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Abstract 

Synchronous Data Flow (SDF) Graphs can be scheduled on a multi-processors architecture with 

hard real-time constraints. The Heracles tool, designed by the researchers from ST-Ericsson, 

Eindhoven, can perform automatic scheduling and rigorous timing analysis of SDF graphs. 

However, SDF is too restrictive to model the baseband processing of radio applications.  

This thesis describes the extension of Heracles tool to mode controlled data flow graphs to express 

data-dependent concurrency in software-defined radio applications. A new scheduling strategy, the 

combination of quasi-static and TDM/round robin is designed and implemented to schedule the 

mode controlled data flow graphs. Two new timing analysis methods, self-timed scheduling and 

static periodic scheduling, are introduced to do the timing analysis of the scheduled data flow 

graphs, and implemented on Heracles tool. 
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1 Introduction 

1.1 Background 

Many multimedia applications are integrated on mobile terminals. Cellular phones 

nowadays not only serve as a tool to make phone calls, but also perform some other tasks 

like web browsing and media playing. The applications, which involve baseband radio 

processing, may start or stop at any time and run simultaneously.  

At the Advanced R&D group of ST-Ericsson in Eindhoven, a project is being carried out to 

study the usage of embedded multiprocessor systems to process multiple Software-

Defined Radios (SDRs) simultaneously. These SDRs may start/stop execution at any time 

and each one has its own rate of operation. The Heracles tool is designed to schedule the 

SDRs on a target Multi-Processor System on Chip and do the timing analysis of the 

scheduling. In Heracles, the SDR jobs are represented as Data Flow (DF) graphs. Currently, 

one restriction of Heracles is that the amount of data produced and consumed per 

activation of each processing task must be independent of the values of the input data.  

 

1.2  Software-Defined Radio  

A Software-Defined Radio (SDR) is a wireless communication system where components 

(e.g. mixers, filters, amplifiers, modulators/demodulators, detectors. etc.) are 

implemented using software on the embedded computing devices instead of using 

hardware. [2] 

In the market of high-end mobile phones, multiple standards are required to be 

implemented on a single device. These mobile phones should support all kinds of cellular 

networking standards, wireless internet standards, mobile television standards, and peer-

to-peer communication standards. The cellular networking standards include Global 

System for Mobile Communication (GSM), Wideband Code Division Multiple Access 

(WCDMA), and High-Speed Downlink Packet Access (HSDPA). The wireless internet 

standards include 802.11a/b/g. The Mobile Television standards include Digital Video 

Broadcasting-Handheld (DVB-H). The peer-to-peer standards include Bluetooth.  
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Table 1 Mobile Phone Standards 

 

Standards Wi-Fi ultra-
wideband 

802.11a/
b/g 

802.1
1n 

Wireles
s 

broadba
nd 

(WiBro) 

Mobile 
WiMax 

3G LTE 
(Cellular 
WAN) 

Digital 
Video 

Broadcastin
g-Handheld 

Digital 
Video 

Broadcastin
g-Terrestrial 

Applicatio
n 

High-speed 
local 

interconnect, 
wireless 
USB 

Medium-
speed 
LAN 

High-
spee
d 

LAN 

Mobile 
wireless 
access 

Mobile 
wireles

s 
access 

Mobile 
Data/Voi

ce 

Mobile TV Mobile TV 

Range 10m 80m 50-
150m 

1-5km 1-5km 1+km Broadcast Broadcast 

Rate 480Mbps 11 
Mbps(b) 

54 
Mbps(a/

g) 

100-
600 
Mbps 

3-50 
Mbps 
(downli
nk) 

63 
Mbps 
(downli
nk) 

100 
Mbps 

(downlink
) 

384 Kbps 7 Mbps 

Frequency 3.1- 10.6 
GHz 

2.45/5.8 
GHz 

2.45/
5.8 
GHz 

2-6/2,3 
GHz 

2-6/2,3 
GHz 

1.25/2.2/
5/10/2 
GHz 

0.8 MHz, 
1.6 GHz 

0.8 MHz, 
1.6 GHz 

 
 

Table 1 [2] gives an overview of radio standards, including wireless access, mobile TV, 

mobile data/voice, and local connectivity. If all these standards are implemented with 

dedicated hardware, several different hardware devices should be assembled in the mobile 

phone which is very costly to realize. However, if the functions are implemented with 

software-defined radios, changing the service type or the modulation protocol can be done 

simply by selecting and launching the appropriate computer programs. Furthermore, there 

may be several applications running simultaneously.  

The ultimate goal of SDR engineers is to provide a single radio transceiver capable of 

playing the roles of cordless telephone, cell phone, wireless videoconferencing unit, Global 

Positioning System (GPS) unit, and other functions still in the realm of science fiction, 

operable from any location on the surface of the earth, and perhaps in space as well. 

 

1.3 Multi-Processors System on Chip 

The Multi-Processor System on Chip (MPSoC) has emerged in the past decade as an 

important class of Very Large Scale Integration (VLSI) systems. An MPSoC combines 

multiple processing elements, memory and other digital functions (like I/O ports). [3] All 

these components are linked to each other by a bus or Network-On-Chip (NOC) 

interconnect.  
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As an embedded hardware platform, MPSoC provides a good balance between cost, power 

efficiency, and flexibility. Typically, Embedded MPSoCs are heterogeneous with general 

processing elements (such as ARM processor cores) and application-specific processing 

elements (such as a Turbo decoder). The flexible functions which vary according to 

different applications will be implemented on general processors. The functions that will 

be the same for every application will be implemented on application-specific processors 

which bring low power cost. In order to allow maximum flexibility at the lowest cost, 

applications share computation, storage, and communication resources.  

Mobile terminals may run several applications simultaneously. In order to design a flexible 

hardware platform with low power cost, embedded MPSoCs are employed.  Figure 1 shows 

a template of an MPSoC architecture for Software-Defined Radio. The MPSoC template 

contains three processors and Input/Output ports linked to each other by bus. Each 

processor has its own local memory which is represented as “MEM” in the figure. All the 

processors are connected via a Network Interface (NI) to the bus. Each NI has a number of 

input and output queues with limited buffer capacity. There are three types of processors 

which are Embedded Vector Processor (EVP) [1], ARM and ASIP for software decoding.  

 
 

                                     
 

Figure 1 MPSoC Architecture 

1.4 Synchronous Data Flow Graph 

In the context of the ST-Ericsson Software-Defined Radio Project, data flow graphs are 

employed to model the SDRs. In this section, we introduce the graph definitions and 

terminology that we will need in the remainder of this document. A graph G is an ordered 

pair G = (V, E). Here V is a set of nodes and E is a set of edges.  
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A B

C

 

 

Figure 2 Normal Graph 

 

1.4.1 Directed Graph  

A directed graph is a graph G= (V,E) where every edge is an ordered pair (v
1
, v

2
), where v

1
, 

v
2
 ∈V. For an edge e = (v

1
, v

2
) ∈  E, we say that e is directed from v

1 
to v

2
, v

1
 is the source 

of e, and v
2 
is the sink of e. In a directed graph, we can not have two or more edges with 

both the same source and sink. [7] 

 

                                         

A B

C

 
 

Figure 3 Directed Graph 

 

1.4.2 Data Flow Graph 

A data flow graph is a directed graph (See Figure 3), where the actors represent 

computation and edges represent First-In-First-Out (FIFO) queues. Data is transferred 

between actors in tokens of fixed size. Edges can have an initial number of tokens stored 

in them at execution start time; this number is often referred to as the delay of the edge. 

When an actor is activated by data availability, it is said to be fired. The firing of an actor 

comprises three steps. First, the actor consumes tokens from its inputs. Then the actor 

performs the computation. Finally, the actor produces tokens to all its outputs.   
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1.4.3 Synchronous Dataflow Graph 

Synchronous Data Flow (SDF) graph (See Figure 4) is a restricted dataflow model proposed 

by Lee and Messerschmitt [6]. In the SDF model, each actor consumes/produces the same 

fixed-number of tokens in each input/output edge in every firing.  An actor can fire 

whenever all its input edges have enough tokens for a firing of the actor to consume. 

There may be data dependencies across iterations. These dependencies are modeled as 

initial tokens on the FIFO edges. The delay of an edge is represented by a function d(e) 

that  for an edge e returns the initial number of tokens stored in that edge. The classical 

SDF model is un-timed. However, there is an extension to SDF in which a fixed execution 

time is associated with each actor [7]. This extension makes the model amenable to timing 

analysis. We define the function e(a
i
) as the execution time of actor a

i
. 

Definition: An iteration of an SDF graph is a sequence of actor firings such that the graph 

is brought back to its initial token distribution.  

Take the SDF graph shown in Figure 4 as an example. An iteration of this SDF graph is a 

sequence of firings of the actors in this graph such that the graph again has one token in 

edge (A, C) and zero token in edge (A, B).   

 

 

                      

A B

C

1

1

2 1

 
 

Figure 4 Synchronous Dataflow Graph 

 

1.4.4 Homogeneous Synchronous Dataflow Graph 

An SDF graph in which every actor consumes and produces only one token from each of 

its inputs and outputs is called a Homogeneous Synchronous Dataflow (HSDF) graph (See 

Figure 5). [7] 

An HSDF graph actor fires when it has one or more tokens on each of its input edge. One 

token from each of the actor’s inputs is consumed. When it finishes a firing, one token is 

produced on each of its output edges. In the graphical representation of HSDF graphs, one 

can omit the productions and consumptions, as these are none to be all equal to 1, as 

shown in Figure 5.  
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An iteration of a HSDF graph is that all the actors in this graph are fired once. The 

function s(i,k) denotes the time at which the kth iteration of actor a
i
 is fired. The iteration 

number is counted from 0, so kth iteration means the (k+1)th execution of actor a
i
. Let d(i,j) 

denote the delay number of edge from actor a
i
 to actor a

j
, and let e(a

i
) denote the 

execution time of actor a
i
. With HSDF, we have the basic rule below: 

 

)()),(,(),( iaejidkiskjs +−≥  (1-1) 

 

The rule means that for an edge with source actor a
i
 and sink actor a

j
, the start time of 

actor a
j
 should be later than the finishing time of actor a

i
 of delay number of iterations 

before. 
 

 

 

 

                                  

A B

C

 
 

Figure 5 HSDF Graph 

 

1.4.5 Analytical Properties of SDF Graphs 

An SDF graph can be compactly represented by its topology matrix Γ. The matrix 

represents the graph structure, and contains one column for each vertex, and one row for 

each edge in the SDF graph. The value of entry (i, j) in the matrix corresponds to the 

number of tokens produced by the actor numbered j onto the edge numbered i. If the 

actor j consumes tokens from the edge i, the value of entry (i, j) is negative. Also, if the 

actor j neither produces nor consumes tokens from the edge i, the value of entry (i, j) is 

set to be zero. For example, the topology matrix of the graph in Figure 4 is: 

 

ΓΓΓΓ = 








−

−

101

012
  (1-2) 
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Where the actors A, B and C are numbered as 1, 2, and 3, and the edges of (A,B) and (A,C) 

are numbered as 1, 2 and 3.  

 

Definition: The repetitions vector q for an SDF graph with s actors is a column vector of 

length s, with the property that if each actor i is invoked a number of times equal to the i
th
 

entry of q, then the number of tokens on each edge of the SDF graph remains unchanged. 

Furthermore, q is the smallest integer vector for which this property holds.  

Theorem: The repetitions vector of an SDF graph with consistent sample rates is the 

smallest integer vector in the null space of its topology matrix. That is, q is the smallest 

integer vector such that  

 

Γ q = 0    (1-3) 

 

For the example above, q is equal to

















1

2

1

.More details and proof can be found in [7]. 

The repetitions vector indicates how many times each actor should execute to bring the 

graph back to its initial token distribution. In this example, to return the graph back to its 

initial token distribution, i.e. zero tokens in the edge (A,B) and one token in the edge 

(A,C), one execution, actor A and C should be executed once and actor B should be 

executed 2 times.  

With the repetitions vector, we can define an iteration of an SDF graph to be a sequence 

of actor firings such that each actor in the graph executes a number of times equal to its 

repetition vector entry.  

 

1.4.6 SDF Conversion to HSDF  

In order to analyze an SDF graph’s throughput and schedule it, it is convenient to first 

perform a conversion to its equivalent HSDF. The resulting equivalent HSDF graph has as 

many actors as specified by the original dataflow graph repetitions vector q and each of 

these actors represents an execution of the original actor. Detailed SDF-to-HSDF 

conversion algorithm can be found in [7]. 

1.5 Application Model 

In our application model, we define a job as a particular multi-processor program that can 

be started or stopped independently of other jobs. It can contain several processing tasks, 

which can communicate data with each other. Each job is represented as a dataflow graph. 

In the graph, each node represents a task and each edge represents a FIFO channel. 
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1.6 Real-Time Constraints  

SDR jobs typically have real-time requirements. Real-time applications can be classified 

depending on how strict their real-time requirements are. For example, the deadlines of 

hard real time jobs must not be missed, while the deadlines of soft real time jobs can be 

missed, but the rate of the misses must be kept below a specific value.  

