=3;
name="payload_decode" exec=920 slice=2000 group=3 proct=3 mode=3;
name="data_out" exec=920 slice=920 group=4 proct=4 mode=3;
name="crc" exec=500 slice=1425 group=1 proct=1 mode=4;

arcs

src="mc" dst="mswitch" prod=1 cons=1 delay=0 type="control";
src="mc" dst="mselect" prod=1 cons=1 delay=0 type="control";
src="mc" dst="mtunnel" prod=1 cons=1 delay=0 type="control";
src="mc" dst="shifter" prod=1 cons=1 type="fifo";
src="source" dst="shifter" prod=1 cons=1 type="fifo";
src="shifter" dst="mswitch" prod=1 cons=1 type="fifo";
src="mswitch" dst="cfensynch" prod=1 cons=1 type="fifo";
src="mswitch" dst="header_demode" prod=1 cons=1 type="fifo";
src="mswitch" dst="payload_demode" prod=1 cons=1 type="fifo";
src="mswitch" dst="crc" prod=1 cons=1 type="fifo";
src="mswitch" dst="blackhole" prod=1 cons=1 type="fifo";
src="cfensynch" dst="ffence" prod=1 cons=1 type="fifo";
src="header_demode" dst="header_decode" prod=1 cons=1 type="fifo";
src="header_decode" dst="header_analysis" prod=1 cons=1 type="fifo";
src="payload_demode" dst="payload_decode" prod=1 cons=1 type="fifo";
src="payload_decode" dst="data_out" prod=1 cons=1 type="fifo";
src="header_analysis" dst="mtunnel" prod=1 cons=1 type="fifo";
src="mtunnel" dst="payload_decode" prod=1 cons=1 type="fifo";
src="crc" dst="mselect" prod=1 cons=1 type="fifo";
src="cfensynch" dst="mselect" prod=1 cons=1 type="fifo";
src="header_analysis" dst="mselect" prod=1 cons=1 type="fifo";
src="mselect" dst="mc" delay=1 prod=1 cons=1 type="fifo";

constraints

mud=100000;

end

STE Common Word Template, Word 2003
Version

Document Type Appendix D: Corner
Example Graph File

Subtitle

Doc ID Rev Rev Date: Aug 18th 2009 Root Part No. 85 (85)

Appendix D: Corner Example Graph File

actors
name="A" exec=1 slice=10 group=1 proct=1 mode=1;
name="B" exec=1 slice=10 group=2 proct=2 mode=2;
name="C" exec=3 slice=10 group=3 proct=3 mode=1;
name="mc" exec=0 slice=10 group=4 proct=4 type="mode_controller";
name="switch" exec=0 slice=10 group=4 proct=4 type="switch";
name="tunnel" exec=0 slice=10 group=5 proct=5 type="tunnel";
arcs
src="mc" dst="switch" prod=1 cons=1 delay=0 type="control";
src="mc" dst="tunnel" prod=1 cons=1 delay=0 type="control";
src="switch" dst="A" prod=1 cons=1 type="fifo";
src="switch" dst="B" prod=1 cons=1 type="fifo";
src="A" dst="tunnel" prod=1 cons=1 delay=0 type="fifo";
src="tunnel" dst="B" prod=1 cons=1 delay=0 type="fifo";
src="A" dst="C" prod=1 cons=1 type="fifo";
src="C" dst="A" prod=1 cons=1 delay=2 type="fifo";
constraints

mud=10;

end

	Abstract
	Preface
	Legal Information
	Contents
	1 Introduction
	2 Mode-Controlled Data Flow
	3 Problem Description
	4 Overall Approach
	5 Analysis Tool Design
	6 Implementation
	7 Experiment and Results
	8 Conclusions and Future Work
	References
	Acronyms and Terms
	Appendix A: MPSOC PLATFORM FILE
	Appendix B: DVB-T Graph File
	Appendix C: Wireless LAN Graph File
	Appendix D: Corner Example Graph File