There are also two essentially different types of deadlines. Some applications are required 

to generate a certain number of outputs with a time period. This is referred to as a 

throughput requirement. For example, a television signal receiver must display a certain 

number of frames per second to avoid flickering. 

There are also applications like online gaming where the temporal requirement is that the 

system responds to a button click within 10 mili-seconds. This is a latency requirement. 

Latency is the time interval between an input event and an output event. For example, we 

can measure the latency as the difference between the start times of two specific firings of 

two actors. [5]  

There are also examples having both throughput and latency requirements. Like the video 

conference meeting, it is required displaying a good quality video and sending the voice in 

time. The requirement of displaying is a throughput requirement. The requirement of 

voice sending in time is a latency requirement.  

1.7 Scheduling Strategy 

This section describes the scheduling strategy. Scheduling an application graph involves 

assigning actors in the graph to processors, ordering the execution order of these actors 

on each processor, and determining when each actor fires such that all data precedence 

constraints are met. Each of these three steps may be performed either at run-time 

(dynamic strategy) or at compile-time (static strategy).  

With the assumption that the assignments to the processors of the actors are given before 

scheduling, a fully dynamic schedule is avoided. The researchers from ST-Ericsson 

designed a scheduling strategy that allows a heterogeneous MPSoC to handle a dynamic 

mix of hard-real-time jobs which can start or stop independently. To solve this problem, a 

combination of Time Division-Multiplex (TDM) schedule and static-order of actors per 

processor is applied. [4] 

As jobs may start or stop independently, the scheduler has to decide whether a new 

requested job should be started or not during run time. The scheduler tries to map the 

actors of the job graph on the processor. The resource requirement including computation 

period and memory size will be analyzed according to the real-time requirement of the 

job. If the scheduler finds enough resource for this job, the job is scheduled. Otherwise, 

the job is denied or asked to have lower real-time requirement.  
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If a job is accepted to execute on the platform, the scheduler then applies the combination 

of TDM and static-ordering schedule to the job graph. Assuming that a TDM wheel period 

P is implemented on the processor and that a time slice with duration S is allocated for an 

actor a
i
, such that PS ≤ . The actor starts to execute when the time slice arrives. If the 

actor cannot finish execution in one time slice, it has to wait for P-S time to get the 

resource again.  

A group of actors may be mutually exclusive as they are from the same single-delay cycle. 

Here, mutually exclusive means when one of the actors from the group is executing on the 

processor, the other actors can not execute. If they are mapped on the same processor, 

allocating different slices to each actor wastes resources. If they share the same time slice, 

each actor in the group can use the whole time slice when enabled. A more detailed 

discussion of this can be found in [4]. The static ordering scheduling is used to order 

these actors even in some case where they do not have data dependencies in between.  

Mixing static ordering and TDM scheduling is to take the statically ordered actors as a big 

actor executing on the processor. TDM scheduler assigns time slice to the big actor 

instead of to each actor. For example, we have actors A and B which are both mapped on 

processor P. Instead of assign time slices individually to actor A and actor B, we take these 

two actors as a big actor AB. And the actor AB is assigned a time slice by the TDM 

scheduler.       

1.8 Mapping Model 

After mapping the actors of an SDF graph on the given processors, we build the timing 

analysis model by calculating the worst case response time of the actors that corresponds 

to that mapping.  

Several definitions are defined below to help building the timing analysis model. We define 

execution time e(a
i
) to be the time it takes for the actor to execute on the processor 

without resources contention. After an actor is enabled, the actor may not get the resource 

immediately. The time between when an actor is enabled and when it starts to execute is 

defined as arbitration time a(a
i
). We calculate the worst case for this arbitration time. 

After an actor starts to execute, the execution may be preempted. So we define 

processing time p(a
i
) as the time from the moment an actor starts to execute until it 

finishes on the processor. Here we have:  

 

)()( ii aeap ≥   (1-4) 

 

The response time r(a
i
) counts from the moment that an actor is enabled until it finishes. 

So we have: 

 

)()()( iii apaaar +=   (1-5) 
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1.9 Building the Analysis Model 

This section describes the modeling of scheduling strategy. The analysis model built with 

the assumption of worst case will be used in timing analysis. To build the analysis model, 

the response time, arbitration time and processing time of each actor will be calculated 

according to the scheduler and the actor’s execution time.  

1.9.1 Modeling TDM Scheduling 

Under TDM scheduling, the worst-case execution time of the actors represents the worst-

case response time when that scheduler is used. This response time counts from the 

moment when the actor meets its enabling condition until this actor finishes firing. 

Assuming that a TDM wheel period P is implemented on the processor and that a time 

slice with duration S(a
i
) is allocated for the actor a

i
, such that S(a

i
) P≤ . Two different 

effects will affect the actual response time of actor a
i
. The first one is the arbitration time 

which counts from the moment that a
i
 is enabled until the moment that resource is 

granted to a
i
. The worst case would be that a

i
 is enabled just after the slice S for a

i
 

finishes. In the worst case, actor a
i
 has to wait for P-S time. The arbitration time is 

calculated in the equation (1.6). 

 

)()( ii aSPaa −=   (1-6) 

 

The second effect is when the slice assigned to the actor a
i
 is smaller than the execution 

time of the actor a
i
. So the actor a

i
 can not finish execution in one time slice. Therefore, 

the processing time it takes to fire the actor a
i
 is equal to: 

 

  ))(mod)(()(/)()( iiiii aSaePaSaeap −⋅=   (1-7) 

 

The total response time of actor a
i
 will be the sum of the two times above: 

 

  )())/S(ae())(()( i iiii aeaaSPar +⋅−=    (1-8) 

 

After all the response times are calculated for the actors, timing analysis methods can be 

applied to the graph to evaluate whether the real-time constraints are met or not.  
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1.9.2   Modeling Static-Order Scheduling 

Assume that a set of actors A = {a
1
, a

2
, …a

n
} are mapped to the processor P. Extra 

precedence constraints are added to this set of actors in the way that a
k
 will be the first to 

execute, followed by a
m
, and so on up to a

l
. After the last actor is executed, the sequence 

is reset, and execution order restarts for the next iteration of the graph. This strategy is 

called static-order scheduling. [4] 

Any extra dependency added by static order scheduling can be represented as an edge 

without token in the graph. From the last actor to the first actor, an edge with one token is 

added to represent that when the current iteration is finished, it restarts from the first 

actor in that static-order for the next iteration.  

1.9.3 Modeling Combination of Static-Order and TDM  

Instead of assigning a time slice to each actor, we assign the time slice to a group of 

actors and statically order these actors. To model this combination, extra edges are added 

between the actors in the group to represent the static-ordering. After one actor is 

mapped onto a processor, the system groups the actor with other actors mapped onto the 

same processor. The serialization of the actors in a group is represented in the data flow 

model delay-less edges. An edge with one delay is added for each group from the last 

actor of the group to the first actor of the group. Figure 6 shows an example of 

combination of static ordering and TDM scheduling. In Figure 6, actors C and B are 

grouped together. Extra delay-less edge from actor C to actor B is added to represent the 

static execution order. One edge with one token is added from actor B to actor C.  

 

                                        
 

Figure 6 Combination of Static Ordering and TDM 
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As illustrated in [4], the timing analysis model is built with response model. The time 

valuation of each grouped actor will be set as the processing time. In order to model the 

arbitration time, an extra actor is created if this group of actors has input edges from 

outside this group. Take the mapping example shown in the left of Figure 7, actors A and 

B are grouped together and actor A has an input edge from another group. A time slice S 

is assign to the group of actor A and actor B. The graph shown in the right part of Figure 

7 is the response model of the group. An extra actor a
s
 is added to represent the 

arbitration time of this group. The time of the actor a
s
 is set to be P –S. The time for actor 

A is set to be its processing time: 

  )mod)((/)( SAePSAe −⋅  

The time for actor B is set to be its processing time: 

  )mod)((/)( SBePSBe −⋅  

 

                         
 

Figure 7 Analysis Model of combination of Static Ordering and TDM 

 

1.10 Timing Analysis 

The analysis model is built according to the scheduling strategy. In this section, 3 timing 

analysis methods are explained. The goal of timing analysis is to find whether the 

scheduling meets the real-time requirement or not.   

1.10.1 Maximum Cycle Mean  

In order to calculate the throughput of a timed SDF graph, the concept of Maximum Cycle 

Mean (MCM) is introduced. Assume there is a timed SDF graph: G = (V, E). A directed cycle 

c in the graph G is a path from a node to itself that traverses each node in it only once [9]. 

The cycle mean of cycle c in graph G is calculated in the equation (1.9): 
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Here V(c) and E(c) denote, respectively, the sets of nodes and edges belonging to the 

directed cycle c. And d(e) denotes the delay value of edge e. The maximum cycle mean of 

the graph G is calculated in the equation (1.10): 
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GCc
ed

ae
G iµ   (1-10) 

 

Where C(G) is the set of cycles in graph G.  

The inverse of the MCM provides the minimum guaranteed throughput. By assigning the 

amount of MCM as the period of the execution, the start times of all the actors in each 

iteration can be predicted.  

1.10.2 Self-timed Schedules  

The generation of a self-time schedule can be used as an alternative way to calculate the 

throughput. A self-timed schedule (STS) is also known as an as-soon-as-possible schedule. 

By applying STS to an SDF graph, the firing of each actor starts immediately if there are 

enough tokens in all its input edges.  

The Worst Case Self-Time Schedule (WCSTS) is a schedule of an SDF graph such that all the 

actors in the graph take worst case time to execute. The WCSTS of an SDF graph has a 

property: after a transition phase of K iterations, it will reach to a periodic pattern.[8] The 

period is N(G)*µ(G) time units, where N(G) is the minimum among the sums of delays of 

the critical cycles of the graph. The schedule of the periodic pattern is: 

 

)()(),())(,( GGNkisGNkis µ⋅+=+  )(GKk ≥  (1-11) 

 

During the periodic execution, N(G) firings of actor i happen in N(G)*µ(G) time units, which 

means that the throughput of the graph is 1/ µ(G). For the period of transient phase, that 

is k < K(G), the schedule can be derived by symbolic simulation with worst case execution 

time actors which will be explained in Section 6.  

1.10.3 Static Periodic Schedules 

Applications may require that each iteration finishes within a given period time. Then we 

can apply static periodic scheduling (SPS) to the application with the desired period. An 

SPS of an SDF graph is a schedule such that for all nodes i∈V,  

 

kTiskis ⋅+= )0,(),(   (1-12) 
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Here T is the desired period of the SPS. The SPS can be represented uniquely by the values 

of s(i, 0) for all nodes.  

It is proved in [8] that for any SDF graph; it is always possible to find an SPS schedule, as 

long as )(GT µ≥ . If T < µ(G), then no SPS schedule exits.   

1.11 Heracles  

This section describes the Heracles tool designed by the researchers from ST-Ericsson. 

Heracles takes an SDF graph file (including graph information, actor mapping, and real-

time requirements) and a multiprocessor platform file description as inputs. As outputs, if 

run simply for analysis, Heracles verifies if the timing constraints are feasible. If run as a 

scheduler, Heracles can produce a partial mapping of the graph to the multiprocessor 

template, where actors are assembled in statically-ordered groups, and for each statically 

ordered group, a scheduler budget (i.e., an amount of required resources for a specific 

single-core scheduler) is associated. The budget also includes sufficient buffer sizes for all 

inter-group FIFOs, which Heracles can also compute. 

1.11.1 Scheduling and Analysis Procedure 

This subsection describes the scheduling and analysis procedure carried out by Heracles 

(as shown in Figure 8). 

 

                                       
 

Figure 8 Heracles Scheduling Procedure 
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The graph and multiprocessor platform are stored in text files. The tool first parses the 

graph into the system. The input graph is then checked in several aspects listed below: 

• Whether all the actors are mapped on one of the processors;  

• Whether the type of the processor that an actor is mapped onto matches the type of 

the actor or not; 

• Whether the slice time assigned to each actor overflows the whole period of the 

processor this actor mapped on; 

• The input file may require that some actors are placed in the same group, which 

means that these actors should be mapped on the same processor. The tool then 

checks whether these actors are required to run on the same processor/processor type 

or not. 

 

A correct input graph will then be converted into an HSDF graph. After having a correct 

HSDF graph, the procedure enters the scheduling loop with backtracking. The actors 

without input or with only delay inputs are the candidates ready to be fired. The system 

initializes the candidate list with these ready actors and enters the backtracking phase. We 

show the backtracking procedure with the HSDF graph example depicted in Figure 5. In 

the graph, the actor C is ready to be fired at the beginning as it has no delay-less inputs. 

Assume there are two processors, P
1
 and P

2
, to be mapped on for the actors, and each 

actor can be mapped on any processor.  So we create a Candidate List (CL) in the form of 

{(C, P
1
), (C, P

2
)}. The system maps actor C according to the head of CL. After mapping, the 

analysis model is built to calculate MCM. If the MCM meets the real-time requirement, the 

CL is updated with the possible mappings of newly activated actors. Then it falls into the 

loop of scheduling again. If the requirement is not met, the system undoes the mapping 

and back tracks to the previous states. The method of back tracking is show in Figure 9. 

The CL is the candidate list. We start with CL
1 
which has two elements.

 
By doing mapping 

according to CL
1
’s first element, an updated CL

11 
is obtained. As the same trick, CL

11
 can be 

extended to CL
111 

and CL
112
. If both CL

111 
and CL

112
 fail to guarantee the requirement, which 

means that the branch of CL
11
 fails, the system then back tracks to the state of CL

1
 and try 

the second element of CL
1
. The second element will lead to some other sub branches.  
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Figure 9 Backtracking 

 

When the candidate list is empty, the system then checks whether all the actors are 

mapped or not. If yes, the system tries to reduce the slice time for each group and leads to 

a solution. If not all the actors are mapped, the scheduler fails.  

For computing the MCM, the analysis model is built according to the combination of TDM 

and static-order scheduling. After one actor is mapped on a processor, the system groups 

the actor with other actors mapped on the same processor. The actors are grouped with 

delay-less edges. An edge with one delay is added for each group from the last actor of 

the group to the first actor of the group. Response actors are added if the mapped actor 

has inputs from other processors. The executing time are set for both mapped actor and 

added response actors.  

1.12 Structure of Thesis 

In Section 2, the Mode-Controlled Data Flow (MCDF) computation model is introduced. The 

problem description will be explained in Section 3. We present the approach used to solve 

the problem in Section 4. In Section 5, the analysis tool is explained. We show the 

implementation in Section 6. Three case studies are discussed in Section 7 with conclusion 

and future work in Section 8.  
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2 Mode-Controlled Data Flow  

Many SDR jobs need to execute different sub graphs depending on the received data. 

Often, this will cause the data consumption/production rates of tasks to also become 

dependent on the values of the input data. For example, a Wireless Local Area Network 

(WLAN) receiver must attempt to synchronize to the incoming packet until it is successful. 

When this happens, the WLAN receiver must decode the packet, which implies the 

activation of a different task. As a result, these jobs cannot be represented by static data 

flow graphs like Single-Rate DF, Multi-Rate DF, or Cyclo-Static DF. A new dataflow model 

called Mode Controlled Data Flow (MCDF, see an example in Figure 10) is proposed to 

express these jobs.  
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Figure 10 MCDF Graph of Wireless LAN 
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2.1 MCDF Overview 

An MCDF graph G = (V,E) has a set of modes M: 

 
M = {m1, m2, …, mn} 

 

MCDF actors are classified into modal actors and non-modal actors. An actor belongs to a 

mode m if it is connected to another actor that belongs to mode m or to a data-dependent 

port associated with mode m. If an actor belongs to a mode it is referred to as a modal 

actor. 

 

For each actor Vai ∈ , we have: 

 



 ∈

=
null

Mmm
ae

jj

i )(mod   (2-1) 

 

Here we define mode(a
i
) as the function which returns the mode attribution of actor a

i
. For 

modal actors, the function returns the mode name of the actor. For non-modal actor, the 

function returns null. The MCDF graph may execute in certain mode m
j
. When the MCDF 

graph executes in mode Mm j ∈ , only the non-modal actors and modal actors belong to 

mode m
j 
are enabled. Therefore, we define the concept of sub-graph G

j
  = (V

j
, E

j
) for 

mode m
j
 as: 

 

VaV ij ∈∀=  Such that mode(a
i
) = null or m

j
  (2-2) 

 

 EeE j ∈∀=  Such that source(e) ∈  V
j 
& sink(e) ∈V

j 
(2-3) 

 

Here source(e) denotes the source actor of edge e; and sink(e) denotes the sink actor of 

edge e. When the MCDF graph G executes in mode m
j
, the sub-graph G

j
 should be built. 

For each sub-graph G
j
 of graph G, MCM

j
 can be calculated which is the MCM calculated 

from the sub-graph G
j
.  If the current mode of an MCDF graph is m

j
, we define the current 

iteration of the MCDF graph is an iteration of the sub-graph G
j
 = (V

j
, E

j
). 
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MCDF contains a special actor, the Mode Controller (MC). MC is fired in every iteration. We 

define port to be the interface for each MCDF actor to send or receive data. MC has one 

special output port referred to as the mode control port. All the data-dependent actors 

have control input ports. At every iteration of MC, the value produced in the mode 

control port is used to drive the control input ports of all data-dependent actors in the 

MCDF. The main point of an MCDF graph is that after each firing of MC, a specific sub-

graph will be executed according to the control signal produced by MC. The sub-graphs 

are iteration exclusive, i.e. only one of them will be executed for each iteration. A special 

actor called Tunnel is designed to model the communication between two sub-graphs.  

The MCDF actors can also be classified into data-dependent actors and date-independent 

actors. Data-dependent actors are switch actors, select actors and tunnel actors. The rest 

are data-independent actors.  

A simple example of MCDF is shown in Figure 11. There is one mode controller. Actors A 

and B are modal actors belonging to mode1; actors C and D are modal actors belonging to 

mode2. Actors “source” and “sink” are non-modal actors. The pair actor Mode Switch and 

Mode Select are data-dependent actors will be explained in the next subsection. Also, 

actor tunnel is a data-dependent actor.  

 

                      
 

Figure 11 Mode Control Data Graph 
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2.2 Data-Dependent Actors 

Data-dependent actors are classified into 3 types: mode switch, mode select and mode 

tunnel. Mode switch and mode select branch the graph into sub-graphs according to the 

control signal from MC. Tunnel is a special actor that allows the communication between 

sub-graphs without causing deadlocks while keeping determinist.  

A Mode Switch actor has one control input port, one data input port, and M output ports. 

Each output port is associated with a mode. When a token is present on the control input 

port and on the data input port, the Mode Switch actor is fired. It consumes both input 

tokens and produces a token in the output port associated with the Mode indicated by the 

token consumed on the control input port. The output token has the same size and value 

as the token consumed on the data input port. 

A Mode Select actor has a mode control input port, M data input ports and one output 

port. Each input port is associated with a mode. When a token is present on the control 

input port, its value is read and used to decide from which input port to consume a token. 

The actor is fired when a token is present in the control input port and in the data input 

port associated with the mode indicated by the token in the control input port. When fired 

it consumes both of these tokens. At the end of the firing, it produces on the output port 

a token with the same size and value as read from the modal input port. If the input port 

was not connected, the output token will have some pre-defined default value. Note that 

the firing rule must be evaluated in two steps. 

A Mode Tunnel actor has one input control signal from the mode controller, one data 

input from Mode 1 (M1) and one data output to Mode 2 (M2). When the tunnel receives a 

control signal of M1, it fires, consumes one token from the input and stores this token in 

its internal memory. When the tunnel receives a control signal of M2, it copies the token 

stored in its internal memory to the output actor. If there are more than one executions of 

Mode 1, the internal token of tunnel will be replaced by the latest one. So the actor from 

Mode 2 only reads the latest token from tunnel. 

 

2.3 Tunnel Representation 

In a MCDF graph, actors represent the computation only. However, tunnels store tokens of 

previous iteration which can not be modeled as a single actor. Therefore an expanded 

model is designed to represent tunnels (See Figure 12).  
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Figure 12 Tunnel Representation 

 

 

As shown in Figure 12, this MCDF graph has actor set V = {MC, Source, Mode Switch, Mode 

Select, Tunnel, Sink, A, B, C, D}. Here the red colored actors are modal actors of mode1, 

and the yellow colored actors are modal actors of mode2.  

The tunnel actor is replaced by four actors: one switch, one select, one tunnel out and one 

tunnel in. When MC sends Mode1 control signal to switches and selects in the graph, all 

the actors in the sub-graph of Mode1 fire in order. The token produced by tunnel select 

actor is stored in the FIFO edge. When MC sends Mode2 control signal to switches and 

selects, the tunnel switch actor consumes the token from the FIFO edge and produces it to 

actor tunnel in. If the graph has been executing in mode1 for more than one time before 

mode2 is activated, only the data produced by the last iteration will be stored in the FIFO 

edge. This procedure well models the behavior of the tunnels with the existing types of 

actors and FIFO edges.  
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2.4 The Construction Rules of MCDF Graph  

The construction rules of MCDF are designed to guarantee that each firing of the Mode 

Controller (MC) enables all the actors within a mode and the data dependent actors to fire 

until all edges return to the initial state, without any other activation of the MC being 

required. The construction rules are listed below: 

• An MCDF graph has one mode controller, one or more switch actors, one or more 

select actors, zero or more tunnel actors, and arbitrary number of non-modal actors. 

• An actor of an MCDF graph belongs to at most one mode 

• The control ports of switch, select, and tunnel actors are connected to MC with delay-

less edges.  

• There is no delay-less cycle in the graph that does not traverse at least one Tunnel 

actor.  
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3 Problem Description 

Based on the description above, the challenge of my thesis work is to adapt the existing 

scheduler to allow hard real-time quasi-static ordering schedule of MCDF graphs.  

The existing scheduling strategy which uses the combination of TDM and static-order 

scheduling is no longer suitable for MCDF graphs. There are three effects that make the 

existing scheduling strategy fail to schedule MCDF graphs.  

First, static-order scheduling adds dependent delay-less edges between the actors mapped 

on the same processor which is not always allowed by the construction rules of MCDF. 

Assume two actors A (belonging to mode1) and B (belonging to mode2) are mapped on 

the same processor. Under the static-order scheduling strategy, one delay-less edge will be 

added either from A to B or from B to A. According to the construction rules of MCDF 

graph, there should not be any delay-less edges between two actors belonging to two 

different modes.  

Second, the current timing analysis method MCM computation provides the minimum 

guaranteed throughput. This method can not provide the tightest bounds on throughput 

or latency of the MCDF graph.  

If we create the sub-graphs for each mode in an MCDF graph, each sub-graph may have 

quite different MCM values. Take the example of the timed MCDF graph shown in Figure 

13 (a) as an example, the number in each actor represents the execution time. If all the 

actors have the information of execution time, this graph is a timed graph. Figure 13(a) is 

an MCDF graph. Figure 13(b) and Figure 13(c) are the sub-graphs of mode1 and mode2 of 

that MCDF graph.  

The MCM of the graph is 1+1+10+1= 13 which is also the MCM for the sub-graph of 

mode2. However, the MCM for the sub-graph of mode1 is 4. Assume that the application 

executes in mode1 for 10 iterations. If we simply use MCM of the whole graph, the 

throughput of these 10 iterations is 1/13. However, if we know the MCM for the sub graph 

of mode1, the throughput of these 10 iterations will be improved to 1/4. By computing the 

MCM for each mode, a much tighter timing analysis result can be found.     
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Figure 13 Timed MCDF Graph 

 

Third, the timing analysis methods we have now can not provide latency analysis of the 

analysis model. There may be requirement like that the time the platform takes to execute 

in mode1 once followed by executing in mode2 once should be less than 100 micro-

seconds. This latency information can not be calculated with the current timing analysis 

method.  

Furthermore, not all the processors support preemptive scheduling. For instance, 

preemption is not allowed by some processors like EVP [1]. However, TDM scheduling is 

preemptive which means that high priority task can take the resource away from lower 

priority task. So the combination of TDM and static-order can not be applied on all the 

processors. New schedule strategy should be designed and schedule strategy for each 

processor should be extended to other strategies but not only TDM schedule. 

 

3.1 Contribution of This Thesis 

In this thesis, new scheduling strategies are introduced to schedule MCDF graph 

applications. Several timing analysis methods are implemented to analyze the temporal 

performance of MCDF graph running on the MPSoC. The contribution is listed below: 

 

• A scheduling strategy of combination of quasi-static ordering and TDM/Round Robin 

scheduling is designed for MCDF graphs; 

• A timing analysis method of Self-Timed Scheduling Timing analysis is introduced to 

analyze the scheduling mentioned in the first item; 

• A second timing analysis method of Static-Periodic Scheduling Timing analysis is 

introduced to analyze the scheduling mentioned in the first item.  
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4 Overall Approach 

In this section, we describe the approach used to schedule the MCDF graph on MPSoC and 

timing analysis methods used to analyze the schedule in the way of throughput or latency 

with certain mode sequence. They will be introduced in the following order: Timing 

Analysis Methods, Analysis Model Building and Scheduling Strategy.  

4.1 Timing Analysis 

As explained in Section 3, the throughput calculated from MCM for the whole MCDF graph 

is conservative comparing with MCM for each mode of the MCDF graph. In order to save 

more resources for other applications, it is necessary to investigate the MCM for each 

mode. Furthermore, we are interested in the time consumption of execution the graph in 

the order specified by a mode list. Therefore we want to define a new concept called Mode 

Sequence.   

4.1.1 Mode Sequence 

A mode sequence is a valid sequence of control signals produced by the mode controller. 

The MCDF graphs will execute in the order of the mode sequence. We let (Anum) represent a 

mode sequence where the graph executes mode A for num times.  Therefore, the mode 

sequence AnBmCp means the graph executes n times in mode A followed by m times in 

mode B followed by p times in mode C.  

4.1.2 Self-timed Schedule with Mode Sequence 

As explained in Section 3, the MCM for different modes may be very different. In order to 

find tighter timing analysis results, we try to execute the MCDF graph in a Self-Timed 

Schedule (STS). To show the effect of STS, we try to do the timing analysis on the graph 

shown in Figure 14. Figure 14 is an analysis model of an MCDF graph. First, we calculate 

the MCM of the analysis graph. Then, we try to execute the MCDF graph static periodically 

with a mode sequence of Mode11Mode21. For each iteration, the period is assigned as the 

calculated MCM for the whole graph.  

 
 



 

Static Analysis and Task Scheduling for 
Multi-mode Software-Defined Radio 

Applications 
 

MASTER’S 
THESIS 

Overall Approach 

Doc ID    Rev Rev    Date: Aug 18th 2009  Root Part No. 38 (85) 

MC

1

Mode Switch

1

A

1

Mode Select

1

B

10

Mode 1

Mode 1

Mode 2

Mode 2

P

 
 

Figure 14 Timed Analysis Graph 

 

The Gantt chart depicted in Figure 15 shows the periodic execution with mode sequence 

Mode11Mode21 which assigns the MCM as the period for every mode. The horizontal axis is 

time. The block means that the processor is assigned to the actor shown on the block. The 

shadowed block means the processor is idle during this time interval. We can find out that 

the processor is idle for 9 time units because it takes less time to execute in mode1 than 

in mode2.  

 

                         
 

Figure 15 Periodic Schedule 

 

The Gantt chart depicted in Figure 16 shows the self-timed execution with mode sequence 

of Mode11Mode21. There is no idle time in the processor which leads to the tightest timing 

result for this mode sequence. It takes 17 time units to finish executing in this mode 

sequence. It is impossible to find a schedule which takes less than 17 time units.  

 

                         

 

Figure 16 STS Schedule 
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Therefore, we can find the tightest timing analysis result for the MCDF graph with STS 

timing analysis method. However, performing self-timed timing analysis takes long time as 

it has to compute all the execution in the mode sequence.  

4.1.3 Static-periodic Schedule with Mode Sequence 

There is an alternative method, Static Periodic Schedule (SPS), to do the timing analysis. 

The SPS assigns a static period for every iteration. Since the MCM for each mode may vary 

a lot, we calculate the MCM for each mode and assign the period of each mode with its 

MCM. The graph is forced to execute in static periodically but each mode has a different 

period. By doing this, tighter timing analysis results can be obtained. Next, we show how 

to perform the static periodic timing analysis.  

Assume there is an MCDF graph G = (V, E) with a mode sequence of ANBP, MCM
 
for mode A 

and mode B are µ
A 
and µ

B
. For mode A and mode B, we create sub-graph G

A
 = (V

A
, E

A
) and G

B
 

= (V
B
, E

B
). Under SPS, we force the execution into the periodic phase after the first iteration 

with the provided period.  

It is stated in [12] that in order to not violate the firing rule, two conditions shown in (4.1) 

and (4.2) should be met. 

 

Ai Va ∈∀  0)0,( ≥ias  (4-1) 

 

AEjie ∈∀ ),(   )()),(,(),( iij aejidkaskas +−≥  Nk ≤  (4-2) 

 

As the graph is executing under SPS, we have the following two properties in (4.3) and 

(4.4).  

 

AEjie ∈∀ ),(  ),(),()),(,( jidkasjidkas Aii ⋅−=− µ  Nk ≤  (4-3) 

 

Ai Va ∈∀      )1()0,(),( −⋅+= kaskas Aii µ  Nk ≤   (4-4) 

 

From (4.2), (4.3), and (4.4), we can get the inequality shown in (4.5).  

 

AEjie ∈∀ ),(  )(),()0,()0,( iAij aejidasas +⋅−≥ µ  (4-5) 
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Therefore, (4.1) and (4.5) give the linear bounds of all the actors active in mode A. After 

executing for N iterations, the graph starts to execute in mode B. The SPS forces the 

execution to be periodic with the period of µ
B.
 We denote the start times of the actors in 

executing in mode B as )0,(' ias . According to the proof above, we have the following two 

linear bounds for actor start times in mode B shown in (4.6) and (4.7). 

 

Bi Va ∈∀  0)0,(' ≥ias  (4-6) 

 

BEjie ∈∀ ),(  )(),()0,(')0,(' iBij aejidasas +⋅−≥ µ  (4-7) 

 

The first iteration in mode B does not start from time 0. It depends on the last execution in 

mode A. As the graph executes periodically, the start time of the first iteration in mode A 

for each actor is AN µ⋅− )1(  before the last iteration in mode A of that actor. Therefore, 

we can build the dependency of the first iteration in mode B on the first execution in mode 

A. The inequality is shown in (4.8). There will be such dependency only when there is an 

edge with delays larger than 1. This includes self-edges. Edges with more than 1 delay will 

be converted into several edges with 1 delay. This will be explained in the following 

subsection. So here we only talk about edges with 1 delay.  

 

1),(&),( =∈∀ jidEjie B  )()0,()0,(' iij aeasas +≥  (4-8) 

 

Therefore, the start times of the actors in graph G during the transition phase from mode 

A to mode B are bounded by (4.1), (4.5), (4.6), (4.7) and (4.8). Furthermore, we get the 

execution time of mode sequence ANBP under SPS shown in equation (4.9). 

 

)1()1()()( 11
−⋅+−⋅+= PNBAfBAf BASPS

PN

SPS µµ  (4-9) 

 

Here f
 SPS
 (ANBP) means the time it takes to execute in the mode sequence of

 
ANBP under SPS, 

and f
 SPS
 (A1B1) means the time it takes to execute in the mode sequence of A1B1under SPS. f

 

SPS
 (A1B1) is also called finishing time which can be calculated by adding the response time 

to the start time.  

 

4.1.3.1 Expressing the Problem as a Linear Program 

Many problems can be formulated as maximizing or minimizing an objective, given limited 

resources and competing constraints. If we can specify the objective as a linear function of 

certain variables, and if we can specify the constraints on resources as linear equalities or 

inequalities on those variables, then we have a Linear Programming (LP) problem. [11] 
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We have explained in section 4.1.3 that the execution time of an MCDF under SPS with a 

given mode sequence can be calculated from equation (4.9). In this subsection, we explain 

how to compute the start times of the actors in mode transition phase under SPS. As the 

start times of all the actors in the MCDF graph are bounded by inequalities of (4.1), (4.5), 

(4.6), (4.7) and (4.8), this problem can be represented as a linear program. The variables 

are the start times of the actors for every first execution of a specific mode in the mode 

sequence. The objective is to minimize the start time for each actor in the last mode of the 

mode sequence. Together with the inequalities mentioned above, a linear programming 

problem is built. By solving this linear programming problem, we get the solution for the 

start times of the actors.  

To build the right time dependency in the current mode, an extra inequality should be 

added as the start time of all the actors depend on the start times of the previous 

executions. We can show this by an MCDF graph G = (V, E) with a mode sequence like 

A1B1C1. There are two edges e
1
(i,j) and e

2
(j,k), where d(e

1
) = 1 and d(e

2
) = 2. We define 

s
m
(a

i
,0) to be the start time of actor a

i
 in the mth execution of the mode sequence. So for 

these two delay edges, we have the following constraints: 

 

 )()0,()0,( 23 iij aeasas +≥  (4-10) 

 

)()0,()0,( 13 jjk aeasas +≥   (4-11) 

 

The inequality means that the current start time of an actor depends on the start time of 

this actor d(i,j) number of iterations before. If the edges have delay like 1, 2, we need to 

know the start times of the actors 1 and 2 iterations before. If the graph has variance 

delay numbers, too much previous start time information will be needed to compute the 

current start time constraint. In order to avoid this problem, we try to make the current 

start time only depend on current execution or its last execution. This is done by 

distributing the delays bigger than one into sub delays (shown in Figure 17). 

 
 

                                 
 

Figure 17 Delay Distribution 

 

 In the graph, there is a delay edge from actor A to actor B with 2 token sizes. To solve the 

linear programming problem, we have to store the start time information 2 iterations 

before. By adding an extra actor AB with execution time of 0, the start time of A is stored 

in actor AB. So we only need to get the start time information from the last iteration.  
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4.1.4 Self-Timed Scheduling versus Static Periodic Scheduling 

Although STS can provide a tighter temporal performance, it also has disadvantages. We 

explain the disadvantage of STS with an MCDF graph executing in the mode sequence of 

ANBP such that 0,0 ≥≥ PN . If the values of N and P are rather small, it will be fast to 

perform the self-timed execution. However, when these two values become rather large, 

self timed execution may take rather long time to do the timing analysis with the long 

mode sequence. In this situation, the static periodic execution can be performed fast 

because SPS is predictable. Figure 18 shows the Gantt chart of the static periodic 

execution in mode sequence of ANBP.  

 

                         
 

Figure 18 SPS Execution with Mode Sequence 

 

We execute an MCDF graph with mode A and mode B on 3 processors. The blue blocks 

mean the processor is assigned to the actors from the sub-graph of Mode A. The red 

blocks mean that the processor is assigned to the actors from the sub-graph of Mode B. 

First, it executes in mode A which is depicted as blue blocks. After the first execution, it is 

forced to execute in a static periodic regime. The execution repeats for N-1 times and 

starts to execute in Mode B. The first execution is depicted in left-most red blocks. The 

execution again is forced to execute in a static periodic regime. After repeating the red 

blocks for P-1 times, the execution finishes. Therefore, we only compute the start times of 

all the actors for the transition phase from mode A to mode B. The complexity of SPS 

timing analysis does not grow with multiple consecutive executions of the same mode.  



 

Static Analysis and Task Scheduling for 
Multi-mode Software-Defined Radio 

Applications 
 

MASTER’S 
THESIS 

Overall Approach 

Doc ID    Rev Rev    Date: Aug 18th 2009  Root Part No. 43 (85) 

The time it takes to do SPS timing analysis depends on the complexity of the linear 

programming problem. We define the complexity of LP problem as a pair of (M, N). Here M 

means the variables this LP has and N means the number of the inequalities of this LP. 

Assume we have an MCDF graph G = (V, E) with mode set {A,B,C}. We define X(G) as the 

number of actors the graph G has, Y(G) as the number of edges the graph G has, and D(G) 

as the number of delay edges the graph G has. We define the number of mode transition T 

to be the number of mode changes in the mode sequence. For mode sequence ANBP, the T 

is 1. To do SPS timing analysis for mode sequence, we build the LP problem. The 

complexity of this LP problem can be derived according to the inequalities (4.1), (4.5), 

(4.6), (4.7) and (4.8). Therefore, for the mode sequence of ANBP, we have the complexity 

(M
LP
, N

LP
) in below: 

 

)()( BALP GXGXM +=  (4-12) 

 

)()()( BBALP GDGYGYN ++=  (4-13) 

 

From the example shown above, we can find that the complexity of the LP problem grows 

with the growing of the number of mode transitions. Therefore, the time it takes to do SPS 

timing analysis depends on the number of mode transitions.  

 

4.2 Building the Analysis Model 

Before doing timing analysis, an analysis model must be built which includes mapping 

decisions that have already been taken. Based on the mapping and execution order of the 

actors, we generate response time models for all actors. In this subsection, we explain 

how to generate response time models for quasi-static ordered schedules running within 

run-time TDM or round robin schedulers.  

4.2.1 Modeling Quasi-static Ordering Schedule 

In a static ordering schedule, the actors mapped on the same processor execute in a static 

order. In a quasi-static ordering, each mode has a specific static ordering, but the decision 

on which mode to execute is taken independently at run-time for each iteration In a quasi-

static model, the modal actors start branching after mode switch.  Each branch after mode 

switch contains only actors belonging to a specific mode. The modal actors belonging to 

the same mode are statically ordered.  
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For static ordering scheduling, there is a delay edge with one token from the last mapped 

actor of the group to the first mapped actor. While for quasi-static ordering, an edge with 

one token is added from the last mapped actor of each mode to the first mapped actor. 

Take the MCDF graph from Figure 11 as an example. Assume the platform to execute this 

graph has 2 processors P
1
 and P

2
. The mapping list of the actor is [(MC, P

1
), (Source, P

1
), 

(Mode Switch, P
1
), (A, P

1
), (C, P

1
), (Tunnel, P

1
), (B, P

2
), (D, P

2
), (Select, P

2
), (Sink, P

2
)]. We then 

build the analysis model of quasi-static ordering schedule (See Figure 19).  

In order to avoid more than one mode switch/select in the MCDF graph, we further expand 

tunnel switch and tunnel select shown in Figure 12 into 4 modal actors shown in Figure 
19. Each tunnel switch is replaced by two modal actors in the two modes that the tunnel 

connects. Each tunnel select is replaced by two modal actors in the two modes that the 

tunnel connects. The two new modal actors generated from tunnel switch inherit all the 

input edges from the tunnel switch actor and inherit the output edges from the tunnel 

switch according to the mode. The two new modal actors generated from tunnel select 

inherit all the output edges from the tunnel switch actor and inherit the input edges from 

the tunnel switch according to the mode. Each modal actor generated from tunnel select 

has one delay edge to each modal actor generated from tunnel switch. In Figure 19, we 
can see that the tunnel switch is replaced by two modal actors “Swi_T_A” and “Swi_T_C” in 

mode 1 and mode 2. The tunnel select is replaced by two modal actors “Sel_T_A” and 

“Sel_T_C” in mode 1 and mode 2. They are connected to actors “T_out” and “T_in” which 

represent the actor tunnel out and actor tunnel in. There are four delay edges from each of 

the actor “Sel_T_A” and “Sel_T_C” to each of the actors “Swi_T_A” and “Swi_T_C”. 

To further simplify the analysis model, we delete the mode select actors. We define a 

mode merges to the select if there is an edge connects this select actor to an actor 

belongs to that mode. The non-modal actors after select actors will be scheduled in each 

mode which merges to the select actor. In Figure 19, both mode 1 and mode 2 merge to 

the select actor. There is a non-modal actor “sink” after the mode select. So this “sink” 

actor is scheduled in both mode 1 and mode 2.  
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Figure 19 Quasi-static Ordering Analysis Model 

From the analysis model, we can find that there are two branches corresponding to 2 

modes after mode switch and inside each branch, modal actors are statically ordered. 

For processor P
2
, an extra mode switch actor is created which has an input edge from MC 

and output edges to the first actor of each mode mapped on P
2
.  

For processor P
2
, actor Sink1 is the last mapped actor in mode 1; actor Sink2 is the last 

mapped actor of mode 2; while actor Mode Switch2 is the first actor mapped on P
2
. 

According to our model building method, an edge with one token delay is added from 

Sink1 to Mode Swithc2, also from Sink2 to Mode Switch2.   

 

4.2.2 Modeling Round Robin Schedule 

We have explained in Section 3 that TDM scheduling strategy is not suitable for every 

processor. Therefore, we employ round robin as the local scheduler for some processors. 

In a similar way to TDM, the effects over the response times of task executing under a 

Round Robin (RR) scheduling can be modeled by generating a response time model. The 

response time of an actor a
i
 counts from the moment that a

i
 meets its enabling conditions 

until a
i
 finishes firing. Let e(a

i
) is the execution time of actor a

i
.  
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Assuming that the processor that actor a
i
 is mapped on has time period P, The time slice 

assigned to actor a
i
 is S, such that PS ≤ . The response time of actor a

i
 is composed of 

two parts. One is the arbitration time which counts from the moment that a
i
 is activated 

until a
i
 gets the resource to start execution.  The other one is the processing time when a

i
 

starts execution until it finishes. The worst case of arbitration time happens if a
i
 is 

activated just after the slice time for a
i
 finishes. In this case, a

i
 has to wait for P-S time 

units. Round robin scheduling is non-preemptive, so the actor executes in a full slice time 

without being interrupted. This means that the processing time of a
i
 is equal to t(a

i
). As a 

result, the total worst-case response time of actor a
i
 is shown in equation 4-1.  

 

)()( ii aeSPar +−=   (4-14) 

 

4.2.3 Modeling Combination of Quasi-static Ordering and TDM/Round 
Robin Schedule 

Figure 19 shows the quasi-static ordering analysis model of the graph shown in Figure 11. 

To model the combination of quasi-static ordering and TDM/round robin scheduling, the 

response time of all mapped actors should be adapted with the worst-case response time.  

As described in the previous subsection, the worst-case response time of an actor is 

composed of two parts, arbitration time and processing time. Here actors mapped on the 

same processor are grouped by quasi-static ordering schedule. A group of actors are taken 

as a single big actor execution on the processor. Therefore, we calculate the worst case 

response time for this group of actors but not for each single actor. The arbitration time 

of the group starts when the first actor of this group is activated and finishes when this 

actor gets the resources to execute. As shown in Figure 20, one group of actors are 

mapped on P
1
, while another group of actors are mapped no P

2
. There are 4 edges 

between these two groups. Four Extra actors are added to the analysis model to represent 

the arbitration time of round robin scheduling. The response times for the actors are 

explained in the rest of this subsection.  
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Figure 20 Modeling Combination of Quasi-static Ordering and Round Robin 
Schedule 

 

Assume that the period of a processor is P. For quasi-static ordering, the round robin 

scheduler assigns a slice time S to a group of actors V
 = 
[a

1
, a

2
 … a

n
] instead of only one 

actor. The group of actors should be assigned enough computation resources to ensure 

that they can finish execution in one slice time. The group of actors is divided into non-

modal actors V
n
 and modal actors V

m
. The mode set of this group of actors is M = {m

1, 
m

2
, 

…, m
k
}. So the resource requirement for mode m

k
 ∈M is equal to: 

 

∑∑
=∈∈

+=
kjmjni maVa

j

Va

ik aeaemsource
)mod(&

)()()(Re
 (4-15) 

 

The scheduler then assigns the maximum resource requirement of all modes to the group, 

which is:  

 

∑∑
=∈

∈

∈

+=
kjmj

k

ni maVa

jMm

Va

i aeaegroupsource
)mod(&

)(max)()(Re

 (4-16) 
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The worst case arbitration situation happens in the situation that the time slice assigned 

to this group just finishes and the first actor of this group is activated. This will cause the 

group to wait for the worst case arbitration time a(group) shown in: 

 

)(Re)( groupsourcePgroupa −=   (4-17) 

 

We model the arbitration time with extra actors. The arbitration time happens when there 

is an edge from other groups. And the response time for the actors in the group will be set 

as the execution time of that actor.  

The analysis model for the scheduling strategy of combination of quasi-static ordering and 

TDM is the same as the combination of quasi-static ordering and round robin. The only 

difference is the value of time for each actor. As explained in 1.9.1, we have represented 

the arbitration time and processing time for actors under the combination of static 

ordering and TDM scheduling. For the combination of quasi-static ordering and TDM 

scheduling, the arbitration time and processing time are the same. They are: 

 

  ))(mod)(()(/)()( iiiii aSaePaSaeap −⋅=   (4-18) 

 

)()( ii aSPaa −=    (4-19) 

 

According to the scheduling strategy, the response time of the added extra actors will be 

set as the arbitration time of the group, and the response time of the actors in the group 

will be set as their processing times.  

 

4.3 MCDF Scheduling Strategy 

As explained in Section 3, static ordering scheduler cannot correctly schedule an MCDF 

graph. In an MCDF graph, you can not define a fixed execution order for the data-

dependent actors. However, MCDF graph can have fixed execution order inside the mode 

branch. Therefore, we adapt the scheduler to have static order inside each mode branch 

which is called quasi-static ordering. When doing scheduling, we combine quasi-static 

ordering with TDM scheduling.  

Further more, to solve the problem that not all processors support TDM scheduling, round 

robin scheduling is introduced as the local scheduler for processors. Thus, for processor 

who does not support TDM scheduling, we apply the combination of quasi-static ordering 

and round robin scheduling to it.  
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4.3.1 Adapting the Original Scheduler 

For MCDF, the basic point of the scheduling strategy is to guarantee that only the actors 

belonging to one single mode are activated per each firing of mode controller. The 

scheduler is adapted in the following aspects: 

• Per processor, before scheduling any modal actors, the scheduler first schedules a 

mode switch that reads a control signal from the mode controller and decides which 

mode branch to execute. The reason is explained in the following subsection.  

• The mode select actors are deleted. Deleting mode select actors do not affect the 

temporal behavior of the graph. The actors after the mode select will be handled in the 

next rule.  

• Any non-modal actors after mode select will be scheduled independently in every 

mode. That means these non-modal actors will be copied as many as the number of 

the modes, and each copy in different mode share the same properties (including 

execution time, and mapping) except the name.  

4.3.2 Adding Mode Switch to Processor 

In order to guarantee that only modal actors belonging to the current mode will be fired, 

we add mode switch to the processor on which more than two types of modal actors are 

mapped. We show the reason by comparing between two different analysis models built 

from the same MCDF graph.   

Figure 21 depicts the analysis model without scheduling extra mode switch on each 

processor. Figure 22 depicts the analysis model with scheduling mode switch when there 

are more than two types of modal actors mapped on this processor. For both analysis 

models, actors A, B, and C are modal actors belonging to mode blue, and actors D and E 

are modal actors belonging to mode red. In Figure 22, an extra mode switch is scheduled 

on processor P3 as there are two types of modal actors C and E mapped on this processor. 
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Figure 21 Analysis Model with Mode Switch 

 

                        

MC
0

Mode Switch

0

A
1

D
1

B

1
C
1

E
1

Mode Select
0

Mode Switch2
0

P1 P2

P3

 
 

Figure 22 Analysis Model without Mode Switch 

If we execute the graph in the mode sequence of mode blue once followed by mode red 

once, we obtain the Gantt chart for both of the schedule strategies. Figure 23 (a) shows 

the scheduler without adding an extra switch. With this schedule strategy, the worst case 

for both mode blue and mode red are 4 time units. Figure 23 (b) shows the scheduler with 

adding extra switches. With this schedule strategy, the worst case to finish executing in 

mode blue is 3 while for mode red is 4. From the example above, we can prove that it may 

be necessary to add extra mode switches on certain processors.  
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Figure 23 Gantt chart of the Self-time Execution of Switch Analysis Model 
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5 Analysis Tool Design 

To model the real-time scheduling procedure, we use Objective Caml (OCaml) language to 

build the simulation Heracles tool. With Heracles, we build the analysis model according to 

the scheduling strategy. Timing analysis methods are implemented too.  

5.1 Objective Caml  

Caml is a general-purpose programming language, designed with program safety and 

reliability in mind. Caml supports functional, imperative, and object-oriented programming 

styles. It has been developed and distributed by INRIA, France's national research institute 

for computer science. 

The Objective Caml system is the main implementation of the Caml language. It features a 

powerful module system and a full-fledged object-oriented layer. It comes with a native-

code compiler that supports numerous architectures, for high performance; a bytecode 

compiler, for increased portability; and an interactive loop, for experimentation and rapid 

development. [10] 

There are several properties that make Ocaml different from other programming 

languages. First, the functions can be taken as values in the code. So the name of the 

function can be passed as a parameter of other function. Second, the programmers do not 

have to give the type information of variables. The compiler will deduce the type 

information from the code. And also, the verification of the type will also be done during 

the compile period. Third, Ocaml can raise an exception when certain condition is met. 

With this, the programmer can get some intermediate result from the code. Also, Ocaml 

has imperative features. It has memory states that the programmer can modify like the 

mutable elements in the record structure. Supporting reference, loops, control structures 

are also the features of imperative language. 

5.2  Heracles Analysis Tool  

Heracles analysis tool is designed by the researchers from ST-Ericsson, Eindhoven. The 

tool takes graph file, platform architecture file and mode sequence file as inputs. It 

outputs the scheduling of the graph and possible temporal performance analysis. The 

scheduling includes the actor mapping and execution order. The temporal performance 

can be the throughput for the graph or for each mode, the self-timed execution of certain 

mode sequence, or the static periodic execution of certain mode sequence.  

5.2.1  Graph File 

The implementation of the graph data type on Heracles was already done by previous 

developers. It is designed as below: 

 
type (a’, b’) Graph = a’ list * ((a’ * a’) * b’) list 
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a’ is a template type which can be replaced by any type such as SDF actor type. b’ is also a 

template type which can be replaced by any type such as edge type. The data structure of 

the graph is composed of two elements. The first element is a list of type a’ such as a list 

of SDF actors. The second element is a list of edges. The edge is a tuple which represent 

the source and sink of the edge and an edge information type b’.  

Figure 24 shows an example of graph file. It is the graph description of the MCDF graph 

shown in Figure 11. Each actor has a unique name which is used to identify the actor and a 

property “exec” which represents the execution time of this actor. Each actor may also has 

properties like “slice” means the slice time assigned by TDM scheduler, “group” which 

means the group number this actor belongs to, “proct” which means the processor type 

this actor should be mapped on, and “mode” which means the mode this actor belongs to.  

Each edge should has the properties like “src” which means the source of this edge, “dst” 

which means the destination of this edge, “prod” which means the production rate of this 

edge, “cons” which means the consumption rate of this edge and “type” which indicates 

the type of the edge. Each edge may also have the property of “delay” which indicates the 

initial token on this edge. 
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Figure 24 Graph File 

 

The parser reads the graph file and stores it in the data structure of Graph.  

5.2.2 Architecture File 

The graph is executed on an MPSoC platform. One example of the input architecture is 

shown in Figure 25.  Each processor should have a unique name which identifies the 

processor, “type” which represents the type of the processor, “sched” which indicates the 

local scheduling strategy of the processor, “wheeltime” which represent the total resource 

of this processor, and “weight” which is used in reducing the slice time.  
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Figure 25 Architecture File 

 

5.2.3 Mode Sequence File 

The real time requirement of executing in certain mode sequence is described in mode 

sequence file. Figure 26 shows an example of mode sequence file. In Heracles tool, we 

define a type: 

 
(name*time) 

 

Here name indicates the mode name and time indicates how many times this mode should 

be executed. The data structure of a mode sequence is: 

 
(name*time) list * int 

 

It is composed of a list of (name*time) and an integer which means the execution of the 

mode sequence should takes less time than the value of the integer.  

 

                       
 

Figure 26 Mode Sequenc File 
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6 Implementation 

We already described the data structure for graph, platform architecture and mode 

sequence in section 5. In this section, we describe the scheduling procedure for MCDF 

graph, analysis model building and timing analysis implementation.  

6.1 MCDF Graph Scheduling Procedure 

Figure 27 shows the scheduling procedure and analysis model building procedure which 

is based on the original implementation designed by researcher from ST-Ericsson.  We 

modified the implementation to schedule MCDF graph.  

 
 

                                  
 

Figure 27 Heracles Scheduling Procedure for MCDF Graph 

 

After parsing the MCDF graph into the system, the tool first checks the correctness of the 

input MCDF graph according to the construction rule explained in section 2.  

After we get the correct input MCDF graph, we do the graph transformation. The graph 

transformation includes tunnel representation and graph adaptation to the scheduler. The 

tunnel representation is done according to description in section 2. The adaptation is 

implemented according to section 4.3.1 which includes deleting switch actors as extra 

switch actors will be scheduled by the scheduler, deleting select actors, copying non-

modal actors after select actors.  
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Currently, we only consider single rate MCDF, so MCDF is already HSDF without SDF-to-

HSDF conversion. The system then initialize the candidate list and enters the backtracking 

procedure which is described in section 1. The modification to the scheduling with back 

track procedure includes changing the schedule strategy and analysis model building. 

After each mapping of the actor, the group of actors is quasi-statically ordered. For each 

processor, extra mode switch actor is added if necessary. The response time of the 

arbitration actors are set according to equation 4-17 and 4-19. Timing analysis methods 

include STS and SPS will be used to check the validation of the mapping.  

 

6.2 Self-timed Scheduling with Mode Sequence 

STS is used to calculate MCM for the graph in the existing analysis tool. To calculate the 

MCM, the system starts to execute the graph until it enters the periodic regime. The MCM 

then can be calculated from the periodic phase. If we want to know the throughput for 

executing certain mode, we create sub graph according to the mode and do symbolic 

simulation on this sub graph which is implemented by previous developers from ST-

Ericsson and explained in the next subsection. Here we want to execute the MCDF graph 

with certain mode sequence under STS. We want to stop the execution when the systems 

finished executing the mode sequence no matter it enters the periodic phase or not. The 

following sub sections will explain the symbolic simulation to calculate MCM under STS 

and the modification we do to make symbolic simulation calculate the latency for mode 

sequence.   

6.2.1 Symbolic Simulation Procedure 

The state space is used to simulate the status of the graph during execution. By doing 

this, the transient phase and periodic phase of STS execution can be found. Further, the 

MCM can be calculated from the timing analysis of the periodic phase.  

The state of a dataflow graph is a pair (γ, v), composed by the state of each actor and the 

state of its FIFO edges. 

As we may have several actors running concurrently, an actor state v is the sorted multi-

set (one element per executing actor) of the remaining execution time for each of the 

actor firings. 

The FIFO state γ is defined by how many tokens are stored within the edge. 

Let us define a dataflow graph transition as changing from a state into another different 

state. We may denote a transition as (γ
1
, v

1
) ->β (γ

2
, v

2
), where  β ∈ {start, finish, update} 

denotes the type of transitions. A start transition may only occur, accordingly to the 

dataflow graph firing rules, when enough tokens are present on all of the actor's input 

FIFOs. 

A finish transaction is scheduled as soon as a start transition is, as we have knowledge of 

the actor execution/response time. An update transition is issued when a pre-determined 

actor executes so that we may update and compare the states. 
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A graph execution is therefore the set of transitions from t = 0 until t = 1, where t stands 

for the simulation clock time. In [8] is demonstrated that a consistent graph execution 

flow is composed of two parts. The transient phase consisting of a finite number of 

transitions, and in the periodic phase, a sequence of transitions will repeat infinitely. 

Suppose we have a timed sub graph shown in Figure 28.  

 

 
 

Figure 28 Simple Sub Graph 

 

The state space exploration of Figure 28 is shown in Figure 29. The numbers in the circle 

means the time of the state. The shadowed rectangular near the circle contains the events 

happening at this state. We can find out that the state of 60 has the exactly the same state 

of 30 which means that the periodic phase of the STS execution is found.  

 

 
 

Figure 29 State Space Exploration 
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6.2.2 Alternative to Building Sub Graph 

In order to calculate the MCM for certain mode or execute the graph in certain mode, we 

do not create sub-graph for that mode during implementation. Instead, we set the 

response time of the modal actors which do not belong to the current mode to be 0. 
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Figure 30 Sub Graph Building 

 

Figure 30 shows an example about how we build the sub-graph and the alternative to the 

sub-graph. Figure 30 (a) is the original MCDF graph. To build the sub-graph of mode1, 

actor C is deleted and the edges associated with actor C are deleted too. The sub-graph 

for mode1 is shown in Figure 30(b). Instead of building sub-graphs, we design an 

alternative model to represent sub-graphs by setting the response times of the modal 

actors not belonging to the current mode to be 0. The alternative for sub-graph shown in 

Figure 30(b) is depicted in Figure 30 (c). During STS execution the alternative graph in 

Mode1, the actor C will be executed too. They will not affect the timing analysis result 

because their time valuations are zero. This means that by applying symbolic simulation to 

Figure 30 (b) and Figure 30 (c), we get the same timing analysis result. We explain this by 

doing state space exploration to the sub-graph shown in Figure 30(b) and to the graph 

shown in Figure 30(c). The state spaces are depicted in Figure 31(a) and Figure 31(b). We 

can get exactly the same timing analysis results from these two state space explorations.  
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Figure 31 Symbolic Simulation State Space of Sub Graph 

 

By applying the symbolic simulation to the alternative graph of sub-graph of mode1, we 

can compute the MCM for mode1. Although the alternative graph of sub-graph does not 

violate the time consumption during execution, it increases the buffer size of the output 

edges of the modal actors. The reason is the modal actors which do not belong to the 

current mode execute and produce tokens to their output edges. Therefore, the buffer 

size requirement is increased. When there is requirement about buffer size, the alternative 

graph for sub-graph can not be used.  

6.2.3 Symbolic Simulation Modification with Mode Sequence 

In the current version of Heracles, symbolic simulation is used to calculate the MCM for 

the input graph. However, we want to calculate the latency of a mode sequence. The 

symbolic simulation function should be modified in the way of changing the stop 

condition. 

Assume we have the graph shown in Figure 30(a) as the input graph and a mode sequence 

of Mode11Mode22. Symbolic simulation first calculates the length of the mode sequence, 

and unfolds the mode sequence into a list of {Mode1, Mode2, Mode2}. Each actor is 

assigned one property called number of firings.  

During symbolic simulation, the system checks the number of firings of all the actors. No 

matter what the current mode it is, all the actors will be executed as the time valuations of 

those modal actors not belonging to the current are set to be 0. If all the actors have the 

number of firings bigger or equal than the length of mode sequence, the symbolic 

simulation stops and outputs the time of that moment. The time here is exactly how long 

it takes to execute in the entire mode sequence.  
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As for the MCDF graph, each actor executes once for every iteration. The number of firings 

of an actor is increased by 1 after each firing. Before every execution of modal actors, the 

system checks the number of firings of that actor. With this number, the system finds the 

next mode from the mode sequence. For example, if actor A has the number of firing an 

FN
A
, then the systems searches the unfolded mode sequence in the position of (FN

A
 +1). 

The system matches the search mode with the mode of actor A. If it does not match, the 

response time of A is set to be 0. Otherwise, A executes with its original response time. 

We show the symbolic simulation procedure of the MCDF graph shown in Figure 30(a) with 

the mode sequence of Mode11Mode21 below in Figure 32.  

 

Time Actor Event Fired Times 

0 source starts 0 

1 source finishes 1 

1 MC starts 0 

2 MC finishes 1 

2 
Mode 
Switch starts 0 

3 
Mode 
Switch finishes 1 

3 A starts 0 

3 C starts 0 

3 C finishes 1 

4 A finishes 1 

4 source starts 0 

5 source finishes 2 

5 MC starts 1 

6 MC finishes 2 

6 
Mode 
Switch starts 1 

7 
Mode 
Switch finishes 2 

7 A starts 1 

7 C starts 1 

7 A finishes 2 

8 C finishes 2 

 

Figure 32 Symbolic Simulation Mode Sequence 

 

From Figure 32, we can find out that modal actors A and C execute in each iteration. 

However, the response time of actor C is zero when executing in mode1 and the response 

time actor A is zero when executing in mode2. It takes 8 time units to execute the mode 

sequence of Mode11Mode21. 

 



 

Static Analysis and Task Scheduling for 
Multi-mode Software-Defined Radio 

Applications 
 

MASTER’S 
THESIS 

Implementation 

Doc ID    Rev Rev    Date: Aug 18th 2009  Root Part No. 63 (85) 

6.3 Static-periodic Schedule with Mode Sequence 

To do the timing analysis of an MCDF graph in a mode sequence with SPS, we need to 

compute the transition time from one mode to another. As explained in section 4, the 

transition problem is translated into linear programming constraints. This section, we 

explain the methods to solve linear programming problem and the method we use in 

implementation.  

6.3.1 The Procedure of Solving Linear Programming Problem 

One of the classical methods to solve linear programming problem is simplex algorithm. 

GNU Linear Programming Kit (GLPK) solves the LP problem with primal and dual simplex 

methods. The GLPK package is intended for solving large-scale Linear Programming (LP), 

Mixed Integer Programming (MIP), and other related problems. [13] 

As the Heracles tool is implemented in OCaml, we use OCaml-GLPK which is OCaml 

bindings to GLPK. We show how OCaml-GLPK solves LP problem with the MCDF graph G = 

(V, E) shown in Figure 30(a) with modes mode1 (M1), µ
1 
= 4 and mode2 (M2), µ

2 
= 5. In 

order to do the timing analysis of the graph execute in mode sequence of M1NM2P (M1 

stands for mode1, and M2 stands for mode2) under SPS, we build the linear programming 

problem to find the bounds for start times of the actors in the transition phase of M11M21. 

For each actor active in mode1, we have inequalities below according to inequalities (4.1): 

 
0)0,( ≥srcs  

0)0,( ≥MCs  

0)0,( ≥MSs  

0)0,( ≥As  

0)0,( ≥Cs  

 
 
 
 
 
 
 
 

And inequalities (4.5): 

 
1)0,()()0,()0,( +=+≥ srcssrctsrcsMCs  

1)0,()()0,()0,( +=+≥ MCsMCtMCsMSs  

1)0,()()0,()0,( +=+≥ MSsMStMSsAs  

1)0,()()0,()0,( +=+≥ MSsMStMSsCs  

41)0,(1)()0,()0,( 1 −+=⋅−+≥ AsAtAssrcs µ  
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40)0,(1)()0,()0,( 1 −+=⋅−+≥ CsCtCssrcs µ  

 
 

And inequalities (4.6): 

 
0)0,(' ≥srcs  

0)0,(' ≥MCs  

0)0,(' ≥MSs  

0)0,(' ≥As  

0)0,(' ≥Cs  

 

And inequalities (4.7): 

 
1)0,(')()0,(')0,(' +=+≥ srcssrctsrcsMCs  

1)0,(')()0,(')0,(' +=+≥ MCsMCtMCsMSs  

1)0,(')()0,(')0,(' +=+≥ MSsMStMSsAs  

1)0,(')()0,(')0,(' +=+≥ MSsMStMSsCs  

50)0,(1)(')0,(')0,(' 2 −+=⋅−+≥ AsAtAssrcs µ  

52)0,(1)(')0,(')0,(' 2 −+=⋅−+≥ CsCtCssrcs µ  

 
 
 
 
 
 
 
 
 
 

And inequalities (4.8): 

 
)0,()0,(' srcssrcs ≥  

)0,()0,(' MCsMCs ≥  

)0,()0,(' MSsMSs ≥  

)0,()0,(' AsAs ≥  

)0,()0,(' CsCs ≥  
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1)0,()()0,()0,(' +=+≥ AsAtAssrcs  

0)0,()()0,()0,(' +=+≥ CsCtCssrcs  

 

We set the objective function to minimize: 

 

)0,(')0,(')0,(')0,(')0,(' CsAsMSsMCssrcs ++++  

 

The start times of the actors in each mode will be the variables for the linear programming 

problem. With the inequalities and the objective function, we create a complete linear 

programming problem. That can be solved by OCaml-GLPK.  

 





 

Static Analysis and Task Scheduling for 
Multi-mode Software-Defined Radio 

Applications 
 

MASTER’S 
THESIS 

Experiment and Results 

Doc ID    Rev Rev    Date: Aug 18th 2009  Root Part No. 67 (85) 

7 Experiment and Results 

In this section, 3 cases will be studied to show how to apply our scheduling strategy and 

timing analysis to the MCDF graphs. We want to prove that the combination of quasi-static 

ordering and TDM/round robin scheduling can schedule MCDF graphs. Furthermore, with 

the 3 case studies, we want to find the advantage and disadvantage of timing analysis 

methods, STS and SPS.  

In the first 2 cases, the MCDF graphs will be running on the MPSoC platform template 

depicted in Figure 1. It includes the type general core like ARM, to handle control and 

generic functionality, the type vector processor core, like EVP, to handle detection, 

synchronization, and demodulation, and the type of application-specific Software Codec 

processor that takes care of the baseband coding and decoding functions, and 

input/output (I/O) ports (see Figure 1). The platform is used to handle several radio 

standards (Wireless Lan, TD-SCDMA, DVB-H, and UMTS). 

7.1 Case 1 DVB-T MCDF Graph  

We apply the combination of quasi-static ordering and TDM/round robin to the MCDF 

graph of Digital Video Broadcasting-Terrestrial (DVB-T) baseband receiver shown running 

on the MPSoC platform template depicted in Figure 1. The MCDF graph of DVB-T baseband 

receiver (see Figure 33) has 3 modes: “synch_mode (syn)”, “drop_mode (drp)”, and 

“dem_mode (dem)”. The actors colored in blue belong to “dem_mode”, the actors colored in 

green belong to “drop_mode”, and the actors colored in red belong to “synch_mode”. There 

are 2 data-dependent actors switch and select, one mode controller MC, and one non-

modal actor “source”. The numbers on the actors are the execution times with the time 

unit of Nano-Second (ns). The mappings of the actors are given in the graph file (See 0). 

Actor “source” is mapped on the ARM core. Actor “dec_sink” and “data_out” are mapped on 

the core of software decoder. The rest are mapped on EVP. The summarized DVB-T MCDF 

graph information is shown in Table 2. The input graph file of DVB-T can be found in 

Appendix B.  

 

Table 2 DVB-T MCDF Graph Information 

 

Actor_name Short_name Time Mode Map_on_Processor 
Mode 
Controller MC 427 ns Null EVP 

Source Src 0 ns Null ARM 

Switch Switch 683 ns Null EVP 

Select Select 250 ns Null EVP 

Synch_acq Syn 57200 ns Syn EVP 

Drop Drop 843 ns Drop EVP 

Demode Dem 57400 ns Dem EVP 

Decode&Sink Dec 335500 ns Dem Software Decoder 

Data_out Data 0 Dem Software Decoder 
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The real-time constraint for DVB-T is that the throughput of mode “dem_mode (dem)” 

should be larger than )896/(1 sµ . Here we can represent this constraint as the MCM for 

mode “dem_mode” should be smaller than sµ896 which is equal to ns896000 .  
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Figure 33 DVB-T Baseband Receiver 

 

As there is only real-time constraint about throughput, we do the scheduling and compute 

the MCM as the timing analysis method. It is done with command: 

 
./time Heracles –c2h –how –scc –cyc  –f graphfile –s systemfile 

 

Here graphfile is the graph file of the DVB-T, and the systemfile is the MPSoC platform file.  

The DVB-T MCDF graph is scheduled by our scheduling strategy with the real-time 

requirement mentioned above. The Heracles tool outputs the schedule of the graph in 

Figure 34. The mapping of the actors is shown in the “bindings” information, and the 

execution order is shown in the “DAG” information. We can generation the analysis model 

with “bindings” and “DAG”. By running this MCDF graph on the MPSoC platform mentioned 

above, we get the result of the MCM for mode “dem_mode” which is ns335500 . This MCM 

is less than the required 896000ns which means that it meets the real-time requirement. 

This example shows that our scheduling strategy can schedule an MCDF graph and 

perform timing analysis methods on the timing analysis model.  
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Figure 34 DVB-T Schedule Result 

 

According to the inequality 4.16, we can reduce the slice time assigned to each group of 

actor. For the group mapped on software decoder processor, the time slice can be reduced 

to 335500 ns. For the group mapped on EVP processor, the time slice can be reduced to 

427+683+250+57400 = 58760 ns. For the group mapped on ARM processor, the time 

slice can be reduced to 0 ns.  
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7.2 Case 2 Wireless Lan MCDF Graph 

We apply the combination of quasi-static ordering and TDM/round robin to the MCDF 

graph of Wireless LAN baseband receiver shown in Figure 35 running on the MPSoC 

platform depicted in Figure 1. The graph file of Wireless LAN baseband receiver can be 

found in Figure 35. The number on each actor is the execution time of that actor. Wireless 

LAN MCDF graph has modal actors belonging to 4 modes: “crc_mode (crc)” in blue, 

“synch_mode (syn)” in green,  “hearder_mode (hd)” in red, and “payload_mode (pay)” in 

yellow, 3 data-dependent actors Mode Switch, Mode Select, and Tunnel, one Mode 

Controller, and 3 non-modal actors source, shifter, and blackhole.  

The mappings of the actors are given in the graph file (see Appendix C). Actor Source is 

mapped on ARM processor. Actor header_decode and payload_decode are mapped on 

Software Codec processor. Actor data_out is mapped on external I/O ports. The rest are 

mapped on the EVP processor. The summarized Wireless LAN MCDF graph information is 

shown in Table 3. 

 

Table 3 WLAN MCDF Graph Information 

 
 
 

 A complete Wireless Lan job runs twice in “synch_mode”, once in “header_mode”, 1-255 

times in “payload_mode”, followed by once in “crc_mode”. The real-time requirement for 

Wireless LAN is that the system should finish execution in sn µ)428( ⋅+  with the mode 

sequence of syn2header1payloadncrc1.  

In this example, we want to: 

 

� Prove that the combination of Quasi-static ordering and TDM/round robin 

scheduling can schedule MCDF graph 

� Compute the MCM for each mode can be computed by symbolic simulation 

� Perform STS timing analysis of the MCDF graph in certain mode sequence 

� Perform SPS timing analysis of the MCDF graph in certain mode sequence 

Actor_name Short_name Time Mode Map_on_Processor 

Mode Controller MC 500 µs Null EVP 

Source Src 4000 µs Null ARM 

Shifter Shifter 1 µs Null EVP 

Mode Switch Switch 0 µs Null EVP 

Mode Select Select 0 µs Null EVP 

Tunnel Tunnel 1 µs Null EVP 

Crc Crc 500 µs Crc EVP 

Cfensynch Csyn 355 µs Syn EVP 

Ffensynce Fsyn 0 µs Syn EVP 

Header_demode Hdem 920 µs Header EVP 

Header_decode Hdec 920 µs Header Software Decoder 

Header_analysis Hana 0 µs Header EVP 

Payload_demode Pdem 920 µs Payload EVP 

Payload_decode Pdec 920 µs Payload Software Decoder 

Data_out Data 920 µs Payload Extern 
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� Calculate the time it takes to get the timing analysis result  
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Figure 35 MCDF Graph of Wireless LAN Baseband Receiver 

 

First, we only do the scheduling of the MCDF graph of Wireless LAN. The schedule is 

checked by computing MCM with the command of:  

 
./time Heracles –c2h –how –scc –cyc  –f graphfile –s systemfile 

 

Here the time wheels of the processors under round robin scheduling are all set to be 

3000. The tool computes the MCM for the MCDF graph to be 5997 and finds critical cycle 

depicted on the top of Figure 36. The time that the tool takes to do the scheduling with 

MCM computation timing analysis method is 0.26s.  
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Figure 36 Wireless LAN Schedule Result 

 

According to the inequality 4.16, we can reduce the slice time assigned to each group of 

actor. For the group mapped on software decoder processor, the time slice can be reduced 

to 920 µs. For the group mapped on EVP processor, the time slice can be reduced to 1425 

µs. For the group mapped on ARM processor, the time slice can be reduced to 4000 µs. 

For the group mapped on Extern, the time slice can be reduced to 4000 µs. 

 

Second, we use symbolic simulation to compute the MCM for each mode which will be 

further used in static periodic scheduling. The result is shown in Table 4. Here the left 

column denotes the name of the modes, and the right column denotes the MCM for the 

mode on its left.  

 

Table 4 MCM for Each Mode 

 
 

Third, we do the scheduling with STS timing analysis method. The command we use is 

shown below. Here mosefile is the input mode sequence file.  

 
./time Heracles –c2h –how –scc –sim –simms  –f graphfile –s systemfile –ms mosefile 

 

Mode Name MCM 

crc 4000 

synch 4000 

header 5997 

payload 4000 
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The result of self-timed execution of mode sequence is shown in Table 5. The column of 

Mode Sequence denotes that after each scheduling, the system check the real-time 

requirement with this mode sequence. The column of time consumption denotes the time 

it takes to execute in the mode sequence shown on its left. The column of Real-Time 

Requirement means that the time the result of STS timing analysis should be smaller than 

this requirement. The analysis time denotes that the time the tool spends to find the 

schedule with STS timing analysis by checking the mode sequence shown on the column 

of “Mode Sequence”. The application could have real-time requirements with more than one 

mode sequence. In this Wireless LAN example, after each scheduling, it is required to 

check 255 mode sequences which are Synch2header1payloadncrc1
 
where n = 1—255. For 

different mode sequence, different time constraint is checked. From the Table 5, we can 

find that it takes 21 minutes 37 seconds for the tool to find the schedule with STS timing 

analysis method with the 255 mode sequences.  

 
 

Table 5 Self-timed Execution of Mode Sequence 

 

Mode Sequence Time Consumption Analysis Time Real-Time 
Requirement 

Synch
2
header

1
payload

1
crc

1
 26495 ns 1.22s 28000 ns 

Synch
2
header

1
payload

2
crc

1
 29076 ns 1.25s 32000 ns 

Synch
2
header

1
payload

3
crc

1
 32497 ns 1.26s 36000 ns 

Synch
2
header

1
payload

4
crc

1
 36497 ns 1.28s 40000 ns 

Synch
2
header

1
payload

5
crc

1
 40497 ns 1.32s 44000 ns 

Synch
2
header

1
payload

255
crc

1
 1040497 ns 5.55s 1044000 ns 

Synch
2
header

1
payload

n
crc

1
 - 21min37sec nsn 1000)428( ⋅⋅+  

 
 

Fourth, we show the scheduling with SPS timing analysis method. The command for 

Heracles too is: 

 
./Heracles –c2h –how –scc –sps -simms –f graphfile –s systemfile –ms mosefile 

 

If we have a mode sequence like synch2header1payloadNcrc1 ( 1≥N ), we compute the start 

times of the actors during mode transition under SPS. We get the finishing time of 

executing the mode transition under SPS from the information of the start times of the 

actors. The result is shown in Table 6. We also have the time it takes for the analysis tool 

to get the analysis result which is 1.82s. If we subtract this time by the time the system 

takes to schedule and build analysis model, we get the time the tool takes to solve linear 

programming problem with OCmal-GLPK. The time is 1.82 – 0.26s = 1.56s.  

 

Table 6 Mode Transition under SPS 

 
 Mode Transition Finishing Time Analysis Time 

synch
1
header

1
payload

1
crc

1
 22495µs 1.82s 
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By applying equation 4.9, we can get the static periodic execution time of mode sequence 

synchaheaderbpayloadccrcd )1,,,( ≥dcba . The time consumption of executing in mode 

sequences that we are interested under SPS can be found in Table 7. The graph executes 

static periodically. Therefore, in order to compute the time consumption of certain mode 

sequence under SPS, we just add some certain numbers of the MCM of the repeating mode 

to the finishing time of mode transition. For this example, loads of analysis time is saved. 

Because the real-time requirement of this example is to check the time consumption of 

mode sequence Synch2header1payloadncrc1 where n = 1—255. With SPS timing analysis 

method, we only compute the time consumption of mode transition 

Synch2header1payload1crc1. With simple mathematical computation, the time consumption 

of mode sequence Synch2header1payloadncrc1 can be obtained as shown in Table 7. 

 

Table 7 SPS Timing Analysis of Mode Sequence 

 

 

The time consumptions of the mode sequences are all smaller than their real-time 

requirement. Therefore, the schedule is verified.  

From this example, we can find that the timing analysis result of STS is tighter or equal 

than SPS.   

 

7.3 Case 3 Corner Example 

In order to show the difference between STS and SPS in the tightness of timing analysis, 

we artificially build the MCDF graph shown in Figure 37. This artificial graph has 2 modes: 

mode red and mode blue. The numbers on the actors are the execution times. The graph 

file is shown in Appendix D. The graph information is summarized in Table 8. 

Table 8 Graph Information of Corner Example 

 

Actor_name Short_name Time Mode Map_on_Processor 
Mode 
Controller MC 0 s Null Proc1 

Switch Switch 0 s Null Proc1 

Tunnel Tunnel 0 s Null Proc2 

A A 1 s red Proc3 

C C 3 s red Proc4 

B B 1 s blue Proc5 

 

Mode Sequence Time Consumption 
under SPS 

Real-Time Requirement 

synch
1
header

1
payload

1
crc

1
 22495 ns - 

Synch
2
header

1
payload

2
crc

1
 30495 ns 32000 ns 

Synch
2
header

1
payload

10
crc

1
 62495 ns 64000 ns 

Synch
2
header

1
payload

100
crc

1
 422495 ns 424000 ns 

Synch
2
header

1
payload

255
crc

1
 1042495 ns 1044000 ns 



 

Static Analysis and Task Scheduling for 
Multi-mode Software-Defined Radio 

Applications 
 

MASTER’S 
THESIS 

Experiment and Results 

Doc ID    Rev Rev    Date: Aug 18th 2009  Root Part No. 75 (85) 

We assume there is always enough resource which means that the actor can start to 

execute when it is activated. This is done by assigning the full time wheel of a processor 

to the actor, and all the actors are mapped on the different processors. By doing this, 

there is no arbitration time for all the actors. We try to do the timing analysis with mode 

sequence of “red2blue2”.  

  

 
 

Figure 37 Corner Example 

 

With the STS timing analysis result, we draw the Gantt chart for this STS execution in 

Figure 38. In this figure, we define X
i 
as the ith execution of actor X. 

 
From the Gantt chart, 

we can find that the STS execution finishes at time 7, and the start time of actor B’s 

second execution is 2.  

 
 

 
 

Figure 38 STS Gantt chart 

 

We also try to do SPS timing analysis with the mode sequence of “red2blue2”. The start 

times in mode red and in mode blue is shown in Table 9. With these start times, we draw 

the Gantt chart for SPS execution in Figure 39. 
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Table 9 Start Times under SPS 

 

Mode Red Mode Blue 

start_A_1_1 -> 0  
start_B_1_1 -> 0  
start_C_1_1 -> 1  
start_mc_1_1 -> 0 

start_A_1_1 -> 4  
start_B_1_1 -> 3  
start_C_1_1 -> 4  
start_mc_1_1 -> 3 

 
 

 
 

Figure 39 Gantt chart of SPS Execution 

 

Both STS and SPS execution finish in time 7. However, the start time of B
2
 with STS is 2 

while it is 4 with SPS. In this corner example, it is shown that the timing analysis result of 

STS is tighter than SPS. 

Furthermore, we can do timing analysis to mode sequence (red2blue2)n which means that 

the MCDF graph executes in the mode sequence of  red2blue2 for n times. We define s(B
2
, i) 

as the second execution of actor B in the ith execution of mode sequence red2blue2. We can 

find the s(B
2
, i)  from the timing analysis result with both STS and SPS. They are 

represented in the following equations.  

 

46),( 2 += iiBs SPS  0≥i  (7-1) 

 

23),( 2 += iiBs STS  0≥i  (7-2) 

From the equations above, we can find the difference between SPSiBs ),( 2 and STSiBs ),( 2  

is 3i+2.   

7.4 Summary 

From the 3 cases above, we can conclude that when doing timing analysis with a mode 

sequence, STS timing analysis method computes tighter timing analysis result than SPS 

timing analysis method.  
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Further more, the time it takes for STS timing analysis method to get the result depends 

on the length of the mode sequence. Longer mode sequence leads to longer time 

consumed to do STS timing analysis. However, the time it takes for SPS timing analysis 

method to get the result depends on the complexity of the mode transition. For example, 

if an MCDF graph has n modes with mode set M = {M
1,
 M

2,
 M

3,
 M

4,
 M

5,
…, M

n
 }. The real-time 

requirement is represent with a mode sequence like: (M
1
 M

2
 M

3
 M

4
 M

5
… M

n
), which means 

the graph execute in each of its mode once continuously. It has lots of mode transitions 

which will make the linear programming very complex and requires long time to solve the 

linear programming problem. 

Therefore, we can conclude that if the mode sequence is short, STS timing analysis should 

be chosen as the timing analysis method. If there is a very long mode sequence which do 

not have complex mode transition, SPS timing analysis method will be the better choice.  
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8 Conclusions and Future Work 

 

We have presented that the combination of quasi-static ordering and TDM/round robin can 

schedule the MCDF graphs. Timing analysis methods include MCM computation, STS, and 

SPS are explained and implemented. We also compare the advantage and disadvantage of 

the timing analysis methods. STS timing analysis method provides the tightest timing 

analysis result. It is fast to do STS timing analysis when the mode sequence is short 

enough. SPS timing analysis can be converted into linear programming problem. With the 

same mode sequence, it may be faster to do SPS timing analysis than STS timing analysis 

when the mode sequence has long mode sequence and not so many mode transitions.  

However, there are still many aspects of the scheduling strategy and timing analysis 

methods should be improved. First, for STS timing analysis method, we can try to find a 

way to avoid simulating all the mode sequences. As illustrated in [8], for every consistent 

SDF graph, the self-timed execution will finally become periodic. Therefore, the symbolic 

simulation of mode sequence can stop when enter the periodic phase. Second, we can 

investigate the time consumption of executing in the mode sequence of (AmBn)p which 

means the graph execute in mode sequence of AmBn for p times. The cyclical of executing 

in mode sequence (AmBn)p can be researched. Third, MCDF graphs are assumed to be single 

rate. Our scheduling strategy can not schedule multi-rate graphs. Further research can be 

carried out for multi-rate MCDF graphs. Finally, the SPS timing analysis is converted into LP 

problem. The complexity of the LP problem is discussed in subsection 4.1.4. Further study 

can be carried out to reduce the complexity of the LP problem.  
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Acronyms and Terms 

 

SDR Software Defined Radio 

DF Data Flow 

GSM Global System for Mobile 

Communication 

WCDMA Wideband Code Division 

Multiple Access 

HSDPA High-Speed Downlink 

Packet Access 

DVB-H Digital Video Broadcasting-

Handheld 

GPS Global Positioning System 

MPSoC Multi-Processor System on 

Chip 

VLSI Very Large Scale Integration 

NOC Network On Chip 

FIFO  First-In-First-Out 

TDM Time Division-Multiplex 

MCDF Mode Controlled Data Flow 

MC Mode Controller 

MCM Maximum Cycle Mean 

STS Self-Timed Schedule 

SPS Static Periodic Schedule 

LP Linear Programming  

RR Round Robin 

OCaml Objective Caml 

GLPK GNU linear programming kit 

MIP Mixed Integer Programming 

DVB-T Digital Video Broadcasting-

Terrestrial 

WLAN Wireless Local Area Network 

EVP Embedded Vector Processor 

 



STE Common Word Template, Word 2003 
Version 

Document Type Appendix A: MPSOC
PLATFORM FILE 

Subtitle  

Doc ID    Rev Rev    Date: Aug 18th 2009  Root Part No. 82 (85) 

Appendix A: MPSOC PLATFORM FILE 

 
processor 
 
name="EVP" wheeltime=896000 type=1 sched="roundrobin" weight=100; 
name="SwDecoder" wheeltime=896000 type=2 sched="roundrobin" weight=100; 
name="ARM" wheeltime=896000 type=3 sched="roundrobin" weight=100; 
name="Src" wheeltime=1 type=4 sched="tdma" weight=0; 
name="Lat1" wheeltime=1 type=5 sched="off" weight=0; 
name="Lat2" wheeltime=1 type=6 sched="off" weight=0; 
name="Lat3" wheeltime=1 type=7 sched="off" weight=0; 
 
end 
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Appendix B: DVB-T Graph File 

actors 
name="synch_acq" exec=57200 slice=80000 group=1 proct=1 mode=1; 
name="drop" exec=843 slice=80000 group=1 proct=1 mode=2; 
name="dem" exec=57400 slice=80000 group=1 proct=1 mode=3; 
name="dec_sink" exec=335500 slice=671000 group=2 proct=2 mode=3; 
name="data_out" exec=0 slice=671000 group=2 proct=2 mode=3; 
name="mc" exec=427 slice=80000 group=1 proct=1 type="mode_controller"; 
name="source" exec=1 slice=80000 group=3 proct=3; 
name="switch" exec=683 slice=80000 group=1 proct=1 type="switch"; 
name="select" exec=250 slice=80000 group=1 proct=1 type="join"; 
arcs 
src="source" dst="switch" prod=1 cons=1 type="fifo"; 
src="mc" dst="switch" prod=1 cons=1 delay=0 type="control"; 
src="mc" dst="select" prod=1 cons=1 delay=0 type="control"; 
src="switch" dst="synch_acq" prod=1 cons=1 type="fifo"; 
src="switch" dst="drop" prod=1 cons=1 type="fifo"; 
src="switch" dst="dem" prod=1 cons=1 type="fifo"; 
src="synch_acq" dst="select" prod=1 cons=1 type="fifo"; 
src="drop" dst="select" prod=1 cons=1 type="fifo"; 
src="dem" dst="select" prod=1 cons=1 type="fifo"; 
src="dem" dst="dec_sink" prod=1 cons=1 type="fifo"; 
src="dec_sink" dst="data_out" prod=1 cons=1 type="fifo"; 
src="select" dst="mc"  prod=1 cons=1 delay=1 type="fifo"; 
constraints 
mud=896000; 
end 
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Appendix C: Wireless LAN Graph File  

actors 
 
name="mc" exec=500 slice=1425 group=1 proct=1 type="mode_controller"; 
name="source" exec=4000 slice=4000 group=2 proct=2; 
name="shifter" exec=1 slice=1425 group=1 proct=1; 
name="mswitch" exec=0 slice=1 group=1 proct=1 type="switch"; 
name="mselect" exec=0 slice=1425 group=1 proct=1 type="join"; 
name="mtunnel" exec=1 slice=1425 group=3 proct=3 type="tunnel"; 
name="blackhole" exec=1 slice=1425 group=1 proct=1; 
name="cfensynch" exec=355 slice=1425 group=1 proct=1 mode=1; 
name="ffence" exec=0 slice=1425 group=1 proct=1 mode=1; 
name="header_demode" exec=920 slice=1425 group=1 proct=1 mode=2; 
name="header_decode" exec=920 slice=2000 group=3 proct=3 mode=2; 
name="header_analysis" exec=0 slice=1425 group=1 proct=1 mode=2; 
name="payload_demode" exec=920 slice=1425 group=1 proct=1 mode=3; 
name="payload_decode" exec=920 slice=2000 group=3 proct=3 mode=3; 
name="data_out" exec=920 slice=920 group=4 proct=4 mode=3; 
name="crc" exec=500 slice=1425 group=1 proct=1 mode=4; 
 
arcs 
 
src="mc" dst="mswitch" prod=1 cons=1 delay=0 type="control"; 
src="mc" dst="mselect" prod=1 cons=1 delay=0 type="control"; 
src="mc" dst="mtunnel" prod=1 cons=1 delay=0 type="control"; 
src="mc" dst="shifter" prod=1 cons=1 type="fifo"; 
src="source" dst="shifter" prod=1 cons=1 type="fifo"; 
src="shifter" dst="mswitch" prod=1 cons=1 type="fifo"; 
src="mswitch" dst="cfensynch" prod=1 cons=1 type="fifo"; 
src="mswitch" dst="header_demode" prod=1 cons=1 type="fifo"; 
src="mswitch" dst="payload_demode" prod=1 cons=1 type="fifo"; 
src="mswitch" dst="crc" prod=1 cons=1 type="fifo"; 
src="mswitch" dst="blackhole" prod=1 cons=1 type="fifo"; 
src="cfensynch" dst="ffence" prod=1 cons=1 type="fifo"; 
src="header_demode" dst="header_decode" prod=1 cons=1 type="fifo"; 
src="header_decode" dst="header_analysis" prod=1 cons=1 type="fifo"; 
src="payload_demode" dst="payload_decode" prod=1 cons=1 type="fifo"; 
src="payload_decode" dst="data_out" prod=1 cons=1 type="fifo"; 
src="header_analysis" dst="mtunnel" prod=1 cons=1 type="fifo"; 
src="mtunnel" dst="payload_decode" prod=1 cons=1 type="fifo"; 
src="crc" dst="mselect" prod=1 cons=1 type="fifo"; 
src="cfensynch" dst="mselect" prod=1 cons=1 type="fifo"; 
src="header_analysis" dst="mselect" prod=1 cons=1 type="fifo"; 
src="mselect" dst="mc" delay=1 prod=1 cons=1 type="fifo"; 
 
constraints 
 
mud=100000; 
 
end 
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Appendix D: Corner Example Graph File 

actors 
name="A" exec=1 slice=10 group=1 proct=1 mode=1; 
name="B" exec=1 slice=10 group=2 proct=2 mode=2; 
name="C" exec=3 slice=10 group=3 proct=3 mode=1; 
name="mc" exec=0 slice=10 group=4 proct=4 type="mode_controller"; 
name="switch" exec=0 slice=10 group=4 proct=4 type="switch"; 
name="tunnel" exec=0 slice=10 group=5 proct=5 type="tunnel"; 
arcs 
src="mc" dst="switch" prod=1 cons=1 delay=0 type="control"; 
src="mc" dst="tunnel" prod=1 cons=1 delay=0 type="control"; 
src="switch" dst="A" prod=1 cons=1 type="fifo"; 
src="switch" dst="B" prod=1 cons=1 type="fifo"; 
src="A" dst="tunnel" prod=1 cons=1 delay=0 type="fifo"; 
src="tunnel" dst="B" prod=1 cons=1 delay=0 type="fifo"; 
src="A" dst="C" prod=1 cons=1 type="fifo"; 
src="C" dst="A"  prod=1 cons=1 delay=2 type="fifo"; 
constraints 
 
mud=10; 
 
end 
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